92L6

L10 PROGRAMMING GUIDE

Augmentation Research Center
Stanford Resegrch Institute
Menlo Park, California 94025

ERYTE BOLR" COTTIsLEYe Lf0%R
PAAULOLE PRMRRLOY InWITONSS
YrEBaUI RSOV URMSWLEAEY Jhuieh

rIe s¥O0BTInITRG 300

CONTENTS

Title

S R T D S S S R R e R R S B

Section l. INTRODUCTION T Ll0.wanasssaesees
IntroauUCtiONecsssssasanssasenssssnsssnnsans
CONVENTIONS USEYU IN DESCRIPTION OF LlOsewe

DEFINITIONS.....'I-Ul.lnttobo.'nl-.l-linio

Section 2, PROGRAM STRUCTURE AND PROCEDURES,
Introduction.....I.-.........Il.l.l..l...I

USER PHOGRAM STRUCTURE.essassassssccssccanse

Section 3., ELEMENTS OF LlOsscsssscssnccscans
IntroductioOnecscesccesccaccssanscsesccnnnnse
VARIABLES.eeessessesesssscanssscnsscccsanns
OPERATORS ,seccccsccnscsccsncsccssssancncsccscs
PRIMITIVFS.eessnscscesncssnscssansnscacsansnse

EXPRESSIONs..l.olnl--u.-..l.llunl-lootonul

Section 4, DECLARATIONS,ceccescccsssccccccss
IntroductiONecscccscssanscsscscnsscscncsssans
GLOBAL DECLARATIONS.cesescscscssccscccccannse
REFERENCE DECLARATIONS:cscecsscsssssacsass

LOCAL DECLARATIONS.I..Q."..-...-....'--..

L10 Programming Guide

ARC L APR 72 492L6
CONTENTS

Statement #

(3)

(3a)
(30)
(3c)

(L)
(La)
" (4Db)

(5)

(5a)
(5b)
(5¢)
(54)
(5e)

(6)

(6a)
(6Db)
(6c)

(6d)

Contents [page 3]

ARC 4 APR 72 9246
CONTENTS

Section 5- STATEMENTS..OO-.---il.aut.--l--l-

ASSIGNMENTn-t---l--a..o-----|--tnl--l-lo-6

DIVIDE-......'.I...--......'....-'.I-..I..

BLOCK--".'.....-..I..".........I-.I..III

GONDITIONAL..Il.....'l.."lI..I.........I.
ITERATIVE‘:..lll........lll.ll.'.....l..'.li
TRANSFERIIlI.ll...I..l-lll.Il.I.l.......l.

NULL STATEHENT.....'.'Ill‘lll.'...'.....Il

Section 6, STRING TEST AND MANIPULATION.....
Introductionl...ll.l.ll"'ll.....'-.ﬂ.li'l

CURRENT CHARACTER POSITION (ccpos)
AND TEXT POINTERSscceccccsccscsccsacsse

PATTERNS = the FIND statement
and CONTENT ANALYSIS patternsS.ceccscss

STRING CONSTRUCTION."...l-l.ll.II."....I
Section 7. CONTENT ANALYSIS AND SEQUENCE
GENERATOR PROGRAMS...l...'.'ll.....-..'.llll

Introduct’ion.-..I."l.ll'l.....l..."."-.

THE CREATION OF USER WRITTEN PROGRAMS:....

THE CONTEXT OF USER WRITTEN PROGRAMS......

L10 Programming Guide Contents [page L]

(7)

(7a)
(7p)
(7¢)
(7d)
(7e)
(7£)
(7g)

(8)

(8a)

(8p)

(8c)
(8d)

(9)

(9a)
(9D)
(9¢)

ARC L APR 72 9246
CONTENTS

Section 8, INVOCATION OF USER FILTERS
AND PROGRAMS--IIll'....llII..-.--.-II..-...I. (10)

In‘brOGuct’ionl-l.ll.I.ll.l.'l-l-.lll."'..‘. ‘loa)
SIMPLE CONTENT ANALYSIS PATTERNS:sscecscnse (10Db)

PROGRA,MS SUBSYSTEM....-UICI.IIIll..l.lubigu (lOC)

INDEXUUIOIl.ucnii-------l!.oo..alli-i-ii-ll'!l (ll,

110 Programming Guide contents [page 5/

Faas (o)
: Ladic

(AL
- 14

1adl

| Jbowaag) edewpnes

. iy
Y '8 b
i ' 1

" ,I'I “I'I'_ s

BRITAIY B0 30 NoTmDEVHI r
reasEriisdvesnariestdsnrmy --ltv‘ii‘wr - ¥

i

B i

EEE lbbliirbrLr‘i.bd-HlD'lH.I.‘um I|I||.

pasgreree o RANRTTAS S7SYJANA THETUCO RITNIR e
.'ll"l'.0__4..0-!"I‘l‘..i‘d.li...“'“uu. “m 1

VAEENrFrrsRavalbeevdaenpiagriannbnpprin -n---_mu
- Ls

SOAL0 AAZINATIOYE 0L

ARC L APR 72 9246
INTRODUCTION TO L1O

Section 1, INTRODUCTION TO L1O

Introduction 3a

This document describes a subset of the L10 programming

language used at ARC on the PDP1l0O., The language contains

some high level features for operations such as string

analysis and manipulation which are implemented in the

language a8 calls on liprary routines, 1In addition, L10

has basic constructions such as local variables which have

been particularly useful. The L10O conmpiler was written

using the compiler=compiler system Tree Meta, 3al

The sSubsSet presented is offered primarily to satisfy the

needs of the novice programmer interested in producing

user programs for use in the analyzZer formatter system

of the NLS portraval generator. 3ala

The portrayal generator, its NLS relative the sequence
generator, and the NLS commands used to compile users!'
program8 and establish them as the filters used by the
system are descriped in Section 7 and 6 below. 3alb

L10 Programming Guide Section 1 [page 7]

ARC 4 APR 72 9246
INTRODUCTION TO L10O

CUNVENTIONS USED IN DESCRIPTION OF L1O

The following c
description of

If there is more than one alternative allowed in any

syntax rule,

Each alternative consists of a sequence of elements,

All elements in the sequence must occur in the specified

order,

Any element
optional,

The elements

the name

onventions (syntax) are used in the
the fegtures of L10O.

they are separated by slashes (/).

enclosed in square brackets, [and J, 1s

may be any of the following:

of g rule;

a call on a basic recognizer which tests the input
for one of the following

LD &=

NUM =

SR

SR1 =

CHR =

a string

recognizes a lower case identifier,
recognizes a number,
recognizes a string enclosed in quotes

recognizes a 8single chgracter
preceded by an apoStrophe (')

recognizes any character;

enclosed in quotes (")

tli]'

a 8ingle character string indicated by an apostrophe
(') followed by the character;

a list of

a dollar sign (8) followed by an element, which means
an arbitrary number of occurrences

alternatives enclosed in parentneses;

of the element,

(including Zzero)

comments are enclosed in percent signa (%) and may be
embedded anywhere in the rule,

L10 Programming Guide

Section 1 [page 8)

3b

3bl

3bla
3blb

3ble

3bld
3ble

3blel

3ble2
3ble2a
3ble2b

3ble2ce

3ble2d
3blele

3ble3

3blel

3bles

3bleé

3blft

ARC 4 APR 72 9246
INTRODUCTION TO L1O

Rules are terminated by a semicolon (;). 3ble

L10 Programming Guide Section 1 /page 9]

ARC J APR 72 9246
INTRODUCTION TO L1O

DEFINITIONS
identifier

a symbolic name used to identify procedures, executable
statements, and variables, (When ugsed to identify
eXecutable statements, identifiers are referred to as
labels.) In L10 identifiers consist of any number of
lowercase letters and/or digits the first of which must
be a letter,

label

an exXecutable statement identifier enclosed in
parentheses agnd followed immediately by a colon,

variable

an identifier which represents a quantity whose value
Was previously defined, is not vet defined, or may
change through the course of the program, L10 variables
must be explicitly defined in program declaration
statements, in procedure argument lists or LOCAL
statements, or must be available as NLS globals,

indexed variable

a2 multi=element variable or array. L10 permits arrays
of one dimension only.

global

pertaining to a variable whose address in memory 1is
known and accessible throughout all parts of a progranm,
Global variables may be declared in a program or be NLS
globals, which the NLS environment defines and which are
valid for any L10 program, Through the compiler's
knowledge of the correspondence between the identifier
and the memory address (contained in the system symbol
table), the contents of the memory cell may be changed
by program instructions,

local
pertaining to a variable whose address in memory is

known only to a specific portion of a program, i.e,,
local to a procedure,

L10 Programming Guide Section 1 [page 10/

3¢
3cl

3cla

3c2

3c2a

3c3

3c3a
3ch

qchka

3ch

3cha
3cé

3céa

ARC U4 APR T2 9246
INTRODUCTION TO L1O

constant

a program element whose value remains unchanged through
the programming process, A constant may be a number or
literal text (string).

string

a variable or constant consisting of any number of
characters enclosed in double quotation marks or a
single character preceded by a single quotation mark.

comments

information enclosed in percent signs (%) which may
appear anywhere in the program and are ignored when the
program is compiled and executed,

expression

in general, any variable, constant or combination of
these joined by operators., L1l0 also provides some
special expression constructions that are peculiar to
L1lO. An expression always has a Value,

statement
the basic unit of L10 procedures, L10 statements may
consist of many parts: expressions, L10 reserved words,
other statements, etec. Unlike expressions, statements
do not necessarily have values, L11l0 statements may be
labeled or unlabeled,

execute

to carry out an instruction or "run" a program.

3¢7

3cTa

3cb

3c8a

3¢9

3c9a

3¢1l0

3¢cl0a

3cll

3clla
3cl2

3ecl2a

L10 Programming Guide Section 1 [page 11)

!

g A

ol

ol 5

by
L

P

al-a¢

s
LFax

.

L AR

HJ::-{

FLTY (T
TPl BeamewEnp $ASRET SULRT BRoiN InaNels 1
10 hIE A Al JEAFRRUS & L SSRENY JElBNEY
Andera) awer [
e

YT oedsbs yay IO walrafawes sustenon e sldelisv »
& 10 AXNAN NAMASOkD Al0WGD O Desolooe FTHISATLES
W2ISR DEideenp wlvmds & W bebuxsvg YRT2NRA> siynds

winewsan

Wak Spaw IR migdn Insgwsa al Sewolpde soilemtolnl
1f =2t DoTiORE A L84 AMYDONG fAF G2 AVRAVEARS 5800
+TRIDDAE k4 pellebus B} E37)OE

M

Ly seldissaamo: o4 < tadined .mmn S22 Javetreg &)
salel WRtevoty ofis QL] JavelgTaqe Yo tsalol sesld
b EHEawt wta Jp8d YARLISUT2EECY molwueTIRY
JPUSAT ¢ dad wiisnis noleesger na

Jopenggre
Yo% EEEOended® DLl (IBYsApEATh 1) T PN :
JELAY bavtmess Sl) .amuuumw 185Nt TABE T ll.-:
WipRecAle anetaaeTgie wNtiny Jode ASmamad
o Cal Anesptpla L2 Jemalay aTali eiltasessen m ap
'I.lslﬂd«: %0 palscal
nfUzsRe

+AET40%8 4 "are' O RLIBETERL B SW RTINS B2

AP SReu) I oelrasd Shdd Wiweyryold 0L

. ARC L4 APR 72 9216
PROGRAM STRUCTURE AND PROCEDURES

Section 2. PROGRAM STRUCTURE AND PROCEDURES

Introduction
The structure of an L10O program is ALGOL like in its block
arrangement. The formal Syntax eguations for the structure
of L10 user programs described below are:
program = header $parts "FINISH";
header = "PROGRAM" ID;

Where ID is the identifier of the first procedure to
be exXecuted.

parts = procedure / declare;

procedure = '(ID ') "PROCEDURE" ['(arglist ')] ';
body ;

arglist = ID $(', ID);
body =

$("LOCAL" locd '; / "REF" 1dalist '3)
iabeled &('; labeled) "END."

labeled = (' (ID");"/statement;
idlist = ID #(',ID);
declare = (dec1/ext/equ/rezdec/record/pﬁdec/refdi b eis
decl = "DECLARE" ["EXTERNAL"J
(field / string / tp / stores / items);
locd =
"STRING" 1str 3(', 1lstr) /
"TEXT""POINTER" idlist /

loco $(', loco);

18ty & I0 Y[NUM '];

La

hal
hala

halb

halbl

hale

hald
lale

half

halfl
hale
halh
hali
hali
Lalil

halk

halkl

hall

L10 Programming Guide Section 2 [page 13)]

ARC L4 APR 72 92U46
PROGRAM STRUCTURE AND PROCEDUKRES

NUM gives the maximum length of the local string
being declared 48l1ll

loco = ,ID ['[NUM ']]; Lalm

Local declaration of an array of NUM words or a
8imple variable halml

L10 Programming Guide Section 2 [page 14)

_ ARC 4 APR 72 9246
PROGRAM STRUCTURE AND PROCEDURES

USER PROGRAM STRUCTURE Lb

A user program in the NLS environment consists of various
procedures and declarations that are prefaced and followed

by statements that define the boundaries of the program's

text., These elements of the L10 program, which must be

arranged in a definite manner with strict adherence to

syntactic punctuation, are: kbl

The header = iIbla

a statement consisting of the word "PROGRAM" followed

by the ID of a procedure in the progranm. (Program

execution will begin with a call to this proceaure,.)

No punctuation ocecurs between the header and the

program pody. Lblal

The boay = Lblb
consists of any number of the following in any order: Lblbl

declaration statements which specify information
about the data to be processed by the procedures
in the program and cause the data ldentifiers to
be entered into the program's symbol table. Iblbla

procedures whieh specify certain execution tasks.
Each procedure must consist of = Lblblb

the procedure identifier enclosed in

parentheses followed by the word "PROCEDURE"

and optionally an argument 1list containing

names of variables that are passed by the

calling procedure for referencing within the

called procedure, This statement must be

terminated by a semicolon. Lblblbl

the pody of the procedure which may consist of
LOCAL, REF, and/or statements which may
optionally be labeled, 4blblb2

LOCAL is used for declaring data which is to be
used only within the current procedure, Lblblb3

REF specifies that the named data elments

contain references to other data and when used,

the referenced data 1tself will actually bpe

used. Lblblbh

L10 Programming Guide Section 2 [paege 15]

ARC 4 APR T2 9246
PROGRAM STRUCTURE AND PROCEDURES

The procedure terminal statement which consists
of the word "END" followed by a period (.). Lblblbb

The program terminal statement which consists of the
word "FINISH". Lblc

L10 Programming Guide Section 2 [page 16J

) ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Section 3. VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Introduction ba

This section contains a discussion of the basic elements of

the L10 language which when combined with the L10 reserved

word commands discussed in the next section, are the

building blocks of the L10 statements and hence of L1O

programs. 5al

VARIABLES 5b

Five types of variables are described in this document:
glopal, local, referenced, unreferenced, and text pointers, 5bl

GLOBAL VARIABLES 5b2

A global variable is represented by an identifier and

refers to a cell in memory which i8 known and accessiple
throughout the program., Global variagbles are defined in

the program's declaration statements or in the NLS

system environment. Eb2a

A global variable may be indexed, i.e., declared as an
array. 1In this case the usSer must specify the numper of
elements of the array by following the ID with an
eXpression in square brackets. For example, in a
declaration statement sam/10]) specifies an array of 10
elements, In an expression however, sam/l0] specifies
the tenth element of the array sanm. : 5b2b
LOCAL VARIABLES 5b3

A local variable is represented by an identifler and

refers to a cell in memory which 18 known and accessgible

only to the procedure in which it appears, Local

variables must appear in a procedure argument list or bpe
declared in a prodecure's LOCAL declaration statement, Eb3a

Local varilables in the different procedures may have the

same identifier without conflict. A global identifier

may not be declared as a local identifier and a

procedure identifier may be used as neither, In such

cases8 the ID is considered to be multiply defined and an

error results. 5b3b

110 Programming Guide Section 3 [page 17]

ARC | APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

A local variable may be indexed, i.e,, declared as an

array. In a local array declaration the user must

specify the number of elements of the array by following

the ID with an expression in square brackets, For

example, odd[6] specifies an array of 6 elements, 5b3c

REFERENCED VARIABLES 5bh

A variable which represents a pointer to something

rather than the thing itself may be passed as an

argument to a procedure, If, in the called procedure,

one wishes to access the data referenced by the pointer,

the pointer identifier may be declared to be a reference

using the REF construction. Ebla

A pointer to a cell in memory may be passed by a

calling procedure. A convenient way to access the

contents of the cell 1s to declare the variable to be
"referenced" in the procedure through the use of the

"REF" construction. ’ 5bual

If a variable has been REF'd, within the scope of the
reference (usuglly a procedure in which it occurs,

although a variable may be REF'd through an entire

file if desired), whenever the variable is used, that

which 18 pointed to will actually be used. Sbha2

UNREFERENCED VARIABLES 5b5

If 1t is desired to use again a pointer to a variable
which has been REF'd, one may "unref" it by prefacing
the relevant ID with an ampersand (&), Sb5a

TEXT POINTERS 5bé

A text pointer is an L10 feature used in string

manipulation constructions. It is a multi-word entity

which provides information for pointing to particular

locations within text whether free standing strings or

strings whieh contain the text for an NLS file

statement. A text pointer consists of a string

identifier and g character count, A string may be a

declared string, literal string, or a string which

contains text of an NLS statement or an NLS file Ebéa

L10 Programming Guide Section 3 [page 18]

4 ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

The text pointer points between two characters in a
statement or string. BY putting the pointers between
characters a single pointer can be used to mark both

the end of one substiring and the beginning of the

substring starting with the next character therebpy
8implifying the string manipulation algorithms and

the way one thinks about strings. Ebéal

L10 Programming Guide Section 3 [paege 19])

ARC L4 APR 72 9246

VARIABLES, OPERATORS,

OPERATORS

PRIMITIVES AND EXPRESSIONS

Loglcal operators

Every numeric value also has a logical value,

value not equal to zero has a logical value of true; a
numeric value equal to zero has a logical value of

false,
Operator
- -
OR

AND

NOT

Evaluation

- - -

a OR b = true if a = true or b = true
= false if a = false and b = false

a AND b = false if a = fazlse or b = false
= true 1f 2 = true and b = true

NOT a = false if a = true
= true if a = false

Relational oOperators

A relational operator is used 1n an expression to
compare one gquantity with another. The expression is

evaluated for a logical value,

if false, its value is O,

Operator

NOT

L10 Programming guide

Meaning Example

equal to 4+l = 3+2 (true, al)
not equal to 6#8 (true, =1)
less than 6<8 (true, =1)

less than or
equal to 8<=s6 (false, =0)

greater than 3>8 (false, =0)

greater than or
equal to 8>=6 (true, =1)

may precede any

other relational
operator 6 NOT > 8 (true, =1)

Section 3 [page 20]

A numeric

If true, its value is 1;

Sc

Bel

Scla

Sclal

5cla?2

5¢cla3

Beclal
Ec2

Sc2a

Sc2al
5¢c2a2
5e2a3

Sc2al

5c2ab

5c2a6

be2a'7

5c2a8

: ARC 4 APR 72 9246
VARIABELES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Interval operators

The interval opergtors permit one to check whether the
value of a primitive falls in or out of a particular
interval.,
IN intrel
OUT intrel %equivalent to NOT IN%
intrel = ('(/7 '[) opexp ', opexp ('] / '))
The opexps are values Separated by operators against
which the operand is tested to see whether or not it
lies within (or outside of) a particular interval. Each
gside of the interval may be "open" or "closed". Thus
the values which determine the boundaries may be
included in the interval (by using a square bracket) or
eXcluded (by using parentheses).
Example:
x IN [1,100)
is the BsBame as

(x >=1) AND (x < 100)

Arithmetic operators

Operator Meaning
e e
unary + positive value
unary = negative value
+ addition
- subtraction
* multiplication
/ integer division (remainder not saved.)
MOD a MOD b gives the remainder of a / b

5¢3

bEc3a
5e3al
Ee3a?2

Be3a3

5c3b
5¢3bl
5c3bla
5c3blb
5c3ble

Scl

Scha
5clLb
schc
S5clhd
Sclhe
Scif
Sclhe
Schh

L10 Programming Guide Section 3 [page 21]

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

oV a .V b= pbit pattern which has 1's wherever
either an a or b had a 1 and 0 elsewhere, Schi

«X a «X b = bit pattern which has 1's wherever
either an a had a 1 and b had a 0, or a had
a O and b had a 1, and O elsewhere. Schi

« A a «A b 3 pbit pattern which has 1l's Wherever
poth a and b had 1's, and 0 elsewhere. Schk

L10 Programming Guide Section 3 [page 22]

: ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

PRIMITIVES 5d

Primitives are the basic units which are used as the
operands of L10 expressions, There are many types of
elements that can be used a8 L10 primitives; each type
returns a8 value which is used in the evgluation of an

expression, 541
Each of the following is a valid primitive: 5d2
variable = 5d2a
any valid variable identifier 5d2al
procname args = 5d2b
a procedure call with argument list 5d2bl
variable '¢ exp = 5d2c
an assignment statement - 5d2cl
pointer = 5d42d
a pointer, possipbly a text pointer or a reference to
any other type of array 5d2d1
literal = 5d2e
a numeric constant or character constant 5d2el
string = '# stringname '# / .8R; 542f
It is possible to compare Variable or literal I
strings. 5d2f1
charclass = 5d2g
provides a simple way to test the common classes of
characters; described in detail below 5d42¢gl
"MIN" '(exp $(', exp) ')
"MAX" '(exp $(', exp) ') 5d2h
Select the minimum or maximum, respectively, of the
values of a 1list of expressions. 5d2hl
WREADC" = 5d21

L10 Programming Guide Section 3 [page 23]

ARC L4 APR T2 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

a character is read from the current character
position and in the direction as set by the last
scan, This facllity is descriped later in this
document under string manipulation,

"CCPOS" =

the value of the index of the character to the right
of the current character position, This facility is

described later in this document under string
manipulation,

"FIND" stringstuff =

used to test text patterns and load text pointers for

use in string construction (see the STRING

MANIPULATION section); return the value TRUE or FALSE

depending on whether or not the string tests within
it Bucoeed.

"POS" posrel -
may be used to compare two text pointers

Procedure Calls

Wwhen a procedure call is used as a primitive, the value

is that of the leftmost result returned by the
procedure.

procname args
Where
procname =
ID, a procedure identifier
args =
'([exp 8(', exp)] [': var &(', var)] ');
exp =
any valid L10 expression. A set of expressions

separated by commas consStitute the argument list
for the procedure,

L10 Programming Guide Section 3 [page 24/

5d42il

5423

5423l

5d2k

5d2k1l
5d21
5d21l1
543

5d3a
5d3al
5d3b
5d43bl
5d3bla
5d3b2
5d3b2a

5d3b3

£d43b3a

ARC L4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

var = 5d3bl

any variable. All but the leftmost variables are
used to store the results of the procedure. 5d3blka

The argument list consists of an arbitrary number of
eXpressions separated by commas. It is not necessary

for the numper of arguments to equal the number of

formal parameters for the procedure (although this is

generally a good idea). The argument expressions are

evaluated in order from left to right. 5d3c

Following the arguments there may be a list of locations
for multiple results to be returned, The 1list of
variables for multiple results is separated from the
list of argument expressions by a colon. The number of
locations for results need not equal the numper of
results agctually returned, If there are more locations
than results, then the extra locatlions get an undefined
value, If there are more results than 1ocationu, the

extra results are simply lost. 5d34d

Example: 5434l

1f procedure p ends with tne statement 5d43d2

RETURN (a,b,c) 5d3d2a

then the statement 54343

q ¢« p(:r,s) 5d3d43a

results in (q,r,s) « (a,b,c). oy . 5434l

Assignments 5dl

An assignment can be used as a primitive. 5dlha
The form a « b has the effect of storing b into a and

has the value of b as its value, 5d4b

Pointers 545

A 8tring or an identifier preceded by a dollar sign (8)
represents a pointer to that string or the variable
represented by the identifier. 5d5a

pointer = '$ (ID / SR) 5d5al

L10 Programming Guide Section 3 [page 25]

ARC L APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Literals 5aé
A literal is a constant which returns a numerical value,

A literal may be any of the following: 5d6a

NUM 5déal

"TRUL" 5d6a2

"FALSE" 5d6a3

char Sdeal

There are Several ways in which numeric values may be
represented, A Sequence of digits alone or followed by
a D is interpreted as base ten. If followed by a B then
it is interpreted as base eight., A scale factor may be
given after the B for octal numbers or after a D for
decimal numbers. The sScale factor is equivalent to

adding that many zeros to the original number. 5d6b
EXamples: 5débl

64 = 100B = 1B2 5d6bla

luyB = 100 = 1D2 5déblb

The words TRUE and FALSE are equivalent to the numbers 1
and O resgpectively. 5déc

characters may be used as literals as they are
represented internally by numeric values, The following

are synonyms for commonly used characters: sdéd
SRl = any single character preceded by an apostrophe
e.g. 'a represents the code for the character
a and is equal to lhls. 54641
"ENDCHR" =endcharacter as returned py READC 54642
"SP" =gpace 5déd3
"EOL" =Tenex's version of CR LF 5464l
"ALT" =Tenex's version of altmode or escape (=33B) 54645
"CR" =carriage return 54646

L10 Programming Guilde Section 3 [page 26]

. ARC L4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

"LF" =line feed 54647
"TAB" =tab 54648
"BC" =backspace character 54649
"BW" =backspace word 5dé6dlo
"C." =center dot Edédll
CA =Command Accept 5d64l2
CD =Command Delete; 5d6dl3
Character classes 547
charclass = 5dTa
"CH" /
%any character% : 5d47al
"ULD" /
%uppercase letter or digit% 5d7a2
WLLDN
%lowercase letter or digit% 5d47a3
1ILDII /
%lowercase or uppercase letter or digit% 5dT7al
IINLDII /
%not a letter or Adigit% 5d7as
IlULI! /
%uppercase letter% 547a6
IILL!I /
%loWwercase letter% 5d47a7
l!Lli /
%lowercase or uppercase letter% 547a8
IIDOI /
%digit% 5d7a%
OIPTII /
%printing character% 5d7al0

L10 Programming Guide Section 3 [page 27]

ARC L4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

IlNPII
%nonprinting character%; £d7all
Example: 5d7al?2
char = LD 5d7al2a
is true if the variable '"char" contains a value
which is a letter or a digit. 5d7al2b
MIN and MAX 5d8
These primitives return the lowest/highest value
expresgsion in the expression list specified. 5d8a
Example; if a = 3, b = 2, ¢ = 4 at time MIN and mAX
called, then MIN(a,b,c) = b (=2) and MAX(a,b,c) = ¢
(-h)l Sdbal
READC) 5d9
The primitive READC is a special construction for
reading characters from NLS statements or strings. 5d9a

A character is read from the current character

position in the scan direction set by the last CCPOS
statement or string analysis FIND statement or

expression. This feature 1s explained in detail

later in this document, under string manipulation. 5d9al

Attempts to read off the end of a string in elther

direction result in a special "endcharacter" being

returned and the character position is not moved.

This endcharacter is included in the set of

characters for which system mneumonics are provided

and may be referenced by the identifier "ENDCHR", 5d9az2

Example: 5d9a3
to Ssequentiglly process the characters of a string 5d%9a3a

CCPOS #str#+:
UNTIL (char ¢ READC) = ENDCHR DO process(char). 5d9a3b

(Note: READC may also be used as a statement if it is
desired to read and simply discard a character). 5d9al

L10 Programming Guide Section 3 [page 28/

" ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

CCPOS 5410

When used as a primitive, CCPOS has as its value the

index of the character to the right of the current

character position. CCP0S is more commonly used to set

the current character position for use in text pattern
matching. This is discussed in detail in section 6 (7b)

below, 5d10a

Examples: 5d10al
If str = "glarp", then after CCP0OS #str#, the
value of CCPOS 18 1 and after CCPOS SE(#8tr#*) the
value of CCPOS 13 6 (one greater than the length
of the string). 5dl0ala

To sequentially process the first n characters of
a string (assumed to have at least n characters) 5dl0alb

CCPOS #8tr#*;

UNTIL CCPOS > n DO process(READC). ' 5dl0alce

Text Pointer Comparisons 5411
posrel = 5dlla

pog [UNGTMN]T (Ve 2 e 7 PN Y NG Ty W) T ee e 5dllal

This may be used t0 compare two text pointers. 5dlla?2

The pos 18 a character position pointer (text
pointer) in a form discussed in (7b) below. 5dlla2a

If the pointers refer to different statements then

all relations between them gre false expect "not

equal" which is written '# or "NOT" '=, If the

pointers refer to the same statement, then the truth

of the relation is decided on the basis of their

location within the statement with the convention

that a pointer closer to the front of the statement

is "less than" a pointer closer to the end. £dlla3

L10 Programming Guide Section 3 [page 29]

ARC 4 APR T2 9246

VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

EXPRESSIONS

Introduction

An expression is any constant, variable, special
eXpression form, or combination of these 3joined by
operators and parentheses as necessary to denote the
order in which operations are to be performed, Special
L10 eXpressions are: the FIND expression which 1is used
for string manipulation; the conditional IF and CASE

eXpressions which may be used to give alternative values

10 expressions depending on tests made in the

expressions,

Expressions are used where the syntax

requires a value, Wwhile certain of these forms are

similar syntactically to L10 statements, when used as an

eXpression they always have values.

ORDER OF OPERATOR EXECUTION== BINDING PRECEDENCE

The order of performing individual operations within an
equation is determined by the heirarechy of operator
eXecution (or binding precedence) and the use of

parentheses,

operations of the same heirarchy are performed from left

to right in an expression, Operations in parentheses
are performed before operations not in parentheses.

The order of eXecution hierarchy of operators (from
highest to lowest) is as follows:

unary =,
oA

.v' Ix

#, /, MOD

+, -

unary +

relational tests (e.g., >=, <=, >, <, =, #, IN, 0oUT)
NOT relational tests (e.g., NOT »)

NOT
AND
OR

L10 Programming Guide

Section 3 [page 30]

Fe
Sel

Sela

se2

s5e2a

5e2b

Se2c

Se2cl
Se2c?2
Se2c3
Se2clh
Ee2ch
be2¢b
fe2c7
Se2c8
Se2c9

5e2cl0

ARC L APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

CONDITIONAL EXPRESSIONS 5e3
IF Expressions Ee3a
IF testexp THEN expl ELSE exp2 be3al

testexp is tested for its logical value. If tlestexp
is true then expl will be evaluated. If it is false,

then exp2 is evaluated. be3a?2
Therefore, tne result of this entire expression is

EITHER the result of expl of exp2, 5e3a3

Example: 5e3a3a

y « IF x IN[1,3] THEN X ELSE k; 5e3a3al

% if x = 1, 2, or 3 y¢x; otherwise yel% 5e3a3a2

CASE Expression) 5e3Db

This form is similar to the above except that it

causes any one of a 8Series of eXpressions to be

evaluagted and used as the result of the entire

expression. 5e3bl

CASE testexp OF $(relist ': exp ';) "ENDCASE" exp

LU Se3bla
relist = RELOP exp $(', RELOP exp): 5e3dblb
Where RELOP = any relational operator be3b2

In the above, the testexp is evaluated and used with
the operator RELOPS and their respective exps in a
relist to test for a value of true or false. If true
in any instance the companion exp on the right of the
colon 18 exXecuted and taken to be the value of the
whole expression, A value of false for a set of
relist tests causes the next relist in the CASE
expression to be tested against the testexp, If all
relists are false, the ENDCASE expression is taken to

be the value of the whole expression. Se3b3
Example: Fe3b3a
CASE X1 OF Se3b3al

110 Programming Guide Section 3 [page 31)

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

<he: x1+l; Se3b3ala
i3 X1+2; 5e3b3alb
s5: x1; S5e3b3alc
ENDCASE x1#%2; 5e3b3ald

Value of X1 Value of Expression

- - - - - - 5e3b3&2

4 6 Se3b3a3
5 5 Se3b3al
2 3 S5e3b3a5
6 12 S5e3b3aé
STRING EXPRESSIONS . Sel

L10 also provides several expression forms which are

used for string manipulation and evaluation, These are
identical to the string manipulatlion statements

discussed in Section 6 of this document (7). Note that

when using string manipulation statement forms as

eXpressions, parentheses may be necessary to prevent
ambiguities, 5ela

L10 Programming Guide Section 3 [page 32/

ARC 4 APR 72 9246
DECLARATIONS

Section 4, DECLARATIONS

Introduction

L10 declarations are necessary to provide information to
the compiler about the nature of the data that is to be
accessed, Declarations are non-executable.

There are various types of declarations available; only the
most frequently used are discussed here: DECLARE, REF, and
LOCAL.

Program level declarations (DECLARE amd REF) may appear
anywhere in the program, However, procedure level
declarations (LOCAL and REF inside a procedure) must appear
before any executaple statements in the procedure.

GLOBAL DECLARATIONS

Variables specified in these declarations are global (i.e.,
outsiae any procedure) and may be used by all procedures in
the program, There are four versions depending on the type
of entity to be defined: scalars, arrays, strings, and
text pointers. The scalar, array, and string declarations
allow the user to initialize the value of the variable(s)
specified.

Declaring Scalar Variables

A scalar variables that is to be used throughout 2
program must be declared in a declaration at the progranm
level. The quantity represented by the scalar variable
may be g numeric value, a 8string, Or an address,
optionally, the user may specify the initial value of
the variable being declared, JIf a scalar varilable is
not initialized at the program level, it should be
initialized in the first executed procedure in which it
appears,

To declare a Scalar variable only: .Grabsé
"DECLARE" ID !';
To declare and initialize a scalar variable:

"DECLARE" ID '= CONSTANT ';

6a

éal

éa?2

6a3

éb

6bl

6b2

6b2a
6b2al
é6b2ala
é6b2a?2

6b2a2a

L10 Programming Guide Section L4 [pare 33)

ARC) APR T2 9246
DECLARATIONS

Where ID = the name of the Vvariable being declared. é6b2a3

CONSTANT = é6b2al
the initial value of ID. It may be any of the

following: 6b2ala
=a numeric constant optionally preceded by a

unary minus sign (=) éb2alal

=a string enclosed in quotation marks éb2alha?

=another identifier (causing the latter's
address to be used as the value of the ID beine

declared) 6b2ala3

Examples: 6b2ab
DECLARE x13 %xl1 is not initialized?% 6b2aba

DECLARE x2=5; %X2 contains the value“B% 6b?2a5b

DECLARE x3="OUT";%x3 contains the word OUT% 6b2a5¢c

DECLARE xx=x1; %xx containsg the address of x1% 6b2a5d
Declaring Array Variables 6b3

If the user intends to use any array variables
throughout the program, he must specify the numper of
elements of the array at the program level., Optionally,
he may specify the initial value of each element of the
array. 1If array values are not initiaglized at the
program level, they should be initialized in the first

eXecuted procedure in which the array is used, é6b3a
To declare an array variable only: 6h3al
"DECLARE" ID '[NUM '] '; 6b3ala

To declare and initialize an array variable: 6b3a?2
"DECLARE"™ ID '=!(CONSTANT $(,CONSTANT) ') '; 6b3a2a

where 1ID = the name of the variable being declared, 6b3b

NUM = the number of elements in the array
if the array is not being initialized. éh3c
L10 Programming Guilde Section 4 [page 34/

ARC L APR 72 9246
DECLARATIONS

CONSTANT = the initial value of each element of
the array. The number of constants
implicitly define the number of elements
in the array. They may be any of the
following:

=3 numeric constant optionally preceded by a

unary minus (=)
=a string enclosed in quotation marks
=another identifier (causine the
latter's address to be used as the
value of the ID being declared)
Note: there is a one=to=one correspondence between the
first constant and the first element, the second
constant and the second element, etc,
Examples:
DECLARE sam/[10):

%declares an array named 8am containing 10
elements whieh are not initialized%

DECLARE numbs=(1,2,3);

declares an array named numbs8 containing 3
elements which are initialized such that:

numbs = 1

numps (1) = 2

numbs(2) = 3
DECLARE motley=(l0O,words);

declares an array named motley containing 2
elements which are initialized such that:

motley = 10

motley(l) = the address of the variable words

6b3d

6b3e
6h3f

6b3fl

éb3fla

énh3f2

é6b3f2a
é6p3f2al
6b3f2a2
6p3f2a3

6p3£3

6b3f3a
6b3f3al

é6p3f3a2

L10 Programming Guide Section L4 [vage 35]

ARC L4 APR 72 9246
DECLARATIONS

Declaring Many Scalars and/or Arrays in One Statement

one may avoid putting several individual declarations of
items (i,e., several statements each beginning with the
word DECLARE) by putting items ana arrays to be
declared, initiaglized or not, in a list in one statement
tollowing a single DECLARE separated by commas and
terminated by a semi=colon.

Example:
DECLARE x, y[l0], z = (1, 2, =5):
Declaring Strinegs

The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or
declaring its maximum character length, Any number of
strings may be declared in the same statement.

.

To declare a number of strings:
"DECLARE STRING" ID '[/NUM'J $(',ID'/NUM'J) ';

To declare and initialize a number of strings:
"DECLARE STRING" ID'=STRING #(',ID'sSTRING)';

Where ID = the name of the string being declared

NUM = the maximum number of characters
allowed for the string

STRING = a s8tring constant enclosed in double
quotation marks. The length of this
string defines the maximum length of
the corresponding ID.

Strings have two gssociated values, maximum length
and current length. Wwhen strings are simply
declared, maximum length 1s specified by NUM and
current length is 0; when strings are initialized in
a declaration statement, maximum length is equal to
current length,

These numbers may be accessed by specifying the

name of the string followed by a period and the
letters M or L respectively.

L10 Programming Guide Section 4 [page 36]

6ol

ébla
éblal
6blhala

6b5

6bba
6b5al
é6bkala
éb5a2
6b5a2a

6hba3

6bbal

6b5as

6bbab

éb5aéa

ARC L4 APR 72 92146

DECLARATIONS
Examples: é6b5a'?
DECLARE STRING lstring/l00]; 6b5aTa

declares a string named 1lstring with a maximum
length of 100 characters and a current length
of 0 characters éb5a7al

DECLARE STRING message="RED ALERT".warn="WARNING",
help/50]; 6b5a'’b

declares three strings message, warn, and nelp
such that: 6b5a'7bl

messgage has an actual and maximum length of
9 characters and contains the text "RED
ALERT" é6b5a7bla

warn has an actual and maximum length of 7
characters and contains the text "WARNING" é6bS5a7blb

help has a actual length of 0 and a maximum
length of 50 characters, i.,e. help.M = 50
and help,L = 0O ébka7blc
Declaring Text Pointers 6b6
The DECLARE TEXT POINTER declaration enables the user to
declare global variables a8 text pointers that are used
in string manipulation and construction. fbba

"DECLARE TEXT POINTER" ID $(',ID) ': ' 6b6al

L10 Programming Guide section 4 [page 37]

ARC L4 APR 72 9246
DECLARATIONS

REFERENCE DECLARATIONS é6c
Unlike the other declarations discussed here, the REF
statement does not allocate storage: it simply defines the
use of the variable(s) specified as references, 6cl
A variable which contains a pointer to something rather
than the thing ltself may be passed a® an argument to a
procedure. If, in the called procedure, one wishes to
access the thing itself, the pointer identifier may be
declared to be a reference using the REF construction, é6cla
If a variable has been REF'd, within the scope of the
reference (usually a procedure in which it occurs,
although a variable may be KREF'd through an entire
file if desired) when the variable is accessed as 3
normal variable, the value of the cell being pointeda
to is actually used. 6clal
Example: é6clala
If x contains the address of vy and x has been
REF'd, then: 6clalal
2 €X3; (=z¢Y) 6clalala
X ¢ Z (msyez) é6clalalb
This is equivalent (without REF'ing) to: 6clala?2
z ¢[x]}3 6clalazda
[xX] «z; ; 6clala?b
Referenced variables may be "unreferenced" by preceding
their identifiers by the ampersand character "&'.
Unreferencing a variable causes it to be interpreted as a
pointer. Thus, any variable name may serve a dual function
of pointing to an address as well as desgignating the
contents at that address. éc?2
"REF" ID 8$(',ID) ': éc2a
Local variables may be declared as references by a REF
declaration among declarations in a procedure (see below). é6c3

L10 Programming Guide Section 4 [page 38)

ARC L APR 72 92L6é
DECLARATIONS

LOCAL DECLARATIONS é6d

The LOCAL declaration consistes of several forms that are
equivalent to those of the global DECLARE forms except that
Variables declared in a LOCAL declaration may be used only
by the procedure in which they appear. Also, LOCAL
declarations do not provide for the initiaglization of

variables, 6dl
Any LOCAL declarations must precede the executable
statements in a procedure, édz2
To declare a local scalar variable only: é6d2a
"LOCAL" ID "; 6d2al
TO declare a local array variable only: 6d2b
"LOCAL" ID '[NUM '] 3 6d2bl
Again 1ists of items separated by commas may be declared
locally. édzc
TO0 declare a local string only: 6d24
"LOCAL STRING" ID '[NUM'J $(',ID'[NUM']) '; 6d2d1
TO declare a local text pointer: é6d2e
"LOCAL TEXT POINTER" ID 8(',ID) !'; 6d2el

L10 Programming Guide Section U4 [(page 39)

R e A D R R T SRR AR o AL e e SN SN = &wﬂmmm:‘
) . J r

£F Bes 4 oM . Lt N
sz v 48
WISTTARAIAG EA0Sy {‘)-f
P74 Ladd Savad [anaves 10 sfelangs anifaweliset 24005 @ '
Tag4 mots SErst ARAIOES lsavis sdY Yo amBsl &4 PR=iaVE
TITh Behi A Yen Peliatdfood fad0] » td Dangdoed eeld
LJA50] . refh J1499Q8 Yedd saddv nf svabedoty s W
e ARIsailaldial mas Yoy sbivevy FEg o8 l;»lj::ni==t
YT 51 L

eldedvonee ol sbesaty Ju0r saelisvalsss JADDS Yms
D eabAn g £l RIAURGE M

(Nino sfgpdvay pfaon feosl a4 wnalondh &7
' UL *JA003*
(YAAD BIgalndy YATIA Iadel & snslseh &3
1" ' ORER G 25 CJa000e
MYaiced e Noe sasis (oo Wimagee wpndl Yo adeld m

)
e velan IRISOR lsaal 2 wisland B ;
: ..-i?.‘h i TLCEUREAEI. VIS L1'HPEL' O “SFINTT ZALOgT ")"
b ianiaieg Jxed Jesal & wralzed oy '_ --_J‘
-'r’_:f.mn ' DE3AYe G YANSHION TINT JADGIY

(),

apled yolawsysewy OLZ

ARC 27 APR T2 9246

STATEMENTS
section 5. STATEMENTS
7
ASSIGNMENT Ta
ASSIGN STATEMENT 7al

In the ASSIGN statement the expregsion on the right side
of the "«" is evaluatea and stored in the variable on
the left side of the statement,

var '« exp ':

where var = any global, local, referenced or
unreferenced variable.

MULTIPLEASSIGN STATEMENT

In the MULTIPLEASSIuN statement the expressions are
evaluated and the values pushed on a stack provided by
the svstem. Then the values are popped from the stack
and stored into the appropriate left hand side. The
order of evaluation of the expressions is left to right.

'{ var #(', var) ') 'e¢ '"(exp $(', exp) '):

where var = aliy global, local, referenced or
unreferenced variable.

Naturaslly, the number of expressions must equal the
number of var's,

Example:

(2, b} ¢« (a+b, a=b)
the expression a+b is evaluated and stacked,
expression a=b is evaluated ana stacked, tne value of

a=b is popped and stored into b, and finally, tihe
value of a+b is popped and stored into a.

Tala

Talal

T7alb

7a2

Ta2a

Ta2al

T7a2b

‘fa2c

T7a2cl

7a2cla

Ta2c?2

L10 Programming Guide Section 5 [paere L41]

ARC 27 APR 72 9246
" STATEMENTS

DIVIDE STATEMENT 7o

The divide statement pernits both the quotient and
remainder of a division to he saved. The syntax for the
divide statement is as follows: 7bl

"DIV" expo ', quotient ', remaginder 7bla
The central connective in the expression must be '/.
Auotient and remainder are the identifiers in which the
respective values will be saved upon the division. 7b2
BLOCK e
The BLOCK construction enabhles the user to group several

(labeled) statements into one syntactic statement entity.
A block construction of any length is valid where a

statement is requireqd. Tel
"BEGIN" $(statement ';) "END" Tcla
Where statement = any executable L10 statement, labeled
or unlabeled, Tec2
Example: 7c2a
BEGIN
a«b;
ced+5;
XX&€YY 3
(nono) :de«a+c;
END ‘fe2al
is equivalent to: 7c2b
aeb; Tc2bl
ced+5; Te2b2
XX&yy: Te2b3
(nono) :dea+c; Tc2ph

but may be used in an instance in which the syntax
requires one statement. (See, for example, the LOOP
constructon below,) 7c2c

L10 Programming Guide Section 5 [page }2]

ARC 27 APR 72 92L6
STATEMENTS

CONDITIONAL

There are two types of conditional statements described
below== the common IF statement with optional ELSE and the
CASE statement,

IF

Statement

This form causes executlon of a statement (which may be
a block) if a tested expression is true. If it is false
and the optional ELSE part is present, the statement
followine the ELS® is executed, If no EL3E part is
present, control vnasses to the statement immediately
following the IF statement.

"IF" testexp "THEN" labeledstatement /["ELSE"
laceledstatement)

testeXp is tested for its logical value. If testexp is
true then the statement following the THEN will be
executed, Tf it is false and an optional ELSE part is
present, then the statement following the ELSE will be
eXecuted:; otherwise the next statement after the IF
statement will be executed,

CASE Statement

This form is similar to the above except that it causes
any one of a series of statements to be executed
dependine on the result of a series of tests.

CASE testexp OF %(relist ': labeledstat ';)
"ENDCASE" labeledstat '3

relist = RELOP exp $(', RELOP exp):

Where RELOP = any relational operator (>=, <, =, IN,
etc.)

The CASE=gstatement provides a means of executine one
statement out of many. The exXpression after the word
"CASE" is evaluated and the result left in a register,
This is used as the left=hand side of the binary
relations at the pbeginnine of the various cases,

Several relations may be listed at the start of a single
statement; the statement will be executed if any of the
relations is satisfied. If none of the relations is
satisfied, the statement following the word "ENDCASE"
will be executed.

7d

7dl

7d2

T7d2a

7Td2al

7d2p

7d3

7d3a

Td3al

7d3a2

7d3b

7d3c

110 Programming Guide Section 5 [page 43]

ARC 27 APk T2 92L6

STATEMENTS
Examnle: Td3cl
CASE c OF
= 3,{d: % & y3 %Executed if ¢ = a or c € 4%
> b (x, ¥) € (xX+y, X=Y); %Executed if c > b%
%Executed otherwise% 7d3cla

ENDCASE v ¢ X;

L10 Programming Guide Section 5 [page LLJ

ARC 27 APR T2 92u6
STATEMENTS

ITERATIVE Te

The statements described here enable the user to alter the
normal sequence of execution within a procedure and/or to
cause the repeated execution of a set of statements until
some condition is met. Tel

LOOP STATEMENT Te2
The statement following the word "LOOP" is repeatedly
eXecuted until control leaves by means of some transfer
instruction within the loop. Te2a
"LOOP" statement: Te2al

where statement = any executable 110 statement
(including a block), labeled or

unlabeled. Te2b

Example: 'Te2bl
LOOP 7e2bla
BEGIN Te2blal

a € a % a + 13 Te2bla?2

D « a + by Te2bla3

IF a > 200 THEN EXIT; Te2blal

END; Te2blab

It is assumed that a and b have been initialized
pbefore entering the loop, The EXIT construction
is descriped bhelow. 7e2blb

110 Programming Guide Section 5 [page L5]J

ARC 27 APR 72 9246
STATEMENTS

WHILE...DO STATEMENT 7e3

This statement causes a statement (or block of

statements) to be repeatedly executed as long as the

eXpression immediately following the word WHILE has a

logical value of true or control has not peen passed out

of the DO loop by some explicit transfer, Te3a

"WHILE" exp "DO" statement Te3al

eXp 18 evaluated and if true the statement following the
word DO is executed; exp is then reevaluated and tne
statement continually exXecuted until exp is false, In
this event control will pass to the next sequential

statement, 7e3b
Example: Te3bl
WHILE alpha DO T7e3bla

BEGIN Te3blal

ZYyZ0 ¢ D+Db: 7e3bla2

alpha « alpha=1; Te3bla3

END: Te3blal

If alpha has a value of +5 (logically true) when this
statement is executed, the statement following "DO"

will be executed 5 times as alpha i3 decremented by

one each time the statement is executed, Once alpha

is equal to zero (false) the next statement will be
exXxecuted, Te3b?2

L10 Programming Guide Section 5 [page L6/

AKRC 27t APR T2 9246
STATEMENTS

UNTILes«DO STATEMENT Tel
This statement is similar to the WHILE...DO statement
eXxcept that statement(s) following DO are executed until
eXp 1s true, As long as eXp has a logical value of
false the statement(s) will be executed repeatedly. Tela

"UNTIL" exp "DO" statement Telal

.10 Programmine Guide Section 5 [page L47J

ARC 27 APR 72 9246
STATEMENTS

DOeoe« UNTIL/WHILE STATEMENT 785
This statement is like the preceding statement, except
that the logical test is made after the statement has
been executed rather than before, 7eba
"DO" statement ("UNTIL" / "WHILE") exp: 7eb5al

Tnus the specified statement i1s always executed at least
once (the first time, before the test is made). Tebb

L10 Programming Guide Section 5 [page L8]

ARC 27 APR 72 9246
STATEMENTS

FOk STATEMENT Teé

The FOR statement causes the repeated execution of the
statement following "DO" until a specific terminal value

is reached. Teba
"FOR" var ('« expl] ("UP" / "DOWN") [exp2]
"OUNTIL" (relop) exp3 "DO" statement: Teéal

Where var = the variable whose value in incremented/
decremented each time the ¥OR statement

is eXecuted T7eéb
exXpl = an optional initial value for var. If
expl is not specified, the current value
of var is used, Tebe
exp2 = an optional value by which var will be
incremented (if UP specified) or
decremented (if DOWN specified). If exp2
is not specified, a value of one will
be assumed. Teéd
relop = any relational operator Teée
exXxp3 = when compined with relop determines whether
or not anotner iteration of the FOR statement
will be performed. Teé6f
Note that exp2 and exp3 are recomputed on each
iteration. Tebg
Example: T7eéh
FOF k €« n UP 3 UNTIL > m#3 DO X[Kk] ¢ K: Teénl
is eguivalent to Teéh2
K& ng

GOTO test:

(looples Kk €.k + 33

(test): IF k > m#3 THEN GOTO out:

X[K] « k=

GOTO loop:

(out.) : Teé6h3

110 Programming Guide Section 5 [page 49]J

ARC 27 APk 72 Q2L6
STATEMENTS

TRANSFER 7§

These statements in eeneral cause the unconditional
transfer of control from one part of a program to another

part. 7£1
PROCEDURE CALL STATEMENT T£2

This statement is usea to direct program control to the
procedure Specified. T7f2a
procname ares Tf2al
Where procname = ID, a procedure identifier 7f2b
args = '([exp #(',exp)] (': var s(',var)]'): TL£2¢

exp = any valid L10 expression. The set of

axpressions separated by commas is
the areument list for the procedure. 7f2d4

any variable. The set of variables

is used t0 store the results of the

procedure if there is more than oOne

result. Tf2e

"

var

The argument list consists of an arbitrary number of
expressions separated by commas. It is recommended

(although not necessary) for the number of arguments to

equal the number of formal parameters for the procedure,

The argument expressions are evaluated in oraer from

left to right. 7£2f

Following the arguments there may be a list of locations
for multiple results to be returned. The list of
variaples for multiple results is Separated from the
1list of argument expressions by a colon. The number of
locations for results need not equal the nunber of
results actually returned, If there are more locations
than results, then the extra locations get an undefined
value., Tf there are more results than locations, the

eXtra results are simply lost. Ti2¢
Example: 7£2¢l

I1f procedure p ends with the statement Tf2g2
RETURN (a,b,c) T7f£2g2a

L10 Programmine Guide Section 5 [page 50)

ARC 27 APR 72 9246

STATEMENTS

then the statement Tf2E3

q ‘e pit e 7£f2g3a

results in (g,r,s) ¢ (a,b,c). T€224
A procedure call may Jjust exist as a statement alone

without returnineg a value: T£285

z()3 7£2g5a

L10 Programming Guide Sectlion 5 [page 51]

ARC 27 APR 72 %246
STATEMENTS

RETURN STATEMENT T£3

This statement causes a procedure to return an arbitrary
number of results. 7The order of evaluation of results

is from left to rignt. 7£3a

"RETURN" ['(exp (', exp) ')] T£3al

GOTO ST#TEMENT TEY
Goto provides for unconditional transfer of control to a

new location, 7flha

"GONNTO" Ty Tfhal

The ID is the nane of a label elsewhere in the program. Tfub

EXIT STATEMENT Tt5

This construction provides for forward branches out of
CASE or ijiterative statements. The optional number (NIH)
specifies the number of lexical levels of CASE or
iterative statements respectively that are to be exited,
If a number is 1ot given then 1 is assumed, All of the
iterative statements (LOOP, WHILE, UNTIL, DO, FOR) can

be exited by the EXIT LOOP construct, 7f5a
"EXIT" ("CASE" [NUM] / ["LOOP"] [nNUM]) T£5al
EXIT and EXTIT LOOP have the same meaning. 7£5b
Examples: 7£5p1
LOOP
BEGIN

"% g a®eew

IF test THRN EXIT;
%tne EXIT will branch out of tne LOOP%

END; 7f5bla

L10 Programming Guide Section 5 [page 52]

ARC 27 APR 72 9246

STATEMENTS
UNTIL scomething DO
BEGIN
WHILE testl DO
BEGIN
IF test?2 THEN EXIT:
%the EXIT will branch out of the WHILE%
END;
END: 7£5blDb

UNTIL something DO
BEGIN
WHILE tesgtl DO
BEGIN
IF tesgt2 THEN EXIT 2;
%2the EXIT 2 will branch out of the UNTIL%
END;

END; T£5blc

CASE exp OF
=somethine:
BEGIN
IF test THEN EXIT CASL;
%the EXIT will branch out of the CASE%
END;
> % 3w ®eea '?fabld

110 Programming Guide Section 5 [page 53]

ARC 27 APk 72 9246
STATEMENTS

REPEAT STATEMENT 7£6

This construction provides for bacKkward branches to the

front of CAZ" or coaditional statements. The opntional

number (NUM) nis the 3Same meaning as in the EXIT

staterent. 7féa

"REPEAT" ("LOOP"™ [NUM] / (["CASE"] [NUM] ['(exD ')]) T£6al

If an expression 1s given with the REPEAT CASE, then it

is evaluated ar¢o used in vlace of the expression efiven

at the nead ot tne specified CASF statement, If the

exXpression is not riven, then the one at the head of the

CASlL Statellmnt i85 reevaluated. T7£60b

It is worth notine taat the availacilitv nf EXIT and
KLPEAT statements has resulted in clearer programs which
are fenerally witnout lapels and COTO's., The EXIT and
REPEAT replace n0I0's to the start or end of the most
commor compound forms. By providineg implicit labels in
these positions for use with EXIT or kePEAT, explicit

labels are avoired, T£6c
REPEAT and 9 FEAT CASE have the same meanine. 7fé6d
Examples: T7f6e

CASE expl OF

ssometLhing:
AREGTIN
IF tesvl THEN REPEAT;
%REPEAT with a reevaluated expl%
IF testz THEN REPEAT(exp2) s
%RFPFAT with exp2%
FEND:

a " 8" " g s I?féel

LOOP
BEGIN
IF test THEN kkEPEAT LOOP:
%REPEAT LUOOP will o to the top of the LOOP%

END; Tféee2

L10 Programming Guide Saction 5 [page 54J

ARC 27 APR 72 9246

STATEMENTS
NULL STATEMENT g
The NULL statement may be used a8 a convenience to the
programmer, It is a nu=-op. 7el
null = "NULL":
Tegla

110 Programming Guide Section 5 [page 55]

‘”%-‘m
' “afd gf wonskaeviban £ s goal w3 VEw Min '
. day coeur 8 &4 21 .
'HNW s ilum
. | At

4
W
—~
-EL

\ﬂ whan 5 NatIosd 200G anlapanyoryd” 01

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

Section 6., STRING TEST AND MANIPULATION

INTRODUCTION 8a

The following special statements allow for complex strine

analysis and construction. The three pasic elements of

string manipulation discussed here are the current

Character Position (ccpos) and text pointers which allow

the user to delimit substrings within a string, patterns

that cause the system to Search the string for specifiec
occurrences of text and set up pointers to various textual
elements, and actual string construction, 8al

The content analysis facility of NLS may be invoked
using similar search patterns without the
pointer=loading capabilities. 8ala

CURRENT CHARACTER POSITION (CCPOS) AND TEXT POINTERS 8b

The Current Character Position is similar to the TNLS CM

(current marker) in that it specifies the location in the

string at which subsequent operations are to begin, All

L10 string teste start their search from the current

character position, 8bl

"CCPOS" (pos / '# stringname '# ['[exp ']]); 8bla

pos i8 a position in a statement or string that may be
expressed as any of the following: 8b2

A previously declared and set text pointer ID) 8b2a
The scan direction over the text will remain
unchanged, The direction of scanning may be set
implicitly using the string front of string end
facilities or explicitly using the direction settine
"¢" or ">" in an earlier pattern, (See "Qther
parameters" under PATTERNS below,) 8b2al
string Front == 1left of the first character 8b2b
"SF(" stspec ') 8b2bl

When SF is specified scanning will take place from
left to right within the string. 8b2b2

1L10 Programming Guide Section 6 [page 57J

ARC

L APR 72 9246

STRING TEST AND MANIPULATION

"stapec" 18 a stiring specification that may be

eXxpressed a8 a previouly declared text pointer ID or

previously declared string ID enclosed in asteriskas.
String End == 1right of the last character

"SE(" stspec ')

When SE is specified scanning will take place from
right to left within the string.

A text pointer points between two characters in a string.

The variable holding a text pointer is declared by a
DECLARE TEXT POINTER or LOCAL TEXT POINTER statement.
There l1s a special declaration for these pbecause text
pointers require more than a single word of storage. The
identifier used as a text pointer may be such a variable or
a reference, defined by a REF statement, to such a
variable,

Fl

If a text polnter is given after CCPOS, then the character
position is set to that location.

If a stringname ('# stringname'#) is given after CCPOS,
then the position is moved to that string. The scan
direction is set left to right.

Indexing the stringname (by specifying '[exp 'J) simply
specifies a particular position within the string. Thus
#8tlr#*[3] puts the current character position between the
second and third characters of the string "str", If the

gscan direction is left to rignt, then the third
character will be read next. If the direction is rieht
to left, then the second will be read next.

If no indexing is given, then the position is set to the

left of the first character in the string. This is
equivalent to an index of 1.

L10 Programming Guide Section 6 [page 58)

6p2D3
8b2c

8b2cl

8b2c?2

8b3

8bl

8b5

8bé6

8bba

8béb

ARC L4 APR 72 9246
STRING TEST AND MANIPULATION

PATTERNS = the FIND statement and CONTENT ANALYSIS patterns éc
FIND Statements and Expressions 8ecl

This statement specifies a string pattern to be tested

and text pointers to be manipulated and set starting

from the current character position, 1If the test

succeeds the character position is moved past the last
character read., If the test falils the character

position is reset to the position prior to the test and

the values of all text pointers set within the pattern

will be reset. 8cla

"FIND" $strentity: 8elal

FINDS may be used as expressions as well as

free=8tanding elements. If used as an expression, for

example in IF statements, it has the value "TRUE" if all
pattern elements within it are true and the value

"FALSE" if one of the elements is false. 8clb

Content Analysis Patterns 8c2

content analysis patterns are simply string pattern

entities followed by a semi=-colon. When placed in an

NLS file and "compiled" using the Execute Content

AnalyzZer command, the pattern may be invoked usine a

special viewspec to search through an NLS file for

statements satisfying the patterns. (The process is

described in detail in sections 7 and 8 below,) 8c2a

Implicit in content Analysis patterns is the notion
that they will start a pattern matching search.at the
beginning of each NLS text statement, 8c2al

Certain of the arguments are valid only in the
context of complete L10 programs, These are noted
below, 8c2a?2

Because text pointers may not be loaded in Content
Analysis patterns and because strings may not be
reconstructed in them, they may only be used

effectively in relatively simple cases. In more

complex situations, full L10 programs are

necessary. dc2a2a

String pattern entities== (strentities) 8e3

L10 Programming Guide Section 6 [page 59]

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

A 8tring entity (strentity) may be any valid combination

of the following: logical operators, testing arguments.

and other non=testing parameters which in general cause
repositioning within the current string. 8c3a

Logical Operators== These combine and delimit groups
of patterns. Each compound group is considered to be
a single pattern with the value TRUE or FALSE. If
text pointers are set within a test pattern and the
pattern is not true, the values of those text
pointers are reset to the values they had before the

test was made, (See examples below,) 8c3al
"OR" - $c3ala
Either of the two separated groups must be true
for the pattern to be true, 8c3alal
"AND" = 8c3alb
Both of the two separated groups2 must be true
for the pattern to be true, 8c3albl
"NOT" = 8c3alc
The following pattern group must not be true
for the pattern to be true, 8c3alcl
ny/n — 8c3ald

Either of the two separated groups must be true
for the pattern to be true, Has lower
precedence than OR, i.e., binds less tightly

than "OR". 8¢3aldl
Pattern Matching Arguments=-=- (each of these can pe

true or false) 8c3a2

These may appear in Content Anglysis patterns: 8c3a2a

SR 8c3a2al

string constant, e.g. "ABC" 8c3a2ala

L10 Programming Guide Section 6 [page 60]

. ARC U4 APR 72 9246
STRING TEST AND MANIPULATION

It should be noted that 1f the sean
direction is set right to left the
pattern string constant pattern should be
reversed, In the above example, one

would have "CBA". 8c3a2alal

char 8c3a2a2
any character 8c3a2a?2a
charclass 8c3a2a3

g

g ¢

look for a character of a specific class

(see Primitives for a list of character

classes) If found, = true, otherwise false.
8c3a2a3a

strentity ') 8c3a2al

look for an occurrence of the pattern
specified by strentity. 1If found, = true,
otherwise false. 8c3a2ala

parameter 8c3a2ab

True only if the parameter following the
dash does not occur, 8c3a2aba

strentity 'J 8c3a2aé

true if the pattern specified by strentity

can be found anywhere in the remainder of

the string. First searches from current

position. 1If the search failed, then. the

current position is incremented by one and

resets, Incrementing and searching

continues until the end of the string. The

value of the segrch is false if the testine

string entity is not matched before the end

of the string is reached, 8c3a2aéa

NUM argument 8c3a2a7

find (exactly) the specified number of
occurrences of the argument. 8c3a2aT7a

110 Programming Guide Section 6 [page 61]

ARC)4 APR T2 92146

STRING TEST AND MANIPULATION

NUM1 '$ NUM2 argument 8¢c3a2a8

Tests for a range of occurrences of the

argument specified. If the argument is

found at least NUM1l times and at most NUM2

times, the value of the test is true. 8c3a2a8a

Either number is optional. The default

value for NUM1l is zero, The default

value for NUM2 is 10000, Thus a

construction of the form "$3 CH" would

search for any number of characters

(including zero) up to and including

three, 8c3a2a8al

"ID" ('#/'=) UID 8c3a2a9

if the string being tested is the text of an

NLS statement then the identifier of user

who created the statement is tested by this
construction. 8c3a2a9%a

"SINCE" datim 8c3a2al0

if tne string being tested is the text of an

NLS statement, this test is true if the

statement was created after the date and

time (datim, see below) specified, 8c3a2alla

"BEFORE" datim 8§c3a2all

These

"%

QIBE

L10 Programming Guilde

if the string being tested is the text of an
NLS statement, thls test is true if the
statement was created before the date and

time (datim, see below) specified. 8c3a2alla
may not appear in content Analysis patterns: $c3a2b
stringname '# 8c3a2bl
string variable 8c3a2bla
TWEEN" pos pos (strentity ') 8c3a2b2

Search limited to between positions

specified. Scan character position is set

to first position before the pattern is

tested. 8c3a2b2a

S8ection 6 [page 62]

STRING

Format of date and time for pattern

datim = '(date time ')

ARC 4 APR 72 9246
TEST AND MANIPULATION

matching 8c3a2c

8c3a2cl

Acceptable dates and times follow the forms

permitted by the TENEX system'
descriped in detail in the JSY
accepts "most any reasonable d
syntax."

Examples of valid dates:

17=APE=70
APR=17=70

APR 17 70
APRIL 17, 1970
17 APRIL 70
17/5/1970
5/17/70

Examples of valid times:

1212313

1234

16:30 (L:30 PM)
123L4:56

1:56AM

1:56=EST

1200NOON

12:00:00AM (midnight)
11:59:59AM=EST (late
12:00:01AM (early mor

Other Arguments== (these do not involve
ratner, they involve some execution act
always TRUE for the purposes of pattern
tests,)

These may appear in simple Content A
Patterns:

] < -

set s8can direction to the left

L10 Programming Guide

8 IDTIM JSYS
S manual, It
ate and time
8c3a2cla

8c3a2clal

8c3a2clala
8c3a2clalb
8c3a2clalce
8c3a2clald
8c3a2clale
8c3a2clalf
8c3a2clale

8§c3a2acla?2

8c3a2cla2a
8c3a2cla?2b
8c3a2cla2c
8c3a2cla2d
8c3a2claze
8c3a2cla2f
8c3a2clazg
8c3a2clazh
morning) 8c3a2c1a2i
ning) 8c3a2cla2i

tests;
ion. They are
matching
8c3a3

nalysis
8c3a3a

8c3a3al

8c3a3ala

section 6 [page 63]

ARC) APR 72 92146

STRING TEST AND MANIPULATION

In this case, care should be taken to
specify patterns in reverse, that is in
the order which the computer will scan

the text, 8c3a3alal

+o - 8c3a3a2
set scan direction to the right 8c3a3a2a
"TRUE" = 8c3a3a3

has no effect; it is generally used at the
end of FIND when a value of true is desired

even if all tests fail. 8c3a3a3a

These may not appear in simple Content Analysis
Patterns: dc3a3b
pos - 8c3a3bl

'e

L10 Programming Guide

set current character position to tnis
position, If the SE pointer is used, set
scan direction from right to left, If the
SF pointer is used, set scan direction from

left to right. 8c3a3bla
ID = 8c3a3b2
store current scan position into the

textpointer specified by the identifier 8c3a3b2a
[NUM] ID = 8c3a3b3

back up the specified text pointer by the

specified numpber (NUM) of characters,

Default value for NUM 1s one. Backup is in

the opposite direction of the current scan
direction. 8c3a3b3a

Section 6 [page 6U4)

: ARC U APR 72 92L6
STRING TEST AND MANIPULATION

STRING CONSTRUCTION

String constructions allow the replacement of one stiring
(substring) by another string.

("ST" (pos / substr) '« stlist /
'# stringname '# ['[exp "TO" exp']])) 'e¢ Bstlist;
The string to which pos or stringname refers is replaced by
the string specified to the right of the agrrow., A
supstring is replaced if a substr or an indexed stringname
is specified.
EXamples:
ST pl P2 ¢« string:
is equivalent to
ST pl ¢ SF(pl) pl, string, p2 SE(p2);
#8tr#/lower TO upper] ¢ string;
is equivalent to
#8tr# ¢ #strx/l TO lower-l/, string, #str*/upper+l TO
str.lL/);
stlist = stprim 8(', stprim);
stprim =
“NULL" ¢
repregents the zero length string
SR /
for string constant, e.,g. "ABC"
substr /
aubstring
'+ substr /
substring capitalized
'= gubstr /

substring in lower case

L10 Programming Guilde Section 6 [page

8d

8dl
8dla

84lb

8d2

8d2a

8d2al

8d2a2
8d3
8dk
8dha
8dhal
8dub
8d4Lbl
8duc
8dlel
8dud
8dLal
8dje

8dlel

65]

ARC L4 APR T2 9246

STRING TEST

'8

"%

' %

AND MANIPULATION

substr /

If it is preceded by a dollar sign (8), then the
substring is copied without moving any associated
markers to the new position, This element is
relevant only if the string is the text of an NLS
statement,

stringname '%* /

for string variables

stringname '# '[exp '] /

for character variables

stringname '# '[exp "TO" exp '] /

substring by indices
A construction of the form #str#/i TO jJ refers to
the Substring starting with the ith character in
the string up and including the jth character,
Thus »str#/i To i1+10]) 18 the eleven character
supstring starting with the ith character of str.

and #str#/i TO str.L] is the string str with the
first i=1 characters deleted.

exp /

value of a general L10 expression taken as a
character; i,e,, the character with the ASCII code
value equivalent to the value of the expression

"STRING" '(exp [', exp] ')}

gives a string which represents the value of the
expression as a signed decimal number, If the second
expression is present, a number of that base is
produced instead of a3 decimal number.

sSupstr = pos pos;

rfhis is the supstring bounded by the two positions.

L10 Programming Guide Section 6 [page 66]

AdLf

8dLfl
8dkg
8dhgl
8dLh
8dLhl
8dui

84uil

8dhila

8dhj

8aL il

8dLk

8dukl
8as

8d5a

ARC L4 APR 72 9246
STRING TEST AND MANIPULATION

Example: 8dé

Let a "word" be defined as an arbitrary number of

letters and digits. The two Statements in this example

delete the word pointed to by the text pointer "t", ana

if there is a space on the right of the word, it is also
deleted. Otherwise, 1f there is space on the left of

the word it is deleted. 8déa

The text pointers X and y are used to delimit the left
and right respectively of the string to be deleted, 8d6Db

LD is true if the character is a letter or a digit, and
SP 18 true if the character is a space., 8dé6c

FIND t < $LD 1tx t > $LD (SP ty /7 ty x € (SP tx / TRUE));
ST x y + NULL; 8déd

The reader should work through this example until it is
clear that it really behaves as adVertised. 8dée

The new string or sunstring 18 specified as a concatenation
of string primgries, with the primaries separated by
commas.
8d7

110 Programming Guide Section 6 [page 67]

: fll g ~SNa
EUSINE e TARL gngaTe

‘ , _ 1 pleuned

v =adgen VIWLETS Br ap DeatReab Sf "BuevT 3 Se)
milrake Bbil GE ATSwesteldt bed 4FT Lelpal Gng PANIs)
REr 0T wmialog e eAT €F ad Dediejeq ATON eev Sruisp

TR Al 3z dvew set L6 Joudy sl 09 SHaGe s 82 aredl Wt
To FUnS eAr 09 sheTs eF SR B eaiWveddl ibadolsh
' : +Eaddlag al I byow anl

© el pRe dhwiian a'-!“':.'aw 1A 2 @ ¥ S1sfnicw Nosd eny
whsdalsl s af Indefe WS 30 TUswiisyteeY 2038% Duts

Boe OINIn a0 epval w L Telatads pir LR sW AR IS
AR A AL WSTANTaND ods 3F sl B KE '

FUAESST 5 =% S2l o w ¥ S 9w) AR X 2 2y QR 5 g EREY
iJIve » ¥ a fu

Bl 2F fadav plempas 14T pautwdl #aes DIAode. Yebawy 387
NELANAVEN sk sAvded VILaeT 12 Jany Yasds

pedisundstines ¢ ey sedtidvas up SUB 0 JALIIN WEN saf
N0 De2avasan BedTer ity FIEY asltaeivy yEIAA 30 s

wREEIOD B

()

L 2N, 3 nelgiang splos yolomersin? oLl

. ARC L APR 72 92Lé
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

Section 7. CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

Introduction 9a

NLS provides a variety of commands for file manipulation

and viewing. All of the editing commands, and the print

command with associated viewspecs (like line truncation and
statement numbers) provide examples of these mgnipulation

and viewing facilities, 9al

But occasionally one may need more sophisticated view
controls than those available with the viewspec and
viewchange features in NLS,. 9a2

For example, one may want to see only those statements
that contain a particular word or phrase. 9a2a

Oor one might want to see one line of text that compacts
the information found in several lOnger Statements. 9a2b

One might also wish to perform a series of routine editine
operations without specifying each of the NLS commands over
and over again., 9a3

The Network Information Center at ARC uses the ability

t0 create text using the information from several

different statements (and even different f£iles) and the

ability to insert this new text into a file to produce
catalogues and indices, 9a3a

User written programs enable one to tailor the presentation

of the information in a file to his particular needs,

Experienced users may write programs that edit flles
automatically. 9al

CREATION OF USER WRITTEN PROGRAMS 9b
User written programs must be coded in 1L10. They may call
other user written routines and various procedures in the
NLS program itself, 9bl
User programs that control the way material is portrayed

take effect when NLS presents a Sequence of statements in
response to a command like Print Group. 9b2

L10 Programming Guide Section 7 [page 69)

ARC L4 APR T2 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

In processing a command such as Print NLS 1loo0ks at a

sequence of statements, examining each statement to see

if it falls within the range specified in the Print

command and if it satisfies the viewspecs., At this point

NLS may also pass the statement to a user written

program to see if it satisfies the requirements

specified in that program. If the user program returns

a Value of true, the (passed) statement is printed and

the next statement in the Sequence is tested; 1f false,

the next statement in the sequence is tested. 9b2a

User programs that modify files usually gain control at the
Ssame point in processing as those that control the view, 9b3

Typically, one wants such a program to operate on a

sequence of statements choSen by a uUser when he decides

to run the program. In addition, one usually wants to

see the results of such an automated series of editing
operations immediately after it happens. 9b3a

Although a user program may be called exnlicitly (usine
a 8special purpose NLS command), it is usually invoked
when one asks to view a part of the file. 9b3b

CONTEXT OF USER WRITTEN PROGRAMS == THE PORTRAYAL GENERATOR 9c

Generally, the user written program runs in the framework

of the portrayal generator, It may be invoked in several

ways, described below, whenever one asks to view a portion

of the file, e,g., with a Print command in TNLS, with any

0of the output to printer commands, and with the Jump

command in DNLS. 9cl

All of the portrayal generators in NLS have at least two

sections == the formagtter and the sequence generator; if

the user invokes a program of his own, the portrayal

generator will have at least one, and possibly two,

additional parts == g user filter program and a user

sequence generator, 9c2

FORMATTER 9c3

The formatter section arranges text passed to it by the
sequence generator (described below) in the style

specified by the user. The formatter observes viewspecs

such as line truncation, length and indenting; it also

formats the text in accord with the requirements of the

output device, 9c3a

L10 Programming Guide Section 7 [page 70/

. ARC L4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

The formatter works by calling the sequence generator,
formatting the text returned, then repeating this

process until the sequence generator decides that the

sequence has been exhausted or the formatter has filled

the desired area (e.g. the display). 9c3b

SEQUENCE GENERATOR 9ch

The sequence generator looks at statements one at a

time, beginning at the point specified by the user, It
observes viewspecs like level truncation in determinineg

which statements to pass on to the formatter, 9cha

For example, the viewspecs may indicate that only the

first line of statements in the two highest levels

are to be output. The default NLS sequence generator

will return pointers only to those statements passing

the structural filters; the formatter will further

truncate the text to only the first line, 9chal

When the sequence generator finds a statement that

pa&gses all the viewspec requirements, it returna the

statement to the formatter and waits to be called again

for the next stgtement in the sequence, 9chb

one of the viewspecs that the sequence generator pays
particular attention to is "i" == the viewspec that
indicates whether g user filter is to pe applied to the
statement, If this viewspec is on, the sequence
generagtor passes control to a user filter program, which
1looks at the stgtement and decides whether it should bhe
included in the sequence, If the Btatement passes the
filter (i.e, the user program returns a value of true),
the sequence generator sends the statement to the
formatter; otherwise, it processes the next statement in
the Bequence and sends it to the user filter program for
verification, (The particular user program chosen gs 3
filter is determined by commands described below,) 9ele

USER FILTERS 9c5

The uger filter program may be either a content analysis
pattern (compiled and invoked in the manner desScribed

below) or an L1O0 program which may contain what are

essentially content analysis patterns as well as text
modification elements which may edit the NLS file
automatically. 9c5a

110 Programming Guide Section 7 [page T71J]

ARC) APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

CONTENT ANALYSIS PATTERNS 9e5al

content analysis patterns describe characteristics

that a statement must have to be inecluded in the

sequence being generated. For example, a content
analysis pattern may stipulate that a statement

must contain a particular phrase, or that it must

have been written since a particular date, 1In

general, content analysis patterns may use any of

the pattern matching facilities permitted in Llo0

FIND statements. gchala

content analysis patterns cannot affect the format

of a statement, nor can they initiate editing

operations on a file. They can only determine

Wwhether a statement should be viewed at all. 9ckalb

Nevertheless, content anaglysis filters provide a

powerful tool for user control of the portrayal of

a series of statements. They are the most

frequently used, and easily written, of the user
programe., However, 1f one wishes to change the

format of a statement, or to modify the file as it

i8 displayed, he must use a user written L10O

program., 9chalce

USER WRITTEN L10 PROGRAMS 9c5a2

A user written program may be given control by the
sequence generator in exactly the same fashion

that 'a content analysis program is initiated.

writing and using such programs effectively

requires g thorough knowledge of NLS (content

analysis, in particular) and a modicum of eXposure

to L1O, 9cha?2a

Such a program may change the format of &

statement being displayed and it may modify the

statement itself (as well a8 other statements in

the file). 9cha2b

L10 Programming Guide Section 7 [page 7T2]

: ARC L APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

A user written program invoked by the sequence

generator has several limitations. It can

manipulate only one file and it can 100k at

statements only in the order in which they are

presented by the sequence generator, 1In

particular, it cannot back up and re-examine

previous statements, nor can it skip ahead to

other parts of the file. A user-written seauence
genergtor must be provided when one needs to

overcome these restrictions, 9cka2c¢

USER=WRITTEN SEQUENCE GENERATORS 9cé

A user may provide his own sequence generator to be used

in lieu of the regular NLS sequence generator. (This is
controlled by viewspecs 0 and P.) Such a program may

call the normal NLS sequence generator, as well as

content gnalysis filters and user-written L10 programs,

It may even call other user=written sequence generators, 9céa

This technique provides the most powerful means for a

user to reformat (and even create) files and to affect

their portrayal. However, since writing them requires a
detailed knowledge of the entire NLS program, the

practice 1s limited to experienced NLS programnmers, 9céb

.10 Programming Guide Section 7 [page 73]

He311Te TINE A
Rad INSATNING

STAREINOSY ﬂnum s wo mw

o=, Bfa Wt ¥med lenmas u
. o afse 2t 2an et ..nuu-o mm
roher ey a-nm-w A Jally mly
" B saszn S0 aeif nuw-q ad .nm- ToIgioney
afisdsy . JARCLIAMTINNT Ad0d? MEROSTAVE
b CHOTARINED FONAUGIR WRTTIRWwHEEU

Fest pd o MoJatanan eansdPes pwi Akd SRIVOYT LaN TRl &
2r skfY) Lmalewspsy ooneulisa BN Yeluges saf fo boll al
i bs 1 r=ud 19 2pa O azsgsvsiv &8 Eallovinas
na T YOZSTMIDY BOMwUpEe AN Lsmwon- edr L[lss

SLY msdilreetsns Bita o3s3lly sieglans InednDs

sonstipes B (TH-Ta0y Tendo Diso seve (& 2%

‘-mm

P

AL

“naa ﬂm

oEke| T noliver +6END Fainssryovd O4)

ml l‘!ﬁm m

(1

4 ARC L4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Section 8. INVOCATION OF USER FILTERS AND PROGRAMS

Introduction,.

The user=written filters described in this document may be
imposed in some cases through the NLS command "Execute
content AnalyZer" and in other cases by an NLS subsystem
accessed by the command "Goto Programs", The former method
is easier but may be used only with simple Ccontent Analyzer
patterns, The latter method requires more of the user;
furthermore, the several additional capabilities offered by
general user=written programs may be invoked only through
the "Goto Programs" submode,

User sequence generator programs8 for more complex
editing among many files may be written. Additionally.
programs may be written in this L10 subset to be used to
generate sort keys in the NLS Sort and Merge commands,
pescriptions of these more complicated types of user
programs and of NLS procedures which may be accessed by
such programs is deferred until a later document. In
such examples, however, the user would still make use of
the commands in the NLS "Goto Programs" subsystem,

These TNLS commands are used to compile, institute and
execute User Programs and filters,

Compilation==

is the process by which a set of instructions in a
program is translagted from g form understandable by
humans (e,g., the L10 language) into a form which the
computer can use to execute those instructions.

Institution==

is the process by which a compiled program is linked
into the NLS running system for execution.

Execution==
is the process in which the computer carries out the

instructions contained in a compiled and instituted
program.

10

10a

10al

l0ala

10aZ2

l0aZ2a

10a2al

10a2b

10a2bl

lo0aZ2c

10a2cl

L10 Programming Guide Section 8 [page T75)

ARC

4L APR T2 9246

INVOCATION OF USER FILTERS AND PROGRAMS

This section additionally presents, in detail, examples of

the use of the L10 programming language to construct user

analyzer filters and reformatters, These programs were

written by members of ARC who are not experienced

programmers, They do not make use of any constructions not
explained in this manual, 1l0a3

SIMPLE CONTENT ANALYSIS PATTERNS 10Db

The content analysis feature of NLS permits the user to

speclify a pattern of text content to be matched by

statements in NLS files, Only those statements passed to

the filter py the sequence generator satisfying the test

will be sent to the formatter for display to the user, A

simple content analyzer pattern is compiled by the EXecute

Content AnalyZer command or through the Goto Programs

supmode, and 1s activated by a Viewspec parameter. 10bl

The NLS Portrayal Generator, made up of the formatter,

the sequence generator, and user filters, is invoked

whenever the user requests a new "view" of the file, for
eXxample through the use of the TNLS "Print" command or

any of the output to printer commands. Thus i1f one had

a user content filter compiled, instituted, and invoked,

one could have a printout made (using "Output

Quickprint", for example) containing only those

statements in the file satisfying the pattern. Section

7 (8c) discusses these concepts in detail. 10bla

Syntax of Simple Content Analysis Patterns 10b2

A simple content analyzer pattern is made up of any
number of String patterns to be matched terminated by a
sémi-colon. 10b2a

$strentity '; 10b2al

It 18 thus similar to the FIND statement descrived in

Section 6 (7c) of the L10 Primer., It is aifferent

because some of the pattern constructions, noted in that
section, are neither valid nor relevant out of the

context of a complete L10 user program including the
constructions which manipulate text pointers, 10b2b

L10 Programming Guide Section 8 [page 76]

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

A pattern may be written as text anywhere in an NLS
file, A file may thus contain any number of patterns,
However, only one pattern may pe instituted (or placed
as the active program or pattern) at a time although any
number of content analysis patterns may be compiled.
Using commands in the Programs subsystem, one may sSwitch
back and forth between the invocation of any of them.

Execute Content Analyzer

The TNLS command used to compile simple content analysis
patterns is:

e/xecute] co/ntent analyzer type in?] 8P
CA
yles]
nfoj

(1f SP, CA, or y[(es]) LIT CA
(1f n/oJ) ADDR CA

In response to the prompt "type in?" the user may
respond with SP, CA, or "y" indicating that the pattern
will be entered directly from the Keyboard. Reponding
by "n" indicates that the address of the pattern will be
specified.

ADDR is a TNLS address specification pointing to the
first character in the pattern or non=-printing
characters immediagtely preceding the pattern, If the
pattern is imbedded in the text of an NLS statement the
process will read characters until the first semi~colon
is read,

If the Semi=colon is omitted in this instance, an
error will result,

Thus one may make use of parts of complex patterns by
positioning the TNLS current position pointer at an
appropriate place in the middle of the pattern text,

If a LIT is5 specified it is taken to be the text of a
Content Analysis pattern, (The semi=colon may be
omitted here; it will be appended by the system,)

1l0b2c

10b3

1l0b3a

10b3al
1l0b3ala

1l0b3alb

10b3b

l0b3c

10b3cl

10b3c2

10n3c3

.10 Programming Guide Section 8 [page 77J

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

when this command is given the pattern specifieq is

compiled into the user program buffer, a name is

assigned and put on the user program name stack, and it

is instituted as a content analyzer progran, 10b3d

when the CA is typed the message "Compiling User

Program" will be put out. If the compilation was

successful, the user will be left at the TNLS command
specification level. If there were gny errors in the
compilation a list of the places® in the pattern in which

the error was discovered followed by the message

"number] error(s): Type CA", 10b3e

The description of fthe errors nay be retatively

cryptic. Syntax errors deal with some violation of
acceptable language form, cCompiler and syStem errors

may relate to some more general (and perhaps more

obscure) error in the compiler which the ordinary

user cannot easily fix, 10b3el

Remember that the L10 compiler does not do
anything about misspelled words and misplaced
punctuation marks, l0b3ela

Content Analysis Via Goto Programs 10bh

Simple Content Anglysis patterns may also be compiled
using a command of the Programs subsystem described
below, ' 10bla

Execution and Effect 10b5

when applied to a proper pattern the "Execute Content

Analyzer" command, in addition to compiling the user's

pattern, institutes it as the current content analyzer

filter deinstituting any existing content analyzer

pattern program, 10bba

Most users need not be aware of this fact. 10b5kal
Those, however, who may compile more than one content

analyzer pattern in a session may wish to switch
between them, 10b5a?2

L10 Programming Guilde Section 8 [page 78]

. ARC L APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

To provide a handle on Content AnalyzZer patterns they

are assigned program names made up of the first §

characters of the pattern preceded by the letters

"UP" (for user program), a number referring to the

order of compilation, and an exclamation mark (!l). 10n5a3

Using this name one may institute and deinstitute

patterns as content analyzer filters by using a

command in the Programs subsystem described below,

The patterns will appear under these names in the

user program stack which may be examined with the

Program Status command, 10b5al

After compilation and institution a content analyZzer

pattern may be applied as a filter to any NLS file by

using certain viewspecs and any. command which causes the
Portrayal Generator to examine the file, e.g., the TNLS

print commands. Simple content analyzer programs8 do not

modify files. Rather, they Jjust serve as "filters" for

the Portrayal Generator (see Section 7 (8c)). Relevant
viewspecs are: 10b5Db

i== show only statements with content which passes

the filter. For eXample an Output Quickprint with

viewspec i on would print only those statements

passing the filter. If none satisfy the filter test,

an "Empty" will be displayed on=line, a blank file

will pe printed by the Quickprint command. 10b5bl

J=- show all content., This 18 the default viewspec
in NLS. The filter is not used in this case, 10p5b2

k== show the first statement passing the filte] then
all others. ' 10b5b3

Again we emphasize that the files are not modified by
simple content agnalysis filters. LlO user programs nust

be used for this purpose, 10bbc
Examples of Simple Content Analysis Patterns 10bé
BEFORE (25=JAN=72 12:00) 3 10béa

This pattern will match those statements created or
modified (Wwhichever happened most recently) before
noon on 25 January 1972. 10béal

ID = HGL OR ID = MFA; 10b6Db

L10 Programming Guide Section 8 [page 79)

ARC L4 APR 72 92L6
INVOCATION OF USER FILTERS AND PROGRAMS

This pattern will match all statements created or
modified (whichever happened most recently) by users
with the identifiers "HGL" or "MFA", 10bébl

D 2%LD / ["CA" / "Content Analyzer"]: 10bée

This pattern will match any of three types of

Statements: those beginning with a numerical digit

followed by two characters which may be either

letters or digits, and statements with either the

patterns "CA" or "Content AnalyZer" anywhere in the
statement. 10hécl

Note the use of the brackets to permit an

unanchored search == a search for a pattern

anywhere in the statement. Note also the use of

the slash for alternations. 10bécla

[(2L (SP/TRUE) /2D) D '= 4DJ; 10béd

This pattern will matech characters in the form of

phone numbers anywhere in a statement, Numbers

matched may have a two digit alphabetic exchange

followed by an optional space (note the use of the

TRUE construction to accomplish this) or a numerical
exchange. 10bédl

Examples include YU L4=123L4, YUL=123L4, and
98y=123k. 10bédla

L10 Programming Guide Section 8 [page 80]

- ARC 4 APR 72 92L6
INVOCATION OF USER FILTERS AND PROGRAMS

PROGRAMS SUBSYSTEM 10¢
Introduction lo0el

This NLS subsystem provides several facilities for thne
processing of user written programs and filters, It is

entered by using the NLS "Goto" (subsystem name)

command. This subsystem enables the user to compile L10

user programs as well as Ccontent Analyzer patterns,

control how these are arranged internally for different

uses, define how programs are used, and interroeate the

status of ugser programs, 10cla

Programs subsystem commands 10c2

The Goto Programs subsystem 1s entered by the NLS

command: 10c2a
g[0t0] P[rograms/... 10c2al

After the user types the above the system ;xpects one of

the following commands: 1l0c2b

Status of User Programs l0c2c

This sub=command prints out information concerning

active user programs and filters which have been

compiled and/or instituted. The system may be

interrogated about this status with the command: 10c2cl

gf[tatus of user programs] CA l0c2cla
when this commagnd is executed the system will print: 10c2c?2

-= the names of all the programs in the stack,

inecluding those generated for simple content

analysis patterns, starting at the bottom of the

stack, This stack contains the symbolic names of

all compiled program® and a pointer to the

corresponding compiled code. The stack is

arranged in order of compilation with the most

recently compiled program at the head of the

stack, loc2c2a

L10 Programming Gulde Section 8 [page 81]

ARC L4 APR T2 9246
INVOCATION OF USER FILTERS AND PROGRAMS

== the remaining free space in the pbuffer, The

buffer contains the compiled code for all the

current compiled programs., New compiled code is

inserted at the first free location in this

buffer, l0oc2ec2b

== the current Content Analyser Program or "None" 10c2c2c

== the current user sequence generator program or

IINonell 10C2c2d
== the user key program or "None" l0c2c?2e
content Analyzer 1l0c2d

This command allows the user to speclify a content
analysis pattern as a content analyzer filter. 10¢c2dl

c/ontent analyzer type in?J

SP p
CA
y(les]
nfol 10c2dla
(1f SP, CA, or y/[es]) LIT CA 10c2dlal
(1f n/oJ) ADDR CA 10c2dla?

In response to the prompt "type in?" the user may

respond with SP, CA, or "y" indicating that the

pattern will be entered directly from the keyboard.
Reponding by "n" indicates that the address of the

pattern will be specified. : 10c2d2

ADDR must be the address of the first character or
immediately preceding space of the program or
pattern. 10c2a3

when this command is executed the pattern specified

i8 compiled into the puffer, its name is put on the

stack, and it is instituted as a content analyzZer

pPrograme. 10ec2dlk

The name gssigned is generated in the same manner

as those for patterns compiled by theée "EXecute
content AnalyZzZer" command. l0c2dba

L10 Programming Guide Section 8 [page 82)]

) ARC L APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This command is equivalent to the "EXecute Content
Analyzer" command in compilation error indications

(9b3e) and execution (9b5a). 10c2d5
L10 Compile 1l0c2e
This command compiles the program specified. 10c2el
1/10 compile at/ ADDR CA 10c2ela

ADDR is the address of the first statement of the
pProgram. 10c2e?2

This command causes the program specified to be

compiled into the user program buffer and its name

entered into the stack, The program is not

instituted. 10c2e3

The name of the program 1s the visible following
the word PROGRAM or FILE in the statement

indicated by ADDR, 1l0c2e3a
krrors are indicated as above for the compilation of
simple patterns in (yb3e). 10c2el
The program may be instituted and executed by the
appropriate commands, _ 10c2e5
Institute Program l0c2f

This command enables the user to designate a program
a8 a content analyZer, SeqUence generator, or key

extractor. 10c2fl
i/nstitute program/ PROGNAME CA [CRJ
NUM
[as] CA [content analyzer] CA

c/ontent analyzer] CA

kley extractor]/ CA

s/equence generator] CA loc2fla
PROGNAME is the name of a program which had been
previously compiled with any of the Execute content
Analyzer, Program L10O, or Program Content Analyzer
commands, That is, PROGNAME must be in the stack
when this command is executed, 10c2f?2

L10 Programming Guide Section 8 [page 83]

ARC L4 APR T2 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Instead of PROGNAME the user may specify the progranm
to be instituted by NUM, a numeric value indicating

the nth program from the pbottom of the stack,

The program on the pottom of the stack is the
program compiled first.

Execute Program

This command transfers control to the specified
program.

e[xecute program/ PROGNAME CA
NUM

PROGNAME is the name of a program which had been

previously compiled. That is, PROGNAME must be in

the stack when this command is executed,

Instead of PROGNAME the user may specify the progranm
to pe instituted by NUM, a numeric value indicating

the nth program in the stack.
Deinstitute Program

This command deactivates the indicated program,

does not remove it from the stack and puffer, It may

be reinstituted at any time,

d/einstitute program/ PROGNAME CA
NUM

PROGNAME is the name of a program which had been

previously compiled. That is, PROGNAME must be in

the stack when this commgnd i1s executed.

Instead of PROGNAME the user may specify the progranm
to be instituted by NUM, a numeric value indicating

the nth program in the stack.

This assumes one program will not be used for more

than one purpose at one time.

L10 Programming Guide Section 8 [page 8))

10c2£3

1l0c2£f3a

10c2g

10c2gl

loc2gla

10ec2g2

10e¢2g3

1l0c2h

10ec2hl

loc2hla

10e2h2

10e2h3

l10c2h3a

_ ARC L APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Pop Stack 10c2i

The Pop Stack command deletes the top (or most
recent) program on the stack. The progranm lis
deinstituted, its name removed from the stack, and

its space in the puffer marked as free, 10c¢2il
plfop stack]/ CA loc2ila

Pop Stack program command (10c2il) 10c2i2
Reset Stack loc2]

This command clears all programs from the user
program area., All programs are deinstituted, the
stack 18 cleared, and the buffer is marked as empty. 10c2il

r/eset stack]/ CA 10c23la

110 Programming Guide Section 8 [page 85])

ARC) APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Note on Returning from User Analyzer=Formatter Programs 10c¢3

when a user writes an analyzer=~formatter filter progranm,

the main routine must RETURN to the Portrayal Generator.

The RETURN must have an argument which is checked by the
sequence generator, If the value of that argument is

TRUE, the statement will be passed to the formatter to

be displayed; if the value is FALSE, it will not be

displayed. 1l0c3a

The user could thus use FIND statements and expressions

to check for the presence of statements to be edited by

the string construction elements and either display the

edited statement or not, thereby saving the formatting

time. 10e3b

A file could thus be edited aquickly without any

immediate feedback to the user with the i viewspec

on. However, by turning viewspec j on afterwards,

the user coula then see the completely eaited file, 10e3bl

Examples of AnalyZer=Formatter Programs 10ch

The following are examples of user analyzer=formatter
programs which selectively edit statements in &n NLS
file on the basis of text searched for by the pattern
matching capabilities., Examples of more sophisticated
user programs sSuch as sort keys and user sequence
generator programs will be presented in a later
supplement with a description of NLS routines easily

accessed by users, 1l0cha

Example 1l== . 10echb
PROGRAM outname % removes statement names == del= ()

== 10clhbl

DECLARE TEXT POINTER sf, paf, pae; loclhbla

(outname) PROCEDURE; 10eckblb

IF FIND tsf 8NP '(tpaf [')] tpae THEN 10cublbl

BEGIN 10chblbla

ST 8f « pae SE(sf); 10cuhblblb

RETURN (TRUE) 3 10chblble

END 10chblbld

ELSE RETURN (FALSE) ; 10ckblb2

END, 10ckblb3

FINISH lochkble

L10 Programming Guide Section 8 [page 86]

ARC L4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This program removes the text and delimiters of NLS
statement names from the beginning of the statements., 10cLb?2

Example 2== Ll0ecle
PROGRAM chaneged: 10ckel
(changed) PROCEDURE; 10che2

LOCAL TEXT POINTER £, e; lochc2a
FIND t£ SE(f) te; loche2b

IF FIND SINCE (25=JAN=72 12:00) THEN loclhec2c
BEGIN 1l0che2cl

ST £ « "[OHANGED]", % e; lO0che2c?2
RETURN (TRUE) ; 10clhe2c3

END l0clhec2ch

ELSE RETURN(FALSE); loeche2d
END. lochec2e
FINISH 10che3

This program checks to see if a statement was written

after a certain date, If it was, the string

"[CHANGED/" will be put at the front of the

statement. 10clkeclh

L10 Programming Guilde Section 8 [page 87)

g RS . —— - . - - et -

.1_

Kl

‘ N
e qut si’gi;ﬁ w2k oty AOTTAMEVAD I

¥ 10 m’in' faed 5pd nAwnENY m
“' Sadsp s ng uwum #i1] Pyl smamn um

-
Lstsed

lltlﬂ gﬂﬂ
k¥ 0 &F 'lﬁ' TRy ln
pat LASNE S dNLF

WINT 006l & f-ﬁth-ii) SINLE owEd

LR
X .°1mmmar « 3T
AELT SR ile]
oy
TP EZAN) HAUTAG inle
JANE
wheie

- Er2TINY NiY INANAreSE 8 T) an0 W7 AdDeEd uuo'lt ninT
g (A JE KL nieh phauer a 299%4

#ie Yo o7 1 2a Puy se Lrkw CRIQEDEANG)

dsdyos rdnnnninin

L

'fiill gmw 5 antiaed g0l0l palupeviodd 012
lL i

T

.
I =
Jm N 8 o

|: FNain =g !lllulll '

INDEX

A (5clhk)

ALT (5déd5s)

analyzer=-formatter programs, examples of (lOclLa)
AND (5c¢la3), (8c3alb)

argument lists (5d3b2)

arithmetic operators (5cua)

array variables, declaring (6b3a)

assignment statement (7ala)

assignments (5dLha)

BC (5464d9)

BEFORE datim (8c3a2alall)

BEGIN (7cla)

BETWEEN pos pos (strentity) (8c3a2b2)
binding precedence (5e2a)

BLOCK construction (7cl)

body, program (4blp)

BW (5d46d10)

L10 Programming Guide

ARC L4 APR 72 9246
INDEX

Index [page 89)

ARC
INDEX

L APR 72 9246

C. (bdéall)

CA (5déal2)

CASE expression (5e3a)

CASE statement ('7d3a)

CCPOS (5d23j), (5d4l1l0a), (8Db)

CD (5a6dl3)

CH (5d7al)

char (8c3a2ala2)

character classes (547)

charclass (8c3a2ala3)

CHR (3ble2e)

comments, def. (3c9)

compilation (l0aZ2a)

Compile program command (lOc2el)

conditional expressions (5e3)

conditional statements (7d1)

constant, def. (3¢7)

content analysis
and Goto Programs (1lObla)
=formatter programs, examples of (lOeia)
=formatter programs, returning from (l10c3a)
goto programs command (10c2d1l)

patterns (8¢2), (10bl)

L10 Programming Guide Index fpage 50J]

ARC L4 APR 72 9216
INDEX

CR (5d64d6)

current character position (8b)

d (5d7a9)
declarations (éal)

global (6bl)

local (6dl)

procedure level (6a3)

program level (6a3)

reference (6cl)
DECLARE STRING statement (éb5a)
DECLARE TEXT POINTER statement (ébéa)
declaring

array variables (éb3a)

multiple variables (ébla)

scalar variables (6b2a)

string variables (6bb5a)

text pointers (6béa)
Deinstitute Program command (10c2hl)

Divide statement (7bl)

END (7cla)

ENDCASE statement (7d3al)

ENDCHR (5d6d2)

L10 Programming Guide Index [page 91]

ARC L4 APR 72 9246
INDEX

EOL (5d6dy)
examples of analyzer=-formatter programs (1l0clka)
Execute Content Analyzer command (10b3a)
Execute program command (10c2gl)
execute, def. (3cl2)
execution (1l0a2c)
expression, def. (3c¢clO0)
expressions (5ela)
conditional (5e3)

FIND (8cl)

FALSE (bdéa3)

filters (9cba)

FIND (5d2k)

FIND Expressions and Patterns(8cl)
FIND Statements (8cl)

FINISH statement (L4blc)

formatter (9c3a)

global, def. (3c5)
declarations (6bl)
variable (5b2)
Goto Programs subsystem (1lOcla)

and content analysis (10bla)

L10 Programming Guide Index [page 92]

commands (l0c2a)

header, program (4bla)

heirarchy of operations (5e2a)

i viewspec (9clc), (1O0b5bl)
ID (3ble2a)

ID (#/=) UID (8c3a2ala9)
identifier, aef. (3cl)

IF expressions (5e3a)

IF statement (7d2a)

IN (5c3al)

indexed variable, def. (3cl)
indexing stringnames (8béa)
Institute Program command (10c2f1)
institution (1l0a2b)

interval operators (5c3a)
j viewspec (1lOp5b2)

k viewspec (1lO0p5b3)

L10 Programming Guide

ARC L APR 72 9246
INDEX

Index [page 93/

ARC)4 APR 72 9246
INDEX

1 (547a8)

L10O
compile command (10c2el)
declarations (6al)
programs, user=written (9cba2a)
syntax (3bl)

label, def. (3c2)

LD (5d7ak)

LF (5déd7)

literal (5déa)

LL (5d47a7)

LLD (547a3)

LOCAL declaration (édl)

local variable (5b3)

local, def. (3cé)

logical operators (8c3al), (5cla)

MAX (5d2n), (5d48)
MIN (5d2h), (548)
MOD (5ckh)

multiassignment statement (7a2a)

L10 Programming Guide Index [page 9ULJ

NLD (5d7a5)

NLS Portrayal Generator (1l0bla)
NOT (5clak), (8c3alc)

NP (5d7all)

NUM (3ble2b), (5d6al)

NUM argument (8c3a2alaf?)

NUM1 $ NUM2 argument (8c3a2alal)

0 viewspec (9céa)
operations, hierarchy of (5e2a)
operataors (5c)
arithmetic (5cla)
interval (5c3a)
logical (5cla)
relational (5c2a)
OR (5C1A2), (8c3ala)

OUT (5C34A2)

P viewspec (9céa)

pattern matching arguments (8c3a2)
patterns (8c)

patterns,

content analysis (8c2), (9chala), (lobl)

L10 Programming Guide

ARC 4 APR 72 92146
INDEX

Index [page 95]

ARC i APR 72 9246
INDEX

syntax of content analysis (10b2a)
pointers (5d5a)
Pop Stack command (10c2il)
portrayal generator (9cl)
POS (5d21), (6c3a3bl)
posrel (5dlla)
primitives (5d1)
procedure call, as primitive (5431)
program
compilation (10aZ2a)
compile command (1lOc2el)
deinstitute command (10c2hl)
execuge command (1Oc2gl)
execution (1l0aZ2c)
institute command (10c2f1)
institution (10a2b)
pop stack command (10c2il)
reset stack command (l0e2jl)
structure (4al), (4bl)
programs,
creating (9pl)
examples of (lOcka)
returning from (l0c3a)

status command (1l0c2cl)

L10 Programming Guide Index [page 96]

ARC L4 APR 72 9246
INDEX

subsystem (10cla)
subsystem commands (l0c2a)
user filter (Ycbha)
user=written (9c5a2a)

PT (5d47al0)

READC (5d42i), (5d9a)

REF statement (6cl)

reference declarations (écl)
referenced variable (5bl)

relational operators (5c2a)

Reset Stack program command (1l0c2jl)

returning from user analyzer=formatter programs (l0c3a)

SAB (5D6D38)

scalar variables, declaring (6b2a)

SE (8b2c)

sequence generator (9cla)

sequence generagtor, user=-written (9céa)
SF (8b2b)

SINCE datim (8c3a2alal0)

SP (5D6D3)

SR (3BlE2C), (8c3a2alal)

SR1 (3BlE2D), (5DéD1)

L10 Programming Guide Index [page 97)J

ARC L4 APR 72 9246
INDEX

statement, def, (3cll)
statements, FIND (8cl)
Status of User Programs command (1O0c2cl)
strentities (8c¢3)
string
construction (84)
def. (3c8)
end (8b2c)
expressions (5ela)
front (8b2b)
pattern entities (8c3)
patterns (8e¢)
test and manipulation (8)
variables, declaring (6b5a)
syntax (3bl)
content analysis patterns (10b2a)

program structure (hal)

terminal statement, program (4ble)
text pointer (5b6), (8b)
comparisons (5d11)
declaring (6béa)
Tree Meta (3al)

TRUE (5d6a2), (8¢c3a3a3)

L10 Programming Guide Index [page 98]

UL (5d7aé)
ULD (5d7a2)
unreferenced variable (5b5)

unreferencing (6c2)

ARC L APR 72 9246
INDEX

user analyzer=-formatter programs, returning from (10c3a)

user filters (9cba)

user programs (9bl)

user programs status command (10c2cl)
user=written L10 program (9c5a2a)

user=written sequence generators (9céa)

V (5chi)
variables (5bl)

def. (3¢c3)

declaring multiple (ébla)
viewspec

i (9cke), (10b5pl)

3 (10b5b2)
k (10b5b3)
0 (9céa)
P (9céa)

L10 Programming Guide

Index [page 99)]

ARC)4 APR 72 92L46
INDEX

(6c2)
(strentity) (d8c3a2alal)
stringname * (8c3a2bl)

- parameter (8c3a2alab)

«A (5clk)
«V (5cki)
«X (5¢ck])
/ (8c3ald)

< (8¢c3a3al)

> (8c3a3a2)

[strentity] (8c3a2alaé)
*+ ID (8c3a3b2)

¢ [NUM] ID (8c3a3b3)

L10 Programming Guide Index [page 100]J

)

DkC 23-~FEB=72 15:33 9248
CKC TELEPHONE/MESSAGE SERVICE -

A8 we move ana reoreanize the ARC PSu/Secretarial functions, ve
are adaressing the problem of ccntacting staff membhers when they
receive telephone or other messages, Audio and individual radio
paging systems are NOT teing considered, we plan to have some
visuzl overview of the console area from the telephone call
director, zand in some cases can direct phone calls to console
phones, or personally contact Staff, An additional possibility is
an array of liehts indicating that a message awaites = perhaps
blinking if it i1is consicdered urgent: Hence tne TEST board.

No single appreach Will orevide the optimal solution. Comments
and sugdestions will pe apnreciated. Wwe want to provide the pest
communicaticns possible for all concerned = ad2pled to each
individuzl's desires and needs lto the nmaXimum extent feasgible.

Donazld R. Ccne

Stanford Ekesearch Institute
333 pRavenswood Ave.

Menlo Park, Ccalifornia 94025

T082
Access Copy

9248

i B

DRC 23=FEB=72 15:33 92u8
ARC TELEPHONE/MESSAGE SERVICE

(J9246) 23-FEB=72 15:33; Title: Author(s): Donald R. Cone/DRC;
Distribution: Diane S. Kaye, Paul Rech, Michael D. Kudlick, Donald R,
Cone, Don Limuti, william R. Ferguson, Priscilla Lister, Robert L.
Dendy, Linda L. Lane, Oarilyn F. Auerbach, Walter L. Bass, Oary S.
Church, William S. Duvall, Douglas C. Engelbart, Beauregard A. Hardeman,
Martin E. Hardy, L. D. Hopper, Charles H. Irby, Mil E. Jernigan, Harvey
G« Lehtman, John T. Melvin, Leanne B. North, lLames C, Norton, Cindy
Page, Bruce L. Parsley, Wwilliam H,., Paxton, Jeffrey C, Peters, Jake
Ratliiff, Barbara E. Row, Ed K. Van De Riet, Dirk H. van Nouhuys, Kenneth
Ee. Victor, Don C. Wallace, Richard W. Watson, Dlon I. Andrews/SRI=ARC;
Sub=Collections: SRI=ARC; Clerk: LLL;

Origin: <LANE>BLANK.NLS;14kl, 23~FEB-T72 1L:26 LLL ; H

&SRI=-ARC JCN 23=MAR=72 17:3L 9249
H1lP=2; SRI~ARC 1 MAR 72 9249
Proposal for Research No, ISU=72=)48

Engineering Change A to Contract F30602~70=C=0219

Part One==-Technical Proposal i 6
I INTRODUCTION 2
This proposal is in response to Rome Air Development Centepr
Request for Change A dated 1 December 1971, 2a
II DISCUSSION OF PROPOSED COHANGE 3
We propose the following changes to the Statement of Work
(dated 6 February 1970) for the above contract: 3a
Page L, add the following paragraphsi
3b
"L.2 The contractor shall provide three IMLAC Programmable
Display Systems (PDS=1D) and the IMLAC software necessary
to allow remote operations of TNLS over the ARPA network.
The systems shall consist of the basic PDS=1D unit with the
following features: 3bl
PDS=1D (Display computer) 3bla
MEM=1 (Incremental cost of 4k memory module) 3blb
LVH=1 (Long vector generation hardware) 3ble
0BS=1 (Read/write cassette including bootstrap ROM) 3bld
HRC=1 (High contrast, high resolution CRT) 3ble
TAB=2 (Extended modular support table in lieu of
TAB=1) 3pblf
GMI~1 (Graphic mouse with keyset) " 3bleg
In addition, we suggest the addition ofs 3b2
BEL=1 (Bell alarm) 3b2a
"Lhe2,1 In addition, one of the units shall be equipped with
the programnmer/maintenance control panel (CON=l) feature,
The contractor shall include other features as required for
interfacing to TNLS, or DNLS, and DEX software or the ARPA
network hardware, 3b3
Le2s2 The IMLAC equipment shall include a mouse and binary
keyset with each of the basie PDS=1D units. 3bl

L.2.3 The contractor shall procure four Execuport = 310
transceivers and four Termicette cassette digital
recorders, These units shall be interfaced in a manner that

Part one~=Technical Proposal (1)

&SRI=ARC JCN 23=MAR=72 17:3L 9249
H1P=2; SEI=ARC 1 MAR 72 9249
Proposal for Resgsearch No., ISU=T72=48

makes their operation compatible with the TNLS and DEX

software on the contractor's PDP=10 computer," 3b5
The following is a change to Exhibit "A" dated 6 February
1970, 3c
Exhibit "A" add the following: 3ecl

"Exhibit Line Item AOOS5 shall be in accordance with
the requirements of paragraph 4.2 of the Statement of
Work entitled: "Network Information Center and Computer
Augmented Team Interaction", dated 6 February 1970 and
Engineering Change "A" as outlined in 4.2 of the
Statement of Work," 3cla

Part One==Technical Proposal [2)]

&SRI=ARC JCN 23=MAR=T72 17:3L 9249
H1P=2; SRI=ARC 1 MAR 72 9249
Proposal for Research No. ISU=T72=L48

Engineering Change A to Contract F30602=T70=-C=0219
Part Two==Business Proposal

I ESTIMATED TIME AND CHARGES

It is proposed that the work outlined herein be performed
during a period of L months. This estimated duration is
dependent of the actual delivery of the IMLAC display
equipment by IMLAC, They have quoted a delivery time of 90 =
120 days after receipt of the order.

Pursuant to the provisions of ASPR 16=206,.,2, attached is a
cost estimate and support schedule in lieu of the DD Form
633=4, Also enclosed is a signed form complete except as to
the "Detail Description of Cost Elements,”

IT CONTRACT FORM
It is requested that any contract resulting from this
proposal be awarded on a cost=plus~fixed-fee basis as a
modification to contract F 30602=70=C=0219,.
III ACCEPTANCE PERIOD
This proposal will remain in effect until 1 April 1972, If
consideration of the proposal requires a longer period, the

Institute will be glad to consider a request for an extension
of time.,

Part Two==-Business Proposal (1]

Fa

5b

éa

Ta

&SRI=ARC JCN 23=MAR=72 1T7:3L 92L9
H1P=2; SRI=ARC 1 MAR 72 9219
Proposal for Research No. ISU=T72=L48

Cost Estimate:

Part Two=-=Business Proposal (1]

&SRI~ARC JCN 23=MAR=72 17:3hk 92L9
H1P=2; SRI=ARC 1 MAR 72 9249
Proposal for Research No. ISU=T72=48

COST ESTIMATE

Direct Costs #

Equipment Costs 8 80,037
Shipping costs L50
Total Direct Costs 80,487
Total Estimated Cost 80,487
Fixed Fee 3,702
Total Estimated Cost Plus Fixed Fee 8 64,189

% See supporting schedules

Part Two~~Business Proposal (2]

&SRI=ARC JCN 23=MAR=72 17:3L 9249
H1P=2; SRI=ARC 1 MAR 72 9249
Proposal for Research No. ISU=72=48

Cost schedules:

Part Tyo=~Business Proposal (2]

&SRI=ARC JCN 23=MAR=T72 17:3L 9249
H1P=2; SRI=ARC 1 MAR 72 9249
Proposal for R€gearch No, ISU=T72=)8

SCHEDULE A
EQUIPMENT COQSTS
IMLAC displays & 57,877
Item: Unit price:
l. PDS=1D & 9,970
2. MEM=-1 3,450
3. LVH"]- 2’800
Le CBS=1 8L5
5- HRO'l 290
6- TAB'Z 95
Te GMI=1 2,300
8. CON=1 1,250
Three each of items 1 = 6 8 52,350
Discount for items 1 = 6 2,618
Subtotal 49,732
Three each of item 7 6,900
discount for item 7 =690 6,210
Subtotal 55,942
One each item 8 1,250
Subtotal 57,192
Installation L00
Subtotal 57,592

In additien to features selected by RADC techniecal personnel,
we suggest:

Item: Unit price:
9. BEL=1 100
(Bell alarm)

Added feature 9% 285
Three each less IMLAC 5% discoun™
Total display equipment costs BE7,877

As per IMLAC guote dated 3 February 1972 and price list
dated 15 January 1972

(assumes all three systems are installed simultaneously at
RADC without shipment to an intermediate point for temporary
installation and/or modification)

Execuport terminals & 14,360

Four at 8§ 3,590
As per Execuport sales brochures dated 5/1/71

Part Tyo=-=Business Proposal (3]

&8RI=ARC JCN 23=MAR=T72 17:3L4 9249
H1P=2; SRI=ARC 1 MAR 72 9249
Proposal for Research No. ISU=T72=48

Termicette cassette digital recorders 8 7,800
Termicette model 3100~3
This model covers 110 to 2400 pbaud range,
Four @ 8 1,950
As per Termicette letter quote to D.F. Mc Namara dated
1/21/72

Total: & 80,037

Part Two=-BusSiness Proposal [w)

&SRI=ARC JCN 23=MAR=T72 17:3L 9249
H1P=2; SRI=ARC 1 MAR 72 9249

Proposal for Research No, ISU=T2=L48

SCHEDULE B
Shipping
IMLAC displays 300
Execuport terminals 50
Termicette recorders 100
Total L50

Part Two==Business Proposal (5)

{HJOURNAL>9249,NLS;1, 23=MAR=-72 17:134 JCN ;

]
(J9249) 23=MAR=T72 17:3L; Title: Author(s):s S.R.I. = Augmentation
Research center, James C, Norton/&SRI-ARC JCN; Distribution: Duane L,
) Stone/pLS; Sub=Collections: SRI=AR(C; Clerk: JCN:
Origin: <NORTON>J92L49.NLS;2, 6=MAR=T72 6:48 JCN 3
«RTJ=0¢

Part one==-Technical Proposal [oJ]

WSD 23=FEB=72 20:13 925}
Primitive Texti Macro Expander

I have written a primitive text macro expcnder whiech rung as a
user profram Wwith the sequence generator,

With this program, a file may have a number of statements of the
form:

"DEFINE" name '= gtrineg '# $(', name '= string#) ';
name 1is a legal L10 name (up to 50 characters), 3.e. LL SLLD
String is any string excluding the character '#,.

Each DEFINE statement must be in one NLS statement, and
anything else in that statement is ignoreq,

The DEFINE must be the f£first non-prnting string in the
statement,

Any subsequent usage of the word (not string) <name>, will result
in the name peing replaced by lhe string.

For Example:
DEFINE tlap = garple blorké#;

Would result in a2 statemnt reading: "go blap" being changed
to "go garple blork",

There is a current limit of 100 defines (which is easy to change
if necessary), and the tetal numper of characters in all defines
(names and strings) is limited to (roughly) 3000.

Defines may be nested. The current limit is 8 deep, but this too
18 easy to change.

For Example:
DEFINE blap = rarple blork#, snik =go blap away#;

The statement "Let's snik" would be transliated to "Lets go
garple blork away".

In order to use the preogram, compile the program (starting at
8tatemet 1) in (duvall, macro, l), and invoke it as the conan
Program.

When it is executed, it uses the SEND construct, and does not
change the file,

2a
2b

2¢

2d

2e

3a
3al

3a2

Sa

5al

5a2

WSD 23~FEB=72 20:13 G254
Primitive 7Text Macro Expander

Any DEFINE statemets are deleted (i.e, not Sent).
I am thinking about putting a ney command in NLS=utilty such as
M=Compile which will do all of this stuff automatically bhefore
compiling.

In this case, 0ACRO would probably be compiled within NLS.

All of this is pretty easy to change, and I am open to
BUuggestions.

Joel B. Levin

Ta

8a

WSD 23-FEB=72 20:13 925L
Primitive Text Macro Expcnder

(J925L) 23~FER=72 20:13; MTitle: Author(s): William S. Duvall/WSD;
Distributicn: Diane S§. Kaye, Paul Rech, Michael D. Kudlick, Donald R,
Cone, Don Limuti, William R. Ferguson, Priscilla Lister, Robert L.
Dendy, Linda L. Lane, Oarilyn F. Auerbach, Walter L. Basg, Oary S.
Chureh, William 8. Duvall, Douglas C. Engelbart, Beauregard A. Hardeman,
Martin E., Haray, L. D. Hopper, Charles H. Irby, Mil E. Jernigan, Harvey
G. Lentman, John T. Melvin, Leanne B, North, Lames C, Norton, Cindy
Page, Bruce L. Parsley, William H. Paxton, Jefirey C, Peters, Jake
Ratliff, Barbara E. Row, E4 K. Van De Riet, Dirk H, van Nouhuys, Kenneth
Es Victor, Don C. Wallace, Richard W, Watson, Don I. Andrews/SRI=ARC;
Sub=Collections: SRI=ARC; Clerk: WSD;

JBL 2u4~-FEB=T72 T:17 9255
First message

(J9255) 2L-FEB=72 T7:17; Title: Author(s): Joel B, Levin/JBL:
Fistribution: Lee R Talbert/LRT; Sub=Collections: NIC; Clerk: JBL;

JBL 2L-FEB=72 T:17 9255
First message

Hellp, Lee, this is your first message on the NIC.

F§1113m S. Duvall

WSD 24=FER=T72 9:05 9256
Redowwd POD NOtes: 22FEB

notes from the Redwood Tree===fep 22
parbara asked why should we continue to have meetings.

some discussion on the supject, with reference to the fact
that otvher pods are fading away

I don't think that there were any concrete points for or
against.

The discussion ten Migrated onto the supject of why don't we
CPply the results of augmentation inward.

For example, why isn't there a PL Directive library, or a
program Library,; Orees

Some people are obviougly hored

Talked apout infermation dssemination and collection within the
group (still related to applying augmentation inward)

Talked about file privacy, and concept of non-printaple files.
Some discussion about pros and cons of privacy

) List of goals was distributed, and people scanned.

Some discussi merits and value of goals versus means.

Agreed to meet next Tues at 1300

Dirk H. van Nouhuys

2a

2b

3a

éa

Ta
7b

WSD 24-FEB=T72 9:05 9256
Redowwd FOD NOtes: 22FEB

(J9256) 2L=-FEB=72 9:05; Title: Author(s): william S. Duvall/WsD;:
Distribution: Diane §. Kaye, Paul Rech, Oichael D, Kudlieck, Donald R,
Cone, Don Limuti, William R. Ferguson, Priscilla Lister, Robert L.
Denay, Linda L. Lane, Oarilyn F. Aueroach, Walter L. Bass, Oary 8.
Church, William 8. Duvall, Douglas C. Enfelbart, Beauregard A. Hardeman,
Martin E. Hardy, L. D. Hopper, Charles H. Irby, Mil E. Jernigan, Harvey
Ge Lehtman, John T. Melvin, Leanne B, North, Lames C. Norten, Cindy
Page, Bruce L. Parsley, William H. Paxton, Jeftfrey C., Peters, Jake
Ratliff, Barpara E. Row, Ed K. Van De Riet, Dirk H., van Nouhuys. Kenneth
Ee victor, Donald C. Wallace, Richard W, Watson, Don I. Andrews/SRI-ARC:
Sub=Collections: SRI=ARC; Clerk: WSD;

L ¢ me—

—

DVN 24~FEBE=72 10:16 9262
heading test

(J9262) 24=FEB=72 10:16; Title:; Author(s): Dirk H, van Nouhuys/DVN:
Distribution: Barbara E. Row/BER(Barbara, when you see this journal
item, plese tell me ===~Dirk); Sub=Collections: SRI=ARC; Clerk: DVN;
Origin: <VANNOUHUYS>HEADTEST.NLS;1l, 24~FEB=72 10:13 DVN ;

DVN 2L=FEB=T72 10:16 G262
heading test

)

ABSTRACT <PBS> (LFH=1l3> <Center=1> <BkM=60> <(BLM= 12> (Ilev=0>
{Text"Section/="Abstract">

During 1970 SRI's Augmentation Research Center took part in
preliminary operation of the ARPA network, made geveral
important improvements in the ARC operating systenm's
efficiency and features for users, and began installation of a
new cempuver,

Conversion from an XDS 940 to a DEC PDP=12, which was in
process in February 1971, has delayed full operation on the
ARPA network.

However, the netwWwork has been used both in software
development and in trial runs of the Network Information
Center. Initial software for the Network Information
Center was completed and decuments have been rapidly
accumulating. Other new hardware includes UNIVAC drums and
various remote terminals. New software includes redesign of
the core of our NLS, development of higher level processes
such as executaple text, and ready use of content analysers
in automated clerical procedures. New features for users
include, among other things, an online Journal comparable
both to a dally periodical and to archival journals, and a
. both to a daily periodical and to archival journals, and a
) calculator.,

CREDIT <PBS> <LFH=b6> <Ilev=3)> <genter=1><{Text"section/="Credit")

The{BRM=55> research reported here is the product of
conceptual, design, and development work by a large number of
persons; the prcgram has been active as a2 coordinated team
effort since 1965,

1970's work involved the whole ARC staff:

Walter L Bass, Roger D Bates,
Vernon R Baughman, Mary S Church,
William & Duvall, Douglas C Engelbart
Martin E Hardy J David Hopper,
Charles H Irby, Mildred E Jernigan,
Harvey G Lehtman, John T Melvin,
Jeffrey C Peters, Jeanne B North,
James C Norton, Dirk H van Nouhuys,
Cynthia Page, Bruce L Parsgley,
wWwilliam H Paxton, Jake Ratliff,
Barbara E Row, Edwin K Van De Riet,
and Xenneth E Victor.

la

lal

la?2

2a

2b

2bl

DVN 24=FEB=72 10:16
heaqing test

in addition two consultants:
Don I Andrews and James A Fadiman,
and the following former members of the staff: <BRM=70>
Geoffrey H Ball, FrederickK van den Bosch,
Mary G Caldwell, Koberta A Carillon,
David G Casgeres, Ann R Geoffrion,

Jared H Harris, William K English,
Martha E Trundy, and John M Yarboroughn,

§§nneth E. Victor

9262

2c
2cl

24

2dl

y

KEV 24=FEB=72 1L:137 9265
comments on 110 macros

Wwhy not expcnd macro facility T0 include parametric
Substitutions?

William S. Duvall

KEV 24=FEB=72 1L:37 9265
comments on 110 macros

(J9265) 2LU=FEB=72 1L:37; Title: Author(s): Kenneth E, Victor/KEV;
Distribution: Diane 8, Kaye, Paul Rech, Michael D. Kudliek, Donald R,
Cone, Don Limuti, William R. Ferguson, Priscilla Lister, Robert L.
Dendy, Linda L. lLane, Oarilyn F. Auerbach, Walter 1. Bass, Oary S.
Caurch, william S. Duvall, Douglas C. Engelbart, Beauregard A. Hardeman,
Martin E. Hardy, L. D. Hopper, Charles H. Irpby, Mil E. Jernigan. Harvey
G. Lehtman, John T. Melvin, Jeanne B. North, James C, Norton, Cindy
Page, Bruce L., Parsley, William H. Paxton, leffrey C. Peters, Jake
Ratliff, Barbara E. Row, E4d K. Van De Riet, Dirk H, van Nouhuys. Kenneth
Es Victor, Donald C. wWallace, Richard W. Watgon, Don I. Andrews/SRI=ARC;
Sub=Collections: SRI=ARC; Clerk: KEV;

e SRS e e T s sE AR ER et st T e A A Pt e UG A AR St atl et SR R DU T AOA St ol

WSD 2u=FEB=72 15:07 9266

WSD 24-~FEB=-72 15:07 9266
Usage of TENEX Program Communication Flags

) Usage of pProgram communication Flags
Flag #0 (password JLOCK): Used to control Journal access.

When set, prevents anyone new from entering the Journal,
but allows pelrsons already using it to continue.

Flag #1 (Password JBFIL): Indicates a Bad File in the Journal
System Files.

This flag may be set either by the Journal, or by slinker.

It indicates that an error was found in one of the Journal
files, and immediately stops any further use of the
Journal.

Fersons currently using the Journal are bombed out to te
TNLS command parsSer with the message; Glopal Journal
¥File System Error=-Call NIC Center.

The flak wWill slways be reset by running recovf, and it
will bpe additionally reset by any successful running of
alinker.

NOte that Slinker May also set this flag if it finds a
) pad file,

recovf should be used for recovering,

Flag #2 (password SLNKR): controls the automatic startup of
Recovi (slinker, OLJDEL).

If on, PLs will not functien as NLS, but will reset it and
Start up recovf (inciuding logging in as packground)
instead. 2

If found on and NLS is logged in, NLS executes an error
after resetting it.

Flag #3 (password NLSUT): Controls the automatic startup of
NLS utiltyo .

If on, NLS will not function as NLS, but will reset it and
start up ytilty (inecluding logging in as background)
instead.

If found on and NLS is 10gged in, NLS executes an error
after resgetting 1it,

la

lal

lb

1pbl

1b2

lb2a

1b3

1lb3a

lb3b

lc

lecl

le2

ld

1dl

ldz2

WSD 2L-FEB=72 15:07 9266
Usage of TENEX Program Communication Flags

Flag #L (pagsword OPNLK): Used by the routine (IJOCTL,
openlock) for preventing race coenditions. le

Flag #5 (pagsword EXPFG): If TRUE, SLINKER and NLSUTILTY will
expwnge the directories under wnicn they are running. If

FALSE, the expunge will not be executed. 1f
Flag # 6 (Password WMEAS) If on, NLS will write sonme
measurenent stuff out on a file when Execute Quit is done, 1g
Flag # 7 (Password IDLOK): A Flag which, if set, will not
allow entry into the identification system. 1lh
Flag #8: (Password AUTOJ) 14
Whenever Checkdisc runs, it turns this flag on. 1il
After it nas completed runnineg and there were no errors, it
turns it off. 112
If this flag is on, no auto=startup jobs will be started. 1i3
2

William S. Duvell

WSD 24~FEB=T72 15:07 9266
Usage of TENEX Program Communication Flags

(J9266) 2i-FEBE=T72 15:07; Title: Author(s): William S. Duvall/wWSD;
Fistribution: Diane 8. Kaye, Don I, Andrews, walter L. Bass, William S.
Duvall, OQary S. Chureh, J. D. Hopper, Charles H, Irby, Harvey G.
Lehtman, Lohn 7. Melvin, Bruce L, Parsley, William H. Paxton, Donald C.
Wallace, Kenneth E. Victor, William k. Ferguson, Robert L. Dendy/NPG DCW
KEV WRF RLD; Supb=Collections: SRI=ARC NPG; Clerk: WwWSDj;

WSD 24=FEB=72 15:18 9267
On parameters in macros

-1 didn't allow paraleters becauSe Because]I wanted to keep it
Simple enouUgh o as to be implemented in 2=3 hours, 1 welcome
anyone else who wishes to do it.

Kenneth E. Victor

WSD 2h=FEB=72 15:18 9267
On parameters in macCrcs

(J9267) eL=FEB=72 15:18; Title: Author(s): william S. Duvall/WsD;
Distribution: Kenneth E. Victor, Diane S. Kaye, Don I. Andrews, Walter
L. bass, wWilliam S. Duvall, Mary S, Church, L. D. Hopper, Charles H.
Irby, Harvey G. Lehtman, John T. Melvin, Bruce L. Parsley, William H.
Paxton/KEV NPG; Sub=Collections: SRI~ARC NPG; Clerk: WSD;

CHI 24=FEB=72 17:16 9268
New groups in the IDENT system

The following egroups have been defined in the IDENT system to
facilitate interaction concerniing software teams and interest
Sroups .

CIPeseesessessnessCNanges in Progress
NLSBUGSeeceneseeess NLS BUGS Team

MPSDTssssacsanase MFS Development Teanm
MPSIGeneesosssesssMPS Interesty Group
JMAINTesveweessersJOUrnal Maintenance Team
JMIGeesnesrssseessdournal Maintenance Interest Group
JIGeseessessssaseoJournal Interest Group
PNDTesessssnsasssaPrimitive NLS Debugger Team
PNDIGewseseessss=sPrimitive NLS Debugger Interest Group
IDMAINT esevenssnss IDENT System Maintenance Team
18MIGesaessannsses IDENT System Maintenance Interest Group
IDIGesveeesnnrsees s IDENT System Interest Group
NCTeeseeonresneease NLS Cleanup Tean

NCIGssessasnenessosNLS Cleanup Interest Group
TLCTseessncssnases TENEX Literal Collection Team
PLCIGeasssssseesss TENEX Literal Collection Interest Group
SDATssessecnsesses Sequential Display Area Team
SDAIGessvesssssssseS3€quential Display Area Interest Group
CEDTesancessssaes CONntrol Envirenment DevelOpment Team
CEIGussanescessneasssCOntrol Environment Interest Group

NFFETeancassaseses s NLS File Feature Extention Team

NFFEIG.seecessass o NLS File Feagture Extention Interest Group

la
1b
lc
1ld
ie
1f
le
lh
1i
13
1k
p
im
in
lo
1lp
1lq
ir
1ls
1t
lu

1lv

CHI 2L4=FEB=72 17:16 9268
New groups in the IDENT systenm

NMAINT eeeeevessseess NLS Maintenance Team 1w
NMIGaswowsasnseasness NS Maintenance Interest Group 1x
BRSTesevsacssnsssreBaseline Record System Team ly
BRSIGeesnaessssnssBaseline Record System Interest Group 1z
CSTewsanessnssssssCatalog System Team law
CS8IGensesssnaseessCatalog System Interest Group laa
BFSTeweseesvssaees BaS8ic File System Team lab
BFSIGseessesnsnsenebasic File System Interest Group lac
DEX2ssavennnssaes DEX=II Development Tean lad
DEXIGesssesesessesDEX Interest Group lae
DEXMAINTeeesessee s DEX Maintenance Team laf
LDOCTeevesnensansrslanguage Documentation Team lag
LDOCIGesssssessssalanguage Documentation Interest Group lah
NDOCTesrsesssseesNLS Documentation Team lai
NDOCIG.sesesssses«NLS Documentation Interest Group 1aj
SYSCAPTeeasssnesesSVstem Capacity Team lak
SYSCAPIG.ssswnsssaSystem Capacity Interest Group lal
TENEXTeweecoonses TENEX Team lam
TENEXIGeessossssees o TENEX INnterest Group lan
2

Dirk H. van Nouhuys

T——

CHI 24~FEBw72 17:16 9268
New groups in the IDENT system

(J9268) 2u=FEE=72 17:16; Title; Author(s): Charles H. Irby/CHI;
Distribution: Diane S. Kaye, Paul Rech, Michael D. Kudlick, Donald R.
Cone, Don Limuti, William R. Ferguson, Priscilla Lister, Robert L.
Dendy, lLinda L, Lane, Oarilyn F. Auerbach, Walter L. Bass, Oary S.
Church, William S$. Duvall, Douglas C. Engelbart, Beauregard A. Hardeman,
Martin E. Hardy, L. D. Hopper, Charles H. Irby, Mil E. Jernigan, Harvey
Gs Lehtman, John T. Melvin, Leanne B. North, Lames C., Norton, Cindy
Page, Bruce L. Parsley, William H. Paxton, Jeffrey C, Peters, Jake
Ratliff, Barpbara E. Row, E4d K. Van De Riet, Dirk H. van Nouhuys. Kenneth
E«. Victor, Donald C. Wallace, Richard W, Watson, Don I. Andrews/SRI-ARC;
Sub=Collections: SRI=ARC; Clerk: CHI;

MEJ, 2=JUN=T72 8:28 {GJOURNAL>9271.NLS;1 1

{GJOURNAL>927L.NLS3;1, 25=-FEB=72 10:24 PL ;

(J9271) 25=FEB=72 10:23; HJOURNAL="DVN 25=FEB=T72 10:23 9271"; Title:
+HED="TNLS Course in March"; Author(s): Dirk H, van Nouhuys/DVN;
Distribution: Robert L. Fink, Karl C. Kelley, Schuyler Stevenson,
Charles Holland, Jeanne B. North, Charles Holland, George N, Petregal,
Steve D, crocker, Thomas F., Lawrence, John W. McConnell, John F.
Heafner, Robert E, Long, Ari O. J. Ollikainen, James E. White, A., Wayne
Hathaway, Dan L, Murphy, Patrick W. Foulk, Richard A. Winter, Harold R,
Van Zoeren, Alex A. McKenzie, Ropert L. Sundberg, Joel M, Winett, Abhay
K. Bhushan, Peggy M. Karp, Thomas N. Pyke, Abe 8. landsberg, B, Michael
Wilber, James A, Moorer, Edward A. Feigenbaum, Robert T., Braden, James
M. Pepin, Barry D. Wessler, John T, Melvin, Richard W. Watson, Ed K.
Van De Riet/NLG RWW EKV(fyi); Sub=Collections: SRI~ARC NLG; Clerk: PL;
+»IGD=0; ,SNF=72; .MCH=65; ,TABSTOPS®=8,16,24,32,40,48,56,6L .PGNe=1;
«SCRm2; ,PES;

Origin: <LISTER>TNLSCOURSE.NLS;2, 25=FEB=72 103119 PL ; .PST=l; .MCH=68;
« PGN=0; ,PNO=l; ,SCR=23 .SNFa73; .SN®0; .DIR=0; .HED=" TNLS Course in
March "3 «PES;

1l We will offer a course in NIC TNLS on March 16 and 1l7th. A few
places remain. If You want a place for someone from your site, please
inform Mil Jernigan at ARC==(MEJ), (L15) 326=6200, ex, L775.

JBL 25=FEB=72 12:33 6272
Random Ident stuff

(J9272) 25=-FEB=T72 1l2:33; Title: uthor(s): Joel B, Levin/JBL;:
Distribution: Barbara E. Row/BER; 8 b=Collections: NIC; Clerk: JBL;

JBL 25=FEB=72 12:33 9272
Random Ident stuif

Is there a place somnewhere, like a ournal document or a memo or
a page in the User's Guide, which 4 scribes the desired formats
etc, and gives examples for enterin individuals or groups into
the ident file? I think that you t 1d me yes or no, but I forget
already.

Alsc: I am now getting Author's co ies on=line as you know.
However I am also getting hardcopy opies by air=-mail of
evVerything I send. Can you turn th s off for me? Eleven cents a
shot, i5 an unnecessary expense, alt ough it probably pales into
insignificance peside the cpu time t takes to send a message.

Thanx for your help.
JBL

George E. lLindamood

GEL 25=FEB=72 13:06 9273

WE HAVE DISCARDED UNUSED FILES To HELP YOU WITH YOUR DISK SPACE
SHORTAGE. YOUR SCHEDULED DOWNTIME FOR MAINTENANCE ON MARCH 1
INCONVENIENCES US AS IT HAS IN PAST MONTHS, WE WILL BE HAPPY TO
RENDER TESTIMONY TO THIS EFFECT IF IT WILL HELP YOU GET THE
MAINTENANCE RESCHEDULED TO ANOTHER (L£SS DISRUPTIVE) TIME. WE
UNDERSTAND THAT THE NIC IS NOT TO BLAME FOR THIS.

GEL 25=FEB=72 13:06 9273

(d5273) 25=-FEB=72 13:063; Title: Author(s): George E, Lindamood/GEL;
Distribution: Richard W, Watson/RWW; Sub=Cocllections: NIO; Clerk: GEL;

	9246- Introduction to L10
	9246- Variables, operators, primitives and expression
	9246- Statements
	9246- String test and manipulation
	9246- Content analysis and sequence generator programs
	9246- Invocation of user filters and programs
	9246- Index
	9249
	9262
	9267

