
)

)

)

ceE 29 - MAY-71 8 : 53 70.9
Kote to WLB re 7048

Walt: Re. (Journal, JRNL1. J7048:gw), maybe if you checked t o
!ee if the Output Processor did ri~ht bY the printout of
(Journal, 7017,) before W5D haa to start worrying about how he
fixes UP the Journal-entry Processor 171 Thanks, Doug .

1

1

)

)

DCE 29 - MAY -7l 8 : 53 7049
Note to WLB re 7048

IJ70h9) 29-MAY-7l 8 : 53; IExpeaite) Title, Authorl.): Dou. las C.
Enge lbart/ DCE; Distribution: Walter L. Ea ss# William s . Duvall, James c.
Norton/WLe WSD JON; Cle rk: DOE ;

)

)

)

DOE 29-MAY-71 9 :1h 7050
Rough Notes for Talk to Prof . Parker ' s Information Seience
Co l loquium, Stanfo r~ , 27 May 71

Parker Was aWaY. Tom Hartin (orad student) handled the mee ting.
Don Dunn , Bob Kinchloe, and Hank Epstein were onlY staff I
r ec ognized . So~e will organize for group visit here; Ha rtin will
coordinate . Epstein interested in ARPA Net pOSSibilities sharing
MARC Files, e . g . with Ohio ' s Library Net , and with others .

)

)

OCE 29 - MAY - 71 9:14 7050
Rough Notes for Talk to Prof . Parker's Information science
Colloquium , Stanford, 27 May 71

complex systems;

Levels go much highe r than generally recognized

Dinosaurs and social organisms (Journal , 5255,)

The kernel element -- the evolut i onary director

Long - term strategy towa rd he l Ping t he soc ial organism

Knowledge worke r s , futu r e , etc . (Journal. 7003,)

Augmeta t 1on- Systems ' boostr appi ng

System - deVe l opment augmentation system

"Bootstrap Community "

ARPA Network

NIe

Documentation support system

compOSition , mOdification

pUblication

Cataloging, indexln~ . She l f -loc ation control

Physical - access control

Mi cro - fiche BUb - system

Research Intelligenc e system

NLS "Office "

1

1

1.

1h

1c

evolve 2

2&

2h

2b1

2c

3

4

5

5a

,b

'C
,~

5e

6

7

,

)

DC E 29-MA~-71 9 :1. 7050
Rough No tes for Talk to Prof . Parker's Informa tion Science
Colloquium. Stanford , 27 May 71

(JOURNAL)7050.NLS;1. 29 -MA~-71 9 : 15 DeE; Title: Authorls': Doug l •• e .
Engelbart/ DCE ; Clerk: DCE ;

,

)

)

.' •
Wl>P 29 - MAY - 7 1 I I: 20 705 2

LID Documentation W H Paxton 12/05/70

LI D

A pro gramming Language for the Augment&tlon Research Center

This file describes a new pro gramming language, LIO , for use on
the PDPIO. The lan~uaKe contains Borne high level features for
operations such as string analysis and manipulation wh ich are
implemented in the langua~e as calls on 110rary routines . In
addition, LI D has basic cons tructs suc h as l oc~l Variables and
fields Which have been particularly useful. Th e LIO compiler was
written using the compiler~compiler s ystem Tree Meta .

2

3

U

5
6

7
8

9

10

I I

12

13

I I:

15

16

, , ,.

()

)

.'
WI>P 29- MAY -71 I I : 20 7052

LIO Documentation

The oefinition of the syntax is given as abbreviated Tree Meta
parse rules having the fOllo wing form:

A right part of a syntax rUle cons1Bt~ of one or more
alte r natives. If there is more than one al tern&tive . they are
sepa r ated by slashes (I) . Each alternative consists of a
sequence of elements . Any sUbsequence enclosed 1n square
brac kets, { and }, is oDtional . All other elements 1n the

17

18

19

sequence must occur in the specified order . 19a

The elements maY be any of the follOwing:

the name of a rUle;

a callan a baSic reco gnizer Which tests the input for one

19b

19b1

of the following 19b2

• ID

. UID

. NUM

. SR

. SR I

. CHR

recognizes a lower case identifier.

.- recognizes an upper Case identifier,

.- recognizes a number,

recognizes a string enclosed in quotes (II),

-- recognizes a single character
preceede d by an apostrOPhe (I), or

recognizes any character;

a string enclosed in quotes (");

a single character string indicated bY an apostrophe (I)

19b2 •

19b2b

19b2 c

19b2d

19b2e

19b2f

19b3

!olloweC by the charac~er; 19b4

a list of al ternatives enclosed in parentheses;

a dollar sign (S) followed bY an element , Whic h means an
arbitrary number of occurences (inclUding zero) of ~he

19b5

element. 19b6

comments enlosed in percent si~ns (%) may be e mbedded anywhere
in the rule. The rule is terminated bY a semicolon (;1. 19c

, ,

)

WHP 29 - MAY-71 1 1 : 20 7052

LIO Documentation

VARIABLE FORMS

The r ule "1 hs" (le£t hand side) gives the s yntax for the
variable forms. These variables may be used on the left hand
Side of assi~nmen t s t atements aB well as in expressions and
certain other syntactic positions .

l hs = (fwlhs I pwlhs) qual i fiers;

tWIhs = % full word l e ft-hand- ai de %

globa l I register / loc~l I pointer I un ref ;

pWlhs = % partial wo r d left-hand - side %

field I character;

GlObal variables

global ' I . ID I link) ('(oxp 'J);

Gl obal Variables may be in dexed . They are allocated from
fixed locations rather than a stack. Whe re a link is used
instead of a simple identif ier, the meaning is exactly the
same as if only the lowe r case identifier in t he link had
been used.

link' ,< (. UIDJ ('.J (.UIDJ ('.J .I D t ': S . CHRJ ')1

This construct allows use of the NLS linkin~ commandS when
writi n~ / studYing /modifY1ng progr ams . The first uppercase
i dentifier gives the directory name and the second ~ives
th e f ile name .

Registe r vari~b l es

registe r = .I D; %declared to be a register%

A register Variable is simplY a global variable that is
kept in a fast register rather than me mor y . The Variable
may be used exactlY like any other global variab le~ except
it will result in faster access. The re can be onlY a few
register Variables in a program since the compi l er make s
use of several register s for the evaluation of expressions
and for stack and record pointers .

2

20

20.

20b

20c

20c l

20~

2001

20.

200 1

20.2

20e3

2004

20£

20£ 1

20£2

1 .,

)

)

)

,
•

WHoP 29-MAY-71 I I : 20 7052

LIO Documentation

Re~isters 0 to 6 may be used by the programmer.
Registers ? and 8 maY be used if the program does not
use the string construction or analysis facilities.
Registers 9 and 10 are the stack pointer and mark
respectively. Re~ister I I is ueed as a record pointer.
The remaining registers are used by the compiler for
evaluating expressions.

Local variables

local: .ID; %!ormal parameter or local variable%

Local variables include formal parameters of procedures an d
variables declared at the head Of a procedure by the
"LOCAL '1 deClaration. Each time a procedure is called,
space is allocated for its lOcal Variables. The space is
released when the procedure returns. Thus procedures may
be used recursively and each activation of the procedure

20 £2.

20~ 1

will have its own set of locals. 20~2

The local variables of a procedure may be referenced onlY
from within that procedure, The names used for loc a l
variables may be used for (different) local variables in
other procedures,

tocal variables are limited to scalars, and thus ma Y not be
indexeO.

Gener~lized pointer Variables

pOinter = '{ exp '};

Generalized pointer variables refer to the location Whos e

20,;3

20~1l

20h

20h l

address eqUals the value of the expression. 20h2

In the simplest case where the expression is a
local) variable, indirect addressing is used.
expressions are evaluated and then indexing is

unref variables

(~lOba.l or
More complex
useC1.

Global J register, and local variables may be declared to be
references by th e RE F statement. Uses of a reference
variable are treated aB if they were surrounded by BQuare
bracKPots (i.e. as a pointer). ThuB if "XII is a reference
variable, then uses of x are tre&ted like {xl. The ·'unref J

•

20h3

20 i

" " ,
'.

WH·P 29-MAY-71 I I: 20 7052

LIO Documentation

)

form allows the p ro~rammer to override the reference mode
so as to access the variable itself. 2011

unre£ = ' & .ID; %whe r e the identifie r is a REF variable. %

Field variables

FieldS may be Used either as an "unqualified left hand
side " or as a Qualifier of some other left hand side.

field:: I I fleldname I It fieldname;

qUalifiers:: S t'. iieldname);

!leldname :: .10;

The identifier used as a "fleldname" should be the name of
a local or a global variable which holds a field
descriptor. Field descriPtors are created by FIELD or
RECORD declarations or by the MKFD (maKe field descriptor)
primitive.

A field descriptor consists of the slze~ position. and
address of the field. The size is the number of bits in
the field and the position is the numbe r of bits in the
word to the right of the field . The &ddress maY inclUde

20i2

20.1

20jl

20.12

20j3

20j4

20j5

indexi ng and indirec tion . 20jSa

A !ieldn~~e preceded bY a period (.) accesses the field
described by the fieldname. If preceded by an uparrow (f),
then the descriptor is "incremented" before the access is
made . 20j6

A field descriptor is incremented bY BUbtractinR the
size from the position . If t he r eSUlting position is
negative, then the address is inc r eased by one and the
po~ition is set to 36 minus the size. 20j6a

Any variable form may be qualified by followin~ it bY a
ceriod and a fieldname. This results in accessing the
contents of the named field within that variable. It is
possible to refer to a field within a field. For examPle.
to zero the c field of the b field of the variable k the
statement 20j7

k .b.c • 0 2017.

4

" '.

)

)

)

WJl.P 29 - MAY-71 1 1 : 20 7052

LIO Docu~entation

may be used.

Even~uallY a more general data definition facility wi ll be
included in LID. until that time this limited for m is
aignif;cantlY better th an nothln2. The use of symbolic
names tor fields has dramaticallY improved the readabil ity
ot LIO prog rams for NLS and has received a "how did we ever
get along without it!' kind of reception.

Character v~rlables

character; '* string name '* It exp IJ;

strin~name = £wlhs;

The strin~name may be an arbitrary (full word) Variable
form but should reSUlt in a reference to a Btrin~ declared
bY the "DECLARE STRING" statement, described below.

The value of the expression fOllow1n~ the strin~name
determines which character in the strinr. is bein~
reference~. The first character in the string has an index
of one~ the secon~ has an index of two~ and BO on.

There a re two predefined fields for use with strin~s. The
field denoted L ~ives the current length of the s~rin« ; the
field M gives the maximum length allowable for the string.

20j8

20j9

201<

201<1

20K2

201<3

20 l< h

201<5

Example: 20k6

Assume the declaration 20k6a

DECLARE STRING atr {20}; 201<60 1

and the execution of the statement 20k6b

Then str.M eqUalS 20 and str.L equalS 5. 20k6c

Reading a character position beyond the current length of
the string returns a special value, ENDCHR (= 377 octal).
Writing a character position beyond the current length and
not exceeding the maximum length caUses that len~th to be
increased to include the new Character. 20k7

'.

)

)

)

WHoP 29- MAl.' - 7 1 1 1 : 20 7052

LI O Documentation

STATEMENT FORMS

labeled:: (label) stat;

label' 'I .ID I)

stat. ::

I •• ••

assign I mUltipleassign I conditional I iterative I
transfer I bloc~ I bump / stacksnrings I divid / builtin /

21

21a

2 1b

21c

special I nu l l; 21c j

a.ssign :: Ihs '4- exp ; 21~

The expression is evalua teO and then stored into the left
hanO 8iO.. 2 101

mUlt.1pleassi gn I:: I(Ihs St (r, Ihs) I) ' .. If eXp S f', exp) I): 21e

The expressions ~re eValuated an d the values pushed on a
stack provided by the system . Then the values are popped
from the s tack and stored into the app ropriate left hand
side. The order of evaluation of the expressions is lef t
to ri gh t. Thus for

(a, b) .. (a+b~ B oo b)

the expression a +b is e valuated and stacked, express ion a ~ b
is eva luated and stacked, the value of a ~ b i s popped and
stored i nto b. and finally, the value of ath is popped and
stored into a. .

Naturally, the number of expressions must equal the number

2 1el

21e2

2 1e3

of lhs's. 21eh

conditional = if I case I onsignalj

There are three types of conditional statements. the co mmon
"IF" statement, a "CA SE " statement, and the "ONSIGNAL"

21£

statement. 21fl

if = "IF" exp "TH EN " labeled [" ELSE" labeled}J

case = " CASE " exp "OF " $casest "ENDCASE " labeled;

6

2 1£2

2 1fJ

'.

)

)

)

WH·P 29-MAY-71 1 1 : 20 70$2

LIO Documentation

casest :: {label} binrel S (I I binrel) I: labeled , ..
"

The CASE-statement provides a means of executing one
statement out of many. The expression after the word
IICAS EI. is evaluated and the result left in a register.
This is used as the left·hand side of the binary relations
at the beginning of the various cases. Several relations
may be listed at the start of a single statement; the
statement will be executed if any of the relations are
statisfied. If none of the relations are satiSfied. the
stateme nt following the word 'tE NDCASE " will be executed.

Example :

CASE 0 OF
=a.:X+-Yi
> b: (x# y) .. (x+Y. x"Y)j
ENDCASE y .. x;

%0 = .%
%c > b%
%0 # • AN D 0 <= b%

If a case ends with an unconditional trans£er~ ~he compiler
does not produce another (unnecessary) branch ins~ruc~ion.

onsignal c "ON" "SIG NA L" Ssigsta~ement l' ELSE '! s~a~;

silts~a~emen~ : binrel $. (I, binrel) t: stat I; ;

Any procedure may have an active ON SIGNAL s~atemen~. The
statemen~ becomes ac~ive when con~rol reaches i~ dUring ~he
execu~ion of the procedure. Only one ON statement 18
active at a time in a partiCUlar procedure. The body of
the ON statement i8 similar to a CASE sta~ement and is
executed as a resul~ of a SIGNAL statemen~ (see below) in a
procedure reached bY some sequence of calls startinlt in the

21f1l

21£5

21£6

21£6.

21£7

21£8

2 1£9

procedure in Which the ON SIGNAL statement is defined . 2 1£1 0

The binary relations at the front of ~he S~atements i n
~he ON SIGNAL statement ~est the value stored in the
system signal Variable '!sysgnl" by the SIGNAL transfer
statement. Additional informa tion may be passed by the
si~nalling mechanism through the system message variable
t'sYBmB ~ ". 21f 10&

The re is an implici~ SIGNAL transfer statement iollow1n g
the ON staternen~; i£ comtrol falls through the case
tests, the SIGNAL will be propogated to earlier
proced ures . 21£IOb

7

"

)

)

WItP 29-MAY-71 I I : 20 7052

LIO Documentation

A pr1ncipl~ use of the SIGNAL mechanism will be error
haMl1ng,

iterative = loop I while I until I do I for;

loop : IltOOP" labele~;

The statement following the word ~LOOP" is repeatedly
executed until control leave~ by means of Borne transfer
instruc tion within the lOOp.

while = "WH IL E" exp ~DO " labeled;

Eq uivalent to

(label): IF NOT exp THEN aOTO out;
labeled; GOTO label; (out):

until = "UNTIL " exp "DO " labeled;

Equivalent to

(label): IF exp THEN aOTO out;
labeled; GOTO label; (out):

Thus the word "UNTIL" has the same effect as "WHILE
NOT n •

This is like the above, except that the logical test is
made after the statement has been executed rather than
before. Thus "DO l abeled WHILE disjunct" is equiv81en~
to:

(l abe l): labeled; IF exp THEN OO TO label:

and "DO labeled UNTIL exp" is e~uivalent to:

(label): labeled; IF NOT exp THEN OOTO l abel; ,

Thus the controll~d state~ent is always executed at
least once (the first ~ime before the test is made).

for =

"F OR " lhs {'" exp] ("UP" I "DOWN u 1 {exp]

8

2 1! I I

21.

2 1r.1

21~ l a

21~2

2 1.2a

210

2 1.3a

21 gJa I

210b

21.,1

21 ...

21 gl1bl

21.l1c

2 1,5

)

)

)

WH.P 29 - MAY -71 I I: 20 7052

LIO Docum~ntation

!1 UNTIL" ('= I ' # In):" / U(=" I ') / I() exp " DO "
labeled;

If no initialization expression is given then the
va.ria ble is left with its current value.

If the optional increment expression is not givenJ a
value of one is useO. The increment is added to the
named variable if "UP" is specified; it is subtrac t ed
for IIDOWN ".

The relation given after the "U NTIL" is Use d to
determine whether or not to do another iteration.

Example:

fOR k • n UP j UNTIL > ro*3 DO x{kJ • k;

ia equivalent to

k .. nj

GOTO test;
(loop): k .. Ie + j;
Itest) : If k > ro*3 THEN GOTO out;
x[kJ .. kj
GOTO looP;
lout I:

No te that the increment and bound expressions are
recomputed on each iteration.

21~5a

21.Sb

2 1.5c

2 1r.5e

21~5e2

21g5eJ

transfer = 21h

"CAL L" iWlhs [ar~sJ / fwlhs args I 2 1hl

There are two forms of the procedure call statement, one
starting with the word "CALL" and optional ar~uments,
an~ the other without the word "CALL" and ma nditory
ar~ument list, The argument list is described below. 21hla

"RETURN" (' (exp S f', exp) I)) I 2 1h2

A procedure may return an arbitrary number of reSUlts.
The or~er of evaluation of reBults is fro m left to
ri~ht.

!lSKIP" " RET URN" {' (exp I) } I

9

2 1h2.

2 1h3

I'

)

)

)

WIIP 29-HAY-71 1 I; 20 7052

LIO Documentation

This caUses
location+2.
RETURN" use

the procedure to return to the calling
To tes~ whether a procedure has done a

the SKIP relation described below .
SKIP

2 l h)a

"EXIT " ("CASE" {.NUM) I ("LOOP") (.NUM}) I 21 hlL

Thi s construct provides for forward branches out Of CASE
or iterative statements. The optional numbe r specifi es
the number of lexical levels at CASE or iterative
statements respective ly that are to be exited . If a
nUmber is not given then I is aSBumed. All of the
iterative statements (LO OP , WH ILE, UNT IL" DO . FOR) can
be exited bY the EX IT LOOP construct. 21hla

EX IT and EX IT LOOP have the sa me meanin g . 2 1h4b

Ex amples: 2 1huc

LOOP
BEG I N
• •••••••
IF test THEN EX ITj
~ the EX IT will branch out of the LOOP~
• •••••••
END ;

UNTI L something DO
BEGI N
• •••••••
WH IL E test 1 DO

BEGIN
• •••• •••
IF test2 THEN EXIT ;
%the EXIT will branch out of the WH IL E%
• •••••••
END ;

• •••••••
END ;

UNTIL something DO
BEG I N
• •••••••
WH ILE test 1 DO

BEGIN
• •••••••
IF test2 THEN EX IT 2;
%the EX I T 2 will branch out of the UNTIL%

10

21 hllc 1

21hkc2

I' \

WHP 29-MAY-71 I I: 20 7052

llO Documentation

)

)

)

• •••••••
END;

• •••••••
END;

CAS E exp OF
=something:

BEGIN
• •••••••
IF teat THEN EXIT CASE;
%the EXIT will branch out of the CASE%
• •••••••
EN D;

• •••••••

ItREPEAT II (ULOOP" (. NUM) / {"CASE "} (.NUM) (I (exp Il)) /

Thia construct provides for backward branchea to tne
front of CASE or iterative statements. The optional
number has the same meaning as in the EXI T statement.

If an expression is given with the REPEAT CASE. then it
is eValuated and used in clace of the excression given
at the head of the specified CASE statement. If the
expreesion is not given , then the one at the head of the

21 h~ c3

21h 4cll

2 1h5

2 1h5.

CASE statement is reevaluated. 2 1h5b

REPEAT and REPEAT CASE have the same meanin g .

Examples:

CAS E expl OF
:lsometh1ng :

BEGIN
• •••••••
IF teatl THEN REPEAT;
%REPEAT with a reevaluated expl %
• •••••••
IF teat2 TH EN REPEAT(exp21;
%REPEAT with exp2 %
• •••••••
END;

• •••••••

LOOP
BEGI N
• •••••••

I I

21h5c

2 1hSd

21h50 1

\.

)

)

)

WH·P 29 - MAY - 71 II: 20 7052

LIO Documentation

IF test THEN REPEAT LOOP;
%REPEAT LOOP will ~o to the top of the LOOP'
••••• • ••
END ; 21h5 ~ 2

It is worth notln~ that the availaoility of EXIT and
REPEAT statements has resulted in clearer pro~ram S whic h
are generally without l abels and GOTO's. The EXIT anC
REPEAT re place GOT O' s to the start or end ot the most
common compound forms . BY prOViding implicit labels in
these positions for use wi th EXI T or REPEAT , explicit
l abels are avoided. 2 1hSe

"GQUIITO!! (lhB I IISTATE ") I

Goto provi des for unconditional transfer of control t o a
new location. The statement GOTO STATE transfers
control to the location of the most r ecent STA TE

2 1h6

~efinition I see below 1 • 21 h6a

USIGNAL" ('(lexp) t', exp) 'll J

The SIGNAL statement transfers cont rol to the first
active ON SI GNAL s t a te ment baCK in the calling sequence
startin g with the procedure that called t he procedure
containing the SI GNAL s t atement.

If the first optiona l expr ession is present in the
SIGNAL statement, it is eva l uated and stored into the

2 1h7

2 1h7a

system signal Variable "sysgn l". 21 h7a l

The binary relations at the front of the
statements in the ON SIGNAL statement test the
value stored in the variable "sysgnl " • The
contents of thiS Variable may be accessed throu ~ h
the use of the primitive SIGNAL . (s ee primitive s
belOW .) Additional information ma y be Passed by
the signalling pr ocedure by means of the Variabl e
" sysms g 11.

If the second optional expression is present. i t is
eva l uated and stored into the system messa~e variable
lIs ys ms g".

procedure call argument list

args = '([exp S (' .. exp)) [' : lhs S f' . l hS)} I);

12

2lh?al a

21 h7a2

2 1h8

2 1h 8a

I ' , ,

WH-P 29-MAY-71 II: 20 70 52

LIO Documentation

)

)

The ar~ument list consists of an arbitrary number of
expressions Bepar~ted by commas, This variable may be
~~ceseed bY the primitive MESSAGE. It is not necessary
for the number of ar~umentB to equal the number of
formal parameters for the proce~ure. The argu ment
expressions are evaluated in order from left to riRht. 2 1h 8b

FOllow1n~ the arguments there may be a list of locations
for mUltiple results to be returned. The list ot left
hand Sides for mUltiple results is separated fro m the
list of arRument expressions bY a colon . The nU mber of
locations for results need not equal the number of
results actually returned. If there are more locations
than results, then the extra locations get a n undefin~d
value. If there are more results than locations, the
extra results are simply lost. (This format f or
mUltiple reSUlts is patterned after SPL and QSPL of
Peter Deutsch and Butler Lampson). 2 1h8 c

ExamPle: 2 1h8d

If procedure p ends with the statement 2 1hSe

RETU RN (a,b,c)

then the statement

q f. p (:r.s)

results in (q,r,s) f. (a,b,c).

block = HBEGIN" labeled a t'; labeled) "END" i

The blOC k statement simply allows the grouping of several

21 h8e l

2 1h8 f

21h 8tl

2 1h 8g

2 11

statements into one. 2 111

The hierarChical structure of the NLS file ma y eventually
replace the use of BEGI N's and END 's as a me ans of formin g
compound statements. 2 112

bump = "BU MP" ("DOWN") lhs S ('. lhs); 21j

The BUMP statement increments each of the varia ble s. while
the BUMP DOWN at~tement decre ments each one. 2 1j l

stacksnrings = %stacks and rin gs % 2 1k

13

" \

WIIP 29-MAY-71 I I : 20 7052

LIO Documen~&tion

)

)

)

"PUSH" recordname "ON " storename I

ItPOPI! st.orename ("TO" recordname) I

"RESET" ~torenap\e;

recordna~e = !Wlhs;

storename : fWlhS;

stacks and ring buffers maY be decla r ed by the DECLARE
STACK/RING statement . Ring buffers a r e like stacks except
that instead of giving an erro r on overflow or unde rflow,
they wrap around. Thus overflow moves the pointer to the
bottom element and underflow moves the pointer to the top
element.

The elements that are pUShed and popped may consist Of mor~
than one word of storage . All elements are of the same
size however .

The PUSH statement ouahes the record from the specified
location onto the specified store .

The POP statement removes the top record from the store an~
if a ~estination is specified stores t he recor ~ into it.

The RESET statement removes all items from the store by
reseting the pointer.

The store name may also be u!e~ to ac c ess the top record on
the store .

If "atk" is a storename, then (stk) is the first word ot

2 1kl

21k2

21k3

2 1kh

21k5

21k6

21k7

21k8

21k9

21kl0

2 1< I I

the top record on the stack . 21Mlla

If the recorda take a single word, then (stk- I) is the
next lower record . (stk - 2) is the one below that. and so
on .

Eventually LIO will inclUde more powe r ful stora~e
facilities modelled after the AED free storage package of
Doug Ross .

~ivid = "DIV" exp ' . quotient " remainder;

Quotient = lhS;

Ih

21< I I b

21kl2

211

2111

.. ,

)

)

)

WHP 29-MAY-71 II: 20 7052

LIO Documentation

remainder = IhSi

The central connective in
statement allows both the
division to be saved.

the expression must be '/.
Quotient and the re ma inder

Thi. of the

bUiltin = '1 (. UID I.IDl %opcode% (. ID %acc % I,l address;

address =

('@ %1Mirect%) I.del I I, .dell

(I (• I D %inded I I) ;

a.del = .S R I .I D / fl.} literal;

The builtin allows the programme r to use
a,ssemblY-language-like statements. HopefUllY the need for
this ability will be small. but & lan guage for systems
pro~rammlng should provide means for handling those Cases.

The ope ode must be defined in the program by means of a. SET
deClaration. Likewise the identifiers used for the
accumulator or indeX fl~ldS of the instruction must be
defined thru REGISTE R or SET declarations.

The address part of the instruction may be specified in the
followin g ways:

address pa.rt
.ID

(I_) . NUH

I~ .I D

':; (I.) .NU M

address field of instruction contains
•

the address of the i dentifier

the (negative) number

the- address of a literal containin~
the address of the identifier

the address of a literal containing
the [negative) number

The null statement i6 provided as a convenience to the
programmer .

IS

2 112

2 113

2 1m

21ml

21ml.

2 1ml b

2 1m2

2 1m4

21,.,5

21",5 •

2 1m5 b

2 1",5c

2 1m5d

2 1m5e

2 1n

21nl

)

)

"

WItP 29-MAY-71 1 1 : 20 7052

LIO Documentation

The !ollowln~ special statement torms are for the most part
imPlementeO bY means of procedure calls on routines in Nt5 .
The statements allow for complex string analysis and
construction as well as providing constructs designed to
simplify the specification of feedback and other common tasks
within NLS . 210

special: %special statements !orms~

cepe! I pattern I stringconstructlon I inputstat I
teedback11ne / group / state / entity / deletemarker;

cepoe: ItCCPOS" (pOB 1'* Btringname '* (I f exp '1J)~

This sets up the "Cu rrent Character POSition" for string
analysis. All string tests start their search irom the
current c ha racter pOSition.

pos = %position in a statement or stringS

nSF(n stspec I) I
~String Front

"SE(1t s~spec I) I
%String End

text.pointer;

left of the firs~ character~

right of the last character~

stspec • textpoint.er I '. str1ngname '*;

textpointer = .ID;

A text pointer points between two Char~cters i n a statement

210

2101

210

2101

21q2

210 2•

2102h

2102c

2103

2 104

or str1n~ . 2105

An alternative convention would have the pointe r scec1fY
a part.icular Character. This in fact was the initial
~esign . However, bY putting t.he pointers betWeen
characters a sin~le pointer can be used both to mark the
end of one sUhstring and the be~1ning ot the sUbstrin~
star~ing with the next character . This can result. in an
appreCiable simolification of string manipUlation
algorithms . (Doug Engelbart suggested t.his approach) . 2iqSa

The variable holding a text pointer is declared bY a
DECLARE TEXT POINTER statement. There is a speCial
declara~ion for these because text poin~ers require mo re

16

"

)

)

)

WH·P 29 - MA~-71 1 1 : 20 7052

LIO Documentation

than a single word of storage . The identifier used as a
text pointer maY be such a variable or a reference. defined
bY a REF statement, to such a variable .

If a text pointer is given after COPOS. then the character
position is set to that location.

Unless the string End option is used in specifying the
pOSition, the scan direction is initialized to read from
left to right. When the position is specified as a StrinR
End, then the sCan direction is set right to left.

If a strlngname is given after COPOS. then t he position is
mOVed to that string . The scan direction is set left to
right .

Indexing the string name simply specifies a pa rtiCUlar
pos ition within the strin g . Thus *str*l3J outs the
current character position between the second and third
characters of the string "str". If the scan di rectio n
is left to right, then the third character will be read
next . If the direction is ri ght to left, then t he
second will be read next.

If no indexing is given, then the position
left of the first character in the string.
eqUiValent to an index of I.

pattern = "FI ND " union;

is Bet to
ThiS is

the

This specifies a string pattern to be tested starting from
the current character position. If the test succeeds the
character position is moved past the last character reart .
If the test fails the character position is reset to the
position prior to the test.

union = intersection ["OR " union);

If the "intersection" is false, then the character
Dosition is reset to where it Was before the
"intersection" was tested and the test fOllowin g the
"OR" is ma.de.

intersection = nega.t ion ("AND " intersection) ;

If the "ne~ation" is true, then the character position

17

21q6

2 1Q7

2108

2 1Q9

2 1q9.

21q9b

21r

21rl

21r2

21 r 2.

2 1rJ

, ,

)

)

WHJ> 29-HA¥-11 I I: 20 1052

LIO Documentation

is reset to where it Was before the "negation" WaS
te8te~ and the test fOllowing the "A ND" is made. 21r3a

negation· "NOT" negation I alternatives; 21r 4

alternatives: concatenation ['I alternatives J; 2 trS

If the !'concatenation" is false, then the character
position is reset to where it waS before th e
"conc atenation" wa s teste~ and the test fOllowin ~ the '/
is made. 2trSa

concatenation: S (nelement I element); 2 1r6

A concatenation is true it each of its elements are. 21r6~

nelement: %executed for effect - are always true ~

POB I
%set current character pOSition to thiS position.
If the SE option is used, then set Bcan direction
right to left.
If the SF option is Used, then set scan 6irec~ion
left to ri!ht.
otherwise the scan direction is unChange d . '

,< I
I set scan direction to the left. I

,> I
$set scan direction to the right. %

'f textPoin~er I
~Store current scan position into the ~extpointer%

I~ [.N UM) textpointer I
'Bac k up the text pOinter bY the specified num ber of
characters. Default value for number is one.
BackUp is in the opposite direction of the
current sCan di rection. '

"FSIl .ID I
' Set ~his flag to true
the flaK may be a glObal or a local vari ableS

ttFRtt .ID I
IRe set this flag to false '

18

2 1r'l

2 1r1.

2 1r1b

21 nc

2 1 r7d

21 r 7e

2 1r1,

"

)

)

)

WHP 29-MAY-71 I 1,20 7052

LIO Documenta~ion

'. I. In I link) I
' Call this procedure then continuel

IITRUE II

I Has no e£fect~ ;

elemen~ = l ean be true or false $

. SR I
%String constant%

'* stringna~e 1* I
~ Str1ng v.r1'ble ~

cha.r I
I Character constanti

cha.rclaSs I
~Look for a character of this classl

"fT" • ID I
~Te.t this flagS

I (union ') I
~Look for an occurence of the specified cattern$

I .. element I
I False if the specified element occurs next%

1!-;;;)'f:r~tSIi (1# 1'=) . UID /
%Initials of user who created the statement
a r e tested by this construct .
Undefined for a str1n~ . %

"SINCE" c1a.te I
I True 1f statement was created since
the specified date.
Undefined for a str1n~. %

"BEFORE!! date /
I True if Btatenent was created before
the specified date.
Undefined for a string. %

.. BETWEEN 01 pos DOS I (union I) I
%Search li~ited to between the positions.

19

2 1r 7h

21r71

21r 8

2 1r8.

21r6b

21r8c

2 1r 6~

2 1r8.

21r8!

2 1r 8~

2 1r 8h

21r81

2 1r8j

)

)

WItP 29 - MAY -71 I I : 20 7052

LIO Documentation

Scan character position 18 set to first position
before the pattern is tested. ~

' 1 (.lD I lin~1 I
iT he procedure is called J then the ~lobal
Variable t'flag" is tested'

I { union I} I
%True if the patte rn can be found anYWhere
in the remainder of the sta tement.
First searches from current position.
I! that fails then increments the position
and tries again until the statement is exhausted. %

. NUM element I
%F ind the specified number of occurences
of the element%

bnrtnul'll
'bounded number of occurencesl i

bndnum : lOWbnd IS uprbnd element;

10wbnd = { . HUM } ;

Default lower bound is zero. Must find at least this

21r8~

21r81

2 1r8m

21rBn

21rBo

21r9

many occurences . 21r9al

uprbnd = {.NUH};

Defaul t upper bound 1s some very big number. Will
look for no more than this many occurences.

The test for the element is ma~e until it tailS or the
upper boun~ 1s reached. If the upper bound is reached~
then the "bndnum " is true. If the test finally ta119~ then
the "bndnum" is true if the number of times the element was

21r9b

21r9b l

found lies within the bounds , 21r l O

date •
~

I I month ' I-~

1;;~
f-ho~~e (' I second! J '); I (ye"ti

The year , month , day , hourminute, and second are given as
numbers . Note that the hour and minute are liven as a
single nUMber (hourminute in the rUle) and afe ba5e~ on a

20

21 r I I

21 r 110

.'

)

)

.J

WItP 29- MAY-71 II: 20 7052

LIO Documenta ~ion

24 hour ~a y . The year, month. and ~ay are re Quired; the
others a re optional with defaults of zero .

stringconstruction :

("STU (pos I SU bstr) I

,* str1ngname '* (I r exp IITOn exp')}) I .. atlist;

The strin ~ to Which pOB or atringname reters is
the strin« specified to the right of the arrow.
sUbstrin(is replaced if a SUbstr or an indexed
is specified.

3 T p i p2 ... string,;
is equivalent to
ST pi • Sl(p l) pl •• ~ring. P2 SE(P2);

str{lower TO upper) ... string;
is equ i valent to

replace cl by
A

atr1np:name

atr .. *atr*ll TO lower-I) , string, *str*l upper+1 TO
str . L);

The new atring or SU bstring is specified as a concatenation
Of string pr1~ar1es, with the primaries separated by
commas.

atlist a atprim $ (1, stprim);

stpriJTI :::

I' NULLH I
%r~presentB the ~ero length string '

• SR I
~!or string constants$

8u bstr I
~ .u b 8trin g %

1+ SUbstr I
~ su b .tri ng c,pi~.lize~~

'oo sU'oe tr I
~ su 'o stri n g in lower case '

21

2 1rl 2

2 1s

2151

2 1. l a

2 182.

2 1.2h

2 18)

2 1 ••

21 .,

2 18, •

2 1.'0

2 1.5c

2 1 s5~

2 1.5 •

"

)

WHP 29-MAY-71 I I: 20 7052

LIO Document~t1on

• S BUhst.r I
%subst r1ng without markers ~

•

'. str1ngnarne '* I
$for strin~ variables'

'* strlngn~me '* I{ exp I} I
~for character variables$

1* st.ringname I * I (exp liT O" exp I) I
%substring bY indices'

exp /
%value of expression taken as a Character%

tlSTRINO " I (exp !', exp) ');
ig ives a string which represents the

expression as a signed decimal number.
expression is pre sent , a number of that
instead of a decimal number.%

SUbBtr = pas pOS;

value of t.he
It the second.
base is prOduced

This is the SUbstring bounded by the two pOSitions.

If it is oreceded by a dollar sign (S), t hen the SUbstring
i8 copied without moving any associated markers to the new
position.

A construct of the form *str*{i TO j) refers to the
SUbstring starting with the ith character 1n the 8trin~ up
anO including the jth character. Thus *.tr*(1 TO 1+101 1_
the eleven character substring starting with the ith
character of str, and *str*{i TO str.L} is the strin~ str

2 1s5£

21B5~

21.5h

2 1051

2105 .1

2 1s5k

21.6

2 1B6a

2107

with the first 1-1 characters deleted. 2 188

Example: 2189

Let a "word" be defined as an arbitrary number of letter
d1~its. The two statements 1n this example delete the
word pointed to bY the text pointer I'tll, and if there is
a space on the right of the word, it is also deleted.
OtherWise, if there is space on the left of the word it
1_ de leteO. 2109.

The text pointers x and yare used to delimit the left
and r1~ht respectively of the string to be deleted.

22

21'9b

" .,
",

WHP 29 - MAY -71 1 1 : 20 7052

)

)

LIO Documentation

LD is true if the character 1s a letter or a digit, and
SP 1s true if the character is a space.

FIND t < SLD tx t > SLD (SP ty I ty x < SP tx I TRUE);
ST x ':I .. NULL ;

The reader should work throu~h this example until it is
clear that it really behaves &8 advertized ,

The fOllowing several statement for~s are related to
controlling the feedback given to the NLS user and the
defintion of ~states~ within the command language of NLS .

inputst~t = "INPUT" inalternatives;

The input statement construction is used to program command
interaction in Display NLS. It results in a sequence of
calla on routines Which implement baSic operand interaction
such as bUg selection on the display screen and text input.

Alternatives within an NLS command group (e. g., the option
to select or type the second operand in the REPLACE
command) are automatically handled by the input statement
construction. In addition, backUC within the command
specification as a result of a backspace typed by the user
is also handled automatically .

use of the input statement construction reSUlts 1n a
greater consistency 1n the command language as well as a
great s1molification in the programming of new commands.

i~alternatives = insequences 8 (11 insequences);

in sequence ;:
Sinitem (I(inalternatives ') I a (stat fl;ll 1;

initem :III

("BUG" I "STID" I "L EVAD J" I ~T EXT "I
"NAME" I "WORD" I "NUMBER" I "STRI NG ") fwlhs I

char;

The left-han~-Bides followin~ BUG or STI D should specify a
TEXT POINTER . Those following LEVADJ J TEXT , etc., !houlO
specify a string.

EXPlanation:

23

2 1 a9~

21age

21t

21u

21ul

21u2

21u3

21v

21w

21x

21xl

2 1x2

2 1x3

"

)

)

)

WHP 29-MAY-71 11:20 7052

LIO Documenta~ion

BUG bl means reaa a selection made with the cursor and
.~ore ~he re.ul~ing TEXT POINTER in~o bl . 2 Ix).

STID bl
the TEXT
either a
number.

means input a statement selection and store
POINTER into hi. A statement selection is
BUG or a SP followed by a statement na me or

LEVADJ str inputs a sequence of level ad just
characters and atores them into the strin g 8tr. Level
adjust characters are defined to be an ar bitrary number

2 1x3b

of u's or d's optionally terminated by a space . 21 x3c

TEXT str inputs a string Of c~aracters and echoes t hem
in the text area Of the displ &y . The strin ~ is stored
i n str and is defined to be an arbitrary number of
characters up to_ but not inclUding, a command ac cept or
center dot. 2 1x3ct

NAME str inputs a string of characters Which are
forced upper case, stored in str , and echoed in the name
register of the display . Alte r nat ively t he name ~ay be
selected by a BUG in Which case t he selected wor d is
forced upper case~ stored, an d displayed . 21 x3e

WORD str like NAME except does not force upper case.

NUMBER s~r like NAHE except inputs a numbe r e ither
typed or specified bY BUG selection.

STRING str
register.

like TEXT except echoes in t he NAME

char succeeds if the specified character is input.

Example:

The I NPUT statement for the Re place Text command is

IN PU T BUG b l BUG b2

(BUG b3 BUG b' CA rpi • TRUE; I

TEXT lit CA rpi • FALSE) ;

The fla~ "rpf" is used to show which alte rn ative Wa s

2 1x3!

2 lx)g

2 1x3h

2 1x3 i

21x4

2 l x~a

2 1x4a lb

t aken. 2 1x4a2

24

)

)

)

WRP 29-MAY-71 II: 20 7052

LIO Documentation

fee~ba.c k line =: II DSp lI I (80sp t); 2 1y

The command feedback line ~he the ~isplay 1s control led by
means of this statement . 2 1YI

(SSp =

'. I
~move feedbac k arrow to far leftl

It I
$put feedback arrow under start of next wo r d%

tltON U /

' turn feedback ~rrow on
(thiS is Qone automatically if specifY
position for the arrow) %

"t OFF" I
, turn fee dback arrow off~

'? I
I turn question mark onl

U?OFFU I
~ turn question mark Off i

1I, •• n dward I
~ the last word currently in the feedback line
is replaced by this onei

,< aword I
%clear feedback line and put thi s word
in the first position%

aWard
%pu t thiS word in the next position%;

ExamP l es:

ns P(, •• Character);

aword ; .I D I . UID I ,SR I '* string name '*;

If an identifier or string is u8ed, then that text is

25

2 1y2

2 1:.-2.

2 1y2b

21y2c

2 1y2d

2 l y?e

2 1y2£

21y2~

21y2h

2 1Y21

2 1y2j

2 1y2jl

2 1y2j2

2 1y)

'.

)

)

WHP 29- MAY - 71 I I: 20 7052

LIO DoCumen~ation

displayed. If a stringname is used, then t he contents
of that strin~ is displaye d .

group:: "G ROUP " I~ .ID;

Sets the command group.

sta.te = "STATE" I~ .1 0 I, .ID;

sets the state to this location and sets the g roup to th e
second ident1fer. The first identifier may be us ed as a
label for this location. control is transferred here by
the GOTO STATE co~mand.

entity = " EN TITY" '" . CHR " (.lD I .UID)~

The character is made the entity character for th is grou p
and the identifier is made the entity string f o r th is
I!:roup.

EXPRESSION FORMS

Expressions

exp ::

"IF" exp "TH EN " eXD "ELSE" exp /
"CAS E" exp II OY "

$ (b inrel S f', binrel) ': exp I;)
. "ENDCASE" ex p I

disjunct;

An expression involving logical operators may be used in
the place Of an a rithmetic expression. It has t he value
if true and the value 0 if false.

Example:

flag ~ a > b OR x = Y

iB equivalent to

26

2 1yJ.

2 1z

2 1z1

2 1aa

2 1.0 1

22

22.

22. 1

22. 1.

22.2

22a3a

22aJb

. ,

)

)

)

. .
Will' 29- MAY-7 1 II: 20 7052

LIO Documentation

!la~ • IF a > b OR x = Y THEN I ELS E O.

Likewise, an arithmetic expression may be used where a
logical expression is expected. A zero value represents
false, and a nonzero value represents true.

Example:

I F p i) THE N . ELSE b

is eqUivalent to

IF pi) NOT= 0 TH EN • ELSE b.

Logical operators

disjunct = conjunct S I't OR" conjunct) ;

True if either conjunct 1~ .

conjunct = negation $ ("A ND " negation);

True if both negations are .

negation = "NOT " negation I relation;

relation =

"SKIP" (lh s args I builtin) I

string (" NOT ")

(I: I 1# I 11(:11 I 11):11 I I (I ' ») string /

"FI ND" union I

II pas II posrel I

Bum (b1nrel);

The expression "FIN D union" is true if the oattern
defined by the union is round .

The "S1<IP"
it results
evaluated.

relation is true if the construct followin l
in skipping an instruction when it is

The construct may be either a c all t o

27

22.3 c

22&4

22aS

22.5.

22.Sb

22 . Sc

22b

22b l

22b l .

22b2

22b2.

22b3

22b4

22b lla

22bi1b

2 2bi1b l

22b i1c

22 hi1e

22b4!

.'

)

)

)

WHl' 29 - MAY-71 I I: 20 7052

LIO Documentation

procedure or a buil t in, such as a "jump to system ~. that
may do a SK IP RETURN . 22bk~

string;: '* st.ringna.l'1le '* I .S R; 22b5

It is possible to compare variable or literal strings. 22b5.

PO.5 r el = 22b6

pos [tlNOT ") ('; I " I II):;U / "(=" I ') I ' () po.!!;

This maY be used to compa re two text pointers . 22b6b

If the pOinters r efe r to different statements then all
relations between t hem are false expect "not equal "
Which is written ' N or "NO T" '=. If the pointers refer
to the Bame statement , then the truth of the r ela tion is
decided on the basis of their location within the
stateme nt with t he convention that a pointer closer t o
the front of the statement is "less than " a pointe r
close r to the end . 22b6c

(It)=" / n(;11 I ,> / '() sum I 22b7.

('; I • till (charcl&ss / su m) I 22b7b

(IIIN" I IIOUT") intrel; 22b7c

charclass = 22b8

" CH I! I
%any character% 22b8.

" ULD " I
%uppe rcase letter or digit% 22b8b

"LLD" I
%lowercase letter or d1,1t% 22b8c

"LD" I
%lo we rcas e or uppercase letter or Oi~it% 22b86

It NLD " /
%not a letter or Oigit% 22b8e

28

)

)

WlIP 29 - MAY -71 I I : 20 7052

LIO Documentation

!l Ut" I
%up pe rcase letter%

IILLII I
~ lo wercaBe letter~

"L" I
%lowercase or uppercase letter%

"D" /
%di.1t%

"PT" I
Sprinting character%

"NP "

22l)8f

22b8~

22b8h

22l)8j

i nonprinting characterS ; 22b8k

This provl~es a simple waY to test the cornmon classes of
characters. 22b81

Example: 22b8m

Cha.T :: LD 22b8ml

is true 1f the Variable "char" contains a value which
is • letter or • digit . 22b8m2

10trel :: (t (I I {l Bum I. sum (I) I I); 22b9

This provides for the common operation of testin~
whether the Value of some expression lies within a
Pa rticular interval, Each siOe of tne interval may be
"open" or "closed". In other words the value which
determines the boundary of the interval may be inCluded
within the interval (by using square braCkets) or
exclu~ ed (bY using parentheses) . The IN relation means
t Ohat the value is in the interval; OUT is equivalent to
nOT I n. 22b9.

ExamPle : 22b9b

x In (I.IOO) 22b9bl

is the Same as 22b9b2

x). I AND x < 100 . 22b9b3

29

"
"

)

)

J

WH,P 29-MAY - 71 1 1 : 20 7052

LIO Documentation

Arithmetic operators

sum = prod Sf'. prod I '. prod);

The plus (+) and minus (-I represent addition and
sUbtraction.

prod = b itor S l' * bitor I '/ bitor I "MO DIt bitor);

The Btar (*) and slash (I) represent. multiplication and
division .

The form a MOD b gives the remainder of a I b.

bitor : bitand SIIt.V" bitan~ I II.X" bitandl;

The form a .V b gives the logical or ot a and b.

The form a .X b gives the exclusive or of a and b.

bitand: factor $ (It. A~ factor):

The for~ a . A b gives the lo~ical and of a and b .

factor = ,. factor I I (exp ') qualifiers / prim;

Note that it is possible to extract a field from the value

?2c

22C l

22cla.

22c2

22c2&

22 c 2 b

22c)

22c3~

22C)b

22cl1

2 2c la,

22c$

of a parenthesized expression . 22c6

Exa.mple:

The assignment sta~ement

x .. (b+c).f

stores the f field from b + C into ~he Variable x.

Primitives

priM '

lhs (args / ' .. exp / ";:" exp) /
rhs /
(UMINIl I "MAX") I(exp a ('. exp) ') I
" MK FD" I (exp I, exp I, exp I) I
"READe!! (II exp I)) /"VALUE II II t!xp [', exp) I) /
ItSIGNAL" /

30

22c7

22c7o

22c7b

22c7c

22 ~

22~1

.'
'.

)

)

WltP 29-MAY-7 1 1 I: 20 7052

LIO Documentation

"MESSAGE" /
"CCPOS " i

when a procedure call is used as a primitive. the value is
that of the leftmost result returned bY the procedure .

TWO forms of assignments can be used as primitives.

The form a ~ b has the effect of storing b into a and
has the value of b as its value.

The form a := b has the effect of storin~ b into a and
has the old value of a as its value. (An exchan ge with
memor y instruction is done rather than a store).

Example :

The statement

c .. b := c

exchanges the contents of band c.

The SIGNAL and MES SAGE pr imitives we re discussed above i n
the ONSIGNAL statement.

The first expression in the VALU E primitive evaluates the
address of a string. The result 1s a binary number
correspon~ing to that string as & Signed ~ecimal number .
If the second expression is present, the number is assume~
to be of that base rather than 10.

rhs : I S C.ID I .S R) I literal;

A string or an identifier preceded bY a dOllar 5i~n (S)
represents the address of that strin~ or identifier.

literal: . NUM I "T RUE" I "FALS E" I char;

Numbers come in several flavors. A sequence of digits
alone or followed by a D is interpreted is base ten . If
followed bY a B then it is interpreted as base ei~ht. A
scale factor may be given after the B for octal numbers or
after a D for decimal numbers. The scale factor is
equivalent to adding that many zeros to the ori~inal
number.

31

2201.

22d2

22d3

2203.

2203b

2203c

2203c 1

2203c2

22d3c3

2204

2205

2206

2206.

2207

2208

, '
"

)

)

)

WHP 29 - MAY-7 1 I I: 20 7052

llO Documentation

Examples:

64 = 1008 = 182

1448 = 100 • I D2

A sequence of digits followed by an M is a mask . The
number indicates the number of bits to be turned on in
the mask . An octal scale factor maY also be presen t to
the righ t of the M. If he sc ale factor is ibsent. the
mask is right justified. Thus IBM is an 18 bit mask on
the r ight hal! of • J6-bit PDP-I O wora; 18M6 is an 18
bit maak on the left half word.

The words TRUE and FALS E are equivalent to t he nu mbers I

22 a8a

na8al

22 a8.2

22d8b

and 0 respectively . 22d9

The fOllowing provide synonyms for commonly used
characters. The effect is the same as if the number
internally representing the char~cter had been used.

cha.r :;;

• sa I I
%sing le character preceded by an apostro phe%

tl EtJDCHR " I
%endcharacter as returned bY READC%

lI eD U I
%comma nd delet.e%

(IIBUG It I " CAI!) I
%colllmand accept.%

"SP" I
~sol!,ce%

II EOL II I
%Tenex's Version of OR LF %

ItALT" I
%Tenex 's version of alt.mod or escape (-33 B)%

UCRII /
%carriage ret.urn%

J2

22al0

22~ I I

na il .

22 0 I I b

22d I Ie

220 I I ~

22a I Ie

22 a I If

22allr.

22d I I h

, I I,.

"

WHP 29-MAY-71 I I '20 7052

LIO Documentation

)

)

)

ULF" I
%l1ne feed~ 22d I Ii

22d I 1,1

II BC" I
%backspace character% 22d I I k

nBW n I
%backspace word % 22 d I 11

" 0 . 11

%cente r dot%; 22d 11 m

The builtin functions MIN and MAX have the obvious me an ing. 22dl2

MKFD make~ a field desc riptor with the three expressions
giving the position I size l and address respectivelY. The
address maY be 23 bits so as to inelude indirection or
indexing. 22dlJ

The primitive READO is & special construct for re adin~
characters from NLS sta~ements or strings.

The optional parenthesized expression after "REA De"
gives the address of a work area that de termines Which
character is to be read next .

If the expression is not given l then a character is rea ~
from the current character position and in the scan
direction as set by the last COPOS statement or string

22d l 4

22dl4a

analysis. 22d l 4b

Attempts to read off the end of a strin~ in either
direction result in a special "endcharacter" being
returned and the character position is not moved. This
endch~r acter is included in t he set of char acters for
Which system mneumon1cs are provided and maY be
refere nced bY the ioen~1fier t' END CH R't. 22dl4c

Exa.mple ;

to sequentially process the characters of a string

CCp os *str*;
UNTIL Ic har • READC) ; ENDCHR DO proce •• lcharl.

33

22d l4 d

22dl4dl

22dl4d2

• •
"

)

)

)

"

WHJ' 29-MAY-71 1 I: 20 7052

LIO Documentation

(Note: READe may also be used as a statement if it is
~esired to read and simplY discard a character),

when used as a primitive. COPOS hae as its value the index
of the character to the right of the current character

22dll!e

posi~ion. 22dl5

Examples : 2201Sa.

If str = t'~larp", then after COP OS *str*. the value
of CO POS is I an6 after capos SE(*atr*1 the value of
cepos is 6 (one greater than the length of t he
s~rin.l. 22 d 1S.1

TO ~ equentially process the first n ch ~ r acters of a
string (assumed to have at least n characters) 22015&2

cepos *str*;
UNTIL GGPOS > n DO processiREADCI. 220 1503

DECLARA TION fORMS

Declare

dec lare = (~ecl/ext/equ/regdec/record / pgdec/re fdl

decl = "DECLARE " {IIEXTERNALlI}

(field I string / tp / stores / items);

, ..
"

If the EXTERNAL mOdifier is use d . ~hen the followin~ names
may be r efe renced from other files.

field = "FIELD" fdef S (', f~ef);

idef = .ID '= If address I. size ': position '1;

The "address " is taken from the syntax for builtin's .

size •• I D / . NUM;

This ie the size 1n bits of the field. It an identifier

34

23

23.

230 1

23&2

23a2a

23a,

23,,4

23.4.

23.l!b

23a4c

• .' .
\

WH.P 29- MA¥ -71 1 I: 20 7052

tID Documentation

)

)

is use d , it must alreadY have a value as the r esult of a
SET statement, 23aud

position :: .1 0 I . NUM ; 23alle

This is the position of the field in the word given as a
displacement in bits fro m the right. 23a4f

string = !rSTRI NG" astr $(', astr);

astr = .1 0 (I{ . NUM .) / I : . SR);

strings defined by this means may be Used i n t hose
constructs, such as string construction, t ha t call for a

23'5

23.5.

"strin gname". 23aSb

A declaration such as

lon~.trin g (200J

provides
number,
zero .

for a Btrin~ with a maximum length given hy the
The current length of the string is set to

A decla ration SUCh as

23a5c

23'5cl

23.50

23.5.

literaletring • "a silly example" 23aSei

serves to initialize the string . Such an i nitialized
string may later be assigned another string whos e len ~ th
is no greater than tne initial one. 23a5£

In the future the string system will be extended so that
the maximum length of strings need not be sDeclfie~ .
Instead the syste~ will allocate string storage aB
re quired. 23a5~

tp : "T EXT " "POI NTER " idlist; 23a6

i cUist = .1 0 S (t J • ID); 238.6&

The listed identifiers ~ay be used to hold text pointer s
for use in string/statement analysis and cons truct i on . 23a6b

The text pointer takes more than one word of stora~eJ
and therefore references should be passed r a ther tha n
values in procedure calls and the like.

35

2306c

••
\

)

• •
WHP 29-MAY - 71 1 1 : 20 7052

LIO Documentation

st.ores I: ("STAC K" / " RI NG ") stckd S (', stckd l; 23.7

.tckd = . 10 If . NUM f' • • NUMJ 'Jl 23.7>

Allocates storage for a pOinter and stack or ring buffer
that can hold the numbe r of records specified bY the
first nUmber . The second number gives the size in words
of each record . The defaUlt size is one word. 23a7b

See the "stacknring 'l commands PUSH ~ POP , and RESET. 2Ja7c

items = item 5 1', item); 23aB

item 2 .I D (dimension I value); 23a8a

dimension = If 1.10 I. NUM) 'Jl 23>8h

An array of the specified di mension 1s allocated . If
an identifier 1s used to s pec ify the dimens ion, it
must have al ready been defined thru a SET statement . 23a8bl

value • t:ll (I (icon S (I J icon) ') I icon); ?3aBc

Th e specified values are allocated . 23.8cl

icon a .SR I .I D I [I~} liter~l; 23a8~

Wh en a string is listed as a component, it is
prOduced using as many words as are neeOed t o hold
the characters packer left j ustified, tour characters
to a word. An identifier used as a compo nent results
1n its address being produced as the contents of the
word. If the i dentifier was defined with a SET
statement, then the value to which it Wa s set is
produced . A literal component results i n a wo r ~
containing the value of th at litera l. 23a8dl

External 23b

Set

ext: "EXTERN ALt' 1dlist; 23bl

The identifiers listed may be r eferred to from othe r
programs . Procedure names are automaticallY set external .

equ : ttS ETIt e qul S (', equl) I
36

23b2

230

23cl

· \ ~ .

\

WItP 29-MAY - 71 I I : 20 7052

LIO D ocumenta~ion

)

)

)

equl • (.UlD I .lD) '. I.ID I ('-I literal);

The identifier on the left is oefined to have the value
specifieO on the right. If an i den tifier is used on the
ri gh t, it mu st have been alreaOy given a value thru a
previous se~ s~atemen~.

This statement m~y be used to define opcodes f or use in
builtin's.

Register

regdec z "REG IST ER " regdef 8 (1, regdef);

regC1ef ~ .I D ,= • NUM ;

The number specifies the accumul&tor to be use d t o hold tn e
variable.

Record

record a '(.ID I) " RE CORD" recde! $(1, recdef);

recdef = . 10 '{ . NUM '1;

The number is t he size in bits at the field .

pgdec = ~PAG E " {. NUM};

This simplY moves the location counter to the start of t he
next ~ page ", or 512 word block. If the program is to
loaded star~1n g at a location other than the first word of
a page, the diSPlacement into the page whe r e loadin~ will
begin must be given following PAGE .

Reference

refd = "RE F" idlist:

There are two su bclasses of vari ab les; those which have
been Oeclared to be references by the "REF" statement , and

2302

2303

2304

23~

2361

2362

2363

23e

23el

23e2

23e3

23!

23!1

23£2

23~

23~1

those Which have not . 23~2

If a variable , v say , has bee n declared to be a

37

"
\

)

)

)

• •
•

WHP 29-MAY-?))): 20 7052

LIO Documentation

reference , then uses of v will be equivalent to uses of
{v} 1f v had not been declared to be a reference .

In order to allow the pro~rammer to override this
reference mode . a reference name preceded bY an
amoersand {a l is taken to mean the variable itself.

This allows a reference variable to be initialized or
mOdified While retaining the ability to make references
through it without explicitly using sQuare brac ke ts.

Note that the REF statement does not declare any sto r a~e.

but SimPlY sets an attribute of Variables .

Local variables may be declared to be references by a REF
statement following the declaration of LOCAL variables i n
the procedure.

Examples:

(p) PROOEDURE (ptr)l;
LOCAL b l , ptr2 ; REF ptr l ;
bl + ptrli %stores what ptr l refere nces into b l ~
ptr2 + &ptrl; Sstores ptrl into ptr2%
RETURN END .

18 equivalent to

(pi PROCED URE (p t r) l;
LOCAL bl, ptr2;
b) • [ptr)} ; %stores

$stores ct r 2 + ptr l;
RET URN END .

what ptrl
ptr) into

references
ptr2%

into b) ~

A ~ore realistic example shows the combined use of the
"ref" and "unrel" for~s of a Variable in a proce dure
that searches a table for an en~ry who se fields satisfY

23~2a

23~2b

23<2c

23,3

23~5c

certain constraints. 23~5d

(aearch) PROCEDURE (room); 23~5e

%Re~urn ~he i ndex of the first entry in the ar ray
"table" whose "exists" field is nonzero and who se
"size " field is a! large as the "room" parameter. If
there is no sUch entry then return -I. The variable
"length '! specifies the number of entries in "table". % 2J ~5e l

38

..
\

)

)

)

WAP 29- MAY - 7 1 1 1 : 20 7052

LID Document&tion

LOC~L t. index; 23g5.2

REF t; 23g5e3

&t • Stable ; %set up the po1nte r~ 23~5eh

FOR indeX • 0 UP UNTIL • length DO 23g5e5

IF t . exista AND t.size)2 room THEN RETURN (in dex)
23g5e5a

ELSE BUMP &t ; 23g5e5b

RETURN I-II EN D. 23g5e6

PROGR~M

progra m ;: 8parts t'FI N ISH~;

parts. proc eOure I deClare ;

pr ocedure 'C '(. 10 I) uP RO CEDURE" {I (id11st I) } I; bod.y ;

bOdY z

S ("LOCAL 't locd '; I "RE F" 1dlist I;)
labele d. S ('i l abe led) "END ." ;

locd ;:

" STRING II lst r S (' ~ letr) I
"TEXT un pOINTER" i dl ist I
loco $ (' . loco);

lstr ;: .ID I [NUM ');
~NUM g1vea the maximu m length of the local string bein(

declareOJ,

loco ;: .ID (I (• NUM ') } ;
iLOC&l deClaration of an array of NUM wo rds or 3. simple

variable~

Pr ocedure
39

24

na

24b

24c

24 d

24dl

no

24el

24£

24g

24h

" ,

)

)

)

WRP 29-MAY-71 I I: 20 7052

LI O Documentation

A procedure may have an arbitrary number of local
variables. Which include formal parameters , variables,
strings , text pOinters and array s declared bY the LOCAL
statement. 2hh l

Note that nanlocal declarations are outside o£ the
procedure body .

Future Versi ons of tlO will include more general control
structures based on processes . ports, and messages ,

CODE PRODUCED BY THE COMPILER

The followin~ is provided aB an ad mittedlY c ontrived example

24h2

2b1

25

of the code croduced bY the compiler. 25a

For the seque nce of statements

x .. x + a;
y .. 6 .. Yi
IF x < 0 TH EN

BEG I N
Z .. I;
(p) .. X i
BUMP p,
END

ELSE z .. - z;
(p) .. Xi
a. to z;

the compiler prOduces the following instructions :

HOVE 17 •• ~ rl 7 ~ • ,
AD DB 17.x • x .. rl7 .. rl7 + x ,
HOVE l 16.6 ~ rl6 ~ 6 %
SU BB 16,y ~ y .. rl6 .. rl6 .. y %
JUMPG E 17, •• 6 % if r 17 (h ol~ in ~ xl >, o the n
MOVEI 15. I % rlS ~ I %
HOVEM 15 .. z ~ z ~ rl5 %
HOVEM 17 .. 0p , (pJ .. rl7 IWh ich .~1l.1 hol 0s
AOS IlL .. 'P , P to rilL .. p • I ~
JRST .+2 % branch over f alse part of IF

40

2Sb

25c

25~

goto .+ 6 ~

xl %

s t atement ~

' ..
I

)

)

•
WRP 29-MA~-71 11:20 7052

LIO Documenta~ion

MOVNS 15 ••
MOVEM 17. @p
MOVEM 15.a

% ~ ~ rlS ~ - z (use same register for z) S
~ {oJ • rl7 (Which s~ill holds xl ~
% ~ • rlS (which holds z since was lOaded
in both parts of the I F Btate~entl 1

The compiler remembe rs simp l e variables which are 1n
~ccumulator! and carries this informat ion forWard through the
v~r1ous pathS of the IF statement . Not ice that in both the
true an~ false parts of the IF. the v&riable z is loaded into
the same register so that in the followin~ statements z need

25.

not be reloaded . 2Sf

41

)

)

)

WHP 29 - MAY -?1 11 : 20 70'2

LI O Documentation W H Paxton I 2IO'I?O

(JOURNAL>?O'2.NLS;I. 29 - MAY -? 1 11:23 "ISO; Title : Authorla): William H.
Paxton/WHP; Keywor ds : LIO programming Language; Clerk : WSD;
O ri ~1n: (PAXTON>OOCLIO . NLS;, . 29 - MAY - ?1 10 :20 WHP ;
. OIR_I; . HEO" ". MCH · 72; . GCR; . HJH ·2; WHP 29 - MAY - ? 1 11: 20
70,2.MCH-65;
. HJH::II;
LI O Doc ument-ation W H Pa.xton 12 / 05/70";
** . MCH - 6, ; . SN8'0; . SCR - 2; . RTJ - O; . PNO -O; . COO[' 11 - 1?58:

•

)

)

I

w~p 29-MAY-71 12:12 7053
A System for Modular Programming

This is an early (12/70) proposal for a modUlar pro~rammin~
system .

)

)

)

WHP 29-MAY-71 12:12 7053
A System for Mo~ular Programming

A SYSTEM FOR MODULAR PROGRAMMING 12105170

The Use of terms such as job, process, and module in the
following maY not correspond with "common t

! usage.

A job is defined as a dynamic collection of cooperatin~
processes Sharing the same address space. A process is the
dynamic counterpart of a module . A module is a cOllection of

1

1a

procedures and data structure3. 1 0

OBJECTIVES 10

It must be possible to specify at runtime the set of
processes that make up the job, and it must be possible to
dynamicallY modify this set. Jobs involving up to 100
processes Should not be unreasonable. leI

It must be possible to dynamically allocate th e address
space. In other words , modules mUst be logica l ly as well
as physical l y relocatable at runtime. The limit on the
totality of mo~ules potentially available to a User Should
be set be the capabilities of the file system not the size
of the address space. lc2

The interface to a process should be easy to describe . A
process should be usable in any configuration that
satisfies the restriants of the interface .

It should be possible to have several processes in a jOb

10)

which correspond to a single module . lc k

There should be easy-to-use operations for pas!in~ me ssages
and control between proc eSSes. lc5

Error handling mechanisms should be provided by the system.
A process shoUld be able to catch err ors made by another
process ~ have an opportunity to correct the prOblem . and
allow the other process to be restarted. lc6

It shoUld be pOSsible to modify a module without having to
update modules Wh ic h might make use of it as lon~ as its
interface remains unChange d . lC7

One process should be ab l e to use another without knowin~
its memory requirements or what other processes it may u,e. le8

Code segments of modules must be sharable bY several
processes and by several jobS .

1

"

)

)

)

WKP 29-MAY-71 12:12 705 J
A System tor Modular Programming

The system mus~ contribute to the development of other high
level software ~u~mentation tools such as incremental
compilation and source language debu2ging fro m NLS.

MODULES AND PROC ESSE S

There are two classes of modules: MESSAGE mOdules and UN IT
mOdules .

MESSAGE modules contain:

A code segment which contains procedures Which ma y be
activated by the arrival of mesaa~e8 or by calls f r om
Within the mOdule.

A data segment containing the definitions of data
structures Which may be acces sed within t he modUle and
the definitions of ports into the module over Which
me ssages may be sent and received .

A linkage se gment containing the link data neccessary to
make SYMbOlic references from this mOdule to o~hers .
Dynamic linking is based on the H U1~ic8 s ystem and is
discussed in detail below.

The term process is used here ~o denote the dyn amic objec~
correspond ing ~o a module . Thus a module provides a s~a~ic
defini~ion of some process .

There may be more ~han one process correspon d in~ ~o a
eingle message module . Eac h of these processes has a
seParate copy of the da ta segment of the mOdUle . however

lel0

1~

1~1

1 ~2

1~2a

ld2 b

1~ 2e

they all share the same linkage and code se gmen ts . l d4

ports in a message process may be connected to ports in
other message pr ocesses . Message processes communicate and
transfer control by sending messages over these ports
(he nce the name meBSa~e process). The commands for ·
establishing connections between message processes and for
sending and receiving rnessa~es are given below. ld5

UNIT modules contain COde. data. and linkage segments much
the Same a8 message modules. However. unit mod ules have no
ports and thus may not send or receive messages. The unit
module is intended to serve as a repository of procedures
used by several modules. ld6

BY convention there is onlY one process corres p on din~ to ~

2

,

)

)

)

WHP 29-MAY-71 12:12 7053
A System for MoOular Programrnin~

particular unit module (hence the name unit module). This
allows procedures in the module to be called bY sim oly
giving the module name and the procedure name~ Message
processes must be re!ered to by , process number a8si~ned
at runtine since there may be more than one process
corresponding to a module . 1d7

The Unit mOdule roughlY corresponds to the seg ment of
MUltics .

When modUles are needed at runti me , the system takes care
of allocating memory for them and loading them. MOdules
may be loaded anYWhere in the address apace, thus it i s

ltt8

POSSible to dynamically allOcate memo r y . 1 d9

A module may be referred to by its symbolic name (i . e . the
Btrin! of characters mak ing up the name) when it is
requeste d . Likewise, variables or procedures Within the
modules maY be referenced from othe r moduleS bY their
symbOlic names . After the first use of these sym bolic
names information in the linkage segment is mOdified so
th~t later references maY bypass the symbolic names and ~o
directlY to the desired location . This operation is called
dyn~mic linking and allows modules to be independently
mOdified and updated. This gives a de~ree of flexibility
in the development of a larRe system of modules that is
unattainable in more conventional systems . lttl 0

MODULE fILE 1e

The source language p'rog r am for a module is ke~t in a
normal NLS file. The other data conce r ning a module is
kept on a separate file . (111 What about keepln~ it all
together 111) This file contains: lel

(11 header le2

This contains information describing the structure of
this file, such as the size and location in the file of
the various data segments.

(2) a code seg ment

pure procedures . sharable at runtime. relocatable
address space since all intrase~ment references are
relative to a code segment pointer .

()) a datA se~~ent

3

in
ma.de

le2a

le3

le3.

le4

•

1

)

)

w~p 29 - HAY -71 12 : 12 7053
A System for Mooular Programming

data structures for the module . ports for message
modules . each pr ocess has & copy of the data se«ment
for the module . relacatable in address space Since all
references to items in the data se~ment are made
relative to a data segment pointer.

(h) a linkage se~ment

link data fo r all the exte rnal references made trom t his
mOdule. mOdified as used a t runtime. may be shared by
al l pro c e sses based on thiS modUle . references to thiS
se~ment are made rela tive to a linka~e se gment pointer .

(5) an external symbol lis t

list of the external symbols in this mOdule . used to
resolve references to names in this module nade at
runtim~ . for each name in the mOdule Which may be
refered to bY other mOdules has the symbolic narne of the
variable and its location as seg~ent and displ&cement
within segment .

(6) descriptive information.

for Use bY the incremental compila tion system. contains
Whatever infO is needed to do incremental chan~es and
source language debugging with the module . this will
inClude at least a complete symbOl table with all local
Variables , a list of intrasegment references, and a map
from source to location in the various segments and Vice
versa .

PROCESS ES

For each process in the jOb , there is

a code segment (WhiCh may be Shared) ,

a data segment,

a linkage segment (which may be Shared),

a Chain of activation recordS (or "frames") Which is
analogous to a call stack for the process

a process descriotlon record Which holds the segment
nUMbers of the Various segments making up the process, a
pointer to the sta r t of the activation chain. the

4

leha

le5.

1.6

Ie6a

le7

Ie7.

1!

lfl

lfla

lflb

lflc

)

)

WKP 29-MAY-71 12:12 7053
A Sys~em for Modular programming

current status of the process, and other information
about the process.

Whenever the process is active the code pointer OP coints
to the code seg ment of the process, the data pointer DP
points to the data segment, the link pointer LP pOints to
the linka!e seRment, and the frame pointer FP pOints to the
actiVation record of the current procedure . These pointers
are held in index re,lsters 80 that the process may access
its own information by simplY using the indexing abilities

l!le

of the machine . 1/2

When control is passed to anothe r proces s , the segment
pointers are automatically changed. This is facilitated by
saVing the process number Of the calling process in each
activation recor~. Then when the proceoure returns it is
easy to cheCK if it is returning to a new procesB. If ~ha~
is the Case then the process record specifies how the
poin~ers shoUl~ be loa~e6. 1£3

The Use of these pointers allows ~ynamic allocation Of the
a6dress space. This is important when ~here are a ~reat
number of mo~ules available for use , the totality of which
excee~s the size of the aO~resB space. It would be
impossible to determine ahead of time where a particular
module should be loaded, so this decision is instead put
of! until the Mod ule is actually needed. The exact
location will depend on the set of processes in use bY the
job at the time the module is reouired. Thus the module
may be loaded in one location in one jOb and in a diffe rent
l ocation in another . The use of segment pointers allows
the module to be shared by several jObS concurrently even
though i t is placed it different locations in each address
space. lf4

OPERATIONS 19

The following is a preliminary specification at tne basic
operations that will be provided in the modular proRrammin~
system. InitiallY the programs to implement these
operations will be in the address space of the job .
Eventually it may be desirable to make the operations part
of the time sharing system itself. 111

(11 LOAD module 1 ~2

The module name is given symbolically. If the module is
already lOaded then this operation simPlY returns.

•

)

)

w~p 29 - MAY-71 12:12 705)
A Sys~em for Modular Programming

Otherwise the module file 1s opened and the header re~d.
Based on the information in the header I memory is
allocated for the segments of the module and tney are
mapped into the address space.

The system must maintain a list of modules currentlY
loaded as well as information describing the state of
memory allocation .

(2) UNLOAD module

The modu l e name is given symbOlically . The named mOdule
1s removed from memory . The space allocated for it may
be reclaimed. Links to segments of the module must be
restored to completely symbolic form 80 that they will
be recomputed if the module is loaded again later. Any
processes co r responding to this module are killed.

() RELEASE ~odule

This command informs ~he system ~hat ~he named module i s
a candidate for unloadin~ if room is needed . If the
sy~tem runs out of address space it will look for a
released modUle to unload .

After a module has been used and is no longer needed it
should be released r ather than immedia~elY Unloaded .
Then if the module is needed again before the system has
had ~o unload i t, the module will still be there With
all links to and from it intact , (Wi l l have to bring in
fresh copy of data segment or be able ~o suitably
init i .lize it ,)

(4) USE modulel FOR module2

All references to module2 go to modulel instead. this
operation does an UNLOAD module2 first to reset any
existing references ~o rnodule2 . Th1s operation is
in~ended primarily for use in debu(ging new versions of
modules. after the experimen~al modulel haB been
checked out then i~ may replace module2 for general use.
may also use this ope r ation if have special versions of
modules that have been tailored to certain needs . for
example a personalized command module .

(5) JOIN ~odule.

It will often be the Case that a Se~ of modules a re used
6

1p2a

1.2b

1<).

1.4

1.5

1.5.

196

)

)

)

WHP 29-MAY-71 12:12 7053
A System for Modular Programming

together.
this f.ct
using the

The JOIN command makes it
bY " pre -lin kin~'! the cross
set as a unit.

Possible ~o eXPloit
references and

The defini~ion of a link (given belOW) is such that the
displacement and se gment type (code or data) may have a
value eVen if the segment number does not. Thus when
modules are joined, for all the cross references between
mOdules the disPl~cement and the segment tY Pe are fille d
in while the segment number is left undefined. The
segment number is then filled in by the usual dyna~ic
linkin~ sequence.

When anyone of a set of joined mOdules is loaded the y
all are. BecaUse unloading resets all links to a module
to a completely symbolic form, it is possible to replace
one of the mOdules without effecting the modules to
which it is joined . This means that modules can be
joined without sacriflcin~ any flexibility. Anyone of
a set of joined modules may be repl~ced by an
experimental Version with onlY the links to an~ fro~
that partiCUlar module being converted back to symbOlic
form. Then when the new version is debugged, it may be
joined to the set bY simply ere-linking references
between it and other modules.

This amounts to a facility f or creatin~ "macro-modules"
with the ability to easilY modify and replace
comeonents.

(6) NEW modu le AS processname

The module must be a message module. The module is
loaded and a copy of the data segment is made. A
process record for the new process is created with the
status set to unstarted. The process number is stored
in the specified processname for later references to the
process. The processname may be any Variable in the
process executing this operation .

(7) KILL proceBBname

The na med process is no longer needed. Its data segment
may be dele t ed and the aSSOC iated storage reclaimed .
Any linkS to the data segment must be reset to symbOlic
form. Any activation recordS associated with the
process may be reclaimed. Finally the process record
itself may be freed.

7

1.6b

196c

•

)

WH,P 29-MAY-71 12: 12 7053
A System for Modul~r Programming

If this was the only process associate~ with the module~
then the module is released.

(81 dyn amic linking 1~9

This operation involves the conversion of symbolic
references to a variable in another process (or unit
module) to a segment number and disPlacement within that
segment . This operation may involve loading the module
if it is not yet a part of this program. lF 9a

Dynamic linkino is called tor ifflPlicitly through
references to names 1n other processes . There are three
categories of lnterprocess references and associate ~
categories of dynamic linking. 1~ 9b

(1) callan a procedure 1n a unit module 1 ~9c

The call references a record 1n the linkage segment
on the process containing the strings naming the
moOule and the procedure to be called . 1 99cl

TO translate these into a segment numbe r and
displacement it is necessary to first make sure the
module is loaded and a process correspond in ~ to the
module created. Then the external symbol list for
the mOdule is loaded and t he procedure na me ie found
in this list. This provides the location of the
procedure within the code segment of the module. The
segment nUmber of the code segment may be Obtained
fro m the process record for the one process
aSSOCiated with this module. 199c 2

The segment number and displacement are s ave d in the
link record in the calling process's 11nka ~e se~ment
and the values and the record is ma r ked as linked so
that later uses will simply use the previously
computed data. 199c3

The components of the link record are 1 ~9Ch

de fined flag 1 ~9 ch a

true if both se gme nt number and diSPlacement
are known for this link

segment type flag

8

)

)

)

WHP 29-MAY-71 12:12 7053
A System for Modular Programming

true if know segment type (code or datal

segment type

segment number flag

true if know segment number

segment number

displacement flag

true if know disolacement for this link

displacement

pOinter to the symbolic name of the mOdule

pointer to the symbolic name of the vari able or
procedure

The flags are present because it muat be possi ble to
undo the linking and revert to symbolic for m when the
seg ment referred to bY the link ceases t o exist in
the jOb. The pointers to the symbOlic names ~ ust be
preserved even after the values have been determined .
The symbolic form may be restored bY simPly turnin ~
on the bit that says the link needs to be evaluated .
The flags also playa role in pre linking modul es (eee

1 ~9 c 4c

1 ~9 c '~

1~ 9c' d l

1 ~9 c 4e

1 ~9c . f

1 ~9ch h

1 ~9 c 4 i

the JOIN operationl . 199c5

TWO symbol tables are needed in each module to
provide for dynamic linking.

one contains the symbolic names used by t he module
in references to other modules . ThlS is called
the outeymbol table. For each such name the
outsyrnbol ·table simPlY contains the len~th of the

199 c6

string and the string. l ~9c6a

The other table contains the symbols in the modul e
that may be referenced from other modules. This
is called the insymbol table. There a re two part s
to the insymbol table: a hash table and a set of
string records. l (9c6b

The hash table may be any length . The first
word of the in symbol table gives the l e ngth of

9

)

)

WH·P 29-HAY-71 12: 12 705 3
A System for Modular Programming

the hash table. The compiler will piCk an
appropriate hash table size dependin~ on the
number o£ symbol! 1n the insymbol table. Each
nonZero entry in the hash table points to a
list of strings all hashing to a value which
eQuals the index for that entry whe n ta ken
modUlo the table size. Thus to look up a
strin~. hash it. diVide the hash by the table
length, use the remainder as an index into the
table to find a pointer, follow the c hain
soecifled bY the pointer until fin d the strin~ .

lR 9c6 b1
Note : mUltip le entries a r e chained from a
single hash to facilitate incremental
changes to the lnsymbol table. 1 99 c 6bl a

For each string there is a record contalnin~: 1,9c 6b2

a pointer to the next string on thie chain
(or 0 if this is the last record on the
Chain), 1 99 c 6b2~

code or data flag (determines Which se «ment
contains th1~ variable), lv. 9c 6b 2b

Value (displacement),

length of string,

string .

(2) accessing a Variable in a unit module

LiKe case 1, excep t th"e data segment number is saved
rather than the code segment number .

(31 accessing a variable in a messa ge process

An examPle of thiS is a reference to a pa rticular
port in some process .

The Symbolic name of the Variable is kept i n the
linka ge segment . The process number is used to l oad
the symbOl list of the corresponding mOd ule frOm
Which the variable can be found .

for connecting ports, the process number a nd oort

10

19 9co b2c

1 ~ 9 c6 b2 d

lK 9c 6b2e

1 ~9d

1 ~9d1

l<ge

)

)

)

WH·P 29-MA Y-71 12:12 '1053
A System for Modula r Programming

number are saved as described unOer the CONNECT port
TO nert ope ration.

The diSPlacement corresponding to the variable name
depends on the mOdule. Since this category of
reference is based on process number rat he r than
module name, SUbsequent references to this "variable
in process " cannot automatically use previous
res ul ts . Instead . keep the variable's di splacement
and mod ule name (or nUmber?) in the linKage !egment .
when next go to access the variable. check if same
module . It it is then can use the old va lue, else
start over.

The above three categories are the only kinds of
interprocess linking. Calls to procedures in mes sage
processes are onlY allowed from within th a t pr oceas.
control may be Passed to a message process onlY bY
senain~ a message to it .

191 CONNECT port1 TO port2

ports must be connected befor e me ssages can be Bent or
received over them.

The ports being connected cannot be in the same process.
80th of the ports may be in processes other than the one
aoing this operation. The syntax for specifying a port

19ge4

H9f

19lO

1 9l O.

in another process is t'portname IN processname t'. 1 9l Ob

The d~ta defining a port is kept in the data s egment of
the process. Thus there is a unique set Of ports for
each proces s .

A port consists of a fla~ Bayin ~ whethe r the port is
connected or not. a pro~ess number and a por t number for
the port to Which this port is connected. and if this i s
an initialization port. a pointer to a sta rtin g location

1 9lOc

Within the code seg ment. 1 9l Od

The first me ssage to a process causes it t o be
started and must come over an initialization Dort.
The dec laration of an initialization port inClUdes
the name of a procedure in the modu le Which is used
to de termine where the process is to be actiVated.
BY having several initialization ports , i t is
possible for a process to be started in diffe rent
locations depending upon Which port is used . l ~lOdl

11

\)

)

)

WHP 29 - MAY-71 12:12 7053
A Syste~ for Mo~ular Programming

The CONNECT operation checks that both ports ar~
disconnected. then stores the appropriate data in each
and marks both Of them as connected.

110) DISCONNECT port

This operation does nothing if the por t is not
connected .

othe rwise both this port and the one to Which it 1s
connected are marked as disconnected . The port need
be in the process performing the operation.

Ill) REPLACE portl BY por~2

portl must be connected . Port2 must be disconnected.

not

Let port) be the port to Wh i ch portl is connected . Then
this operation is equivalent to DISCONNECT portl
followed by CONNECT port2 TO por t). except that the
identity of port) need not be known be the process

l~lOe

l~ll

1911a

19l1b

1'12

1~12.

performing the operation. 19l2 b

(12) message sendin~ 1.13

In the initial i mplementation 6 a message will consist of
a vector of scalars, like the arguments or the results
of a procedure call . Eventually all of these shoUld be
generalized to allow arbit rary data structures . 19lJa

When process p sends a message over its port k . then

(a) confirm that port k is connected 6

(bl stop process p and set its state as pending a
message on port k .

(c) Save the react i Vation location for P.

(d) let q. m be the procesa . po r t to Which k is
connected . confi r m that Q is either pending a
message on m or else is unstarted and m is an
initialization port.

(e) and finally. activate q after settinR up the
segment pointers.

The process q will execute code to accept the message in
12

1.13b

1 ~13b1

1~13b5

)

)

)

WHP 29- MAY-71 12:12 7053
A System for Modular Progr~mming

mUch the same manne r that argu~entB are pa5sed to a
proceoure or multiple results are r eturned from a call. 1 913c

process p will be reactivated when a message arrives
back over its port k. Normally this will be a meBsaKe
from q over m, however since connections may be mOdified
While processes are active , the r eply maY come from some
other port i n anothe r process . 1913d

The message sending described above c auses control to be
passed whenever a message is sent . This may be called
the "send and wait for r eply" operation . Other message
operations are possible. 1 913e

Four possibllties are 1 913!

send and wait for rePly , 1~13 1

Bend and continue processing, 1913f2

rec eive, and 1~13fJ

receive from any of a set of ports. lR1Jfk

The detailed effect of these ope r ations ~epends on
whether the s pecif ied message pa th 1s currently in a
synch r onous or asynchronous mode (an idea from Bob
Balzer ' s ISPL).

When a me ssage is sent over a synchronous P&th, the
sending process is blocked and the r ece ivin, process is
activated . The sending process is reactiVated ~hen a
r eplY is sent back over the same message path . Thus the
only valid operation with a synchronous messa~e path is

1 v. 13~

send and wait for reply . 19lJh

When done with an asynchr onous path , a Bend and wait for
replY ope ration can have a different effect. The
messa~e is put in the message path and the sending
process is blocked. The receiving process wil l not
automatically be activated however. It will be
activated if it haS been waitin~ for a message on this
path and it has not been explicitly stopped, otherwise
Bomeother process wi ll be choosen bY the system for
activation . 1 913i

In gen~ral. if the receiving process has been stopped
(by the Iistopil command) then it will NOT be activ~ted as

13

)

)

)

WHP 29-MAY-71 12:12 7053
A System for ModUlar Pr.ogramming

a r esult of sending a message to it. It must first be
restarted bY a "Start process" command .

The syntax of a send and wait for reply operation is
based on the syntax for a procedure call. The message
sent corresponds to the arguments while the reply
corresponds to the mU ltiple results. The word "PORT"
followed bY the port name replaces the procedure name of

1 913 .1

the call . 1913k

Formally , the syntax for a send and wait for reply is 1913~1

{replyl 14-/ IIPORT" port {I ([mess a ge) [reply2} ')]
H13kl.

where 1 ~ 13k2

replyl ~ Ihs; 1913K2 a

the first word of the reply message will be
storec1 here.

port = name of a port in this process;

the message is to be sent over thiS port

mes sa ge = expression $ ('1 expression);

~he expressions are evalua~ed an~ sen~ as ~he

1.13k2ol

lU3k2 b

1~13k2bl

lU3k2c

message. l~l3k2cl

reply2 = ': lhs S ('I Ihs) j

any words in ~he reply after the first ~re
stored into these locations.

lhs = any variable form that can appear on left
hand aide of an assignment statement;

Just as in calls, messages may De sent and replies
accePted Which consist of no values. sucn null
messages serve to transfer control to another
process.

1913k2d

1.13k2dl

lU3k2e

I F. llk3

The other message operations are limited to asynchronous
P.ths. 1 9131

The sen~ and continue processing operation simply adds

)

)

)

WHY 29-MAY-71 12:12 7053
A System for Modular prog r amming

the meseage to the queue then allOWS the sen~in« process
to continue . 1 ~13m

The syntax of a send and continue processin~ operation
is 1913n

" PUT " por t I f me ssage I); 1~13nl

The r eceive operation allows the reQuestin~ process to
continue if there is a message waiting for it in that
path . Otherwise the process is blocked until a messa~e
does arrive , and the system chooses some other process
to activate . 1~130

The syntax of a re ce ive ope ra tion i s 1 91 3p

!'G ET I
• result "FROM '! por t ; 1~13 pl

resUlt = lhs I '(l hs S ('. lha) I); l a:13p2

When a message path is created bY the I'connect'l command.
it is init i allY put in the synchronous mode . The mode
of a messa~e path maY be chlnge~ by the command "Make
port (SynChronous I ASynchronou8)". It is illegal to
make & pa th synchronous if there are messages from
either process in the path , however ~here may be a
request in ~he path from the other process. This
r estriction i s to ensu r e pr oper synchronization of the
messages and r epl i es during later use of the path. 1913q

If message paths are being used asynchron ously a pr ocess
maY wish to output seve r al messages, then wait for a
replY over any of a set of ports . It will also be
des irable t o be able to execute a oarticular statement
depending on which po rts ac tu allY provided the rePlY.
The syntax for doing this is 1~13r

"FROM " Spstat "END " ; 1 ~ 13rl

pstat = source "GET" result ': statement

source = port $ (1, port);

, ..
"

Any of the listed ports may be the source of the
r eplY .

Example:

15

1 ~ 13r 2

1 d3 r 3

1 9l3s

)

)

)

WH.P 29-MAY-71 12: 12 7053
A SYstem tor Modular Programming

FROM 1.13 s1

Dartl GET c : CALL Pi

port3 GET la. bl CALL q; lU3'lb

port2, portS GET c : CALL r; 1913s1c

END; 1 ~lJs2

When this statement is executed the fOllowing ta kes
place. First the listed ports are inspected in the
order they appear. If a message is found waitin~ on one
of th e ports then it is stored in the result and the
associated state~ent is executed . If none of t he listed
ports has a message waiting , then the process is blocked
and r eact iVated when a message arrives on one of the
porta. 1913t

(13) test for messages 1914

When ports are used asynchronoUslY . it may be valuable
to determine Whether or not t her e is a meSB~e waitinR on
a partiCUlar port rather than simplY hangin~ for the
~rriv~l of a message . 1914a

This operation returns ~he number of messages waiting on
the specified port. 1914h

Another flavor of the operation mi~ht return the number
of messages wai~ing on all ports tor the process . l ~ lh c

11,1 STOP process lR15

The named process will not be activated, even if
messa~es arrive for it, until a START process command is
executed for it. If no process is named then t he
process executing the com mand is stopped. 19l 5a

1151 START process H16

This operation allOWS the named process to be activated
when a message is sent to it. Reverses the effect of
the ST OP process command . Note that even a "STA RT"ed
process will no~ be activated until a message is sent ~o
it. l R16.

(1 6) error recovery 1~17

16

)

)

)

w~p 29-MAY-71 12:12 7053
A Sy!tem for Modular Programming

7111 how should this be handle~ 1111

MOTIVATION FOR A DATA DEFINITION FACILITY

The pu r pose of a data definition facility is to give the
pr ogrammer a means to work as di rectly as possible with his
choosen data structures, letting the lan~uage system do the
mapping into machine acceptable form.

The programmer de5i~ns data structures which are (hopefUllY)
apcropriate for hiS pr Oblem . A program then involves
constructing, teating, and manipulating Objects of the choosen
structures. However, common pro gramming lan gua ges tend to
limit the possibl e structures or make their use very
difficult. " Highe r level~ languages like Algol provide very
limited choice of data structures but powerful means for
testing and manipUlating them. Assembly or machine oriented
languages allOW the pr ogrammer to construct arbitrarily
complex structures, but at the cost of mapoing those
structures into a form acceptable to the machine. i.e. hits in
words. This me ans that a great deal of the programmint effort
goes into convertln~ the choosen data strUctures into bit
sequences . an occupation often referred to as "bit twid dlln~" .
This conversion must be done every time an operation on a
structure is pe r formed and therefore can be very time
consumin~ and a ~reat source of error! .

By means of a data definition facility, the programmer can
design complex structures and t hen operate on them in a
relatively direct manner with the lan~uage taking

1~17a

2

2a

20

r esponslblity for implementing the "bit t~iddling " aspects . 2c

In addition. by letting the language system "know " more about
the def i ntion of the structures, it can provide run time
Checking and debugging aids to catch a ttemps to construct
Objects that do not conform to the definitions . Furthermore.
1n an interactive system. the data may easily be Oispl~yed
according to the programme rs definition which shoulO prove to
be a conSiderable debugging aid. 2d

The £ollowin~ sections describe a facility for de£inin~ dat a
structures and for constrUcting, testing. and manipulatin~
Ob jects of the defined types. The syntax definitions a re
given as abbreviated Tree Meta pars e rules having the
following torm. 2e

A right part of & rule consists of one or more
alternatives. It there is more than one alte r native. they

17

)

)

WH.P 29 - MAY-71 12: 12 7053
A SYstem for Modular Programming

~re separated by slashes (I). Each alternative conaists of
a sequence of elements. A sUbsequence enclosed in square
br~cketsl (and i, is optional . All other elements in the
sequence nust occur in the specified order.

The elements may be any of the following:

the name of a rUle;

a callan a basic recognizer such as . NUM fo r a numbe r;

a string enclosed in quotes (II);

a single character string indica ted bY an apostrOPhe (')

201

2e2

2e2a

2e2b

2e2c

followed by the character; 2e2d

a list of alte r natives enclosed in parentheses;

a dollar si gn (S) followed bY an element, which means a
abitrary number of occurences (inclUding zero) of the
element.

Comments enlosed in percent s i gns (%) maY be embedded
anywhere in the rule . The rule is terminated by a
semicolon (;).

DATA DEFINITION SYNTAX

data . definition ~ data.type . name (inctexdefi ,­
data . expression;

If there is an indeX then Objects of the ~efine d type
consist of an array of Objects of the type given by the
data . expression . otherwise, Objects of the defined type
consist of a sin~le element of the specified struc ture.

I (I $ I i I

Meaning indefinite numbe r of elemental The number of
elements may be changed at run time. New elements
may be added anYWhere in the sequence and ol~
elements maY be dele ted trom anYWhere in the
sequence.

' f ran~e.name 'i;

18

2e2e

2eU

2!

2!l

2!l.

2£2

2!2.

2£2b

)

)

)

W&P 29-MAY-71 12:12 7053
A System for Modular Programming

Index maY take on values from the specified ran~e.
Ran~e de!intions are discussed below .

data. expression = dconcat S (" Or " dconcat);

A single data . type may have alternative structureS . If
there are alternatives , each one may be given a name.

dconcat = {data. type. name ':} dprime S I"concat" dprime);

Structures may be conc atenated to form new structures.
A concatenation SimplY means an element of the first
type followed by an element of the second type.

dPrime ~ ' { component $ (" component) ') I data . space;

preeXisting types may be used in concatenations.

For examPle a "nOde II might be defined as a "list"
concatenated with an integer, where a list would be
defined elsewhere in the pro~ r&m .

Alternatively. a sequence of components may be ~iven.

comconent = [component . name [1ndexdef1 ':1
data. expression;

Each component may be named. These names may oe used in
ways deec ri oed beloW. It the component is indexed , then
it is callea an array type co mponent, and consists of an
array of elements of the type give n by the
data . exp r ession . Otherwise, the component consists of a
sin~le e lement of the specified type . (Note the
parallel between definition of a data type and the

2f2b1

2£3

2!3a

2 fila

2f5

2f5a

2£5a1

2£6

defintion of a component within a type) . 2£6a

data . space = 2£7

t (data. expression ') / 2£78,

It data. space I 2f7b

A pointer to a structure of the specified tyee . 2f701

data . type . name / 2f7c

A type defined in the program . 2f7cl

19

)

)

)

WKP 29 - MAY - 71 12:12 70S3
A Syste~ for Mo Oular Programming

'::1: exp I

The component 1s fixed as the value of ~he expression
at the time an object 18 created (not the time of
definition of the structure). 2£70 1

basic.typeSj

ba.sic.types r:

"Nil" ~ the e~Pty data space% I

%a.ny type. no restrictions on the type of structure
that may occur in this positlon%

nStrine.: 1I I

nCharacter" I

UBiV' (I (exp ') };

Value of exp specifies length 1n number of bits . EXP
is evaluated at each instantiation. If exe is absent

2£7e

U 8

2f8a

2f8b1

U 8c

2f8~

2f 8e

2f8 f

H 8g

then component is assumed to be a single bit . 2£8, 1

CONSTRUCTORS 2p

Execution of a constructor makes a new object of t he
specified type (an action referred to as "insta.ntiation l')
aCcording to the given parameter list M and has that Object
as its value. 2g l

constructor. "New" data.type . name {para~list}; 2 ~ l2

unspecified components are initialized to the special value
"unde!ine~" and nay not be referenced until they are
aS8i(ned a value. Thus if the parameter list is not
present, all components are simply set to un~ efined . 2,2

If present, the parameter li~t is of the follo wing form :

parameter . list = ' (para~eter 8 (1, paramete r) I} ;
20

20

20.

)

)

)

WH~ 29-MAY-71 12:12 70 53
A System for Modula r programming

parameter: (component . name I :) coaram; 223 b

If the component name is not given, then the oosition
in the parameter list is assUmed to correspond to the
position of the component in the defined type. Thus
may use component names to avoid ambi~uity and leave
them out Where they are not necessary. 2~3bl

If component names are used then need not specify all
the Parameters (those unspecified will simply be set
to undefined). 2~3b 2

This works for specifying SUbcomponents also: the
programmer is thUS free to Use component names or not
in specification of Bubcomponents indendent of their
use in component specification. 2~3b3

cparam a 2~3c

parameter. list %al1owing for nest1ng% I 2g3Cl

'1 %initial value: undefined% I 2g3c2

I (eXp $ (• J exp) I) I 2~3c3

%for entering an arbitrary numbe r of e lements in
~n array type component% 2KJcJ a

exp %value of exp becomes the component%; 2g3c~

If there is more than one alternative for the data .tYoe the
alternative constructed will depend on the parameter list .
The constructor chooses alternatives from left to right in
the def inition Of the type and tries to build an Object
representing that alternative . If the arguments are not
compatible with that alternative then the next one is
tried. If the constructor is un ab le to build an object Of
the specified type with the given a rgu~entB the
construction f ai ls. 2gh

Examples: ?~5

Define 2R5a

n06. , 2g5.1

{head : {alink: atom, blink: atom}, tail: Integer} 2g5ala

2l

)

)

)

WH.P 29-MAY-71 12 : 12 7053
A System fo r Mo~ular Programming

o r {seq IS}: Integer};

atom = 'node Or Nil;

New node {head: (alink: tx , blink : tyj , ~ail : n1

The equivalent form without. component names is

New node [{ t x, ' yJ ,nJ

New node { seq: (w, x , Y. z)]

New node (seq : 11

PREDICATES

predicates allow r un time testing of objects. The
predicates may tes t both structure and value.

The syntax for a structur e. tes t is as follows:

structure . test =

data. type. name [test . components) I

May test 1 f the Object is of the given tyee
independently of testi ng ita SUbstructur e.

If structure . test I

Tes t s if t he object i s ~ poi nter to the structure

2.Sa1b

2g5a2

2gSb

2 gSb1

2aSb2

2.Sc

U5d

2h

2h1

2h2

2h2a

2h2al

2h2ala.

2h2.2

soe c if1ed by the str uc ture . test. 2h2a2a

basic . typeJ

test . coJIIPonents iii I f SCOJllP 3 (I , scomp) 11J

2h2aJ

2h2b

scomp = [component . name 1: 1 (2h2c

As in the construc t ion of Objec t s, if the component
name is absent, t hen it is assumed that the order of
the componen t in the lis t correapon~s to its pOsition
in ~he definition of the type . 2h2c1

test.components %allowing tes t ing Of sUbcomponents% I 2h2c2

,- %a ny element% I 2h2c3

22

)

)

)

WKP 29-MAY-71 12'12 7053
A System for Modula r Program~1ng

' S ' an arbitrary number of any elements% I

binary . relation %an element satisfying this
relat1oni ;

binary. relation : ("NOT") binrl;

binrl •

(II: I IN) (struct.ure . test I sum) I

(11)_11 I "(_II I '(I '» sum I

" IN" (' (I I () B urn I I a urn (') I '});

This ~efin1tion of binary rel&tion is useO for all
lORieal tests, Thus wherever can test the value of an
element will also be able to simultaneously teat. its
structural composition.

In particular, the I'Case ll statement will allow Tree
Meta~11ke testing of strutures .

case : "Case" exp "From" Seases "Endcase" statement;

The value of the exp, Which may be an arbitrarilY
comolex Object, is used to chose one of ~he caBes.
Each of ~he cases is headed by a tes~ for either
struc~ure, value, or both. The first test which
succeeds determines Which of the cases will be
chosen. For structure tests, the test is true if th~
Object resulting from the eV&luation of the exp has
the specified structure. If none of the tests

2h2C'

2h2C5

2h2~

2h2e

2h2e1

2h2e2

2h2e3

2h2£

2h2~

2h2h

Bucceeds~ then the Endcase is executed. 2h2hl

cases;r ctest S (" Or" ctestl ': sta~ement [';);

ctest ;:

structure. test I

~ for testing structure as well ~s value ~

binary . relation ~for testin~ value of simple
variables l ;

Exa.mPle :

23

2h2i

2h2j

2h2j1

2h2j1a

2h2j2

2h2k

)

)

)

w~p 29 - MAY-71 12:12 7053
A System for Modular Programming

Case x From

nOde{{tnode . N11J .-J: Be ~ 1n •• , End

nOde{ -~ >SOO} : • •••

atom{~tz} Or fAny Or =0 ; ••••

EndcaBe ••

SELECTO RS

selectors al low acce ss to components of structures .

selected.var ~ Sselectors pointer . primary ;

The pointer . primary is an objec t of type pointer .
example ~ it maY be a pointer ~ype variable or the
of a cal l to a pointer valued procedure .

selectors = 1ft I qualified . name "of";

A selector may be applied only to a pointer. A ' 0
refers to the quantity pointed to bY the pointer .
qUalified . name refers to a specific component, or
element of an array type component . of the Object
pointed to bY the pointer,

QUalified . name :

(data.type . name I component . name) [in~exJ $ (':
SUbCO"pOnent) ;

for
result

A

A Qualified . name may start with a component name as long
as the component name ~efines & unique co mponent.

sUbcomponent: (c oMPonent . name I , NUM) {in~exJ;

These define Which of the SUbcomponents is to be
selected , and if the SUbcomponent WI8 defined to be a n
array, then Whi c h element ot the a rr ay ,

If a nUmber is used instead of a component name , then i t
selects the SUbcomponent in that position (with the
pOSitions numbered from left to ri~ht starting with
one) . Fo r example ,

2U

2h 2k1

2h2k1.

2h2k1 b

2h2 k1c

2h 2k1 d

21

211

21 2

212 .

213

213.

214

214.

2i Ub

215

215.

21 Sb

)

)

)

W~P 29- MA¥-71 12:12 7053
A System for Modular Progra~m ing

if x has n sUbcomponents , then x:3 selects the third
one.

If X is an array of elements, each element having
several components, then x[nJ : 3 selects the third
component of the nth element in the arraY.

or, if the components of the elements are nam e ~ a. b ,

215b1

2i5b2

and c, then an equivalent selector is x{n}:c. 2i 5b3

index =: I ((exp I I $) I J ;

The value of the expression must be an element from the
ran~e for which the component is defined.

If the component WaS defined to be an array_ then it may
be indexed with a $ in a "Foreach " statement (see
below) •

POINTERS

A pointer to a selected. variable is formed by writtin ~ 't

216

216.

216 b

2,1

[ollowed bY the selected.variable. 2jl

Iterative construct 2X

Need way to move thru the elements of an array . 2K1

roreach statement 2k2

llForeach inh selected.variable "Do" statement; 2k2.

The selected variable should be an arr a y . 2k3

Inside the iterated statement , the current element of th e
array may be referred to as selected.var(S}. 2k4

If the component was defined to be ~ n array indexed by a
certain range, then S will ta ke on the various va lues 1n
the r a. nge.

If the component was defined to have an arbitr a ry number
of elements {with (S}) then S simPly indexe s t hru the
elements.

Can test if selected .var(S) is first or last of
seouence . Need to be able to insert and delete from a n
iterated component.

25

2l<4a

2Hc

)

)

)

wnp 29- MAY-71 12:12 7053
A System for Modular Programming

A few que9~1ons : 21

I need to be able to be able to manipulate SUbstrings. have
po1n~erB to character within a Btrin~ ' 211

what about association of code bOdy with structure??? 212

how coordinate range definitions with structure definitions 213

INORE MENTAL LANGUAGE USING NLS 3

GOilS 3a

Be able to USe from NL5 . 3&1

Have ~LS available to study and modify source as debug.
The de bugger must be able to interface with NLS so that
can map back and forth from NLS Bource to object code.

Be able to use to write NL5 .

The s ys tem must be able to handle all of NtS a nd
aSSOCiated systems such as PASS~.

And the compilers . This means that Tree, 3Pt . and L10
must alBo be included 1n the system

3a1a

3.2

Ja 2a

3.2 b

Must h~ve control over the global structure of the progr am 3&3

Able to cause all from particular set of input files be
grouped together in a set of object pages .

GLOSSARY

dependenc y list

for a proceaure thiS is list of all the locations where
the procedu r e references a global name

occurrence list

SMA P

PMAP

description blOCk

For each na me have
26

3.3.

3b

,bl

3b1.

3b2

3b3

,b5

30

)

)

)

W~P 29- MAY-71 12:12 705 3
A Syste~ tor Modula r Progr&m~ing

DESCRIPTION BLOCK

bickPoin~er to name of procedure (hash nu mber). 3cl.

type : procedure I data ,clb

number of args, results (1f procedure) 3clc

pOinters to dependency Chain, occurence chain 3cld

pointer to statement chain in SMAP 3cle

pointer to lOcal name table (it procedure) Jclt

starting address, length ,cl~

date/time/initials when last compiled 3clh

For each procedure also have 3d

LOCAL NAME TABLE J dl

containing information about the names that are limited
in scope to this procedure 3dl;

Mappin~ frOM source to Object and object to source

when the user places a breakpoint at some (source)
statement, the system must be able to determine at which
Object code location the actual break instruction is to be
placed. 3el

oonversely, when an event, such as the execution of a break
instruction or ann illegal instruction, takes place in the
object program, the system must be ab l e to show the user
the source statemen t which corresponds to the Object
instruction in question . 3e2

The system must construct Qata structures Which will allOW
easy mapping fro m source statement to object instruction
and back. The following describes the choosen structures
and how they are built by the system. 3~3

When compiling a procedure , the variable lc specifies the
number of instructions which have been produced , the
variable oldlc specifies the value of lc when the current
source Statement was input, and the variable cSid is the
state~ent identifier of the current source statement. 3e4

27

•

)

)

)

w~p 29-MAY-71 12:12 7053
A System for Modular Programming

At start of compilation ot a procedure.

lc ~ oldlc ~ 0 and csid ~ SID of first statement.

When reach the point where are ~oing to begin the carse of
a new statement. construct an entry in SMAP desc rib1n~ the

3e4a

3e401

orevious statement. 3e5

The statement is uniquelY specified by its (file H. sid)
pair Which will be re!ered to as its SIP (statement
identitic.tion pairi.

The SIP is hashed to get an entry into the table SMAPHASH .
This entry points to a list of all SMAP entries with that

3e6

particular hash . 3e7

search the list of entries to make sure that this
particular SIP does not occur. (It it does then a single
statement is being used in more that one place Which is
definitely a no~no. Treat as a syntax error.) 3e8

Add a new SMAP entry to the list fo r this hash number . 3e9

This list is dOUbly linked since must be able to easily
remove en~ries.

NOW link the entry into ~he chain of entries for the
procedure being compiled. This linkaKe need not be double
since will never be deleting an entry from the middle of
the list,

NOW the data fields of the new entry are tilled in. These
con5is~ ot the SIP for the statement ~ the hash H for the
procedure being compiled , and the current values of lc and
oldlc.

The hash * will later provide the means to find the
starting address for the code buffer associated with
this procedure. The saved values of lc and oldlc five
the uoper and lower bounds w1thin the code buffer for
the instrUctions produced While thiS statement Was
input.

The last step after completing the SMAP entry is to set
oldlC to the value of lc and CBid to the SID ot the current
input statement.

To map an SIP to an address:

28

3.10

3ell

3.12

3e12a

3.13

)

)

)

w~p 29-HAY-71 12:12 7053
A System for ModUlar Program~ing

Hash the SIP and follow the chain until find the
appropriate SMAP entry.

Fino the starting address for the buffer (using the hash
~I . 3e14b

Use the saved value of oldlc to find the first location
Which was produced for that statement.

TO map an address to an SIP:

Find the buffer in Wh iCh the address lies (a process a to

)e14c

3015

be deecribed later) . 3e15~

Follow the list of SMAP entries for that buffer until
reach one with an oldlc. lc pait wich includes the
instruction.

Read the SIP iron this entry .

DependencY/Occurrence List

When a procedure is recompiled it may change in size and
need to be relocated in the object program . References to
this procedure must then be mOdified to use this new
location. The syste~ thus needs to be able to find all o£
the re£erences to a particular name . This is done bY
maintaining a reference list for every name .

(T hi s list can also be of value to the programmer as a

3e15b

3f

3!l

dynamicallY ucdated cross r e£erence .) 3f18

When a proce~ure is recompiled one of the first steps is to
remove all of t he references that we r e previOUSly listed
for it. (NOTE : these are references BY the procedure, not
TO the proced ure.) J f2

A neW list of references bY t he proce~ure will be
created as the procedure is recompiled .

This list Of references by a procedure is called its
dependency list. The list of r eferences to a name is
called its occurrence list.

AS the procedure is compiled the dependency and occurrency

3f2.

3!J

lists 3f 4

29

)

)

}

•

•
WMP 29 - MAY - 71 12 : 12 7053

A System fo r Modu lar Prog ramming

(JOU RNAL>7053 . NLS; 1. 29 -MAY-71 12:14 WHP ; Title:
Paxton / WHP ; Di stribution: Wil liam H. p&xton/WHP ;
module seg~entation proce ssesj Clerk: WAP i
Or igin: (PAXTON>MOD . NLS;3 , 16 -FEB- 71 17:33 WHP ;

Autho rl .): William H.
Keywords ; pro~ r am~ in R

)

)

)

•

WHP 29-MAY-71 12:39 705h
An IntroOuction to the Augmentation Research Center

This Paper will be in the proceedings of the NATO Advanced study
Institute on Di~Play Use tor Man-Machine Dialog .

)

)

)

WKP 29-MAY-71 12:39 70S,
An Introduction to the Augmentation Research Oenter

William H. Paxton
Stanford Research Institute
Menlo park, California 1

To appear in the proceedings of the NATO Advanced StUdy Institute
on Display Use for Man - Machine Dialog, held in Erlan~en. Gercany,
March 30 - April 7, 1971. 2

Abstract: 3

An outline of some of the Objectives of the Augmentation
Resea rch center and a discussion of the prototype system bein~
de veloped there.)a

Introduction:

This paper provides a brief outline of the goals and a
discussion of the results of a research ~roup that has been
concerned with diSPlay use for man- machine dialog Since t he
earlY 1960's. The Aug~entation Research Cente r (A RC), headed
by its founder Dr . Douglas c. En~elbart ~ includes about th1r~y
members who are actively engaged in both the use and the
development of a proto~ype augmentation syste~ .

Goals:

The research effort at ARO is centereO around t wo interrelated

4

'a
5

Objectives: 5a

1) an exploration of various possibilities of Ruv, men ting
the performance of intellectual tasks , and Sal

2) the experimental development of a computer-based
augmentation system.

In order to augment the perfor mance of the intellectual work
of an individual or of a group~ increased capabilities in
certain domains must be provided. In particular there should

1

5a2

)

)

)

WHP 29-MAY-71 12:39 705.
An Introduction to the Augmentation Research Center

be an increlse 1n the cap~c1ty to approach complex situations
and to identify the problems therein, to gain comorehension of
the nature and context of these problems, and to derive
solutions Which satiSfy given constraints . These improved
capab111t1e~ should provide both quantitative and qualitative
improvements in the accomplishment of intellectual tasks . In
addition to faster and more thorough understanding of problems
and, therefore, faster and better solutions, there should also
be comprehension of problems 1n situations that previOUSlY
appeared too complex and, thus, SOlutions to problems that
seemed unsolvable .

Historically such increased capabilities have been achieved
through the use of many different aidS. Some Of the ~ost
si(niiicant have been language, writing , bOOks , and recentlY,
the computer . These all augment human capacities by the
externa1ization of concepts in symbolic for m for both

5b

manipUlation and communication. Sc

The ARC Augmentation system: 6

By its very nature a computer is well-equipped to aid man in
the manipulation and communication of information. A
computer - based augmentation system can thUS be expected to
provide powerfUl facilities for the continuous creation,
stUdY, and reVision of symbOlic structu r es . Such a system can
be the normal daily working environment for an individual or
group . In effect, it can be an on - line office -- complete
with powerfUl means to organize ideas, edit wr iting, and stUdy
information. An on - line sys t em of this sort can provide
access to communication systems, c lerica l services, and
special-curpose facilities.

The development and experimental use of such an aUKmentation
system constitute the principal activities of the Augmentation
Res earch Center. The rem&inder of this paper describes some
of the features of this prototype system knowns as NLS. an

6>

acronym for "on-line system". 6b

The user ' s access to NLS is by mean s of a display console .
This diSPlay provides vieWs of files Of information, as well
as other visual indications Of the state Of the system. The
user's input ~evices at the display console are a keyboard , a

2

)

)

)

WHP 29- MA Y-71 12: 39 70S .
An Introduction to the AUgmentation Research center

keyset, and a selection device. The keYboard is a standard
typewriter keyboard except for the addition of a few keYS for
special functions, The keyse t consists of five keys Wh ich maY
be depressed in combinations to give thirty-one possible
chords. Each chord represents a different c haracte r with t he
result that the key set provides an alternatiVe to the keyboard
for many input operations. In particular most comm ands can be
performed with one hand on the key set for character input and
the other hand on a special selection device, c a lled a
"mouse ll

, for operand specification. The mouse consist s of
orthogonally mOUnted sensors Which determine horizontal and
vertical pOSitions of a cursor on the display screen. By
moving the mOUse over a surface. the cursor is made to move in
a Similar path over the screen. 6c

The files Which are viewed and manipUlated at thiS displaY
console are hie rarchically structured. The information in the
files has a tree structure with a string of text and cerhaps
other information associated with e,ch node in the tree.
There are commands to edit both the structure of the file and
the textual component of the node. 6~

There are typically three Phases to the execution of suc h
commands: operation specification, operand speCification,
an d confirmation. The man-machine dialog in these command s
has been carefUlly considered. In partiCUlar the commands
are desi~ned to allow defaUlts. iteration with minimal
respecification of operandS. and backup on errors afte r
partial specification .

The oceration specification for an editing comman d involves
naming the type of operation such as ~insert", "move", or
"replace~, and the type of structural or textual entity
such as "characte r", "word", "statement", or "branch". Any
operation type maY be combined with any entity type to for m

6d1

a valid command. 602

The syntax of the edi~ing commandS has been d~Bc r1bed in a
BackUs- Naur type of meta-lan~ua~e both a5 a pe~a~o~ical aid
ana as a desi~n aid. The description provides concise
documentation for the user and suggests pOSSible extensions
and improvements to the system designer . 6d3

3

)

)

)

VHP 29-MAY-71 12:] 9 705.
An Introduction to the Augmentation Research Center

In addition to the editing commands, there are a large number
of commands for studying the infor mation 1n a file or a ~roup
of files. These stUdying capabilities inclUde "j umpin~"~
"llnking~. "view control ll

, and "portrayal generation". 6e

CommandS for It jumping 1/ to a new view of a file allow l'!any
ways of specifying the new location. Just to name a few,
it 1s Possible to specify an absolute location in the
structure, a location at a position relative to some other
given location, a location with a partiCUlar user-~lven
name, or a location containing a user-specified content . 6Pl

A powerful form of jumping makes Use of "links". A link i~
a textual entity Which specifies a file directory, a file
in that airectory, a location in that file, and a view to
be used at that location. BY jumping with links, it is
pOSSible to move quicklY and easily through cO~Plex
configurations Of information contained in many different
files. 6e2

AS well as being able to jump to new locations, the user
may determine What lIview" of the information will be
presented when he gets there. The simplest for~ of view
control simplY limits the depth into the tree of diSPlayed
3tatements . More complex view control can make use of
information such as the time of the last editing of the
statements, the identity of the last person to edit the
statement, or the results of user - programmed tests of the
content of the statement.

In certain instances it is necessary to have more powerful
view control Which generates different portrayals of a «iven
body of information deoending on the interests of the viewer.
To accompliSh this, the user may write programs which will
analyze and reformat the information stored in the file. Thi s
facility has been heavilY used for Management and catalo~

60 3

systems . 6£

For management Planning use the data about many taSkS, the
people inVOlved, the effort levels, and the checkooints ca n
be integrated an~ displayed for various analyse s . Special
views can be constructed with distracting or irreleVant
data filtered out by analysis programs . 6£1

)

)

WHP 29- MAY-71 12:39 7054
An Introduction to the Augmentation Resea rch Center

For catalog data management and index prOduction.
user-created programs are used to extract citation
Bllbcollections , construct single or multiple views of the
items in the cOllections, and to format stored cOllections
for di splaY or printing. 6£2

In the reports lis~ed in the bibliography there are
descriptions of the comp uter and display facilities, the
results of comparing the mouse to some other display selec tion
deVices . descriptions of the software techniques USed in NLS ,
and more thorough discussions of the goa lS and Objectives of
ARC . 6K

Conclusion I 7

The potential for augmenting the performance of intellectual
taSkS by computer aids is obviOUSly p,reat . As a p ro~otype
system, NLS serves both as a means for exploring ana
develOping neW ideas and as a valuable tool in the work of the
Center . It should be emphasized that it is a con~inuallY
eVOlving system, changing as the understanding of au gmentation
systems grows and as such understanding is applied . The
system described in thi~ paPer will certainlY appear primitive
when compared to aup.menta~ion systems of the future. It is
important to remember that NLS is not the only possible
approach to deve loping an augmentation system; it is the hope
of the staff of ARC that other groups will become involved in
this intersting field and advance alternatiVes .

Bibliography:

inclUde the standard ARC reports and articles ----

5

7.

8

8.

)

I)

)

W~P 29-MAY-71 12:39 7054
An IntroOuct1on to the Augmentation Research Center

CJOURNAL)7054.NLS;1. 29 -MAY-71 12:40 WHP ; IExpedite) Title: Authorla):
William H. paxton/WHPi Distribution: Douglas at En g elbart~ Charles H.
Irby, James C. Norton , Ed K. Van De Riet, Richard W. Watson/DO E OHI JO N
EKV RWW j KeywordS : augmentation arc introduction; Clerk: WHP;
Origin: CPAXTON)INTRO.NLS;4. 29-MAY-71 12:34 WHP ;

)

)

)

•

JON 29-MAY·71 14 :51 7055
JC N Notes: NIC DS S Softw."e Planning S •• oion 5/26/71 1: 00 -3:00

)

)

)

J~N 29-MAY-71 14: 51 7055
JCN Note.: NIC DSS So£tware Planning se •• 1on 5/26/71 1: 00-3 : 00

Present: 1

RW~ CHI WHP BLP JCN WSD 1a

purpose: 2

TO continute Oiscussion of key softWare coordinat1n~ roles. 2a

To review 1n detail NIC DSS requirements and priorities from
the standpoint of ongoing and planned software tasKs. 2b

TO helP get a balanced plan that meets NIC and other needS
on a pr1ority ~oriented basis. 2hl

Results :

we diSCUssed the proposd software coordinating roles and
agreed on the following as proposed:

personnel coordinator

Architecture coordinator

MethOdology coordinator

BLP

CHI

-- WHP

JON hae been gathering and developing notes on the nature of
these and other rales a8 they have been shaping up and will
PUbliSh them for ARC review soon. Per baseline taSk
(journal,6969,roles:zgwCn).

We went over WSD1s task list INIC relateO only).

It ~ppears that DSS tasks will need i mplement&tion help
from other softWare people if We are meet NIO needs on the

3

3a

3 >1

3.2

3'3

3b

3c

schedule proposed for stages, 3c l

The main service of HIC ie ~ialo~ support ao DSS taska
are very important to the success of the whole NI C
opera tion. 3c 2

The balancing process over the next two 6ays should make
clear what help we can give WSD here. 3 c 3

We 6iscussed user and DSS document addressee
identification problems an~ the question 01 havin ~ every
ARC/NIC online user be assigned a TENEX username, rather
than grouping them under site usernames. We agreed that

1

)

)

)

JcrN 29-M4Y-71 14.51 7055
JCN Note •• NIC Dss Software Planning seo.ion 5/26/71 1. 00-J.00

this requires coordinated design at a different meet!n,
(with JTM, KEV , and others).

We also discussed the problems we have been experiencin t
with occasional unstable introduction of new system

3c4

features into operational use. 3cS

These ~roblems seem to come from several sources.

At times we have not done a thorou~h jOb of design
before implementing features. This has meant that
potential internal design syetem conflicts have not
been diSCOVered until new features are put into
operation. Their discovery has. been at the expense
(time and frustration) of ARC users and sometimes of
othe r software people who have had to change "their"
parts of the system to res~ore ~hem to use ~ the
Journal being one of sever~l examples.

It is alBo possible ~ha~ we have not tr1e~ early
enough to ~ iscu8s potential eonflicts with others
a ffected~ so tha~ they coul~ plan their work or make
~esi~n ~eclsions ~o sof~en the effect of t he
1ncompatabl1ity of proposed system changes.

These are just the kinOs of problems th a t the
coordinating roles~ particuIRrly methodolog y
(de s ign.s~ ••) and architecture (conf11cts~ •• l are
expecte~ to act upon.

The design documen~s and dialogue 1n the b,seline
r ecord (entered into the journal l are to provide

3c5a

3c5.1

Jc5a2

Jc5.3

visibility to aid this coordinating croceBS. 3c5aJa

Next Action. 4

BLP and RWW were to go over the NIC~related soft~are tasks
based on the discussions of ~he past ~wo meetings to tag (for
reorderin g) the tasks in the baseline recor~ accordin~ to NIC
8~ag es O ~ l~ and 2 ~nd relative priorities, hI.

BLP should ,et the resulting d&~a organized into the Baseline
record C1a tafi l e (msr.baserec,l and prepare useful views of t he
Planned tasks that can be used (by him) in an i nita l ba lancin K
trY . 4b

The next software planning meeting was to be 5/27. but was
later change~ to 5/28 at 1.00. with RWW BLP CHI WHP JCN .

2
4c

()

()

)

JCN 29-MAY-71 14:51 7055
JCN Notes: NIC DSS Software Planning Session 5/26/71 1:00-3:00

After this meeting. the basic task plans should be ready
for discussion with DC£ and with individual task pushers of
ongoing taSks and negotiation for tasks about to start . 4cl

3

•

)

)

)

JGN 29-MAY-71 14:51 7055
JO N Note. : NIC DSS Software Planning 5e •• ion 5 / 26/71 1: 00 - 3 :00

(JOURNAL)7 055.NL5 ;1. 29 - MAY - 71 14.51 JON; IExpedite) Title : Authorl., :
James C. Nor ton/JON; Distribution : Dou glas C. Engelbart. Richard W.
Wa tso n, Bruce L. Parsley, Charles H. IrbY, William H. Paxton , Will i am s .
Duvall, John T. Melvin, Ed K. Van De Riet , Kenne th E. Victor/ DOE RWW aLP
CHI WHP WSD JTM EKV KEV ; KeYWO rdS: i Clerk: JON;

~ proposal for handliri~ disk errors
-KEV 1-JUN-71 8 :58 70 56

)

)

)

)

)

-KEV l-JUN-71 8:58 70 56
a proposal for han~ling disK errors

I pronase that we B~art handling disk errors in the fOllowing
manner :

When a disk error occurs:

A resident Page of the monitor will be updated

This Page will con~ain a list of diSk bad spots

At the same time, a disk CODY of this page will be UPdated

This sector will be mar ked in t he system diSk bit table as

1

1&

1a1

1a1&

1.2

in use 1&3

When the system goes to deallocate a sector from the bit
table, the address of the sector to be freed will be checked
against the list of had spots , and if the sector appears in
tha badspot table . it will not be deal located l b

Please ~omment on thiS proposal t o me 1n person, a5 1 would like
to imPle ment this , or another scheme, by wednesday (6 /2/71)
night. 2

1

)

)

)

· KEV l-JUN - 71 8 : 58 7056
a pro posa l for handling disk error8

<JOURNAL>7056 . NLS ;1. l-JU N-7l 8 : 59 KEV ; IExpeOite) Title: Authorl.):
Kenneth E. Victor/ KEY; Distribution: Marilyn F. Auerbach , Wa l ter L.
Bass , Roge r D. Batea, Mi mi S . Church , William S. Duvall, Dou~la5 C.
Ence lbart, Beauregar d A. Har deman , Martin E. Hardy , Fred P. Hocker , J.
D. Hopper, Charles H. Irby , Mil Jernigan, Harvey G. Lehtman , John T.
MelVin, Jeanne B. No rth, James C. Norton, Cindy page , Bruce L. parsley ,
Wi lliam H. Paxton , Jeffrey C. peters , Ba rbara E. ROw , Ed K. Van De R1et ,
Dirk H. Van NOUhUYS. Richard W. Wat son, Don I . Andrews , Kenneth E.
Victor/ MFA WLB RDa MBC WSD DCE BAH MEH FPH JDH CH I MEJ HGL JTM JBN JO N
exp eLP WHP JCP 5ER EKV DVN RWW DIA KEV; Keywor dS: di s k errors; Clerk:
KEV ;
Ori gi n : <VICT OR >DISKPROPSAL. NLS;l, l-J UN - 7l 8 : 28 KEV ;

)

)

MEJ l -J UN -71 12.06 7057
Phone Log: Call from Wendy Smith, General Res earc h Co r p. about
ARPA/IPT Library collection Contract

)

)

MEJ l-JUN-7l 12: 06 7057
Phone Log: Call from Wendy SmithJ General Research Corp. about
ARPA/IPT Library Collection Cont ract

TO: D.C. Engelbart From: Mil Jernigan

Phone Log: Call From WendY Smith, General Research Corporation
Aboabout ARPPA/IPT Library collection Contract.

This morninr. (5-28-71) I received a phone call from wendy
Smith, General Research corporation, 1501 Wilson eouleva r d,
Arlington, Virginia 2220~, Phone 17031 52.-7206. Miss Smith
Wanted copies of our contract reports covering work done for
ARPA. Dr. Chrisler (head of the ARPA contract project a t

1

2

General Research corporation) aSked her to get copies. 2&

General Re search Corporation (Or. Chrisler) haS a contract
with ARPA to collect copies and compile a bibliograPhY of all
contractor reports tnat have been issued on ARPA/1PT contracts
concerning information processing. Dr. Chrisler hear~ of NIC.
without knowing what the Ne twork Information Center was except
that it WaS something to do with the ARPA Network . They (GRel
are not sure What form their final work will take, Whether it
will be a hard coPY bibliograPhY or just the hard copy
collection. 2b

I asked her if they had a bibliography they could send
someone, to pleas e send us a cOPYj that we would be
interested. I promised ~o Bend her a copy of our b1bliO~raPhY
and mentioned the film.

1

20

)

)

)

MEJ 1-JUN-71 12: 06 70,7
Phone Lo g : Call from Wen~y Sm ith, Gen era l Re searc h Co r p. ~bout
ARPA/IPT Library Col l ect i on Contract

<JOURNAL> 70,7 . NLS ;1. l- JUN -71 12 : 06 MEJ ;Title: Author(.): Mil
Jerni gan/MEJ; Dis tribution: Doug las C. Enge l ba r t / DCE ; Keywor ds: ; Clerk:
ME J;
Origin : <J ERN I GAN>ARPA /I PTL I B. NLS; l, l-JUN-71 10 : 44 MEJ ;

Ch&ng~s in NLS on or about 6 /1/ 7 1
DV N l - J UN -?l l S : ~~ ?OS9

)
n

)

)

)

)

nVN 1-JUN-71 15: 44 7059
Changes in NLS on or about 6/1 / 71

CHANG ES IN NLS 6 /1

A new version of NLS incluong ~he following changes 1s planned
for 6/1. The branc hes describing the changes were writen by the
programMers who made the changes. For clarification I have added
some branc hes that begin, "In other words."

SINGLE QUOT ES I N HAMES

When dOing a jump to na~e and bugging something on the screen.

1

2

3

the thing selected can lOOK like : 3a

LD 8 1 LD I " LDI

i .e. YOU can have imbedded single quotes in na mes. e.« ••
Ta.sk ' Name ' X.

CH ANGE NAME DELIHETERS

There are S new comman ds: Name Delimiter DiSPlay and Nam e
Delimiter Statement/Eranch/Plex/GrOllD.

Name Delimiter DisplaY will diSPlaY in the na me
the name de limiters of the selected statement.
is:

' N 'D BUG CA %d elimiters displayed% CA

r egis ter
The syntax

The other four allow a user to c han~e the name delimiters
for &11 the statements in the specified structural entity .

3b

3c

3d

3e

3.1

The syntax is : .3f:'2

' N ('S/'BI 'PIta) (BUGI BUG BUG) %It Left Name Delimiter lt

GETS DISPLAYED I N THE COMMAND FEEDBACK LI NE I CR CA
%ttRig ht Name Delimite r" ~etB displayed 1n t he comm and
feedb.cK 1ine% CH CA CA

Also whenever a statement is inserted the na me de l imi ters
are initi~llY set to the delimiters of the statement 's

.3e2a

successor. 3e3

In other words : Name delimiters are the v1 s ibles that
set off the name of a statement from the following text.
They haVe always been in parentheses. These comandB
allow you to use anythin~ you want .

1

)

)

)

DVN l-JUN-71 15:kh 7059
Changes in NLS on or about 6/1/11

YOU CAN BUG ANY VISIBLE FOR A FILE NAME 3e]b

Visibles for file and process name. WHP 12-MAY-71 11:40 3£

WJLen make a bug selection for the OUTPUT FILE. OUTPUT
PROCESS, etc. name instead of typing in a literal, a
visible st rin g will be used rather than a name a8 WaS the
case. 3f1

In other words : In the course of an output com~and you may
Specify both the file and the directory bY bug~ing the
appropriate word on the screen .

BIG VIEWSPECS

In DNLS, the vlewspecs get large when the two l eft mouse
bottons are held down .

OONTROL 0

Control 0 may be used (like rUbout WaS supposed to work) to
stop the sequence generator. This will stop such thin ~ s as
Print in TNLS, searches and Jumps to Name or Word or Content,
the output processor, and other such thin~s that ~o thru the
file.

CONTROL S

In TNLS , controlS may be used to stop the printing of a
p~rticular statement without stopping the entire Print
command.

When in the Execute Edit command both to and TS have their
old meanings.

CONTROL R

In TNLS, tR now works to have literal retyped.

Whenever a literal is being typed, you may type a control
R. This character does not go into the literal but simoly
caUses TNLS to type a carriage return followed by the
current literal. It is then possible to continue typin g

2

3£2

3f3

].

3h

31

3j

3k

3kl

3k2

31

)

)

)

nVN I-JUN-71 15: 44 7059
Changes in NLS on or about 6/1/71

the literal.

ADDRESSES in TNLS WHP

The entire string which ~eflne8 the address is r ead before
it 1s interpreted. This means that the string may be
edited by BO , BW ~ etc . retyped by fR, just like a literal
up to the point that it is accepted. If the address is in
error, then the part of the address causing the error
followed by a ' 1 will be tyoed when the addreSB is

311

interpreted . 3ml

It is Possible to use the literal eScape character (control
V) to specify that a character is to be used literally
rather than for control. For example, to do a [TEXT}
search in Which the TEXT inclUdes the character J. YOU may
type a control V before the J in the TEXT and ~OOd things
happen. 3m2

Indirect links (It) are not type ~ any more Since when the t
is read the string ha s not ye t been interpreted s o the
system doesnlt Xnow where the Te M is pointinR 3m;

LinkS may now be typed in as pa r t of an ADDRESS

Before could only use I (n~me Il.

In other words : You may load another file bY typing
space a and then a link, syntax : SP LIN K eA.

' @ dOes a jump file ahea~

In othe r WordS: Whe n you move f r om file to file bY link8
or the load file command in TNLS the system accumlates a
record. This record is a ring of ilee five files in
circumference. @ (syntax: @) will move you to the file
ahead of you on the ring, i. e. the fi l e you were in
four ~oves before .

both ~ and & may be preceded by a number

3& will dO 3 jump tile returns, -2@ is the same as 2&

I; %S emicolon% string Ii is strin~ search limited to one
statement

this search fails it don't find the target in the
3

3mS.

3m?

)

)

DVN 1-JU N-71 15:.. 7059
Changes 1n NLS on or about 6/1/71

current statement rather than going on to look in
fOllowing statements as (string) and <word) do. 3m7~

In other words: The command SP ;strlng; will take you
to ~string " if and onlY if "string" is to be found in
the statment where you r cursor started . If you use
;string; as an aOd r ess in a command , you may be sure
the command will be executed onlY on an example of
Ii string" in that statment, not in Borne unknown
Pa!ssage far down the text. 3m?al

I I char searches for t he c haracter in the current statement 3~8

thus 'x is like ;x; 3mBa

I. puts TOM to statement front lm9

') puts TOM to statement enO 3m l O

In other wo r ds: the left arrow command (syntax:.) mo Ves
your cursor to the first character of the statement ~ ~nd
the right angle bracket command (syntax:») moves your
cursor ~o the en~ of the s~atement. 3ml l

altmode now simplY echoes as a ' $

'# is used before markers rather than ' S

adaress must be terminated bY eithe r CA or C.

this is becaUse the address is input as a literal

this means that it is no longer possible to type SP
ADDRESS I

and no lon~e r pOSSible to use commaS to separate
addresses in a group selection

In other words: to move to a statment and prin~ i~,
you now need two commands, syn~aX:

SP ADDRESS CA
I

or SP ADDRESS CA
\ (Which is equivalent to P r in~ Statement CA

CAl

3m12

3m1~.

3rn l hc

3m14cl

)

)

)

UVN 1-JUN-71 15:.. 7059
Changes in NLS on or about 6/1/71

and in giving the addreBs of groups you must separate
the two statement numbers bY a command accept. 3mlhc3

t.he + or .. word,
simpler scheme,

visible . etc . stuff has been changed to a
Try it and see . In other words: AGHGOGGG.

TNLS SLASH

Change to slash command in TNLS WHP

The slash cornmano now types at lIlost 10 characters to either
siOe of the OM

TNLS SYNTAX

Changes to commanO syntax in TNLS

The commands in TNLS have been modif i ed to allOW iteration

3m15

3m16

3n

3n1

3n2

30

with the USe of center dot (0 . 1 . 301

The following abbreviations are USed in thiS description: 302

textl

is a text entity that can be selected with one
address; Character, Wo r d , etc.

text2

is a text entity selected that must be with two
addresseSj for now onlY Text .

strcl

is a structural entity that can be selected with one
address

strc2

is a structural entity that can be selected with two
addresses

The definition of LEVADJ used in the following is an
arbitrary number of U's or D'S optionally terminated by a
space. AnY other character, such as a command acceot (CAl

302a

)02&1

302b

302b1

3020

30201

302d1

)

)

~VN l -J UN - 71 15 : 44 7059
Changes in NLS on o r about 6 /1/71

or center ~ot (C.l, serves bo th to terminate the LEVADJ an~
provide the next porticn of command input . 303

Likewise , TEXT is any number of characte rs up to, bu t not
inclUdin g , a OA or O. 304

A sequence enclosed in parentheses , pr eceded bY a dollar
sign , anO ending with in option for either a CA or a C.,
written (OA 1 C.l, may be repeate d each time it is
termina ted with a center dot. The r epetitions are stopped
whenever the c ommand is terminated by a CA . 305

APpend 306

[toJ ADDR CA S l[fromJ ADDR CA TEXT ICA / C.» 306a

Break statement j~7

$ 1 [atJ ADDR CA LEVADJ ICA / C.»

Copy and Move

textl [toJ AD DR CA S l{fromJ ADDR ICA/C . »

t ext2 [toJ ADDR GA S l[HornJ ADDR CA ADDR ICA / C.))

strcl [toJ ADDR CA S l[iromJ ADD R CA LEVADJ ICA / C.»

strc2 [toJ ADDR CA ~ ({fromJ AD DR CA AD DR CA LE VADJ ICA
C.))

Delete

Itextl / strel) S I[atJ ADDR ICA / C.»

Itext2 / stre2) S I[atJ ADDR CA ADDR ICA / C.»

Insert

Itextl / text2) S I[.tJ ADDR CA TEXT ICA / C. »

Istrel / stre2) [atJ ADDR CA $ IL EVADJ TEXT ICA / C.»

Move (see OOPY)

Repla ce

textl S I{atJ ADDR CA (bY text?J
6

•

/

307"

308

308a

308b

308e

308d

309

309b

3010

3010a

3010b

3011

3012

3012a

)

)

)

UVN 1-J UN - 71 15 : ll 7059
Changes in NLS on or abou t 6 /1/71

IY TEXT / N ADDRI ICA / C.I I

text.2 8 (fa~) ADDR CA ADDR CA {by ~ex~1 }

IY TEXT / N ADDR CA ADDR I ICA / C.II

strcl {a t} ADDR CA {by tex~1}

IY TEXT / N ADDRI S IC. LEVADJ TEXT I CA

at,rc2 {at} ADDR CA ADDR CA {by tex~1}

IY TEXT / N ADDR CA ADDR I S IC. LEVADJ

SUbst.itute

strcl ADDR CA pairs

stre2 ADDR CA ADDR CA pair.

pairs II:

{~.x~} TEXT CA {for} TEXT CA

TEXTI CA

{GO?} (Y doe s t.he SUbstitute 1 N gets anothe r pair)

3012&1

3012b

3012~1

3012e

3012e1

3012Q

3012Ql

3013

3013a

3013b

3013e

301301

301302

Transpose 3014

l~ex~l / stre11 S l{a~} ADDR CA {ana} ADDR ICA / C.I) 301la

Itex~2 / strc21 301lb

S I{at} ADD R CA ADD R CA {ana} ADD R CA ADDR IC A / C. II 301lb1

Xset 3015

Itex~l / .~a~emen~1 S I{at} ADD R ICA / C.)) 3015.

~ex~2 S I{at} ADDR CA ADDR ICA / C.I)

CHECKPOINT

CheckPoint,s are no longer available

FILNAMES IN TNLS

7

3015b

30

)q

3r

)

)

~VN l-JUN - 71 15 : 44 7059
Changes in NLS on or about 6/1/71

File name recognition in TNLS works as in DNLS now . MS C

File names in TNLS should be terminated by a command
accept , ~s in DNLS.

File name recognition will not be done; fF and ALT dO not
caUse field or name recogni t ion . The OLD FILE I NEW FIL E

3.

301

messa~eS are not printed . 383

I n ot he r Wfd S: If your file ' s name is in the most Useful
!Orm :" Name . NLS ; #" , to load it you need merely type out all
of NAME (witho ut the pe r iod) and then give a command
accept . The system will then give you the most recent
ver sion in time, regarddlesB of version number. If your
file has an extension other than lINtS " , you have to type
out all th r ee fields, or else type "NAME" followed bY
Altmode . Note that the full name does not appear as an
eChO. but a l tmode does earch out the file. If you want a
version other than the most recent you have to type out all
three fields .
Likewise inputting out a file , if you type any string up t o
29 chracters but excluding periods, NLS will name the file
you are putting out to ~ STRING.NLS;#II. If you want to
output to a specific extension or to a version other than
t he most recent . you must type out all the f1leds with
oc r rect punctuation .

pr int files wo r k 1n the waY just described except read
~ TXT 'I fo r IINtS I'.

JUMP BACK now work s a s advertised. MSC

JUMP FILE RETU RN •• • AHEAD no longer loop . MSC

VIEWSPECS I N FROZEN STATEME NTS

Fr ozen statements display now observes the view s pees attached

3.~

3t

3u

3v

to the statement when it is frozen . MSC 3w

The Character set define mode of Execute Viewchange i~ limited
to defini ng any character as a control character.

8

3x

)

)

)

DVN l -J UN - 71 15:44 7059
Changes in NLS on or about 6/1/71

CONTROL CHARACTEERS IN TNLS

Control chara.cters to be ente re d in litera.ls 1n TNL"S mus t be
prefaced bY the literal escape character (tv).

ERROR MESSAGES

Erro r messages now will appear above the command feedba Ck line
instead of 1n the middle of the screen. MesRagee that are
OnlY disPlaYed for a few seconds will no longer force the user
to wait. Instead the User maY continue working eVen While the
error message is still being diSPlayed.

Y VIEWSPEC

Now it works the way it did in the gOod old days.

JOURNAL CHANGES WSD

Several imPlementational Changes have been made in the Journal
system.

Functionally, it has not changed.

III Use of hOlainR files for JCAT and CNUMBERS

Two new files. TJCAT and TCNUMBERS have been introduced.

The Journal uses these in the same way wich it proviiouSly

5

Sa

6

6a

7

7.

7b

7c

?cl

usea JCAT and CNUMBERS . 7C2

The JCAT and CNUMBERS file8 may be UPdated to reflect the
information held in the wo rking files br the command: 7C3

'Execute ' Katalo! Klean~u p (Passwo r d) CA .

The password is the same as that for Journal Hard copy
De11very~ JPD.

(2) The Hard OOPY Distribution has been modified to reflect
the new output processor changes.

The flow in printing a document is roughly:

1.1 l'irs~ copy
9

7c3b

7rtl

7dl.

)

()

DV N l-J UN -71 15:44 7059
Changes in NLS on or about 6/1/7l

Output processor of document to file dpntwrk.nls 701. 1

rnsert halt directives into he&der £ollowin~ a~dress
field. 7dl . 2

output processor to file HPNTWRK.NLS

This file contains Only the address portion of the
header.

compute address length (size hpntwrk-ll

Roto lei

(b) Buccessive Copies

Insert halt directives into header followin g address

7dl'3.

701.4

701.5

7dl 0

field. 70101

Output processor to file HPNTWRK.NLS

(c) cOpy contents of hpntw r k and dpntwrk to LPT

UP to 10 copies of a document (or documents) are printed
without closing the printer.

(J) Expedite now causes onlY the addressed copies of expedited
documents to be orinted. The collection copies are printed

7010 2

7010

7 02

long with the normal. 7e

10

)

)

(

DV N l-JUN-?l 15:44 7059
Ch~nr.e8 in NLS on or about 6/1 /71

(JOURNAL>7059.NLS;l, 1-JUN-71 15:48 DVN ; (Expedite) Title : Authorla):
DirK H. Van Nouhuye / DVNj Distribution: Marilyn F. Au~ r baCh . Walter L.
Bass, Roger D. Bates , Mimi s . Church, ~1111am s . Duv~ll. nouglas C.
Engelhart , Beauregard A. Hardeman, Martin E. HardY, Fred P. Hocker, J.
D. Hop per, Charles H. Irby, Mil Jernigan, Harvey G. Lehtman . JOhn T.
Melvin , Jeanne S . North, James C. Norton , Cindy page , Bruce L. parSle y ,
William H. Paxton, Ba rbar a E. ROW , Ed K. Van De Riet , Kenneth E. Victor.
Richard W. Watson , Don I. Andrews , Dirk H. Van NouhuyS/ MFA WLB RO B MSC
WSD DeE BAH MEH fPH JDH CHI MEJ HOL JTM JBN JCN CXP BLP WHP BER EKV Kr, V
RWW DIA DVN; Keywor dS : SN LS syntax TNLS comands ; Olerk: DV Nj
Origin : (VA NNOUHUYS>6 /1NLS. NLS ;l, 1-JUN-71 15:33 DVN ; Status of
NLS

r)

)

)

•
WHP CHI VKE MSC DVN JCN ~CN l-JUN - 71 16:51 7060

Transcription of discussion on features in PDP -10 TODAS. 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDS were present

(Whp) Basically, TODAS is ~ade a lot more like NLS from a CRT
with the idea that cap poin~1ng ~o a particular character 1n a
particular Statement , and you Use that as a me~ns Of making
selections that are now made with & cursor.

(Ovn) what 1s haQPened to Alter?

(Whp) Alter has been t~mporarilY left aroUnd as an Execute Edit
command and ~orks in someWhat the same way . It turns out the
contrOl characters are rather nasty on the PDP-IO with the
t1me-sharin~ system and that was never a very satisfactorY
approa.ch a.nywa.y.

(wke) DO you want to back up to the enter portion of it? HoW do

1

2

3

you get into TODA5? 4

(avn) How ao you enter TENEX?

(wke) Let's not get into TENEX .

(chi) First of all. there is no TODA5 . Once you ' re talking to
the EXEC then you just say. NLS. execuse me. it will aSK for your
aevice first then your initialS. It will assume the USer name
unaer Which you are enterea .

(W ke) Gooa . ano then yoU're into it?

(chi) (Confirms) And then YOU're into it.

(Wh p) If the ~evice is a displaY . you can ~o into diSPlaY NLS ,
you can ~o into a T1 Terminal , or Execuport, 37 .

(dVn) (TI) iB t.he command

(whp) you just. out ,~' .~ Termi- Net went aWay . thank gOOdness .

(chi) once you're in t.he command st.ruct.ure for structural
entities it.'5 sort of the same for the user .

(Wke) 'tou do 'Load Files ' ?

Ichi) Right. Loa~ File, Output File, Update File.

(Wke) you can RO in cold and insert a statement? No , When you

6

7

8

9

10

11

12

13

14

15

first. go in you're lOOking at ••• 16

(chi) Okay. back up a second . 17
1

,

)

)

WHP CHI WKE MSC DVN JCN JCN l - JUN-71 16:51 706 0
Transcription of discussion on features in PDP -10 TODAS, 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDB were present

(Whp) you're never in & situation like the 940 where YOU're there
withOUt any file . There ' s always so~e file you ' re lookin ~ at .
If you haven ' t specified one, like if you 're just ~oing COld into
NLS , there's a default file that will either be created for you
or 1f it already exiB~s and will be loaded automatically . 18

(chi) It 18 currentlY (iven the name of your initiale like NLS .
I might su~~est that that be your lile directory, for example,
becauBe every time you go into NLS that's the file you're Roln~
to be presented. If you didn ' t have one, if you ' ve deleted it or
i f it's the fi r st time you ' ve eVen used it, then it will ~ust
create another file . An~ if you don ' t change it, it will always
be i~entical . 19

(~vn) If you put something 1n it that will be 8omethin~ YOU'll
get whenever you fO in?

(jcnl Is that going to be the MAIL system?

(chi) It could be used for that .

(whp) There is no longer the i dea of havin~ a worKin~ Copy Which
is a complete copy of your file . Instead it ' s like, he r e ' s the
tile you ' re working on, but between you and that file here is a
partial copy and you see the tiles through thiS partial cooy and
anything you've Changed is represented in the partial copy , so
you see the chan~ed version instead of the file itself.

(c hi) But somebody else could be lOOking at the Sa~e file and his

20

21

22

23

Would be the ori~inal tile without your changes. 24

(dvn) Through his partia l COpy . 25

(Whp l Not throu~h his partial copy because the system dOes not
want to let two people be e~itinr the sa~e file at once because
t hat leads to nasty prOblems when both try and update . So the
sYstem in face when you start to edit the file (tape
interrupted) ••• When someone else tries to make a partial COpy
for it J they will receive the message this file is currently
l ocked bY user such~and ~such on console such and Buch . 26

(dvn) But he ca.n 1001< at it. 27

(whp) He can look at it . 28

(dvn) He can read but not Write. 29

,

)

)

WHP CHI WKE MSC DVN JCN JC N l-JU N-71 16: 51 7060
Transcription of discussion on features in PDP-10 TODAS. 1
Fe bruary 1971; WH P CHI WKE MSC DVM JO N HAL VDB were present

(Whp) Exactly . 30

(jcn) He can't take a copy of it aWay . try to do somethinE else ,
and put it out on a different name? 31

(Chi) He COUld lOad it and do an output File to anot~er file
without changin~ it and then mOdify the other one . But then
YOU'd know that YOU're doin~ something de c eptive .

(wke) But any numbe r of people can l ook at it, and it ' s not
loc ked until the fi rst ~uy tries to ch&n~e it.

(chi) That ' s ri~ht .

(whp) And, if the first guy changes it and out put to a new
verSion, so that that will protect it • . •

(Chi) you cannot mOdify a file unless it is the most recent
version Of that file. So if you 're lookin~ at an old version .
you can't change it .

(Whp) The point there is that if two people are readin~ it at the
s ame time and one guy modifies it and output s to a new version ,
it's no longer lOcked for him. so that this guy could then lock
it i f you di dn't have thiS sort of protection . Instead you want
to force this gUY to have the most recent Version before he
start s editing .

(wk e) That'. NLS?

(whp) We've got some interlocks like that '.'

(wke) He can, however , take that Old version and create a new
file out of it .

3 2

33

34

35

36

37

38

39

hO

(Whp) Oh, yes . 1J. l

(j cn) Does t hat mean you can be lookin g th r ou gh a file and allot
a BUdden, 1f someone else has updated it who h~d control of it
first, all of a sudden you're under pressure ••• 42

(whp) No . False. Bec ause there are different Versions of files,
thlt's another thint. h3

(jcn) you really have to consciously go to that different version
to get i, . 44

3

)

)

"
WHP CHI WKE MSC DVN JON JO N 1-JUN-71 16:51 7060

Transcription of discuBsion on !ea~ureB in PDP-l0 TODAS, 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDB were cresent

(chi) In many waYs different versions are really different files
in the fact that they have the same name. 45

(Wke) HoW dO you know that there is a more recent version?

(avn) you Can't write a file, and there must be a reason .

(chi) It'll tell you WhY you can't write on it.

(Whpl There's no way for us at thiS point to say, give you a
mess,ge from so meone who creates a new Version of the file .
That ' s very complicated internally.

(Wke) BUt if you try to load it again ...
(whp) You would get the newer version .

(wke) Like if you decide you want to make some changes 1n it, if

46

117

48

49

50

51

you dO a new Load, then you might get the newest version, 52

(chi) If you ~onlt specifY the vereion of it , it will be " .

(whpl There are still some rough ed~es with respect to the
interface with the ti me~sharing system for loading files and
outputting files. That's been probablY the most difficUlt area
of the entire conversion. and it ' ll take some time before we get
especially familiar with all of that and to get thin ~ s really
smoothed down.

(Chi) For example. for a While you 'l l prObably have to type in on
an Output rile the whole name of the file , even if you're
outputting to the same file, or enough of the name so the system

53

5i1

recognizes it . You can ' t make the assumption ••. 55

(wke) OkaY, so we got into it and you got you r file. Now What ~o
We do? You start 1n structuri ng . 56

(whp) As we were saying, the editing WaS much more like e ditin(
on a display system . Instead of makin~ bUK selections, you're
moving a painter around. 57

(dVn) Let me aSk this . On Groups. Plex. Branches. statements,
a r e Move, COPY. Delete, RePlice all the same?

(Whp) I
before .
as they

Canlt answer that because I don ' t know now they were
(laughter) I asSUme they are the same; theY ' re the

were on the ~isPlaY system .
same

58

59

,

)

)

WHP CHI WKE MSC OVN JON ~O N l - JU N-71 16:51 7060
Tr anscription of discussion on features in PDP - 10 TODAS, 1
February 1971; WHP CHI WKE MSC DVN JON HAL VDe we r e present

(chi) They're tne Same with ~he exception •• •

(dvnl Repla.ce is the same .

(Chi) RePl~ce - -I don't know 1£ you could dO this on the old
sys t em ; no. you COUldn ' t . You c~n now replace a structural
ent i ty bY selecting another structural entity. I don't think you

60

61

co uld do that . 62

(dvn) NO. yoU could not do that. 63

(Chi) ~ou could in NLS, and 1n general most things that you COUld
not do in TODAS a nd could in NLS you can now do in TODAS . 64

(wnp) It migh t be worth While to talk about haw you make
s elections first.

Idvn) Yes

(WhP) and then ~o from t ha t end to how that's used . Do yo u want

65

66

to run dOWn Get At? EssentiallY the r e's one routine . 67

(chi) There's one routine that doeS all of the selection .

(Whp) Both for structural editing and text editing ,

(Chi) If you tyoe a command accept , it terminates the address
specification . you can type a SPace simplY for clarity snd later

68

69

reading it or for your own things and it does not mean ••• 70

(dvn) sPa.ce in the middle of an address . 71

(chi) and it does not mean , except at the end of the name or
something. If you're saying a Space d apace . 72

(Whp) Occasionally you have to use it to separate the fiel ds or
something . 73

(chi) The periOd talks about the curr ent position of the current
statement . But does not point strictly to a statement , but
points to a character position within the statement . At any time
you're where you could give a comm and you could ty pe a point and
it will tell you where your current pointe r is in terms of the
Btatement number and a left paren and a character number . ri ght
paren .

(dvn l It count characters and says. character 50 or something.
5

75

)

)

)

VHP CHI VIE MIC DVN JCN JC N l-JUN-71 16:51 7060
Tr,nscriPtion Of discussion on features in PDP-10 ToDAS, 1
FebrUary 1971; wHP CHI WKE MSC DVM JaN HAL vue were present

(C hi) Okay. you type an 5 for Successor , a P for pre~ecesso r, D
for cown, U and Up , an H for Head , a T for Tail, E and End, Nand
Next, and 8 for Back. 76

(dv n) what's "Back "?

(chi) Back is ~he oPPosite of Next.

(Wke) ignoring structure

(jcnl It is not Retu rn.

(chi) If you were looking at a disPlay ••• An t (up arrow) ~ets

77

78

7 9

80

you a link, and I WOUldn't suggest doing that for a bit . 81

(wKe) Gets you ~ link?

(chi) yeah .

(WhP) A jump linK.

(dvn) space up arrow?

(chi) I don't Bee why you need a soace .

(w Ke) What does it dO, picK the next linK in the statement?

(chi) NO . At any time you do this you ~ive, fOr example if
YOU ' re tilking about a link, you could saY at the current
POSition, Wherever my pointer is. I'm pointin~ at a link.

(dvn) you don't need to say , point f (up arrow) to go to the
current Link?

(c h1) yeah. if you wanted to use the current position in the
pointer, yeah.

82

83

84

85

86

87

88

89

90

(dvn) so your pointer is in a link. 91

(chi) you Use the pointer here exactly the WiY you use the cursor
in NLS. you point to a ch~racter in a statement and you say
that's somewhere in a statement ••• you can type an & (ampersand)
for rile Return; I would also suggest that you not dO that for a
bit. And a : (colon) for a name . There are two new thin ~ s . If
you type a { (left square bracket) and some string, it findS that
content and positions the pointe r right after the content . from
Wherever it happens to be at that time. 92

6

)

)

)

WHP OH I WKE MBC DVN JC II J CN l-JUN-71 16:51 706 0
Transcription of discussion on features in PDP-10 TODAS, 1
Februar y 1971: WH P CHI WKE MSC DVN JCN HAL VDB were presen~

(Wke) poin~B to the character following the content . 93

(~vn) When it ~ets to the ena o£ the file it will go back to t he
beginning Ino search throu gh? 94

(chi! 110.

(Ovn! It you st.r~ in the ~ iOOle of the tile .

(W hp) Right. You are searching for the next 'one . If YOU say
this brackets thing directly fOllowin~ bY an IIFlt, then it starts

9S

96

at the top ot the file. 97

(chi) If you t ype a > (left angle bracket) followe d by a s trin~
followed by a ((right an gle bracket), then it will search for a
"word" that 1B that string . If that string is preceded by or
followe d by a Character, number or anything, then it won't wor~. 98

(wke) It has to be a word. 99

(avn) You mean precedeO and followed by sp~ceB. 100

(chi! Right . 10 1

(Whp) Not necessarilY ,paces, non~letter digits.

(chi) If you t ype S (a dollar sign) and a string , then you' re
talking abOUt a ~arker, the name of th e ma rker.

1 02

1 03

(dvn) Ty ped inside the square brackets. 1 04

(chi) NO, this is a separa~e command . 105

(C hi) you can t ype a + (PlUS) or a ~ (minus) and t hen a numbe r
and then a W f or wor d or C for Character or a V for Visible or ~ n
I for Invi sible. And if you don 't type any character at all,
then it will assume cnaracter . And th at move s you relating to
wherever yo u are. 1 06

(wke) +J W will move you ~orw ~rd three words . 1 07

(C hi! That's ri.ht. 108

(jcn! GOoO . 109

(wke! Yeah. llO

7

)

)

)

WHP OHI WKE HSO DVN JON JO N 1-JU" - 71 16:51 7060
Tran3cription of 6iscuasion on features in PDP-10 TODAS . 1
February 1971; WHP CHI WKE MSC DVN JON HAL VDB were pres ent

(Ovn) Groovy.

(wKe) wow.

(chi) An& that's basically it.

(whp) It doesn ' t go Of! the end Of the statement Obviously. If
you say somethinr that.s bigger than your statement you just ~o
to the far end of the statemen t in Whicheve r direction you 've

111

112

113

8aid and just sit there . llh

(Chi) That ' s with the plUS and minus the scan will go acros s.

(wke) you mentioned marker~, did you B&Y how you set marker s?

(chi) yeah.
you specJ.fy

There's a command c a lled Fix, Fix Marker Name, and
the name and the pOsition where you want it to mOve .

(wke) HoW do you do that?

(chi) Well , in 3pecify1ng the pOSition , then you use any
cO~bina~ion of these ~h in gs .

(wke) POSition first. Wha~'s ~he syntax of that?

(whp) we ' ve tried to make the co~mands ~ive •••

(chi) yeah, the commands tell you what theY're after.

(WhP) ~ell you want to dO; ~hey SaY ' At ', or ' By ' •••

(wke) So you would say. Fix. F.

(Wh p) You ~ype F, and it will say ~Fix Mar ker Name space~ and
wait for you to type the literal, you ~ype the literal

(chi) and i~ saYs ~ At ~ and you ~ype some expression that says
Where you want it to be, Which can be a B~atement name plus three

115

116

117

118

119

120

121

1 22

123

12~

125

words plUs ~his content. 12 6

(wke) very ni c e .

(dvn) What abOUt SUhBtitute? Is it there? Gone away? What?

(Ch i) Substitu~e is there and to the user will be baSicallY the
same as it WaS. you still SUbstitute oVer a Btructural entity or

127

12 8

string or •.• I haven 't even looked at ~hat . 12 9

8

)

)

)

WHP CHI WKE HSC DVN JCN JO N 1-JU N- 71 16:51 7060
Transcription of discussion on features in PDP~lO r ODAS, 1
Febr uary 1971; WH P CHI WKE MSC DVN JON HAL VDS were present

(WhP) Alter you ~till type statements numbers as a final thing . 130

(c hi) and we 1re also going to put in some representation
SID's which are a permanent identifier for a s t atement .
take the statement out of the file and out it i n another
you lose that SI D.

for
If you
file.

(~vn) What's the diffe re nc e between that and the statement
nUmber?

(Wh p l The SI n 1s something that is assigned to statements Whether

131

132

the y have names or not. 133

(Ovn) All statements have one .

(Whp) All statements have one .

(C hi) But you cOUld move the name of a statement to another
statement. you can ' t move the SID .

(wh p) one thing we 've left out , on the address thing. is that the
name is firB~ on next ••• After you type you say: (COlon). the
name (door sla.ms) ••• f to get the first (d.oor slams) ••• At the
highest co mma.nd level we talked about the ~ point" comman d . You
j ust type ~ periOd and it types out where you are . You type out
a SlaSh and that types out the statement Where you are . and when
it reaches the character pOSi tion , it types ~n angle bracket,
line feed, an~le bracke t to show you what character you ' re
actuallY on . The character yo u'r e selecting is t he first
Character of the line after the line fee~ .

(Chi) That turns out to be extremely useful .

(wke) Oh, yeah , I can see that.

{whp l There's alSO an up arrow comman~ that jumps you to the Bac k

13h

135

136

137

1 38

139

an d a line feed command that takes you to Ne xt an d prints those . l kO

(wke) Statements?

(wh p l Ri ght.

(Ovn) UP ar r ow takes you to where?

(wh p) It's like a Jump Back command in NLS; it takes you to the

1111

142

143

st&tement th a t you ' d see in front of t hat one if you had a list. l k4

9

)

)

)

WHP CHI WKE MSO DVN JCN JC N 1-JUN-71 16:51 706 0
Transcription of discussion on features in PDP-1Q TODAS, 1
February 1971; WHP CHI WKE MaC DVN JCN HAL VDB were pres ent

(wkel you can mOVe your pointe r bac k also?

(Whp) And it moves your pointe r back.
that We moved the pointer around in a

We tried to be careful
reasonable way .

(Wk.) In that
statement you

case
just

you can, would ~o ve it to the beginnin£ of the
•••

(WhP) Whenever you move it to the neW statement, i t moves to the

us

1h6

1117

first character of the statement. 14 8

(Wke) The first character of the statement is the first character
not counting the statement. number. 149

(chi) Right. The statement numbe r is not part of the statement. 150

(wh p) There's also a command that simPly lets you pORition the
pointer some place els~. you type 'spac e ' and then some strin ~
that positions the pOin ter just like this addressing service. 151

(wke) Sounds like a very nice system.

(Whp) Yeah, it's nice.

(WhPl In addition to that, the i dea is that yoU ' re ~oin~ to be
using t hese word searches or content searchee to move around
thrOU gh the file to a large extent. In order to avoid hav1n~ to
type that in a~ain, if you W&nt to repeat a search, the system
remem bers the last search you did. If you a re at the at the
highest command level in &It mOde ~ it simplY r epeats that last
search again on jump to link.

152

153

lSh

(wke) HOW about that. 155

(~vn) Groovy. 156

(wnp) Say you 've searched for the wo r d " something " and you hit an
alt mOde~ it actuallY echoes the entire command just like you
t yped i t in so you see What you 've done . So you can do an alt
made, slash; &It made, slaSh; and jump around and see it. 157

(wke) What 's the slash do? 158

(Wh P) The slash is printin~ . The Alt MOde to jump to it, the
Slash to print it.

(wke) I see .

10

159

160

)

)

)

WHP CHI WKE MSC DV~ JC ~ JC ~ 1-JUN-11 16:51 1060
Transcription of discussion on features 1n PDP-10 TODA5 . 1
February 1Q71; WHP CHI WKE MS C DV~ JC~ HAL VDB were p resent

(Ch i) The slash is a Print statement with indication of where the
pointer is . The other commands are basicallY like NL S, with a
few exceptions. 1 61

(wke) If I specify an address of a place I wan ~ t o go to I can
searc h in brackets . If I can print that ••• wi th a Blash. 162

(c hi) Ri ght . 163

(dvnl or it will go to it silentlY and wait for your com~and. 16h

(wke) Then the onlY way I can go to find thin~s or fin d the
occurrenceS of the wo r d in the "computer ". DO I always ha ve to
let that line teea in the ~iddle of it? 1 65

(dvnl NO , you ca n go to it and Btill dO Print Statement . just to
get the statement; but you won 't know Where you are in the
statement~ excent YOu will know . in your min~ . 166

(wke) so you COUld do an alt mOde, print statement, and whe re
~oes the print statement take yOU?

(C hi) ExactlY whe re it WaS; print statement and some expression
WhiCh can be the pOinter, comman~ accept aSsUmes pOint .

(wkel 50 the alt mo~e ~ ps , pO int , comm&n~ accept will prin t the

161

168

next statement without the slash . 1 69

(whp) It would have to be ps , com~and accept , command acc ep t;
Where the first command accept t e r mina t es the string, saying
where you Wante ~ to be.

(wke) you mean if you hit a command accept. the point is a
aehult.

(chi) If you haven't done any thing, if your a~dresB specification
•••

(Whp) NO , Bill is right . you JUSt hit a comman~ accept. Your
address speciiic3tion starts from the current point , so if you

170

171

In

just hit a comMand accept then that ' S it . 173

(chi) The commands that were in TODA5 are basically the Same now
With the exception of thiS a dded address1n~ capability . MostlY
they dealt with structural entities; now we also have the Same
commands fo r textual entitites. so that instead of j ust movin ~ a

11

•

)

)

)

WHP CHI WKE HSO DVN JON JO N l -JUN-71 16:51 706 0
Transcription of discussion on features in PDP - 10 TODAS. 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDe were present

statement or br~nch you also move woros, or text, or visihle or
whatever you want. 17k

(dvnl And they are called W or v or I or T? How do you specifY
the words that are transpose d? 175

(chi) you Use the Same exoression . You could say, for example,
moVe .- 2WOTO .-, to +3. 176

(Whp) There are also markers; it's easie r ~o fix markers .

(wke) The marker can be any type string?

(chi) UP to four characters .

(wke) FOur char~cters only?

IWhp) Five.

177

17~

179

160

161

(ovn) when you say move .+ 3 to .-3 is .+3 a word or character? 182

(WhP) YOU'd have to say ~ W " if you Wanted it to be word; if you
don't say anything, ~hen it assumes it to be character . 18)

(jcnl content Analyser--dld yo u ge t to talk about that yet?

(Chi) NO, that will be basically the same. You specify whe re you
want the bU« selection to be with the same eXpression we were
talking about . The Execute Content Analyse r. You can do any of
these thin~s in ~wo d~fferent WaYS ~ependin~ on how you think.
You can set up the pointer first and then ~ive the command, or
you can give the command and give the expression except for the

1 84

pointe r. 165

(c hi) This system is in some ways biased toward 15- and
)O-character per second devices because it doe~ thin~s like ~ive
you a carriage return when you're starting something new. For
examo1e, if you do an Insert statement and you hit a Control B
and dO some lev~l adjusts, the first thing it does When you level
adjUst is Rive you a carriage return 80 you start freSh, and on a
ten-character device that mi ght he kind of sloppy. PeOPle are
not going to want to Wait for that carriage return. AlsO Level
Adjust is not terminated only by & command accept an~ ~ space
now. If you 60 a U D DD or something like that. an~ start typin ~
as soon as you hit a non U/ D it will assume you 're startin~ to
t.ype text.

12

166

)

)

WHP CHI WKE MSC DVN JCN ~CN 1-JUN - 71 16: 51 7060
Transcription of aiscussion on features in PDP-10 TODAS, 1
Feb ru ary 1971; WHP CHI WKE MSC DVM JON HAL VDB were present

(WhP) The idea there is to avoid a situation in Which YOU're
merelY typing aWaY and a r e dOing nothing but ha vi ng the system
look for U's an~ D's . 187

(dv n) I've had that happen . 188

(chi) Are we goin~ to put the statement number stuff in for
paragraPhs? I think there's goin~ to be a ~lobal switch that you
can set usinR Vlewchange and that will dete r mine whether or not
when you ' re doin~ level adjusts if you get statement numbers
generated . That is a very , very costlY thing for the system to
be doing , and if you want you r version of NLS to go fast, take
the nUmbers out; ana if you want it to go SloW 1 and want the
statement numbers in, do it. 189

(Ovn) Bu t you haven 't implemented it? 190

(chi) The way it is right now it does not do statemen t numbe rs. 191

(w ke) Does it ~o it when YOU first do the •••

(chi) It doesn't do it at a.ll .

(Wke) Le~ve it that way for ~ While.
that way for a wh ile before you spend

People will wo rk with it
much ti~e on a.nythin~ else.

(c hi) well, Bill Duvall has made a request t ha t we change it
a.round.

(jc n) That ' s the default?

(chi) For him . yea .

(dvn) I' m thinking of the naive user. The old way would be
better .

(wke) It's easy to ~et your stateme nt number printed~ thou«h. At
any time when you want to know where you are as far as a.
statement number , just a pe riod and it types it . A pe riO d .

1 92

193

J.94

195

196

197

198

insert statement, and you'll know exactly where you a. re. 199

(chi) The trOUble with that. of course , is if you're doing center
dots you don't ha ve the option of say1n~ where you a.re . We could
put th.t in. 200

(Whp) But
entitY •••

the point is being moved a.round with the l ~st inserted
you Ray point and that tells you the last one you did ,

13

)

)

)

WHP CHI WKE MSC DVN JCN JC N l-JU N-7l l6:5l 7060
Transcription of discussion on features in PDP-10 TODA5 ~ 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDB were present

then you saY insert s tatementJ command accept ~nd you're bac k
right where you Were again . (chi) Do you want to go throu~h and
I'll tell you WhiCh commands have been added to the other TODAS
commands? 20 1

(chi) First of all, Join has been changed to APpend.

There's a Break Statement WhiCh the old TODAS didn 't have.

copy and Delete are stil l the Same exceot your commands are
textual entities.

Execu te

Content Ana.lysis

Declare File Ownership

Execute Edit

(whP) That ' s still Alter . The control characters get changes
around. Control C in TENEX is What the RUb Out was to the 9hO .
Control T to TENEX ~ets £obbled up at the very lowest level of
input returns Which caUses it to type out something that says
What your process is do1n~ right now. Let lit's runn1n~ at
location such and Buch .'

(chi) The Oontrol T turns out to be a handY thing . If you don ' t
know if your program 's Waiting for you to type a character, then
you just type a control T, and it WOU1"d saY it's an 1/0 wait and
you would type a character. or if you don't know hoW many
command accepts to do ".

File Verify

(Wh p) The Execute VerifY replaces the file clean up .
faster version and a lot cheape r to use and does not
file at all: it SimplY is a read only sort of thin g .

It ' s a mUch
modify the

(dvn) you re ad your file , and it has hS bad Characters; then
wha.t?

(Whp) NO, it doesn't look at bad characters. There's no way in
the system right now to make the system go through automaticallY
and read Out ba~ characters for you , That could be added as a

202

20)

204

205

206

process of some Bort. 207

)

)

)

WHP CHI WU MSC DVN JCN J.CN 1-JUN-71 16: 51 7060
Transcription of ~iScu8sion on features 1n PDP~lO TODAS . 1
February 1q71; WH P CHI WKE MSC DVN JCN HAL VDB were present

(wke) If verifY !inOs anYthin~ wrong, what does it dO? 206

(Whp) If VerifY finds anything wron~ it deletes the tile; from
your ••• you're not lOOking ~t it. it sort ot throws it out;
rejects it. The rea Bon that is done is because, fro m our
experience on the 940, peoPle tend to use file clean-up and if
there's anYthin~ wrong at all they don't try to clean up that
version of the file. Instead they throw that version of the file
aWay and ~o look for another. 209

(wke) 18 there any waY to saVe the file? 210

(dvn) I use file Cleanup often. 211

(wke) TO s&ve the file? 212

lavn) yes. 213

(chi) The theOry behind ~h1B is w1~h ~he au~oma~1c check po1n~in ~
makin~ a cOPY Of wha~ever YOU're workin~ on eVery couple of
minutes that if you ~o a file verifY an~ something is wrong it's
very Cheap to (0 back. 2lk

(Wke) The thin(I've foun~ if you get something ba~ on the disc
and do a clean-up on it and ~here's something wron(J a bad check
sum, a lost S~b, the Whole file isn'~ gone bY any means . If
that!s ~he onlY COpy you have around, I ~ure wouldn't want to
throw 1~ aWay.

(chi) It does not throw it away . you're just not lookin~ at i~

215

now; i~ will give you another file . 216

(wke) IS there any process that will let you do any~hing to Save
as much as possible on it? 217

(Chi) you can do an ou tput File on 1~ . 216

(wke) YoU can do an output File? 219

(chi) sure, ~ha~ would regenerate the whole file. 220

IWk@) O. K. 221

(chi) I~'S just that ~he file clean~up that we have now is not
really necessary . 222

15

,

)

)

WHP CHI WKE MSC DVN JCN JON l-JUN-71 16:51 7060
Tr~nacrip~ion of discu~sion on fea~ures in PDP-10 TODAS . 1
February 1971; WHP CHI WKE HSC DVN JCN HAL VDB were present

(wk e) so you do a verifY . an~ if it throws it ou t, you LO~~ it
again and do an outPUt File and save as mu ch as you can of it. 223

(C hi) An outPUt File is much ~ore thorou«h than File Clean- UP . 22h

Ih al) What ~oes the Output File do? What takes up the slack? 225

(chi) There are two kindS of output rile now . First of all.
there is the automatic checkPoint, and you can r etrieVe your
checkpoint. secondly , there 1s What we call an UPdate File and
at anY point When you 're working along if YOU ' Ve decided that
you've made enou(h changes to your partial copy and now you want
to put that back on the real file and frp,e that file. then yOU
just saY. UP Date File, Command Accept and it just maps what
you 've chan~ed onto the 010 file . and you can't do that if
somebodY else is reading the file. YOU've got to be the onlY one
looking .~ it . 226

(wke) Oh . you can't. Then that's ~oing back to the old version . 227

(chi) That's ~oing back to the Old version. and you can't write a
new version if somebOdy elBe is r eaOin~ it. 22 6

(wkel so UPdate will not make a new version; Output File will .

(chi) output File will. Output File assumes very little about
the 010 file and pickS up the statement from it and ~enerates a
new file taking this statement ••• Gener~llY when you do an
output File you do an outDut File to a new version, and the old
one will exist and as one number less forever . TE NEX has a very
serious prOblem there in proliferation of Versions. TheY will
eventUally get around to implementing a feature that saYS for
this file I want to keep three ve rsions . and it will cycle around
with three versions or something like t~at. currently they don't
have anYthin~ inplemented like that, and YOU end up after a while

229

going back and deletlnc all the ol~ versions. 230

(wke) The File UPdat~ can be a problem if so~ebO~y else is
lOOking at it , you c~nlt up~ate it, you ' re gOing to be very
frustrated.

(h al) HOW do you delete particul~r veraions?

(Wh pl You COUldn't do that now anyway .

(w ke) you have to do that now . you have to go around and say,

16

231

232

233

)

)

)

WHP CHI liKE M50 DVN JCN J,CN l-JUN-71 16: 51 7060
Tran~cription of discussion on features in PDP -10 rODAS , 1
February 1971; WHP CHI WKE MSC DVN JON HAL VDB were oresent

Whole got my file? you Say, II don 't want a new version, what
the hell am I going to do now?' 234

(chi) A file with a ve r sion number is really a file; that's a
whole fil e of specifications. There ' s a delete command at the
executive level . In generalY TENEX uses an alt mode to name
reco~nition and uses a carriage return to do command
terminations. SO in general , if you hit an alt made when you 've
said. delete file_ then it will present you with the oldest
version of the fi le. That 's the default. 235

(wke) Really eventually . it woUld be nice to have R way if you
wanted to UPdate a file an~ somebodY else haS it, to give hi~ a
message .

(chi) That turns out to be pretty toU~h.

(Wke) I' m sure it is.

(Chi) Bu t that ' s what we ou~ht to do . It woUl~ also be nice 1f
When yoU tried to ~o the UPdate file , you were told who was
readin~ the file that WaS preventing you from doing that, but
there' s no waY of getting answers through TENEX, until we have
time to ch ange •••

(w keJ Got to have something to dO in the future. Oan 't solve it

236

237

238

011 todaY. 240

(jc n) Every time you output Pil e , ;. new file is created? 2hl

(c hi) NO , you don 't have to dO it. that's by default . You can
specify the old version . But the way yOU specify the ol~ Version
is someWhat cumbersome in TENEX . To do name recognition the way
we used to hit command accepts When you say out put rile and you
t ype Part Of the name, another c ommand accept and it would ~ive
you the rest of the name . We ll, in TE NEX i£ you do that it will
give you a new version . Okay , so the default is not very nice
then. What you have to do is hi t a control F. There are
different fields in the TE NEX file name. There's the actual fi l e
name, there'S the extension, ana there's the version. 2~2

(dvn) What is extension? 243

(chi) The extension turns out to be a very nice thin, . For
example, if YOU have a file in diffe r ent stages like we have code
files that contain the text and that would have NLS files maybe
an d we have partial copy files that are some Nts files and we

17

)

)

)

WHP CHI WKE MSC DVN JON JCN l-JUN-71 16:51 7060
Transcription ot discu8sion on features in PDP - IO TODAS , 1
February 1971; wHP CHI WKE HSC DVN JON HAL VDB were present

have relocatable binary files. Well, they can all be the Same
filename but different extensions . you can say File X.nla , file
x . pc for partial COpy, etc . 2u4

(Wke) So in output File for the old one you have to type the
Whole thin~ .

(c hi) Either type the whole thing or you tyoe enough of the name
so that the system will recognize the name and type a control F
and it will finiSh up to that pOint , and you type enou~h of the
extension so it will recognize that and tYPe a control F, an~ it
will recognize up to that point and then you type the Version

2h5

that you want . 2k6

(jcn) Are ~e going to try to redesi(n that part of it? 2h7

(chi) we'll eventuallY have to do !o~ething nicer, but for
now--that's taken UP almost allot the last week trying to ~et
that as good as it is. It ' s reallY a drag . 2~8

(Wke) In the meantime the onlY reason to dO Output File is to
clean UP your file, or to make a neW one; o t herwise the UPdate
wi ll 00 i~. 2h9

(hal) But UPdate doesn't clean up your file.

(chi) UPdate doeS not clean Up. Update does not really work .
you ' ll orobablY find that you do EXecute VerifY quite often
becaUSe it's fairlY inexpensive.

(hal) What happens i£ something is wrong with the file?

(chi) Then you gO back to you r last Checkpoint.

(dvn) Then you find out that the something was wron~ in the last

250

251

252

253

checkPoint? 254

(Chi) Then there's another checkPoint.

(jcn) you don't make Checkpoints; the system does it .

(chi) you can make checkpoints or the system will . Cu rrently we
haven't re a llY set the time interval, but it will prObably be
something like tou r or five minutes. 257

(wke) How? 258

18

)

)

)

WHP CHI WKE M5C OVN JCN JC" l-JUN-71 16:51 7060
Tr~nBcript1on of discussion on features in PDP~lO rODAS. 1
February 1971; WHP CH I WKE MSO DVN JO N HAL VDB were ore sent

(chi) you just dO outPUt Check Po 1nt~ and you can say Load
CheckPoint. If you say Load CheckPoint, comnand accept. it will
load the most recent Checkpoint you have. othe rwis e you can SaY
Load Checkpoint older or newer; and it will ge t the older or
newer version . 259

(jcn) For that file? 26 0

(chi) For that file. There are two checkpoints kept for e Very
file that you are currently mod ifying . 261

(jcn) wha t if I'm mo~1fy1ng ten files? 262

(Chi) Then there's & current checkpoint a nd partial copy and old
checkpoint for eVery single file. 263

(jcnl Chan~e drum assi~nment to 2 mi llion? 26.

(chi) There's no drum assignment kind of fe~~ure here. You get
as much as you need . 265

(msc) There'S ~ limi~ on ~he number of files. 266

(jcn) HOW many? 267

(wk.) 120? 268

(chi) TENEX as it exists ri ght now will only ~llow you to have 13
open at once . fvery one that you're actuallY mOdilyin~ counts as
four bec~u8e there are two checkpoints and a partial copy and an
original . 26Q

(dvn) 50 that's three files . 27 0

(chi) so that's three files.
If you've been wo rkin g on one
you could be workin~ on three
aome of those files.

That's activelY workin" on ~hem .
and now you ' re not workin~ on it l

others becau8e then we can close

(wke) DO you close it? When you try to work on ano~her one~ do

271

you au~omaticallY close it? 272

(chi) The way it is 1n TODAS I you reallY onlY work on one at a
time becauBe i~'s very di fficult to do that from a teletype. On
the screen you'll be able to work on a8 many . it you want to set
up the windows l within the limits of TENEX . 273

1 9

)

)

)

WHP CHI WKE Msa DVN JaN dCN 1 -J UN - 71 16:51 7060
Transcription of discussion on featu r es 1n PDP -10 TODAS. 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDe were present

(Wke) If I ' ve got three on the screen ,

(c hi) Then you can be actively working on three .

(wke) ana tnen ~o to a fourth one, it's ~o1ng to close one of
those three .

(c hi) If you dO Load File in one of thOse windOWS , then it will

27iL

275

276

close the one that WaS there and aDen the new one . 277

(d Vn) Then you can't have more than three windOWS?

(c hi) you can have eight windoWS .

(avn) But you can ' t have a file in each of the eight .

(whp) That'. ri.ht .

(c hi) You could if you we r e reading out of most of them .

(wke) Does closing include a file update?

(c hi) It closes the whole state of the world exactly the waY it
w&s , when you were wor king on your partial cOPY and e verything,
If you do a Load file and you have at SOMe paint in time been
working on it but haven 't done an Update or anything to ~et ri d
of the partial copy , then when you load it you get this exactlY
the sa.me thing ,

(wke) so it opens all four of those for you .

(c hi) Well . it doesn't open the Checkooint .

(wke) But it opens the part i a l and the file?

(c hll Right .

(dvn) TWO minutes later.

(W ke) so you could have been working on one . it closed, and then

278

279

280

281

282

283

28 4

285

286

287

288

289

you could load it and do a file update . 29 0

(c hi) sure. 291

(wke) we ' ve Kot a lot to learn abou t that ... How do you ~e t ri d
Of that partial copy? 292

20

)

)

WHP CHI WKE M5C DVN JCN ~CN l-J UN -7l l6:5l 7060
Transcription of ~iscussion on features in PDP-10 TODAS, 1
February 1971; WHP CHI WKE MSC DVN JON HAL VDB were present

(chi) When you dO an Output File or an UPdate File it eliminates
your check poin t and partial copies . 293

(wkel On an Up~ate File?

(chi) BecaUse You've restored the old one to the state t ha t you
want .

(wkel Eliminates your checkpoints?

(chi) That ' S r1 ~h t . Because the checkpoints are no lon~er Valid.

29h

295

296

So ~oe. output File . 297

(dvn) It has to be that way .

(Chi) It has to be that way because a checkpoint is a copy of
your Partial co Py at some point in time , and if you UPdate the
or iginal copy the original file no longer ••• 299

(wkel what ~bout things if you do this UPdate File and it hits a
bad BPot on the di sc and the whole thing is gone and you've lost
your Checkpoint and there you are . 300

(chi) We don't throw the r est of it aWaY until we're done. But
the prOblem is you' re changing the original file. The partial
copy is JUBt a filter through which you ' re seeing the ori~inal
file , If you start changing the original file , then the filter'!
no gOOd any more.

(dvn) It ' s a mao for a place that no longer exists.

(wke) I realize that .

(jcn) you can set up your own Checkpoint by hand. called
checkPoint.

(wke) It's still a partial copy. YOU mean na~e it. Well . that

301

302

303

304

doesn ' t work either. 305

(Chi) We can clean it up if that turns out to be a probleN. 306

(dvn) you can always put out the file under a new name. 307

(Whpl If that turns out to be a prOblem we can solve it. 308

(WKe) That would depend on the r eliability of the devices. 309

2l

)

)

)

WHP CHI WKE MSO DVN JO N JC N l - JUN-71 16,51 7060
Tr~nscrip~ion of discussion on features in PDP-10 TODAS . 1
february 1971; WHP CHI WKE MSC DVN JCN HAL VDS were preBent

(Chi) yean. SO far i~IS been very realiable. 310

(wke) It's a whole lot clear e r this WaY . 311

(jcnl Are files open whethe r YOU ' ve changed them or not? 312

(c hi) NO , a file is onlY ooen 1f you 're actually workin~ on it . 313

(jcn) SO a lot of link JUMPing doesn ' t have the effect of
creating neW files .

(c hi) NO , The way it ' s going to work on the display version is
t hat any file that you have current displayed . some Ca r t of it's
currently disPlayed , that wil l will be open , and YOU have writ e
access to it . if you have & par tial copy for it , then you can
mOdify it . AB soon as you take it down , then it's closed to r
you .

(hll) HOW much sPace is the r e?

(wh p) About an order of ma~nitude big~er than the 9401

(hal) I WaS wonderinK about the prOliferation .

(chi) The disc sPace is four times .

(wke) Yes . four times the diSC space .

(c hi) Each NLS fi le that you have can be ten times a large .

(jc n) In terms of number of statements, or characters, or
combination?

314

315

316

317

316

319

320

321

322

(c hi) Well. _he Whole thing . 323

(whp) Essentially a combination . I don ' t expect each statement
to be ten times as big as the current 8tatement~ bu t given that
theY're rou gh lY the Same as the ones now , you can have ten times
mo r e . prObablY YOU won 't want to do that . prObably it wil l be
easy enough to do crOSB files and to keep you r files broken up
into more mana~eable sizes . J2h

Covn) Fo r something like th~ report When you're doin~ final put
togethers of the report and putting togethe r a book so you can
sor t throu gh it . 325

(h al) COU l dn ' t you use the extensions? 326

22

•

)

)

)

WHP OHI WKE MSO DVN JON JON l-JUN-71 16:51 7060
Tr&n8Crip~ion of discussion on features in PDP -10 TODAS. 1
February 1971; WHP CHI WKE MSC DVN JCN HAL VDe were present

(Whp) you coul~ .
allow you to link

you still have handles on
~ifferent files tog~ther .

the system that WoUld

(chi) For eXample, we're Planning to dO our (I don't know if this
will work or not), but We have a CrOBB reference facility on the
940 which We're bringing across to the 10. If you notice the
Second blue binder , that ' s our cross reference and we intend to

327

make that one file . 328

(WK~) Nice. 3?9

(Chi) Th.t will be pus hing it • bit . 330

(wke) Any loose ends anyone wants to know about? 331

(jcn) syntax [or content Analyzer is the same then al l
thrOUlZ:hout.. ?

(chi) I don 't think there are any changes?

(Wke) And Executable Text will work just like before.

(chi) There ' S no Executable Text at this point .

(wke) I see.

(jcn) Analyzer For matte r is now LlO . There is no Executable Text

332

333

334

335

336

yet ; there will be? 337

(whp) We haven 't decided . 338

(wke) It's on ~y schedule . You saw my schedule; I talked to Bill
DUV.ll .bout it. 339

(jcn) There's no point in talking about Quick print ~ or PASSh or
~hin~. liKe tn.t? 340

(wke) Oh ~ yes~ let's t&lk about that. 3hl

(chi) Quick print 's basicallY the same a5 it was except it prints
out .n elaborat~ heading £or you now telling you the person who
did the Quick print ~nd t he time that he did it~ level~ clippin~,
line truncation if set to something other than "all", it tell YOU
wn.t th'~ is. 342

(jcnl you don ' t have any control over what it does print up
there, like suppress all that junk.

23

•

)

)

)

WHP eHI WKE Mse DVN JCN Je N l-JUN - 71 16:51 7060
Transcription 01 ~iscussion on features in PDP - 10 TODAS. 1
February 1971; wHP CHI WKE MSC DVN JON HAL VDa were present

Idvn) And PASS4 is not up yet?

(chi) PASS4 you ' ve ~ot to talk to Bruce Parsley about .

(jcn) That ' s three or four weeks off . By that tine we'll
probablY have ~LS . 346

(chi) There's an Insert sequential Which reolaces Insert QED .)h7

(jcn) And it will do all the thin~s Insert QED did when We have
the console . 348

(chi) yeah. Load 9hO Files . There ' s & process which Dave Hopper
is wr iting Which retrieves a 940 rando m file f r om & KDF tape or
archive tape a nd puts it into 10 file space. Then you can ~o
into NLS and do a Load rile on it just like you would do on a
nor~al 10 NL5 file except you say. Load Q40 File , and it'll do
the translation into the 940 format . you can alBa dO an Insert
Sequential . That doesn ' t make any difference . Isn't there also
Borne kind of an Insert 940 also? 349

(whp) you can ao the •• me thing alright . 350

(wke) IS there a merge com~and ?

(chi) Merge has not been put into NLS yet; it should be very
trivial .

(jcnl When it is it will be like what we have .

(ch i) It will prObably be more l ike COpy .
mo r e l i ke ~ Copy Br anch or sornethinR like

I ' d like to make it
that than a Mer~e .

351

354

(whp) you ' d say MerRe Branch or somethin, like that? 355

(chi) something like that and it just does a filtered copy . 356

(jcn) Wh ere do we find out what the Collector/sorter is ga1nR to
be like? Is Duvall writing something? 357

(chi) He wanted to pu t that in as two command s in NLS. and I
don't know if t ha t's go in~ to happen or not. He didn ' t want it
to be a seParate pattern . 358

(chi) What wonderful things have we left out?
the Analyzer/Compiler so r ts of things you Bay ,

24

you now say,
' go to L10 ' .

t o do
ana

)

)

)

WHP OHI WKE Msa DVN JaN JeN l-JUN - 71 16:51 7060
Tr~nscrip~ion Of ~iscussion on features in PDP ~ 10 TODAS. 1
February 1971; WH P CH I WKE MSC DVN JCN HAL VDS were present

to execute your pro«ram you saY , ' Execute program '. Which is Bort
of the oPPosite of the way it Used to be . 359

(wke) GO to LI0, that compiles a program that the pointer ' s
pointing to . to?

(whp) We 're ~etting a little esoteric .

(wk.) yeah,

(jcn) Does this mean we're going to be able to build a calculator

360

361

362

363

in TODAS eventually? ,64

(whp) There'S no reaSon WhY not .

(chi) There's alBa a Set ComMand .

(wke) What's a set Command?

(ch i) upper and Lower and •• •

(Wl<e) Oh, that.

(jbn) upper ca •• ?

(chi-Wh P) Um~m . Don 't know Ibout that .

(jcn) We'll go along with the same 'Set Modes '.

THE END

25

365

366

36'/

)68

369

370

371

372

373

()

()

)

WHP OHI WKE M5C DVN JCN JCN l - JUN-71 16 : 51 7060
Transcription of discuBsion on features in PDP - 10 TODAS , 1
februa ry 1971; WHP CHI WKE MSC DVN JCN HAL VDB wer e cresent

<J OURNAL>7060 . NLS; 1. l - JUN - 71 17 : 14 BER ;Ti~le : Author l s) : William H.
Paxton, Oharles H. IrbY J william K. Engl i sh , Mimi S . Church , Dirk H. Van
NOUhUys , James C. Norton, James C. Norton/WHP CHI WKE MSC DVN JON JC~;

Keywo rds: ; Clerk : BER :
Or igin : <ROW>TODAS . NLS;J . l - JUN - 71 16 : 22 BER ;

)

)

)

WHP 1 - J UN - 71 18:07 7061
Statement property Lists

This outlines an ~pprolch to provide a property list data
structure with each statement in an NLS tile .

)

)

)

WHP 1-JUN-71 18:07 7061
Statement Property Lists

Syntax of data structure for statement property list 1

(apl) statement property list = data list la

(dl) data li.t = l b

A data branch Which maY optionally have a data list linkea
to it. ri~ht lbl

(db) data branch = lc

Statement da ta block (called the top of the br anch) Which
may optionallY have a data list linked below it lel

(sOb) statement data block = l d

A header, containing links and other fixed for mat
information , contiguous with a Variable sized block of data 101

(st1d) statement identifier = Ie

specifies a particular rin g element in a particular file lel

(stOb) statement data block identifier = 1 £

speCifies a pa rtiCUlar Btate~ent da ta block in a partiCUlar
file

Each branch of the statement property list is called a property

one of the fields in the data block header s pecifies the ··type ··
of the block

The type of the top of each property is ~ a B5umed to be different
and is use d as the indicator (or name) for th e property

The actual structure will be a doub ly linked list of edb·s.

EaCh Sdb will have a "right " pointer, a "down " pointer, and a

lfl

2

3

4

5

'tback ll pointer. Sa

If there are no branches to the rir,ht, then the right pOinter
is zeroed . 5b

If there are no branches below, then the down pointer is
zeroed.

If the Sdb is the head of the epl, then its back pOinter

1

5c

)

)

WHP l-JUN-71 18:07 7061
St~tement Property Lists

points to the ring ele~ent and a flag (sxflag) is turned off .
This fla~ 1s turned on in all other sdblS . Sd

If the sdb is the head of any other list, then its back
pointer points to the adb abOve the list.

If the Sdb is not the head of a list# then itB back pointe r
points to the Sdo to its left.

These conventions ar e compatible With the current file
s tructure . In other wordS, it will not be necessary to
convert files .

There is room available in the sdb header for the two new
pointers (the back pointer is alreadY there), the fla~ J and

5e

the type field . 5~1

These fields are all zeroed in exi8tin~ adb ' s .

The fOllowin~ procedures will be provided

Statement property list procedures

aet state~ent proper~y lis~ -- ~et8pl(8t10)

Thi s function returns the Btdb of the start of the list
or a 0 if the statement has no list

Store statement property list -- stospl(8tid. stdb)

Change! ~he ring element (Bti~) to point it list (stOb)

copy statement property li st -- cOPsPl l source . dest)

Source and dest are stid ' 8

If dest has a statement property list it ie deleted

Dest «eta a copy of source's spl

store prooerty -- stoprop(stid. stdb)

Make the branch (stOb) the current property for
statement (stid) of type given in the header lof stdb)

If there WaS already a property of that type it is
deleted

2

6

6.

601

6&1&

6>2

6a2&

603

6.3.

6a3b

6a3c

604

6.4.

6.4b

)

)

WHP l-JUN-71 18:07 7061
Statement Property Lists

Get property ~- g etprop(stid ~ type)

Re turns the stdb for the property of that type or 0 if
the statement has no property of that type

Delet~ property -- delprop(sti~, type)

If the statement (st1dl has of property of that t yp e,
the property is deleted

Data list procedures

copy data list - - copdl(s t db, £ileno)

M~ke s a copy of the list starting at stdb in the file
specified bY fileno and returns the stdb for the COpy

Dele~e da~. 11.~ -- d eldll.~dbJ

Dele tes the data list starting at stdb and fixes Up the
structure if the links from the l i st are nonzero

Insert data list to ri ght -- indlrt(old~ new)

Old and new are stabs

The list starting at new is inserted into the structure
to the right of old

Insert data list down -- indldn(old ~ new)

Old and new are stdbs

The list starting at new is inser t ed into the structure
at the head of the list be low old

Data branch procedures

copy data branch -- coPdb(stdb, fileno)

Make s a copy of the br anch starting at stab in the file
specified bY fileno and returns the stdb for the copy

Delete data branch -~ ~eldb(stdb)

Delete ! the data branch Btartin~ at stdb and fixe~ up
the structure if the links from stdb are nonzero

3

605

6.5.

6.6

6&6&

6b

6bl

6bla

6b2

6b2.

6b3

6b3.

6b3b

6b.

6b4.

6b4b

6c

6Cl

6cla

6c2

6c2a

)

)

WHP 1-JUN-71 18:07 7061
S~atement property lists

Remove data branch -. remdb(st~b)

Removes the br anch at stdb from the structure and zeroes
its links but does not delete the branch . The branch
may then be inserted at a new location.

Statement data block proCedUre!

New statement data block -- newedb(size. £ileno)

ReturnB stdb for a new block in the specified file .
Size must inclUde room (Sdbhdl wordS) for the heade r

oopy statement data block -- COPSdb(stdb . fileno)

Make s a Copy of the block in the specified f ile and
returns stab for the copy

Load statement data block -- lOdsdb(stdb)

LoadS the block from the file i f it is not al re adY
loaded and returns the PaKe indeX for the Page into
Which the block is lOaded (this index maY then be used
to "freeze!! that block at that address While it 1s
accessed) and the core ad~ress of the start of t he
block .

4

60)

60)a

6d

6ctl

6d1.

6d2

6d2.

6d)

6d)a

)

)

)

WHP l-JU~-71 18: 07 7061
S~atement Property Lists

(JOURNAL>7061. NLS ;1. l -J UN - 71 18:08 VHP ; IExpe~ite) Title: Authorls),
William H. paxton/WHPi Distribution: Walter L. Bass , Mimi S. Church.
William S. Duvall , DouKlas C. En(elbart, J. D. Hopper , Charles H. IrbY,
Harvey G. Lehtman, John T. MelVin , Bruce t. Parsley , Kenne th E. Victor,
Rich.r~ W. w.tson , Don I. An~rew./WLB MSC WSD DCE JDH CHI HGL JTM BLP
KEV RWW CIA; KeywordS: propertylist statement data structure file list;
Cle r k: WHP;
Origin : (PAXTO N>SPLDOC.NLS;8, l-J UN -71 15:0) WHP ;

I ')

)

Memo, D. C. EnKelbar t To Co r dell Green ,
On La r ge , Di~cipline ~ or1 ented Data Bases

. DOE 2- JUN -7l 5:00 7062

2 JUN 7l 5:l6PM :
fo r On MLine Netwo r k Use

sent to cor~ell , 2 Ju ne 71, with the four enclosr es c i ted:
15220 .1 15773 . 1 15774 . 1 170H .I.

1

,

)

)

Memo, D. C. Engelbart To Cordell Green,
On LarRe, Discipline-Oriented Data Bases

. DOE 2 - JUN-71 6 : 00 7062

2 JUN 71 5:16PM:
for on-Line Ne twork Use

ooroe11: 1

you have asked me to record some of my thoughts and Plans
that bear relevance to some sug gestions and possibilities
(that have increased in number and seriousness since ARPA'S
Contractor1s ~eeting at San Diego), pertaining to such as: 1a

A Computer science Library (e . g ., see MCCarthY (5773,» 1a1

An EncYclopedia of computer Science (e . g . Me Oarthy
1577l,I I

An On ~ L1ne Professional Journal -. e . g . for Artificial
Inte~ligence; a journal that is compoBed~ reviewed. and
PUblished with computer aids, bY Parties distributed about
the world (but Part1cully, bY active parties on ~he
Network) •

I use the terMS. l' aisc1pline-orien~ed data base for Netwo rk

102

1a3

use . " to refer to tbese types of POSsibilities. l b

Special conside ratons. relevant to the On-Line ComDuter~science
Proposal:

There ~re a number of ~uestions and techniques that I think
need R&D wor~ before it would be feasible to design. asBess,
or implement the system to support the conVersion of library

2

material and ita signific~nt SUbsequent usage: 2&

(1) What form of di gital enCOding should be used for
describing special graPhical constructs tha~ assumedlY
ought to be digitally encoded? E. g . formUla , r.raphs. line
dia~rams . tables . etc . 2&1

(2) What form of digital enCOding should be used for
describin~ such typograhical parameters as type fonts.
page-composition geometry. etc . th a t would be of like ly
value?

(3) ' What provisions can (ShOUld) be made to accommodate
users whose terminalS fall at various points along the

2a2

spectrum of sophistication and speed? 2a3

(h) What provisions c&n (ShOUld) be made for a remo te user
to produce a hard copy replication of material retrieved

2

,)

)

. DCE 2-JUN-71 8 : 00 7062

Memo, D. C. En~elbart To Cordell Green, 2 JUN 71 5:16PM:
On Large , Discipline-o riente~ Data Bases for on~Line Network USe

from thiS digital store? Speed . resolUtion. cost. and
accessibility all need to be appropriate.

It wOuld be an unusual sitUation for Which every
dese rvin g user would be able to do all of his serious
studyinE at a console .

(5) What Sort of cross-reference conventions to establish,
and how to record and imPlement their uSAge?

For instance, although cross references wi thin the
journal articles are usually relatively uns pecific
(e.g., just to the artic le , accassionallY to a page),
SUbsequent co~puter usage WOUld like to prov ide
referencin~ exactly and explicitlY to any entity in t he
symbol structure .- to any te x t paSSage (a Character,
word, ~tring. paragraPh , or section • •••). or to an
expresaioon within ~n equation, or to a Part of a
dia~ra~ or Photo~raph . or etc .

(6) How mi ght be handled such as PhotographS or other
graphic components of the text that are deemed i~practical
to encode digitallY but yet important to carry alon~.

video - like Scan signals can be digitized and stored. of
COUTSe. If the fUll r ange of do t reSOlution. ~reY
Scale . color . were enCOded, there would be a hu~e bit

2 ••

2&5

2.5.

206

load for Borne pUblication items . 2a6a

would this aoproach be feasible? 2a6kl

If not, What other means of di~ital enCOding could
be considered?

IB t he equipment available to store PhotograPhS etc . in
photoform, with associated means (probably pa rallel t o
the corresspondin(digital means) for access, sCRnning,
video transmission and switching, viewing remotelY ,
etc . ?

(7) What sort of prOduction system woU ld be required for

2.602

2.6b

the transcription? 237

HoW much checkin«, verifying, backUP storing , etc .? 207.

3

)

)

~CE 2-JUN-71 8:00 7062

Memo. D. O. Engelbart To Oordell Green, 2 JUN 71 5 :16 PM :
On Large, D1scip11ne~Or1ented Data Bases for on~Line Network Use

What kind of organiZation to handle the bUlk , keep it
under control?

A computer -aided system for mana~ement and control?

COUld it feasibly be Par~itioned into activities
th~t separate organiZations COUld handle?

Mi~ht it be of any sl~nificant value to connect
between such organizaions via a computer network?

What kindS of e~uipment, techniqUes, special training,
etc. WOUld be involved?

E . ~ ., could OCR equipment be of significant helP?

Can automatic Page-turning devices be Used?

Who coUld set up and manage such a syste~?

(8) Whose subject-catiloging system t o adop~, for
bibliographic control and retrieval?

who will do the class ification (What the librarians
call " cataloguin~ "?

(9) What structure and organiZation to give to the
biblio~raphic ~ccessing and retrieval data?

until qUestions SUch as these are reSOlved, it isn't
aporopriate to aSk whether or not IPT ShOUld commit itself to
converting a discipline 'S library and making it available on

2a7b

2a7bl

2a7b2

2.703

2a.7c

2a?cl

207c2

2a7 d

2a.8a

2; 9

line to a siEnificant community. 2b

A more appropriate sort of question might be , HShoUld 1PT
support a conditionally successive set of specific
goa l-oriented tasks aimed at:

(1) StUdying the possibilities of pursuing such a pro~ram;
and developing a set of feasibility criteria tOWard whiCh

2c

specific set of R&D projects could be directed . 2cl

This project would have good intrinsic value, even if
further action were aborted/defe rre d . But to be
worthWhile , it wou l d have to be driven bY a full-time,
dedicated KUY who is a good manage r and who is or can

)

)

)

Memo, D. C. En~elbart To Cordell Green.
On L~rge. Di6cipline - O riente ~ Da~a Bases

. DOE 2-JUN-71 6 : 00 7062

2 JUN 71 5:16PM:
for on-Line Network Use

become fUlly aWare of the whole-system bag of
conSiderations.

(2) Formulating and eValuating & best-design Plan for the

2c1a

whole venture. 2c2

(3) Executin~ the plan , under a qualified, experienced
mana~ement team .

In the meantime , I think that it WOUld be important to pursue
anSWers to Borne of the component prOblems as listed in Branch 2&
above. From my experience over the past ten years, Where the
prOblems of making an exotic system re ~ llY workable ~ren ' t really
met until the system is put to work in an evironment of "doing
real work that way ," I'd strongly recommend that these ~echniQues
be pursued Within relevant activities desi~ned so ~hat steadY
eVolution of technique accompanies a serious aPPlication

203

(seriOUS, but not over-loading) . 3

I shall commUnicate fUrther about two activities in
particUlar that my group proposes to pursue : A Center for
supportini(the D.evelopment and Ope ration of other groups·
Documentation Development and Management Systems; and a
Network~accessible Technical Intelligence sys~em (already
known hereaboUts is RINS . for Research Intelligence System),
for the domains of concern to computer - based sys~ems
development .

The first five items under 2& would be lo~ical developmen ts
for a Documentaion Development and Management System -- where
useful prOductivity could be achieved at intermediate stages
Of knOWhow , and ~oodJ solid pe rspective provided fo r each new
stage of deVelopment, up to the point where full ~ r aph1ca l
content could be handled well. A Technical Intelli~ence
system could begin with compromise, photo-form storage of
relevant mterial ~ with useful means of Physical access and
rePlication, and eVolve aB rapidlY as pOSSible tOWards solvin~

3.

the digital~store and digital-conversion techniques. 3b

If limited resources were to be allocated to ingesting a
complete-t~x~ literature COllection for an on - line community.
then

Rather than consider ing all of the literature relat ed to
Computer Science , I'd recommend beginning with & small subset
-~ a carefUllY aetermined collection deemed to be of highest

5

)

)

. DOE 2-JUN-71 8:00 7062

Memo, D. c. En~elbart TO Cordell Green, 2 JUN 71 5:16PM:
On Large, Discipline-Oriented Data Bases for On-Line Network Uee

v~lue to the community that ia bootstrapping ~he
system-development industry. ka

AN "EncYclopedia" venture would come the nearest to havin~
significant payoff , to ~y mind. It would need to start
mOdestlY, in order to settle upon techniQues, fornats, etc.,
and in its earlier modes would haVe Borne Of the flavor of a
" profeSSional journal" perhaps, but I'd think that it aUld
want to be Duehed not witn miscellaneous contributions. bu~
rather with ~ome people or gr oups specifically contract1n~ to
prOdUce PartiCUlar sections, willing to ~o throug h successive
drafts over a periOd 0 many months as th~ content, form,
PUblication mooe, etc . were being worked out. ho

I have Planned for a long time to pursue something close to this
end, with What COllaborative efforts I would be able to enlist;
1 have been calling my thing a " Han~book " rather than an
EnCYclopaedia. I actUallY think that a HandbOOk would be the
more Useful thing, making it the Object of continuin~ effort to
shape and bUild, towards having a really effective
System-Builders 1 Handbook . 5

I feel that it shoUld be built so as to be very effectivelY
used, stUdied, Queried, argued over, UPdated (under
comprehensiVe and effetive editorial management) bY an on-line
community; but I am also convinced that it should be
PUblisheable for hard-copy consumption, with a lot of effort
aPPlied to a tranSfo r~ation / m&Pping process tht would produce
reallY effective hard-copy reference materials from the
computer-hel~ form. The hard-copy form would want to h~ve
computer-query techniques to support its User.

one importRnt hard - copy form would be micro-fiche, and an
on-line micro-fiche reader (one that can retrieve a 8pecified
fiche from a cartridge, and position it to a specified frame)

Sa

is an important possibility here . Sb

See the ll Relevancy Memo lI (5220,) for the relat ed notions as
communicated to Larry on 7 Dec 69 . Note the term and
description of l' Super Document . 11 The first real super
document was to be lI The Handbook. l' I assumed at that time
that We would learn first with a Handbook coverin~ our own
~augmentation systems,'l and then propose extendin~ it in
content to the larger domain of commputer systems (with
distribued-d1alogue COllaborative help) . This type of push

6

)

)

)

Memo . D. C. En~elbart To CarOell Green ,
On Large, Disc1pl~ne-Orientea Da~a Bases

- DOE 2-JU N-71 8 ' 00 7062

2 JUN 71 5.16PM.
for on-Line Network Use

w~s amon~ the development efforts ~1 ven up in trade for
tranSferring to the TEN EX. Sc

I still feel stronglY that an on-line Handbook prject is very
worthWhile. It happens that I see some other pursuits that
are more basic to get launched , insOfar as jUdgin! the
longer-term oayoff in return for the energies that my w.roup
coUld aPPly. and associated activities aboU t the NetworK. 5d

lIve mentioned these other things in brief to you , and will
Boon be formUlating them and communicating them to 1PT as a
think p1ece communique in negotiation toward our next contract.
They involve mUch of the Same basic-techniQue development . but
first in di rpct association with supportive efforts on real
system documentation activity , where immediately useful
develo pment of graPhic representations, m&nipul~ton tools ,
hard - copy PUblication means , control and management ai ~ s for
the dOcUments would be pursued (and applied) . I ' d prooose a
Handbook to eVolve as the sort of "Meta DO CUmentat ion" for
these first relly applicable Documen tation system techniques,
and to grow from there along with what other Network and
system tools need the kind of eVOlutionarY-design
documentation that a Handbook orovides (i.e ., that inclUdes
glossaries, design orinciples, etc •• 5.

Relevant considerations from the INFosts Panel's stUdy: 6

I haVe been partiCipating in a study on "Libary Automation "
-- as a member of the Information Sytems Panel , whiCh was
establiished under the computer scienea and Engineerin ~ Board
of the Nationa l Academy of Sciences . The panel is just
finishin ~ an eighteen - month 9tU~y sponsore~ bY toe council on
Library Re so urces . 6a

From that stUdY I have deve loped some defin ite beliefs , so~e
of which are Bhare~ bY fellow panelists to the extent that
they are being inclUded in our final re port . Refe r to the
"APpenndix A" pape r (Jounal, 7014,) for extensive notes
the r eto that I contributed toward our Panel 's final r epor t. ~b

When I have further ooportunity , perhaps I could elahorate
usefUlly upon these library prob l ems . It seems apparent that
the r e would be waYs to conduct aome of our experiments on the
ARPA Network that would increase their usefulness as a ~u i de

the Library wo rld in its desparate effort to automate. Any
sizeabl~ venture tOWard put ting a library on line should

7

)

)

·DeE 2-JUN-71 8 : 00 7062

Memo . D. C. En~elbart To Cor~ell Green, 2 JUN 71 5t16PM :
On Large. Discinline- Oriented Data Bases for on - Line Networ k Use

certainly be 60ne 1n sUch a w~y as to make it somethinR
relevant to the libraries ' future.

8

6c

)

)

)

Memo ~ D. C. En~elbar~ To co r Oell Green ,
On L&r~e, DiBcicline-oriente ~ Data Bases

. DOE 2-JUN-71 8 : 00 7062

2 JUN 71 SI16PM:
for on-Line Network Use

(JOU RNAL)7062 . NLS ;1. 2- JUN - 71 8 : 01 DeE ; Ti~le : Authorl sl : Douglas e .
Engelbart/ DCE ; Clerk: DOE ;
Origin: (ENGELBART)AGREEN . NLS;5 . 2-JUN-71 7 : 43 DCE ;
.DI Ra l;. SCR=2;) . HED =". MCH=72; .GC R;. HJH-2 ; DCE 2-J UN - 71 8 :00
7062 , MCH=6S ;
. HJH-l;
Merno. D. C. En~elbart To Co r dell Green, .G DATM ;:
On Lar ge , Discipline-Oriented Data Bases for On -Line Network Use
It; . MCH=6S; . SNF c72 ; . DLS =O; . PGN =O; . PES ;
Link.: IAScratch .1 IAORGNP ,I IAARCXP ,I IAA RONP ,I IABCXP .I
IABONP ,I
Message to Cordell r e o the OS - Lib possibility. etc.

From; (A Scratch , 2 : gebbt) {'Il;

)

)

)

RECEIVED at ARC
"JBN 2-JUN-71 9:52 7063

Week Ending 28 May 1971

Meetings

ACH 1971 Re~i. tr.tion For~

BOOks

1971 Datamation InOustry Directory
A Catalog of EDP Products & Services 453p .

Periodicals

Computerworld May 19, 1971
Contains: DP to Replace Card Catalogs , Yale Library
Study Says, p .)2
Also: Conclave to Study Health Data Ne t, P.)3
Also : Electronic Animation, Teacher Gives Life
to Drawin~sl P. 37 (Charles Csuri at OSU)

computer Decisions May 1971
contains: The Route to Half to ne I ~age Syrlthesis ,
by Theodor H. Ne lson, p.12-16. (Illustratea ~umm~rY I
!eatur1n~ work at Utah .
A1BO: Indexing is the key to retrieving COM-stored
data, by Michael G. Eird, P.)O-)) . (AboUt key letter
indexin~, codeline indexin(, Miracode. an~ othersl .
Also: cu~ Input oosts With Key wto-T&pe Devices,
by Jame~ H. Bauch, p . J6 -3 9 .

Innovation NUmber 22 1971
contains: Wire~ Broadcasting: A preposterous Idea
Whose Time Has com~. by Charles J . LynCh, p . 10 ~1 9 .

Data Product News April 1971

Reports

Pennsylvania S~a~e University
Automatic Classi!icat~on

1

oomputer
of Di gital

Science DePt .
Pic~orial Data

1

1.

2

20

3

3b

3c

3d

70.7

)

)

)

RECEIVED at ARC
· JBN 2- JUN-71 9:52 7063

Wee. Enaing 28 May 1971

for storage and Retrieval
Go rdon K. Sprin~er Dec 1970

Describes computer system developed to accept
~ir.1tized or textual information as input an~ to produce
th~ necessary index infor mation needed to enter an

information
retrieVal system to store , retrieVe, or UPdate a file of
pictorial data. ~a

University Of M 1chi~Rn. MHR I. Dept of Computer an~

7041
Computation science!

Structural oommunication in a Personal Information
Storage and Re trieval System

Richard Wa rren sau vain Mar ch 1970
Describes development and use Of AUTONOTE system.

Executive Office of the President
7038

DelPh i Conferenc ing (i.e., Computer Based Conferencing
with Anonymity)

Murr~y Turoff Ma rch 1971
Report on a l3 week conference~
individuals throughout the U. S.
statistics , hardware~ software~

TM-125
Spring 1970 , of 20

Confe rence procedures,
and cost conSiderations .

PennSYlVania state unive.rsity. computer Science Dept .
7043

The sotrD System . Vol . I Des ign Philosophy ,
Basic Frame, and Compresso r

Pa Ul A. D. deMaine, James T. Pe rry , and
Go r don K. Spr inger 1 May 1971

APpenaix
704h SOLID system can be used to organize any
collection

7045

of information items, e . R . ~ dOCUments or busines s
files , which have been assigned unique descriptor
sets.

Automatic or~anization of Files . I . ove rvi ew of the

SOLID System .
P. A. D. deMane , N. F. Chaffee, G. K. Springer .

Description of a high - speed self-organ1zinR. fUlly
2

)

)

)

RECEIVED at ARO
· J BN 2 - JUH - 71 9:52 7063

We ek En~1ng 28 May 1971

automatic . Info~mation Management/Retrieval System.
FRONT provides user-machine interface , TRANSLA TOR

converts
requests to info rmation independent fo rms, and RETRIEVAL

1.
capable of proceSSing any type of Question .

3

)

)

)

RECEIVED at ARC
-JBN 2-JUN-71 9 : 52 7063

Week En~ing 26 May 1971

<JOURNAL>7 063 .NLS;l, 2-J UN - 71 9 : 52 BER ;Tit1e: Author (s) , Jeanne B.
North/JBN; Distribu tion: Doug l as C. Engelbart , ARC BlacK Soara , Little
Bl&Ck BOOk/DeE ABS LBB; Clerk: BER;
Or igin: <ROW>RECEIVED . NLS;l , 2-J UN - 71 9 : 51 BER ;

	7052
	7053
	7054
	7055
	7059
	7060
	7061
	7062

