
)

).

7101 ROME FINAL REPORT: Sec. IV
SOFTWARE SYSTEM

~870 DOC 09JUL70

Provision has been made tor
multiple ~c haracter output. and it 18
expected to be implemented shortlY after
the initial Network monitor is
operational. lf2b2a3a1

3. Implementation

There are two ~asic tasks for Which the Ne t work monitor
must be respon~ible : the provision of the 1/0 drivers
necessary tor using the Network. and the development of

1£3

a protocol for host-host communication. 1£)&

The 1/0 drivers have such functions as the following: 1t3&1

(1) Initiation of input/output commands to the
hardware interface

(2) Detection of hardware interface errors and
execution of proper corrective or evasive actions

(3) BUfter allocation and manipulation

141
IMPs

Correc~ formatting of messages !o far
and ~he Ne twork are concerned

as t.he

(5) Det.ect ion of IMP/Network errors and proper
error act.ion

161 Notification of 940 status to the IMP and
Network

(7) Initialization and recovery after 940 system

1!3a1b",_

1£301C

H3&10

lf3aH

crashes If)&lC

(8) Allocat.ion and maintenance of links over the
Network, including t.he handling of RFNMs lf3alh

(9) Maintenance of necessary internal tables
pertaining to the Network

(10) Qommunication hetween ~he Netwo rk and ARC
940 work stations.

This inclUdes the hasic sYBte~ callS required
for input/output, the manipUlation of Teletype
I/O huffers when a re mote user is connected t.o

54

H3011

lf3a1j

)

)

7101 ROME FINAL REPORT : Sec . IV
SOFTWARE SYSTEM

4B70 DOC 09JU L70

the 940 as • telephone-line type user,
notification of work stations about Network
errors, notification Of work stat ions about
illegal requests, etc.

A protocol has been established Which hosts must
adhere to in order to communicate effectively.

The monitor must be able to respond to this
protocol 1n order to use the Netwo r k.

Although the protocol 1s not yet 1n final form,
SOme of the prObable areas of concern will be:

III Opening and closing of primary links

(2) Opening and Closing ot auxil11ary
(file-transfer) links

() Message formatting (host-host)

(4) Control message decoding and
interpretation

(5) communication of status .

Since the fundamental Network drivers will be ~tatic
once they are implemented~ they have been integrated

1f3.1j1

1f3'~

1f3&2&

ltJ&2b

lf3a2b1

l!J.2b~

lf3.~b3

lfJa~b4

lf3.2bS

into the existing monitor as efficiently as possible . lfJb

The protocol, however , will prObably be SUbject to
change for SOme time; therefore, it is being implemented
in a less integrated but more flexible manner. lfJe

Among other things, it is being coded in MOL9hO,
which wil l make it easier to ~ebug and modify than if
it were coded in assemblY language. lf3cl

The general implementation approach 1s to a large extent
dictated by the space restrictions in the 940 monitor.

We have tried to put as little code as possible in
the resident monitor pa~es, and as much as possible
in a separate pa ge which maY be relabeled in and out
of the monitor1s relabeling.

Thus the resident routines in the monitor are mainlY

SS

l!Jd

ltJdl

)

)

)

7101 ROME FINAL REPORT: Sec. IV
SOFTWARE SYSTEM

~870 DGC 09JUL70

the ones that are necessary tor processing interrupts
and certain communications (there are cases when the
NetworK code must communicate with another page Which
runs in the same po sition). The remainder of the
Network code, and buffer space, resides 1n the
separate pa ge. 1£3d2

G. The NLS UTILTY SUbsystem

Manipulation of the large number of files Which are
directly Used in connection with compiling, assembling,
10ad1n g, and debugging NL5 is a significant problem.
ACCordingly, a subsystem called II NLS UTILTY" has been
written to help handle these files.

NLS UTILTY perfor ms the functions described below for the
symbolic, binary, and core~1mage files of NLS and PASS4
(the output processor).

56

19l

)

)

4~70 DGC 09JUL70
7101 ROME FINAL REPORT: Sec. IV
SOFTWARE SYSTEM

192

1. Archiving

All files relating to NLS are permanently stored on the
disc under an archiving system.

In order for the files to be accessed, they must be
explicity read £rom the archives to temporary storage,
and any permanent Changes to a file must be recorded bY
writing the updated version of the file from temporary
storage to archive storage.

NLS UTILTY performs these functions for the user, as
well as ensuring tne integrity of files written into
archival storage. li3e

2. Compilation

Subprograms lor NLS are written in three different
programming languages.

The compilation process is different for different
languages, and there is in Borne instances an interaction
between one symbOlic file an~ another .

The concern that an NLS programmer need have with the
Oetails of NLS compilation is minimizeO bY NLS UTILTY.

With NLS UTILTY, any or all of the NLS SUbPrograms may
be compileO; the compilation results are reported to the
user in a manner which he ~esignates.

3. LoaOing

The loading process for NLS is somewhat complex,

The unloaded NLS system consists of more than SO binary
files, anQ they must be loaoed in a certain order and in
a certain relationship to each other.

As in compilation, Nts UTILTY makes it unnecessary for
the NLS programmer to concern hi~self with the
peCUliarities of loading.

The loaded system consists of 7 core-image files,

57

)

)

)

7101 ROME fINAL REPORT : Sec. IV
SOfTWARE SYSTEM

~870 DGC 09JUL70

While the files are closely related, there is frequentlY
value 1n loading onlY one or another ot them.

For this reason, NLS UTILTY allows a variety of 10ad1n,
options, including one which loads the entire system,
and one which loads a specific file .

~. Listing

BecaUse of the size of NLS, the maintenance of
up-to-date listings is a tedious jOb.

Functions provided in NLS enable the programmer to
prOduce any number of listings of any or all NLS
symbOlic files by & simple process ,

More details on the individual functions and the operation

liSe

196b

of NLS UTILTY rn.y be founa in Appenaix D. 117

58

"

)

)

)

' : 4670'.09/291701735:10 MOC; :RPSFT. 07109/7.0 1926 : 19 DOC
EDITINO CHANGES DONE .COD{2IB}-114B; .PON.'/6; .DSN.1; . LSP'O;
.HLN-;; .RTJ=O; .HED="
09JUL70
7101 ROME FINAL REPORT: Sec. IV
SOFTWARE SYSTEM"; .DPR~O;

: (t'Re f U) ;

. DLS.l;
4870 DOC

)

~872 DOC 12JUL70
7101 ROME FINAL REPORT : APpen~ix 8
THE D55 AND THE JOURNAL

1

Appendix 8
TH E DIALOGUE SUPPORT SYSTEM IDSS) AND THE JOURNAL

I Preface

For his aissertation stUdy ~t Stanford University, Dr.
David A. Evans (then an ARC staff member and associated
with the Management Systems Research Activity) developed

1>

the case for augmentation of planning teams . 1a1

His thesis (Ref. 1), written with NLS , is over five hundred
pages in length. In it he presents for the planning
community a broad desc r iption of ARC's augmentation
approach, developments achieved bY ARC, and extrapolations
relevant to the planning community, 1&2

As a special case stUdy, Dr. Evans integrated the
conSiderations and possibilities for the Dialogue support
System, as developed within the ARC over a number of years
and as studied specially by Evan s under t~is contract. 1&3

) seleeted extracts from his theSis, Slightly condensed, are
included below as a good source of relevant concept
material about the DSS. These may be conSidered as trial
design notes; the final designs tor the v~r1ous parts of
the DSS, and their order of development, are yet to be

)

develope d . 1ak

II Basic Components of the Dialogue support system (OSS) lb

The DSS can be considered to have two basic parts: (1) the
Journal, and (2) a set of NLS features especially desig ned
to operate on the Journal. lbl

A. The Journal

One of the most dramatic things NLS enables its user to
do 1s operate on and maintain extremely "Plastic" and
malleable records of his thought and work.

This ever-changing plasticity is the root of basic
diffiCUlties in extending NLS for dialogUe support.
When membe rs of a team are contributing to a plan or
deSign, one of the mos t important things is that the

1

1b2

1b2a

)

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

~872 eGe 12JUL70

"targets" of their contributions remain stationary, as
if in a diary , or journal. Ironically, the design at a
"JOurnal" to maintain stationary-target records of the
transactions of members of a team proved to be
innovative in the NLS enVironment, whereas it WOUld be
tlnormal tl if we were dealin!!: with simple pencil and
paper .

The Journal 1s a special repository for NLS files Which
maY be "sent to the Journal" and no longer mOd ified, or
changed in any way.

The design Objective of the Journal is to provide the
baSis for evolution of a dia ry for a team, SUfficientlY
riCh to play the same role as a personal diary plays
when used for record keeping, and as the basis for
composition~ reflection~ and extended memory .

B. Operations Based on Journal Entries

The second component of the DSS is a collection of
special NLS features~ deSigned to make the JOurnal
usefUl as the basis for supporting team dialogue.

The JOUrnal provides the team membe rs with a chronicle
of their contributions to plans and designs. NLS~ as
extended for use as part of the DSS , is & vehicle that
(for example) enables team members to annotate
contribUtions from others , to call for specific action ,
to make synopses of records relevant to speeific issues,
and to make contributions to the evolution of plans and
deSigns that afe efficiently and appropriately
integrated and connected to the entire record of
activity.

At another level, NtS is a vehicle enabling team members
to "browse" in the Journal~ to arrive quicklY and
efficientlY at an understanding of tne status of plans
and desi , ns that are being documented, monitored, or
evolved through the medium of tne DSS .

Interspersed with this and the previous roles, extended
Nt S features enable team members to retrieve information
from the Journal, to mOdify and update this information,
and to return it to the Journal without destroying the
original contributions.

2

lb2b

1b2c

lb2d

1bJ

1bJa

lbJb

1bJC

lbJd

,

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

III Design of Architecture for the Journal

A. Introduction

'~72 DGC 12JUL70

The boundary between the Journal proper and the NLS
features that support it 1s not clearlY defined, as
those features necessary for servicing the Journal alSO,
indirectly, support the special DSS features. However,
the discussion can be simplified by means ot this
diVision.

B. stationary Targets

The ideal record system for dialogue support would be
some large, central, evolving record that WoUld keep
track ot the team's activity as team members contributed
modifications, new ideas, new deSigns, specifications,
and BO on, over time. We have only to consider the
prOblems raised by the basic file-handling opera~ions of
~he current NLS to apprecia~e the difficulty of creating
such an eVOlving record o~ ~ransactlons.

In any attempt to use files for dialogue purposes, the
first prOblem encountered arises from mUltiple access to
liles. When a file is strictlY the "propertyll of its
author, dealing wi~h material tor Which he alone has
prime responsibility, ~he file owner can quite easily
keep track of its developmen~.

However, when several individuals make active U5e of
a file, it becomes very difficult for the individuals
to avoid canceling each other's work or otherwise
interfering with each other. They cannot all access
the file simUltaneously, and so copies are created;
soon there are multiple copies, each copy containing
changes and additions made independently by various
users, It is then impOSSible, in the general case,
to put these copies back together in such a way ~hat
all the work done on ~he separate copies is

10

101

101&

102

102&

102b

preserved. lc2bl

The prOblem is much like trying to hit a moving target
in the dark, and the desired solution is to find some
way to make the target stop moving -- hence the phra~e
"stationary targets,11 The existing capabilities of NLS
anO the file-handlin g facili~ies used by NLS are not
adequate for achieving this. lc2C

)

)

7101 ROME FINAL REPORT: Appen~ix B
THE DSS AND THE JOURNAL

.872 DGC 12JUL70

fo r example, it would be possible with existing
cap~b11itieB ~o give all files a read-only status, so
that once a file was created it COUld never be
mOdified. Thi s WOUld overcome many of the problems
of mUltiPle access; however, it WOUld alsO destroy
most of the power and usefulness of NLS as a tool tor
manipulating information. lc2cl

Likewise, it Would be possible to give all files &
PUblic read/write status, permitt1n~ any member of
the team to mOdifY any tile at will. It can be seen
that thiS would lead to immediate chaosl a team
member working on a file and wishing to make
reference to another file would have no assurance
that the referenced file still contained the same
informa~ion a8 when he lOOked a~ it last, lc2c2

The concept Of the Journal is a way ~o create s~a~ionary
targets without the crippling effect of a blanket
reaO~only pOlicy or the anarChy of a blanket PUblic
read/write po licy. Files ~entere d in the Journal ll have ,
in effect, read~only status, but numerous capabilities
are added to compensate for thiS; moreover, the Journal
contains only se lected files which are considered to be
Ilre ady't to become stationary targets,

C. The Journal

The Journal is a PUblic repos1~ory for information of
concern to the team Of users , A file sent to the
JOUrnal becomes a public record. In principle, at
least, it cannot in any way be altered, or retracted.

The author has Itgone on record~ with the statement
made by the filets content. He may keep a copy of
the file en~ered in ~he Journal, and make
mOdifications and corrections in th&t copy, but
cannot replace the original file in the Journal bY
over-writing it with the revised verSion. Both the
original and revised versions may be entered in the
Journal.

A basiC Journal function is to provide users with
mechanisms and aids to recognize th&t "later
versions It in the Journ~l h~ve been entered, an6 to
provide users with !e~tures to en&ble theM to

4

le2~

leJ

le)<

1e)<1

)

)

7101 ROME FINAL REPORT, Appen01x B
THE DSS AND THE JOURNAL

.B72 DGC 12JUL70

retrieve and display the multiple versions of a given
file. 1c302

In keeping with ather (non-computerized) Journals,
the only ordering imposed on Journal entries is
chronological.

In NLS, "JoUrn~l" becomes a distinct user name, with a
status Similar to al l other users.

However, the Journal adds a Second distinct domain of
files to the NLS file universe. Journal files have
special features. Tney are all read-only. They possess
two parts -- the text/graPhics portions written by "their
author, and blocks of data containing information added

lc303

lc3b

to the file after submiSSion to the Journal . lc)c

The first component is totally frozen: once a file
is ~sent to the Journal" ~he "maximum" user
representation for that file may not be SUbsequently
a1tereO. lc3cl

But the seconO component, Oata blocks, maY be changed
throu gh the adQition of new Oata over time. 1~3c2

1. Journal Entries

Although we have been Oiscussing "files" in the
Journal, we shoulO refer to a moOule of infor~ation
in the Journal as an "entry," From the viewpoint of
the NLS file system, an entry is synonymous with a
file. However , we wish to emphasize the notion ot
collecting information from many files together into
one mOdUle , anO sending that module to the Journal as
an entry. Yor this reason, we will persist with the
terminolo gy I'entry" rather t han "file" when
discussing the Journal from the point of view of a

1c3d

user (contrasteO to t he viewpoint of the system). lc)dl

D. Sending an Entry to the Journal lc4

Because of the existence of two file universes (regular
NLS files, and Journal entries) a user 1s not compelleo
to submit all of hiS files to public scrutiny. lc4a

He may keep hiS personal collection of files
containing his notes, plans, special reminders, etc.,

5

)

)

7101 ROME FINAL REPORT: Appendix B
THE DS S AND THE JOURNAL

•. 872 DaC 12JUL70

separate trom the collection of fil es he submits to
the Journal.

Within this personal collection he retains tne option
of controlling read and write access by other users,
He may, for instance, have several files that contain
private/confidential information that is of no

10.al

concern to the team as a wnole. lc~a2

However, the decision to submit one of hiS own files to
the Journal is not totally the prerogative at the user
himself, unless all his files have private status.

Files stored under a given user name, with other than
private statuB, may be entered to the Journal bY any
other user. This is similar to the procedure of
having testimony, or a speech, or other data , rea4

104b

into the (Congreasion~l) Record . lc4b1

However, in most cases, Journal entries are SUbmittea
b~ the user who hiS the file (or component files)
stored under his name, as part of the standard NLS
file universe. lC4b2

Fo r one user to submit another's file to the JoUrnal, he
must first load that file, make a temporary copy. and
submit that copy as a Journal entry as if it was one of
his own "normal" NLS files,

Entering a file to the Journal involves the following
opera.tions:

(1) A oopy of the file being SUbmitted i. made.

(2) That copy is again copied, by the system, and
(automatically) written as a new file unde r the user
name "Journa.l." It is gi ven a new name. Which is a
unique "Journal Entry Number," and set to read-only
status.

() The User SUbmitting this file i. given a
"receipt" bY the system. indicating that entry to the

1040

lchd2

Journal has been successful. lc4d3

The reSUlt is that a IIS h~P8hot " of the user's file has
been recorded as a Journal entry. The user haa complete
control over the VIEWSPECS controlling the view and

6

)

)

)

7101 ROME FINAL REPORT: Appendix 8
THE DSS AND THE JOURNAL

4~72 DGC 12JUL70

amount of the file aUbmltte~ to the JoUrnal. For
instance, if he so chooses, the user may submit only the
first level statements 1n the file. or he may submit
only selected statements in the file -- for instance,
only those that satiSfy a specific content pattern . He
may, of course, choose to employ no speCial VIEWSPECS,
and submit the entire file to the Journal. The VIEWSPEOs
used at time of entry to the Journal determine the
maximum subsequent view for that Journal entry.

SUbsequent readers of the Journal entry may emplOY all
available VI EWSPE QS to help them stUdy the content of
the entry, but are constrained to this "maximum" View,
This means, for example, if a file is Buomitted to the
Journ.l with. 1-1 VIEWSPEC (i.e., only top level
s~atements, and only one line of these), SUbsequent
readers can view no more information in that entry,
other than the 1-1 view, even if he uses a VIEWSPEO such
a! ALL-ALL (i.e., all statements, and all lines of eaeh
statement).

ThUs the result of this entry procedure is the creation
of a new read-only file, a stationary target, under the
user name Journal, with a unique Journal Entry Number as
its na~e.

E. Journal Entry Linkage systems

Once we have procedures for submitting entries to the
Journal, the next major need concerns linking the
individual stationary targets -- the Journal entries -
into a fabric of interconnected information.

Interf11e links may be used to refer to specific
locations in a file from any arbitrary location in
another file. The difficUlty in this inter file linkage
system is that there is no way for a user to discover
tha~ a particular entity (e.g., a specific statement l in
the file he is reading is be ing referred to by links
embedded in other files, or embedded in other statements
within the same file. This basic wea~ness leads to
indiscriminate deletion or alteration of fil~B.

To solve this prOblem in the DSS, Journal entries will
have "backlinKs." This means that when a link is
establiShed in a file (for instance, a file not in the
Journall, a special marker will be written automaticallY

7

lc4e

lc4f

lc4g

lcS

lcS '

le50

)

)

)

7101 ROME FINAL REPORT: Appendix 8
THE DSS AND THE JOURNAL

~872 DOC 12JUL70

by NLS in the appropriate location of the referent file,
indicating that • link is pOinting at that entity.

This marker will give sUbsequent readers of the referent
file a visual signal that the marked entity i. the
target of a link in another file. A new NLS command,
JU MP BACKLINK, will make it possible for the user to
jump from the entity in the referent tile "back " to the
statement containing the link in the source file.

There are five cases of file-pair linkages that produce
prOblems:

(1) Linkage between two standard NLS files, A and B,
from A to B, and file A SUbsequentlY becomes a

leSe

lcSd

leSe

Journal entry. leSel

problem: The link 1n A continues to refer to B.
and 1s unaware Of the formation of a Journal entry
from B. If B is deleted, the link points to a
non-existent file. lcSela

Need: Additional bOOkkeeping to redirect links to
the appropriate Journal entry if B is delete~ or
otherwise mOdified to make the link inappropriate. lc5elb

(2) Linkage between two standard NLS files, A and B,
from A to 8, and B SUbsequentlY becomes a Journal
entry. lc5e2

problem: The backlink attached to the referent
entity in B points back to A, and is unaware of
the Journal entry made from A at a later date. If
A is deleted after its copy is sent to the
Journal, SUbsequent efforts to J UMP BACKLINK on
the back11nk marker from A in B will yield a "no
SUch" message. lc$e2a

Need: Additional bookkeeping to redirect the
backlink to the appropriate Journal entry if A 1s
ever deleted or otherwise mOdified to make the
backlink inappropriate. This leads to the concept
of indirect linking.

8

)

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

leSe2b

~a72 DGC 12JUL70

(3) link~ges between two standard NLS files, A and
a, from A to B, and both A &nO B subsequently become
Journal en~ries.

Combination of prOblems and needs of Cases 1 and
2.

(4) Linkage from a Journal entry to a standard NtS
file that SUbsequently becomes a Journal entry.

Problem : Link in the Journal entry is unaware of

leSe3

leSe3_

the existence of the Journal entry made from B. lc5e4a

Need : Bookkeeping necessary to redirect the link,
if requeB~ed, to the appropriate Journal entry if
so requested bY the user. lcSe4b

IS) Linkage from a standard NLS file to a Journal
entry, and the standard NLS file SUbsequently becomes
a Journal entry. leSeS

Same as Case h except We are concerned with
backlinks rather than links. leSeS&

F. Othe r Bas ic Journal Needs lc6

In our first-p~ss discussion of Journal architecture an d
needS, we should consider two additional general needS,
arChiving and cataloguing . lc 6a

Archiving is necessary because the current system has
limited storage area for files accessible to NLS. The
only mass storage devices presently a vailable in the ARC
facility are msgnetic tapes, and so, at first. the
Journal will have a sequential archive, All Journal
entries have archival copies. The archival system
provides a back-up to the colon copy of a JOUrnal entry
in case of disaster, and a large tertiary storage area
for those entries not frequently referenced, that do not
have to be kept continually in colon file storage on the
disk . le6b

Major archiving prOblems arise because of additional
data (including hacklinxs) associated with an entry
after it is SUbmitted to the Journal. lc6bl

9

)

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

~672 OGe 12JUL70

Files ~re allocated a fin1~e number of bloc ks on a
magnetic tape at the time they are written. Data
added after the entry is made may be written in
this "slOP" area until it is filled . But from
then on, these data must be stored elsewhere ,
Only minor problems arise if the additional data
can be stored elsewhere on the same tape, with a
link fro~ the original entry to a special file ,
elsewhere on that tape, associated with that
entry, containing additional data. lc6bla

However, when the tape is tilled, these data have to
be stored on a separate tape. This causes
conSiderable diffiCUlty when retrieving the entry and
its associated data from the archive . There 1s no
simple solution to this problem while m&gn~tic tape
is the arChival m~dia. These prOblems will not arise
with random-access mass-storage media. lc6b2

The final basiC Journal fea~ure is a catalogue.
Obviously, a Journal read~r requires a guide ~o the
con~en~s of the JOUrnal, and thiS is provided bY ~he
catalogue.

The Journal Catalogue will have three principal
par~s,

III SUbject index

(2) Citation list tor Journal entriee

III Keyword lis,s,

IV Design for Detailed NLS Features ~o suppor~ DSS

A. SUbmission of an Entry to the Journal

1. EntrY/Receipt Procedure

When a file is submitted to the Journal, the first
operations are concerned with crea~ing a new Journal
en~ry, alloca~ing a unique number to that en~ry. and
giving the sender a receipt. This recei p~
ac knowledges the entry has been made sucessfullY, and
supplies the sender with sufficient information to
enable him ~o locate and retrieve the entry at a

10

lC6c

lc6cl

lc6cla

l c6clb

lc6clC

ldl

ldl.

)

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

4.872 DGC 12JUL70

later date . DetailS of this proce~ure are illustrated
1n the following scenario . ldla1

a . Scenario: EntrY/Receipt Proecedure

(1) Assume the user, x, has assembled a file
(X,Xl) to be sUbmitted to the Journal.

(2) He activates the new NLS command "ENTER FILE
TO JOURNAL filename," entering the filename Xl, as

101&20

the ope rand for this command. ldla2b

13) NLS makes a copy of the file IX,Xl) as &
temporary file, (JOURNAL,Tll, i.e., under the
user name !'Journal. 't ldla2c

14) ImmediatelY .fter making this new file, the
system checks a special record, containing a
"Journal Entry NUmber," taking note of the time
and date this check is made. Journal Entry
Numbers have the form "NNNJMMY."

"NNN" is a serial number, in the range 1 to z

101&20

where z i8 arbitrarilY large . 101&201

"J" is the literal character "J," inOic&ting
that the nu~ber refers to a Journal entry.

"MM" is the month the entry was sUbmitte~
(e.g., 11 • Novem~er).

"y" is the year the entry was submitte~ (e.g.,

1010202

9 • 1969). 101a204

The serial numbers , NNN, are in1tialize~ at the
start of each month .

Example: If 4562Jl19 i. the last entry
sUbmitte~ to the Journal in the month of
November, 1969 (indicating that 4562 entries
were submitted in that month), the next Journal
entry would be allocated the number lJ129. ldla2el

Assume that the number in this location at the
time of this particular access was 457J l19, and
the exact time of access was 1451:30, on 11/1)/69.
Once this number has been secured, the system

11

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

1t872 DOC 12JUL70

UPdate~ the latest Journal Entry Number 1n this
location Ito 457+1 = 458). ldla2!

The system now copies the tile (JOORNAL,Tl) tq
a new file -- a Journal entry with tile name
457Jl19. It Bets the statu. of this file to
pUblic rea~-onlY, and notes the time and date
of completion of making this Journal entry:
1451:45 , 11/13169. ldla2fl

Once thiS Journal entry has been made, the
system returns a message "FILE (X,Xl) ENTERED
TO JOURNAL AS NUMBER 457J l19 AT 1457:45' to the
sender (user Xl. 1d1&2£2

This message remains on user XIS display until
a command accept (CA) is entered. En tering the
CA releases the file (X, Xl) for normal
operations, and redisplay! the file. U8er X 1s
now free to continue his normal work. 1<:11a2£3

2.

3.

Data Assembly Procedures at Input Time

The time an entry is submitted to the Journal is an
opportune time to capture data asso~i~ted with the
entry. The Journal entry procedure will contain
additional operations, in which the system
interrogates the user to Obtain an abstract and
special descriptor tags for the entry. The abstract
will be used in the Journal catalogue. Descriptor
tags will be used for retrieval of entries.

collection System

Part of the Journal entry system gives the user
special aids for assembling the entry before actual
SUbmission. These are compound operations~ combining
several simpler ones. These simpler operations
inclUde file me r ging and the "executable statement!!

ldlb

ldlbl

ldlC

capability. ldlcl

B. Linkages

Special linking features will be added to NLS to support
the DSS needS. One of the most important classes of
these new features concerns NLS links,

12

ld2

ld2.

)

)

)

7101 ROME fINAL REPORT: App.n~1x B
THE DSS AND THE JOURNAL

1. t'Link" as an nLS Entity

~872 DGO 12JUL70

In the current NLS a link is a simple text construct;
it is not a special entity, in the way that
characters, words, anO statements (for instance) are

102b

entities. ld2bl

There is no commanO DELETE LINK 1n current NLS. A
link may be deleted using the normal DELETE TEXT
command, requir i ng two bug se l ections, one at e ac h
of the link parentheses , l02 bla

A special NLS entity "link" will be added to NLS .
This will be of particular importance in combination
with indirect linking and executable statement
operations. 102b2

To insert a link, the new command INSERT LINK is
useo. This command requests user input ot data
necessary to construct the link , and organizes these
data in the appropriate syn~ax (see below) .

13

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

ld2bJ

2. New NLS Link Syntax

a. Additional Link Dot.

Additional data will be added to the current NtS
link construct. These data are (a) link type, (b)
time and date the link was first constructed, or
last "stamped," and (el improved resolution to

ld2c

ld2cl

identify link referents, ld2cl&

Link type data are one or more descriptors, being
a Simple text name, or collection of names,
indicating memberShip of a class, or classes, ld2clb

Example: POSSible link types would be
I' footnote," "comment,11 I'rebuttal,"
"owner-evans," etc . A link "owner'l could be
different from the owner of the file in which
the link resided. The definition of these
types and their respective mnemonics would be
determined by agreemen~ among DSS users. l02clbl

A most important aQdit i on to NLS links will be the
added power to refer to ANY entity. In the
current version of NLS , a link may point onlY to
B~atement entities . ld2clC

With greater resolution for link references,
for instance, & link may be conB~ructed to
refer specifically to another link. This is
the blSis for indirect linking, to be discussed
below . ld2clcl

b. POSSible syntax for New NLS Link Entity

<T~PE;DATE , TIME> (USERNAME, FILENAME,
LOCENTIT~:VIEWSPECSI

TYPE is any number of descriptor mnemonics
defining the type of the link. Each desc riptor
would be delimited by a comma.

MMDD~~ HHHH:SS i. the date and time the li nK wo.
created, or the date and time the link was last
"stamped," in the format (month, Oay, year, hour,

14

ld2cZa

ld2c2b

)

)

7101 ROME FINAL REPORT: Appendix 8
THE 055 AND THE JOURNAL

8econ~).

~872 DOC 12JUL70

At any time, the link's owner may initialize
the time an~ date for the link, using a
date-~1me "stamping" command.

USERNAHE, FILENAME, and VIEWSPEC have the same
meaning as in current NLS links.

LOCENTITY identifies 0 specific torget entity.
Detailed syntax for the LOCENTITY may be
arbitrarily complex. The following example
indicates a simple statement-number syntax.

c. Example

(comm,urr,Evons;09/17/69 0014 : 44>
{Engelbart,plans,m-Plxil

TYPE is l'comm,urg,Evans~

DATE,TIME is "09/17/69 0014.44"

USERNAME is 1'Engelbart 'l

FILENAME 1s "plans"

LOCENTITY is 1IM_P'! (the ma rker "PH)

VIEWSPECS are Xi, meaning diSPlay only one line
of top-level statements, and switch on the

ld2020

ld202cl

ld20)

ld20)'

ld20).1

ld20)02

ld2C)')

ld2c).4

ld20)05

content analyzer. l02c3a6

This link refers to the entity with marker "PH
affixed ("m-p") in the tile "Iplans" owned by user
name "Engelbart ." It points from & comMent
"~'commIt) that is urgent ("urg"l, an~ should be
brOUght to the attention of user name "Evans,"
The link was last stamped 09/17 / 69 at 0014144. ld2C)b

). New VIEWSPECs for Links

Increased link complexity demands more powerful
VIEWSPECS to simplify displaying the link construct,
so linkS do not make the remainder of the text
illegible.

15

ld2d

ld2dl

)

)

)

~72 DGC 12JUL70
7101 ROME FINAL REPORT : Appen6ix B
THE DSS AN D THE JOURNAL

4.

s.

Additional VIEWSPECS will be available tor totally or
partially suppressing disPlay of the link construct.
For instance, the user coul~ control which fiel~s in
the link were displayed at the link's location 1n a
statement (this VIEWSPEC would applY to the entire
displaY). If the link was to be totally suppressed,
an additional VIEWSPEC WOUld allOW the user to
control whether or not special I'link markers~ were
displayed at the link's normal location, ld2d2

A user would interrogate an individual link marker,
to display the partiCUlar link represented by that
marKer, without displayini all links. ld263

Links Not Embedded Directly 1n Text

Because of the "stationary target" concept and the
frequent need to attach links to existing Journal
entri~s, it will be necessary to h~ve a new NLS
comman~ to enable a user to associat~ an NLS link
with any 5elec~ed text entity, but have that link
d isplay~d onlY as an overlay to the file, rather than
an integral part of the normal text. Link markers,
similar to those used for backlinking, will be used
to indic ate the presence of one Of these links. New
NLS commands will be available to enable the user to
control the display of the link and markers .

Indirect Linking

Once it is possible to "aim" a link at any arbitrary
entity, such as another link, or at a simple
character in a statement, indirect linking becomes
possible. The following example illustrates detailed

ld2.1

ld 2t

oper.tion for indirect linking . ld2fl

Example: The fOllowing link is displayed in a
statement of the file (Evans,ddd);
<cornm;)(Engelbart,plans,m-P:). Note tha t the
da te-t ime field has been suppressed by the new
link VIEWSPECS 6escribe6 previously. This linK is
embedded in a statem~nt (or branCh) constituting a
comment on its DIRECT target. ld2fla

In the file (Enge lbart,plans) there 1s a marker
"P" affixed to a character just prece~ing another
link, as follows: <P)xx yyy cc

16

)

)

)

7101 ROME FINAL REPORT : AppenOix B
THE DSS AND THE JOURNAL

48.72 DGC 12JUL70

(comm;>(Evana,rrr,12b:w). This link is a comment.
on 120 1n the file (Evans,zrrr). Id2tlb

Use of the new command JU MP IN DIRECT LINK, with
the original link as operand, causes the statement
12b to be displayed under the control of VIEWSPEC
"w" (all lines ot all statements). 102£1c

6 . B.cklinks

The most important additions to existing NtS link1n,
featUres tor use 1n the DSS are the backlink
operat.ions.

Back11nk1ng means that a special executable link
marker is deposited 1n the referent being pointed at
by a link. This enables a user, v1ewin~ the referent
entity, to I'JUMP BACKLINK" and display the entity

H2g

10211

cont.ining the origin.l link. 102g2

The existence of an NtS link reference to any
Oisplayed NLS entity will be inOic.teO by special
oacklink markers. Display of these markers will oe
unOer user control in a manner similar to link
markers, Oescribed previously ,

A user may interrogate a backlink mRrker, to have
Oata on the source entity disPlayeO. Execution ot
the new command JUMP BACKL I NK with a baCk link ma rker
as operand displaYS the Bource entity at the top of
the Oispl.y .

Indirect backlinking will alSO be available.
lnoirect oacklink jumpi ng means that a user executes
JUMP BACKLINK INDIRECT, .nO the system Oispl.ys the
statement containing the link that points at the
source of the baCklink marker entered as the operand
for this command.

7. Remote Linking

The baSic concept for remote linking is that of
attaChing the "head" of a link to its referent
entity, followed by insertion of the link itself in
the source entity, remote from the referent, at. some
la.ter time.

17

102g3

10215

ld2h

ld2hl

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

~72 DOC l2JUL70

This may be accomplished by the following stepsi Id2h2

(1) Assigning a temporary marker to yet another
entity, !Ilink referent I' Id2b2a

(2) Depositing that marker at the aporopriate
location in the referent statement Id2h2~

(31 Later, While inserting the basic linK
construct in the source statement, calling for the
referent entity data to be inserted in the link bY
using a special INSERT REFERENT DATA command,
entering the referent marker as operand. Id2h2C

This type of operation depends upon each user having
at least two NLS files open simUltaneouslY. If links
and back11nks are considered to be completely
symmetrical, this procedure May be used
interchangeably with the convention&l INS~RT LINK
comman~.

18

)

)

)

7101 ROME FINAL REPORT: Appendix 8
THE DSS AND THE JOUR NAL

ld2hJ

c. Oopying a Journal Ent ry

~872 DGC 12JUL70

A problem arises when a Journal entry, stored as a colon
file, is copied to a new filename. All back11nk markers
are retained, but the links generating these markers
continue to refer to the original Journal entry, and do
not point at the new file. Th us an additional type of
back11nk is prOduced -- one that has no for ward -pointing

ldJ

linK associated with it. ldJa

These asymmetrical backlink markers make it possible
to jump to files and entries that referred to the
original entry. They may be deleted if jUdged to be
inappropriate for the new file. 1dJal

At the time the new file is created, the system will
automatically insert a link in the filets header
state ment , pointing at the header st~tement in the
Journal entry from which it has been cop1e~, and
depOSiting a backlink marker in the header at the
Journal entry. ldJC

D. oroered seta

A set is a special new NLS entity -- it is a COllection
of other entities (e.g., of characters, files,
statements, linKS, other sets, etc.). The design and
implementation of operations associated with sets is a
complex prOblem. The following indicates what seem to
be the most promising possibilities.

An "orae re d'i set has a specified order associa ted with
its member entities. Sets are given unique name! for
i dentification. For convenience , a set will be attached
to a "parent" file, selected arbitrarily bY the user .
[Evans,XxX} is the set named "XXX" owned by the user
name "Evans. " Set names are similar to statement names,
except they must be unique over the entire universe of a
user's files -- it is not possible to have a set named
I' XXX I

• associated with the file :ccc and another set
"XXX" associated with the file :ddd, if both :ccc and
:ddd are owned bY the same user. However, different
users may own sets with the Same name.

l. Admission to a set

19

ld~

ld ••

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

~872 DOC 12JUL70

other NLS entities, including other sets, way be
I'admitted" to a set, using the command "ADMIT
(entity) TO SET (setname)", and entering the
appropriate operands. ldUcl

l' Entity'l is the NLS entity selected or specified
by the useri Iisetname ll is the name of an existing
set -- the set to Which the entity is to be
admitted. 1dhcla

Not only entities, but specific views and specific
sUbsets of entities, may be admitted to a set. ldhc2

Example: The first line of the first two levels
of statements in a file satisfying a given
content pattern, may be admitted to & set. The
remainder of that file , unless specifically
admitted on another occasion, does not belong to
the set. 1d4c2.

2. Direct and Indirect Use of Sets

There are three modes for using sets: "normal,"
"direct,~ and "indirect."

"Normal" mode corresponds to normal NLS usage in
Which the set entity has the same status ~5 normal
NLS entities (words, Characters, etc.).

Thus in normal mOde, the command DELETE SET erases
the set whose name is given as an operand . No t e
that the set is erased , not the members of the
set.

In "direct " mOde, operations performed on a set
produce changes in the actual entities admitted to
the set.

Example: A (hypothetical) command II DELETE WORD
rn-spec I N SET (evans,X}'1 is entered; "spec" is an
NLS marker name. upon execution. in direct mOde,
all words so marked in the entities that are
members of the set {evans.X} will actually be
aeleted. That is, they will be deleted in the
same aense as if the user displayed each entity 1n
the set containing the marker, and manually

20

ld4d

1d4d1

)

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

4.872 DGO 12JUL70

deleted the marked wora , followed by the command
OUTPUT FILE.

Entities changed through operations performed on
sets in "direct" mode remain changed after the

1d4dJa

system i& returned to "normal" mode. ld~d3b

In "indirect '! mOde, operations performed on entities
that are members of a set (by using the set name
itself as the operand) produce changes in those
entities ONLY while the user views them "through" the
set. 1d4d4

For instance, it in the previous example the same
operation Was performed in "indirect" mode, the
marked words would not be deleted in the files
containing the marked entities in question, but
would only "appear" to be deleted when the viewer
Was working with the set {evans, X} contrOlling the
entities he coUld display . This appearance woulO
be negated as soon as the user returned to display
any member-file in normal mode. ld4d4&

). Open and Closed Sets

a. Closed sets

A closed set is one whose membe rshi p is specified
explicitly, i . e., there is a finite ful l y
determined membership list associated with the
set. For examPle, statement entit ies might be
specified by a lis~ of NLS links. There are three

1d4e

1d4e1

types of closed sets: frozen, unfrozen, and mixed . ld4ela

A frozen closed set retains the exact content
and structure of each entity, in the state in
Which it WaS originally admitted to the set.
Even if (saY) a member statment is ~eleted, &
llcopyll is retained in the set, ld4elal

An unfrozen closed set retains a finite
membership, but permits each member entity to
adopt its latest actual state. For eXample, a
whole file, containing three statements
admitted to an unfrozen closed set on day 1,
SUbsequentlY undergoes major modifications. If
the set is used as an operand on day 3 (after

21

•

)

)

)

L872 DOC 12JUL70
7101 ROME fINAL REPORT: AppenOix 8
THE DSS AND THE JOURNAL

h.

the modifications), the filets state a~ that
ti~e is used.

A mixed set contains entities whose
frozen/unfrozen status is determined
individually. In other wordS, a set may
contain some entities whose original status 1.
retained, and Borne whose status is the latest

104el.2

status of the entity itself . 104el.3

b. open sets

An open set is one whose memberShip is not fixed
bY explicit identification of its member entities,
bUt rather bY the specification of conditions to

104.2

be met to admit member entities. ld4e2&

For example, an open set's membershio may be
determined by those statements in a given file
universe that satisfy a given content pattern. ldke2b

On day 1, this may yield a difteren~ membership
than on day 4, if mOdifications were made ~o
files in that universe during this period.

There are two major and distinct classea of
operations associated with sets -- operations on
sets, and operations within sets. The distinctions
between these classes are important.

a. operations on Sets

10402c

104t

ld4tl

104f2

Operations on Bets use en~ire sets as operandS. ld4f2a

Simple operations on Sets ld~t2b

These operations inclUde the standard NLS
operands -- INSERT, DELETE, REPLACE, e~c., in
addition to a new class of commands --
set-~heoretic operations. ldht2bl

INSERT SET creates a new set. ldhf2bla

REPLACE SET makes it possible tor a user to
make a new set as the union of one or more

22

)

)

)

7101 ROME FINAL REPORT: Appen~ix B
THE DBS AND THE JOURNAL

~872 DGC 12JUL70

existing sets, and ~o simultaneouslY delete
the original sets (their names, not
members). 1~k!2blb

DELETE SET erases the set (but not its
members). 1~k!2blC

set-Theoretic Operations on Sets ld4f2C

There will be new NLS commands to enable a user
to perform set-theoretic operations on sets.
The following set-theoretic commands will be
available: UNION, INTERSECTION, COMPLEMENT, .n~
DIFFERENCE, where each operation has its usual
mathematical meaning_ ld4f2cl

b. Operations Within Sets

Operations within sets have entirely 01fferent
meanings from operations on sets, and from
operations on member entities outside the
influence of the set construct.

When under the control of operations within sets,
the conventional NLS com~ands take on the

l~kfJa

followinK meaning. l~kfJb

MOVE : Change the ORDER of membe r entities in
the set. l~kfJbl

DELETE: Remove the operand-entity from
membership of the set.

COPY: Include the operand-entity onCe more in
the set membership (in & different position

1~4fJb2

within the set's order). 1~4rJbJ

INSERT: Admit the operand-entity to membership
in the set. ldkfJb4

REPLACE: Replace the member entity selected a8
operand with the entity selected. The entity
selected as a replacement mayor may not be a
membe r of the set. l ~k!JbS

E. Executable statements l~S

2J

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

aB72 DOC 12JUL70

An executable statement will be a new text construct,
using the current NLS statement as a basis. NLS
commands will be pre-specified as a text string in an
executable statement. They will be executed by using
the command EXECUTE STATEMENT, giving the statement
number of the statement as operand.

An executable statement will be the means to effect
compound or concatenated operations, including set
operations. The structure and meaning of the executable
statement features CJO best be illustrated by ex~mples.

Example: Tne fOllowing is an executable statement,

(XXX) (evans,sss , 12:x) (Engelbart,plans,2:w) E C
CA {~retr1eve "} OR ("Retrieve") ; CA

lOS.

10Sb

ldSbl

(evans,rrr,:wi) END ldSbla

(1) BY activating the command EXEOUTE
STATEMENT , and en~ering ~he operand ~ XXX " (the
name of ~he executa ole statement), followed bY
a single CA , tne first link will be executed as
it JUMP FILE LI NK was used with that linK a.
its operand. ldSbl.~

(2) The user views the file (evans,sBs) with
statement 12 at the top of ~ne screen,
displaying only the first lines of SUbsequent
top-level statements in the file. ld5bla2

(3) A second CA causes the second link to be
executed.

(4) The user views the file (engelbart,plans),
with statement 2 at the top of the screen,

ldSblaJ

diSPlaying all lines of all statements. ld5bla4

(5) A third CA causes the content pattern
{~retrieve} OR {~Retrieve~} to be compiled,
automatically followed by the execution of the
last link. Note that the VIEWSPEC ttill in the
last link activates the pattern, ldSblaS

(6) The result is that the file (Evans,rrr) is
searched; all statements containing the text
construc t Ilretrieve ll or ~Retrieve~ are
displayed . ldSbl.6

24

)

)

7101 ROME FINAL REPORT, Appendix B
THE DSS AND THE JOURNAL

Example: The following executable st~tement
illustrates more complex operations on 8ets.

IYYY) {DOD}: {ARMY} UN I ON {NAVY} J {USA}:
(DOD) INTERSECTION {MIC} JE C CA {"w •• pon"} J CA
INixon.{USA}.,wi) CA DI SPLAY , w OUTPUT FILE
!,arsenal' DELETE SET {DOD} AND SET {USA} END

(1) The command EXECUTE STATEMENT i8 executed
with the operana YYY. the name of the

ld5b2a

statement. ld$b2al

(2) A CA causes a new s e t "DOD" to be forme~ a8
th~ union of the two exis ting sets "ar my and
"navy." This set will be attached to tne file
containing the executable statement. ld5c2a2

(3l Another CA causes a second set, "USA" to be
formed as the intersection Of the two sets
"DOD" and "MI C."

(S) Another CA causes the content pattern
"weapon" to be compiled, immediatelY followed
by execution of the link tranSferring control
to the first entity containing the text
construc~ t'weapon!1 in the set "USA" (which is
owned bY the user "Nixon "). ldSb2ak

(5) The system searches all entities 1n this
set, i nd displays , under VIEWS PEe contol "~ w It
(&1 1 lines of all statements) those statements
containing the text string t'weapon". l d5b2aS

(6) A £in&l CA causes this collection of
entities to be output as the new file
I : arsenal. I Ano~her OA Causes both the sets (as
distinct from the set membership) {USA} and
{DOD} to be deleted . Id5 b2a6

Exa~Ple : The following executable sta~ement
illustrates how the member entities of a set may be
displayed.

IZZZ) DISPLAY,w {HEREANDNOW} END

By giving the command EXECUTE STATEMENT with ZZZ

25

Id5b)

IdSb)&

)

)

7101 ROME FINAL REPORT: Appen6ix B
THE DSS AND THE JOURNAL

.872 DOC 12JUL70

as the operand, followed by a CA, all ent1ties in
the set "HEREANDNOW" will be displayed, under
VIEWSPEC control t'w" (all lines of all
statements) . 1650).

Example: The following is an example of simple "chain
generation" using an executable statement. ldSb4

{AAAI MARKER-Al CHAIN (evans,ss,12:gW)
(evans,ss,S:gw (Engelbart,Plans,5:whl END ld5b4&

BY giving the comman6 EXECUTE STATEMENT with the
operand "AAA H

, followed bY a CA , the display
starts with an all-all view ot the branch starting
with statement 12 in (Evans,:ssl. Nor~al text
operations may be performed on this branch . If a
second marker A1 is entered, the all-all view of
the branch starting with statement 5 in
(evans,:ss) is diSPlayed, and BO on . ld5b4b

Here a marker is used as the mean s to adVance the
view along the chain. This permits normal text
operations (re~uiring CAtS) to be pertormea at
each view along the Chain . ldSb4c

In all examples, the maximum VIEW SPEC operative on
any entity is controlled bY the VIEWSPEC assigned to
the set member entity itself at the time it was
admitted to the set.

F. Entry Descriptors

Descriptors will be attached directly to Journal
entries, either at time of entry to the Journal, or at
some later date. These descriptors will cover at least
the following classes:

(1) SUbject matter/type ot entry

EXamples; commen t; message; annouuncement;
injunction

(2) urgency

Examples: urgent; not urgent

(3) Names of users whose attention is sought

26

165b5

1d6

1660

16601

166010

166.2

166020

1d6a)

)

)

7101 ROME FINAL REPORT : Appendix B
THE DSS AND THE JOURNAL

~872 DOC 12JUL70

Example: attention: evans, engelbart.

(4) Author/source of entry

Example : author: evans;

(5) Date/time of entry to Journal

ExamPle: enteced 9/26/69 1006 : 30

G. Interrogation

commands will be available to enable a user to
interrogate a Journal entry in order to ask the
following types of questions:

(al Which Journal entries or other tiles are pointing

ld603'

1d6.4

ld604_

ld6.5

1d6.5<

ld7

1d7<

at the interrogated entry? ld7al

(b) TO Which sets does the interrOgated entry belong? l d7a2

When interrogating to determine Which entries or other
files are pointing at the entry. the user will be ab le
to control the universe over which the search tor these
ent ries is to be performed.

For instance, the user may asx for onlY those entries
that point at ~he interrogated entry, or are attached bY
l ink s of a specified type, from entries of another
specified type, that were made after a specfied ~ate.

Example: DisplaY Journal entries of type "comment" or
I'injunction" that are attached with link types "urgent"
made after 8/12/69 to Journal entry Number XXXXX .

Example: Display those members of the set {evans, XXX }
admitted to the Be~ <ttec 10/4/69.

H. Miscellaneous New NLS Features

Numerous new NLS features will have a major effect on
the usefulness of the DSS, although they are not
deSigned exclusively for DSS usage. These features
include split screens, file merging , new VIEWSPECS, and
Ilfile history."

27

ld7b

1070

l d7e

ld8

ld8&

)

)

)

7101 ROME FINAL REPORT: AppenOix B
THE DSS AND THE JOURNAL

1. Split Screen

~672 DGC 12JUL70

The 'tsplit screen~ feature generalizes the
characteristics of the "freez1ng~ oPtion 1n the
current version of NLS. With a split screen, the
user is able to display two different Views of the
same file, or two different and independent views of
any two tiles, one on each side of the screen. He
will he able to work with the displayed information
in each "window" as it it was a separate and
independent file. The success of this option dependS
upon having more than one file open tor a given user
at any given time. The SPlit screen will make
interfl1e editing, and more complex file merging,

1060

easy and useful. ld8bl

2.

3.

File Mer~ing

The split screen and other new features make the
capability for merging any two files to form a th1r~
composite file & necessity. In the current version
of NLS, only the Simplest file merging operation -
appending -- is possible. More useful file merging
would include the facility to interleave statements
in a specified orOer, and to transfer pictures from
one file to another.

File Hi.tory

Keeping track of a file'S history becomes more
important in the Journal anO DSS than in current NLS
operations. For this reason a new NLS feature will
be aOded to capture all necessary identification
information from the source file every time a file is
output or copied. This information may be copied
directly from the header statement of the source
file, and written into the header statement of the

106e

108cl

1060

Object file at the time it i. crea ted. 10801

Examples The following is an example of a standard
file heaOer. 108d1a

:XVIII. 9/26/69 1209:30 DAE;

Here :XVIII io the filename; 9/26/69 1209:30 is
the date and time the tile was last output to
the name :XVIII, and DAE are the initials of

28

1d601.1

)

7101 ROME FINAL REPORT: Appon~ix B
THE 055 AND THE JOURNAL

the file owner .

"~72 DGC 12JUL70

Suppose the file :XVIII is output to the new
file name IIICHAPl8 ".

After the operation is completed. the hea~er of

ld6dla2

the object file (ICHAP161 rea~s a. follow.: 1060104

:CHAP16, 9/26 /69 1211:45 DAE;
(e vans,XVI II,:1 9/26/69 1211:45; 1060104.

The system has rewritten the souree file'S
header Oata as ~n NLS link following the Object
filels conventional heade r data. Note that as
later versions of :CHAPl8 are made, data
preceding the first semicolon Changes. with
SU bsequent COpy operations, or output file
operations to new filenames, these data from
the file :XVIII will be ret.ine~ in the new
file1s header, alOng with all records of
SUbsequent operations. Id8dla5

I. Cataloguing

) A catalogue of all entries in the Jour nal will be
maintained, proviaing the main conventional aid for
retrieval of these files . The catalogue will have three
main sections: a SUbject index, a keyword list, and
citations for Journal entries.

)

The SUbject index contains a hierarchical structure
of the SUbjects describing Journal entries , with
their respective keywordS attached. A user may scan
this index and select keywords a ttached to the
SUbjects that meet hiS needs.

The Keyword List wil l contain keywords (as used in
tne SUbject index), followed bY links pointing at
appropriate citations.

The citation for each Journal entry is stored in the
catalogue bY order of Journal Entry Number. Each
citation will constitute an NLS branch, with the
Journal Entry Number, and link to the cited Journal
entry. as the first-level statement of each branch.

Each such citation branch will contain the entry

29

1~9

ld9'

109a1

ld9.2

109a3

)

)

)

7101 ROME FINAL REPORT: Appendix B
THE DSS AND THE JOURNAL

.872 DGC 12JUL70

number, the source filename, the name of the user
SUbmitting the entry, the date and time when the
entry was SUbmitted, and & list of descriptors for
entry. ld9a3a

These data will be store~ 1n a manner that
makes them useful for further NLS operations.
For example, the data on source filename is
stored in the form of a conventional NLS link
referring to the source file. Similarly, each
catalogue entry contains a link to the Journal
entry itself. ld9a3al

1. Retrieval System Based on the Journal Catalogue

The existing NLS keyword retrieval system will be
extended for use as the basic retrieval tool for
operations on the catalogue. The major drawback of
the current system is that lists of ci~a~1ons can be
assembled only from wi~hin a single file,

For ~he DSS , this syst em will be modi fied ~o opera~e
across an arbitrary number ot tiles, Such
operations, of course, depend upon o~her features
discussed previously (e . g., file merging , ~he
capabili~y of having more than one tile open at any
instant, e~c.).

The standard keyword statement, which currently uses
sta~ement names as keyword arguments, will be changed

ld9b

1d9bl

ld9b2

to use full NLS links as keyword a rguments. ld9b3

Example : ld9b3a

(keY3) This is keyword three *
IJ OURNAL , 13SJ99 ,:) IJOurnal,lU6J99,1) ld9b3a1

The user will then have the fallowing options I ld9b4

(1) Assemble the citations derived from a
selection of keywords from one or more files
(Which may themselves be stored in several
ca talogue files), as a list in one file , and use
the standard JUMP LINK comm and to vie w the actual
Journal entries cited, one by one. ld9b4&

(2) Ask for consecutive displ aY of the actual

30

)

)

7101 ROME FINAL REPORT. Appen~ix B
THE DSS AND THE JOURNAL

4~72 DOC 12JUL70

Journal entries ci~e~, under the contro l of t he
VIEWSPECS in the keyword referent links.
Consecutive entries cited would be displayed as if
part of tn •• ame file. ld9b4b

This operition could be accomPlis hed by special
new NLS machinery, or by combining the
capabilities of executable statements and
indirect linking. ld9b4bl

In all cases, all current NLS keyword options,
including the allocation Of weights to keywordS , will
be available. ld9bS

31

)

)

)

,.4872', 09/28 / 70 1718.46 MGC; 'ADSS, 07 /1 2/70 1819 ' 33 DGC
CHANGES DONE . COD{2 I B}I=l l lLB; .RTJ-O; . DSN:II1; .LSPKO; .DL5-l;
.PGN=156; .HEDe"
12JUL7°
7101 ROME FINAL REPORT. Appen~ix B
THE ess AND THE JOURNAL"; .DPR:IIO;

; EDIT I NG
. HLN-3 ;

.872 DOC

\

)

)

)

7101 ROME FINAL REPORT ' Appendix C
REfERENCE MANUAL fOR PERIPHERAL EQUIPMENT

Appendix C

.873 DGC 12JUL70

REfERENCE MANUAL FOR PERIPHERAL EQUIPMENT

I Introduction

This appendix is an addendum to ~he previous H~rdWare
Reference Manual , APpendix B of Ref. 3. It consists of a
programmer's reference manua l for t he followin~ equipment:

A line printer (replacing the line-printer description
containe ~ i n the previous manual)

An inter-core controller for transfers between 940 core
and external core (ItXcore ll)

A Network interface connecting the 940 to the ARPA
Network via tne Interface Message Processor (I MP)

A precision clock.

II Line Printer

A. Gene ral Information

The printer is a Data Products Model M600 -11A with 96
characters and a printing spee~ of about 340 linea per
minu~e. I~ will accomod~te paper froll 2-1/2 ~o 16-1/2
inches in width. Charac ter spacing is 10 pe r inch and
line spacing i5 6 per inch. The maximum number of
characters per line is 132.

The printer is controlled by BOM 1n struc~ionB and a
"unit reference cell" (URC). The URO points to a orint
buffer reSident in core that contains data and control
codes. An SKS instruction indicates "printer readY" and
an interrupt indicates fiend of operation," either normal
or error. Error oonditions are detected bY the
con~roller and an error code writ~en in the URO.

The cells immedia~elY following the URC in core are
called "U Rc.l," "URC+2," etc.

Fixed core assignments for the printer are:

1

1

la

lal

1.1a

101b

l&lC

lald

lb

101

lbla

lblb

lblbl

1010

)

)

7101 ROME FINAL REPORT: Appen~ix C
REFE RENCE MANUAL FOR PERIPHERAL EQUIPMENT

URC
Interrupt

B. EOM and SKS Codes

The EOM codes are ;

20230106
20230406

Initiate
Reset .

10
211 .

.873 DOC 12JUL70

The "initiate" EOM starts the orinter with the word
and character designated by the contents of the URO

10101

102

1020

102.1

at the time the EOM is given . Ib2a 2

The pr inter controller continues to process the
printer ouffer until an illegal character or
end - oi - buffer code is read. or until a "rese t'! EOM
is issued. Ib2a2&

An "initiate" EOM given while the printer is bUSy
i. ignored. 102&20

The "reset" EOM imnediately terminates all printing
and returns the system to a reset state .

A "reset" EOM given while the printer is
disconnec te d i5 ignored .

One SKS code is provided for the printer . The COde is

04030106 Skip on rea~y .

This SKS sk i ps if the printer is ready to begin
operation . If the printer is not ready, an interrupt
is issued when it is made ready .

c. Unit Reference Cell

The URC associated with the printer system has the
followin« format :

o 3 8 23

~.--------- - ------------------------------------

error address

2

102.3

102'3'

1020

1 0201

10202

103

103'

103.1

)

7101 ROME FINAL REPORT: Appendix C
REFERENCE MANUAL FOR PERIPHERA L EQUIPMENT

487J PGC 12JUL70

Bi~s 6~23 contain the absolute address of the first
character of the line to be printe~ (or currently
being printed 1 •

Bits 8-23 denote the aosolute word address.

Bits 6~7 indicate the character in the worO .

A 00 code is the leftmost character. The 11
code is not used but is interpreted as the
leftmost ch aracter.

Afte r a line has been successfully printed, the
address in t he URe is updated to point to the
fi rs t character of the next line.

Bits O-J are written by the contrOller with an error
code when errors are detected. Error conditions and
codes are described below.

Bits 4-5 are ignored by the controller.

D. Print Buffer

) The print buffer is a contiguous sequence of words
core that is in~erpreted by the printer controller
three 8w bit characters pe r word.

in ..

)

Characters in the print buffer may be either data
characters or control characters.

The control characters are:

313 (NaP) No operation
375 (EOB) End of print buffer
316 (EOL) End 01' line
J7'7 (NOP) No operation
015 Shift to lower case and lock
OJ5 Shift to lower case for one character
055 Snift to upper case and lock .

An EOL or EOB code causes the current line to be
printed wi~h any characters already in the line
left-jus~ifie~.

An EQB coae generates an interrupt to the computer
af~er the line is printe~ anO any spacing action

3

Ib3.2

IbJa2a

IbJ.2b

IbJ.2bl

IbJa2c

IbJaJ

IbJ.4

lb4

Ib4.

Ib4b

I b4bl

Ib4bla

Ib4blO

)

)

7101 ROME FINAL REPORT : Appendix C
REFERENCE MAN UAL FOR PER IPH ERA L EQU IPMENT

~873 DG e 12JUL 70

has been complete d . lb4blc

The three case-Shift code s are self-explanatory.
The y can appear anywhere within a line of data
characters and cause the indicated case-shift
actions . lbhbld

In addition to the explicit control characters. the
first character in each line is interpreted as a
paper-feed code. These coOes are as follows (the word
I'space" here refers to line spacing. not the ~space"

character): lb4b2

020
021
022
023
024
025
026
027
000
001
002
003
004
005
006
007

1 line
1 line
2 l ines
3 lines
4 lines
5 lines
6 lines
7 lines

Space
Space
Space
Spa.ce
Spil.ce
Space
Spa.ce
space
Spa.ce
Spa.ce
Space on
Space on
Spac e on
Space on
Space on
spa.ce on

on channel 0 of
on channel

channel
channel
channel
chann e l
channel
c hannel

1 of
2 of
3 of
h of
5 of
6 of
7 of

format
forma t
format
format
format.
format
format.
format

tape
tape
ta pe
tape
tape
tape
tape
tape.

The action in dicated by the space code ta kes place
before the line is printed. lb4b2b

Two successive spacing operations can be caused bY
sending one of the above space codes fo llowed by
"end of line" (376). then ano~her space code . lb4b2c

If no spacing i~ ctesl re d, as when printing t he to p
line on a. page . a no-op code (377) snould be sent
in the first pOSition of that line. lbhb2~

Channel 1 Of t he format tape is used for "top of
form . lt The numbe r of lines on a page is nor~ally
set to 60 . lb4b2e

Except for the fi rst character J the print buffer
contains only printin g characters (inclUding space

4

)

)

7101 ROME FINAL REPORT : Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQU IPMENT

.873 DGC 12JUL70

charAc~er5) and con~rOl characters . Any other
character codes 1n the print Duffer are con51dered
illegal and cause an error condition.

print buffers may be as large a8 deSired, but no
relocation mapping is provided . If a buffer is to
extend across a page bounda r y , the softWare system must
ensure that the two pages are consecutive 1n memor y .

E. Error Conditions

On the detection of any error , an interrupt is issued
and the error code is written in the URe .

The error codes and conditions detected are:

000
101
110
111

No error
Illegal character code
Printer not ready
Excessive ti~e .

Zeros in the error-code bits of the URe after an
interrupt indicate a normal interrupt (printer ~ade
reaa y or EOB) .

The 101 code indicates that an illegal character has
been detected in the prin~ buffer .

The 110 code indicates printer off - line, paper out,
or ribbon failure.

The 111 code indica~es that in a normal print in g
operation, excessive time has been required for
printing a line.

The timer is normally set for 2 . 5 seconds . ThiS
error indicates printer fa ilures not detected bY
othe r printer error circuits.

1 b~b3

lb.c

1b5

lbS'

1bSb

1bSb1

1bSb2

1bSb3

1bSb5

h873 DOC 12JUL70
7101 ROllE FINAL REPORT ' AppencHx C
REFERENCE MANUAL FOR PERIPHERAL EQU IPM~NT

)
lOSOS'

F. Cha.ract~r Codes 106

The printer character eoces are given below . The case
printed is de~ermined by the shift -control character. 1060

CODE UPPER LOWER OODE UPPER
LO W!.R 10601

000 0 0 40
under bar 10602
001 1 0 41 J
j 1060)
002 2 Oh2 K
1< 10604
00)) Oh3 L
1 10605
OO h h Ohh II
m 106.6
005 5 045 N
n 106.7
006 6 OH 0

)
0 106.8
007 7 Oh7 P
P 106.9
01 0 8 0 50 Q
q 106010
011 9 0 51 R
r 106011
012 null 052 lb6012
01) , 053 6 10601)
Olh 05h •
+ 106014
015 null 055 null 106.15
016 > 056 • ,

106016
0 17 null 057 106017
020 space 060 null 106018
021 A • 061 I , 106019
022 B b 0 62 5
5 106020
02) C c 06) T
~ 106021
on D d 0 6h U
u 106022

)

6

11873 DGC 12JUL70
7101 ROME FINAL REPORT : Appen<1ix C
REFERENCE MANUA L FOR PERIPHERAL EQUIPMENT

)
025 E e 065 V
v lb6a23
026 f ! 066 W
w 1b6a2i1
027 G g 06 7 X
x lb6a25
030 H h 070 Y
Y lb6a26
031 I i 071 Z
z lb6a27
032 072 lb6a28
033 • 073 • @ lb6a29
034 } 074
(1b6a30
035 null 075
& 1b6a31
036 < • 07 6 \
" lb6a32
037 ? # 077
overbar lb6a33

)

)

7

)

)

)

7101 ROME fINA L REPORT : Appendix 0
REFERENOE MANUAL FOR PERIPHERAL EQUIPMENT

III In~er-Co re Controller

A. General

4873 DOC 12JUL70

The inter-cor e controller controls transfer of data
between external cor e (Often referred to as "Xc:ore") and
9UO core. It has two modes of operation:

(1) A block transfer mode allows the transfer of
bl ocks of up to 2048 words between a ny two locations
in the two cores . This transfer can be between two
locations i n t he same core .

(2) A short tranSfer mod e a llows the tr ansfer of
short I fixed -length buffers between fixed locations
in 940 core and external core .

Fixed core assignments for the inter-core con troller
are:

URC , 911.0 core
Fixed transfer address , Xco r e
Inte rru pt

53
100
215 .

B. EOM Instructions

Fo ur EOM instrUctions are used for the inter-core
controller.

The EOM codes are:

20230103
20230203
20230303
202301103

Block transfer
Xco re to 940 fixe d transfer
940 t o Xc a re fixed tr~nsfer
Disconnect

lb60 3i1

10

101

lola

10101

101.2

101b

101b1

102

lC2&

102.1

1c2&1&

The EON actlons are : 1<:2a2

BlOCK TranSfer -- This EOM s tar ts a
variable-length transfer. The number of ~ords to
be transferred and the starting addresses in
sourc e core and destination core are dete r mi ned by
the c ontents of three consecutive 9~O memory cells
starting with the URe . Source and destination may
be in the same core. 1c2&2a

8

)

)

)

7101 ROME FINAL REPORT : Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

"873 DuC 12JUL70

Xcore to 940 fixed transfer -- This EOM 1n1t1~tes
a transfer of a fixed number of Words beginning at
a fixed address in Xco re to a location beginning
at the URO in 9uO core~ starting with the URO
address in the 940 computer to a fixed starting
address in the external core. lc2a2b

The number of words is determined bY a card in
the controller and may be Bet to any number
between 1 and 7. The numbe r currentlY used is
3 . 1c2.2b1

940 to Xcore fixed transfer -- This EOM initiates
a transfer of a fixed nu~ber of words (same nu~ber
as above) from 940 core to xcore, with the same
fixed locations in each. 1c2&2c

Disconnect -- This EOM terminates any transfer 1n
progress and claces the controller in the
Oisconnec~ state. lc2a20

C. Unit Reference Cell

The URC and the next two cells have the following COOing
when used to control a blOCK transfer operation:

o 3 8 23
--
: 0 0 0 1: : :
--

ID I word count

Bits 0-3 contain an identification code. If ~ny
other coOe is detected , the controller disconnects
and writes an error co~e in the URC.

Bit 5 is set to 1 if a n interrupt is desireO at the
completion of the transfer CYCle.

Bits 8-23 indicate the number of words to be
transferred.

The cell UHC +l contains information relating to the
destination of the transfer. It has the following

9

1c3

1C3'

1c3.1

1c3.2

10303

)

)

)

.873 DGC 12JUL?0
7101 ROME FINAL HEPORT. Appendix C
REFERENCE MANUAL fOR PENIPHERAL EQUIPMENT

forma.t.:

o 3 5 6

: 0 0 01: ::

23

--------------------------.------.--------------
ID d destination address

Bits 0- 3 contain an identification code as aoove.

Bit 5 specifies the destinat ion core. A 1 indicates
transfer to 940 core and a 0 indicates transfer to
Xcore.

Bits 6-23 designate the first address in the
destination core.

The cell URC+2 contains information relating to t.he
source Lor the transfer. It. has t.he tOllowing format:

o 3 5 6 23

:0 0 0 1: : :

check D source address

Bits 0- 3 contain an ident.it1cation code as above.

Bit S specifies the Bource core.
transfer from t,he 9~O core and a
fron Xco r e .

A 1 int1icates
o indicates transfer

Bits 6-23 designate the first address in the source
core.

D. Exit Routine

At the end of any tranSfer, or when ~n error is
detected, the exit routine is performe~ . This routine
writes the URe and then places the unit in its
~disconnecttt state. The URO is written with the
following format:

o 2 3 7 23
--.-.------~-.. -------------------.--.--.-------.0 0 0 0 O.

10

lc3b1

lc3b3

lc3C

1c3cl

1c3c2

10c4

lc '

1C'&

)

)

)

.873 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix C
REfERENCE MANUAL FOR PERIPHERAL EQUIPMENT

IV

error wore count

Bi ts 0-2 contain an error code . The errors are
reported as follows:

Bi t 0 is set to 1 if any error is detected .

Bit 1 is set to 1 for an er r or in any of the URC
locations (incorrect ID code detected) .

Bit 2 is set to 1 if the controller waited more
than 1 mill isecond to gain access to the external
core.

Bits 3·7 are set to O.

Bits 8-23 contain the contents of the word -count
re~ister at the end Of the tran~fer. For a
successful transfer this will be O.

An interrupt is issued at the end of the exit routine if
called for by the URa , or if any error has been
detected. No interrupt is issued for the short
transfers.

Network Interface

A. General

The ne~work interfice proviOes communication between the
9hO and an Interface Message Processor (I MP) on the ARPA
Computer Network. The interface operates from me ssage
buffers in 940 core. A "linked - buffer " scheme permi ts

1c401

1c4a2

lc4a2a

1c4020

1c4&2C

1c 4.2~

1c402<

1c4b

1 ~

1~1

flexible memory allQca~ion . ldla

The interface contains two independent l og i c systems,
the input controller and the output controller. The
for mer receives information from the Netwo r k, and the
latter BenOs information to the Networ k. l dl b

As seen by the programme r, these two units a r e a lmost
identical in all aspects except the direction of data
flow. Differences between the two are noted in
followln~ sections. ldlbl

The two channels are independent in action, except
that they share the same channel into memo r y . Th us

11

)

)

7101 ROME FINAL REPORT: Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

4873 DGC 12JUL70

they canno~ make simultaneous core accesses.

Fixed locations assigned to the Networ k interface are:

Receive URO
Send URe
Receive interrupt
Send interrupt

B. communications With the I MP

70
212
213 .

60

Data moving between the Host and the I MP is in the form
of serial bit strin~s with a maximum length of 6096
bits and a maximum rate of one million bits per second.

Details of the communications protocol between the
interface and the IMP are covered in Ref . 2.

c. EOM Instructions

EOM Codes are:

2023010h
20230204
20230304
20230404

Host up
Initiate receive
Initiate send
Reset .

The Ilhost-Up" EOM resets the tlhost - up timer ." This
is a timer in the interlace controlling a signal to
the IMP indicating that the host computer is up. If
the timer is no~ reset at least once a secon~,

1d1b2

1 d1c

1d1cl

1d2

1d2.

1d2b

ld3

ld3a

ld3a1

indication is given to the IMP th~t the host is down . ld3a2

The "initia~e receive" EOM enables ~ ~receive"

operation. SUbsequen~ to this tOM, data received
from the IMP will be written in the "receive"
buffers. The EOM must be given for each message
received. The controller may be left in the "receive
enabled" state indefinitely, waitin~ for a message
from the IMP. 1d3')

The "initiate send" EOM initiates a "send " operation.
Data contained in the "send" buffers will be
immedia~elY transmitted ~o the IMP. A "send" EOM
must be given for each message to be transmitted. ld3a 4

The "rese t" EOM causes both the controllers to

12

)

)

)

7101 ROME FINAL REPORT: AppenOix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

4873 DGC 12JUL70

immediately abort any operation 1n progress and go to
the "reset" state. ldJa5

D. Linked Buffers

Linked buffers are used for both "send" and "receive"
messages. The format of the linked buffer is as
follows:

The first word of the bUffer contains the byte count
for the bUffer.

If the byte count ~s zero, the controller goes
di rectly to the next buffer.

A block of n bytes to be transmitted will occupy
the n/3 core addresses immediately following the
byte count, since there are three 8-bit bytes in
each 2k-bit 940 Word. When the last byte does not
fallon a 940 word bOUndary, the action depends on

104

104.1

the operation: 1d4a1b

In a "senOlt operation, bytes remaining 1n the
last word are ignored. ld4&lbl

In a "receive" operation, bytes remaining 1n
the last word are filled with O'a by the
controller .

The last word of the buffer contains the absolute
address of the next buffer.

If the last word contains all 0 ' 9 in the address
field, no more buffers are processed and the
operation is terminated.

The first buffer of a "send" or "receive" me ssage always
begins 2 words after the "send " or "receive" URC,
respectively (there are two URCa -- Bee below).

The maximum meSSage length as determined bY the IMP is

104a1b2

104a2

10402.

104b

8096 bi<s. 104C

E. The Unit Reference Cells

There are two URC locations for the
"send" and one for "receiVe." There

13

interface, one for
are two word a at

105

)

)

)

.873 DOC 12JUL70
7101 ROME FINAL REPORT : Appen~ix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

e~ch location, followed by the first message buffer (see
above). The URCs have the fOllowing format:

First WorO :

012

. . . . • • • •

E F N

s

end of data

Bit 0 ~- Error: This bit is Bet by the

23

l~S.l

10S.1.

controller when an error is detected (see below). IdSalb

Hit 1 -- List fUll: This bit inOioates that the
linked buffers fOllowing the URC contain valid
data . Its interpretation dependS on the
operation. Id5alc

On a "send" operation the controller expects to
find this bit a 1, indicating valid data to be
transmitted. IdSalcl

If the controller finds this bit 0 when a
"send'! is initiated, the !'need-new-list" bit
will be set to 1 and a "send " interrupt
issued . IdSalcl&

When the "send " operation is comple~ed tha
controller r ese~s this bit to O. ld5alclb

On a "rec eive " operation the controller
this bit to be a 0, indicating that the
are ready to receive & message .

If ~his bit is found to be a 1 when a
"receive " operation is begun, the
"need-new-list bit" will be set and a

expects
buffers

10Sol02

"receive" interrupt issued. ldSalc2a

This bit is set to 1 bY the controller at
the completion of a "receive" operation. ld5alc2 b

Bit 2 -- Neea new list: This bit is set by the
controller to indicate that the "list-full l' bit
was not correct at the beginning of an operation. ldSald

)

)

)

7101 ROME FINAL REPORT: Appendix C
REFERENCE MANUAL fOR PERIPHERAL EQUIPMENT

4873 eGC 12JUL70

Bi~s 5-23 •• End of mess~ge : Tnese bits are set
by the controller at the en~ of a "send " or
"receive~ operation .

At the end of tne "send" operation these bits
point to the last wo r d of the last bufler
transmitted . Tn1! is the zero pointer that

ldS.le

terminated the transmission. ldSalel

At the end of a Il receive lt operation these bits
point to the last word tilled with data from
the received message . ld5ale2

Bits)-4 are not used. 1dSa1!

Second Word: The second word (URO+l) contains error
codes and is described below. 10512

F. Interruots

Two interrupts are used by the controller, one for
"send" and one for "receive."

At the normal or error ter~ination of either a "Send" or
"receive" operation the respective interrupt 1s issued .

G. Errors

Errors are detected by the controller for both "Bend"
and "receive" operations. and error codes are written
into the words following the "send " and "receive" UR ea
respectively. The "IMP down" error applies to both
" ~end" and "receive," but is re ported as a "send " e rror
only.

15

ld6

ld6a

l d6b

ld7

)

)

)

7101 ROME FINAL REPORT: Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

.873 DGC 12JUL70

"Receive" errors are reported in ~he word immediately
fOllowing the "receive" URC . The errors a nd bit

ld7 .

locations in the error word are: 1d7a1

Bit 19 Message too long: The message has
exceeded the maximum leng t h of 8096 bi ts. 1d7&1&

Hit 20 -~ I MP does not r espond : During the
transmission of a message the IMP pauses for more
tnan 100 mi llisec onds between bits. ld7&lb

Bit 21 -- List space exceeded: Space in the
linked buffers has been exhausted and ther e ~ re
more bits in the message from the IMP.

Bit 23 -. IMP was down : Prior to this message the

1d7.1c

IMP was down, as i ndicated by the "IMP-down" line. 1d7a1d

"send" errors are reported in the word immedi~tely
following the ttsend tt URC . The errors and bit
positions are :

Bit 19 -- Message too long: The meSSage has
exceeded the maximum length of 8096 bits .

Bit 20 -- I MP does not respond: During the
~ransmission of a mess age the IMP pauses for more

ld7.2

than 100 milliseconds between bits . ld7a2b

Bit 22 -. IMP-ready line , is down : This error is
reported onlY when the controller is ac tive -
that is, after a " send t' or t'receive " EOM has been
iSBued and befo r e the completion o£ the indicated
operation. ld7&2C

Bit 23 -- IMP was down: Prio r to this me s s a ge the
IMP was down as indicated by tne It I MP - down " line. ld7a2d

V PreciSion Clock

A. General I nfor mation

The ARC clock system uses a high-stability
HeWlett - Packard MOGel 1058 Quartz OSCillator to drive
two accumulators . The accumUlators a r e :

16

le1

lela

)

)

)

7101 ROME FINAL REPORT: Appendix C
REFERENCE MANUAL FOR PE RIPHeRAL EQUIPMENT

h873 DGC 12JUL70

(1) An abSolute~time accumulator with an ou~put of
year , month, day, hour, minute , and second , updated
once each second lelal

(2) A relative-time accumulator Which consists of a
24 ~ bit binary counter. This counter is advance ~ once
each millisecond . lela2

The ahort-term jitter of both the absolute and relative
accumul~tors iB 10 to 20 milliseconds. This jitter is
caUsed by the variation in the amount of time required
to access the 940 core memory. lelb

The error caused by the Oscillator drift rate is less
than 1 second every 250 days . lelC

The initial setting of the absolute time is accurate to
within 1 second .

The programmer has no control ove r the operation of this
unit. Time is written in core whenever the system is
operative.

B. Word Formats

The absolute time is written once each second into two
words of the 940 computer.

The format of the first word is:

o 7 8 lS 23
------------.-.---------------------------------

month oay year

Bits 0- 7 contain the month code in straight binary

101d

lele

102

le2a

102a1

102010

with a range of 1 to 12. le2~lb

Bits 8-15 contain the day code in straight binary
with a range of 1 to 31. le2alc

B~ts 16-23 contain the year code in straight
binary with a range of 9 to 99.

The format of the secon~ word is;

17

102a1d

102.2

)

)

7101 ROME FINAL REPORT : Appen~ ix C
REFE RENC E MANUAL FOR pgRIPHERAL EQUIPMEN T

o 7 8

.873 DOC 12JUL70

15 23 ~M ____________________________________ • ________ _

hour minute second

Bits 0 - 7 con~ain the hour code written in straigh t

le2a2a

binary w~th a range of 0 to 23 . le2a2b

Bits 8- 15 contain the
straight binary with

Bi ts 16- 23 contain the
straip,ht binary with a

minu te code written in
a range of 0 to 60 .

second code wr i tten in
ran ge of 0 to 60 .

The relative time is wri tten onc e each millise cond into
a fixed address . Bi ts 0 -23 contain the relative time in
straight binary code with a ran ge of 00000000 to
77777777 (octal).

18

le2a2c

le2b

':4873'. 10/01/70 1137:36 ~!GC ; :H DWAP . 07/121~0 1631:.2 DGC ; EDITING
CHANGES DONE . CODf2jS} =114 Bj . DL5 ::0; . PGN5182; .DS Nal i . LSPI:O ; . HLN.3;
. RTJ.O; .HEn:" h873 DGC 12JUL70
7101 ROME FINAL REPORT: Appenaix C

) REFERENCE MANUAL FOR PE RIPHERAL EQUIPMENT" ; . DPRaO;

\

)

)

)

)

7101 ROME FINAL RE PO RT :
~874 DGC 12JUL70

AppenQix D, TEOHNICAL DESCRIPT I ON OF NLS
Sec . I: Introduction

AppenOix D . CEN~l;
TECH NICAL DESCRI PTIO N OF NLS
.C EN ~O;

Contents . CE~ =l;
. CEN::O ;

I Introduction .•.....•........•......•.•..••••.•...• 201
II Utility Routines ••••••••••••••••••••••.••••••••.• 20J

A. Overlay System 1n NLS •••••••••••••••.••••••••• 203

III

1. General •••••••••••••••••••••••••••••••••••• 20,3
2. Implementation ••••••••••••••••••••••••••••• 20,3

B. NLS Random-File Structure and H&ndling ••••.••• 204
1. General Consider&t1ons ••••••••••••••••••••• 20~
2. File Struct.ure ••••••••••••••••••••••••••••• 20S
.3. File Handling ••••••••.•••••••••••••.•••.••• 211

Command Specification •••••••••••••.•••••••••••.• 2l7
A. Command Specification 1n NLS •. • •••.••••••••••• 217

1. General ••••••••••••••••••.••••.••••.••••••• 217
2. Registers in the Command

Specification Language •••••••••••••••.••••• 2l7
) . Entity Character and Entity String;

COJ'lllllana Groups •••••••• • •••.•••••••••••••••• 218
4. Command State •••••••••••••.•••••••••••••••• 219
5 . Command Parsing ••••••••••••••••••••••••.••• 220
6 . Parameter spec1fication •••••••••••••••••••• 223
7. Subroutine Calls and Paramete r Passing ••••• 225
8. Input Machine ry •••••••••••• •• ••••••••.••••. 227
9 . Output (Dis play) Machinery ••••••••••••••••• 230

B. Command Specification in TODAS •••••••••••••••• 233
1. CommAnd Feedback ••••••••••.•••••.•..•.••••• 23 4
2 . Input Machinery •••••••••••••••••••••••.•..• 2311.
3. Printing ••••••••••••••••••••••••••••••••.•• 236
4. Parameter specification ••••••• , •...• t •••••• 237

IV Command Algorithms •.••••••••••••••••••.••.•.••.•. 239
A. Editing •••••.•••.•••••.•••••••••••••••••..•• , .23 9

1. Text Ed iting ••••••••••••••••••••••••••.••.• 23 9
2. Struc ture Editing ••••••••.••••••••••••••••• 248
3 . Graphics Ed iting .•••••••...•••••••••••.•••• 250

B. View Control •••••••••••.•••••••.•••••••••••••• 2S2
1. Jumps and Links •••••••••••••••••••.••..•••• 252
2. sequence Generator •••••••••••.••••••••••••• 2S3
3 . Display Parameters ••••••••.•••••••••..•••• 255
h. The User's Content Analyzer •••••••.•••••••• 2S6
S . Keywo rd System ••••••••••••••••.••.••••••••• 2S6
6. Text Display ••••••••••••••••••••••••••••••• 2S6

C. Calcul~tor •••••••••••••••••••••••••••••••••••• 262
D. processors ••••••.•••••••.•••••••••••••••••••.• 26h

1

1

10
101
102

l a.2a
10201
la2 a2

102'0
102'01
102'02
102'0)

10)
10)_

1a)a1

10).2

1.).)
10)04
1.)aS
1.).6
1.)07
103a8
1.).9

10)'0
10)'01
1.)'02
1.)0)
1a)'o4

10 4
la,ha

1.401
104.2
1.1L.)

l'IL'o
1.IL'ol
1.h'o2
1.4'0)
1.4'04
1ahb5
1"'06

104c
104Q

)

)

7101 ROME FINAL REPORT:
~874 DOC 12J UL70

Appendix D. TECHN ICAL DESCRIPTION OF NLS
Sec. I: In~roduct1on

1-
2.
3 .
4.

File Cleanup ••••••••••••••••••••••••••••••• 264
File Compaction •••••••••••••••••••••••••••• 267
output procesBor ••••••••••••••••••••••••••• 267
Compilers ••••••••••••••••.••••••••••••••••• 267

2

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appen6ix D, TECHNICAL DESCRIPTION OF NLS
Sec. I : Introduction

I Introduction

This appendix gives a technic&l description of HLS and
extends the overview given in Sec . IV· E of the main body of
this report, covering the utility routines, command

1.4d.

1b

specification, and co~mand algorithms used by NLS . lbl

In addition, the s pecial-purpose langua ges (SPLS) for
command specification, content analysis , ind string
construction, which are used in large sections Of NLS , are
discussed in some detail . lb2

This appendix assumes that the reader is familiar with NLS
from the user's viewpoint to the level of the NLS 's User 's
Guide.

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT: Appendix D. TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

II Utility Routines

The utili~y routines in NLS fall in~o two categories,
dealing with the overlay system and with file handling .

The routines in the overlay system provide mechanisms
for changing t he cOllection of pages of code in the
address space of the program; the file-handling routines
provide me ChanisM s for referencing and changin~ the
ac tual data base.

A. Over la y System in NLS

1. General

The logical structure of the OVerlays in NLS is a
tree structure, with the most widely used code
residing in the overlays nea r the root.

An overlay is confined to a single cage, in order to
make efficient use of the paging mechanisms of the
940 .

2 . Implementat ion

The overlay s~ructure is implemente~ through two
tables an~ several procedures which use them to
manipulate the relabeling.

For a given page of program, there is an entry in
each table . The index of the entries for the page is
the same in both tables and is called the ttoverlay

lb)

lc

lcl

lela

lc2

lc2 a

lc 2al

lc20 2

l c2 C

lc2 bl

number" of the page . lc2b 2

One table gives the relabeling byte for the p~ge#
while the other gives the overlay number of the
parent overlay and t he position in the address space
that the page should occupy.

The entries in the second table have a POP code 1n
addition to the other information. To relabel in an
overlay (and the overlays aCove it in ~he tree), ~ he
instruction corresponding to that overlay in the
second table is executed.

6

lc2bJ

lc2 b4

)

)

~874 DGC 12JUL?0
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Rout ines

If ~ call is ~o be made to a procedure 1n another
overlay that occupies the same logica l position in
the address space as the calling routine, the call is
split into two instructions. lc2b5

These correspond to the execution of two POPs, the
first of which "selects the overlay" and the
second of Which gives the address to branch to in
that overlay. lc2bSa

TWo cells are used in the program to keep a copy
Of the relabeling.

When an overlay is selected, the overl ay tables
are used to update these words without changing

lc2b5b

the actual relabeling. lc2b5bl

This change is made when the second POP is
executed and after the destination address has
been read. lc2b5b2

On a call 9uch as this, the overlay number of the
calling routine, as well as the calling address,
is saved on a stack. lc2b5c

This allows the overlays to be restored to their
status before the call when the called routi ne
returns .

The routines that change the relabelin g are in the
overlay at the root ot the tree, and are thus always

lc2b5d

available. lc2b6

In general the root overlay contains utility routines
for basic functions, such as Changing relabeling and
accessing elements of the tile. lc2b7

B. NLS Random-File Structure and Handling

1. General Considerations

The present format and ,tructure of NLS files was
determined by certain design considerations.

It is desirable
size of a file.

to have virtually no limit
This means that it is not

7

on the

lc3

lc3 '

lc3.1

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: App~ndix DI TECHNICAL DESCRIPTION OF NLS
Sec . II: U~ili~y Routines

practical to have an entire file in core when
viewing i~ or working on it.

A goal in the design was to make the time required
for most operations on a file independent of the
length of the file . That is, sm~l l operations on
a large tile should take roughly the same time as
on a small file . In this way the use r and the

lc)ala.

system are not penalized to r large files . lc)alb

The system had to include graphic statements, and
perhaps othe r forms of data, as well as text. lc)alc

As a result of these considerations, a random-file
scheme was chosen. Each file is divided into lOgical
blocks that may be accessed in a random order . There
are Beveral different types of olocks, ~nO each type
has its own structure . lc)a2

2. File structure

An NLS file is rna4e up of a header and up ~o a fixed
number (currently 66) of l024-word file blocks.

a. The Hea~er Block

In each file , there is a header block tha~
contains information abou~ that par~icular file.

The header block remains in memory while ~he file

le3b

le3bl

le30 2

le3020

i. in use . le302 0

The header includes the followin g information: lc3b 2C

(1) General informa~ion re ga rding the file,
such as the following: lc)b2Cl

(a) The da~e of crea~ion of the file le3b 2eli

(b) The file owner's user number
(identifies ~he user who created the file) lC)b2cl b

(e I Th~
block

number of words in the file header
le)b2ele

(d) The initials of the USer who la5t wrote
~he file out le)02eld

8

•

/

48 74 DGC 12JUL7 0
7101 ~OME FINAL REPORT : Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec . I I : Ut11i~y Routines

(e) The date and time at the last writin g lC3b2cle

(f) The name - delimiter characters

(g) The average len gth of statements in
characters

(h) The total number of statements
generated i n the life of t he file .

(2) Status table s for the file blocks.

The first and largest status table is the

1c 3 b2c1 t

1c3b2c1 g

1C3b2c1h

1c3 2c2

random file block status (RYBS) table. lc3b2c 3

Each entry in the ar BS table corres ponds t o
a random file block , and i nd icates the
status of t hat bloCk . The file header is
file block zero . The number in the Rf BS
entry has one of the followin g meanings : lc)b2c3a

ZE RO : The block is not allocated , a nd
does not exist . lcJ b2c3al

POS ITIVE : Th e block is allocated , and is
in me mory rather than on the sec ondary
storage device . Th e positive number is
the actual startin~ address for the
block . lc3b2c 3a2

NEGATIVE: The block is not in core. I f
the entr y equalS ~ l , then the blOCK is
allocated, but has not been initialized .
In the case o f text bloCks , - 2 indicates
that the block contains no garbage
statement data b l ocks, and need not be
garbage - col lec t ed . Otherwise t he nu mber
i s the negati ve of the used - word count.

1c3b2 c 3a3
A given file block haS only one type of
infor mation, such as structure or text . There
is a separate status table f o r each type of
f ile b l ock . These are called secondary status
tab l es. lc3 h2 c k

An entry in such a table has one of the
following meanings :

9

1c3 b2c S

)

)

~874 DGC 12JUL70
7101 ROME fINAL REPORT: AppenOix D. TECHNICAL DESCRIPTION Of NLS
Sec. II: Uti lity Routines

ZERO: The block is not allocated. lCJb2c5'

NON-ZERO: The value is the block number.
that is, the entry into the RFBS for that
blOCK . lCJb2c5b

There are seconQary status tables tor
structure, text, graphics , and keyword types of
file blOCKS. The internal structure of these
different types of blocks is discussed in the
following sections. lc3b2c6

The use of separate status tables avoidS
references to absolute locations in the file
and reduces the number of bits required to
specify the location Of a particular piece of
information. lc)b2c7

pointers to various elements (structural,
textual, etc.) consist of two fields: a
secondary status-table index and an address
giving the start of ~he element relative to
the start of the bloCk . The status table
entry contains the number of the block, from
which its abBolu~e address can be computed.

lcJb2c7.
Fewer bits are required, since the range of
secondary status-~able indexes is smaller
than ~he range Of possible file-block
numbers . The greatest gain from this is in
the identifier for a ring element, since a
file can have only eight structure blocks in
the current configuration of NLS . lC)b2c7b

In spite Of this, the use of the separate
statuB tables is of questionable value.

Value of Avoiding Absolute Addresses: ~y
avoiding absolute addresses in the file it is
possible to move a block to a new location in
the file simply by Changing a status-table
entry. Such a move can be valuable if the file

lcJb2c 8

has become sparse and needs to be compacted . lc)b2c 9

If absolute addresses were used. then all
references to the bloCk would have to be
changed, but it can be argued that such a

10

)

)

)

'874 DOC l2JUL7 0
7101 ROME FINAL REPORT: Appendix D. TECHNICAL DESCRIPTION OF NLS
Sec . II: Utility Routines

process need only be done on rare occasions
and hence its efficiency 1s not crucial. lC3b2c9a

Moreover, sufficient baCkpointera exist
so that the process at mOdifying
references would not be difficult
('l~hough it might be len~~hyl. lc3b2c9al

Value of Fewe r Bits in Pointers: The economy
of bits in pointers is a stronger argument for
the use of secondary status tables . However.
the total savings per ring element (with the
current size limits on files) is only six bits .

lc3b2clO
DiBadvanta~es of Secondary Status Tables:
Space in the data page is used bY the tables
(which are always in core) for information that
would not be necessary 1£ absolute addresses
were used. lC3b2cll

Their use places arbitrary limits on the
number of file blocks of a partioular type.

lc3b2cll.
For example, it i8 possible to exhaust
the structure blOCKS when the file
actually contains room for more
information. If absolute aOdresses were
used, then blOCKS of a particular type
could be allocated as needed, with a
limit only on the total number of blocks
rather than a limit on each type of
blOCK. lc3b2cll.l

If further consideration confirms that the
secondary status tables shoUld be eliminated,
it will not be a diffiCUlt task oecause of the
methods used for accessing information in the
files. lC3b2C12

These methods are discussed in a later
section; first the remainder of the file
structure must be described. lc3b2c12a

b. File-Block Format

Each random file block has an eight-word header.
This header contains the fOllowing:

11

lc3bJ

lC3b3a

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec . II: Utility Routines

(1) The checksum of the block

This is compute~ before the block is
written , anO verifie~ when the bloc k is
read . In addition, if room in core is
needed for a block, then any block in core
that has not been changed may be overwritten
without copying it to the tile . The
checksum provides an easy means of testing

1cJbJa1

whethe r the block has been Changed . lC)b)ala

(2) The used-word count (always «reater than
the header size) lc3hJa2

()) The block type , to indicate whether the
bloc k 1s text or structure

(~) In structure blOCkS, the free - list
pointer ; in text blocks , the ~ arba~e-collect1on

1cJbJaJ

flag, indicating whether ther e are garoage SDBs
(statement data blockS) in the block . lcJbJa~

(5) The secondary status-table index number . lc3 b3a5

c. Structure Blocks

The internal structure of NLS files is a ring
structure representing a tree structure . Each
node in the ring corresponds to a statement, and
contains po inters to the "first Bon" (called the
BUb) and the "first brothe r" (called the
successor) . The last node in a list contains a
flag ma rking it as the tail and points to the
father as ita successor.

The nodes in the rin g are kept i n four ~word rin g
elements.

Each structure block contains 254 ring elements.
There can be UD to eight structure blocks in a
file, but not all need be allocated.

~ach ring eleme nt in an allocated block either is
associated wit h a statement in t he structure of

1cJb4

1cJb4'

1cJb4b

1cJb4c

the file or is on the fr ee list for the block. lc Jb4d

A free list consists of a chain of pointers,

12

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: APpen61x D: TECHNICAL DESCRIPTION OF NLS
Sec . II: Uti l ity Routines

starting in the bl ock header and ending with a
zero pointer. (As used here 2 pointer is an
address relative to the start of the block .)
The pointers a r e in the first word of the
four-wo r d element , and the other three words
are zero . 1c3b4d1

A free l ist i s enti r ely containea within a
sing l e block in orde r to minimize file
refe r ences .

A ring element aSSOCiated wi t h a statement
c ontains the fol l owing info r mation:

(1) Flags ind i cating whether the statement

Cal has a name or not

(b) has been tested against the current
content - anal¥zer pattern

(e) passed the pattern , 1t it has been
tested

(d) is the head of i t s plex

ee) is the tail of its plex

{21 A pointer to the text for the statement

(3) A pointer to the picture associated with

1c3b4e10

1c30401c

1c304e10

1c3b401e

the s t atement if there is one lc3b~e3

(4) A pointer to the sub for the statement (or
a pointer to the staLement itself if there is
no SUbstructure) lc3b4e4

(S) A pointer to the successor for the
statement

13

)

)

~674 DGC 12JUL70
7101 ROME FINAL REPORT : APpendix D: TECHNICAL DESCRIPTION Of NLS
Sec. II: Utility Routines

d .

lcJb4eS

(6) The hash of the name of the statement if
it has a name. lc3 bae6

A ring element is pointed to by a permanent
statement identifier (P SID). lc)b4f

This is an 11 - bit integer be<ween 0 and 2047. lcJb4fl

The tnree high -order bits give the
structure - block number (entr y into the RSVST
tablel J and the eight low-order bits determine
<he location within the blOCK. 1cJb4f2

The PSID at a statement remains unchanged as
long as that statement 1s in the file. That
is, the PSID 1s not changed bY textual or
structural edit~ng at the fil~ . Wh en t he
statemen t is deleted, that same PSID may later
be used to identifY a different statement . lc3btf3

Every file has at least one ring element in its
structure, namely the element for the origin
st~temen~ (roo~ of ~he ring, first statement in
~he file), which always has PSID zero .

Text Blocks

In aaditlon to the header, a text-type file block
is made up ot an arbitrary number of 8tatemen~

lc)b4g

1c)bS

data bloCkS (S DB S) and an area of free storage. lc)b5a

The free storage area at the end of ~he file bloCk
is simply a number of words available for use in
creating new SDBs. lC)b5b

An SDB is a variable-sized bloCk of woras with a
six-wora header. 1cJbSc

The heaaer contains the followin g information: lc)bScl

(1) The nu~ber of woras in the SDB.

(2) A flag indicating whe<her tne SDa is
unused (i.e. ~aroage ~o be collected by t he

lcJbScl .

garbage collector) lc)b5clb

14

)

)

u874 DOC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIPT I ON OF NLS
Sec. II: Utility Rout ines

(3) The PSID of the st.tement lC3b5clC

(hl The ~ate and the time when ~he SDB was
created and the initials of the user who
created it lC3b5cld

(5) The number of characters in the
statement lC3bScle

(6) The position of the first character 1n
the statement that is not part of the name.
(set to 1 if the statement does not have a
name.) lc 3b5clf

The words following the header contain the text of
the Btatement~ three characters per word. The
text inclUdes an end character (Code 3778) on each
end of the statement. The last word is filled to
a word bounda ry with end characters. lC3b5 d

The characters in a statement are explicitly
numbered , the first end character being number
Zero. lC)b5e

A two-word entity consisting of a PSID and a
character count is called a T-pointer, and
indicates a particular character within the file. lc)b5f

A T-string is a string of text within a single
statement.

The text-editing routines make use of T- pointers
and T-stringa.

e. Graphics Blocks and Keyword Block

The format of the information atored in these
blocks will be desc ribed in the sections dealing
with the vector package and the keyword system.

3. File Handling

a. Core Tables and File Input/Output

The random files are rea d into core by blocks.
Two pages in NLS are logically divided into four
l024-word sections to contain the file blocks.

lS

lc3b5g

lc3b5h

lc3b6

1c3b6a

lc3c

1c3cl

)

)

~87h DOC 12JUL70
7101 ROME FINAL RE PORT: Appendix D. TECH NICAL DESOR IPTIO N OF NLS
Sec. II: Ut11i~y Routines

Thus, up to fou r file blocks may be in core at a
time. When a file block is re que sted , if all f ou r
are 1n use, one block will be written out. Core
blocks may be "frozen~ in, however, 60 that they
will not be r emoved . lc3cla

A single procedure calleO LODRFB controls all file
input/output (other than file copying) . Wh en any
routine wanta a block loaded, it calls this
procedure with the numbe r of t he desired block .
The block is then loaded and its location in
memory returne d . lc)clb

The procedure mak es use of several tables . lc)clbl

one table indicates Which file block i! 1n
each core block (it is called RF IFC B for
"random fi le index for core blocks "). A
zero in this table means tha~ no file block
is there J while a positive numb er is the
random file block number (index to RFBS). lc3cl~la

A second table indicates whic h of the core
blocks have been frozen. !' Frozen ,t i ndicates
to the file block loading pr ocedure that the
core block must not be changed. This is th e
case if some operation J such as edi~in g, i s
being performed on da ta within ~he block. lc3clblo

of -1 means t na~ ~he
this value is

A value in the table
block is not frozen;
incremented by 1 for
bloCk is frozen.

each reason WhY the
1c)clblb1

The algor i thm of LO DRFB is approxima tely as
follows:

First. a core block is c hosen . A quiCK scan
of ~he first table mentioned above is made
to fin d an unused block . If all are 1n use J

then a counter is used to tinct the next core
block that is not frozen. (If all are

1c)c1b2

frozen t he system aborts.) lC3clb2a

The counter provides a simple algorithm
for de termining which block should be
removed from core. lc)clb2al

16

)

) .

~8 74 DOC 12JUL7 0
7101 ROME FI NAL REPORT : Appe nOix D: TECHNICAL DESCR IPTI ON OF NLS
Sec . II: UtilioY Ro utine s

I f the chosen core Olock contains a file
block, then one of the foll owin g things
happens: lC3clb2b

III If the file block i s empty , it is
released to the system and the
corresponding status block 1s set to
indic~te that that block is unallocated.

lc3clb2bl
(2) Othe rwise , the block is written out
on the file if the chec ksum has cha ng e d,
and the random file Btatus block is set
to indicate that the blOck is on the file
and not in core. lc3c l b2b2

At this point the Oesired fi l e block i8
loaded into the core bloCk. lc3clb2 C

If the random file block has not been
initialized, the initiali za tion is done now .
Otherwise the checksum and file type are
checked. An error is reported if either of
these cheCKS fails. lc3clb2 d

Finally . the random file block status is s et
to show that the block is now in core, and
the index for core blockS (RFIFCB) is set to
indicate Which random file block is in that
core bloCk. lc 3clb2e

b. File oopying

The algorithm for copying an NLS file is as
follows :

First, the procedure must Obt ain a core block
to do the copying . RFIFC S is scanned to find a
block that is not used . If t he re is no unused
blOCk, then the first bloCk that is not frozen
is taken, and the file block number in it is
saved . That block is checksummed and written
out on the output file (in the pro pe r file

lc 3c 2

lc3c2'

bloCk I • lc3c201

Having obtained a blOCk, all of the alloc~ted
file bloCkS (exce pt for the one already written
in the event that no core blOCks were free) are

17

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appen6ix D, TECHNICAL DESCRIPTION OF NLS
Sec, II: Utili~y Routines

copieO from one file ~o the other. This
incluQes ~he file header.

Fin~lly, if no blocks were free, the blOCK
which was removed to make room for the copy is

lcJc202

restored from the output file. lc3c2a3

c. Referencing Information in the File

As much as possible, information in the file is
referenced indirectly through utility functions.
This ensures that the file structure can be
mOdified with minimal changes 1n the system as a
Whole .

For each field in the ring element, there are
procedures Which, given a PSID as argument, either
read the contents of the field or store a new

lcJcJ

lcJcJa

value into it. lc3c3b

Only these procedures need
format of a ring elemen~ .
procedures need be Ch~nged
modif~ed.

know the actual
Thus only these
if that format is

There are also procedures for reading and writing
characters in an SDB. This serves both to ensure
flexibility in the format Of the SDB and to ~voiO
mUltiple procedures for performing a very common

lcJcJbl

function. lcJc3c

8ec~use of the lack of instructions for
character man ipUlation on the 940, a rather
elaborate method is used to read characters
from a statement. lc3c3cl

Before any characters are read, the procedure
FECHCl is called to initialize a work area.
It is called with the address of the work area
and the direction in Which characters are to be
read from the statement. lc3c3c2

When calling FECHC1, the first two cells Of
the work area must contain a T- pointer for
the first character to be read. A character
count of one indicates the first character
of the statement. FECHCl will initialize

18

)

)

t874 DOC 12JUL70
7101 ROME FINAL RE PORT : Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. II: Uti1it~ Routin ••

the rest of the work are a , which contains
the followin g : lC3c3c 2a

WORD 0: PSID

WORn 1: character count

WORD 2: return add ress fo r routines
rea6ing characters

1c3c3c2.1

1c3c3c2.2

1c3c3c 203

WORD 3: instruction to branch
through the fourth, fifth, or
of the work area

ind ir.ct1~
sixth cells

1c3c3c2.4

WORDS k, 5, and 6; addr e ss of code to
pass the firat, second, or third
character respectively of the current
word of text lc3c3c2a5

WORD 7: address of t he current word of
text 1c3c3c2.6

WORDS 8, 9, and 10: the
and third characters in
of text

WORD 11: unused

first, second,
the current word

1c3c3c207

1C3c3c20d

WORD 12: the address of the start of
first word of text in the SDB .

the
1c3c3c2.9

Afte r the work area has been initialized by
calling FECHC1, any number of characters may
be rea d frOm the statement by simply
execut1n~ a call to the second cell of the
work area. After returning the last
character of the statement (or first if the
direction of readout is baCkwardS), end
characters (code 377B) will be retur ned from
all subsequent calls. lC3c3c2b

The call to the work area places the return
location in the second cell and causes the
instruction in the third cell to be
executed . This results in a branch to a
routine Which returns the next character. lC3c3c 2C

19

)

)

)

~87' DOC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

When all the characters from a particular
word have been read, the next word of
text is unpacked into the appropriate
cells in the work area. lcJc3c2cl

Whenever a char~cter is read, the branch
instruction 1n the third cell of the work
area is modifieO so that the next call
will result in a branch to the
appropriate routine to read the next
character. lc3c3c2c2

To change position Within the statement,
change direction, or rea d from a different
statment, the work area mus t be
reinitialized bY calling FECHCl again, as
described above. lC3c3c2d

FinallY, statements may be rea d in sequence
according to view parameters by means of a group
of procedures collectively called the II sequence
Kenerator.~ This 1s described in detail in Sec.
IV-B-2 of this appenOix. lc3c30

It was mentioned above that it would be possible
to eliminate the secondary status t ables without
an undue amount of effort. lc3c3.

It 8hould be evident now that this
the case as a result of the use of
reference information in the file.

1s in fact
functions to

lc3c3el

It would be pOSSible to modifY the field sizes
in the ring element bY simply rewriting the
routines that access the affected fieldS. lcJc)e2

In addition, a simple process could be written
to take files 1n the current NLS format and
convert them to a format using absolute
addresses for pointers rather than status
tables.

20

)

)

t874 DGC 12JUL70
7101 ROME FINAL REPORT: AppenOix D: TECHNICAL DESOR IPTION Of NLS
Sec. III: Command Specification

III Command Specification

A. Command Specifica~ion in NLS

1. General

The command specification section of NtS is
implemented in an SPt designed to facilitate ita
description and i mplementation.

The details of this langua~e and its use in N1S are
explained in the following sections.

2. Registers in the Command SpeCification Language

TWO ~ypes of regis ters are used bY the command
specification machinery : string registers and
character registers.

Some of the register! are used internallY in the
implementation of the language, some are used as
special-purpose registers for operations on
certain types of operandS, and some are
general-purpose operand and storage re gisters.

const ructs in the input-feedbaCK SPL allow
manipulation at the string and character
registers.

The principal defined operations tor string
registers are LOAD and DISPLAY.

The contents of a string register are
normally designated in the SPL as the name
of the register immediatelY followed ~y an

lc3c3e3

10

101

1010

10101

101a2

101b

ldlbl

ldlbl.

ldlblo

ldlblbl

asterisk 1*1. ldlblbla

A register may be assigned a value by a
statement of the form ldlblbl b

register-name ~*" ":" expression. ldlblblbl

Examples of expressions are: ldlblb1C

21

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. Ill: command Specification

(1) The name of any of the string or
character registers l~lblblcl

(2) The designation of a character~ such
as SP for space Idlblblc2

() The character 0, meaning to set
string to null

the
101blblcJ

(4) A string of text delimited 0,
T-pointers. ldlblblc4

For example, LIT*=O clears the literal input
register, While LIT* =(Bl 82) loads it with
the a text string . ldlblbld

The contents of a register may be displayed
1n the name area by the command of the form

ld1b1b1e
I' DN(~ register-name "*" ")", Idlblblel

Thus DN(STN*1 causes the contents of the
statement name re gister to be displayed. 1d1b1b1£

The input character register is nOrmallY
available to the SPL programmer as a read-onlY
register, which always contains the last
character rea~ trom the input string. 1~lblb2

The contents of the register may be put into
a string as described above, or displayed in
the text area by writing DTIC*). 1~lb1b2a

In addition, the input character is
implicitly reference~ in the c&se statement
Idescribed in Sec. III-A-5 of this
appendix). 1d1blb2b

J . Entity Character and Entity String; Command Groups

The commands in NLS are claSSified in groups , and
with each group is associated a particular entity
(such as Character, word, statement. or branch).

With this entity is associated a character called the
"entity character " and a string calle~ the "entity

ldl~

1d1c1

string. " ldlc2

22

)

)

U874 DGC 12JUL70
7101 ROME FINAL REPORT, Appendix D, TECHNICAL DESCRIPTI ON OF NLS
Sec . III: Command Specification

4.

The entity character is programmatically assigned
values in the 3Pt by the construct

This causes the entity character to be set to the
value of the character ~ anO assi~nB the value of

ld1c3

the string to the entity st r ing . 1~lc3b

Thus ~E*:B , BRANCH" sets the entity character to
liB'! an~ the entity string to "BRANCH . II ldlc)c

The entity string and entity character are used to
provide a default option in command specification. ldlc 4

When the command operation (such as DELETE) has
been specified, the entity string for the ~roup of
the operation is offered as the type of entity for
the commend. The user may accept this bY typing a
"command accept" character (CAlor specify some
o~her en~i~y bY typing the appropriate charac~er. ld1c4&

The actual sPt constructs used to express thiS use ot
the entity s~ring and entity character are presented
in a later example .

Command Sta.te

Excep~ when a command is being specified or execu~e d ,

101c5

101d

the use r is in some command state . ldla1

If the user begins parame~er specification withou~
firs~ specifying a new command , ~he command executed
will be ~hat deBigna~ed by the curren~ command state. 1d102

The command state is defined internally by a special
register called the "state re gister." ldld3

The state register always con~ains ~he location of
the mo!~ recently defined command state. ldldJa

This location is in the same format as a return
location placed on the staCK in a SUbroutine
call. ldld3al

The state register additionally contains the
com mand group of the command state.

23

ldld3b

)

)

~87k DGC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIP TION OF NLS
Sec . III; Comman~ Specification

The SPL syntax for defining a command state is

" " • command-grou p,

Which results in a call to the state defining
routine to be prOduced bY the compiler. The label
is defined as being equal to the address of this

10103C

10103cl

instruction, 101030

From the command state, control passes directly to a
parameter specification point in the program, which
acts as an idle or "wait for next ipput " point. ldld4

Control returns to the highest level of the
command pa rsing co de if the character read is not
a legitimate parameter specification character. ldld4a

This is one of the most Significant features in
making the command language efficient and easy to
use.

The con~en~s of ~he state register may be use~ as an
operand 1n designational expressions.

ThUS , one may programmatically r eturn to the
previous command state by the SPL statement IIG OTO

1010kb

10105

(S/", ldl0S.

There are several occasions where this construct
is use O. 101dSb

At any time during the command specification, a
user may return to his previous command state
by typing a "command dele te II charac~er (CD). ldldSbl

From the above description of command state,
i~ may be seen that the action of a command
delete is to reset any parameter! entered
~uring the course ot the aborted command and
branch to the location contained in the
state register. Idld5bla

If a specification error occurs during the
execution of a command, the command is aborted
and NLS is automatically re~urned to th e
previous command state. IdldSb2

2k

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: Appenaix D, TECHNICAL DESCRIPTION OF NLS
Sec. III; Oommand Specification

5. Command Parsing

The NLS input commands are parge~ through the use of
nested case statements.

The depth in the nest of c~se stitements
corresponds to the position of the next character

1d1el

to be read in the command input string, ldlela

Thus 1£ a cOmmand were specified by three
Characters, the first character wou ld be read
bY a first-level case statemen t, the second by
a second-leVel case statement, and the third by
a third-level case statement. ldlelal

TWO features of the case statement construct in
the input-feedback SPL make it especially Buited
for parsing the command input strings.

The selection criterion for the execution of an
element of the case statement is equality of
two specified characters, on~ of which appears
at the front of the element, the other of Which
is implicit, lalelbl

The implicit character is normally ~he last
character read from the input string. In
addition, it is pOSSible to repeat a case
(using a "REPEAT ~ construct) with some
character other than the input character. ldlelbla

In particular, the entity character may
be used. This permits the implementation
of the command default option mentioned
above. ldlelblal

At the head of the case statement, the
entity string is used ~o offer a default
value of the command type. If tne user
types a command accept, there is an
element in the case statement which is
executed and results in repeating the
case statement using the entity character
in pl ace of the inpu~ c haracter. ldlelbla2

The net effect is the same as if the user

2S

)

)

)

~87. DGC 12JUL70
7101 ROME FINAL REPORT: Appen~ix D. TECHNICAL DESCRIPTION OF NLS
Sec . III: Command Specification

had typed the entity character rather
than a command accep~ . ldlelbla)

If none of the tests succeed ~ then an
"ENDCASE" statement is executed. ldlelblb

Whenever a case statement is executed, an entry
is made on a stack indicating the location of
that case statement . ldlelb2

A construct 1n the r epeat statement a l lows the
execution of a previous case ~tatement with a
particular character . ldlelb3

The word REPEAT is followed bY an integer
indicating which of the stacked cases is to be
repeated. ldlelb ~

Thus REPEAT 2 causes the second previous
case statement to be repeated.

The integer is 1n turn followed by a character

1d1e1b4a

specification 1n parentheses . ldlelbS

This may be any of the following: 1Q1e1b6

(1) An actual cnaracter to be used, such as
SP 1~le1b6.

(21 The entity Character (E*I 1~le1b6C

(3) The next input cha r acter ,
a period .

in~ic.te~ by
1~le1b6c

A brief example of code for parsing an NLS~like
command language is presented here .

It incorporates most of the SPL constructs
mentioned in this section, as well as Bome not
mentioned.

The conr'lil.nd language described here a.llows t.wo
groups of commands, used for text editing and
structure editing respectively.

Four commands are specified:

26

1d1e2

1~le2.

1d1e2b

1~le2b1

)

)

)

~874 OOC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Specification

Text editing: (initl'l entity:: character) ldle2bl&

Insert Character l dle2blal

Insert Word ldle2bla2

Structure editing: (initial entity::
statement)

Append. Statement

Append Branch

(start) • case

(i) Itexteditj dsp (< insert t es. I • case

1 d1e2b1b

1d1e2b1b1

1d1e2b1b2

101e2c

1d1e2c1

(e) s*=ic .. 'textedit dspt ~ < insert
character) e*=c .. character +parmspec,prmspc
-comex,exectr ldle2cla

(wI s*=iw,textedit dspt ~ < insert word)
e*=w,word +parrnspec,prms pc ~comex ,exectr

(ca) repeat O(e*)

(cd) gete Isj

endcase go tc start

(a) Istreditj dSp (< append t es.) • case

1d1e2c1b

1d1e2c1c

1d1e2c1d

1(He2cle

1d1e2c2

Is) s*=ic,streOit dsp(~ < append statement)
e*=s,statement +parmspec, prms pc
-comex,exectr ldle2c2a

(wi s*~iw,stredit dsp(~ < append word)
e*~w,word +parrnspec,prms pe ~eomex,exectr

lea) repeat O(e*)

(cd) gete (sj

enOease gata start

endease repeat 0 (.)

27

1d1e2c2b

ldle2e2e

1d1e2c2d

1d1e2c2e

1d1e2c3

)

)

)

~87' DOC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHN ICAL DESCR IPTI ON OF NLS
Sec. III: Command Specification

6. Parameter Specification

Par~meter specification is that portion of NLS Which
is involved with the selection of operands for

1d1!

commands. 161i1

Operands may be specified by selecting locations and
entities in a file, by entry of strin~s from the
keyboard, or by the naming of pointers with the
keyset and mouse .

Specifications of entities in the file are
represented by one or more entries on a stack, called
the specification stack. (This is independent of the

1d1!2

su broutine argument and return stack.) 1d1£3

The re is one entry on the specification stack for
each selection made in pa r ameter specification. Idl£3&

A normal en try on the specification stack (spec
stack for short) is c~lled T·poin~er (Which
consists of a PSID and a character count). 101f3a1

An SPL construct facili~ates the Placing of
arguments onto the spec stack. The syntax is ldlf;a2

"SPEC(" argument 11)11, 1d1f3a2a

where an argument can be any of the fallowing: ldlf)a3

BUG : Process the most r ecen t command accept
as a bug selection and place the
corresponding T-po1nter on the spec stack ldl£)a;a

pas: Load the last bug selection onto the
spec stack. ldlf3a)b

String register: The action of this command
depends on the register speCified , and the
contents of the registe r. ldlf)a)c

If the register is the number register ,
then the numbe r string in the register is
converted to an integer and pushed onto
the spec stack as the second word ldl£)a)cl

If the specified register is the

28

)

)

~87' DGC 12JUL70
7101 ROME FINAL REPORT : Appen~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. I I I: CommanO specification

statement number register, it conVerts
the string in the register (assumed to be
a statement number) into a PSID, and
pushes i t onto the spec stack ldl£3a)c2

In the case of any other refiBter , if the
first characte r in the string is a ~iglt,
then the content of the register is
assumed to be a statement numbe r,
otherwi se , a s t atement name . In either
case the corresponding PSID is pUShed
onto the staCk . l~lfJaJcJ

Number : The integer indicated is pushed
the spec stack

onto
1d 1!JaJ~

Identifier: The value of the identifier
pushed onto the spec stack

is
l~lfJaJe

(no argument) : This causes the spec stack
to be cleared of all entries . ld1£3a)£

A textual entity may b~ specified (effectivelY) only
through bug selection{s) or with a pOinter .

A structural entity may be specified by bug
selection(s) , a pointer, or keyboard entry of

1~lf 4

statement name(s) or numbe r (s) . ldlf5

In the case Whe r e the bug selection or pointer
serves as a text selecti on Which indicates a
string i O en~ifyi ng the statement to be specified
(e . g ., names , linkS) , the selected string is moved
into a string register and treated as though it
were entered from the keYboard . ldlf5a

The algorithms for converting bug selections into
T~pointers are diSCUBsed 1n Sec. IV~B ~ 6~c of this
appendix.

A pOinter is simply a T-pointe r which hae been given
a name and atored in a table .

It is specified by depressing the ri gh t button on
the mouse, and entering the name of the pointer

l~ lfb

1 ~lf7

with the keys.t. ldlf7a

29

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appen~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Speci!ica~ion

When a poin~er has been specified, ~he associated
T-pointe r is simply loaded into the internal
register containing the (processed) mo use
location, making i~ appear as though a bug
selection had been made . ldlf7b

A atatement may be selected from the keybo&r~ by
typing either the statement name or the statement
number.

A statement number is converted into a PSID tor a
T-pointer by simply runnin g thrOUgh the rin g at
each level (beginning with level 1) Unti l the
specified statement is reaChed, or found to be

1 ~lf6

non-existent. ldlf8a

A statement name is converted into a T-pointe r by
running through the ring, looking for a 8tatemnt
Which has a name, ,nd whose hash is the same as
the hash of the name being searched for. ldlf6b

In the case where an operand is a textual entity
Which is entered fro m the keyboard, there need not be
an entry on the specification stack for it. I dl£9

Rather , it will go di rectly into a specif ied
register, and be ueed in that form for the
command.

It should be noted that the selections of textual
entit ies in the file are processed du rin g
execution of the command so that (when
appropriate) the textual entity is put into a
register in the same form it would oe in if it had

1~lf9a

been entered from the keyboard. 101f90

7. subroutine Calls and Parameter Passing

The subroutine call mechanism in the SPL is very
similar to that used by ALGOL. It uses a stack for
containing return information, parameters , an d local
variables.

Because of the overlay structure of NLS , it is
necessary to indicate in a subroutine call not
only the address ot the routine being called, but

30

l~l g

l ~lgl

)

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT : APpendix D: TEOHNICAL DESCRI PTIO N OF NLS
Sec . III: command specification

addition&11y the name of the overlay in Which that
routine reSides. ldlgla

The name of the overlay containing the calling
routine is stacked with the return location, so
that the appropriate overlay ~ay be relabeled
in upon return. ldlglal

The r e are two types of sUbroutine callS , Which
differ in the return locations placed on the
stack.

The return location stacked by a no r mal
subroutine call is the address of the location

1d1g1b

fOllowing the calling instruction . l d l glbl

The other subroutine call stacKS the return
location of code which will return NLS to the
previous command state . ldlglb2

The format and operation of the stack (and
subroutine call mechanism) are roughly as follows: Idl glC

The stack is addressed by two pointers, one to
the current base and one to the stack top. l dl glcl

A subroutine call ins~ruction is always
preceded by a ~mark stack!' inetruction .

The !!mark stack!! instruction pushes the
contents of the base - of - stack pointer onto
the top of the stack, followed bY a zero
(Which will be used by the actual subroutine
call tor the return location). l~lglc2~

The top-of-stack pointer is incremented
accordingly, ana the base-of - stack pointe r
is set to point to the new top of the stack
(WhiCh will eventually contain the re~urn
location) . 1~l g lc 2b

Formal parameters are now loaded onto the top
of the at.ck . 1dlg1c)

It an overlay has been specified in the
SUbroutine call syntax, a cell is set to

)1

)

)

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHN I CAL DESCRIPTION OF NLS
Sec . III : ComMand Specification

reflect the overlay containing the pr ocedure
being called. ldl g lc~

Note that the actua l program relabeling is
not chan~ed at this time. ldlglch a

The SUb r outine c a l l is now executed . ldlglc5

The return location is computed . ldl~lcSa

This 1s a combination of the calling
address and the name of the overlay
containing the subr outine call
instruction . ldlglc5al

This 18 true except in the case of the
special subroutine call Which returns
to the previous command state . ldlglc5ala

In the special subroutine call, the
contents of the state variable (Which
in fact is the return location for the
previous state, as computed above) are
used as & return location . ldlglcSalb

The return location is stored in the cell
pointed to by the base - of - stack pointer.

1d1g1cS.2
Finally , the overlay containin~ the
ca l led pr ocedure is relabeled i n if
ne cessa r y , and a branch is made to the
address indicated 1n the subroutine call .

1d1g1c5.3
The syntax of a subroutine call 1n the SPL is ldlg2

("+" I "_ H) procedure - name ("," overlay-name I
EMPTY) ,

where "I EMPTY " means the construct before the
slash is optional.

In addition , parameters may be specified by listing
them in square brackets after the call. Individual
parameters in the parameter list are se pa rated by

1d1g 3

comma.. 1d1g4

The "+" indicates a normal subroutine call , and a "-"

32

)

)

~8 74 DGC 12JUL70
7101 ROME FINAL REPORT, Appendix D, TECHNICAL DESC RI PTIO N Of NLS
Sec. III: Command Specification

indicates a special sUbroutine call Which r eturns to
the previous command etate .

It no overlay name is specified, an overlay which is
either the overlay containing the calling procedure
o r an overlay above it in the overlay tree is
assumed, an~ thus no change is maae in the
relabeling .

An example of a subroutine call is

+SUbpat +war2,txtedt[bl,pl-4J ~ qdv ,txtedt.

6. Input Machinery

a. Wo rk stat ion Input trom Keyboard , Keyset , and
Mouse

Characters are read from the work station by a
system routine in the followin g manner1

Whenever a button on the keYboard , keyset, or
mouse changes state, the TS5 I/O software

1d1g~

1d1g6

1d1 ~7

1dlg7&

1dlh

l dlh1

1d1hl&

considers it a character entry , and places the
fOllowing information into its input bufter. I dlhlal

(1) The device Which caused input l d lh1.1 .

(21 A code Which is the input itself, 1dlhlal ~

la) A character in the case of t he
keyboard 1d1hla1bl

(b) A code in the case of the keyset Idlhlalo2

(c) A down /u p and button indication in
the c&se of the mouse Idlhlalb3

()) The mouse coordinates at t he time the
character Was read Idlhlalc

(~) The time (16 millisecond resolUtion)
when the character was rea d . l dlh l ald

A system call is then used by NLS for readin g t he
characters fro m the sys tem input buffer , which
returns a character (and r elated information as

33

)

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIP TIO N OF NLS
Sec . III : Command Specification

described above) if there is one, and reports the
statUB of the system inpu~ huffer (e mpty, another
character waiting in input buffer, no character
read). ldlhlb

D. Input ForM

Because of the necessity to read characters from
the system input buffe r so that it does not
overflow -- and more important, to provide a
facility to interrupt NLS While it is executing a
long process -- a fork is activated to run

ldlh2

asynchronously in parallel with NLS. ldlh2a

ThiS fork may be conceptualized as an independent
progra m (called the input fork) Wh ich read !
characters fro m the work station and places them
in a programmatic input buffer to be read later bY
NLS . ldlh2b

~LS always reads characters from the
programmati c in put buffer befo re rea~in g them
from the system , and when it is rea~ing a
character from the system, it checks to
ascertain that the input fork is not reading
the same character . ldlh2bl

The input forM additionally has the capability to
interrupt NLS from the process it is currently
involved 1n, and it does so when it reade an
interrupt character (RUBOUT) from the keyooard. ldlh2C

Since NLS always reads characters passed to it
from the input fork before rea ding those waiting
in the system, and there is no restriction on
whe re the input fork gets the characters it will
pass to NLS, the input for K may be used to
simUlate an NLS UBer. ldlh2d

A simple facility is currentlY provided alon ~
this l1ne, whereby the 1nput fork can read
characters from a file, and (with a minimum of
translation and interpretation) pass them on to
NLS. ld l h2dl

This feature is used mostlY for me r ging and

34

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: Appen~1x D: TEOHNICAL DESCR IPTI ON OF NLS
Sec. III: Command Specification

converting sequential files into NLS files.
ld1h2dla

c. Character Translation ldlh3

The key set anO mouse input requires translation
from ita raw input form to a character which is
meaningful to NLS .

The keyset input is in the form of a number
(O ~311 which reflects the keys depresseO (and

1~lh3'

released) on the keyset . ldlh3al

This is combined with the current state of the
left and middle mouse buttons (whic h provide a
case Shift) to produce the translated
character . ldlh3a2

The tranSlation algorithm is roughly as
follows:

If both mouse buttons are down (case 3) then
this is a view speCification charaCter, so

ldlh3a3

treat speCially . l a lh3a3a

otherWise, use the keyset character as an
in6ex into a table of charac~er values. ldlh3a3b

This table ot character values has three
entries for each possible keyset value,
one for each of the rem&ining cases. ldlh3a3bl

The case is then used to determine the
correct table entry as the translated
character. ldlh3a3b2

Additional translation is done when characters are
entered £rom the mouse without concurrent entry
£rom the keyboard or keyset. ldlh3b

This transla~ion simply loo ks for combina~ions
of up/down strokes of mouse buttons without
intervening Characters, anct translates them to
speci£ic ch~racters. ldlh3bl

This is used for the command
delete, baCKspace character,
characters.

3S

accept, comman6
and ba CKspace word

1~lh302

)

)

t874 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DE SC RIPTIO N OF NLS
Sec. III: Command specification

9 . Ou~pu~ (Display) Machinery

a. General

NLS communicates with the user via a display
screen divided into six areas .

Each area is maintained separately of the others,

l dl1

l dl11

ldl11 .

and contains a specific type of information . ldlil b

The organization of the re ,isters on the display
screen, and the format of the re,isters
themselves, are parameterized.

There a re many parameters Which relate
specificallY to certain re gis ters, and some
parameters Which relate to all registers.
Among the pa rameters relevant to all of the
re gisters are:

location on screen

cha racter size and type used in register

display of r egiste r on/off

InSofar as possible, these parameters are the
display control wo r~s used bY the hardware.
This minimizes the software r equired for

10111c

ldl11c l

1dl11cl.

ldl11cl b

ldl11Clc

controlling the screen format. ldlilc 2

b. View Areas ldl1 2

(1) Echo Reg1s~er ldl12.

The echo re gister is maintained by the system
and reflects the raw character input to NLS. l dli2al

NLS is concerned with t hiS re gister mainlY at
initialization. when it must be set up by a
series of system callS. l dli2a2

(2) VIEWSPEO Are.

The view speCification (VI EWSPECl area reflects
those text area view parameters which are not

ldl12 b

Obvious fro m lOOkin g at the text area . l dli2 bl

36

)

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TEOHNIOAL DESORIPTION OF NLS
Sec. III: Command specification

•

The VIEWSPEO area is changed by the same
routine which changes the view parameters
themselves.

(3) Command Feedback Line

The command feedback line is the major feedback
mechanism of the comm~nd specification machine.

1dli2b2

1dli2C

1dli2c1
There are two components in the command
feedback line: wor ds WhiCh r eflect in ~nglish
the command bein~ specified, and an arrow which
indicates the user's state in specifying the
command (the arrow most commonly indicates
whether the user may specify a new command or
parameters, or whethe r he is currentlY
specifying an entity) . 1d1i2c 2

There are three possible positions to which a
word may Oe moved in the command feedback line:

1dli2c3
first position: ThiS causes the command
feedback line to be cleared, and the
deaignated word to be displayed as the first
word in the line. ldli2c3a

Next position:
word. 'to t.he end
line.

This appends the designated
of t.he com~and feedback

Last position; This replaces the last word
in t.he command feedback line wit h the

1dli2c3b

designated word . l dli2c3c

The arrow may be pointed to the beginning of
the wo r d in a specified position 1n the command
feedback line, or it may be turned off. ldli2c4

The SPL construct pro vided for
of the command feedack line is

II DSP (II display - parts ")'1,

the manipulation
1 cni2c5

1d1i2cS •

where the syntax of a display-part 1s 1dli2C6

word I
I II t" •

"ES*" / 11(1' word / I' • •• " word I

37

.... II

1 dli2c6a

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIP TI ON OF NLS
Sec, III: Command Specification

I 4)

The DSP command rearranges ~he command feedback
line so th~t it is formatted in accordance with
the display-parts. ldli2c7

The meanings of the ~isplay parts are as
follows:

Word: A string equal to the text ot the the
word is placed in toe indicated position in

ld112c~

the command feedback line ldli2c8a

"ES*": The contents of the entity string
are di splayed in the indicated position in
the command feedback line ldli2c8b

"(" word, The word is placed at the left of
the command feedback line ldli2c8c

" ••• " word: Replace the last string 1n the
current command feedback line wi th the word

l d112c8d
"~" : Pos ition the up-arrow to the front of
the command feedback line. ldli2cBe

at the start of Iltll : Position the up-arroW'
the following string 1n the
line.

comMand feedback
ldli2c8f

There are three additional intrinaic functions
whiCh are used in relation to the command
feedback line. These are 1~li2c9

AF Turn of! diSPlaY of a.r r ow

AN Turn on the display ot th e a.rrow

QM Display question mark beside the arrow.

Name Register

The name register 1s used for displaying
statement names and arbitrary s tr ings relating

ldli2c9a

ldli2c9"

ldli2c9C
ld112d

to parameter specif~cation. ldli2dl

An SPL function is provided which moves the
contents of an arbi trary string register to the

38

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Specification

name register. The syntax is II DN e" register
II) ". ld112d2

15) Date/Time Register ld1i2e

The date/time re gister always reflects the date
and time. 1d1i2.1

It is updated every 10 seconds by a fork
(simila r to the input fork in its relation with
NLS) whose sole j Ob is to read the date and
time from the system, place it in a core
location, and dismiss itself for 10 seconds. l dli2e 2

16) Text Area ldli2!

The text area serves as the user's windOw into
his file. ldli2!1

What is displayed in the text area is a view
of the user's file, BUbject to certain
formats and reorganization, which is
described by a set of para~eters (called
view specifications or VIEWSPECs) . 1d112£la

The creation of new views is programmatically
caused by the display SPL construct "DISPLAY("
optional-parameter H)". l dli2f2

If there is a parameter, it is used to
dete rmin e the PSID of the starting statement
for the view creation. ldli2f2a

The process of creating a view of the file in
the text a rea is discussed in Sec. IV·B·6 of
this appendix . ldli2f3

c. Literal Feedback

When a literal string is entered as a part of
parameter specification, it is placed in the text
area (beginning at the top) accordin g to the

l dli3

format of the text a rea. 1d1i3a

The part of the file view wnich was previously 1n
the space used by the literal feedback is
temporarily replaced by the feedback. ld113b

39

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Specification

B. Command Specification in TODAS

The TQDAS command specification system is much simpler
than that of NLS, insofar as it does not use the state
machine and no command state is defined other than the
null command RESET .

1. Command Feedback

The command language input string is parsed by case
statements in a manner similar to NLS.

The command feedback may best be described as complex
character echOing , where each command speCification
character is reflected bY the typin g of appropriate
words and t he state of the command specification is

1d2

1d2~

1d2 b1

indicated by the pOSition of the carria ge . ld2b2

AS in NLS, the user has the ability to control
parame~ers relating to the command feedbaCk,
inclu~in g the number of characters of each word
echoe~. ld2bJ

2. Input Mac hinery 1d2c

MUCh of the NLS input macninery is used bY TODAS . 1 ~2 cl

There are, however, some differences: ld2c 2

Because of the allowance WhiCh t he system ma~ es
for an interrupt character (RU BOUT), and t he fact
that the system teletype buffers are larger than
the system work station buffers, an input for k is
not reouired . l d2 c 2a

One may s~ill be used, however, in special
cases such as sequen~ial file input .

All characters read by TODAS un der~o a translation

ld2c2al

on input. ld2c2b

This facilitates the effective interfacing of
TODAS to a number of input devices (six
different types of t ypewriter terminals are
currently provided for) . ld2c2bl

The character translation is accomplished by

40

)

)

~874 DGC 12JUL70
7101 ROME fINAL REPOHT, Appendix D, TECHNICAL DESCRIPTION Of NLS
Sec. III: command Specification

a ~able lOOK-Up ~eChnique (the table is
indexed by the raw character value). ld2c2bla

The result of the look-up may be a normal
text character, or it may be a speCial
character (Which is indicated by the
high-o rder bit). ld2C2b10

In the event that it is a special character
(command accept, command delete, shift
character, centerdot, etc.), an appropriate
action is taken if necessary. The character
may be echoed (as some previously designated
characterl, and it may be specially flagged
as a control character. ld2c2blc

There ls, 1n addition to straight character
translation, a facility to define shift
characters which allow devices with restricted
character sets (e.g. upper case onlY) to work
with full character sets. Id2c2b2

Four Shift modes are currentlY ~ef i ned in
TODAS, ld2c2b2.

Null, No shifting takes place

Mode 0 : upper-case alphabetic
a re translated to lower case

MoOe 1: Lower-case alphabetic
are translated to upper case

ld2c2b2al

characters
ld2c2b2a 2

characters
ld2c2b2aJ

Mode 2: LOWer- and upper-case alphabetic
characters are translated to control case

1d2c2b2a4
TODAS is in one of these mOdes (as a base
mOde) at all times. Id2c2 b2b

The mode may be changed (either temporerily
or permanently) by typin g a character Which
has been defined as a shift character for
the new mode . ld 2c2b2c

There are currently three types of
mOde -S hifting characters: 1d2C2b2cl

41

)

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRI PTI ON OF NLS
Sec. III: Command Specification

Character Shi£t: This causes the
following character to be translated
according to the mode for Which the
shift character has been defined, if
it is a character WhiCh would normallY
have been translated in either the
base mode or the shift mod e. If the
c haracter would not ha ve been
translated , then the shift character
is treated as a normal character. ld2c2b2cla

Wo rd shift: This causes the followin g
word to be translated SUbject to the
same rule as given above for character
shift -- i.e., if the next character
is tranSlatable, t he word is
traslated; otherwise th Shift
character is treated as a normal
character. 1d2c2b2c1b

Permanent shift: This causes the base
mode to be changed, and all SUbsequent
characters are ~ranslat~d according to
~he new mode . ld2c2b2clc

The shifting is accompliShed in the
following manner:

If, a permanent shift character is read
at any time, the shift mode is changed
and another character is read normally.

l02c2b2Q

ld2c2b2d1
If a word -s hif t o r c harac~er-Bh1f~
character ie read, the next charac~er
read from the input string.

i.
ld2c2b2d2

If the next character is a shiftable
Character, then the Shifting is
performed, and the B~ifted character
is the reSUlt . ld2c2b2d2a

If the shift c haracter is for a
word Shift, then a globa l parameter
indicating the current shift state
is set accordingly, and will not be
reset until a space is read. ld2c2b2Q2al

42

)

)

)

)

t87h DGC 12JUL70
7101 ROME FINAL REPORT : Appen~ix D: TECHNICAL DE SC RIPTIO N OF ILS
Sec . III: Command Specification

1£ the next character is not a shift
Character, it is returned to the front
of the input string and the shift
character is returned as a normal
character. 1~2C2b2~2b

3. Printing

printing of a structure in TODAS is analogous to
creating a new view ~or the text area in NLS, insOfar
as tne same view specifications are used for
interpreting and formatting the file. 102 d1

Tnree differences are apparent: l02dla

The text area is of unlimited length, BO that a
whole file ma¥ be seen 1n one view. Pa gination
is perfo r med when a lon g view is created. 10 201a1

Text undergoes an output trans lation and
Shifting Which is a counterpart of the
translation and shifting done on input.

The user has a deg ree of interactive control
over the view being created, specifically I

10201.2

The creation of a view of any partiCUlar
statement may be aborted at any time. 10201.3'

The creation of the entire view may be
aborted at any time.

I~plementationallY, fo rmatting routines different

1 ~2d 1a 3b

from those used by NLS are employed. ld2dlb

The output is forMatted one line at a time, and
the printing of an entire statement must
physically finish before the first line of the
next statement will be printed . ld2dlbl

This restriction is necessary because TODAS
must KnoW Which statement is currentlY being
typed in order to respond properly to the
user's request to abort the view of the
statement. l d2dlb l a

The same sequence generator is used, but the

)

)

t874 DGC 12JUL70
7101 ROME FINAL REPORT : Appen~ix D: TEOHNICAL DESCRIPT IO N OF NLS
Sec. III : Command Specification

9truc~ure be1n~ printed is searched one branch
at a time (except in the case of trails and
keyword) . ld2~lb2

4 . Para~eter Specification

Parameter specification di ffers from NLS in three
important ways :

All speC1fication must be done via the keyboard.

A "current statement" is def i ned as an operand at

ld2e

1d2e1

1~2e1 a

all times. ld2el b

The execution of any command witho ut a
specified operand assumes t his st~tement as an
operand. ld2elbl

The cur r ent statement is r epresented internally
as a cell con t aining the PSID of the last
statement add r essed in the successful execution
of a command. It is UPdated eac h time a
command is successfUlly executed. ld2elb2

The one excep~1on to this is t ha t during
printing , it is set by the print routines to
the PSID of the l ast statement printed . ld2elb2a

ope rands (statements) may be addressed relative to
each other in the tree st r ucture of the file. ld2elc

For example , one may specify a statement Which
is the II successor of the down of the tail" of
the current statement -- i.e., the successor of
the first sUbstatement of ~ he last statement in
the same plex at the s~me level as the current
statement. l d2elcl

The relative addresses of operandS are
interpreted as they are entered by accessing
the ring (as necessary). Any error is reported
immediately, and nullifies the entire address
(except in the case of linkS). ld2elc 2

Links are parsed whenever they are
referenced in an address field, and executed
immediately after selection . That is to

44

)

)

)

~874 DOO 12JUL70
7101 ROME FINAL REPORT: AppenOix D: TECHNICAL DESCRIPTION OF NLS
Sec . III: command Specification

Bay, when a link is encountered in an
address field, the current statement is
changed immediatelY to reflect the value
indica~eO by ~he link.

45

)

)

.874 DOO 12JUL70
7101 ROME FINAL REPORT: Appendix D: TEOHNICAL DESORIPTION OF NLS
Sec. IV: Command Algori~hms

ld2elc2a

IV Command Algorithms 10

A. Editing 1e1

Editing in NLS includes textual, structural, and
graphical modifications to the file. lela

The textual an~ structural editing actions include
insert, move , replace, delete , and copy. These
actions may be performed on textual entities such as
characters, words, and visible strings, as well as
structural entities such as statements, branches ,
groups, and plexes . lelal

The graphical editing actions inclUde insert and
delete tor vector labels, and insert , delete, move,
transpose, and vertical and horizontal projection for
vectors. lela2

1. Text Editing

a. General ConSiderations

The process of tex~ual editing will be discussed
first. This process basically consis~s of
delimi~ing the appropriate SUbstrings , by means of
the conten~-analysis SPt, followed bY construction
of one or more new statemen~B with ~he desired
mOdifications . This latter s~ep is specified by a
procedure written in ano~her SPL , the

1e1b

1e1bl

string~construct1on SPL. lelbla

These content-analysis and strin~-construction
procedures are wri~ten in such a way that in spite
of the l arge number of combinations of editing
ac~ions and ~ex~ual entities , there is a single
content-analysis procedure to delimit each entity
and a single string-construction routine to
perform each action. lelblb

This is done by standardizing the way in which a
SU bs tring is delimited bY the content-analysis
procedures.

Four pointers are passed to the procedure as

46

lelblc

)

)

)

18?k DGC 12JUL?0
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIPT IO N 0. NLS
Sec. IV; Command Algor1~hms

arguments, along with one or two selections
made by the user. lelhlcl

When the procedure returns, t he appropriate
SUbstring is delimited by the pointers in the
following manner. lelblc2

The first and second pointers marK the first
and last characters of the SUbstring,
respec~1velY. The thira and fourth po inters
marK the characters to the left and right of
the SUbstring, respectively. lelblc2a

Thus if Pl, P2, P3, and P4 are the
arguments, the characters from the front of
the statement up to P3 precede the desired
substring, the characters from Pl to P2 are
the sUbstring, and those from P4 to the end
of the statement follow th e substring. lelblc2b

A detailed description of the word-delimiter
rou~ine is useful ~o clarify ~nis procesB.

There are five argumen~s; ~he first is the
pos1~ion of the uBer's Belec~ion. the remaining
are pointers to be used to delimit the actual
text of the word in the manner described above.

lelblG

The body of the procedure is simply l elbldl

al > CH SLD ta3 taS "3 al < CR SLD ta2 ta4
~a2 lelbldla

which has the meaning "s tarting from the
selection (al) scan to the ri gh t (») past a
character (OH) and any number of letters or
digits (SL DI. Set'3 and as to the resulting
position (ta3 ta5) then move a3 back (+&3) so
that it pOints to the last character of the
word. Now reset the search pointer to the
selection (al) and scan to the left «) to set
&2 and a4 (ta2 tak ~a2)." lelbld2

Once the sUbstrings have been delimited in the
above manner. new statements are constructed under
the control of procedures written in the
string-construction SPL . lelble

47

)

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appendix D: TECHNICAL DESCRIPT I ON OF NLS
Sec. IV: Command Algorithms

The syntax of 8. st.atement in the
5tring~construction SPL is as follows:

scstat = "I F" posrelation "THEN" 9cstat "ELSE"

1elbH

scst.t I 1e1b1f1

"BEG I N" scst~t S(H;" sestat) I' END,t / 1e1bH1a

1e1b1flb

The position and p09ition~relatlon const r ucts are
the same as in the content-analysis SPL . lelblg

A pa1rllst is a list of pairs, in this case
separated by commas. lelblh

A "pair" specifies a string of text, usually bY
giving two positions Which delimit the string. lelolhl

In addition the "pair" can be a constant string
or the contents of some variable string such as
the literal input re gi ster. lelblh2

The meaning of "ST pos • palrllst " is liThe
statement pointed to by pos is constructed from
the strings specified oy the items in the
pairlist . tt

Thus. assuming that the pointers have been set
as described above. " ST 81 ~ 5f 18l) Pl. P4
SECB1)" would cause the text from Pl to P2 to

101011

be deleted from the statement selected by 81 . lelb111

The "move " procedure offers a more complex
example. The procedure has ten arguments; &1 and
&2 a re t he user ' s se1ectionB~ &3 through &6 are
tne pointers aBBoci~ted with al, and a7 through
alO are the pointers for &2 . The body of the move
routine is lelbl J

IF SFI.11 , SF I. 21 THEN BEGIN
IF .1 < .2 THEN

ST &1 .. SF (301) a4, a7 a 8 , a6 ;,9, a.10
8Elall

ELSE
ST a1 .. SF (all a9, alO a4 , 17 a8, &6
SEIOlI END

48

1e1b1jl
1e1b1jla

le1b1j1.1
le1b1j1b

1e1b1 j1b1

)

)

h87. DGC 12JUL70
7101 ROME FINAL REPORT: Appendix DI TECHNICAL DESCRIPT I ON OF NLS
Sec . IV: Command Algorithms

ELSE BEGIN
ST a1 ~ SF(al) a~, a7 a8, a6 SE(al);
ST a2 ~ SF la21 a9. al0 SEI.21 END

1elblj2
le1blj2.
lelblj2b

Th~ pair a7 a8 delimits the text to be moved. The
positions a9 and al0 will become adjacent when the
text from &7 ~o a8 1s moved. The destination of
the text betWeen a7 and a8 is after a4 and before
&6 . The reader should convince himself that the
above procedure does this in all cases . lelbl~

b. Implementation

The code compiled for string-construction SPL
routines consists mainly of calls to MOL
procedures.

At the start of the code for a pairlist there is a
call to a procedure called esc (begin string
construction) and at the end Of the pair list
there is a call to ESC (en~ string construction).
For the actual items in the pairlist. procedures
are called which append the appropriate strings

lelb2

lelb2a

onto the statement being constructed. lelb2b

The SSC procedure must cre~te a new statement data
block (SDS) to hold the tex~ of the statement
be ing constructed. Since the final size of the
statement is not known at the time SSC is c&lled,
the average size of SDBs in the file is used as an
estimate of the number of words required for the
new SDB. lelb2c

The search for the required amount of room
begins in the file block containing the old
SDa. if there was one. lelb2cl

If there is not adequate room there . then the
procedure looKs for room in the file blocks,
starting with the lowest index number. lelb2c2

This ensures that if there is room in a
block already allocated, then that room will
be used rather than causing a new block to
be allocated . lelb2c2a

The procedu re ISROOM is called to de termine

.9

)

)

~874 DGC l2JUL7 0
7l0l ROME FINAL REPORT : Appendix D: TECHNI CAL DE SO RIPTIO N OF NLS
Sec. IV: Command Algorithms

whether there is adequate room in R given file
block. lelb2c3

If the block is un~llocated. then IS ROOM
returns TRUE. lelb2c3a

If the block is allocated and contains
adequate free storage, t hen such information
is held in the status table, RFBS . This
avoid s the possibility Of readin~ a file
block only to find that it does not contain
ldequa te rOOM. lelb2c 3b

If the bloCk does not contain adequate fre e
storage, but does contain garbage SnBs (also
known from RYBS) , then I SROOM calls the
garbage collector to process the block. lelb2c3C

Ga rba ge collection involves moving
nongarbage SDB S to fill in the gaps
occupied bY garbage SOB s and updating
pointers in the ring elements
correspon~ing to the move~ SDBs . lelb2c)cl

If this produces enough room, then ISROOM
returns TRUEi otherwise it returns FALSE. lelb2c3d

After sUfficient room has been found by the
above process, the BSC procedure bui ldS a
header for the new SDB and then 8ets up a work
area for the SUbsequent strin ~ transfers that
will take place during the construction of the
statement. This work area contains information
such as the address ot the SDB . This completes
the tasks of SS C, and it returns. lelb2ca

The actual construction of the new statement
consists of appending characters onto the new SUB . lelb2d

Fo r those parts of the statemen t t ha t remain
the same, the text is read out of the old SD B
into the new. New parts of the statement are
simply characters fro m other sources, suc h as
literal input or other SDBs. lelo2dl

The observant reader will realize that it is

50

)

)

~87. DGC 12JUL70
710l ROME FINAL REPORT : Appendix D: TECHNICAL DESCPIPTION OF NLS
Sec. IV: Commana Algorithms

possible to run out of room while appending
characters.

If this happens , the block is
garbage - collected . Ii this results in room
for at least 60 more characters. then the
SDB under construction 1s simply moved in
with the saMe file block to make more roo m.

lelb2~2

lel02d2a
If gar bage collection of the file block
cannot pr oduce that much mo re room, a
locati on in a diffe re nt file block is found
that does provide the requi r ed space. The
partially constructed SD~ is then moved to
this new location. lelb2d2b

When all the strings have been aopended to the
SDB J the procedure ESC is called to finish the
jOb .

It first gets rid of the old SDB for the
statement, then does tne bOOKKeeping to
~stablish the new SDB as the SDB for the
stateme nt. This involves updating the SDS
header , the running average length of SDB ' s,
the pointer in the statementls ring element,
and the name hash for the statement in the rin g

lelb2e

element . lelb2el

In a~dition the 'Icon tent analYZer pattern
tested" flag for the statement is turned off
(see Sec . II-B-2-c of thiS appendix).

This completes the construction of a new statement

lelh2e2

and our discussion of text editing in NLS . lelb2f

c. Content-Analysis SPL

In NLS it is often necessary to analyze the
textual content of a statement in order to delimit

lelo)

certain SUbstrings. lelb)a

For example, the user may select a word of text
for editing by pointing to any character Within
the word. The actual SUbstring making up th~
wor~ i. det.rmine~ oy NLS . lelo)al

5l

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : App.n~1x D. TECHNICAL DESCRIPTION OF NLS
Sec . IV: Command Algorithms

A special language, the content~analysis SPL, is
used for writing such string delimiting
procedures .

Basically, the language provides constructs for
controlling the position of a search pointer in a
text string and saving various pOSitions in order
to delimit the desired suostrings . (In the
di scussion of the content analysis 3PL . position
refers to a statement identifier and character
number -- in other words , a T-pointer as defined

le1bJb

elsewhere.) lelb]C

The initial pOSition of the search pointer is
often determined by a selection made bY the user.
The positions of such selections are stored in
bUffers Bl, 82 , etc. lelbJo

POinters Pl, P2, ••• may be used to store
positions. The current pOSition of t he search
painter can be store~ in Pn by writin~ tPn. lelb3e

Arguments may be passeo to a content analyai~
procedure. Such arguments are either bug
selections (i.e. 8n) or pointe rs (i.e. pn) . Since
the procedure must be able to set the pOinters to
appropriate values, these parameters are c~lleO by
(simple) name rather than by value . The formal
parameters are Al, A2, etc, lelb3f

The three forms, an , pn, and An, are the basic
ways of referencing a position. In add i tion,
there are two functions taking a position as
argument and yielding a position as result. These
are SF and SE, Which give the posi tion of the
statement front and statement end , respectively,
of their argument. lelb3g

The position of the search pointer c~n be set by
simply writing any of the above forms to determine
a position. For example, "SF(Sl)" puts the search
pointer at the first character in the statement
first selected by the user. lelb3h

The search pointer is also moved by tests for
basic text ele~ents. The basic text elements are

52

)

.b74 DOC 12JUL70
7101 ROME FINAL REPORT : AppenOix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algo rithms

strings, single Ch~racterB, and character class
variables.

A string is a sequence of characters delimited

1elb3i

by quote marks ('I). lelbJil

If the string matches th e sequence of
characters starting at the current location
of the search pointer, then the search
pointe r is moved to the next posi tio n beyond
the string and a general flag is set TRUE. lelbJila

If, on the other hand, there is only a
partial matCh, or no match , then the search
pointe r is not moved and the general flag is
.e~ FALSE. 1elb3il b

The test for a single Character is logicallY
equivalent to testing for a string of length
one, but is implemented in a more efficient
manner. The single character is specified by
preceding it with an apostrophe. lelb3i2

The i mplementation Of these tests makes use of
the pro gr ammed operator (P OP) facility of the
940 . lelb3iJ

For the single character test, the computer
prOd uces a single instruction in which the
address field oontains t he code for the
character and the rest of the instruction
specifies the POP to perform the test. lelb3i3a

SimilarlY, the string test results i n an
instruction specifying t he number of
characters i n the string and the a ppropriate
POP . followe d by WOrds containing t he actual
s~ring . lelb3i3b

The baSic text elements of the third type -~
the character class Variables -~ are also
implemented usin g a programme d operator . The
character class variables allow tests for any
character in a partiCUlar class. The classe s ,
with their associated variable names, are as
follows: lelb3i4

53

)

)

~874 DGC 12JUL70
7101 ROME FI NAL REPORT : Appen~lx D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Commana Algori~hms

LD any letter or ~igH lelb314a

L any letter lelb3Hb

D any ~igit lelb314c

NP any nonprintlng character lelb314d

PT any printi ng character lelb314e

SP apace lelb314f

TAB tab lelb314 g

CR ca.rriage return lelb314h

CH any chara.cter lelb31Ul

These tests are implemented in a manner very
similar to the single character test , except
the address field of the instruction contains a
class code rather than a character code. lelb3i~

The successful completion of one of the above
tests causes the search pointer to be move6 . The
direction in which it is moved , towards the end of
the statement or the front, may also be
controlled . lelb3 j

A 1')11 means Bcan (move pointer) to the ri(ht,
or towar ds the end , while 1'('1 means scan left . lelb3jl

As mentioned above, the current position of the
search pointe r can be saved by writing "'"
followed by either Pn or An .

In addition the value stored in a buffe r c.n be
mOdified to point to tne preceding character,
according to the current scan Oirection, by

lel b31<

writing "~" followed by Pn or An . lelb31

The reason for this operation is that when an
entity has been succeSSfully found the pointer
is left pointing to the character beyond the
entity . Thue to eave the position of the last
character in the entity it is necessary to
write 'Pn~Pn. lelb311

5.

)

)

)

)

t874 DGC 12JUL70
7101 ROME FINAL REPORT: Appendix D. TECHNICAL DESORIPTION OF NLS
Sec. IV: Command Algorithms

The remain~er of the language simply provides for
Duilding mo re complex expressions from ~he basic
text elements presented above. lelb3m

One of the pri mary means of dOing this is the
arbitrary nUmber operation. The gene ral for m
of this is mSn followed by a text expression
and has the meaning !Ifrom m to n occurrences
the given expression. II

of
1elb3m1

Both the upper and lower bounds are
optional, with default values of 1000 and 0
respectively. lelb,ml a

This is implemente~ in the following manner.
lelb3mlb

The upper and lower bounds and a count,
initially zero, are pushed on the stack.
Then the test for the expression is
repeated until it fails, w1~h the count
being incremente~ at ~he com pletion of
each succesaful test. lelb) ml bl

When the test for the expression doe s
fail, the current value of the count is
cheCke~ against the boun~B an~ the
gener~ l flag set iccordingly. lelb)mlb2

The othe r operators, in order of de creasing
precedence, are as follows:

- Iminus sign): in~icates ne gation.

After the test for th e text expression
following the minus sign , the value of

lelb3ro2

lelb)m2&

the gene r ~l flag 1s complemente~. lelb3m2al

(s pace): i nd icates concatenation.

After the test for each element in a
sequence of concatenated tests, t he
general fla~ is teste ~ . If it is false,
then the preceding elemen t was not foun~
and control branches to the location
fOllowing the current sequence Of
concatenations. If t he flag is true,
then the next test in the sequence is

55

lelb3m2b

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Appen~1x D: TECHNICAL DESCRIPT ION OF NLS
Sec. IV: Comman6 Algori~hms

p~r!ormed. 1e1bJm2bl

I (slash): indicates alternatives . 1e1bJm2c

It the expression on the left of the
slash is found, then control branches
beyond the sequence of alternatives.
OtherWise , the search pointer 1s reset to
ita position prior to the test for the
previous alternative and the next
alternative in the sequence is tested. lelb3m2cl

NOT: indicates negation . 1e1b3m2~

Equivalent to minus sign
precedence,

except for lower
1e1bJm2dl

AND : indicates logical conjunction . le1bJm2e

If the expression on the left ot the AND
is not found, then control branches
beyond the expression on the right of the
AND . Otherwise, the search pointer is
reset to its pOSition prior to test for
the lef~ expression and then the right
expression is tested. lelb3~2el

ORI indicates logical disjunction. le1bJm2f

Like AND except branch if flag true
instead of false. 1e1bJm2f1

Any expression built using the above operations
~ay be enclosed 1n parenthese~ and used as a
basic elemen~ 1n a concatenation. lelb3m3

Similarly, any such expression may be enclosed
in square brackets and used as a baSic element.
The effect of ~he square brackets is to
"unanchor" the scan. In other wordS, as long
as the test fails, i~ is repea~ed star~ing one
character farther along in the s~atement until
either the statement is exhausted or the test
succeeds.

Thus ("abC") is satisfied if the remainder

56

1e1bJm4

)

)

)

)

~674 DGC 12JUL70
7101 ROME FINAL REPORT : Appenaix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

2.

of the statement contains the string "abc".
1e1b3m ••

Finally, a conditional statement 1s included in
the langUage to allow a pattern to be selected
for testing on the baSis of a comparison of
posi~ions. 1e1b3mS

If two positions are in different
statements, then all relations between them
are false except Iinot equal. 11 otherwise,
the relationShip dependS on the character
number of the position. For example, if B1
and 52 are in the same statement, B1
pointing to character number 3 and 82 to
character number 20, then B1 is less than
82 . 1e1b3m5.

This completes the description of the
content-analysis SPL.

Structure Editing

Like text eOlting, structure editin~ consists of a
phase in Which the entity to be edited is delimited,
followed by the actual editing action.

Since the structural entities "branch" and "plex" are
simply special cases of the group entity, the edit~n g
routines all deal with either a single statement or a
group.

The delimiting tor the move and delete commands is
the same.

In all cases a group, specified bY two PSI D's, is
the final entity on which the editing action is

le1b3n

lelc

lelcl

lelc 2

1e10 3

performed . lelc)a

For a branch the two PSID's for the group are
set to the PSID of the selected statement. lelc)al

For a pIe x the PSID' s are set to the head and
tail of the PIe x of the selected statement. lelc3a2

For a statement, a test is made to ensure that
the statement has no SUbstructure, after which
it is treated like a branch. (If the statement

57

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT. Appendix D. TECHNICAL DESCRIPT ION Of NLS
Sec. IV: Co~mand Algorithms

does have SUbstructure the command is aborted.)
1e1cJaJ

Finally , if the specified entity is a group,
then the two selected statements are checKed to
verify that they do in fact specify a Valid
group. lelcJa~

Once the group has been delimited , the move commands
perform the following sequence of operations. l elc4

first, the destination is checked to make sure it
is not within the specified group. The comm~nd is
aborted if it is. lelcka

The group is then removed fro m t he ring structure
bY the appropriate changes in pointe rs and flags
in the ring element of the predecessor (and
possibly the successor) of the group. The group
is then reinserted into the ring in its new
location through another set of ch~nges in
painters and flags. Notice that no text is moved
and no statement identifiers are changed . The
only changes are in the successor and substatement
fielas and the head ana tail flags of four or five
ring elements. lelchb

The execution of delete commands naturallY results in
greater changes . The group is first r emoved as in
the move operation. Then the sta temen ts making up to
the group are deleted according to the following
algorithm exp r essed in MOL . lelc5

dl~grpl; %start with the first statement in the
group%
LOOP BEGIN

WH ILE 162 • getBubld1)) NOT: 61 DO BEGIN
%d1 has substruc ture%
stosUb(dl,dl); %change SUb-pointer

so that d1 no longer appea rs to have

le1c5a
le1c5b

1elcSb1
1e1cSbla
1elcSblb

sUbBtructure~ 1e1cSb1b1
Ol ~ d2 %m ore to sUb% END; lelc5blC

%when exit the WH IL E statement l le1c5b2
d2 equalS 01 and has no substrUcture % 1elcSb2a

01 ~ get suc(dl)j %move d1 to the successor l lelc5b3
wnich will be back to the "father" statement

1e1cSbJ&

58

)

)

tB7h DOC 12JUL70
7101 ROME fINAL REPORT: Appendix 0: TECHNICAL DESCRIPTION Of NLS
Sec. IV: Command Algorithms

when all Of its ~escendents have been
deleted%

relatld2)j % release SDB for 02%
frersv(d2); % tree ring element for d2%
IF d2 , grp2 DO - SINGLE RETURN END;

lelc5b3b
lelc5bh
lelc5b5
lelc5b6

%£lnlshed when have deleted top statement of
last branch in group%

Note that since the successor of the last statement
1n a plex is the father of the plex~ no stack is
needed in the above algor ithm. Also note the manner
in Which the 8Ub-pointers are modified to guide the
traversal of the group .

As might be expected, copying a group is more
complicated than deleting one since the structure
cannot be mOdified during the process.

In very simplified form, the COpy group algorithm is
as follows:

Starting at the first statement in the group, if
the statement has SUbstructure, copy that first;
then copy the statement and move to its successor
until the last Btatement 1n the group has been

lelc5 b7

lelc6

le1c7

le1c B

copied. lelc8a

When the group has been copied, it is inserted in the
appropriate position in the ring in the same manner
as a group being moved is reinserted into the ring. lelc 9

3 . Graphics Editing

8locks containing picture information are virtually
indentical to those containing text information. The
main difference is the replacement of statement data
blocks by vector data blocks (VD8's). leldl

A vector data block is made up of a header and an
arbitrary number of lines and labels making up a
picture . leld2

The header contains much the Same information as is
held in the header of an SD8. Instead of character
counts, however, the VD8 header contains a count of
the number of lines in the picture. leld)

59

)

}

~874 DGC 12JUL70
7101 ROME fINAL REPORT : Appendix D: TECHNICAL DESCRIPTION Of NLS
Sec. IV: Com~~nd Algori~hms

Following the hea~er is ~ sequence of two-word
DUffers, each reoresent1ng a line 1n the picture .

The first word gives the position of one end of
the line relative to tne lower left-hand corner of

leld4

the text of the statement. leld~&

The second word gives the position of the second
end of the line relatiVe to the first endpoint .

Following the buffers for the lines, each label in
the picture is sto re d as a position (in the same
format as the first word Of a line bUffer) and a text

leld4b

string. le1d5

The current vector package was developed on a trial
baBis with a relatively small programming investment.
As a result of this, the only graphic entities
aVailable are lines (vectors) and labelS. A more
sophisticated graphics system has been designed but
not yet implemented . leld6

Selection of these entities is handled in the
following manner.

Line selection is done bY findin' the line that
minimi~es the difference between the sum of the
squares of the distances from the endpoints of the
line to the bug selection and the square of the
length of the line. leld7 '

This is a practical algorithm Since the number
of lines involved i. small (under 100). leld7.1

Label selection is done by finding the label that
minimizes the square of the distance between the
bug selection and the second character of the
label. 1eld7b

The II rnove vector" command will be explained as an
example of vector editing.

This command allows the user to ~ove one end of a.

leld6

line to a new position. leldBa

When the line is selected, the end that is closer
to the selection i5 offered as the end to be

60

)

~874 DGC 12JUL70
7101 ROME fINAL REPORT: Apponaix D: TECHNICAL DESORIPTION Of NLS
Sec. IV: Oommand Algorithms

moved . The user may request to move the other end
instead by entering a baCkspace character. leld8b

The next selection bY the user specifies the new
location for the end which is to be moved . leld8c

Let end-l be the end specified by the first wor d
of the line buffer, and end-2 be the end specified
by the second. leloBd

If end-2 is to be moved, the second word Of the
bUffer is replaced by the vector from end-l to the
selected position . leld6e

If end-l is to be moved , then the second word of
the buffer is replaced bY the vector from the
selection to end-2, and the first word is replaced
by the vector from the lower left corner of the
text of the statement to the selection. leld8f

The other vector editing comm~nda are implemented
similarly.

B. View Control

1. Jumps and Link~

The jump and link machinery is us ed to select
statements to be di s played at the top of the
text-viewing area of the screen. Gene r ally speaking,
jumps are made within a tile and linka are used
either Within or between files. Jumps may be made
relative to th e structure of the file , to specific
statements, or relative to the jump or link rin(.
Links are to a dynamically dete r mined location in a
partiCUlar user's file, and can specifY that aisplay

1e1a9

102

le2a

parameters are to be se t when the link is taken. le2al

The jump ring represents the chronological history
of the last five jumps made within the current
file. Each entry in the ring contains the PSID of
the display-start statement ana a word
representing the diSP lay parameters. le2ala

The link stack represents the last few links that
have been made , and is only updated it the link is
to a statement in another file. The entries in

61

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT : Appendix DI TECHNICAL DESCRIPTION OF "L5
Sec . IV: Command Algor1~hms

2.

this stack contain the uaer's number, the file
name, the PSID of the Oiapl~y- at&rt statement , and
a word representing the display oarameters . le2alb

Code written in the content-analyzer SFL is used to
locate and parse links. The four oPtional fields of
the link are: le2a 2

user name le2a2a

file name le2a2b

location within the tile le2a2c

display parameters. le2a2 d

In parsing a link. those fields which exist are
delimited by pointers , which are subsequently used by
routines to effect tne link . le2a3

sequence Generator

The collection of routines known as the sequence
generator is used to generate a sequence of
statements starting fro m , given PSI D and governed bY
~he curren~ view parameters.

The sequence genera~or work area is used ~o main~a1n
informa~ion controlling the sequence. This work area
is updated by the sequence generator whenever it is

le2 b

le2bl

called. le2b2

The work area includes the following: le2bJ

(1) PSID of current statement

(2) Maximum and minimum level numbers for
statements ~o be included in the sequence

le2bJa

le2bJ b

(3) Ourrent statement's level le2b]C

(4) Address of Statement Vector Work Area (SVWA) le2 b) d

IS) Addre •• of last cell in SVW A le2 bJe

(6) Address of current last cell used in SV WA. le2b]!

62

)

)

)

t674 DOC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIPT ION OF NLS
Sec, IV: Oommand Algorithms

If statement numbers .re being generated, the
statement vector is generated for the statement in
the SVWA. 1e2b4

The statement vector is & list of worda , starting
with the level of the statement and followed by
entries containing t~e position of the statement
in the corresponding plexes . le2~4a

For example. if the statement vector contains
(4,1.5,3,2) then the statement 1s at level four
and has statement numbe r le)b.

Once the work area has been initialized, the
following algorithm is used to determine a candidate
for the next statement in the sequence:

If keyword reor ganization is being used, then the

le2b4b

le2b5

next PSID can simply be read fro m a file blOCK . le2b5a

If a trail is being followed and ~he ~urrent
statement contains the appropriate trail marKer
followed by the name of a statement in the current
tile, then: 1e2b5b

If the statement points ~o itself then the
sequence is terminated by returning a ~l;

Otherwise the PSID of the statement pointed to

le2b5bl

bY the trail i. returneO . le2b5b2

If the current statement haa a aUbatatement Which
is within the current level bounds, then ita PSI D
is returned. le2bSc

If the current statement has a successor statement
which is within ~he level bounds, then its PSID is
returned. le2bSa

Otherwise, a -1 is returned to indicate the end of
the sequence. le2b5e

After a candidate statement has been selected in the
above manner, it must be checked against the current
content-analyzer pattern if the content analyzer is
in use. If the analyzer is not being used, then the
candidate i s automatically accepted . le2b6

63

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: Appen01x D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Comm~nd Algorithms

J .

Flags 1n the ring element for the s~atement
indicate whether the statement has been tested for
the current pattern and whether it passed . le2b6a

If the statement has not been tested ~ then the
seouence generator calls the code compiled for the
pattern to make the test. This code is similar to
that descr ibed for the content-analysis SPL 1n a
previous section. The ge neral flag is set true it
the statemen t passes the pattern, and false 1f it
does not. le2b60

The process of selecting candidate statements is
continued until (1) a statement passes the pattern or
(2) the sequence is exhausted. le2b7

One of the primary uses of the sequence ~enerator is
in determining statements to be displayed. le2b8

DiSPlay Parame~ers

The user has at hiS disposal two ty pes of display
parameters: those which contro l the selection
processes employed by the sequence gene rator, and
those which control the format of the disp lay.

The format parameters control suen ~hings as the
following :

(1) The number of lines on the screen

(2) The position of various viewing areas on

1e2c

le2c1

le2cla

le2clal

the screen le2cla2

(3) The size Of the characters

(4) Wh ether or not the name, number, or
signature of a statement i8 displayed

(S) The number of linea per statement Which
are displayed

(6) Whether or not indenting is used to
indicate the structure Of the file

171 Whether the file is o1Bp1ayeO as text or

102c1.3

1e2c1ah

1e201a5

le2cla6

as a tree (schematic). le2cla7

6,

)

)

)

~874 DOC 12JDL70
7101 ROME FINAL REPORT: Ap pendix D. TECHNICAL DESCRIPT ION OF NLS
Sec. IV; Command Algorithms

4.

The selec~ion parameters control the fOllowing:

(1) Whe~her content analysis is used

(2) Whether keywor~ reorganization is used

(3) Whe~her a ~rai1 i8 followed

(4) Whether frozen statements are displayed

(5) Whether the view is limited to only one
branch

(6) To what extent the depth in~o ~he ring
structure 1s limited.

With the exception of the display paramete rs Which
control such thinKS as character size and location of
viewing areas on the screen, the display parameters
may be modifiea at any point 1n the specification of

1e2cl b

le2clbl

le2clb2

le2c1b3

le2clb4

le2clbj

le2clb6

a command. le2c2

At certain points 1n the specification of so~e
commandS, the UBer is given the opportunity of
changing the displaY pa ramete rs as part of the
com~and. At other times the user may change the m
bY using Ca se-) key set characters, which are not
interpreted as part of a command specification.
Furthermore, the availabiltY ot a display
parameter Which CaUses the ~ispl&Y to be
re gene rated allows the user to treat the c hang i ng
of display parlmeters as a pseUdo-command. This
can be done in the midst of specifying a normal
NLS command . le2c2a

The User's Content Analyzer le2d

The user's content analyzer is essentially a subset
of the programmer's content-analysis SPL, describe~
elsewhere in this appendix. It is composed of two
parts: a compiler and the code Which is the product
of the compiler. le2dl

The compiler is called by a user command to
compile content-analysis COde from a "pattern"
written as text in the user's file (the syntax is
that of the content-analysis SPL) . le2dla

65

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: Appen~ix D: TECHNICAL DESCRIPTIO N OF NLS
Sec . IV: Comm~n~ Algorithms

A disPlay parameter then de~erm1nes whether or not
the sequence genera tor 18 to execute this code for
each Of the statemen~s which have passed all other
selection criteria. le2dlb

If executed, the code scans the given statement
searching for the specified content . If the
search is successful . the statement 1s
displayed ; otherwise, it 1s not . le2dlbl

s. Keyword System

The keyword system provides a rUdimentary form of
information retrieval in NLS. The result of a
keyword search is a list of PSID ' s . This list is
stored in the keyword tile block. The followin~
special terms are use d 1n documenting the keyword
system:

hit ~- keyword that has been selected and has
nonzero weight

result -~ one of the PSID's generated by KEYWORD
EXECUTE

a. Keyword File - Block Format

The keYWOrd data consists of two tables:

of hits and t hei r

le2e

1e2e1

le2ela

le2elb

le2e2

le2e2a

The first contains the PSID's
weights , with the PSID in the
the weigh t in the upper 13.

lower 11 bits and
le2e2al

The second contains the results of the most
recent search as an orde r ed list of PSID's.

The first few words of t he block contain
information regarding the current status of these

le2e2a2

tables, such as the following: le2e2b

(1) Address of start of second table

(2) Address of item in second table last
returned by the sequence generator to create
~iap1.y

(3) Address of last entry in second table

66

1e2e2b1

le2e2b2

le2e2b3

)

)

)

'874 DOC 12JUL70
7101 ROME fINAL REPORT, AppenQ1x D, TECHNICAL DESORIPT I ON Of NLS
Sec. IV: Commana Algo rith ms

b. Generation of Resu lts

The following algorithm is used to gene rate a list

10203

of results, given a set of selected keywords . le2eJa

A table is built wi~h an entry for each result.
Each entry takes two words, the first being the
hash for the name of the statement, the second
the score for the result (i.e., the sum Of the
weights for all hits referencing that reSUlt).
The table is generated in the following manner.

10203'1
For each hit, the statement specified by
that PSID is searched for a certain string,
Which is currently set to be an asteriSK
followed by two spaces. This search is done
by the content-analyzer POP that does
unanchored Bcans. If ~he strin g is not
foun~, then ~he next hit is considered. le2e3ala

If the string is found, the algorithm then
finds the names in the remainder of the
statement. Each name is copied out of the
text into the statement name register (STN).
The algorithm then gene r ates the hash for
the name. This is compared to the previous
entries to see if it already occurs in the
table. If it does, then the score is
increased by the weigh~ of ~he curren~
otherwise, a new entry is created with

hit;
score

le2e3alb equal to the weight of this hit.

After the entries have been accumulated in
the above manner, the table is sorted
according to score . le2e)alc

The sorted entries are used to produce a list
of results. The results are PSID's, so for the
hash of each entry, the associated PSID must be
found by searChing the ring. le2e)a2

Finally, the info r mation at the front of the
file bloc k containing the results is updated
show the new number of results.

67

to
1e20303

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT : Ap penCix D: TECHNICAL DE SCRIPTION OF NLS
Sec. IV: Co~mand Algori~hms

This list of PSID's is useO bY the sequence
generator when keyword reorder1n(1s called for by
the user. le2eJ b

6 . Tex~ Display

a. General

The collection of routines known as CREATE DISPLAY
is used ~o display in the text area of the user's
screen those statements Which are selected from

le2!

le2fl

the current file by the sequence generator. le2fla

The statement selection process and the format
of the display are under the user's control by
means of VIEWSPECs and the "viewchan~e't
command.

CREATE DISPLAY is called e.ch ~ime ~he user
Modifies his file, changes format parameters,
selects a ne w candidate statement for the top of
the text areaJ changes the statement selection
parameters , or explicitly requests that the
aisplay oe recreate~.

A call ~o CREATE DISPLAY Coes not imply ~ha~
the entire display will be recreated. In fact,
as little is done as possible in order to

l e2flal

le2!lb

minimize file 1/0. le2flbl

The entire display is reconstructed from the
display-start PSID only in the following cases:

le2flb2
III A chan.e in ~he CisplaY-Btart PSID
(c aused by jumps, "lOad file " command, etc,)

le2flb2a
(~) Editing involvin g structural eleme nts
larger than statements le2flb2b

(3) Changes in format parameters

(4) Explicit user command recreate
~i.play .

For statement~ed1ting display Changes, the
~iaplay is updated only for those statements
which have chan ged .

68

le2flb2c

le2! lb2C

le2flbJ

)

)

)

t874 DGC 12JUL70
7101 ROME FI NAL REPORT : Appendix D. TECHNICAL DESCRIPTION OF NLS
Sec . IV: Command Algorithms

The disPlay recreation is guided by the format
pa rameters , such as truncation, and the output of
the sequence gene r ator , Wh ich is called to find
the first statement in the sequence and for
SUbsequent statements until (1) the last in the
sequence has been encounte re d , or (2) the text
area of the screen is full. le2!lc

b. Implementation Details le2£2

The main data areas used by CH EATE DISPLAY are the
following: le2t2a

III The display list

121 The display list reference table IDLRTI

131 The display buffers.

The entries in the disPlay list are used by the
disPlay hardware and have the for m of a word count
followed by a buffer address . The display
hardware pr ocesses the specified number of words

102£2al

le2£2a2

1.2£2a3

from the buffe r pointed ~o bY the entry. le2f2b

For each line displayed in the ~ext area . there
are two entries in the disp lay lis t .

The first points to a one ~ word buffer (t h~t i~
part of the DLRT entry for that line) that
specifies the pos ition of the start of the line

le2£2c

on the screen. le2f2cl

The secona points to a bUffer that contains the
actual character string that makes up the line.

l e2 f2c 2
For each line there is a four- word entry in the
DLRT. containing information such as the
fOllowing :

(11 A T- pointer tor the first character in the

le2f2d

lin. le2£2dl

(2) The first and last column numbers
containing text in the line (used in bu g
selection I

69

le2f2d2

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

() The position on the
of the line

screen of the lett en~
1e2£2d3

(4) Flags denoting such things as the
following:

lal The line is null

(b) The line contains special (nonprinting)

le2f2d 4

characters le2f2d4b

(5) A copy of the second displaY-list entry
for the line (uaed to restore the display list
after displaying an error message). le2!2rt5

For each PSID Which is returned from the sequence
generator~ a display bUffer, DLRT entries, and
display-list entries are created. le2£2e

On the basis of the above description, the actions
of CREATE DISPLAY should be clear for cases where
the entire text area is being recreated. le2!2f

The series of statements determined bY the
se~uence generator, st.rting from the statement
specified for the display top, is used to fill
the lines of the display, with the appropriate
information being stored in the 6isplay list,
DLRT, and display buffers . l e2f2fl

In the case of text-editing changes, tne display
is only partially recreated; the process is as
follows:

The DLRT and diSPlay-list entries for the
statements that were not edited are copied to

le2£2g

auxiliary buffers. le2f2g1

If the content-analyzer flag is of! or the
edited statement passes the pattern, then a new
display bUffer, DLRT, and display-list entries
are constructed for it. le2£2g2

When this is completed , the DLRT and display
list are replaced bY the auxiliary buffers and
CREATE DISPLAY returns. 1e2£2&3

70

)

)

)

,874 DOC 12JUL70
7101 ROME FINAL REPORT: Appendix DI TECHNICAL DESCRIPTION OF NLS
Sec. IV: Co~mand Algor ithms

c. Bug Selection

It is appropriate to consider the problem of
converting selection~ made by the user to valid
character and statement specifications at this
pOint, since hug selection makes use of data areas

1e2£3

constructed oy CREATE DISPLA~. 1e2£).

Whenever input is read from the user work station,
the coordinates of the bug are saved along with
it . In the case where the i nput is meant as a
selection by the user, the coordinates must be
used to identify a character on the screen. The
DLRT contains the information required to do this. le2f)b

The text area is t'homogeneous," in that each
line takes a fixed amount of space vertically
and each character takes a fiXed space
horizontallY. le2f3bl

ThuB the coordinates of the selection can be
easilY converte~ to a character and line
position in the text area. le2f3b2

This is only part of the prOblem, however,
since the selection may be at a character
position that does not contain a Character. In
other words, there are null areas in the text
area and selections in these areas must be
"rounded" to another position . le2f3bl

This rounding process is done using the
information in the DLRT. le2!3bk

The DLRT has a flag indicating whether a
line is nUll. These flags are checked and
the selection moved up the screen until it
is on a non-null line. le2f)b4a

The DLRT also specifies the first and last
columns in the line containing a character.
On thiS basis, the selection is moved to the
left or right, if necessary, to put it on a
position containing a character. le2f3b40

It is often the case that bug selections must

71

)

)

)

~874 DOC 12JUL70
7101 ROME FINAL REPORT, AppenOix D, TECHNICAL DESCRIPTION OF NLS
Sec . IV: Command Algorithms

C.

be converted to T-pointers for operations such
.s editing. le2f3b5

If the line does not contain any special
characters , Which take up more than one
character position in the SOB , the bug
selec~ion can be conve r ted into aT- pointer
directlY from the information in the DLRT . le2£)b6

There i. a flag in the DLRT Which indicates
whether the line contains any special
Characters, and a T- pointer for the first
character in the line . le2f3b6a

If there are no special characters, the
character count for column k i~ simply k
greater than the coun~ for the first
character and is thus obtainable from the
T-pointer in the DLRT entry . le2f3b6 b

If the line does contain special characters,
then the number of special characters in the
line to the left of ~he selected character must
be determined. Ra~ner than store this value,
it is computed directly from the SnB for the
statement. ThiS amounts to reformatting the
line up to the selected charaCter . le2f3b7

Calculator le3

The calculator gives the NtS user the ability to perform
arithmetic operation! using numbers selected from the
text or entered from the keYboard .

In addition, arithmetic expressions (functions) with
named variables may be eva l uated with the aid at a small
compiler built into the calculator.

The calCUlator stores numbers internally in &
fixed-length decimal notation (currently using sixteen
digits to ~he left of the decimal and seven to the
right).

The arithmetic routines work with numbers that have been
"unpac ked" into an "accumulator ," one digit to a word.

72

le3 b

leJc

leJa

)

)

)

i874 DGC 12JUL70
7101 ROME FINAL REPORT : Append i x 0 : TECHNICAL DESCRIPTION OF NLS
Sec . IV : Command Algorithms

The multiplication algor ithm wil l be briefly outlined as
an example .

The mu l tip l icana and the prOduct are 1n unpac ked
form .

Di gi t s are r eact one at a time from the low ~ order end
of the multip l ier .

The multiplicand i s initial ly "aligned " with the
l ow- order end of the dOUble - length partial prOduct.
Durin~ the course ot the multiplication, they are
r ealigned by I'moving" the mUltip l icand towa r d the
high - order end of the prOduct .

The first step of the algorithm is to zerO the
partial product .

Then, until all the digits in the mUltiplier have
been processed , the following algorithm 1s repeatedly

le3'

le3el

le3e2

le3e3

le3e4

executed: le)eS

(1) R~ad, and convert to the equivalent binary
number, up to four multiplier di~its at a time.
thus forming a composite mUltiplier digit .

121 For each digi, in the mul,iplic.nd , mUltiply
it (using the hardware binary multiplication) by
the composite mu l tiplier digit , and ~dd the result

le305a

to the corresponding di git in the par tial prOduct. le)e5b

Th i s takes advantage of the unpacked fo rm to
allow "digits " in the partial product to take
on very large values . ca rries out of the
partial-prodUct digits are propagated only
once, at the end of the algorithm . le3eSbl

131 Realign the multiplicand ,0 the left by the
number Of digits read from the mUltiplier. le3e5c

NOW propagate the carries in the partial prOduct to
finish the multiplication.

The calCUlator contains a small operator-precedence
compiler for arithmetic expressions.

The compiler produces both code to be interpreted ~nd a

73

103e6

103£

)

)

)

~874 DGC 12JUL70
7101 ROME fINAL REPORT: Appen~1x 01 TECHNICAL DESCR IPTION OF NLS
Sec . IV: Command Algorithms

symbol table of the variables used in the expression.
The symbol table grows toward hie her a~dresseB, while
the code grows from the othe r end of the same block o£
memo r y . leJ ,

When the user asks to evaluate the expreSSion, the
program asks ~lm to supplY values for the variables.
The user may fix a variable to a part iCUlar value !nd
tell the program not to demand a new value for it . ~hen
all variables have been given values, the code compiled
for the expression is interpreted and the result
transferred to the t'acc umulato r " of the calCUlator.

For each variable 1n the expression , the symbol table
contains the following information:

(1) The name of the Variable (as an A-string, so
that it can be displayed in the com~and feedback line

1eJh

1eJ1

when the user is asked to give it a value) le)il

(2) The current value of the variable

()) Flags indicating whether the user shoulO be
asked to supply a value for it when the expression is
evaluated , and it so whether it has been given a

1eJ12

value during the current evaluation. le3i3

The code co~piled for the expression is ma6e up Of the
followin g instruction types;

(1) Push values on the stack

(a) Push identifier (specified by the address of

1eJj

1e3jl

the value to be pushed) le3jla

tb) push constant (t he value of the constant
follows the instruction 1n the COde)

(2) perform arithmetic operations With values on top
of stack (unary minus , add, SUbtract, mUl tiply, and

1eJjlb

~1videl l e3j2

(31 Halt

The interpreter tor the code simply manipulates the
stack and calls the appropriate arithmetic routines.

74

leJj3

le3'

)

)

)

~B7h DOC 12JUL70
7101 ROME FINAL REPORT : Appendix D, TECHNICAL DESCRIPTION OF NLS
Sec. IV: COMmand Algor ithms

D. proces sors

1. File Clea.nup

The file cleanup pro gram serves to verify (a nd
pe rha ps even restore, with a bit of luck) the
internal soundness of an NLS file.

The pro gram goes through the following stages:

(1) For each structure block:

Set. all the name hashes to zero.

Check the free list and mark elements on
free list bY setting their ha.shes to 1.

Verity the useCi. cell count for the clOCk .

121 For each text block:

Check the free space poin t er.

Check. each SDB bY doing the fOllowing:

compa re the leng th given i n the first

the

wor d

leh

leual

le4.2

leha.2a

10402.1

le4a2a 2

10402.3

le4.20

le4.2bl

leha2 02

of the header to the character count . leua2b2a

Check that the last character is really an
end ch aracter . le4a2b2b

Check t h~t the n~me chara.cter count is
rea.sonable.

Mark SDB's tha.t cass ~hese tests by "ORIlin g
36000000B into first word .

It the SOB failS any of the tests, then move
the free space pointer up to that point a.nd
give up on the reat of tha~ block.

131 For each graphics block:

The process is Similar to the process tor text

le4a2b2c

10ha2bJ

le4a2c

Dloeks . le4a2cl

At the end of these stages the entire file has

75

)

)

)

)

~874 DGC 12JUL70
7101 ROME FINAL REPORT: Appendix D: TEOHNICAL DESORIPTION OF NLS
Sec . IV : Command Algori~hmB

been inspected once. During this a special
routine has handled the l oading of file blocks ~
If at any time there is a "bad " file block (i . e . ,
one that contains an error) , it tries to recover
by changing the type o£ the block if that is in
e rror and r eca l culating the c hecksum 1£ that is in
error.

File cleanup now continues wi th a second pass .

(4) CheCK the actua l structure of the ring .

start from the origin and work through , not
trusting the head and tail flags. This
requires keeping a stack of f~ther PSID's and

10402d

le4a2e

le4a2f

comparing each successor to the father . le4a2fl

Mark ring elements that are used in the
structure bY setting their hashes to 2 (first
making sure that their names are zero , meaning
unusect, and not one, meaning on the free list).

le4a2£2
Mark data blocks (both SDB and VDS) of ring
elements in the structure , as Used , by Changing
the top six bits in the first word to 348
instead of 368 . 104a2£3

Correct errors in head and tail flags if any
are found .

Errors in structure are handled as follows:

104a2£4

le4a2£>

If the bact statement is the head
then that plex 1s discarded.

of a plex,
le4.2£><

Othe rwise the remainder of the plex is
discarded.

This discarding is done by linking
gOOd parts of the ring.

together
le4a2£>c

Thus in the first case the father of the
bad statement simply no longer has any
substructure. 104a2£501

In the other case the last gOOd member of
76

)

)

)

'674 DOC 12JUL70
7101 ROME FINAL REPORT : Appen~1x D: TECHN ICAL DESCRIPTION Of NLS
Sec. IV: Command Algorithms

the plex becomes the ~&il of the plex. le~a2f 5c 2

It a sta~ement th.t h~s vali~ structure has a
bad data block associated with it, then a dUmMY
SDB is created for the 8tateme nt and file
cleanup continues, leha2£6

(5) took for Illostl! SDB 's and rin~ elements .

Ring elements that still have name hashes of 0
are neither on the tree list or 1n the
structure. These are now put on the fr ee list .

1e 4a2g

1e4a2gl
SD B's that still have 360000008 in the~r first
word are not pointed to by any statement.
These are now marked as garbage . le4a2g2

Marks on SnBts are now erased. le4a2tJ

(6) The name hashes tor all r1n~ elements in t he
structure are now recomputed . le4a2h

This comple~es the cleanup ot the tile .

2 . File Compaction

The casie objective of the file compactor is to
reduce the number of SDS block~ in a file by
combi ning the contents of these bloCks and
eliminating resultant empty Clocks . In addition.
empty spaces in the r andom file are eliminated by
packing the file into contiguous bloCkS . structure

1e 4.3

1e4b

blOCKS are not compacted. l ehbl

SD8 blOCKS with fewer than a fixed numbe r ot
unused cells are not processed -- t hus compaction
for files Which need little or no compacting will
be a relativelY quick operation. le~bla

3. Output Processor

The Output Pr ocessor is used to produce hard copy
frO M HLS tiles . The ou tput of this process inc ludes
forMatted tiles for a printer, a Dura typewriter , and
a Stromberg - ca rlson microfilm machine . lehcl

77

)

0874 DOC 12JUL70
7101 ROME FINAL REPORT : Append1x D. TECHNICAL DESCRIPT IO N Of NLS
Sec. IV: Oommand Algorithms

The format of ~he output is controlled by means of
directives , le4c2

4 •

These are parameters for numerous variables such
as page dimensions, page numbering, ~nd "on/Off
switches" for a large set ot format options . The
User may control these parameters bY means of
special strings of text (i.e., output-format
commands) embedded in the file text . These
command strings , which are also called
"directives," are normally sup pr essed from the
hard - copy output . le4c2a

A full set of directive default values for each
type of device has been established; these valUeS
may be overridden bY directives imbedded in the
text of the file . le4c20

The output Processor runs as a subprocess of NLS and
has one pag e •• a buffer -. in common with it. This
process, like the compilers, utilizes the
statement-selection mechanisms ot NLS to Obtain its
input dat~. Thus level clipping, content analysis,
keyword reordering, trailS, and so ~orth can be used
to control what is output via the Output Processor .

compilers

The languages developed by ARC for internal use are
discussed in the main body of this report. Source
code for any of these languages may be written in an
NLS file and output directly from NLS to the
appropriate comp iler.

78

1e4c3

lehd

1e4d1

)

)

:4874 , 1010 1/70 1730:32 MGC ;
EDITING CHANGES DONE . DSN'l;

.DPR'I; :P2ROHE , "07/12170 1941 : 07 DOC;
. RTJ 3 0; . DPR=O; . DSN =l;. DPR . O;

·0'15 JIj >~ 22SE)l70
ARO TASr. St:r .T,l).:..'

)
HA}tD~AH.c; scnPlluJ.f' ti t\ ~:

fJOt} t.(1 uet "ov .Dec Jan
Fer.. la

" • .. ·K I " I 2 3 4 I " J 4 5 I 2 3 b I 2 3 4 5 I
2 3 4 Ib
re\. to Yc':)r~ Ie
Power ~i':'"l.nf I ~
Move 9 1

" co.,s. Ie
Move '" If
Di3P i n I:core II
2nd disp ~n ... c")r~ Ih
Nove xcore Ii
kewire IHJ Ij
IDe tQ ':cnre II<
rTY pat-c.!' IIid.I:~l !x Il
Disc t'lC"C1.1 'I Ix 1m
PDP-I O nell.v~! >- In
PDP-I O [r'st,alJ. u 10
Pavinr, r. (j;.,. MOn! xx)Cx)C 10
Palo:;,in~ "OX Cor t'J,. Yes X Iq
}laR'inll Ilo;{ C" I ~cl,olJt. x Ir
lJyberne ~ 1el"\\1~ }.)(XXXX Is
Systen nDel...:.l,lonal x It

)
l>·o~ I..n r)c1. ,~ov Dec Jan

I eb lu
... P"" I< ! , I < j , I 2 3 4 5 I 2 3 4 I 2 3 4 5 I

2 3 , Iv
SOFT '.~ AIIt. ~c "1e!luli~ "'r.P 2

,e ;.n Oct. ~ov "ee Jan
F~o 2.

ft'" (. ,e J .1,1- I) 3 u I " 3 4 S I 2 3 Ii I 2 3 4 5 I
2 j • 20
Strmnp 2e
SPL corr,niler 2~

SPL so ul"'ce 2.
he. I.L~ 2f
Ll.oe I 2g
Tree " . , 2n
LIO 21
DebU,- L I (, 2j
LI O on 10 Ix 21<
Xcore ","'n1 "tor Ix 2l
l're'" 3 Ix 2m
J'IIiniToo~:::;; !x 2n
Xcore '~1- ~, !x 20
,PL-I O !xx 2p
Liol"' 2 !xx 2q

)

0075 JC. 2 2SF.P70

CO'1Plu !XXXy 2r
PASSli. ! XX)(Y.XY 20
f-o et work 1):)(.(xx /(X'i(X 2t
NLS -I U 1 XXli:jot x'\(xx 2u
Net - IO) '<x:.<xxxx 2v
IUe. xx 2w
10), Lacs :.<xxxx.(xxxx)(xxxx 2x
our luX xxxxxx 2y
NLS runPlnF; ,xx 2.

NLS/ TODA5 1'.tA.Ttit"l',j ,~cn~ lule (;~I 3
/ (.' li t..i Oct ,ov Dec Jan

Fe h 3'
"eel{ II, I '2 3 u I " J " 5 I 2 3 h I 2 3 4 5 I

2) 4 3b
Collector St. rt,.r 3C
Calcuj.~'t.'.1r c,,)lo,'Oller !XXX 3d
TODAo i,l P r.,"/ f':."''' n t. 8 1X 3e
Cona.n 1" Dro·~· e" ""nt.3 AX 3!
OIJ1cK;,,;r\.j~t. " rov~ XX Jg
C1SPL~ ~it!1 1 I rll) .. ' ~ 1) 3h
Mul tJ.p~,e l.J.lcE 1) 31
DSS re1.~ t.t"(1 ?) 3j
Pic t.urp oac~~ .. '7t" 1) 3k
New rt',oriT,.{tt.""'r ?) 31
Tr::l vpliru '/) 3m
Se(l~ejj C':ne.n~~" 1) 3n
F .. nt.it.v Cis")l ?) 30
SID ' s in 1l.11"'> 'I> 3p
Select loc/l"n-:\.t,.y ?) 3q
Literal ec..l. ~,l"(?) 3r
Ot her f~' t 'J r I! S 1) 3'

OUTPII1' PJ:.:'jC. ~,.,vJ- c:che"1iJle dLP il
'" lint., vet NOV Dee Ja,n

Fe b u.
:'I to Po • .r; ! u I ~ 3 • I 2 J h 5 I 2 3 4 I 2 3 " 5 I

2 3 h 4b
St.ave 1 x oc
Sta.re 11 1 :C(): XXXXX)(xxx hd
Stae;e III I >1 4e

)

2

,

)

)

t : hd7~'. I 'IIIJJ.I fl ""-,t: .. 11 :,..); :~CriLJJ .. OQ/22/7.0 06,56 : 3 1 JON ; .HED :!!
4675 JC1. 22.::'f'JI:"(V

AHC TASK SC4.c.JI)l.LS"; . j-o = 1 ... !:;Cl{ = I;
. SNl' =?2; . 1(:-=t;.'I ' P . ;: ... Llb~, = I; . DP!-' = O;

)

)

)

~hjo DOC M280CT69
A.RC pro}.' 0 8?i l.(.Jl ·e"lP, ren I~O _ ,i~l1 ",q --I I q

EXPE Rlhf..I,'1' ... J... J.l~,vr.L(':t'r r T U- A ~~IALl COJ,\PUTJ:..H "A iJGMENTED
I NFORMA11CN ~YS~~

I INTF UUUCTlu"

A. . tl'h~ Auvmf':lIted nULan J.O\.t:"llect kesearch Center

TI'~ Au~m~,ltea ~uJ"an ln~ellee~ Hese~rch Center t AHIRC) o f
S~a.nfor,1 r:"'!IIpa.rcn Ins't.i 1.U tp I ~ IIlf'orl'la ~i on Science and
En~in~~r1n' Civ_8~on ~a an ~xternal lY supoorted. multipl y
spon ~orp1 ~ r nu~ 0i 2~ "p r sons ~or~1ng i n elose cooperat ion
on ~ n~ ~rool~~ c~ "a~~~~nt1nK t ne nUman 1n~elleet . "

" Au~~ent~t~nn" 15 ~ t~rl, 1~Cicat i n~ the extension,
inpr '1vej"ert , ... ·Id C::"lJ .1."lfica t,~on of the i. nt.e llectual
cap~ o111t1e~ cf hu~~r l b , hoth ~s ina1virtuals and as work i ng
frOUDS c!" r..e::tj."q .

The ~urr~rlt ~pnrU~Cj l tn tn~s goal concentrates on tne us e
of hig'~lY 1ntp~actlve conput~r systems des i,ned to a i d
inQlv~oua15 an~ irou~~ in ~&"iDul~ting thp information t ha t
tl'le Y ":orK .,..ivi. ..Ilis " T1fi.m ;.ula t1on of l.nlormatl.on "
incl1J'1e& 't,!'l"!' ;tollot-ll.JlP':

'S:o-,t.erl' -:.:nz~l,ion 'l.nd Sl..or;l.!e of "iaeas ll in .symbol ic f or m
-- for eya~?le , ~n~li8h text, or drawings, or compute r
nroi~~ s , O~ specl.&l ~tr~ctures fo r relat.inp va r ious
store1 l.t(" s .

~tU~Y111~ 't,~p stcr~a mater1al ~ by reans of high " speed
corpUtel' rll.R~laY of the te~t, drawl.ngs , etc ., c oupled
witfl s~~ciall.zect ~nforflation "retr1eva l techniques gear ed
!~r tnls ty~~ of ~~rylic~tion .

'0~ 11 ~~ng ana upn~tinr the stored ma tPrial by means o f
~ nl.~h~Y ~n~~isticat~1 syste~ of int.er~ctive edl.ting
cn~~~nQs . ~n1cl. perm jt a r~n~e of operations from de t.~i l
~~~\.i;l~ to ~~0.1.e~ale rearr~nKe~ent of information 
struct.ur(' ,9 . 

II SUt1NA l<Y 

'we 1)'I'"ooo.:::e all t-'XL;el':l.hl ~rH.al investi~ation of techniques fo r 

3 

3> 

3al 

3a2 

3.2< 

3<2b 

3<2c 

4 

4a 



) 

) 

) 

.(,16 JlGC .2 60CT6 9 
ARC Prooo ~~J. fOl l-c . ..:eo;.rcn ~l1 . SSU 69 -11 9 

the ~~na~~,ent , ~1~h1n A~I~L I of a colle ction of exte rnal ly 
~erlVeQ i~forMatipn (;n "intel ligence" collection ), with 
tne eventu~l pu~ou~~ of cre~t1ng J using, and ~eveloping an 
"i ntplli(enc~ ~ystei~ 11 ~napted to ou r particula r nee d s. de 
pxpect to J~velol) ~eS1,n orJncipl~s apolicable to 
infor~at ~ on 8i~L~t,S t~r o~nAr ~rouoa tha t will be acquiring 
adv 1.nced 1:,tt!!,,';Ct;;.. vc CO:1DULI"'t'" '(.0018 . 

We ~~v@ ~va1'aoie R siz~cl~ repertOlre of special on -line 
tecl l!"li.o"Jt:!6 ,. Clr l. nfo"'j:,~ r..10:1 n~naJ.l. n~ , plus specia l 
c. P~(li~1t~es ior tne ~ieve lODmen~ of mo r e techniques. The 
objectlve of t~~ proposPj r~s~arcn 1s t o deve l op a 
syst~ :~Cl.\.ic p )Jll.c~"J.o:l ("If tnese t.ecnniquea a.nd. capa.bilities 
to t.~~ ~~n~r~~pnt. ~f 0ur gr oW1ne cOllec~ion of 
" 1n~ellJ.rence" (exLprn~l Ma teriall , and ~o tne me thoOs of 
retriev~L, extrect~o~ ~na J.nte~~at1on of infor~ation by our 

hal 

on-l~np rPb~~rc~pls. ha2 

An J.~porv~nt. cnacacteristJ.c of AdIHC is its 
" Doo~s~r ~~~i!l~ " sLr~te2v fer research on a u~mentat 1 on . All 
s yst.e~s n~sJ.~n~~ ~y t.n~ Ce~ter are J.ntena~a for a.ctual , 
nract1cal uqe in t.n~ ~~nter itself; once des i~ned and 
i Rpl~'~ente~ ~~lPl' ~ re us pd heav1~Y on a day - to-da.v basis . 
TnJ.~ ~edn~ tnat. Al'Ire stal! are botn e~perimenters an~ 
eXDe ri~ent~l ~Uhjtcts . and the result 19 st r on1 
"evolUt1on~ ry" D~~S8ure UpOll tne des1~n p rocess . 

· ~cn s0eci~1 ',~vplonm~n~ naQe by the cent~r in a ny of 
l.t,o; a.rt'"~.," of CC'rlcern (1.nclua 1.nl?: ~oft.wa re design , 
mana~e~lent, e~c . ) ~volvps and 1.8 used wJ.thin an 
i nt.~~c~~~j 0orK l n, enV l.r ~nment tnat provides an 
otner~i~~ unavaila~le context fo r eva llLation of the real 
usefUln~as ~! t'le ~evelor~en t . Suen evaluation is of 
~ r ea~ 1 .lporLInee l.n ae s ignin~ ~n ~ develoPl.n R tools and 
TlethodOlop'1.~s l.or t.ne !lJturf> worl~ of on- line working 
Jl rou ps . 

Olle focus nf' ~fiort ;..I1th1. T1 thiS approa ch is 'the 
devplo pment of system' fo r ma"ag l.ng t he worKin~ information 
of thp ~rouo . uonsider~ble wor ~ nas been danp 1n the 
developnent of snall , e5sentia~~y pe rsona l informat.ion 
systt'" ms , a..I1 t"1t- (;ent~ l'" 15 t ~~inn1n fl; t.o 1. 1"I vest.igate the 
Drobl~Ms of ~n~~what Ipr er systeMS of c oordina~ed worKing 
rec orrjs i'or U,:"~ uy t.lIe t:'rOI.H' as a whole . 

We want to devote ~l.~ultaneous atten t1 0n to mana~ing our 

2 

hbl 

hb l . 

ILb2 



') 

) 

) 

.876 DGC -2bOCT69 
ARO Pr opo(;:1.1 .!'tJr I"'~s"".',r~n '~'J . £SU flq .. j 19 

" ex~er'~l" r~c~rds, as here)..n oropos e d . As a be~1 n Tling , we 
h4V~ c011cc~ .... ~ SO)I~ kUOO ~ Le~s loooks # periOdicals, 
c11DP1n~s , ~~c . l ovpr the cast ten year s . Tn i s " XDOC '1 

(~xte:'~l c~c:tq~.lt~~~o~) co~leC~ 1 0n h~s d very r ud i mentary 
c~t~lo' ~. )~~ ~~t ~in, pntr~pg l~P storeQ by ac c e s s i on 
n Ulil Ufor .\..11 Ln,lt-l,lt.t'r-, j ... .L 1 fl.J~!'l ',;n l. cn we ca.n se ."rch on 
cont~nt fro~ on - 11~e ~p'r conSOles , but £~r wn i c n the re 1s 
no fO r llii.l 1M Ie ~l.n· . ,,:1 t.n 1. t.s present fo r m and its cu rrent 
p r1mi t ive ,'i~n~~pj~ent ~n~ uspre ~e tnods , t he XDQe collection 
i s little ~3eQ or V~lU~d . 

~e need t~ ex~~na tne covpraFe so that ~e c a n mana ge all 
imDort~nt !or,s 01 ~S~flll externallY aerive d inform~ tion: 
triP rp.pnl·t.~-, viS1t.or r~cort1s (~ncluding no t e s on 
infor~~tio I ~c,u1re~ frOM V1B1to r a j. c atalo~ a na he a rsay 
inforlatio~ Jl "l'a~~rP J press c11pp in~s , c on f e re nce 
annOUnCP1'1.ents . et.c . 

~ e nep.d ~o LeRrn to ~pPly our advd nc ~ d ~nteractive 

c ompu~er ~llS to Lne pr oce~ures fo r en t. e r ing , f iltering , 
cat. ~lo~il1£ ~'ld ill~exln' . ~e need t. o e x plo re va rious forms 
of file or~~ni~Atlon an!1 1nQexin~ wh i Ch , t o~ et.ner with the 
aS S OCJ.~t~~ methoas ~i r~trieval and extr ac tion t.hat our 
in t p r ~ct1Ve a1ds offer , COUld provide a pr ac tica l and 
useiql " 1nt.~11i£ence" sYster:( fo r us . 

Our CUrrt!lt o~ - 11nf" tools and metnod s a r e apPl l cable to 
t he Be needs . In ~dO~tion, fu rt. her too l s and me t hod e of a 
hi ghlY rpleva~t n~turc are currentlY unde r de ve l o ome nt for 

4bJ 

hbh 

4bS 

va r ious su~c~~l nurpos~s w~thin ArlI~C . ~b6 

c . Appro~ch 4c 

I . Geiler,.",! 4c I 

T~1S nr~DQ3~1 reure~ents a short-ter ~ a nd rel a~ively 
s~all Jroject ~n ~ lo~r. - term activi ~Y , all o f whose 
co~ponents are continuQ11slV aev~lopin~ . 

4e pl~' to launch a ~orKin~ "intelli ge nc e" system, 
~nj t.~ :'~S~ ~nrOllen s~ver~l Phases o t d~ve lopment. 

41. tn a ~nd of a y~ar ~~ expect ~o nave an initial 
sy9te~ ~'iCll w1~1 be usao~e and r easonablY effective , 
i,lCot'!'"lOr .. t11l" oJ.nlJsui'!.J. f~a.\.ures anct reve.a.lin~ furthe r 
f)J.s ~~hl.li t. J. e B • 

iJe f> <;)~ct T .. O spen 1 '1Qst of the "roject re.'30 Ur c e s a.~ the 
~~for~~~J.on-3ys~el'(~ level ( ~r'oce1ureB , fi l e 

; 

401.1 



) 

) 

) 

11016 DGG .2800T69 
ARC Pr oDosal for P~bP:;!rch 'i'..! . ,=,,~U 69 - 1 I q 

org~nizat100J ln~~x1np m~thoas , e~c . ) an~ a r e latively 
small f,ur" 10r on suecial so£~ware develDPments . 

we ~re alr~ady v~ry stron~ in relevant in ter active 
COflputer ~ i ~~ , 1" tec nn1ques for prog r ammin~ new 
aias, &,d 1" tecnninues f o r ~&11orin~ the fu ncti on 
~nd conLrol pr~cen11re q of ~hese aids to the us er ' s 
np ~Qd . kc lbl 

Tnp d~velcnl~~llt ot ~ile ~ystem will 1allow the n eeds of 
th~ khlKC staf l for .cc~~s~ng and inte~raLing ex ternallY 
d~rivea j.nfor~ation . tach i n cremental alloca t i o n of 
this project ' ~ ~yat~m - oevelopment resources ~ ill be 
a1~e" elt~er at ~c~levini an increase in sys t em utility 
or ~t e>"r''''ril;p.rt:;t..lon on 1'1~d.ns for l.ncreasinl': u t.ility . 4ele 

2. S~eC1I1C Anpro~cn ke2 

(II GO!l114c'L a Oi.CliO i rap hie search for 'l'Ia. t e r ia l 
relev~1t. ~o ou r !oal of settin~ uo an t1 intel11g eneett 
Bys~e~ for 'Ise ~y ~ur group. 

ijSi:l;: t.np resul t.s of this se ... rch as a.n 
e~~~r1r'e~tal inior~ation case , desi~n an~ use 
~r~tot.ype urocedures , z11e structures , i nd exin g , 
et.c . to u~v~lop ~ ~et.ter feel1ng for the ne ed s, 
frn~l~fJ . ~nJ I'nss~otl~ties . 

(,d) "'oilcu!'r~n't.lv, aevelop Ii. WOrKl.nfl r elationS hip 
~i't.n ~ Roec1~11st 1M lihrary se1ene~ and / o r 
infor~ation rpt!'leval inr ~ss~stance in car r yi ng out 

4c201 

4c2. lo 

to!'> OrO')03C!(. r~FI~a.rcn . kc2a2 

(j) 'a~e ~ stra1~nt f o rw~rd , first. - pass o r ga nization 
uf our eXl.~t1n~ c nllection , to provide consis tent 
c~talo~in~ ~roce1ure ~ tor t ne variety of ma t er ials we 
W111 be deRlin~ w1 t n . Oonduct 1niLial deve l opment of 
1.1d1ces for use in re~rieval of informa t ion fr om the 
collect10n. 4c2a3 

Thp ~iM OI Lhis W1l1 b~ ~ usable s~ar~ing 3ystem , 
i~~lp:l~~~~d wi~n MiniMal software investmen t 
cor.~1~t.el\t Wl.t'1 e~1icl.en1;. SUbsequent. deve l opment 
t.o~ar~ ~ntl.CinRted imorov~ ;~en ts . 4c2a3a 

I I!.) .:.Lve suecl..tl ii.ttel"\ t~on 1.0 sever::!.) specifi c 

,L 



) 

) 

) 

'016 U&C .280CT 69 
ARC P ro po~~l ilJr .~~~ rc~ ~c . ~~u 6q - ll~ 

n~e~s . EtJclJ a~ a ~ard~~re - pro~uc~ 8 referpnce sys~em . 

~ c~r~~~"onC~nce ~~cord sys~eMJ anfi biblio~ r aphic 
Rt~~~~S con~ucL~1 undpr o~her projects in AHIRC . 

l~) ;volfe ~ n~an l~r develoD1n£ ~ he sys~ern and i~8 
~~~Ie . G~~slQ~r qo~c1~1 pOB s~oillt~es for 
1~~e~r~~1~.1 ~nto the "i"tel11~ence " corpus of no tes,
c~!erelC~ 11n~~iP~ iro~ tle vroupts workiny recordS ,
sutseaaent ~~tr~cts 01 ;lre~ay cited items , partial
~~~rH~t3. ~LC . to enr1cn the ~nfor rns t10n anO to 
nrov ... r,€, IOrt.' acce<?'i T)Q t. n:-i . 

(~J rollo~ a cuntin\l~nR cycle of i mp rovement and 
r1pveJ,.on 1',"'nl,.. 

5 

4C2 •• 

4c2.5 



) 

) 

j,U1 6 DG C -28 0 CT 69 
ARC Pr o PollPl xC'. eS~i·tcn ';OJ _ 1i';b: 'J 6~ -! 19 

III U! bC US51c)t. 

AH IW !) h~~ .ev~lore~ ~n on - line c ompu~e r sys~e~ wlth Which 
user s c~n 5~U~V t~x~ rr.n aS~Oc~4teQ l~ne or a wings on vi deo 
dl~ p l ays . Cert1i~ fe~ture ~ 01 tnis system pr ovide a unique 

4e2a6 

S 

Sa 

f r ampW0 1·~ for hlllldlnl an l' lntelligenc e " s ystem . Sal 

Tn~ s)~t~~ il1C L~ae ~ po~e r f u l ed1t~n g commands that 
p n~J j e ~h~ Ilser ~o cOMpos e and ~Odi£y tex t qU iCKly . 

~e can ~~n~rlt~ GiCrOiOr~ and pape r r ep r esen t a tions of 
the Lext. an~ ~ra~lll.~ ster eo I n the compute r . Documen ts 
c all be \1:'111.Jl:e.\ <arl"ltc t. l.v f r om t n1 s hara copy , us i n g 
p~IOt0-0~,q~t t~chn l nu~s . 

Inlor 4~ ton cpn oe ~to r eo and d ls play ed 
ni p. raCCj,lC~l ,:,trUC T.. ur- of " S t :i t. ei;lent. ;J !l. 
co~s~r~c~ cl~s:1iication ~chemes e a sily . 

i n a 
Thus we c a n 

CA !l8ta\;"'I~t-"1lt. " i" ,4. 6 t.t"llct. lJ ral unit. of s't.o r ed 
J..r1!'orJ!',.t.1C1J. , i.nr1 can c'm t. tl. J.. n any Bort of t.ex t st.ring . 
Dt~ter~nt8 re tr~Qupn tlY useO a s t. he equ iva l en t of 
COJ1Vp.I1'tJ.r':1l:d. r·;> r 2.l."rpa.h~ , or i nd~ivi d ue.l entr1es in 

Sal. 

Sa lb 

S.le 

1J.<"" _1 S.lel 

Ano't.l'\f'r feln.u r f' a l1o~s :0 lI se r 't. a ItlJ..n }l; " any st.ate ment 
in tn~ sv~'ter ~:1tn ~ny o th~ r, cre a't.i ng 'tr a i l S of 
aSBOC1 i' l.iC'tns . 

(h ~ inK i~ a mdcn1ne ~ execut~ole equi va l en t of the 
COnIl'C1t 1. ('l)JCi. J. "ctoss '"' r r ie r e nce ." 'I' hu s a l in k 
~st.~r·li5:~es ~n ~ S POc1 2t.ion be t.wee n t.wo s t a teme nts ; a 
S~DS~1 J ent u ~er , spe in~ t.he link embedded in a 
~t.~~~~ent , 1'~Y c~use t.he aSRoc1a.t. e~ Statement. t o be 
aJ..s~l?ve~ i~s~a~t~neou s l/ . ) 

Ano~nel' user c:on tollo~ t he$e t r ails of associa tions, 
~ 1'10 a.1Q hi:; o\·;n . ~ ! jJe \o.Ilshes . lu t h t hese lin KS we c a n 
CU1.J.11 ;.nc st~uc.: comoli c at.e rt rela tionShi ps with in an 
i nfor~d~ion ~ 'i5L~n . 

An 1)'t.~r~ctlvE cOI~~~r t ~n 11y z e r let s the on - line user 
~ ~ fijle ~~~~errs ot ~n r ~a a d phrases on - line a nd 
r ~triev~ s~ate~~~tQ t.hat. c onta i n t hes e pat t. ~ r n B . This 

S&l d 

Saldl 

Sa le 



) 

) 

he?6 v.a 2800T69 
ARC Propos-ltc! !\l:~""'r(tl ~lc . 'SiJ 64 -11 9 

t..r:),.L Cc n 1t' apP,.L1CCi. t.o ~ i~l.r J. Y sl.r.ple catalog to 
~rOV1~e c0nsjccrable retr1eval power even with no 
~VP11C1~ 1n1eX1nE . 40pl1~O to approp riately structured 
i i ", ... ce5, t!'je cOtit.el.t ar.~J..yzt!r :laCS a new dimens ion of 
p·trl.f-ova.J ..,(~\ er . 

~nOt.I~I· ~ntpr~ctLvp tool lets us ~roup related 
Rt..::Ite.:r::.1t<; unCi.~r a sJ.nt:le identifier, called a 
l' kpY~OTa ." nile C~lj select one o r More of these keywo rds 
an1 t~H.;:11~:, 'tilt" st~t.f'I·nent.s rej'erenceo by a.ll of these 
kf"ywor"IS; 4 uscoriltf!':" tecnni que is eI1'lpl o~'ed so t.hat the 
Sta~PI~~nt~ rp1erencert by the g rp~test numbe r of the 

Sa l! 

s~lect~c ~ei~oroS arnear at the to o at the list. 5alg 

;..Ji}:r..;e 3t."'tt 1el"t.-9 l'f,aY cont-a1n links \.0 other file s, 
Ll11S ranlti~1't.~ CAn oe used \.0 re~rieve vhole files , 
~~ ~ell ~~ ~imJ'1Y retriev1n~ sta tem~nts w1thin a 
"11e. Salgl 

U&1n~ t~~ ~~y~or~ t~ ature ~1tn a hie rarchical 
cat~~ogu~, ~e can re't.r1eVe documen t s relevant to one 
are~ ~f 1nterest or to several areas . 

Our currpnt tPch~in~es for com~osin~ , l~odifY1n~ , and 
puo!j~nin~ ~oulO alone h~v~ a uniaue i mpact ueon t he way in 
Whic h tM~ ~rDlln r S "1n't.ell1.ence " 3ystem could ne set up and 
maintaine{" our S't"llOY aids , inclu01nfl' t.ne con tent analyzer 
and KPywor~ qy~t~~, aad unique pOSS1blities for using thiS 
syst eT"l . 

we plal- ~c ~o ~lo~lY in settlin~ on an OVer - all aesi~n fo r 
the rr1~ t~1~iF~nce rr systpm . ~e px pect to ~o through 
c onsi(jer;.tol~ .;;tUIl~'~ 1..llot.ip.;ht , PBO p ilot experirnen tat.lon 

5a l g2 

5.2 

be£orp ~~ cornr,it ~n~ ~hole sy8te~ 1.. 0 ar) integrated design . Sal 

uur " lntclli[e~cerr sy~te~ ~ll st s~tisfY many di f£erent 
kinas 01 lrlior'a~1on needs . 

A tifi,Rl~ repearch ~roup rpce1 ves informa tion from many 
difier~l.t ~OUrces ~nd in ~~ny Q1£ferent for ms. 
J oun1~1.:5 , ~OOI\.S, ne WST'IHt; rs , inforMal conversa tiona ~ 
corrLsf·oncpncp, corf~rencps , visitors , and ~~nu£acturers 
(:rc or.J.v ,sf)r,(" t.f r .. np. sourcp's of ou r 'rIOrKl.ng informa.tion . 
Tn1s 1rlior~~t.10n ;1~y oe rpcorced in rrlnt , in 
cc)rlputer-nel~ li~e~, 011 Rudl0 t.ape , on fil m, or in 
r,j crnfc,rr;. 

7 

Sbl 

Sbla 



) 

) 

,876 DOC ..28UCT69 
ARC Proposal fu:" ties"'arCn ~I) . ~.:;U 6$ - 11 9 

,e t.eert ~n C1~e all of ~nese items in one c~n~ral 
CRtE~O~, allO w~ neeM to ~r~arj i ze the&e ci~ations so that 
w~ C~~ e~sllv 11nO all tie lnformation we have a bout a 
p;rt1culRr ~op1c . 

e ~l.o Ilee~ to previae techniques that enable us to 
indivi(IU~llv tdllor "vle .s" of t h e items in the 
collp~tl0n. fer example , 1f a mem oer 01 the ~roup is 
~t\JJ)lr:~ cOMDlerclallY ~v~ilable viaeo devices .. he may 
;i~r to P~Q ~ tT?11 of ~~soclat1onal linkS that lets 
hiJ'l , dl'll nthl"r (:'.erl .t"' rs (',1 his team .. compare the prices 
of tneb~ npv1ces a~ R ~ l an ce . 

Our " lntt·ll1~ence" syst~n snCU ~d provl de a well - or~an1zed 
libr~ry cnllpct10n tnat can ~P ~xDanoed o r reor ~a nized 

easi lY . It ~~~U~G ~~low e~ch 1ndivirtual to ~aintain tne 
inte ! rj~y of n1S own ~arsonil cOllec~~on wh ile sharin~ this 
inion'at~(,Jl ~'J th \,.[le .rOuD . 

Ou r i nitli:i.J effvl"t,s a t. de 5if!:n~np; an Ilint.e lli l{ence ll sys t em 
woula iOClb o~ the t~cnniqups for o rganizi ng t he COl lection 
and for r ~t.rievjn~ 1n1orMat1o~ iro ~ i~ . The stUdy of these 
two ares~ of cancer~ ~oulQ r roceed dia lect1cally: 
experin~~t~l c~talo~s ~na irdices would oe or~anize d to 
conf o r m t_e the reQU~r~MentS of ~ par t1cular r et rieval 
technic~e, ard the tievelap~~nt of t ne r et.rieval tools woulO 
in turn C~ lnllUe:lcen oV t he demand s of efficien t schemes 
of Or'~ni1k~ior . 

I. ~P~Ci11C rO~ 1cs zor S~uov 

Qu ri ~- tne oerlDO cf ~h1S contr a ct we hope to study 
D~Ver Ql sP~cifj.C proble~s . 

a . COf!Vt''1tloot:s for I)rl(anizd.tion of Cen tral Ca talog 

the us~full.ess 0: our col lec tion will be stronglY 
in f i uenc~c tv t~e corventions we adopt for citing 
1te~.5 1n ~Ije centra l c~~aLOV . Tn1s c?talog should 
nrOV1ee a prim~ry source Of 1nforma tion for 
~ener~tl nl lone ices ana ~Ubject claSSificati on s of 
~t ew5 in tn- collPCtion . 

I~e cpntral c?talop s!loUld be org~nized so that 
W~~" tj:e user retr1eves tne c1tAtion fo r a ~iven 

5b l b 

5b lc 

5b2 

5c 

5cl 

5c 2 

5c2. 

5C2b 

5c2b l 



) 

) 

) 

,,,j'16 DGC ,28 0C T69 
ARC Propo~ a.l for ~"'~~1.rcn .'10. t~SU 6q -1 19 

lt~~ in tne collp.rtion , lIe may also retr i eve th e 
Ci~2tions lor pIl tIther items 1n the cOl lec t ion 
w~1cn ~re knoun to TPier to t he ~ lven ltem . 

In aC1iti0o, tne catalo~ conVentlans must be 
flexinle erlou~n tn admit many different kinds of 
~tel,j~, ~~~le n~ving the stand~rdlzation nece ss ary for 

5020 10 

COllvenle'lt n&Cnlne re~rleval . Sc2b2 

r or ~Y J. ltile, t.t" 'I18V wl sh to put the tap e 
recori!ng "1 ~ confe re nce 1n t he collection . ItB 
cit at jon l~i~nt include a orlei Bbstrac t of t he 
I;~tert~l 1iscuss~o , the nam ps Of panel me mb ers, 
• ,., "tole lld,t.e ... nd locd t.l.o n of t ne proc eeclin~ B. 5C2b2a 

o . PrQc~d~res for ~ntrY of ~t"W Ma teri a l SC2C 

1'~ nr~~",~ures J~ed to enter i~ems 1nto th e 
collecL10M _~Q c~Lalo, must a lso oe aeveloped 
carefully ~na eAo~riment~llY . We hope t ha t th e 
co~leCL1on c~n o~ ~ajnt~in~o bv some one wi t hou t Lhe 
tra1~1n~ of ·t profpssiona l librarian , so these 
Drocedur~' 1'~St n~ Ullcornpl ic ated . 

c. I~e4ti~~ G~t~lQV Ite~s Acc o r o in ~ to Their Importance 

]:nt' c:;ol .... eC1..:.t.Qil lust oe or!{l.nizect flexiblY eno uF' h s o 
th.t i:l!urmati?1 1bouL ~n item re11ects 1~s cu r r ent 
1t.:)~rtance 111 tnp wor~in~ atfuo s pherp of the gr oup . 
For exa •. !nlC, , jourrl~~ article may enter the 
ccll~r~iOIl W1 tll tile ~~tation t ha t a recrint of i t has 
De~r. re~1J~Ated irOM tne au t nor . Aite r 1t arri v es, it 
may O~C(l'O 1~cort~nt ~nou~n as a wo rkin, paper t o 
1',ro.r.8cr~t"It<!' int.J "':(l.chine-readaole form and keep 
cn -~ 1r~ . ~~ tne '40rk of tn~ ~roup pro~rpsses, t he 
al·~icl~ ~~y De ~~e~ v~ ry 1nfreauently; ~t this p01 nt 
1t. . hould ~~ rut into ~ fuagnet ic tape archive . The 
prncc~ure~ jor ~~jntainin~ tne collection muat a lloW 

502Cl 

5020 

an lLep: to Bvo ~ ve t.nrouen the8 P Bta~es . 5c2d l 

2 . ?etr1eval Tool~ , .. ltU Tec~·niques .5c3 

AS ~p ~~p~ri~ent W1~n Q1ffe r ent schemes of orJan i za tion 
~nd ~Uf'1n1s~rat1Ve nrocp~ures , ~e w1ll also be 
QevLlorit\~ re ... r1t:"v~1 torLls . 

~e ~l~n ~o b~Ki" 8~u~Y1ng the in1or mation-ret. r i eva l 
teclljlale~ ~ge(i ir oth~ r systems , with the aid of a 



) 

) 

""76 DVC .280CT69 
ARC Propos al ic;,r H"r:;t'arC!. No . };SU A9 -1 l !j 

prOl~~S1cnal l~ cr~ riar. rle 1nLend to incorporate 
~h1~ 1n10rM~~icn 1ntn ou r !' lntel11gence " system and 
to Stu1Y ~n~ rat11~ul&Le 1t AS t he wo rkin, bOdy of 
inJ0lr'ation ~i~Jl Jh1ct to tryou t various retrieval 
tec[n1~ue8 . 5c3al 

~e will ~orstr~ct. extpr1~enta l 1 nd lces o£ tne i t ems 
1n tn~ c~llection. Tne~e ind1ces , a nd other possibl e 
clabb1ficat1on Bcreme~ auen as thesauri, will be us e d 
to loc~te clta tion~ in tne catalog file by SU bjec t. 
~e 1rlt~nn to ~se t.heFe ind1ces ana juOge their 
r ela~ive fel"its as r ~trieval techn10ues . 5c3a2 

~~ve-~l 1eat~r~s of o ~r current system 
esnec1all~ top con~ent ana! yzc r ~nd t he keyword 
~YE~e~ -- ~111 or ove useful as retrieval tools ~o 
extr~ct 1nfor '1~ ~1~n ana citations from indices . 
~e C~~ use thes~ Sd~~ to~lF ~o crpate the 
exper~~e~tal inrtJ.ces ana class1fication sche~es . 

j~s11~s such curre~t technlques A we are 
consil~rJ.n~ a ~umher of improvem~nts ove r the 
co~i~~ yp&r tnpt '~cula increase the powe r of our 
tools Qui te 9tln1fic~ntlY . If i mp lemented , these 
1 ~prov=~~nt s would bp Qeve lope O cooperatively bY 
aev~ral 0i Lhe Vaf10US proJect8 witrtin AHIRC , 

5c ) a2 a 

1ncl'11'n~ 1,,119 DrO~OSeQ pr oject. 5cJ a2b 

e ~ay e~p~"~ tn~ po~e r of our "Keyword " 
~p~r~~10'1~ . tnes~ extens io ll s would let us save 
reft'r~aceF reoro ~re d hV tne keyword system in 
't,JIeJ. I' nc .. o r r.er . we c01.Jl c1 use t his technique 
to QU11n cnrnprenenS1ve Classification schemes 
frn, reason~hlv s1~Ple ones . This exoanded 
~e~~orQ dy~tpm w ula a lso le t each member of 
~n~ ~rou~ con~~ruc~ his own clpss1fication 
qcn~!~es ~1(1 Rtor~ t neM for others ~o use . 5cJa2bl 

.~ 11.Y a~so aevelop a ba tch- processor fac i lity 
~h~~ CQu~a reor~Rn1ze files in acco rd with a 
u~~r ' ~ sne~tf1cations . S ~c n R processo r could 
cOl1ver1.o th. entry .forma~ of our catalog files . 
r~ COUld &180 r.ollect ~11 of the items 
re ierenced bV ~ t~a11 of linkS in A new file . 
Sucn proceasors wnu~d ~ lSO be useful for 
U01D t1n ~ C1talor ~~u inlex files f rom 
intor, ~t10r ent~rea 1n ~ format best suited to 
t~~ ~~eI'~ . 5c l a2b 2 

10 



) 

~o76 Due ~aOCT69 
ARC Proposlll for ef;p~rc I t, o . Ji'~n toQ - II-i 

Anutn~r ~s~'ec~ ~f r~~r1eval 10 ou r "intelli gence " 
~yste~ cert,"rs arouno the protlen of l ocating, f r om 
th~ Ot-li~~ c~t~)~,. 't~n~ ~hat are not in 
Mictirp-rpa~~hll ·or. ine c1tat10n catalo ~ will 
1nn~c~'~ t hE unyr1cal lnc~tio~ of e~ c h !ource 
occl~'~nt . }roceoUr~B ~ust re aevelopea fo r mo ving 
tni~ 00c.J~e~~ to anctt,~r off1ce ana upd~tinJ t he 
11Ifcr~~t1on 1P tte ce~trR~ catalo~ . 

~e &)30 rlbn to ~evplop rl"ocedures for penerating 
m1crolor~ ano p~~~r v~rs1on9 Of tne on-line catalo g, 
ana or selrcteo i~dlCP5 or port i ons of indices . We 
alre3~Y ~&VP Lte 1.0015 to pe r zorm t he mec hanical part 
of 't."~Sf" ooer:tt.1cns; rOlot:ver , \O:e need to adop t 
co~ve~t1~r~ thaL ~o~lQ maKe tnese doc u~en ts us efu l as 
~or~1~' bi~]1o~raotiea or 10r p~blica t ion . 

I I 

5c3.3 



) 

) 

) 

'~I. DGC 2800T69 
ARC Proposal for kESP'i.rch •• ;j. r .. :'U 60 '" j 19 

IV PERSO NNl':L 

It is olanne~ t,a~ ~ne Pri~c~~al !nves~i g~ t o r will be Dr . 
Douglas c . ~nReloar~, Head , Au ~~nted Human Intel1ec ~ Resea rch 
Center. Dr . ~n~elcarL ' S ~~cl;l Securi~y nllmbe r is 
54 0 - 22 - 2}Oo. 

Other sign11LcRnt c~nLri~ut1ors , 1ncluding r roject 
mana g em~nt, ar~ a1tic1Dat~1 fro~ Mary S. Church , p ro ~ r &mmer. 

V ESTI MATED TI~~ AN') CJiAW~bS 

It is propose1 t~~t ~ne rese~rcn work outlined herein be 
perfor Mea aur1nr ~ period of t~~lve mon ths, s tartin, d 
Fe bruar y 19?u. 

pursuan t to th~ nrovi~1ons 01 A~rr )6 - 206 . 2 , attached is a 
cost e8tl m~tr ~n~ SUI Dor~ ~che1ule 1n lieu of t he DD For~ 
6)) - 4 . Also enclo~en is ·L S1'lleo lor~ complete except as t o 
the "Detail DesCr1p~1Qn of coat Elemen~s . " 

VI REPOHTS 

A final report ~1l1 O~ SYi]~1t~el~ uoon compl e ti on Of the wo rK . 

DUr1n f!: 'tIne "eric'" 0.1 t..le prop~s .:a d worre , we I"'xoect to be 
develo p in ~ a 11~~ndbOC{," 4hicll ~111 oe a comp re hens ive 
~escr1 Dt1on ~n~ ni~~nrj Of qll worK in the C~ n~er, sU1tablY 
struct ured [or StuJy an~ '~sn1Pulptlon with the center's 
computer a1dR. it ~b ~lj~~ciuatPd tnat individual projects, 
such as the ~rnr0sc~ wOl'K ~ w11l be covered in t ne HandbOOK a s 
"chapters" a~ 1 re~ort.a 4111 oe orouucea i n h~rd copy dire ctly 
frOm t he Han~oc0~ L~;lt~ ~u1t~bl~ ej i t~n~ te nrod uce useful 
hard .. c ony :tot";r!t.~l. repenr:inl" 0'1 thp. stat.e of Hand book 
development it tnp cOl~oletion of the proposed work J the final 

503 •• 

6 

6. 

6b 

7 

7' 

7b 

8 

8. 

re por t ~ay ue 1n th1B lorD . 8b 

VII GOVEkNHENT -fUR4IS~~D ~~UIP~£NT 9 

The perfornance n,t" t!'le nr(')Po.,~(1 wori( wi ll i n volve tne use of 
eq uipme nt furn1snp1 ~noer Air Force Contr act F30602 - 60 " C- 0286 
a.nd NASA contr~ct ~ A~I -/ Dq, . 9a 

VIII OON'JHACT ,., 10 

It is r equeS1.f>d t.nd.'t auY CQJltt:tct resultiIl~ from this 

,. 



) 

) 

Jl.6'(6 Ui,lC ..28CJCT69 
A.R.C p roposal for ~~er reB IH . ~~SlJ t"l;; - j 1'7 

proposal be ~ wlr~~l 0~ a c~~t rl 11S fixed fee oasis . 

I X RE LATED SU~PL~r flU! O L~ '~ AG~NCI~S 

Th e Au~mepte1 ~"an in~~11ect r~5earCn pro~ram has bee n 
.su ppo r t-eo l;;.r l!el,v "y toile A(W4:! need keaearcn rrojects Agen cy on 
a cont inu1nV Dps _~. ~u?port hbS also been orov1 ded by 
N A S A - Lan~l~) K~~e~rCI. Ce~tpr Rnd tne ~ . s . Air Fo r ce ~o~e Air 
Develo pMent Cerlter. 

loa 

I I 



) 

) 

) 

tl.b7b l.''.iC 2130CT69 
ARC Proposal iCJI pp.'5e~rcr, .'tJ . ¥SU bt, - II" 

x AC CEPTANCt P~~lo0 

For Bt ~f£ sCMPaulin~ purrrses , th1S oropoB~l will remain in 
ef£~ct until 31 C~cer,her l~b9. If addi~ional time is required 
for 1tS cons1~er~~iD~, the In6ti~ute w111 oe ~lad to conside r 
a reQuest i~r ~n pxt~n~1C" 01 ~hp p~riod . 

XI BIOGRA PHU, 

The fO llowing nrofess1onkl b1opraph~es are presen ted as being 
re p resent~tiV~ 01 SRI rerG~nnpl who may cotltribute to the 

1 10 

1< 

12. 

13 

pr oposed wor~ . 13& 

Dougla .~ C. ~lli"~lo;ort. .. li~tl:l'l" AH1~C 
I nfo r mation Sciollce ~n~ ~rpineering L1vis10n 

Dr . ~nFelcart r~ce1ved ~ B. S . ae,ree in blectrical 
Eng1neer1rt frc~ Gre~or Stat~ COl~ege 1n 1948 . 

In I ~~~ ~e rece1vp1 ~n f.E . dpgree irOM tne Univers ity 
Of ~a~1forni;t; nis t~eB1S 1~scribeu the logical oes ign 
and prc,ram~in~ of ~ orum-~y~e gene r&l - purpos e com puter 
to Obt~1~ 1ntre~s~c rlex1hjlity Rnd speed by optimiz ing 
~h~ u~11iza~10r, of t~e plpctronic re~i5ter caoac1ty. 

In 19~; he rec~iver ~ D~.lJ . oP~rpe 1n ~lectrical 
tne1ne~rin~J also frnm thp Un1vers1tY of Ca11fornia ; his 
thesi s cealt ~1~n the aevelopmpnt of srecial 
gas - di~chRr~~ tllt~3 tor corputer use . 

While st.uaYin~ aL tMe u~ivers1ty of cp 11fornia , he was 
an Associat~ 1n flectric~l ~ng1neering . 

S inc~ I~~~ .. ~r. ~.lgeltRrt nas heen pr1rcipallv occupied 1n 
develop1n; ~ pro~ r~ ~ kt ~t~nfora ~~sea rch Institute aim ed 
at 1mDrOV1 n~ hYrarl intellpctu~l etfectiveness tnrou~h 

13b 

13bl 

13b la 

13bl b 

13b lc 

13b ld 

r eal-tine COf,Jl'l1tet ail' . 13b2 

First ~,i th c nlY lilS1 i tut ... in-house SUOport .. , and. sinc e 
112,rcr, 1901 I,: l. ":...1 .101t:t sU1..port. frorr. AFOSk , he forJTIula tea 
a cOfilorehpnsivt concentu&l fra~~vorY for ~an - mac nine 

atudie~ ~ith oeth tl'oa~ en~ specific rpsearch ~oa ls . 13b2& 

", 



) 

) 

( ) 

4~?~ D~C 280CT69 
ARC propo521 for ft:5~;:r('h '0 • . .'>u ~9 - 119 

est.a.oll,c ,1el1 \ of iJ. c:onputl"'r - oabea experl.l1Jenta.l 
laoor~~or~ ~rd ~ n~rber of on - Roinr rroject.s wit.hin a 
coorainat.eu lnL fro~in~ Lrog r a.m tor ~hich ur . En~ elbart 
st'rves 2.5 I-lea(j . 

fro m 1940 t~ 19~I , n~ Kas Rn ~~ectrlc al Fn~ ineer in the 
Electric61 Section Nt t~e A~es LBoorator/, Moffett Field , 
Caliiornia. 

1I"1 1~",:;:,-IO;Sb, pr . ~:n;:t:lpart. was a. canl'3ultant to 
Marcnar~ ~e5~~rcn ~ lnc . , OaK land , ~herp developmen t work 

13b2b 

13b3 

nas been ~arrleo OUL on ~atent5 Gaugnt from him . 13b]a 

Ir: 1:1;:.6 r·le £02 f"d arl"i l"iirf'cted a corpr)rat.ion , Digital 
TeChnlCUf'S, I~C •• ~~icn 1n 1~;:.6 - ~7 , aid fur t ne r 
c:pvelor"ent ... 'or:< uri "lis 1I'1Vpnt.l.ans . 

In Octob~r 19,·1, Ur . Ln~elo~rt. joined the Bt~!f of 
St.anloro ~ese~rcn rnptlt.utP , Wjl~re lie was in1~ial lY 
conce~ned witn o~p~c upvelop~en~al worY on ma~neti c 
co~ponen t.~ fer co:'~ut~r~ a~~ ¥ ith otner iUfldamental 
research i1 to ~~~ ~rl~ical tecnniQues of co~put.e rs. 

In 19;:.~ ~e ~fRqtL, unoer InBti~ute 5~onsorsnip J to 
e~pan~ a~6 cevrlOP the o~sic cnnccp~s for tne Augmented 
Hu~an !nt~llect pl·ovr~~ ~hich be had de ve l ooed 
inn~p".ncP:1t.l:! "J.nce 19,,0 . 

His fiela~ 0i sPPciall7~tion have J.nclUded circuits ~ 
special co.r.roner~F, 10 7 1cal desl.gn , ana programming of 
d1~1tal COI~t:ltPI'8; ~~C1JU~ ~n~ ~as - disch a r ,e ternniques ; 
lar ~p interco~~unicat1cn ~VSt.eJ'L~: winO - tunnel dri ve ana 
control sy~te~.~; ',lectrcmpcI'a~ical cont.rol s~stems; 
inforJr.ation SY5t.I:"I.S; ~nLi f"an - I"1achJ.ne syst€ms . 

Dr. ~n~e~~Rrt is a :,\c~!'~r of Pl MU ~ps11on , Si~ma Tau , Tau 
Beta Fl~ rni ,aro~ ~h1, S1~'·la AJ., ~ta ~apoa hu , the 
Inst.itut.e ot K!e~~rJ.cl'l anrt ~lectronics in~ ineersJ a nd t he 
I Et:E (jroi1~' 'In Go·u utt!rs (.r;lectrcn1c) . 

He ~a.'" Cl1air l <iii 01 t'1e .s~n l'ranc1sco Ch<tpter of IRE 
PGEG lr 19~~-I~oO a"~ nRS served as ne~be r of tne IRE 
Solid ~t~te CJ.rcui~~ Sutco~mJ.t~ee 4 .1 0 and af the IEE E 

13b3b 

13bU 

13bha 

13bS 

13b6 

Cvbernet.ics rO! uttee . 13b6a 

t1ary S . Chure!", Prr)rra. ,r·er , tl.~:II-<'C 
I nformation ~ci~~c~ ~~a ~r~1neerin_ uivision 

15 

13c 



) 

) 

) 

l076 OVC 280CT69 
ARC Proposal loot .,est'an:r, ~'O ' L SlJ 6-1 - 1 I ~ 

D~vel(,p~ent Ql ~drr~ - ~rBl~ ~ul~1func~1on COlqou~er 
systerH"; l.t',~.gr~t.~IJ" 0J r"'ll'\s't.~n1a rCJ c.ieV 1.ces (such a s 
soec~a11zo~ COl ~\:~~r~1 i~to ~enc l'a11ze~ softwa re 

13el 

SV5t.e~~. Ilela 

Current. kese~rcn Assi~n~ent. ~t. ciH! 13c2 

neve~o~~~~~ 0, inior"I~t1on - ret.r1eval centpr for a 
COl10ut.er net~olK . 

COlu~b~r :j1iver6~tYt ?~c~nic~l ~r1ter: supervi sor of 
Bvstel1b rro~r~r .. 'Li~~ . r~s'n~B1Dle fo r oro~ r a~min~ grou p 
irnrlel,'ent1 np: leneral opf"r<lt.iI11( s~ste'll to support l a. rge 
CO~DIJt.~r~. ~-~l~ ~~tellitp co~tutera J an~ lo~ - apeeo 
tern1n~1 deVlces . 

Ac aoe 11C uac'<l"ro.ind 

,r adU it."" ~(r," 10 ~nu11b~ llt.erature (196S - 6( ), Colu~bia 

13e2& 

13e3 

13e3. 

13d 

13e4& 

~niver~1ty. IJ c kb 

Pr ofetsl.ouaJ AaS(;'ci.'1.t.i("l1E 

4H~ocia!"~'On lor CO'llOllti( I :3.Cnill~r.{ . 

Ma r y G. ~a~a ,Pll. ~cs~~rc~ AssiBt~n~ . AHIWC 
Information ~ci~ncp k,d ~"~ineer1~~ Dj,vis10n 

qcsea.rch 
}<f"l!ional 

_S~1~~~~L . ~e~ical Fac~ ban~ pr oJec t, Mi8Bouri 
e1~c.Q. ..L t'l',,:,iect 196( ~ 6~ . 

cona~c~ed ~e~s1,)ilit~ ~~u~y o£ uee of IHM 1050 
aua1ovi5~;1 ~YS~~M (on - 11ne. remoLe) for planned 
~UltiniSC1P11C~ry Learnin~ Laoora~ory . 

l-'l .. 'l"'~oj r.ojlstruI"'t.ic" ('t .. l'IIe'l l.cal ~hesaurus for Fact 
b&.nK r,..t.r1e",.1. 

i3eS 

13eSa 

13d 

13dl 

13d l. 

13d l .1 

13dl.2 

13d2 



) 

) 

1076 DOC 260CT09 
ARC proposal for ",e~U~~rCjl ~o . ~Sq t.9 -11 ~ 

Davia C8ssere8 , recnlllcal ~riter , AhlRC 
In!orm2tion bCience ~nd ~~~1n~~rin~ uiv i s 10n 

Inforr'rlt1on ~tructures for computer - held text . 

con5truc~iQ~ ar'o ~oornJn~tlo~ at docum entat ion f rom 
exist:lr. e- COl ~ut..t!r - i"!ela info r l1'\ation . 

TecnrLl~UPS tor gencr~ticn 01 ~ocu~en t ~ t iDn usinf 
~~Vallce d co "outer - aid systeAS . 

If 

13d2. 

13e 

l3e I 

1301. 

13e l b 

13.le 

13.2 



) 

) 

) 

.0 , 6 VGG ..! 800T6 9 
ARC propo~al for 10' .... 3 ... rc.~-: o . ~ :JU 69 "' 1 I q 

'l'e c riliCEl poc..rt. t'~1t.or . ;"nfl.r,eer1ng " S I'III 196,,"1966 . 

Pr o f eBS1c,;n~1 'ssoClatlJ');}S 

v~ rbe t · , A~bOci~~~on for Go~put1n, M;c hinery . 

10 

13e2" 

1303 

1303a 

1304 

1304. 

1305 



) 

) 

) 

llt) Ie, D(,C ~2tlOCT69 
ARC proposal 101' K .... SnlltC.' "'<0 . FbU o)i - II)-

~o~e : This ~1tli~rr~onv i~ 2rr~n~~O in chronologica l or~er . 
Report.~ ~l.t.n ,;.T'I "'l. vcl'~ ~re &.v;.ilaolt> lrOTi, Llt'fen,~ '" 

Document.a~ior C~~tpr J cU11Jir~ ~, CaMeron ~t.~t.i on , Ale xanaria , 
Virf!inil'l 0::1::31 ... 

I. u . c . er!pl~art., " Soec1~1 Conb1~eratl.on~ of t.he 
Individual Ap 1 uper , ~en~r3t.ar , ana ketriever of 
In!orm~t.lonJ" P,npr ~rescnt.ed ~t Annual Me~tinR of Americ an 
Document.at.l.o~ InBtjt~t~, 'ipr~el~Y , Californip (2] - 27 Octobe r 
19601. 

2 . D. C. E,rgf'"lt-art, "\lI~rer,tlnp nur.an In't.e11ec t: A 
Conce ptu~l Fral,~~orK,~ ~~,'~~r~ ~~pert. , Gontr~ ct AF 
49(630)-I Oi~ , 5~1 ProJect ~~7B , ~t~n1or~ ~esparcn Institu te, 
Menlo FirK , ~~lir'rrla (Oc~o~pr 1~6il , ALl209565 . 

3 . D. C. ~:ii.:"'lnart , lin. cor;c"'ptual rcareworlt' .fur the 
Au gnenl~t1on 01 ,~a~ ' ~ Intell~ct, " 1n iistas 1,n InforMat1on 
Hanl1li.nl!, VO.!-1,;.f1e I, L . (I . J.ioloi","rton and 1' . L. . WeeKs . eus . , 
Spartan b(,jOK~, wa.t:"inj!tQ:"I .• D. C. 11;-63) . 

h • .Ll . c . !".na'p.lbal'T~, ""'\J~I!'t~ntinr nul' .... n Intellect: 
Exper1r~rt~, ~n"ce' t~, ~~1 Pn95i~ilities ," ~umMary Ceport, 
Contrac t AF 49(6~d'-!~2uJ bWl ~roJect J~YBJ Stanford Kesea rch 
Instltute , MeT'll" ?~:""'- J c.~lifor"'i ({,i:trc(J ljf6!-.), AlJ640989 . 

5 . V. C. '::;!Ic,r.oHJArt a.n., f: . HU(1dP.:r t, " t(ese:lrch on 
COMPULer - 4u'r~rte~ l~for latia" ~ana~pm~n t, " Technical Henort 
&SD - T DP - 6~ -l tb, COrtraCL Af 19(62H)-40~8 , Stanfor d Resea rch 

13eSa 

14 

14. 

14b 

14e 

I ,d 

Instl.tutp, ('nle Vir .... , C~lifornlOi ( 1a.rch 1 ;;6~ ), 4D6225 20 . 14! 

6. w. K. r.r.lli~tl, J.. . G. ;'n,.;ell't:lrt, clnd ri . hUddart, 
!'Comput~r-A1Qe~ ui~tla~ Control ," 11r~1 ~epor~, Con tract 
NASI -" ,.8Q, .;,d t'r· .... ,1ect ),~61, Stanforo j.eS(;!4r('h Inst itute, 
Menlo f':l.l< , Gill~:")rr(1'" (JulY It;"'~) . 14g 

7. 1<1. 1\ . lllinlsh, o.J . C. iinlelrart , ~nd M. L. cerman , 
" Displav-Selecti o~ T~c~ninue~ fer ~e~t ~anioula~icn ," IEEE 
Tra.ns . r.>n r.UI a.n lactocs 1l'" "'l~ctrorll.c~ , VOl . HF"J:. " ~ , No . I, op _ 
5-15 I ~arer. I,"/) . 14h 

8 . D. C. 1::!"~lr.3.r~ , ~" j( • • Er 11~n, ,lnd J . r- . kUl l..fson , 
"St UdY for ~re Devplcp~eGt Of rlU~~11 In~ell~ct Aurnentation 
Techn1 QueS," ~~t~rlM pruRP~ss ~PpOJ·t , Contract. ~ASI - 5904 , SRI 



! ) 

) 

) 

1-1.076 LuC .260C't69 
ARC PropoAal for .... ~:J,.·arc" ~jo . r.)ll 69 -1 19 

project ~~90, S~z~fard ~~s~arc~ InS t1tute, Me nlo park, 
Californ1a (j, ... rcn 19t (J . 

9 . J . D. hopper a~C L. p . neutacn , "COPE : An Assembler and 
On-L1ne- CR'1 r.'ebu';i:tng by :t.~r, fer t.he Gi)C J 1 00 , II Technical 
Report. I, Cor~t.r,::c' i'l'l~ 1-1;'{'OlJ. •. ~PI proJect. 5090 , s tani'ord 

141 

Researc ~ Inst,1tut.e, 'enla I~r~, Ca11forn1a C1larcn 1966) . 14 j 

10. k • .I:. . hd.Y ann J . t. l.:u11:tson , " 'oI;OL9ilO ! A 
M achine- Or 1en~~d ALCOL - L1KP Language for ~ h e sns 94o, " 
Techn1cal Heport ' . ~ort.ract. NhS 1-~~04J ~KI Project. 5690, 
St anfor 6 ~es~arcii I~st1LUtr, ~enlo p~ rk, California (April 
1968) . 14k 

I I. D. c. r.1UI"11tt!t. , '," K. Fnll'11sn , ana J . f . Rul i£son , 
"Develooment. of 4 ~lt1oiqol~y , 11r.e - Sh~red Compute r Facili t y 
and I,.,ORDUter - ... ue: ,pr'1te:1 hi!.!"c.e'f!r p nt,. -"Y6teJT1 .Resea rch, ,. Final 
Report, Contr~ct A~ JUlbU2)II ! Uj , S~I projec t,. 5 9 19 , Stanfo r d 
ReseClrch Inst.:L.tut.I"', 'E::!110 Par"', CE.J.1forn1fl. ( Ap ril !968). 141 

12 . n . c . Lr'~elb~rt,. ~ "nUflsn Jnt~llect AU~fuprltation 
Techniques," Fjnal ~epor~, ~ont,.ract tAS 1-~ 9U4 , S~l project 
5890, St,.anfor Hestjrch I~s t1tute . Menlo ParK, Califor nia 
IJUly 1960 1. 14m 

13. D. C. l',llP'elt?.l't , "I . 1\ . l'tlllJish , ana D. A. Eva.ns , "Study 
for t,.n e DevelorM~nt uf G~mCU~er -Au gm plltea M~na~eMent 
Techn1ques,~ ~u~rtprlv ~ro~~es~ Feoort !, Contrlct 
F30602 - 6b-C-t 2B6 , Srtl !' l eject. 710 1. stanfo r d Rese;;.rch 
Instit ute , -lenl'.) t'.r/· , C~liforl~ia ( Oc tober 1968) . 

j 4 . D. U. f·ncrelb;;rt. ;na ~ . ... k.n!;, l ish , li S. Ft ese~rch Cente r 
for AUf! T!le ntl. J'~ HUi n Intellect, " 1n .4F'IPS P rClceec1in~s , Vol . 
3;3, Pa.rt UIIP , IS-oo t"itll JC1nt ~o"'PU t"'r Conf'erence , pP. 395- 4 10 

14n 

IThompson 1'00:<: Co ., ... .:LsnJ •• '1I!'ton, n . L ., 1908). 140 

IS . D. C. in'e~oirt an,) St8fx of tne Aug~ented Hu~an 
Intellect pe~eRrcn G~I~ter, " 5t~jy lor t.ne uevelopnent at Human 
Intellect Au~ r,p ~~1t1o~ iec~riqu~s ~" bem1ann ua l Technical 
Letter peport I, ~cntrac~ NAS 1- 10)·7 , SRI Pr o Ject 7079 , 
Stan£or ~ Rese 4rcn J~~tiL~te , ~nlo p~r~ , California (February 
19691 . 14p 

16 . D. C. J-.11. "lo;rt, fl . i . ;,pi'lish, a.nQ J.l . A. Evans, "Study 
for th~ nevelor~ent ~i COM~U~~l Augv,en t.e d ~ana,~ ment 
Tech nl.qUes, II .n·tp!"'im 'l·eci~nl.cal g'-Dort KADC - TP - 69 - 90 , Con tract 
F30602 - 68-C-t2 ~6 , s,\I }roject 7 10 1, Stanford Resear ch 
Institut~ , ~e~lo ~pr~ J Californ1a ( .1~ rcn 1>6Q) . 14q 



) 

) 

41) 76 VuC _20JCT69 
ARC propos::!.l I t"lf Fes~;,rc.1 .' • l~ J ~c - 119 

17 . D . C. ~ [1;0':-1 jc rt. c'r.";,l !-itaft of t. ne AUl:! l1l entpd ijurn an 
Intellect ~e~~:rc~ c~nt~r . "5tLCY zor tne Deve lopment of Human 
Intellect. A1Jfdl 'r t,'ltl.crl J.'rC'1niql,.;,ps , " 5elaJ..annua l T"'cnnical 
Let.ter Peport '-? , C(' 't.r.:<ct. tll-.S 1-?dy7 , SR l P roj~ct 7079 , 
stanforO .eet":· rc) 1 f: ~tit;J1:". , ,.. enlo ", ... r:<, California (AugUs t 
1969) _ 14r 

2 1 



' : u.b76' J (; c" /<!tr/u CHhli : ;::::;, ,,1 ; : Pi-10J'P , 10 / 28 /6.9 1 630 : 2~ DOC ; 
. SI NCI:.(b~/ ID/Ll U"'~;llJl; [ _til " 1.ntl'!!l .l ~p'ence!l _II' ) ; ' . L1L; {"bora"}; 
( _to 2St>.F); fll SUrl) '" -'. ; ( '. I, ... "} ; . D;'''' ;!:I; . ~TJ = O; . LSP=Oi 
. PON;:Oj . LP j ' ': {' . 

) 

) 

) 



) 

) 

) 

NI C INT clH 4L .~c.:, l. n l 11:.1...:..1 ri\J~ 5crv.U,a. 
51 wl. 8 

" .. 877 WLB 2h SEP'lO 
09 /2.170 13 10 

SUBJE CT : S~~c1al ~ple~nQne serV1C~ tor Lh~ HI e ~&C net wor k I 
2 

OBJEC TIVE: To orcvid~ ~.ll N:T veorl p ~1Ln i4 - nour ac cess t o the 
NIC (or a n :tssureoj ~..,. ~t-l'l.nr. <:'I"'rvl.ce) a t,. no cost t o tne m (with 
moderate c onv~n1e~c~) a"l at tne lowest PUSSlbl p c os t,. t o NIC . J 

4 
REF1RENCoS S 

Roy s e xton -- &~1 co~munir~t,.lnr, s~rvi c es -- x 2700 5a 
Kelth T. burt,.o~ - - ~~'1 ~"~cial ~ervice5 Consu l tant Xk442 5b 
Jan Cardwell -- P~l ~~er~~or SUP~l'visnr -- X)l ll 42 5c 
Regular Tele-)'lIm,f" Oner atcr.'~ (lor lonr - Cl st.ance r a t~!s) 5d 

6 
RECCOhE~DATIUrj5 \;'-'E I' .. LLUt'd',fi =fo(,TrOt-;~ .1"01-' Dl:.'J.'A 1L ~ 1 7 

For tn ~ ~IC ~e dnr)l'l~ surscrl~~ for' three te l eohone l1nes, two 
to be ugea tor lnC0Mln~ calls t en ~ huntin~ basiS ), the othe r 
for out " 01np c~lls . 7a 
The incn~in~ linQ~ sljnlll~ t~ 9~L u~ for erltpr pr1se s ervice 
fr om all eXC~~t:~~~ ~~ere tnere are N~T si t es . Thi S will 
per mit ~ll H~~ t'e~Dle ~o c~ll us at no char~e t o t he mselves 
and w111 rrovic~ us ~~~n Lterni~e~ oillin~ ~nformation to be 
use d i n deter-r,lni:H' roSSltle c'.J ter.:a.t.ives: for Lne future 
(future beinr an¥~npre fTO~ ~ ~~eK LO 2 or 3 mont hs ~W&y ). 

It 5pems ~n11~p]y Lrat je woula eve r OP justi f i ed in 
s u oscr10in~ tor ca11tor~ja 'AT~ se r vic e . However, i~ is 
very likeJ...,.· Lllat 1t ~t!;"r :c;t.at~ "'easured. 'wArs will orove more 
t"cor,Olfic ... J. ifJr i;~('o: :t.l~ out. - of- l:it.ate calls t h;;l.n t he 
e n t ~r pr l se , out It fi~effiF reasonable at thi s time t o defe r 
t a k j,n£ t.n~t 9L~: un~ll '~e have SOMe har~ oa t a re gar ding 
act u~ l pno~~ u~w~~ . 

We s houl~ obtal~ I! p~S~oJt~on Dhone ~ to serV1c e JHN ~LB JTM 
and xxx (vnoevpr serv~s a~ our ~~C a2ent). In a~dlt1on , DOE 
s houla be connf"~~~(l 1nto tne N1C iaC111t1es on n i s pre s ent 
phone ~ 

The phol'eB t.:ol\l"l nave ar olltO'nil.!'.: and two i nCoMing NIC 
lines , a n~r~al ~~1 extensio~ , ~n 11l t ercom li~ ~. 

The ~~on~s snou'w oe e"Ulpoe6 ~ i tn confe r e nc 1n~ f acilities 
bet~e f" n t.he irLc,)l',lnt. <;'!1(1 outi!;O .l. lH! llnes ~ The ~ ri ll\ a.r 'y 
inc o~int J1!'}P ~toUld cor1erence w1tn t he outgoi ng line ( to 
reach an ~HI ~~rSQn ot~pr th~n ~ne liv e c onnected t o the 
NI C li~~s , O~~ ~0Ula dial tne ou t Poin~ line l.n to tne SRI 
s wi tchbO dnll; tr.~ ~eCO:l(I'trV l1ne should ccnf e r en ce w1th the 
SWI p xten~10n (to reaC~ ~n outs 1 ~e numbe r, one wo ul d ~ ial 

t. hr OUEh ~ne s~r s~itcnb~ar~J . 
Ca r d dl~l~rs ~hrul~ oe obt~i~ed for DC~ JHN ~ L~ a nd xxx . 

The t h r ee ]-.11. ... 11:;ea !".10'Ud ~ l so C01'1e" l.nto II l t 1s a."d BER 'a call 
direct.o r ,., • 

7b 

7bl 

7C 

7cl 

7c2 
7c3 

7d 



) 

) 

) 

LJJ77 " L 8 2 4bEP70 
09 /2 4 /7 0 1310 : 5 1 WLB 

I su "e~~ ~nit ~e ~ct~r orcerir~ t~pe - r ( cor~c r 1nt erface 
aevice s unti~ ve ca~ et nPtter ~~fo ?n ~n~t t s ~nvolved . 
We ~ houle su[~cr1~e to ~ ~nB~pr1~~ serV1ce 1n l1ell of 
obta1n1 n" ar, .:I.l't,O':l{t1C d.. n,""rin"'- OeV 'lce . L.icK. i nv a.nyother 
cr1ter l~ , 1 SJrgp.<,:~ we ",c~,..':t JA.r ' s COJr,l'\eru. . .i.at iort o f the Palo 
Alto An5~erirg ~!~V1C~ . 

2 

7" 



) 

) 

) 

NI C H~TJ:. RI~4L ;1J!.I,u 0,. !t,J,..c,PliVJ • ~l:i Vllit. 
5 1 "Lb 

uJj17 "LA 2~S<P10 
09 /20170 13 10 

COST ESTIMA'I't.:$ tur jJ:I(,r'v~,r,J' " 'CILl"J'Ii~ ANJJ ShhvIC~:' 
MONTHLY 1~bJ'H11 ~~~~~J~~IO~ 

10 JC i:re~ l~nes 
0 ,0 laue ,p~ ~ - cu~ to n p~ones 2. (? I Ide) (11 

dir ec t ors 

1£ 
6 

8. 
8b 
8e 

8d 
l OG 0 ~~~erDr~se Jistin~s 8e 
20 luO 
I - 6'J 
!i 10 

60 ( 

l ess ) 

2o' ;40 

Cat' i''''r~,cl.lI~ f'aCl-l1 tl.eo 8£ 
~~rJ Ji~l~~~ 81 
Connp.xion of two ll.neB to AnS e Servi c e 8h 
~~~o Alto A1swerinr Service {Ni~nt cost 

l

81
8j

)

)

NI C I NTEl(1,AL M.I ' 1 .. r lHH'1~F ,:;F't-- ICr.
5 1 WL~

,,07 ("LB 2 4SEP 70
0~ 1241'10 13 10

G EN~RAL

I en Q uir e~ ~C01J~ tle folln~1n~ ~neclal K 1 n~B of services :
Poss~rillL~es "f~r noo~irt ~nLo ~n ~~! ~ATS l~ne
V~r1ous cat~~o~1es Ox le~se~ J1ne~
En t. f"rllrl.'H eXCll8.np'''S
Wiae t.red. 'J ~le'Jr one .:iervlc'" (w~'l'S)

Contrac ts 401" AT~ ~~rviLP ar~ v~r) restr1ctive ~ and there
does no~ see! T O he ,nv ~a~sivjli~~ of usin~ a line ~lready
SRI ' s servict:.
Lea sed linE's .a.!"e "ror.1lJ~ ti vely expe!nSl. ve : e.". a lea.sed l ine
to Cambri~ge ·;oul~ co~t i~ excess o~ ~bOOO / mo .

in

Enterpr ise exc~an~~~ ~~l.~t rerelv lor ~he purpose of
si m pli!vin~ DOCK~~~~lnE -- i . ~ .~ top.Y ~oul rt a llow remote Bites
t o call. us at nUr ~'"(tl~nse ' ... it/'lout. ildV 1 r1r t.O olace t.he cal ls
co l lect. Jjo~ever, call.s do hRV? to oe claced ~hrough an
ope rator, ",h~ci'1 1.KP8 t: l P. C;:l.l.l :;<ore l"XpenS l.ve t.., ,;. !"' dialing

61<
9

90
90 1
902
903
90.

9b

90

direct ly . 911
ENTERPRISE $~~V!~~ 10

The cost of t~t~rcr~be ~~rvtcp ip 1? ~proxi~Q telY) b; . oo/mo .
pe r eXc~~ n~e \~t·ea l.J WJI1Ch lOCRl ca!lS can ~e Ma~e WithO Ut a
toll c ha r ge) . Sl.nce ~p ~culo l.eeu to reach 3 exchanres in
Cali£ornia ~r,~ ab~11t (O~~ of Gt~t.e , en ter prjse se rvice waula
cost us about 50/11'0 . Pl115 T,hp COl"it of t. nE.' J.naiviC'iual calls
made ~o us ~~ the prernl.un r~~~ for onera t.or- ~s Rist calls .

Witnin Califor~ia . th~p~ 1e 110 p r ~m1UM ; outei~p Ca lif ., the
pre~1u~ i~ a~011t iJ~ of tt,p ~eSBdve cnar~e .

l Oa

)

)

Nrc I NT:r..fW.AL I':il'u \)'1 T~L~Fr~) It; ~~·iV T C.c.

51 WLS

WATS SERVrC l'

L.bTl oLE 24,r; P70
0; /24/70 1310

WATS Sf'rVJ.ce p,;or' ~t~ non - ~J:"rator assi ~t ac c~ss tf) a. spec1.fied
area f e r e1ttler 1T1CO'I~rll or o~tro1n~ c al l s , but not Doth on
th e samp lill(-- ' . . e ., for ro~~le te 1n/out se rv icp you have to
pay for t ~O l ~nes .

The serV1CP ~_s prnVlcec for v~rious areas , Wh ic h .. xteno (bY
states) in morp - nr - les~ concentric circles froM he re . New
Engl and (inr.: . , . • Y , • • J , Ppl'1n . 1',0 . and D. L.) is 1.n t he nos t
d i stant a r ea , and to ~et ~ATS servic e to tl le re yoU must pay
for serVl.ce loU all tIle l.ntE'"rve:l1.r~ 01.1 eas ae wel l. Therefore ,
if we ~O t WA1~ qervice, we Aoula oe payi ng the maX1 mum r a te
Which covers all t,e st~t~~ exc~rt fcr Ha~~11, Alaska , and
CALIfO~'lA .

NOT~: ~e c~~ ~~t 1te:,(iz~j 11St.111KS ~f ~ ~l c allR char ged to
a WA TS ~l ~e , aut onl~ if we s ~e ciflcally reQ U~8t it .

All ~ ATS serVlces Tr~~t 1~tprstpte and 1ntra~tate calls
independentlY , anl t~ll co~ti~~ntal u . s . c ov ~rp~e 1nvolve s
area six 1~~erstR~~ ~AT~ oiu~ nor~n&south Cal1for"ia
1 rltrast~~e ~AiS.

Inters tate ~ATs is ~vai~acle 1n ~lLner full - time or measu red
service .

Full .. t1me .area 61)(l.nt,el~Bt'lte \'OATS costs, 1900/mo pe r line
witn t~o 11~es ~clr! re~Ulrfn to pro viae botn inc omin~ and
o ut r~ing aervic~ .

All prlc ~s i~ 1.nis ~pro ~rp PL~S 10% federal exc i s~ tax .
In addl-tio11 1 ir,sta.ll .. , ti~r, nf eVery line ant'! every piece
of equip~~nt invo ~v~B ~ cnp -~ire installation cna rge .
For wA1s linps, the lnstalla tl0n cnar~e i s g lO per line.

Measured 3ervic~ Sl'pa six irt~ rstat~ ~AT$ costs
S) IS l mO /lJ,ne inr Ln~ tlr~~ 10 nours 01 con n~ct -~ime pe r
month Plu& 2, . fu/nourlcr fr~ct~o~ J for addi~ional
connect - ~J.r~ .

Californ1~ 1n~r~st~~~ w~l~ 1& ~\' ~11able Q,'LY 1n measured
service ana Chn bp auL~1np~ el~hpr for Nortnp rn Calif . or tor
the entire s~~tp .

Northern Galii . ~ t~ra5~~~e ~4TS costa JoSe lmo . fo r the
firs t 12S nours 01 cO:lr>ect t.J."'e .
com bined L~lis . 1n~r~~t.nte ~~T5 costs ~900 / MO . for the
fir s~ I~ ~ tCIJ1S 01 corn~ct ti~le or 1 3jO/~O . for IS hours
plus ~19/Ic. overt1m~ .

ThUS , the f'llt,I}HJ,' f"'r;.-st fer f'ulJ. cont1.nent~l US ·....-.ATS covera5!:e
for both 1 nCC" ir,i an~ outioing c~lls ~ou i d be 2*-3 15 • 2*5330
= 5 129 0 with tr~ !1~~3iOili1y ~~~t the chAr~es for overti ~e

could be ext~~s1ve.

10a i
I I

11&

II b

II b I

lie

II ~

I I d I b

I I d 2

I I e

II e I

I I e 2

Il f

)

)

NIC I NTER NAL ~,L G 0h ~t,~~irl~i£ berVIC~
51 WLB

'",77 " L8 2I1ShP70
0 91nl'l0 131 0

NOTE : ~ r Tf ~UR~ O~ ~~1n tor ~~n~n- o~ - mon~n 1n advance , and
i nitial Do vr~rt. 13 ~~r orr 1ull Monto plu~ pro - rata for
rern=!in der of clJrr't"nt ,Q'1th (ti lli n'7 to t.:'If" 2n,j of each
month).

)

)

J

NIC I NT~HN4t ~~~~ 0
51 WLB

REGl1LAP LO'h - DI~ !~ -:v -.:AI::j
Key

l!.8 '17 '41 H 21! 5 ;; P7 0
09/2./10 13 10

~ = numc~r of ~i~es ~~ ~n1~ ~puroX1ma~~ rate area
rat.'" :; cn;(r;;r~ ler fl.r· ... t 3 'lIl!"!lItes + cha.rp-E' fler minut.e over
3

(not. illcluH:l~ 1(;,'0 ft'"der .. l excise t.d.X)
The follo w1n, -Ire r~~,ll~r ~~y ~ t !tl.on non - oper~tor - aBsist

(d1rect-dial cu) r~t~~ tor c~llb fro~ Menlo Park (i . e ., the
lowest da$t~~e rated &vaitaol~) .

City }<'(I,te Si t~s
6 Boston I .)!> • U . I;t.. 1:I~N t' At; HAR 8TL LIN eARN
2 Chic» H ' I . 25 + O. ,IJ (, vaL CASf
I Salt Lti.K"e L 1. ty L . 9~ + \J .)'.,1 uTAh
3 Santa r-~onJ.C:H. I • 10 • (; . ~~; UCLA !-lAND SDC
I Santa hare ... r'l 1. 00 + O. ~v iJGSh
9 Inter .lit ;;. teo rr:e~r 1. 20 + (.i . u;:;' l'ive - Ml.nU te call , 2 . 12
IL 5 • Call.~ . I t: fI I . vo + O . ~4 five - l"Il-no te call = 1. 76

The followir!~ are re~ul~r 1~y taLl-on oner~tor - as$ist rates
for calls irtl'l tn~o ~~l((~ . e ., t.n~ r ~ t.es ~hicn WOUld aDply

I I! I
12

12.
1201

12.2
12.2.

12b
120
12d
12.
12£
12g
12h
12i
12j
12k
121

to enterrri3e c~11B) . 12m

II Chy t';t'te
6 Bostt')t'\ I • iu •
2 ChicacrQ i . ~" •
I Salt LaKe (;J.ty I • It] +
3 Sant.e /JOl"J.f :I. I • I u +
I Santi. barb,' rl I . no •
9 Inter ., t.a t.e ,pan I . 01 +
4 s . CaUl . 'le'L'l I • O~ •

"i1t.es
C . Ii)., ~N Y.A~ ~AR HTL
O. 'S IiILL CAS)o,
o . ~u IJ!'AH
o . ~., IJC l-A H~~D SDO
0 . ~d vCS;
o. ,'(.l'1ve - mlI'1Ut.~ CP,ll
O • .3u, rive ... rninute call

?

LHI

,
,

OARN

2 . 75
1.76

12n
120
12p
12q
IU
12.
12'
12U

)

)

NI C I NTtHrAL M~ J -l,i r~~tg~, f~ ~gkVl~~

5 1 wLa

4.Jl77 "L8 24SEP70
09/2"1'10 1) 10

COMPARlSO~ uF R~~ ~ t7J~ l~CJMI~a
INTER~TAT~ ~~~S - ·O"~ 0I~TA~G

FULL ~f_"\vl""r
breal<-~"'''!'l "(.'1. t.

:;; 1 ~~l'/C! . 7':J =
;: 6Itv . ~I1~ ::

MIAS :1P~D ~t~VI8~

t~S~UDt~~ ~-~lnu~e av~rale pe r
6jO . ul c.lls oer ~ontt
'(t . 17 calls ~er Bite pe r ~on th

call)

t'i"lrU~ co~t o~r ~ - 1inute ~ all :: ~ ~ 3 15/ 10.60 ;:: 2 . 6 J
BreaK-(~~n ,oirt lassu~1~~ S-minut.e ave r ~ge pe r call)

;: .;t I ~/' . I';i :: I j 4 . ~S C;tLlS per lI'.ontn
;; 11~ . ~t;/'1:; jjt:.73 cp.:ll s De]" site oe r mon th

INTE HS'I'A'r~, \ 11:, - 1:~'lt.(d",.IS.r;

Ca lc ul~ticns ~~~e as ~~ove excec t for ~JS / mo . for
en~er rrl~l I1Bt'lle~ .

FULL SFl-'Vlloi
bre~k-~v~n rlo1nt \a~FU~ln~ ~ - rnlnute pv~ ra ,e per cal l)

:; !~\..(-J"'/2. (,:) :: t.70 . lb c .. lls per Lnonth
;:: o·,c . lc/,,:;: I) . '~ cRlls Dt" r site ne r lIIonth

'in1~ttr CO~~ ~~r ~ - ~1~utt" cell :;: ~ * 31S /I O*60 :;: 2 . 6]
~r~ajoc-f'''~f'\ '01:,-::' \<1.~Bur 11~l', !;i - -c'l.nt.:,t .. :2.veorae;e per cal l)

= }I!r:b/i: . ,,, = IOI.t-.2 ciSlls pe r rwnt.h
:;: It 1.)';1 ;: 11.11 c:;ll~ p" r sit.e ,er l""onth

) 2v
I)

I)-
1).1

I)al_
1)01.1
1)01.2

13.2
l)a2.
13.20

l)a201
l)a20~

1)0

1)01
1)02

»)02.
1)02.1
1)02.2

1)0)
1)0)_
1)0)0

1)0)01

)

)

)

rne INTl' .. tc~'Al. l'1':: () J, r.t; i.prtJ 4& .:, ':O VTCl:.
lJJl7'l '; LB 2I1SEP70

09 /24170 1)10
5 1 'L~

I NTRJ"ST.''''. "'I\.i.!:'" \J:U ul..3'!A.I.C- (COLL:.('!)
Mt.ASG;< ,J,J ~t ... '.fT('~ 'h CL'R;;)

~inir!J cos~ ~er ~-~J~ute cdll = ~ • 330 /1S_60 = 1.83
~1~1~J I co~~ 0~r q dit10nal ~ - ~1nu~e call ~ S * ! 9/60 =
1. >0
CI"Ist comoariC;or:B 12 I l.o 1. 'l6 21 . 12

"'C4-,-.j.'" \IIA1'S l..ll (a.t 1. 76 /c alU
I e.·oJ
I ~i:!

2Lll
lib
~20

2/JO
2;:2
~ 6 J.
2, r,6

~bo
c rt- I: e ~n U01

,)ju . Ul)

jJd.vl",
jot/ . no
,)f/(. 0('I

'.l..b . 00
t..'::;' . 1.I(1

.. 44 . 1.10
L63 . 0()

.:d~ . ClU
.. n7 . ~.:::
..;I5Q . (lJl
)~O . 16
40 1 . 20
L22 . L'_O
J.dlJ . S;.::
4f>1.I . 64

I -J2 . 1.") !lr:'- . "(o
~ul . OO <;;jt' . • ~'()

t. = 2~r, calls oe r 1I",ont.h = 611. ca.ll~ per

l)b)b2
l3e

13el
13ela

I)elb
13ele

13elel
13ele2
13ele3
13ele4
13ele5
13ele6
13ele7
13elc8
13clc9

I3c I c I 0
I3c I e I I

)

)

NIC I I-lTEkN,4.L "'r" Lr O~ ·.l'j~lFtHu~I' .sEIiVICt.
5 1 \ LB

A NSWE R I ~1.i S, f..'Jil.t
AlJT Ot1 A'IIC A;"\It-Plr,l i ,", ~r.~'vl.CE';:;,

i!ll77 ~LB 2i1S1P'l0
09 12"170 13 10

Ther~ are ~ ~1~C (;1 aUtO~at1c ans~ering devices avai l abl e
fro ll: 1,IJ(;' ,Ilene C'o:.'C~n" . Ij('th operat.e on the pr~nc iple that
t he d~vice wjll ~e turnpd or ,1anU&~~y to nrovide automa tic
answpr1~~ ~ur~n~ 'II ir\t~rval until t hey are turned of f
nanually. Tne on~ne co . GOPS not have any device whic h
W1 ~ 1 pn&~er ~t Fn~ t1n p tn~t tne Phon~ has not Deen
ans" e-red t.anuaJ.ly (,<l,,;\-" 1·('\':111 five rinJZs) . HO\ieVer , the
more ~xf~npive ~evic~ has ~ s~e~ker attached Whic h can be
t urn~1) lou" erHlI .. gr, to t:'enf,1t nersolillel 1n the area t o he a r
the reccrr.J."'1": ~JeJ.~.~ ~':"~'/ea to a caller an(1 to inte r vene to
anSh Pr tll~ L~O~P Jdn~R1IY ~t ~r'~ t1~e .

The l~a~L e~~t'~81ve 41ltc·Mat1c ~nB~er~n~ service can be
proviccc: ;'cr .,!"".' lnC01',1np' line at the cost ot' t"> 13 . 50/mo
(plu ~ J!, 1~~~~11kt~u~ ch~rre) . Tnis dpvice will answer
t he ohor~" ~ioI"'I"''' tut'neJ. on) ~ no Plll.:Y a pre .. rf>corde(j mes sage
to ~hr ck11~r . It ~l~l not record Ln~ caller ' s reply , an d
to nb~a1n t~lis ieJtUr~, We 10\11a naVe to go ~o the more
expe"~ive s~rvice ~nich costs ~ ~ S / ~o . per line It ~35 '.

CO~MEHCI~L A~~w~rll,u S~~VICYS
I hEve chf>Ci':pd t'l. tn Lnrt->f' local co/Ttillercial a.nBwerin~
servj.ce~. All oi tn~m Lan ~rnvia~ 2h .. nour answer i nr o f ou r
nnor.e(s). 1-or t'r.<,:r. c~ll they intercept (if not an s we red
cn"f01tc) "t.,l~' ,:111 e:itner ~ii-Ke &. llessap,e or try to t r a nsfe r
the cali. t 'in-' S.H!C~lip.':i Ollternate numbers (e . g ., s t a. ff
nember~t r.o~e p~o~e~); t~ev h~nale the tr ansfer at no cost
to th~ C~!l~n I :3rt~' -- 1~ tne r e 15 any cost incur r ed in
tran~f~c~~~ tn~ c~ll (~ . ~., ~oll char~es), the answeri ng
service a~snro~ It ~nQ ~oula b111 us at the en~ of t he
rnont'" •
It C~~LH ~4.~0/Go . o~r l~~~ (+ ~5 per line) to h~ve
extenE1cnF ~1 our ona~~~ cn!ln~cted ~o an answerin~ serVice,
and jt taKe~ aoou~ 3 G~ys to have this done .
Centra.l r.~~.cr.;,ujP.'e ~:l~\Wer:1.n~ ':;'t"rVl.ce

A~ur~as: not 11~~en
~UM1~e3~ ~no"e: ~hl - 2SUO

vOTltacl,: 1r3. J.."ncn

~~J/1'!C . for i1rs~ l1n~ for {1rst ~O cal1 s /~0 .
IO/~o. i0r ~UQl.t.ion~l lined witn no free calls

.... IL../C"=ill .rt"lr ,..!j('lition~l ca.lls
G01,,jl,el:;:

roo)~ •
oisy e~vtronJ ent in the oD~ratorB ' work

Tel"'P;::'.I<t: AhsltierJ.1\ erv:tce
Adarr!s:",;: l.ltlL' I,arsnall , i'alo Alto

10

13c l0
14

14.

14. 1

14.2
14b

I H I

14b2
14 b3

14b3a
14b3b
14b3c
14b30

14b30 1
14bJ02
14b3aJ

14 b3e
14b4

14b4.

)

)

1.877 ~L a 2hSEP70
0 9/2./70 13 10 :51 WLB

! lJ.'"1~I e':',:. o'10f'f': "i2,., - 20 I I
Cnn'tac't.: I !O~~!:!:ot. to aSK
Y::lt.f'!~

~1 . ~~/~n . lor first l1np for '70 cal ls on which they
t1<~ ~r1ttpn ~~s~'~e~ (or , I aBsu:~e J make a transfe r
conj)I'OrtJ.OI"I
~IJ/,,:~. fer alui~10nal 11ne~ 1ncludinr 70 message s
~r Liril!

~ . 1~/~all !oz' ~1di~lonal c~11s
Cc')r,n~ll't..:. :

Pale Alt.o ~~S'~~C1D~ ~el'vice

A1ares~~ 44~ Sher~~' AVP ., Palo Al t o
bus1nea~ ohnr~: ~il - 4hI2

Co~t~r~: Mf9. ~'t.U1rt

~:'Il .. e ,,",
~jUI c. fer ~~cn line for any numoer of calls
Ii ~e ~~V~ 1,~,O 1~comi~~ I1n~a , one fo r California and
rl!p for tne rp8~ of th~ wo r ld , t he c h ar~ e will be
":d!U/ 1('\.

Cn~I~~n~s: JA~ rpco~1~ndq this comoany very h i ghly .

I I

14bh b
14 bhc
14b 4d

I 4b4d I

Ihb4d2
14b.d3

14bhe
14bS

14bS_
14bSb
IhbSc
14bSd

14bSdi

14b5d2

)

)

)

NI C INTr.~ jr. ... ,.) I,

51 ~ Li<

MIS Ct;SSANt.()J!:i -; .. ~Vlr:~r::
It AUTO!1AT1C" J,....l.ALI.l-

';071 "LB 2J.SEP70
09/211 170 1310

The ~non~ cn. nr0VJ~~S ~':o Kind of devices Which a~tach to
a u~~r ' d ~~1ep~n~p ~o ~~~~s~ 1" atRlin~ .

A car~ a1~1~T, ~n1Ln ~ccpnt~ a small ola~tic card
pre - Plul~.lt.:d , .. ~~n tn,. nU,Lr)er t.o oe callp.d , can be
oht.a1'1f' .• 4"')r " . ~Ol 10. (+ .~ I;.,). '£n19 device can
cnnv~~~~rtlv wr use1 Wnp.n uu to ~bout SO- IOO numbers
n~'Jf1' LO " ... -::ejJ1' ~I \jv .
, .~a -t~~~ rrl.~en ~1a~er (1'1a~1calll' J cost.s S8 / mo .
1+,.j.,I. (!) 1..~ ii "'!t fir cnrnce wnen ~I"'vt' r al hund re d
n'l ')~rJ VP to b~ p~~l.lv redcned.

PUS H- dlJ'l'rll'j r ""'1 ... :";
Sl.,,<-'·u't.1','J" "'''i?''''~ !or ~R."'!li!1C: "'iUlt"lole lines cost. S2 / rn o .
(+ I:;). .I. , JO.rf" av ... il~bljl> in \l. i~",,' colora DPs ides black
a.t ~ L e \,o:'a. o'1p-t.1 e ('';;If'''' of ;r,'.;>/pnone . ('Qed. , yellow , a.nd
~ f~~ O~:~QC cDl_cr~ are ava.ilable on on sp~cial order wi t h
unpra01C~~Dle iEl!ver, ti~e&). I t~inK tha~ "hold " and
"con'Qr~~cl"'~" i~r~11t1~~ on a Phonp rertuce thp number of
11nt"'s ';Inl.cn C1.n bt'" n::t.,lt1J.~cl .

t;ONf ,l:,iU,NCl \ ~

A PU,!P'~ " '')Il1.t.on r)"OCl~ c .. n ne c('JuJ.pped witn a but.ton to pe r mit
" cont't"ren\".l:1~" ... t. ~ cost of" 2/j1}0 . (+ ol>IO). Thi s al lows
you ~o Q1~1 11~ l ere oh~ne 1nto a convers~tion already
taJ<:l.np' ol<".cF .
Mu~t.1ple - n10n~ co~iere'lc~ c~113 normally have to be set up
by an oper~t)r . ~OWever, ~n~B 15 cneaper 'than phonin~ al l
t.he o<lrtJ.e.J ~~'1a.r ... te-... (far so:tfle lE"nlttll 01 conve r sat i on
with ~';Il:!I) .

C ONVEH5~TIOJ ~~roUI 'i~

The nhonp cn . lOeS not ofter converSat10n recording
dev1res. rO-lf1!f""r, Lhe" ~loll inStil iI bt'lx which pe rni ~s
ccnnrCLloO.l of ~le ~I!~n~ to a recoraer an~ ~h1cn emits the
le~al1~-:~~~lorp~ "oee~H to 1nnicaLe tnat ~ conversation is
't'einf" r:!cor"~'. ...n<;!' c"st of t.n1S L1evice loS ·2 /mo . (+ 5).
I n~"~ no~ vPt ~~~n ~?lp t.r dpter~il1~ Wlle~ter thiS cos t is
ot:r r,,) I.:!)l' .. ~_,. ,;")I..:"...) t.le p"o!'!e; I ... 130 canno~
!:..n 1) 1,-,) 1, 1" -I ., I"O!1:) t.3 t,"I"'P reCClrd""r to t.he
dev . c\,;1 .J :.,._ ,),1"; I J • .1..:1 .')~ (vv.::>t.l.l/.i&.te ;;...,out relea. sing
(or 11~~ov~rl'p tor l~~plfJ ~e ~~sw~r to t.hloR question .

l ilb5e
15

15a

15.1

15al.

15. l b
15b

15b I
15c

15cl

15c2
150

1501

I)

)

': hd??' J CC/2~/'/v)~Jl : ~S "~LJ : '~lC ?HUI~ r,
. HEll:"
NIC I Nrl:.k~;AL ,. v u~ I I i-' 1\ .,.t:..tt/iCi
WLB"j . }-S1=1; . vf :;l , .r :;
. SNF=72;. J-'~H = 6>; . PG =C •• L\". =l:. JJ~ = ') i

11.~(J., 0'> I< It 110 1311 :4 4 WLB l
·877 "L8 2 4SEP70

n"P4 /70 1310 :51

	4872: Rome Final Report Appendix B
	4873: Rome Final Report Appendix C
	4874: Rome Final Report Appendix D
	4875
	4876
	4877

