
c

L

Page

INTRODUCTION •
PART I - THE PLATO SYSTEM

A. General Description - PLATO Ilardware ...•.....•........• • ...•
B. Relationship of PLATO Hardware to Software .•....•...........
C. System Operation by Student Input
D. Relationship of Teacher to the System ..•.•.......••.....•..•
E. Preparation of Material for the System•..•......•..

PART II - OPERATION OF THE SYSTEM

A. PLATO Equipment Operation ...•.......•.....•...........••... . ~
1. Turn On/Off Procedures ..•...........•.•........•.•.•.•. 3
2. Scanners•..•.........•.•.....•....••.••......•.•... 4

B. Computer Procedures ..•......•..... . ..•........••.•.•.•.•.•.. 5
1. Read-Ins .•..•..•..••...•....•....•.....•..•....•.•.•... 5

a) Starting a run using a regular binary tape ..•....• 5
b) Starting a run using an autoloadable binary tape •. 5
c) Continuing a run using a PROGSAV'd binary tape ••.. ~
d) Ending a run (Progsaving) •.•.•.... . •.. • •.. • G

2 . Dopin g ••......•.•.•.•...•.....••..••.........•••. 7
3. Emergency Procedures ..•••.•••.•.... • .•.....•.•..•..••.. 'if
4. Reviewing a Student Run Using SPECTRE ..•..•••....••..•. 9

PART III - PROGRAJ~iING FOR CATO (The PLATO Compiler)

A. Program Construction•.•.••••.. • .••.•.....•.•••.•.• (0

1. PLATO-Modified FORTRAN ..•.•••....••.......•.•.•.•••.•.• 10
2. Naming of Variables •. . ' .' •• .•• . ..••• . •.•.•. . •....•.•.••.. /0
3. Program Organi zation . • .•.•••..•..•.•••.•...•.•••.•••.•. I I
4. A Sample Program •.•.•••..•......•.•••.•..••.•.•••.•.•.• /2-

B. PLATO statements•••• • •••.•.•...•.•...•.•.• .. . Is
1. Character-Symbol Definition •.•.•..•••...•.••.••..••...• 'If

a) The Character Statement .•..••..•..•.••••....•..• • .• /'1
b) The Assign Statement •••••.••••..••...•• • .••....••.. 15

c) The Group Statement ••.•.•.•..••...•••.••...••.•••.• 1 b
2. The Modeswi tch ••..•.•••••...••.••.•..••••.••••••.. • • • .. /7

a) The Mode Statement .•••.......•••.•....•••••..•••.•• I 'if
b) The Keys Statement•.•.••..•..•.•...••..•....••• I~
c) The Calc Statement- The Entry Calc •.••.. • ••.• 1.0

d) The Next Mode Statement •. .•... . .•........••.••••••• 2-/
e) TIle Force Key Statement .••.•..•.•....••..•.•••.•... 2.2-
f) The Copy Mode Statement- The Same As Statement ...•. 2.3

3. Student Bank ..•••••....•.•.•...••..•.....•••••.••.•...• "2...4
4. PLATO Format .•.•.•.•.•.••..•...•...•.• . .•.••.•.•.•.•.•. 2 (;

S. PLATO Calculations - Fortran Programs ••..••.•.••••••.•• ~5
6. Executable Logical Statements •.•.••..•.•.•...•••.•.••.. 'z7
7. PLATO System Routines ••••....•.•.•.•...•••••••••..• ~ •.• 2.. "1
8. Additional Remarks •.•.•.•.••••••..••••..•.•.•.••••..•.• 37

c

c

Page

C. Program Compilation and Editing .•.....•.•..••.•.••..••..•.... ~~
1 C '1' 39 . omp1 1n g
2 • Errors .•..•.•.......•••....•..........••.•........•.•... ·3'1
3. Editing•...........•...........•.••.•..........•.... 4_
4. FORTRAN Resident Service Routines ...•.....•............. q~

D. Codechecking Information••.......•.....•.....•.....•.•.•. lf~
1. Running a Program•.•...•..........•......•..........
2. Master Keyset Operation at the Console•••.........
3. Diagnostic J-2 Doping 4'1
4. Examining the Contents of Specified Memory Locations <;)0
S. The Dumps Routine••.......•.......••..............
6. Making an autoloadable Binary Tape•.•.........•..•. r:5i
7. Drivers (CATORES) ...•.....•.........••....•....••....... 5"L

PART IV - DOPING PROCEDURES AND ANALYSIS

A. Jump Switch Settings •....•......••....•...•..••......•....... &',1
I. No Jump Swi tches•.•..••.............•.•.......•.••. 53
2. Setting J-2 . •.....•..•.•.....••....... " .•...•..•.•.•... 13.3

h . q~ 3. T e J-l Optlon .•..............•.............••....•..... ::>
4. The J-3 Option •.......•......•..•.•......•.....•..•...• . Slf

B. Identification and Format on Magnetic Tape•..• 5S"
C. Sorting and Analysis ••...•..•.•.....•.....•...•.•....••....•. 5"

PART V - APPENDIX

A. PLATO Input-Output Interface•.......•......••....••..
B. Character Plotting Information ...•......•..................•• t;)
C. PLATO Teletype Keyset ••....•.•..•.......••..•..•....••.•.•. .. '1
D. CATORES Information including Block Diagram•••...•... b~
E. List of Routines on the Master Tape •........•..•.......••...• 6g
F. Listing of a PLATO Source Program .•..•.....••...•.••••...•.•.
G. Listing of a PLATO Source Program with MAP and Modeswitch ..••

c

INTRODUCTION

PLATO, an acronym standing for ~rogrammed Logic for Automatic leaching

Qperations, is the name of a computer-controlled teaching system which is an

extremely versatile and useable man-machine interaction system. The teaching

system, containing highly flexible components controlled by a centrally lo­

cated computer, automatically presents information to a student (or subject)

and receives responses from him in an instructional sequence which utilizes

the principal of feedback. The rate and manner of presentation of information

to the student is determined by the author of the material presented and can

be adjusted in accordance with the student's reactions and responses. Although

the PLATO system was originally designed for teaching purposes, it quickly

proved itself useful for research in many areas of education, behavioral science,

physical science, medicine, etc.

The system includes four major parts:

1) The electronic hardware composed of a central computer, the student

stations, and the communication links between student stations and the computer.

2) The computer program which determines the particular teaching rules

(called "logic") to be used and records each student's progress, called "dope. II

3) The lesson materials stored partly on film and partly in the computer,

which utilize the various teaching logics.

4) The special effects used in the teaching system such as audio equip­

ment, movie projector, physiological test apparatus, etc.

This operating manual for the PLATO system has been written as an aid to

all users of the system from the non-technically-oriented to the experienced

programmers. Part I contains a brief general description of the functions of

the PLATO hardware (electronic equipment), its relationship to the PLATO soft­

ware (computer program), the operation of the system by student input, the re­

lationship of the teacher and/or programmer to the system, and remarks on the

preparation of material for the system. Part II describes the general operating

procedures for the PLATO system. Part III is a section designed for the PLATO

teacher or programmer who is writing his own PLATO program using the PLATO Com­

piler (CATO). It is written in two parts, the first being detailed programming

instructions, the second detailed compiling and editing i~structions. Part IV

discusses "doping" (student response records) procedures and analysis. The

appendix, Part V, contains information which might be desired by the experienced

PLATO programmer.

1

2
3
4

6
7
8
9

10
11
12
~

C 14
15

16
17
18

The PLATO Typing Form for Slides

5 15 2 40

1

2
3
4

5

6
7
8
9

10
11

12

13
14

15
16
17
18

1 20 25 ~ 35 4

For the PLATO camera, the material on each slide must fit within the
rectangle illustrated above. Forms are available for typing copy, fitting
illustrations and writing rough drafts.

The available typing area is 45 typed characters across (elite type)
18 lines. The same area plotted by the storage device is 40 characters
across by 18 lines.

c

(

A. PLATO EQUIPMENT OPERATION

Turn On/Off Procedures

1. Equipment off:

a. Check the engineers' card posted on the PLATO equipment. If the
equipment may be turned on, push the "on" button. The time clock
will be set automatically.

b. After the equipment is turned on, push the storage device buttons
for the student stations to be used.

c. The first user after the equipment turn on must push the door but­
ton before autoloading to clear the equipment registers properly.

d. When finished, turn the equipment off unless there will be another
user in a short time.

2. Equipment already on:

a.

b.

c.

Check the time clock to see if adequate time is left for the TWl.
(Black hand shows remaining time.) I f not, push the "on" but ton
to reset the clock.

Check the storage device buttons for the student stations to be
used.

When finished, tUl~ the equipment off unless there will be another
user in a short time.

3. Unexpected equipment turn off:

a. Check the time clock. (Black hand shows remaInIng time.) If time
has run out, push the "on" button to reset the clock.

b. Check for voltage drop. If the meter indicates a voltage drop, read
the posted directions carefully. Push the reset button, if indicated.

c. If neither a nor b is the case, summon a PLATO engineer.

Scanners

A. Using a progr~m with slides~

1. Take the acetate sheet(s) from the storage cabinet. The slide
sheets are named and numbered.

2. Open the scanner doors and lift the lens plates. There are catches
on the inner sides of the scanner which must be moved aside before
the plates can be raised.

3. Put the slide sheets, labeled side up, in their respective scanners,
A or B. Be sure the holes on the sheets fit the pegs in the front
of the scanner.

4. Lower the lens plates by pushing the catches aside. Check to see
that the plates are all the way down. The scanners are turned on
by a pressure button illlder the plates.

5. Close the scanner doors completely.

6. When the run is finished, remove the slide sheets and return them
to the proper slot in the storage cabinet.

B. Using a program with ~ slides:

1. Open the scanner doors and lift the lens plates. There are catches
on the inner sides of the scanner which must be pushed aside before
the plates can be raised. When the plates are up the scanners are
off.

2, Close the scanner doors completely.

G

L

G. CO~~UTE R ?RQCEDURES

Read-Ins

Before a run, check to see if the equipment is properly turned on,
the right slides in, and the proper key caps on the keysets to be used.
Push the door button to c.lear the equipment registers if the equipment
has been turned off for any length of time.

1. Starting a run using a binary program tape:

a. Put PLATO Master tape (#100) on tape unit 1, DOPE tape (ring in)
on unit 2, and the binary program tape (and data tape if used) on
unit 3 or 4.

b. Push the autoload button. Type: cat o run , etc.; as described below.

CATORUN,NAME,I,L,X. Puts the binary version of a PLATO program
in memory ready to run.

name = the name given in the title statement, or the name
"program" if no title statement exists

i = input medium for the binary version of the program
1 = input medium for the PLATO Master tape

t if J-2 printout (DOPE) is desired on the typewriter
p if .J-2 printout (DOPE) is desired on the line-printer x =

c. When the console lights up, set J-l or J-3 for the desired DOPE option,
and J-2 if using a fresh DOPE tape.

d. Hit Start. The typewriter will ask for DOPE identification tag,
MONTH/DAY/YEAR/ID. Type the identification tag.

e. If J-2 was set,unset it either after typeopt MONTH/DAY/YEAR/ID has
occurred or after typing a message in.

f. Check to see if the channel 5 light is on. If so, the program is
ready to run. Put the production sign, PLATO, on the console desk.

2. Starting a run using an autoloadable program tape:

a. Put the autoloadable program tape on tape unit 1, DOPE tape (ring in)
on unit 2, and the data tape (if used) on unit 3 or 4.

b. Push the autoload button. Check to see if the "function code" and
the "execution address" read "76 0 04000. II If so, follow the instruc­
tions in c through f above.

c

L

3. Continuing a run using a PROGSAVE'd program tape:

a. Put the autoloadable program tape on unit 1, DOPE tape (ring in) on
unit 2, and the data tape (if used) on unit 3 or 4.

b. Push the autoload button. Check to see if the "execution address"
reads "4201" (ready to transfer to RESTART). If the "execution
address" is not 4201 (this will be the case if the "accumulatorUwas
not set to 1 at the end of the previous run) simply reset 4201 in
the execution address.

c. Set J-l or J-3 for the desired DOPE option, and J-2 if using a fresh
DOPE tape. The DOPE tape will be positioned automatically.

d. Hit Start. The typewriter h'ill ask for DOPE identification tag,
MONTH/DAY/YEAR/ID. Type the neh' identification tag.

e. If J-2 was set, unset it either after typeout MONTH/DAY/YEAR/ID has
occurred or after typing message in.

f. Check to see if the channel 5 light is on. If so, the program is
ready to run. Put the production sign, PLATO, on the console desk.

4. Ending a run (PROGSAVE' ing)

a. Unset J-l or J-3 to end the DOPE tape properly.

b. Clear up and down.

(To make an autoloadable program tape for the continued run, follow c
through f beloh'.)

c. Mount the tape on which the saved program is to be written on unit 4~
with ring in.

d. Set the "accumulator"to 1 and the "program address" to 4203. Start.
(Unless J-2 is set, tape 4 will be rewound before writing.)

e. Unload tapes after tape 4 is written, take the ring out, and put the
tapes away.

f. Turn the equipment off.

b

c

Doping

A. Use of DPLISTl:

l. Put the PLATO Master tape on tape unit 1, the DOPE tape on unit 2
and the flextape of DPLISTI in the reader in assembly mode. DPLISTl
is a binary flextape which causes the printout of key inputs by name
vertically on the printout page.

2. Autoload.

3. Type: call,f.

4. Put the parameter tape in the reader in character mode.
(The parameter tape is a data tape of the key names in the order of
their appearance in the assign statement(s) of the source program.
This data tape is typed one name per line, left-justified and ter­
minated by a BCD end-of-file.)

5. Put J-l up if the entire tape is to be processed.
Leave J-l down if only one session (1000 keys) is to be processed.

6 . Type: run .

7.

or
dplistl.

If J-l was left down, type a carriage return and the session identi­
fication tag leaving out the slashes. After t>~ing the tag, type
another carriage return, and the processing wi 11 start.

Example: cr
0724651
cr

(For an original tag of 7/24/65/1.)

If more than one session or more than 1000 key inputs are desired, put
J-l up anytime during the printer output for an addition 1000 key inputs.
This procedure may be repeated for as many additional sets of 1000 key
inputs as needed.

7

c

Emergency Procedures

A. Forgotten ENDOPE

B.

1. When the DOPE tape position has been disturbed, but not the memory
(e.g., a "reverse" or "rewind" button on the tape unit has been
pushed without unsetting the jump switch):

Position the dope tape by typing: copy,2,x.

After the error printout, manually set the ''program address"
to 4200 (the entry to ENDOPE). This causes all the necessary
termination marks to be written on the DOPE tape. The ENDOPE
program stops ready to jump to the RESTART program.

2. When both the DOPE tape position and the memory have been disturbed:

Position the DOPE tape by typing: copy,2,x.

After the error typeout, type: efmark,2. (This will write
an end-of-file on tape unit 2.)

Note, however, that the end-of-session mark will not be re­
corded and the last record on the DOPE tape will be destroyed
upon restarting a continued run.

Forgotten PROGSAVE

1. Put the autoloadable tape which was used for the previous run on
tape unit 1, the Dope tape on unit 2.

2. Autoload.

3. Set the program address equal to 4202 (the entry to SPECTRE).
Enter the proper values in A and Q (See Part II on reviewing using
SPECTRE). This is a fast reading of the previous DOPE.

4. Start.

5. After a typeout END OF DOPE has occurred, proceed to PROGSAVE on
tape unit 4 by setting the "program address" equal to 4203.
Set ACC = 1, then Start. (See Part II-B, Ending a run.

C. Voltage drop

A voltage drop in the PLATO equipment may cause loss of information.
See Part II-A, Unexpected equipment turn off.

C

c'

Reviewing a Student Run Using SPECTRE

1. Put the PLATO Master tape on tape unit 1, and the written DOPE tape on
unit 2.

2. Autoload.

3. Set the "program address" to 4202 (the entry to SPECTRE).

4. Set the "accumulator" for the desired option:

ACC = 0
ACC = OOO ... ON

Run at the normal rate.
Run at the power of 2 in the lower bits of the
accumulator times the normal rate.

ACC = 400 ... ON Run at minus the power of 2 in the lower bits of
the accumulator times the normal rate.

Example

ACC = 0000000000000002
ACC = 4000000000000001

means to run at four times the normal speed.
means to run at 1/2 the normal speed.

5. Set the "Q-register" for the desired option:

Q = 0 Clear both student bank and common.
Q = 1 Save common, but clear s tuden t bank.
Q = 2 Save student bank, but clear common.
Q = 3 Save both student bank and common.

6. Hit Start. The typewriter will type WHAT SESSION.

7 . Type the dope identification tag just as it was originally typed for the
actual run.

Example Type: 1/3/65/a. (For the original tag 1/3/65/a.)

B. The typewriter will then ask WHAT STUDENTS. (IN OCTAL). Type the desired
student number in octal.

Example Type: 0/1/2/3/4/5/6/7/10/11. (For students 1,2,3,4,5,6,7,8,9.)

In the case of a typing error, the messages may be restarted after a
carriage return.

SPECTRE does not stop at the end of the specified session, but continues
until it hits the end-of-dope-tape mark, at which point the typeout "end of
dope" will occur. To stop before the end, simply use the step switch. If the
session indicated is not on the dope tape, the program types "session not
found" and stops ready to start at 4202b (the entry to SPECTRE).

This program does not simulate simultaneous keyset inputs, but is designed
to simulate many students at once with only very Slight changes in the original
timing of outputs to the PLATO equipment.

q

c

A. PROGRAM CONSTRUCTION

PLATO-~bdified FORTRAN

CATO is a modified FORTRAN '60 compiler with additional features to
accommodate the need in teaching operations. These additions are listed
in this section of the manual under PLATO Statements, with examples. .

In addition to the usual FORTRAN subroutines, there are many PLATO
system routines which are currently available. More subroutines will be
added to the library in the future as the need arises.

With the knowledge of FORTRAN programming, it is a relatively easy
matter to write a complete computer program for use with the PLATO system.
The following section assumes knowledge of FORTRAN.

Naming of Variables

All names created in the program statements must be standard FORTRAN
names, beginning with a letter and consisting of from one to seven alpha­
numeric characters. All character, key, mode and calc names are treated as
integers regardless of the first letter. All other names must follow the
Fortran rules for fixed and floating point operations.

The following names may not be used as calc names in PLATO programs:
AUDIO NXTLINE SPACE MODE
BKSP PACK UNPACK KEYS
ERASE PLOT WRITE CALC
EQUIPI PLOTG NOCALC NEXT
EQUIP2 PRVLINE LISTARG SAME
EQUIP3 READ DELTARG FORCE
INTRUPT RING DRVOO COPY
KEY SELRASE all Master Tape routine names
KEYCHAR SLIDE DRV77

It is not advisable to use identical names for mode and calc. The
PLATO Compiler will accept identical names; however, one can run into
trouble when the calcs are called.

Do not use single letter variable names in calculations, since these
are generally reserved for the names of alphabet characters and keys.

to

c

Program Organization

Title Statement
Character List

Assign List

Group List

Modeswi tch Statements

PLATO Format Statements

Student Bank Statement(s)

Program Namel

end
x
Program Name2

end
x
Function Fl

end
x
Subroutine Sl

end
x
Program Last

end
finis
x

(These statements may also be placed
inside calculations.)

(This statement may also be placed
inside calculations.)

PLATO Calculations

I I

c

Sample Program

This is a very simple PLATO program showing the organization in actual
statement form. Detailed information about the "statements follows in this
section of the manual.

999 title explain
c this lesson shows slide 3 and plots plato when key go is pushed
898 character dmy«~»~p«30,44)(31,44)(32,44)(33,44)(34,44)(35,44)

1(36,45)(37,46)(37~47)(36,50)(3S,51)(34,51)(33,51)(32,51)(31,51)
2(30,45) (30,46) (30,47) (30,50) (30,51) (30,52) (30,53) (30,54) (30,"55)
3(30,56)(30,57»

897 chaTacter 1«30~44)(30,45)(30,46)(30,47)(30,50)(30,51)(30,52)
1(30,53)(30,54)(30,55)(30,56)(30,57)(31,57)(32,57)(33,57)(34,57)
2(35,57)(36,57)(37,57»

896 character a«30,57) (30,56)(30,55)(30,54)(30,53)(30,52)(30,51)
1(30,50)(30,47)(30,46)(31,45)(32,44)(33,44)(34,44)(35,44)(36~45)
2(37,46)(37,47)(37,50)(37,51)(37,52)(37,53)(37,54)(37.55)(37,56)
3(37,57)(31,51)(32,51)(33,51)(34,51)(35,51)(36,51»

895 character t«30,44)(31,44)(32,44)(33,44)(34.44)(35,44)(~6.44)
1(37,44) (40,44) (34,45) (34,46) (34,47) (34,50){34,51) (34, 52)(34,53)
2(34,54)(34,55)(34,56)(34,57»

894 character 0«30,54) (30,,53) (30,52) (30,51) (30,50) (30~47) (31~45)
i (33,44) (34 ~44) (35,44) (37,45) (40,47) (40,50) (40,51) (40,52) (40~53)
2 (40 ,54) (37,56) (35,57) (34 ,57) (33,57) (31,56))

710 assign dmy(140),go(101)
603 plato format sentl,8,plato
524 student bank ix,iy,kar1ist(S),ncnar
481 mode intro

keys go
calc show

390 program show
call erase
call slide(3)
ix = 96
iy = 70
nebar = 5
karlist(O) = -1
call plot(ix,iy,kaT1ist,nchar,sent1)
end
finis
x

r ""2...

c

B. PLATO STATEMENTS

The Title Statement

Form:

TITLE NAME

Example:

999 title arch
c this lesson demonstrates archimedes principle
c using inquiry logic

The title statement places the given name of the lesson in the title word
of the binary version of the program. If no title statement occurs, the title
is automatically PROGRAM.

Each PLATO lesson should have a title statement to facilitate calling the
lesson by name from magnetic tape. In binary form, several lessons can be
"stacked" on a single tape and are called indi viduaUy using each unique name.

Character-Symbol Definition

~) The Character Statement

Form:

CHARACTER NAME((X,Y) (X,Y) (X,Y) (X,Y) (X,Y) (X,Y) (X,Y)
l(X,Y) (X,Y) (X,Y)(X,Y)(X,Y) (X,Y))

Example:

805 character a((30,57) (30,56) (30,55)(30,54)(30,53)(30,52)(30,51)
1(30,50)(30,47)(30,46)(31,45)(32,44)(33,44)(34,44)(35,44)(36,45)
2(37,46)(37,47)(37,50)(37,51)(37,52)(37,53)(37,54)(37,55)(37,56)
3(37,57) (31,51) (32,51) (33,51) (34,51)(35,51)(36,51))

Each character statement gives the points, in octal, which form a charac­
ter to be plotted in a lesson. The X and Y coordinates for each point are
listed and enclosed by parentheses. Another set of parentheses enclose the
entire set of points for each character.

The length of each character statement is limited to 9 continuation state­
ments as in regular FORTRk~, but there is no practical limit to the number of
characters in the list. Several characters may be listed in the same character
statement if the number of continuations does not exceed nine.

Example:

823 character 0((30,54)(30,53)(30,52)(30,51)(30,50)(30,47)(31,45)
1(33,44)(34,44)(35,44)(37,45)(40,47)(40,50)(40,51)(40,52)(40,53)
2(40,54) (37,56) (35,57) (34,57) (33,57) (31,56)) ,p((30,44) (31,44)
3(32,44)(33,44)(34,44)(35,44)(36,45)(37,46)(37,47)(36,50)(35,51)
4(34,51)(33,51)(32,51)(31,51)(30,45)(30,46)(30,47)(30,50)(30,51)
5(30,52)(30,53)(30,54)(30,55)(30,56)(30,57))

To denote a space or a charact er with no points, use ((,)). To denote the
special carriage return character, use ((-)).

A character number is assigned to each character according to its position
in the list. The first character (position 0) should be a dummy.

Example:

899 character dmy((,)),a((30,57)(30,56)(30,55)

For more detailed information about character plotting, see Appendix R.

1l-J

c

The Assign Statement

Form:

ASSIGN NAMEl(octal input number),NAME2(octal input number), ...

Example:

734 assign go(OS6) ,stop(073),a(101),b(102) ,m(116),kerase(177) ,nl(061),
ln2(062),n3(063) ,n4(064) ,nS(06S) ,n6(066) ,n7(067),n8(07 0),n9(07l),
2nO(060),kspace(040),comma(074)

Each key on the PLATO keyset sends an octal input to the computer when the
key is pushed. The assign statement gives a symbolic name to each of these in­
puts used in a lesson. The keyset has 96 unique inputs to the computer and the
maximum number of assigns is 128. Octal input 000 should be avoided since it
is the input of every key when the break button is depressed!

A logical key number is given to each key according to its position in the
assign list. If PLATO routine TRANSFR is used in the lesson, the first assign
must be a dummy.

Example:
(dmy is logical key number O.

732 assign dmy(140),go(OS6),stop(073), ... go" I: " " 1 .
stop" II II " 2 .)

A character and a key may have the same name, but in calculations the dis­
tinction must be made clear by the use of PLATO routine KEYCHAR, or the key
number will take precedence over the character number.

Each octal input may have only one name, but a name may have more than one
octal input.

Example:

740 assign go(OS6 , 177) correct

740 assign go(OS6),go(177) incorrect- go(177) will replace go(OS6)

740 assign go(OS6),cont(OS6) incorrect

For further information about the PLATO keyset, see Appendix C.

* The break key disengages all the keys and is commonly used to prevent disruption
of the program while keycaps are being attached to the keyset.

15

c

The Group Statement

Form:

GROUP GROUPl(NAMEl,NAME2,NAME3~NAME4,NAME8),GROUP2(NAMElO,
INAMElS,GROUPl,NAME20)

Example:

644 group alpha(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z),
lnum(nO,nl,n2,n3,n4,nS,n6,n7,n8,n9),alphnum(alpha,num),alfpunc(cr,
2period,comma,qmark,hyphen,alpha)

The group statement partitions the keyset in any number of ways in addition
to the listing of individual keys. Grouping is convenient when the same calcu­
lation is performed for several different keys and when a program decision de­
pends on a key's membership in a particular group.

A key name may appear in more than one group, and a group name may appear
in another group. The nesting of groups inside other groups has no practical
limit as long as all the elements of the groups are clearly defined.

16

Modeswitch

, '

The modeswitch section of a source program describes the teaching
rules for a lesson. The "logic", as the, teaching ru'les are called, is
a series of modes in which various keys available to the student cause
computer and system operations to be performed. E,achrnod,e is 'a listing
of the keys and their associated calculations which are "legal" (avail­
able) at a particular point in the lesson.

Example:

100 mode intro
keys cont
cal c nxtpage
next mode one

The mode described above is named "intro." It has one legal key,
"cont", which when pushed dutinga student run will trigger its assoc­
iated calculation,_ '''nxtpage.'' The calculation, a FORTRAN progriUl1, lo­
cated elsewhere in th~ source pr9gram, increases the slide number by 1
and displays the next slide. When the calculation, ''nxtpage tl , is com':' .
pleted the,.~student is in the next mode, "one"_ with a new set of avail­
able keys ~,~~ calculations.

All moa~" except the first one which is mode 0, may occur anywhere
in the modes~1t~h. The first mode is the starting point of the logic and
is the first one" entered at the beginning of a student rtm.

Logical mode ',numbers are assigned to the modes in the order 'of their
appearance in the 'modeswitch.

17

c

The Mode Statement

Form:

MODE NAME

Example:

100 mode intro

101 mode one

102 mode two

Each mode statement specifies the start of the statements which
comprise a single mode. Each mode is terminated by the start of the
next, and the last mode is terminated by any legal statements other
than modeswitch statements.

/'3

c

The Keys Statement

Form:

KEYS NAME
or

KEYS NAMEl.NAME2~ ...

Example:

100 mode intro
keys cont (a single key)

keys alpha (a group of keys) .
keys nl~n2,n3 (several keys)

Each keys statement in a mode gives the name of a key which is "legal"
(available) in that mode. Only those keys which are legal need to be listed.
If a key is not listed and therefore "illegal", the PLATO routine J RING,.
which causes the keyset light to flash, is automatically the calculation for
that key and the current mode is re-entered.

The field of statements applying to a key is terminated by another keys
statement or by a mode statement.

The Calc Statement

Form:

CALC NAME
or

CALC NAMEl,NAME2, ...

Example:

102 mode two
keys cont
calc nxtpage

keys go
calc numpage, plotnurn

Each calc statement gives the name of the calculation. a FORTRAN
program, to be executed when the key listed in the preceding keys state­
ment is pushed. If a calc statement is not listed after a keys statement,
the PLATO routine, NOCALC, is automatically the calculation for that key.

Logical calc numbers are assigned to the calcs in the order of
their appearance in the modeswitch. Any calc in the lesson may be called
by another calc.

Two successive calc statements associated with a keys statement will
result in the overwriting of the first calc by the second.

TI1e En try Cal c

Example:

102 mode two
calc setup

A calc statement immediately following a mode statement will cause the
specified calculation to be executed each time the mode is entered, unless
the mode is re-entered by pushing an "illegal" key.

An entry calc in the first mode of the modeswi tch will not be executed
on initial entry to the mode at the start of a student run. It will be ex­
ecuted, however, on re-entry when a "legal" key is pushed , ... hich does not
change modes or when the first mode is entered from another mode.

c

The Next Mode Statement

Form:

NEXT MODE NAME

Example:

100 mode intro
keys cont
calc nxtpage
next mode one

101 mode one

Each next mode statement gives the name of the mode to be entered when
the key in the preceding keys statement is pushed and the calculation (if
any) associated with that key is completed.

"&/

If a keys statement does not have a next mode statement associated with
it, the current mode is re-entered automatically.

Mode changes can also be made inside FORTRAN calculations. See the
section, Executable Logical Statements.

c

The Force Key Statement

Form:

FORCE KEY NAME

Example:

104 mode m40
keys n7
calc metal
force key nS
next mode m43

107 mode m43
keys nS
calc medium
next mode mSO

The force key statement gives the name of the key to be forced after
the key specified in the preceding keys statement is pushed. In effect,
the force key request is put into the request list ready for processing
just as if the student had pushed the key.

In the above example, pressing key n 7 while in mode m40 wi 11 execute
the calc, "metal", and cause key request nS to be put in the request list.
The next mode, "m43 " , is then entered and key nS, already in the request
list, immediately triggers the calc, "medium. II

Keys may also be forced inside FORTRAN calculations. See Executable
Logical Statements in this section of the manual.

C

The Copy Mode Statement

Form:

COPY MODE NAME

Example:

103 mode three
copy mode two
keys alpha
calc a1fp1ot
next mode four

The copy mode statement creates another mode like the mode whose name
is given in the copy mode statement. The statements following the copy
mode statement are additions and/or exceptions to the mode being copied.

Example:

102 mode two Mode two has 3 keys and 2 mode changes
keys cant
calc nxtpage
next mode four
keys alpha
calc alfplot
keys num
calc nump10t
next mode four

103 mode three Mode three has the same 3 keys~ but 3 mode
copy mode two changes
keys alpha
calc alfplot
next mode four

The copy mode statement can be used to add keys and ca1cs, replace calcs
and to add and replace next modes.

The Same As Statement

Form:

SAME AS NAME

The same as statement is identical to the copy mode statement.

c

Student Bank

The Student Bank Statement

Form:

STUDENT BANK NAMEl,NAME2, ARRAYl(Nl),ARRAY2(Nl,N2),NAME4, .. .

Example:

200 student bank ix,iy,nchar,karlist(16),kountl,jflag,jpp,nkey,
lns,itim,jarray(4,5),kount2

The student bank statement provides a block of memory storage for
student variables. This storage bank is duplicated automatically to
give each student his own unique bank of variables.

All variables which are specific or unique to a student and vari­
ables which are referred to following a possible equipment-busy inter­
ruption of an output calculation must appear in a student bank statement.
Since a calculation may be interrupted during output of information to
the PLATO equipment, the variables for the interrupted student must be
saved in his bank to avoid changes made for another student using the
same calculation.

Indices of DO loops may appear in the student bank and must appear
there if an output of information is made inside the loop. Student bank
arrays may have as many as three dimensions.

Student bank 10cation(0) is automatically the number of the next
mode, and location(l) is automatically the force key, if any. If there
is no force key, location(l) equals 255. The names defined in the stu­
dent bank statement begin at 10cation(2).

Student bank statements may be placed before the FORTRAN calculations
or inside an individual calculation before the first use of the names de­
fined. TIle value of every student bank variable is initially O.

The beginning address of the student bank for the student whose key
is currently being processed is contained in index register 6.

c

PLATO Calculations (FORTRAN Programs)

Each calculation is written as a full FORTRAN program, subroutine, or
function* in normal format, complete with its subroutines which may be used
by any other calculation. A calculation is begtm with a Program, Subroutine,
or Function statement which must contain a name. This is the name to l'lhich
the Calc statement in the modeswi tch refers. Names of PLATO system routines
may not be used as calculation names (See Part IlIon Program Construction­
Naming of Variables).

A program, subroutine, and function must be terminated by a single End
statement and an x. The x statement is a do-nothing statement which follows
each End statement to improve the readability of the print-out.

Example:

404 program pltcalc
call erase
ix = 70
iy = 180

(This calculation plots sentence 14
beginning at coordinates 70,180.
Sent14 has 22 characters.)

nchar = 22
karlist(O) = -1
call plot(ix,iy,
end

karlist,nchar,sent14)

x
405 program comment

The last calculation (the end of the entire source program) is termi­
nated by an End, Finis, X, and a BCD end-of-file:

492 program name
c this routine plots each character as it is pushed
c to form the student's name on the screen

inkount = inkotmt + 1
if(inkotmt - 18) 1,2,2

1 call key(nkey)
call key char (nkey ,karlist (1))
ix = 70 + 7 ' (inkotmt - 1)
iy = 96
nchar = 1
call plot(ix,iy,karlist,nchar)
return

2 call ring
end
finis
x

A calculation with arguments cannot be used as a calc by itself, but may
be called from another calc. The placement of a calc with arguments in the
list of calculations is arbitrary.

* No subroutine may be called in a function if the value of the ftmction is
to be returned to the calling program.

C

PLATO Format

The PLATO Format Statement

Form:

PLATO FORMAT ARRAY ,NPERWORD ,A(SPACE) SENTENCE (PERIOD)

Examples:

300 plato format sentI, 8, welcome (kspace) to (kspace)plato(period)

302 plato format sent3,8,this(kspace)is(kspace) lesson (kspace) (nl)
1 (n4) (period)

The PLATO format statement packs character numbers into an array.
The array name is automatically placed in internal common and may not
appear in a DIMENSION or CO~~ON statement. Once defined, the array may
be referenced by any calculation.

NPERWORD is the number of characters to be packed per computer word.
If the total number of characters in the lesson is:

less than or equal to 2, NPERWORD must be less than or equal to 48
11 II 4, " II " 24
II II . 16, II 11 II 12
II " 64, II II II 8
11 II 128, " II II 6
II II 256, II II II 6
II II 512, II II II 5

NPERWORD is followed by a list of character names which form the sen­
tence or message. If the names are only one letter long, like the alphabet
characters in the examples above, they need not be separated from each other.
If a name contains two or more l e tters, such as "kspace", it must be set off
from the others by parentheses, (kspace).

The total number of computer words generated by a PLATO format statemenT
is:

((no. of chars. in sentence)/NPERWORD + (1 if remainder, 0 if not) + 1)

The first word of a PLATO format array is a code word containing (NPERWORD-l)
in the upper address and (shift per character) in the lower address.

PLATO format statements may be placed before the FORTRAN calculations
or inside an individual calculation before the first use of the sentences
and names they define.

c

Executable Logical Statements (to be used in calculations)

1. FORCE = NAME Causes the forced key to be that whose name is specified.
In effect, this statement overrides the Force Key state­
ment in the modeswitch. A forced key may be specified in
a calculation even though a corresponding Force Key state­
ment does not exist in the modeswitch.

2. IN(KEY~GROUP)YES,NO This statement is used to determine whether a key
is contained in a given group. In calculations, group
names may be used only within an In statement. The state­
ment must be followed by two statement numbers. Control
will go to the first if the key is in the group and to the
second if it is not. The In statement is preceded by
CALL KEY(I), a PLATO system routine:

3. MJDE = NAME

Example: call key(nkey)
in(nkey,alpha)5S,3l

Causes the next mode to be the mode whose name is specified.
In effect, this overrides the Next Mode statement in the
modeswitch for one time. No mode change may be made in an
entry calculation, so assign a dummy key and force it inside
the entry calculation:

Example: mode two
calc ntry (The calc contains force = d~y.)
keys dmy
next mode four (The mode change occurs here.)

4. NAMEI = NAME2 Causes the numerical value of NAME2 to be stored in the lo­
cation of NAMEI. NAME2 may be a key name, a character name,
or a mode name. NAMEl may be a variable or array or student
bank variable. If a key and a character have the same name,
the key takes precedence. The corresponding character num­
ber can be obtained by CALL KEYCHAR(I,J), a PLATO system
routine.

S. XINCRMr = N
= XINCRMf*()+() (any mathematical expression)

Statements of the first type above cause the X increment for
base address used in plotting to be reset to the value of N.
It is wise to fix the X increment only once during the pro­
gram, since it affects plotting for all students.

Statements of the second type permit use of the value of the
X increment in calculating starting coordinates, etc.

2.7

6. YINCRMf = N The Y increment for plotting. It may be used exactly like
XINCRMf = N.

7. XMAXMUM = N The X maximum for plotting. It may be used exactly like
XINCRMT = N.

8. YMAXMUM = N The Y maxi mum for plotting. It may be used exactly like
XINCRMr = N.

c

c

PLATO System Routines (to be used in calculations)

1. CALL AUDIO(N) Selects audio effect N.

2. CALL BKSP(X,Y,N) Backspaces the plotting coordinates for base address
N times. Tests for X or Y equal to O. Resets X and Y back
to XMAXMUM or YMAXMUM as required. Upon exit, X and Y con­
tain the new coordinates, respectively. N remains unchanged.

3. CALL ERASE Completely erases the student's storage device. Upon exit,
the storage device is set to ''write. It

4. CALL EQUIPl Activates special equipment #1.
CALL EQUIP2 It 11 " #2.
CALL EQUIPS " " " #3.

5. CALL INTRUPT Causes the calculation to be interrupted at this point to
process requests from other students. When all other requests
are processed, this routine automatically comes back to con­
tinue where the calculation was interrupted.

6. CALL KEY(I) Stores the number of a key being processed for a student in
location I.

7. CALL KEYCHAR(I,J) Takes the key number stored in location I, find the
number of the character whose name is the same as the key and
stores the character number in location J. If there is no
character of the same name, a 0 is stored in location J.

8. CALL NXTLINE(Y,N) Moves the Y coordinate for base address down N lines
without changing X. If YMAXMUM is exceeded, YINCRMT is reset
to 0 as required. Upon exit, Y contains the new coordinate
and N remains unchanged. .

9. CALL PACK(NPERWORD,PACKLIST,KARLIST,N) Packs N character numbers in
array KARLIST, beginning at KARLIST(l), into the array PACK­
LIST, beginning at PACKLIST(l). NPERWORD is the number of
characters from karlist to be packed into each word of PACK­
LIST. PACKLIST(O) contains (NPERWORD-l) in the upper address
and (shift per character) in the lower address.

c

NOTE: The next two plot routines are essentially the same routine except
for the number of arguments. If PLOT with 4 arguments precedes PLOT with
5 arguments in the same calculation, give the first PLOT statement a fifth
(dummy) argument.

10. CALL PLOT(IX,IY,KARLIST,N) Plots N equential characters on the stu­
dent's television screen beginning at IX,IY. When the
series of plots is completed, N, KARLIST(O), IX and IY
are altered:

N' = 0
KARLIST(O) = 0
IX' = IX + N * XINCRMT. Whenever IX' is greater than

XMAXMUM, IX' is reset to O. If the number of
characters plotted after IX' is reset to 0 is
M, IX' = 0 + M * XINCRMT.

IY' = IY + (no. of times IX' was reset to 0) * YINCRMT.
Whenever IY' is greater than YMAXMUM, IY' is reset
to O. I f the number of additional times IX' was
reset to 0 is M, IY' = 0 + M * YINCRMT.

IX, IY, and N must be integer (fixed point) variables in
the student bank. KARLIST must be an integer FORTRAN
array of at least one dimension in the student bank.

If KARLIST(O) is not changed before calling PLOT, it is
automatically 0 since all student bank variables are 1n1-
tially O. PLOT sets KARLIST(O) to 0 each time a plot is
completed. When KARLIST(O) is 0, karlist is assumed to
contain right-justified numbers stored in reverse order to
the direction of subscripting:

KARLIST(l)
KARLIST(2)

KARLIST(N-l)
KARLIST(N)

contains the last character to be plotted
contains the next-to-Iast character

contains the second character
contains the first character

All locations of KARLIST are unchanged when the plot i~
completed and the storage device is set to "read."

11. CALL PLOT(IX,IY,KARLIST,N,PACKLIST) The addition of PACKLIST as an argu­
ment is essentially the combination of UNPACK and PLOT.
If KARLIST(O) was set to -1 since the last plot for this
student, the PACKLIST option will be selected. PACKLIST
must be a FORTRfu~ array and must have been packed by a
routine \'lhich places (NPERWORD-I) in the upper address and
(shift per character) in the lower address of PACKLIST(O) .

Subsequent words of PACKLIST must contain NPERWORD charac­
ter numbers in each word, packed in sequence from left to
right, with the entire word left-justified if there are
any unused bits.

With the PACKLIST option, KARLIST(O) and KARLIST(l) are used
for temporary storage during plotting. Upon exit,
KARLIST(O) = 0, KARLIST(I) = last character plotted, and
the storage device is set to "read."

"5D

c

12. CALL PLOTG(IX,IY,KARLIST,N)
CALL PLOTG(IX,IY,KARLIST,N,PACKLIST) Plots exactly like the other PLOT

routines, but does not automatically set the storage de­
vice to "read" when the plot is completed. The charac-
ters plotted by PLOTG are not visible on the television
screen until the student's storage device is set to "read"
ei ther by a subsequent plotting routine or by CALL READ,
another PL~TO system routine.

13. CALL PRVLINE (Y ,N) Moves the Y coordinate for base address up N lines
without changing the X coordinate. Tests for Y = 0 and
resets Y = YMAXMUM as required. Upon exit, Y contains
the new coordinate and N remains unchanged.

14. CALL READ Sets the student's storage device to the "read" state.

IS. CALL RING Flashes the error light on the student's keyset. The
light is turned off when the next key is pushed. The
only way the light can be turned off is by pushing the
next key.

5/

16. CALL SELRASE(X,Y,N) Selectively erases the storage device at N sequential
character positions, starting at X,Y. When the series of '
selective erases is completed, X, Y, and N are altered:

N' = 0
X' = X + N * XINCRMT. Whenever X' is greater than XMAXMUM,

X' is reset to O. If the number of character posi­
tions erased after X' is reset to 0 is M, X' =
o + M * XINCRMT.

Y' = Y + (no. of times X' \vas reset to 0) * YINCRMT.
Whenever Y' is greater than YMAXMUM, Y' is reset to O.
If the number of additional times X' was reset to 0
is M, Y' = 0 + M * YINCRMT.

17. CALL SLIDE(N) Selects the slide whose number is contained in location N
of the student bank. If the slide number is always the same
in a particular calculation, N may equal the slide number
itself. N must be less than or equal to 121. N is modulo
128; presently 122 to 127 are blanks.

18. CALL SPACE(X, Y ,N) Spaces the coordinates N times. Tests for XMAXMUM
and Y~~MUM exceeded as PLOT does. X and Yare correctly
altered upon exit. N is unchanged.

c

19. CALL UNPACK(PACKLIST,KARLIST,N) Unpacks N character numbers of
PACKLIST into KARLIST in reverse order, starting at
KARLIST(N). Thus KARLIST is suitable for use with PLOT.
PACKLIST must have been packed by a routine which places
(NPERWORD - 1) in the upper address and (shift per
character) in the lower address of PACKLIST(~), such as
PACK or the PLATO Format statement.

20. CALL WRITE Sets the student's storage tube to the write state.

c

Other PLATO Systems Routines on the Master Tape (to be used in calculations)

1. CALL CONNECT(Nl,N2) This subroutine will create a fictitious input,
according to the arguments given and place it in a proper
place in the request list. NI is the key name and N2 is
the student number. It \'lill appear as though student N2
pushed key NI, thus making intercommunication between
student stations possible.

Example: call connect (n4,12)

2. CALL GETPUT(IWORDI,IPOSl,IWORD2,IPOS2) This subroutine is a special
case of TRANSFER. It puts the contents of character
position IPOSI of IWORDI in position IPOS2 of IWORD2 with­
out destroying the contents of the other character positions
of IWORD2. Upon exit only IWORD2 is changed in any way.

The subroutine treats each word as 8 s"ix-bi t characters
numbered from the left.

EXample IWORDl IWORD2

IAIBlclDIEIFIGIHI

CALL GETPUT(IWORD1,3,IWORD2,8) would result in:

IWORDI IWORD2

IAIBlclDJEfFIGIHI IIIJIKILIMINlolCl
_I __________________ ~t

3. CALL GETPUT2(IWORDI,IPOSI,IWORD2,IPOS2) This subroutine, like GETPUT,
is a special case of TRANSFER. It puts the contents of
two adjacent characters beginning at IPOSl of IWORDI into
two adjacent positions of IWORD2 beginning at position
IPOS2. Upon exit only IWORD2 is changed in any way.

The subroutine treats each word as 8 six-bit characters
numbered from the left.

4. CALL RDBANK(IWI, ISTVAR, ISTNUM) This subroutine reads from a student
bank. It places the contents of the student bank variable,
ISTVAR, for student number,ISTNUM, into location IW1. ISTVAR
must be a student bank variable.

5. CALL STBNK(IWI, ISTVAR, ISTNUM) This subroutine stores into a student
bank. It places the contents of IWI (which may be any
type of constant or variable) into the student bank
location, ISTVAR, of student number ISTNUM. ISTVAR must
be a student bank variable.

c

6. CALL SET6(ISTUD) This subroutine allows one student to reference
another student I s bank. After a "CALL SET6 (ISTUD)",
all subsequent operations involving student bank variable
names will use the values foudn in student ISTUD's bank
until "CALL RESET6" or an external operation such as
PLOT, ERASE, etc. is performed. After such an external
operation, the program is in an undetermined state.
Therefore, it is necessary to perform either a SET6(ISTUD)
or a RESET6 if any further student bank references are
made.

Example CALL SET6(ISTUD)
II = 5
CALL PLOT(IX,IY,KARLIST,II)

The above sequence will plot the five characters from
student bank ISTUD. If no further student bank operations
are to be performed in the calculation, no reference to
index register 6 has to be made. To be sure that each
student is referencing his own bank a "CALL RESET6" must
follow. To be sure that operations continue in the ISTUD
bank, a "CALL SET6 (ISTUD) is sufficient only if ISTUD is
a constant or a non-student-bank variable. If ISTUD is a
student bank variable, two statements are required:

CALL RESET6
CALL SET6(ISTUD)

This last is due to the fact that one cannot simultan­
eously re ference two student banks using SET6.

7. CALL RESET6 This subroutine resets index register 6 (and hence all
student bank operations) to the appropriate value for
the student whose key is currently being processed.

8. CALL TRANSFR(LISTl ,NBG.NCH, IQUIV, I GNORE , KOUNT , KOMPARE ,KARFIND ,NFINBG. LIST2)
This routine is a mUltipurpose character handling subroutine,
based on 6-bit character numbers. It picks up a string of
characters in an original list, LISTl, starting at a specified
position in the list and transfers them to a final list,LIST2,
subject to various tests.

TRANSFR has 10 arguments. The locations used by these argu­
ments should be reserved by the Student Bank statement or by
a DIMENSION statement:

LIST!

NBG

NCH

The original storage of (packed) characters.

The position to indicate where to start \'1ith refer­
ence to LIST!

The number of characters in LISTI to be examined
starting at NBG

C

Example:
character positions with
reference to kans:
1 through 8
9 through 16
17 through 24

With reference to kans(O): nbg = 12
nch = 7
call transfr(kans,nbg,nch, •..

With reference to kans(2): nbg = 4
nch = 7

IQUIV

IGNORE

KOUNT

KOMPARE

KARFND

NFINBG

LIST2

call transfr (kans (2) ,nbg,nch, ...

Contains pairs of characters to be treated as equi­
valent

Contains characters to be ignored completely. These
characters are not included in the NCH count.

Contains characters to be only counted in the NCH
count.

Contains characters to be tested against

Contains the character, if any, found in KOMPARE

The position to indicate where to start with refer­
ence to LIST2

The final storage for characters which pass the IGNORE .
KOUNT, and KOMPARE tests, starting with NFINBG in
packed form

LISTl, IGNORE, KOUNT, KOMPARE and LIST2 can be single wO~'d var­
iables or arrays of any length. Pack 8 character numbers per
word, left-justified. For IGNORE, KOUNT and KOMPARE, the ter­
mination character 008 must always follow.

IQUIV also can be a single word variable or an arry of any
length. Pack 4 equivalent pairs of character numbers per word,
left-justified. The termination character 008 must always
follow.

LIST2 may be IQUIV, IGNORE, KOUNT or KOMPARE, that is to say
the banks may be constructed as tests proceed.

MTY, a single word variable, must be reserved in COMMON, if a
test is to be skipped. ~ITY is the dummy argument. Store a
-0 (minus zero) in this location.

c

Calling Sequence for TRANSFR:

1. Set NBG, NCR and NFINBG. The values of these three arguments must be
equal to or greater than 1. If NFINBG is ° or negative upon entry to
TRANSFR, the restoring process will be skipped.

2. Call TRANSFR with the arguments desired.

a) LISTI, IQUIV, IGNORE, KOUNT and KOMPARE may be subscripted with
any integer. If the location given contains 0, TRANSFR assumes
that it is the beginning of an array and processing starts with
the next word.

b) LIST2 ~ be subscripted if it is an array, for characters will
be stored in LIST2 starting at the location given in the calling
sequence.

c) If one wishes to skip various tests, write MTY in place of IQUIV,
IGNORE, KOUNT, KOMPARE, KARFND and NFINBG when desired.

Example call transfr(listl,nbg,nch,mty,ignore,kount,mty,mty,mty)

This sequence of arguments will skip !!equivalent 'l , "compare!!
and "restore." The LIST2 argument may be dropped.

d) If the first character in IQUIV, IGNORE, KOUNT or KOMPARE is OOS'
that test will be skipped.

Upon exit from TRANSFR:

1. If NBG or NCH were zero or negative upon entry to TRANSFR, it will exit
immediately with NCH=O and KARFND= -0 (error exit).

2. Characters found in IGNORE, KOUNT and KOMPARE are not restored in LIST2.

3. When the "compare" test is included the main FORTRAN program should
check, upon returning, to see if KARFND=O.

a) If a character in question is found in KOMPARE, exit from TRANSFR
will occur with character found in KARFND and proper values in
NBG,NCH and NFINBG. These are already incremented or decremented
to be ready for the next character.

b) If no character from LISTl is found in KOMPARE, exit from TRANSFR
will occur with KARFND=O, NCH=O. NBG AND NFINBG are incremented
to be ready for the next character.

4. When the "compare" test is skipped, exit from TRANSFR occurs when NCH=O
NBG and NFINBG are incremented as if ready for the next character.

c

Remarks

1) STOP and PAUSE Statements are not allowed.

2) FORTRAN Machine Language may be employed when necessary.
However, care must be taken to insert index register 6
wherever the operand address refers to one of the student
bank variables.

3) The contents of location 0, which may be sampled at any time
by the program, gives the elapsed time, in 60ths of a second,
from the start of a CATO program.

"37

C. PROGRAM COMPILATION AND EDITING

Compiling

To compile a PLATO program:

1. Put the PLATO Haster Tape (#100) on tape unit l.
2. Put a scratch tape on tape unit 2. The binary version of

the program will be written on this unit if the program compiles.
3. Put the program source tape on unit 3 or 4.
4. Push the autoload button.
5. Type: cato,etc.; as described belm.".

CATO,I,L,O,P,S,M,E. This routine compiles a PLATO program and
lists the PLATO source program and FORTRAN errors if desired.
If the source tape is correct, a binary version of the pro­
gram is written on the medium specified by argument O. If
argument 0 is a zero, the binary version is written on tape
unit 2 and an automatic CATORUN,NAME,2,1,P. puts the program
in memory ready to run.

I =
L =
0 =
P =
S =
M =
E =

Example

3 =
1 =
~ =

p =
p =
p =
p =

input medium (PLATO source tape)
FORTRAN library medium (PLATO master tape)
output medium for binary version of the program
source language output medium
symbolic modeswitch output medium
MAP (symbolic machine language) output medium
error listing medium

Type: cato,3,1,0,p,p,p,p.

PLATO source tape on unit 3
PLATO master tape on unit 1
binary version of the program written on tape unit 2
and read into memory ready to run
source language (SCD) output on printeJ symbolic modeswitch output on printer complete printout
~~P language output on printer of compilation
error listing on printer

c

Errors

Error Messages During Compilation:

1. alphabet name needed - FATAL error. This message will appear immediately
after the statement where the name is needed.

2. assignment interpreted modulo 128 - NON-FATAL error. The octal input number
given in the assign statement is greater than 2008'

3. coordinate oversized - FATAL error. A coordinate in the character statement
is outside the 64 x 64 plotting area for a character.

4. directive out of order - FATAL error. A modeswitch statement precedes the
first mode statement or some statement in a mode des­
cription is in the wrong place.

5. extra comma - NON-FATAL error. There is an extra comma somewhere in the
statement.

6. illegal subroutine name used - FATAL error. A calculation name LISTARG,
DELTARG or RING was used as a calc name.

7. (list) are circularly defined - FATAL error. This message refers to a set of
modes. There is no basic mode in the references which
is clearly and fully defined.

8. (list) are undefined modes - FATAL error. A mode name is given which hac
corresponding mode in the modeswitch.

9. (list) were circular - FATAL error. This message refers to groups. There i s
no basic group in which all the keys are clearly and
fully defined.

10. (list) were unassigned - - FATAL error. Some group or groups are not fully
defined by assigned keys.

11. (name) already given - NON-FATAL error. Duplicate names appear in one keys
statement, mode statement, or calc statement.

12. (name) was already copied onto this mode - NON-FATAL error. The mode named
is already part of the mode being processed.

13. (name) was reassigned - NON-FATAL error. A key name has been used twice in
the assign statements.

14. (name) was reshaped - NON-FATAL error. Coordinates for one character name
have been given twice.

15. no characters given - NON-FATAL error. A character statement with no coor­
dinates exists.

16. numeric name needed - FATAL error. This message will appear after the st~ + ­
ment where the name is needed.

c

17. only one argument read - NON-FATAL error. The PLATO Compiler re ads on ly
one argument for Copy Mode, Next Mode, Same As, and
Force Key statements. No stacking of arguments.

18. plato format name already used - FATAL error. A duplicate plato form at
name appears in a different plato format statement.

19. plato format variable name con flict - FATAL error.
used i s also a character name.
plotting.

The plato format n ame
111e conflict comes in

20. possible error - NON-FATAL error. All the calcs mentioned in the modeswitch
do not have corresponding FORTRAN programs of the s ame
name.

21. storage limit - FATAL error. The total storage is exceeded. The program i s
too large for the memory.

22. student variable previously specified - FATAL error. The variable name has
appeared in a previous declarative statement.

23. student variable previously used - FATAL elTor. 111e student variable n ame
appears before its declaration as a student variable.

24. tag overflow - FATAL error. The program is too large in a particular seg­
ment.

25. (type) format error - FATAL error. The s)~tax of the statement is incorrect
(spelling, parentheses, comma, etc.).

26. undefined character name - FATAL error. A character name appears in a
FORTRAN program \'lhich wa.s never defined as a character.

27. unidentified logical key name - FATAL error. The key name appears befor e its
declaration.

28. zero characters per word given - NON-FATAL error . NPERWORD in a plate> .cormat
statement equals 0 or is not specified.

If two modes have the same name, replacement of statements within the final
composite mode of that name is indefinite. Check the modeswitch printout for
the actual composition. This error is NON-FATAL in compilation and is not tagged.

If the same key is listed twice in the same mode, replacement of the state­
ments defining that key is indefinite. Check the modeswitch printout for the
actual key definition. This is a NON-FATAL error and is not tagged.

c

Editing

EDIT,I,O,C. This routine corrects a BCD source tape; it is a FORTRAN resident
service routine. EDIT is controlled by special directives from medium C
which properly sequence insertions, deletions and substitutions as the con­
tents of the unedited source tape I are transferred to a new medium O. The
directives are:

Insert

Replace

Delete

Move &
Copy

column
1

I

R

D
blank

M

columns
2-5

statement number
or other tag

"
"
"

column
6

blank

"

"
"

columns
7-9

up to 3 decimal digit numbers
appearing anY''lhere in this field

"
11

"

columns 2-72, a complete record appearing on the source ,-
or blank for the last record of the e di t tape

Upon detecting a I, R, or D directive in column 1 of the edit tape on
medium C, EDIT copies the old medium to the new medium searching for a
record which contains a tag in columns 1-5 (2-5 if column 1 is non­
numeric) which is identical to tag in columns 2-5 of the directive.

When this record is found, the decimal digits in columns 7-9 of the dir­
ective are interpreted as an integer N, and N more records are copied.

The last record read will be called the key record and is not copied
immediately onto the new medium 0, but is held in storage. Spaces ?~~
completely ignored.

The directive then positions the input medium I at the proper place for
editing, and controls what sort of editing is to be done.

A directive record with spaces in columns 2-5 will hunt for the first
record on the old medium I which has no tag in columns 1-5, or possibly
a record with only a non-numeric character in column 1.

The I Directive

The R Directive

The records following this directive on the edit tape are
inserted in the source program after the key record. Ter­
mination is by detecting a new directive.

The record following the directive replaces the key re­
cord. Records following replace those following the key
record on a one-to-one basis. Termination is by detecting
a new directive.

lfJ

c

The D Directive The record following the directive is read and interpreted
in the same manner as the directive. Records between these
two key records and including these t\oJO key records are de­
leted. The second record must have a space in column 1, and
must be followed by another directive. At least two records
are deleted by this directive

The M Directive The M directive has a slightly different format. Its effect
is to copy the old medium I onto the new med um 0 searching
for a record identical (except for spaces) to that in columns
2-72 of the directive. Column 1 of the source medium is in­
cluded in the search. The key record thus found is the first
one examined by any of the other directives.

NOTE:

It is expected that the M directive will generally be used
to position the input medium I at the start of a given pro­
gram or subroutine.

A special M directive which is blank except for an tv! in col­
umn 1 is used as the last record on the edit tape. Upon
identifying this directive, EDIT copies the input medium on­
to the output until two consecutive records containing period
codes, " .. /1, in columns 1 and 2 are found, causing normal
exiting from the routine.

All corrections must be arrancred in the order in which the statement
b

numbers they refer to appear on the source tape on medium I. Editing
goes forward through the source tape, never backward.

c

(

Error Exits from EDIT:

Any messages typed on the typewriter indicate that errors have been de­
tected.

1. no directive - No directive letter was found in column 1 when one
was needed.

2 ••• j .. detected - The end of the source tape was reached before a
blank M directive was given.

3. format col 7-9 - A character other than a numeral appears in columns
7-9 of the present directive .

4. d format error - The second record in a 0 directive has something
other than a space in column 1.

Jump Switch Option for EDIT:

Setting J-I will cause replacement of columns 73-120 of all records from
the old source medium I with blanks (spaces) when they are transferred to
medium O.

Other Uses of EDIT:

EDIT may be used for purposes other than correcting a source program.
For instance, it may be used to position a source medium at a given re­
cord preparatory to some other operation. In such a case the control
program would be:

edit,source medium,x,correction medium

m (a record sought for)
i x(co1. 7) - a deliberate error to cause exiting from EDIT

bksp, source medium - to position the key record so it is ready to
be read again (possible only for magnetic tape) .

o

c

FORTRAN RESIDENT

'The FORTRAN resident handles the tape operations, typewriter, and
printer control, punch and reader control -- all input and output oper­
ations required to create a complete and correct source tape for a les­
son.

A low-pitched tone is heard \"hen the computer is waiting to accept
instructions from the typewriter. All typewriter and paper tape inputs
must be in lower case.

A high-pitched tone is heard when the computer is waiting to punch
or to read paper tape. When a seventh-level is read from the paper tape,
the reader stops and the high-pitched tone is heard. Depressing the
reader character-mode switch restarts the reader.

Two alternating tones are heard when the computer is waiting to print
on the line printer. Check the printer- ready button or the CSX-1604 switch.

On paper tape input and output, a flex code ~2, (question mark or
underline) acts as a tab to column 73.

Autoloading with jump-switch 1 set automatically calls FORTBIN. Auto­
loading with jump-switch 2 set automatically calls CATOCOM, so that it does
not have to be called by the CATO driver.

Stepping, clearing the console and setting the program address to 108
returns the control to the console typewriter. Setting the program ad­
dress to 2~8 has the same effect as autoloading.

Standard Argument List (for use in FORTRAN resident subroutines)

t
9 - typewriter

c
f - paper tape

1-8 - the eight magnetic tape units

p - printer

q - printer, no line format control

m - memory (a subroutine with m as an argument must be preceded by
the subroutine SET.)

x - dummy argument

c

FORTRAN Resident Service Routines (available without calling)

I. CATO,I,L,O,P,S,M,E. This routine is the driver for compiling a PLATO
source program. For users' instructions, see Part III-C,
Compiling.

2. CATORUN,I,L,X. This routine reads a PLATO binary program tape into
memory ready to run. For users' instructions, see Part II-B,
Read-Ins.

3. BKSP,N . Backspaces the tape unit specified by argument N.

4. CALL, I,NAME,NAME,... . Reads up to 10 binary programs into memory from
medium 1. If argument I is f, the reader must be in the assembly
mode. The programs named are read into unique storage but are
not executed. TIley must be called in the usual fashion.

5. CLEAR. Clears all of the memory above the resident.

6. CONTROL,I,O,E. Transfers control from the typewriter to medium I. Con­
trol statements are listed on medium O. Errors are listed on
medium E.

7. COPY,I,O. Copies from one medium to another until a BCD end-of-file (..)
is read and copied. When argument I is f, the paper tape must be
in flex code (BCD). At the end of copying, the typewriter types
the number of entries. Each entry is a120-character block.

8. COPYR,I,O. Copies one record from medium I to medium O.

9. COPYS,I,O,C. Copies medium I to medium 0 comparing columns 1-5 of I with
columns 1-5 of the directive from medium C. Spaces are ignored
When an identical record is found, the number in columns 7-9 of
the directive of medium C is interpreted and that many more re­
cords are read from I. All records but the last one are copied
onto O. If argument I is magnetic tape, a backspace over the last
record read occurs.

Example Type:

Example Type

copys,3,4,t.
208 5

copys,t,3,t.

Copies tape 3 to tape 4 until state­
ment 208 is read from tape 3. Five
more records are read from tape 3;
the first four are copied to tape 4
and tape 3 is backspaced over the
last record read. Tapes 3 and 4 are
now positioned at the beginning of
the fifth record past statement 208.

Copies the typewriter input to tape
3 until " .. " is read from the type­
writer. A space followed by a car­
riage return will erase the current
record typed if an error is made.

10. CP,I,O. Copies from one medium to another with the added verifying fe a ­
ture. Executes an automatic (REWIND,I, REWIND,O.)

COPY, I ,0.
(REWIND,I, REWIND,O.)
VERIFY,I,O.

11. DUMPS,Al,A2. Dumps the memory onto the line printer in octal. Al is the
beginning address i n octal and A2 is the final address in octal .
This routine is particularly useful for dumping the memory when
the program occupies the entire memory. W'ith this routine, there
is no need to re-load the program. For users' information, see
Part III-D, The Dumps Routine.

12. EDIT,I,O,C. TI1is routine corrects a BCD source tape. It is controlled
by special directives from medium C which properly sequence in­
sertions, deletions and substitutions as the contents of the lffi­

edi ted source tape are transferred to a new medium 0. For users'
information, see Part II I-C, Editing.

13. EFMARK,N. This routine puts a physical end-of-file mark on the tape spe­
cified by the argument number. (a physical end-of-file is a fli p ­
flop set inside the tape unit.)

14. INPUT, Il,I2. Switches input from the medium specified in the program to
another medium. Use the standard argument list to specify 11.
Permissible designators fOT 12 are:

01 - typewriter
02 reader, punch
04 - line-printer

(no line format control)
05 line-printer
06 - memory
00 empty media (discard)

21 - magnetic tape unit 1
22 " " "2
23 " "" 3
24
31 -
32
33
34

"
"
"
"
"

"
"
"
"
"

"
"
"
"
"

4
5
6
7
8

Example Type: input, f, 01. Switches the input from the reader
to the typewriter.

15. LOCK,N. Rewinds and unloads the tape specified by N.
LOCK,X1234. Rewinds and unloads all four tape units.

16. OUTPUT,01,02. This routine switches the output from the medium specified
in the program to another output medium. Use the standard argu­
ment list to specify 01. Permissible designators for 02 are the
same as those listed under INPUT,Il,I2.

Example Type: output,p,24. Switches the output from the printer
to tape unit 4.

17. PTMAR,NAME. This routine punches up to eight alphanumeric characters on
paper tape for visual identification. The first character must
be a letter.

PThfAR.

18. RESET.

Example Type: ptmar.archml

Punches 2" of blank tape.

This routine resets the input and output media, changed by
INPUT,Il.I2 and OUTPUT,01,02, back to the original media spe­
cified within the program.

19. REWIND,N. Rewinds the tape specified by argument N.
REWIND,F. Punches 6" of blank tape.
REWIND,M. Resets the memory pointer to the end of CATORES.
REWIND,P. Ejects a printer page.
REWIND,XNFMP. Performs all the above.

20. RUN.
RN.

21. SAVE.

22. SET,M.

These routines execute binary FORTRAN programs.

This routine causes the present memory bank to be saved if further
programs are called.

This routine allows the use of memory as a tape mit. M must be
a memory address given in octal. The memory length is set to o.
This routine must precede any resident routine with m as an argu­
ment.

23. SKIP,I,NAME. Skips tape I until a record beginning with " •• NAME" is read.
SKIP,X. Skips past the first record beginning with " •. ".

24. TRANSFER,I,O,N~ffi. This routine copies binary programs from ,~a L to, t~ ° up to but not including the named program. By using argument x,
the tape may be positioned without copying. " ,

Example Type: trans fer, 1, x, endfi Ie. Moves tape I to the end-of-
file ready to add programs.

117

Example Type: transfer,l,x,name. Moves tape l ' to the beginni~g
of the named program.

ExamEle Type: transfer,4, f. Copies binary tape 4 to the punch.

25. VERIFY.I,O. Compares tape I with tape 0. Tapes must be in BCD format.
Verification continues until " •. II is read. The typewriter prints
the number of entries (120-character blocks) that have been veri­
fied. Error printout will give the block number after which the
error occurred and a listing of the two blocks involved. Verifi­
cation will continue after error printout.

26. VFYLIB,I,O. Compares binary tape I with binary tape 0, counting the pairs
of blocks compared. Error printout is the number of the pair of
blocks containing the error.

c

D. CODECI-lECKING INFORi\1ATION

Running a Program

After the program is compiled, it is necessary to run the lesson to
test whether the FORTRAN programs perform the intended functions with the
PLATO equipment and to be sure that all the alternative moves associated
with the teaching rules have been included and provided for throughout the
program. To accomplish this, the programmer and/or teacher of the lesson
need to put themselves in the position of a student operating the keyset
and viewing the lesson material.

Follow the directions given in Part II-B on reading in a program as a
student run. Be sure to test all the segments of the logic thoroughly.

Master Keyset Operation at the Console

There is a PLATO master keyset and television screen in the computer
room \'lhich will allow the programmer to run his program while at the com­
puter console. It is convenient for pushing keys and checking program op­
eration simultaneously in the debugging process of developing a lesson.

111e master keyset is equipped with a set of buttons for selecting any
student stations for operation or viewing by the programmer, author, or
teacher of a lesson. Manual selection of a student number (in binary) may
be made at any time by pushing the buttons for that number. 111e master key­
set selector controls are diagramed below:

0 @)

1 @

2 @)

3 @

4 ®
clr @

master kset to st 30
\ lock ®

unlock @
master vid 1 to m kset

I lock @
unlock @

door light 0 D 0 0 R @)
clr~

power light 0 P OWE R 0

o off
warning

student number
selector buttons
and lights (binary)

video selection

door button connects
PLATO equipment to
the computer.

o

c

Diagnostic J-2 Doping

Running a program with J -2 set, resul ts in a printout of the keys
pushed and the calculations performed during a trial diagnostic run.
The printout also gives the sequence of mode changes which occur with
each key input. Putting J-2 up during execution causes an on-line print­
out to occur in the following form:

STUDENT

000
002

KEY

023
012

MODE

005
001

CALC

021
004

(in octal)

The printout of DOPE will occur on the console typewriter if 'CATORES
was entered with a zero in the accumulator. Otherwise, if the accumulator
was non-zero, the printout will occur on the line printer.

c

--

Examining the Contents of Specified Memory Locations

It is possible to print the contents of specified memory locations in
a program vlhenever desired and to continue on with the program \~here it was
interrupted; i.e., with undisturbed "common", "student bank", and related
banks such as "modebank" , "justdone", etc.

To accomplish this:

1. Step. Master clear up and down.

2. Set the "program address" to 10 for typewriter control. Start.

3. Print the contents of the desired locations by using the "dumps
routine, as described be 1m., •

4. Clear. Set the "program address" to 4201 (the entry to RESTART).

5. Start. When the channel 5 light comes on, continue with the run.

NOTE: If the program has been stopped due to programming errors, it may
or may not be possible to continue by RESTART depending on the nature of the
errors.

The DUIvIPS Routine

50

DUMPS,AI,A2. Dumps the memory onto the line-printer in octal. Al is the be­
ginning address in octal and A2 is the final address in octal.
This routine is particularly useful for dumping the memory when
the program occupies the entire memory. There is no need to re­
load the program. The format of the printout is similar to that
of the ILLRES routine, SNAPSHOT, except:

a) It will print out a line of stars if the contents of one
or more full lines are the same as the last word printed
and the first \~ord of the next line printed.

b) It will print out a line of dots after printing the last line .

For information about CATORES tables and constants (contents, beginning
addresses, etc.), see Appendix D.

c

Making an Autoloadable Binary Tape

A. Starting with a source program tape:

1. Put the PLATO Master tape (#100) on tape unit 1, the source program
on unit 3, and a scratch tape on unit 2.

2. Put the tape for the autoloadable binary on unit 4. (ring in)

3. Type: cato,3,1,0. (The program will be compiled and read into
memory.)

4. When the console lights, push the door button and Start.

5. Step. Clear up and down.

6. Set the "program address" to 04203 (entry to PROGSAVE).
Set the "accumulator" to 1.

7. Start. The autoloadable binary will be written on tape unit 4.

B. Starting \'Jith a binary program tape:

1. Put the PLATO Master tape on tape unit 1, the binary program tape on
unit 2.

2. Put the tape for the autoloadable binary on unit 4. (ring in)

3. Type: catorun,2,I,x. (The program will be read into memory.)

4. Follow steps 4 through 7 above.

s J

c

L

Drivers (CATORES)

1. CATORES - 04000. Resets all necessary tables, clears student bank and
common, and begins the execution of the program currently in memory.

Accumulator options for CATORES:

ACC = 0
ACC = (non-O)

J-2 printout occurs on the console typewriter.
J-2 printout occurs on the line-printer.

2. ENDOPE - 04200. The program to end a dope tape on tape unit 2. This
causes all the necessary special records (end-of-session, end-of­
dope-tape, and end-of-file) to be written. This program stops
ready to jump immediately to the RESTART program. For more infor­
mation, see Part II-B, Emergency Procedures.

3. RESTART - 04201. The program for the continuation of a run which has been
interrupted. The dope tape must be on tape unit 2 and must have an
end-of-dope-tape mark after the session to be restarted. The "stu­
dent tables" (student bank, mode bank, justdone, ...) and "common ll

are not reset. The clock is reset. Upon entry to RESTART, the jump
switch settings are checked. For more information about the use of
RESTART, see Part II-B, Read-Ins.

4. SPECTRE - 04202. The simulation program executing transcribed reruns of
PLATO sessions. This program uses DOPE on tape unit 2 to simulate
doped inputs. Tape 2 is never rewound. This program does not sim­
ulate simultaneous keyset inputs, but is designed to simulate many
students at once with only very slight changes in the original out­
puts to the PLATO equipment. For more information about the use of
this program, see Part II-B, Reviewing a Student Run Using SPECTRE.

5. PROGSAVE - 04203. The program to write memory onto tape unit 4 i~ the
form of an autoloadable binary version of the lesson. If J-2 is
set> tape 4 is not rewound. The FORTRAN resident, as well' as the
lesson program, is saved.

Accumulator options for PROGSAVE:

ACC = 0 When autoloaded, the program stops ready to start at
CATORES.

ACC = 1 ... starts at RESTART (does not reset student tables).
ACC = 2 ... starts at SPECTRE .

For more information about the use of PROGSAVE, see Part II-B, Read­
Ins.

c

A. JUMP SWITCH SETIINGS

No Jump Switches

If no jump switches are set, normal operation of the run will proceed
without doping. The typewriter types: DOPING SUPPRESSED. The run then
proceeds automatically.

Setting J-2

If J-2 is set until the channel 5 active light comes on, the program
will rewind tape 2 before starting to write DOPE, if doping option J-l or
J-3 has been chosen.

If J-2 is not set before the channel 5 active light comes on, and either
J-I or J-3 is set, the program will skip to the end of the DOPE tape on unit
2, which is assumed to be a correctly terminated old DOPE tape containing
DOPE from previous runs. This option allows the collection of DOPE from se­
veral runs on a single tape. The tape may run away if it was not previously
terminated correctly.

The J-l Option

If J-I is set during entry and kept set during execution, the DOPE is
written on tape unit 2, which must be ready to be written upon when the r~ ·
gram be gins.

The typewriter types: TYPE MONTH/DAY/YEAR/ID. The operator must then
type the tag by which the run is to be identified. The slashes are required
after each segment of the date. Only one identifying character may be typed
after the third slash. The message may be terminated at any point by a perio d
and , in case of a typing error, may be restarted after a carriage return.

Examples: 2/22/44.
a.
1l/28/64/a.
te/st/.

ju/ne/8.
1/1/65/7 .
///q.

The J-l option gives a record of input time of the keys, a record of the
mode at the time each key is processed. J-l gives ~ record of fictitious
keys such as force keys.

Unsetting J-l during execution causes the DOPE tape to be terminated by
an end-of-session mark, an end-of-dope-tape mark and a physical end-of-file.
The computer stops ready to execute the RESTART program. The same results
can be achieved in the case of accidental stopping of the program by startinry
at 4200b (the entry to ENDOPE).

For more information on the use of J-I, see Part II-B, Read-Ins.

~I

l

The J-3 Option

If J-3 is set during entry and kept set during execution J the DOPE is
written on tape unit 2J which must be ready to be written upon when the pro­
gram be gins.

The DOPE written with J-3 set has a slightly different form from that
written with J-1 set in that the key numbers for fictitious keys have been
increased by 400b. This does not affect the validity of the data because
the largest possible key number is l77b.

The J-3 option gives a record of the mode at the time each key is pro­
cessed, a record of input time of the keys. J-·3 also records all fictitious
keys as real inputs increased by 400b.

Unsetting J-3 during execution causes the DOPE tape to be ended just as
when J-1 is unset during execution.

c

B. DOPE IDENTIFICATION A.t~D FORMAT ON MAGNETIC TAPE

The DOPE for all students simultaneously is written on tape unit 2 in
l20-character BCD records . In each l20-character record, there are seven
l6-character blocks and a final 8-character block. Each l6-character block
is written as follows:

2 chars. = octal student number
3 chars. = octal key number (J-l set = true number)

(J-3 set = number + 400b)
3 chars. = octal mode number (J-l set = mode at the time of input)

(J-3 set = mode at the time of execution)
8 chars. = octal time in 15 ths of a second (The time recorded is input

The final 8-character block is in FORTRAN (AS) format, apportioned as
follows:

time.)

7 chars. = the identification tag, up to seven characters in length, that
was typed by the operator

11/28/64/a. results in l12864a
a. results in ~a(followed by 5 BCD blanks)
1/1/64/7. results in ~1~1647
te/st/s. results in test~s Cfollmved by 1 BCD blank)
/ /a.results in ~1i'~Ii'~a(fol1owed by 1 BCD blank)
///z. results in ~~~~~~z
g//un. results in ~g~~un(followed by 1 BCD blank)

results in ~~(followed by 5 BCD blanks)

1 char. = an indicator character which is:

1. a BCD space (20b) for an ordinary dope record
2. a BCD slash (2lb) for an end-of-session mark
3. a BCD T (23b) for an end-of-dope-tape mark

(This is always preceded by an end-of-session mark
and followed by an end-of-file.)

The clock is never 0 except in a 16-character block which contains no in­
formation, so DOPE processing routines should ignore records with time~. If
a restart (use of the RESTART program) occurs, the clock is reset to 1. Thus,
a negative time change indicates that a restart occurred. A message must be typed.

If the physical end of the DOPE tape is reached, the tape is rewound with
interlock, instructions are typed out, and the computer stops ready to go on.
In this case, the tape is ended only with a physical end-of-file to allow the
copying of this tape to a longer tape. Backspace over the physical end-of-file
on the tape, and copy the remaining DOPE (assumed to have been recorded on a
blank tape after the end-of-tape stop and subsequent continuation of the program)
on to the end of the longer tape.

5"5

o

c

C. DOPE SORTING AND ANALYSIS

1. DPLISTl - TIlis routine prints out key inputs by name vertically on the
printout page. It will print the entire tape of the number of
individual sessions desired. For users' instructions, see
Part II-B, Doping.

2. COPY,I,O - 11lis routine will dump BCD records of DOPE onto the medium
specified. For information on the use of this routine, see
Part III-C, FORTRAN Resident service routines.

r',

c

100

l

Characters to be plotted by a PLATO program are originally drawn as
a series of dots (points) within a 64 x 64 point plotting square.
The points which form the character are then translated into coor ..
dinate pairs which make up the bUlk of a Character statement in a
PLATO source program. The "A" above, in Character statement format
is as follows:

character a((30,57)(30,56) (30,55) (30,54) (30,53)(30,52}(30,51)
1(30,50)(30,47)(30,46)(31,45)(32,44)(33,44)(34,44)(35,44)(35,45)
2(37,46)(37,47)(37,50)(37,51)(37,52)(37,53)(37,54)(37,55)(37,56)
3(37,57)(31,51)(32,51)(33,51)(34,51)(35,51)(36,51))

The number of points which constitute a character is lindted to 9
continuation statements, about 88 points with a one to six letter
character name. Each named character must fit within the plotting
square. If larger symbols are desired, they must be plotted as se­
veral characters or as a single point with a changing base address.

c

l

TV Screen

Plotting Roster

The diagram above shows the size of a single plotting square in
relation to the size of the television screen and the plotting
raster. By convention, the characters are plotted in the same
posi tion on the single plotting square. This allows a standard
chart for base address to be used in specifying the location of
the square on the television screen. The characters shown above
are slightly larger than Pica type.

Character T is position 1 on line 1 - Base Address 0,0.
Character 2 is position 16 on line 8 - Base Address 105.84.
Character K is position 35 on line 16 - Base Address 238,180.

The base address always refers to the upper left-hand corner of
the single plotting square.

line 1

line 8

line 16

1 "'4~------- 256 addressable points --------... I

o

TV SCREEN

14 488 plott able points •
PLOTTING RASTER

c

PLATO III - Base Addresses for Character Plotting (6x9)

x coordinate

Char 1 - 0
2 - 6
3 - 12
4 - 18
5 - 24
6 - 30
7 - 36
8 - 42
9 - 48

10 - 54
11 - 60
12 - 66
13 - 72
14 - 78
15 - 84
16 - 90
17 - 96
18 - 102
19 - 108
20 - 114
21 - 120
22 - 126
23 - 132
24 - 138
25 - 144
26 - 150
27 - 156
28 - 162
29 - 168
30 - 174
31 - 180
32 - 186
33 - 192
34 - 198
35 - 204
36 - 210
37 - 216
38 - 222
39 - 228
40 - 234

(41) - 240

Line 1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -

10 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -

y coordinate

E.E. 322 Texttestor-ArithDril1

6 0
16 10
26 20
36 30
46 40
56 50
66 60
76 70
86 80
96 90

106 100
116 110
126 120
136 130
146 140
156 150
166 160
176 170

Note: The y coordinates above are compatible with
the Selectric Typewriter.

The x coordinates will have to be approximated
from the following:

Selectric Typewriter = 47 typed characters

Plotted Characters = 40(41) positions

The Textestor-ArithDri11 y coordinates are
compatible with selective erase, given the same
coordinates.

bO

c

~ !oJ M r:l ~ r:l EJ31 ~ r:l
~ ~ ~ ~ ~ ~ 131 ~ ~

037
017
137
117

OOOt
020
100
120

EJTRt EJOl ~ EJ04 EJ06 EJ07 EJI0

101 ~ 104 106 107 110

~
lJ

033
013
133
113

034
014
134
114

o lliU
r::l
ld

g EJ32
SHIFT

132 EJ30

130

r:l
W EJ26

126 EJ02

102

036
016
136
116

035
015*
135
115

o
~

o
~

00
~U

*dupl1cations: 012 - ctrl and normal
015 - ctrl and normal
075 - ctrl and shift
077 - ctrl and shift

t Input of all keys when break key is depressed

040

THE PLATO TELETYPE KEYSET

ctrl & shift - guide to numbering scheme
ctrl
shift
normal

The PLATO keyset is a teletype keyboard which sends inputs to the com­
puter when the keys are pushed. Each key has at least one input~ and some
have as many as four depending on what state the keyset is in. There are
four states in all:

1) The normal state in which each key pushed singly sends an input to
the computer

2) The shift state when the "shift" button is held down as a key is
pushed causing a different input from normal to be sent to the
computer

3) The control state when the "control" button is held down as a key
is pushed sending still another different input to the computer

4) The control and shift state in which both the "control" and the
"shift" buttons are field down as a key is pushed to send a fourth
input different from all the others to the computer.

There are 101 inputs altogether. Ninety-six of them are unique; four
are duplications, and input 000 is the input from every key when the break
key is held down. The break key disengages all the keys and is commonly
used to ''block out" inputs which would disrupt the program as keycaps are
being attached to the keyset.

The programmer may use as many keys as needed in any combination which
suits the purposes of the lesson. A key may have many different functions
throughout the program and may belong to a variety of key groups.

The inputs are given symbolic names within the computer program and are
referred to by name throughout the program. See Part IlIon PLATO State­
ments - the Assign statement and the Group statement.

61

(

CATORES (The Resident Program for Execution of PLATO Programs)

When CATORES is entered, it checks first to see if the PLATO equip­
ment is connected to the computer. A typeout occurs if it is not. It
then interprets the jump switches and performs the initial procedures re­
quired by the jump switch options. If the doping option has been selected,
a typeout occurs and the operator must type in the message which identifies
the DOPE.

All of the student banks are then set to 0, the request list (REQLIST)
is set to -1 to indicate that no information is present, JUSTDONE and
MODEBANK are set to 0, NOCALC is made the 0th CALC and RING the 255th CALC ,
ENDLIST and POINTER are initialized, and all table locations provided by
CAT a are substituted where required in CATORES.

Each student screen is erased and slide 0 is selected. The clock is
set to 1/15 of a second and started. The clock is increased by 1 after
each 1/60 of a second. Channel 5, the PLATO input channel, is then acti­
vated and the computer waits for a student to press a key.

The initial mode is made 0. The entry calculation, if there is one,
is not performed until the mode is entered at some time after the CATORES
initialization. Thus, if the first key hit in mode 0 returns to mode 0,
the entry calculation will be performed when the next mode is set to ~,
before the second key is pushed.

If a PLATO systems output subroutine is used by a calculation, it may
find that the student's equipment is not yet ready to accept a new output.
In this case, the calculation is stopped, the place of stoppage and the
arguments used are stored in tables, and CATORES looks to see if another
student has a request waiting. Thus, the same calculation may possibly be
used by another student before one student has completed it. When all re­
quests waiting from other students have been tried, the stopped request is
restarted at exactly the point in the calculation where it left off. If
the equipment is now found ready, the calculation is completed and the stu­
dent enters his next mode.

CATORES contains all the PLATO systems routines listed in Part III.
If a subroutine listed on the PLATO master tape is called in a calculation,
it is read from the master tape during compilation and becomes part of the
binary version of the program.

r

(

l

CATORES TABLES & CONSTANTS

1. STORLIST 32 words. Gives the beginning address of the student bank
for each student.

2. CALCLIST 128 words. Gives the addresses of CALes ~ through 255, packed
two to a word. Currently, only 254 calculations may be defined by
a PLATO program. This is an absolute maximum allowed number.

3. MODENTRY · N words. Number of the entry calculation for each mode.

4. KEYMODES N words. This is the main logic switch of a PLATO program. It
is divided into equal blocks, one for each mode. Each mode is divi­
ded into sections; each section contains the calculation number, the
force key number, and the next mode number required by a specific key.

S. LENGTH 1 word. Gives the number of words required by a single mode-block
in i::EYMODES.

6. STORAGE AND COMMON 1 word. Gives the first and last addresses of ~tudent
bank storage; common follows student bank.

7. CODTABLE N words. Upper address equals the internal character number cor­
responding to the nth internal key number. Lower address equals the
internal key number corresponding to the nth physical key number.

8. PLOTABLE N words. Upper address equals the number of points in a given
character. Lower address equals the relative position in the POINTS
table where the points for a given character are stored.

9. POINTS N words. Character point information, packed four points to a ma­
chine word; each new CHARACTER directive begins a new wor4.

10. GRPLIST N words. A list of the addresses and lengths of groups in GRPTBLS.

11. GRPTBLS N words. A list of the internal key numbers comprising each group.

12. NUMEQUIP 1 word. Number of student stations with which the program is to
be run.

·13. XINCRMT 1 word. The X base-coordinate increment to be used by PLOT, SELRASE,
SPACE, and BKSP.

14. YINCRMT 1 word. The Y base-coordinate increment to be used by PLOT, SELRASE,
SPACE, BKSP, NXTLINE, and PRVLINE .

. IS. XMAXMUM 1 word. The maximum X base-coordinate to be used by PLOT, SELRASE.
SPACE, and BKSP.

16. YMAXMUM 1 word. The maximum Y base-coordinate to be used by PLOT, SELRASE,
SPACE, BKSP, NXTLINE, and PRVLINE.

c

c·

In execution, CATORES uses the following internal lis ts :

1. REQLIST 128 \vords. This~he list of student key inputs (requests) that
have not yet been fully processed. The first location is negative
if there are no requests unfulfilled. If a request is present, the
upper address equals the internal key number corresponding to the
physical key pushed. The lower address equals the student number.
A partially executed request has the second bit from the left set.
If the list becomes full (unlikely) additional requests are ignored
until a waiting request is completed.

2. JUSTDONE 32 words. One \<lord for each student.
1st bit (left hand) set means there is a partially executed request

for this student.
2nd bit " set means a base-point selection was just made.
3rd bit "..... set means the storage tube is in the write state.
4th bit " set means a selective erase was just done.
5th bit " set means the screen was written upon since the

last erase.
The lower eight bits give the last CALC number for this student.

3. MODEBANK 32 words. One word for each student. Indicates the present mode
of each student. MODEBANK is initially all ~.

4. LINKLIST 513 words. Sixteen for each student plus a termination mark. Con­
tains the links to each subroutine entered by the student. LISTARG
stores links in LINKLIST (LISTARG is entered automatically) at the be­
ginning of each calculation or subroutine. DELTARG removes the links
from the list when the subroutine is completed. If more than 16 nested
subroutines are used, student output will wait on this student until
the sixteenth routine is completed.

5. VARILIST 513 \vords. Sixteen for each student and a termination mark. Con­
tains the arguments transmitted to each subroutine as it is entered.
LISTARG stores the arguments at the same time it stores the links.
DELTARG deletes the arguments from the list when it deletes the links
from LINKLIST. If a total of more than 16 arguments are transmitted
in nested subroutines, student output will wait on this student until
the subroutine using the sixteenth argument is completed. The effect
is almost unnoticeable. Student input is not affected, but output re­
sponse may be delayed a fraction of a second.

To find the beginning address of CATORES tables consult the following list:

Loc. Tables

4140 Beginning address of CALCLIST

4141 Beginning address of MODEN TRY (the entry calc list)

4142 Beginning address of KEYMODES (the modeswi tch)

4143 Beginning address of CODTABLE

4144 Beginning address of PLOTABLE

4145 Beginning address of POINTS

4146 Beginning address of GRPLIST

4147 Beginning address of GRPTBLS

4150 Beginning address of STORLIST (the list of beginning addresses for
each student in student bank block)

4151 No. of words in each KEY MODES

4152 U.A. Beginning address of STORAGE (the student bank block)

4152 L.A. Beginning address of COMMON

o

(j

(

c

FORTRAN RES !DENT

CATO
1--------

CATORUN

BUFFERS

D'

FORTRAN RESIDENT

CATO

program source tape

/
/

/
/ 1".'- ___

---~ CATOCOM
- -- jI ~ ... --- 1--- -/- - - -\---

tJ ~

/

FORTMEM- MEMTBIN
LOGICOMP

---11'

bina
the co

ry version of
mpiled program

/
/

/

....
,

/
I

;4
/

PLATO
COMPILATION

CATORUN L ------- ... CATORES

BINARY PROGRAM

PLATO
RUN

- - - - control transfer

====:::;):» information flow

" \
j

1 c

;':t: turn

EXTRY \...':"C' .J l

I
, 'h .1L.1\. ''''lues!: as L .

t ahle s unfulfilled

Test Dope ~~
door tag

- Get next request
Set Activate

screens input
channel

..
~,

-"-Delete request
.1'> Yes just completed Request present? from request

list r---C"
J No

No J I
;

Doping?
I

<, y(!S

' J

W J-l ·or J-3 set?
Output dope buffer Yes

J, -if full No

:'

..

- ,

. '

DATA READY I !,TERRUPT

Stores all reg i ste rs.

Get data word.

Terminate dope
tape

~
I Stop I

J
Execute restart

program

..

-

(~naependent of equ1p
busy ' interruptions)

- -

ment- :

t--"'P1 - Translate physical key
number into logical key
number.

. ,

" .

r
\..

- '

,

Student It in IRI
Key J; in IR2 1.-
Student Bank in ~R6

~
Put forced key
numb~r in IR2

. ,

Yes

Yes

No

~

. ,

Next mode
= this mode? -

l No

Is there a
forced key?

Store stud. # and
key # in Request
List.

Activate input
cb anne l.

Store dope for this ~ _______ ~
key if J-l set.

Stud. fi in IRl.
Key II in IR2.

Restore all
regis ters. ·

, " ,

-

J

Yes

Yes
Is there an unfulfilled
request for this student?

• No

Increase IR2 by 400B"
Store DOPE for this key
if J-3 set. Decrease
IR2 by 400B.

~
Get, store CALC #, forced
key, and next mode for
this student.

~ -
Print dope if J-2 set '

~ I Perform
[---T---

calculation ____ L _,_

~ I , . I

Has this key', illegal
in this mode?

No

'1

Perform entry calculation
for next mode

' I I I
" (

(I
((, I

I
,

r--:--l (

I (
1---+-'

I ,

I (, ,
(

(, ,

.." ..

L ___ _

,

L _____ _

' . . '.

- No

J Is this that J
-I request? .

. oJ, Yes

Restore links given
in LINKLIST

~
Restore arguments
given in VARILIST

~
Return to place where
equipment~busy interrupt
occurred.

Calculation calls
LISTARG which puts
links in LINKLIST.

Any s~broutine used calls
LISTARG which puts links
in LINKLIST, args in VARILIST.

1 : (, (

If equipment-busy interruption
roc curs , the subroutines go tOo
TRAFICOP \~hich stores the
location of interruption in
LINKLIST.

_I 1

Calculation and subroutines
call DELETARG just before
returning to cal'ling program.
This removes from the lists
the links and arguments
placed there by LISTARG for
this calculation or subroutine.

~ .

/ .

r.--

PLATO MASTER TAPE LISTING

res i dent, 0, 3736,0 floatf , 1, 14,0
catores , 0, 6207,0 xfixf , 1, 25,0
catocom , 7,16245,0 absf , 1, 5,0
fortmem , 4,11507,0 xabsf , 1, 5,0
logicomp" 0, 3054,0 intf , 1, 23,0
connect , 2, 22,0 xintf , 1, 25,0
transfr ,12, 166,0 signf , 2. 11,0
inputcdi, 2, 600,0 xsignf , 2, 11 ,0
output cd, 2, 600,0 modf • 2, 27,0
inputbin, 2, 26,0 xmodf , 2, 10,0
outputbn, 2, 27,0 dimf , 2, 7,0
float fix, 0, 13,0 xdimf , 2, 7,0
fixfloat, 0, 25,0 step , 1, 7,0
pause , 0, 32,0 xlocf , 1, 4,0
switch , 6, 26,0 transmod, 4, 127,0
stop , 0, 6,0 whip , 2, 30,0
errorext, 0, 36,0 chain , 2, 5,0
efmark , 1, 7,0 start , 0, 2,0
rewindmt, 1, 7,0 exit , 0, 2,0
backspw , 1, 7,0 time , 2, 70,0
eflofflo, 2, 177,0 clock , 0, 11,0
efloffix, 2, 245,0 limit , 2, 25,0
efixffix, 2, 60,0 alarm , 1, 30,0

C sinf , 1, 107,0 trouble , 4, 751,0
asinf , 1, 143,0 bindump , 3, 1010 ,0
cosf , 1, 113,0 list , 2, 70,0
acosf , 1, 150,0 locate , 1, 64,0
tanf , 1, 130,0 diffeq , 6, 63,0
atanf , 1, 101,0 dump , 4, 1165,0
ctnf , 1, 146,0 reperf , 0, 54,0
actnf , 1, 100,0 deq ,11, 2210,0
secf , 1, 114,0 matinv , 5, 700,0
asecf , I, 141,0 fortbin , 6,14000,0
cscf , 1, 117,0 maptbin , 3, 1200,0
acscf , I, 134,0 fo rt map , 4,12200,0
sinh , 1, 113,0 mapfmp , 0, 4607,0
asinh , 1, 144,0 mapcdp , 0, 4546,0
cosh , 1, 102,0 copys , 3, 32,0
acosh , 1, 163,0 copy , 2, 24,0
tanh , 1, 76,0 verify , 3, 45,0
atanh , I, 101,0 transfer, 3, 47,0
ctnh , 1, 105,0 vfylib , 3, 72,0
actnh , 1, 77,0 copyp , 1, 21,0
sech , 1, 76,0 edit , 3, 336,0
asech , 1, 200,0 get put , 4, 50,0
csch , 1, 115,0 set6 , 1, 6,0
acsch , 1, 143,0 stbnk , 3, 14,0
sqrtf , 1, 72,0 rdbnk , 3, 14,0

l
expf , 1, 76,0 reset6 , 0, 4,0
logf , I, 103,0
log10f , 1, 111,0

