ZZ20-6415
March 1972

PALO ALTO SCIENTIFIC CENTER

IBM

Data Processing Division

MPL/135 - A PROGRAMMING LANGUAGE FOR SYSTEM/370 MODEL 135 MICROPROGRAMMING

John R. Walters and Daniel L. McNabb

MPL/135

A Programming Language

for

System/370 Model 135

Microprogramming

Daniel L. McHabb

John R. Walters

IBM Palo Alto Scientific Center

MPL/135

Abstract

Terms for

Page 2

MPL/135 is a language and compiler for
microprogramming the System/370 Model 135,
employing compiler technology, rather than
assembler 1lore. The 1level of detail 1in the
language is purposely kept high in order to enable
the microprogrammer complete freedom in the use of
the machine. This report is intended as an MPL/135
language reference manual and 1is to be used in

conjunction with the functional specifications of
System/370 Model 135.

IBM Subject |ndex

Microprogramming

Compilers

Programming Languages

IBM System/370 Model 135

IBM INTERNAL USE ONLY

MPL/135 Page 3

1. INTRODUCTION

MPL/135 is a language for microprogramming the System/370
Model 135, patterned after MPL/145 (A), used for the Model
145, Both 1languages adhere to, and have been constructed
using compiler Jlanguage technology, rather than assembler
lore. Yet both languages are purposely highly detailed and,
therefore, quite machine dependent, because the very nature
of microprogramming dictates that explicit utilization of
every facit of the micromachine be kept available for the
microprogrammer. Whether one should term these languages
assemblers or compilers may be subject to some debate; but
the authors have chosen to term them machine-dependent
compilers in order to emphasize the fact that they contain a
compiler-like control structure in which operands, not
operators, are more apparent. Such a structure is entirely
lacking in a classical assembler.

The MPL/135 language has been derived from PL/I, ALGOL,
PL/360 (B), as well as from MPL/145 (A), vyet it differs
considerably from MPL/145 because of the great
dissimiliarities between the two machines at the
microinstruction level. The basic form of the language is
that of PL/1; an MPL/135 program is a procedure, which may
contain wholly nested procedures, thereby establishing a
basic subprogram structure with capabilities for name
scoping. MNames are declared using a PL/I-1ike DECLARE (DCL)
statement, which has been tailored to the storage and data
types available in the Model 135. Because of the intent to
retain explicit control with the microprogrammer, there are
no implicit naming conventions in MPL/135; all names except
simple labels must be declared explicitly at the head of the
procedure or a containing procedure.

As can be seen by comparing the architectures of the Models
135 and 145, the Model 135 is quite 'vertical' in nature,
appearing very similar to many ordinary small, binary
machines, such as the System/7. On the other hand, the
Model 145 offers considerably more parallelism, the effect
being that more than one action can be specified in the
framework of a single microinstruction, thus making the
Model 145 more 'horizontal' in nature. Considerable effort
was spent in designing MPL/145 to permit the microprogrammer
to specify exactly these parallel functions and still retain
a structure to the resulting programs. In the Model 135 no

IBM INTERNAL USE ONLY

MPL/135 Page b

such facility exists; therefore, the computational
statements in MPL/135 look less 1like those in MPL/145 and
more like those found in a conventional programming
language. |In this .way, computation is normally achieved
using an assignment statement of the form:

ALPHA <- ALPHA |+| BETA ;

where the exact nature of ALPHA and BETA are limited by the
capabilities of the Model 135 hardware, and the operation,
|+], is an actual microinstruction in the machine with
precisely only those properties which the hardware provides,

Additionally, MPL/135 contains several control statements
which form a control structure, so that tedious housekeeping
can be performed automatically without either restricting
the microprogrammer or forcing him to resort to branch logic
and thereby be required to create many extraneous labels.
Included among these statements are:

1. An IF/THEN statement

2. An IF/THEN/ELSE statement
3. A DO WHILE statement

4, A DO CASE statement

5. An iterative DO statement

The microprogrammer is not penalized should he choose not to
use these facilities.

2. The MPL/135 Language

2.1 Basic Definitions

The MPL/135 language is described in terms of the System/370
lModel 135 microarchitecture (C) which comprises a
processing unit and groups of storage elements. Each of the
storage elements holds a content, also called a value. At
any given time, certain significant relationships may exist
between storage elements and values. These relationships may
be recognized and altered, and new values created by the
processing unit. The actions taken by the processor are
determined by a program. The set of possible programs forms
the MPL/135 language. An MPL/135 program is composed of, and

therefore can be decomposed into elementary constructions

IBM INTERNAL USE OHNLY

MPL/135 Page 5

according to the rules of a syntax or grammar. To each

elementary construction there corresponds an
elementary action specified as a semantic rule of the

language. The action denoted by a program is defined as the
sequence of elementary actions corresponding to the
elementary constructions which are obtained as the program
is decomposed (parsed) by reading it from left to right.

2.1.1 The Processor

At any given time, the state of the microprocessor is
defined by a collection of switches and latches as described
in the Model 135 Functional Specifications (C).

2.1.2 Storage Elements

Storage elements are classified into five different types of
registers and two different types of storage. Information is
represented in one of the six following types:

. Bit, a single binary digit valued either 0 or 1,
. Digit, a 4-bit unsigned numeric quantity,

. Byte, an 8-bit unsigned numeric quantity,

. Half, a 16-bit unsigned numeric quantity,

Word, a 32-bit unsigned numeric quantity,
Double, a 64-bit unsigned numeric quantity.

(=28 a I g VI S I)

The registers or storage may contain single elements of
these data types or structures of them, depending on their
physical limitations.

2.1.3 Relationships

The most fundamental relationship is that which holds
between a cell and its value. It is known as containment;
the cell is said to contain the value.

Another relationship holds between the cells which are the
components of a structured cell, called an array or
structure, and the structured cell itself. This is known as
subordination. Structured cells are regarded as containing

IBM INTERNAL USE ONLY

MPL/135 Page 6

the ordered set of the values of the component cells.

A set of relationships between values is defined by monadic
and dyadic functions or micromachine operations, which the
processor is able to evaluate or perform. The relationships
are defined by mappings between values (or pairs of values)
known as the operands and values known as the results of the
evaluation. These mappings are described in detail in the
Model 135 Functional Specifications (C).

2.1.4 The Program

A program contains declarations and statements written in
free format on arbitrarily many lines. Declarations serve to
list the cells, registers, labels, and symbolic constants
which are involved in the algorithm described by the
program, and to associate names, so-called Jidentifiers with
them. Declarations must precede statements within a given
procedure. The statements specify the operations to be
performed on these quantities, to which they refer through
the use of identifiers.

A program is a sequence of tokens, which are either
basic symbols, strings, or comments. Each token is itself a
sequence of one or more characters. The following
conventions are used:

a. Basic symbols constitute the basic vocabulary of the
language (cf. appendix 1ii). They are either single
characters or sequences of characters.

b, Strings are sequences of one or more characters
enclosed in quote marks ('), A string may not be
extended across an input line.

c. Comments are sequences of one or more characters
preceded by the characters /* and followed by the
characters */ . Comments may appear anywhere in a
program but may not be embedded in a basic symbol or
string; it 1is understood that they have no effect on
the execution of a program.

IBM INTERNAL USE ONLY

MPL/135 Page 7

In order that a sequence of tokens be an executable program,
it must be constructed according to the rules of the syntax.

2.1.5 Syntax

A sequence of tokens constitutes an instance of a syntactic
entity (or construct), if that entity can be derived from
the sequence by one or more applications of syntactic
substitution rules., In each such application, the seguence
equal to the right side of the rule is replaced by the
symbol which is its left side.

Syntactic entities are denoted by English words enclosed in
the brackets "<" and ">"., These words are used to describe
approximately the nature of the syntactic entity, and where
these words are used elsewhere in the text, they refer to
that syntactic entity.

Syntactic rules are of the form:
<a> ::= <{sequence>

where <a> is a syntactic entity (called the left side) and
{sequence?> is a finite sequence of tokens or syntactic
entities (called the right side of the rule). The notation:

{a> :1:= |<c>|<d>
Is used as an abbreviation for the syntactic rules:

a> 3= %Xbp N <ad> 'sr= <>, <ad> rraAkd),

2.1.6 Syntactic Entities

The syntactic entities are listed in appendix i.

2.1.7 Basic Symbols

The basic symbols of MPL/135 are listed in appendix 1ii.

IBM INTERNAL USE ONLY

MPL/135 Page 8

2 . 265 Da lanipulation Facilities

2.2.1 ldentifiers

p B0 0 D |
{letter> ::= A|

2255
{underscore> ::=

22050
{identifier>

{identifier> {letter>
(identifier)> <digit> |
{identifier> <underscore>

{letter> |
[

Hotes:

An identifier is restricted to 12 characters; it may be used
to designate a register, a storage cell, a symbolic
constant, a program label, or a procedure,

Examples:
A AQ
TWELVECHARSY HYPHEMN_ED
DIRTY_NAME_1 YOU_NAME_IT
MICRO_1 MICRDO10

252+0sS

{label> t:= <{identifier>

totes:

Only 5 characters of a label are used; if a label is written
with more than 5 characters, the first 3 and the last 2
characters are used.

IBM INTERMAL USE ONLY

MPL/135 Page 9

P A
{procedure name> 1:= Lidentifier>

Notes:

Only 3 characters of a procedure name are used; (if a
procedure name is written with more than 3 characters, the
leftmost 3 characters are used.

202
{symbolic constant?> ::= <identifier>

2.2.2 Values

P Ol
{rdlecimal constant> ::= <Ldigitd |
{decimal constant)> <digitD

llotes:

A decimal constant 1is treated as an unsigned numeric
quantity between 0 and 65535, right-justified viith zeron fill
in a 16=bit halfword., 65535 is the larcsest value permitted,
Examples:

0 1
16382 5
39 nnol
0123 65530

2:2:.2:2
<hexadecimal digit> 3= digit>|AIR|CIP|IE|F

202205
<hexadecimal string> ::= <hexarecimal dirit)|
Khexarlecimal string> <hexadecimal dizit>

2.2.2.4

(hexadecimal constant?> ::= !

<hexadecimal string)> !

Hotes:

A hexadecimal constant is limited to & hkexasecimal dirits,
right=justified with zero fill in a 16=hit halfvord,
Examples:

'0027'! '100F!
'FOFOQ! Y7007°"
IFI 'TF'

I Bt I'NTERMNAL HISE OHLY

MPL/135 Page 10

2.2.2.5

<hbitstring> ::= 0|1]
<hitstring> 0 |
<hitstring> 1

2.2.2.6
<bit constant> ::= ' <hitstringd ' P

lotes:
A bit constant is limited to 16 bhits, right=-justified with
zero fill in a 16-bit halfword.

Examples:
'0000111100001111°'R '1111000011110000°'R
'1010101010101010'R 'ni01n10101010101°'R
'110'B

2. 227

{special character> ::= =|8|:1:1"1=>21+1=1,1.1<1”1C])])<blank>

2028208

{character> ::= {letter>|<digit>|
<underscore)|<special character>

AR AL
{character string?> ::= <character> |
{character string> <character>

llotes:
A single quote Is written as a double quote within a
character string.

2i2e2al0
{character constant)> ::= ' <{character strinz> " A

llotes:
A character constant appearing in an arithmetic statement is
limited to 2 characters; otherwise, a character constant is
limited to 16 characters; the value of each character is
its EBCDIC representation left=-justified with blank fill in
multiples of 16-hbit halfwords,
“xamples:

lr(PIA 'L/'A

*15%A 1511

"MPL/135 IS BEST'A

IBM INTERMAL USE OMLY

MPL/135 Page 11

2.2.3 Register Declarations

The Model 135 has the following five types of registers
available for the microprogrammer:

General Purpose Registers, designated GPR,
Floating Point Registers, designated FPR,
Control Vlork Registers, designated CWR,
External Registers, designated EXT,
. Work Registers, designated W,

VviHEsE W=
- - - -

An identifier may be associated with one of these registers
using a DECLARE (or DCL) statement. Subsequent use of that
identifier will result in the use of the register specified.

A AT
{register type> ::= HALF | HIHALF | LOHALF | WORD | DOUBLE

ilfote:

HIHALF and LOHALF designate the high order or the low order
16 bits in a 32-bit word. These designations are used to
select a half word within a given word.

2925362
{dcl1 head> ::= DECLARE <identifier> |
DCL {identifier> |
{declared element) , {identifier>
llotes:

A DECLARE or DCL statement may be used to declare a single
identifier or a group of identifiers, each Iidentifier
separated by a comma. The purpose of the statement 1is to
relate certain attributes with the identifier so named,

Pnledad
<work. halfd (s:= WO | W1l | W2 J-W3 | W4 | WS | W6. | W7

A
{work word>

WO1l | W23 | W45 | W67

1BM INTERNAL USE ONLY

MPL/135 Page 12

2.2-3‘5
{work dbl> ::= W03

2.2.3.6 .
{work reg> ::= <work half> | <work word> | <work dbl>

2:2.5.7

{work subscript> ::= <work reg> (BIT <{decimal constant)>)
<{work reg> (DIGIT <decimal constant))
{work reg> (BYTE <decimal constant)>)

Notes:

The decimal constants refer to the bit, digit, or byte
position within the halfword, word, or doubleword, starting
with position 0, The letter B may be used as an abbreviation
for BIT, D for DIGIT, and BY for BYTE.

ide v
{pointer> ::= identifier> |
{work subscript>

Notes:

A pointer 1Iis any digit field in a work register used to
address indirectly a specific general purpose, floating, or
control work vregister, [f the identifier is used, it must
have been declared previously as a digit in a work register;
if a subscripted work register is specified, it must be a
digit subscript, c¢.f.2.2.3.7.

2520979
{GPR declaration> ::= <dcl head> GPR |
{dc1 head> GPR (<pointer>) |
{dcl1 head> <register type> GPR |
{dcl1 head> <register type> GPR (<pointer>)

Notes:

If either of the first two forms are used, the type |Is
assumed to be WORD; if either the second or fourth form is
used, a reference to the identifier will imply the use of
the pointer register. The GPR identifier may be used with
an explicit pointer other than the Iimplied pointer by
writing the explicit pointer, followed by a pointer
operator, followed by the GPR identifier.

IBM IMTERNAL USE OMLY

MPL/135 Page 12

Examples:
DCL ADAM GPR;
DECLARE EVE GPR (WO(DIGIT 0));
DCL TEMP LOHALF GPR;
DECLARE TEMPERATURE WORD GPR (W4(DIGIT 3));

e i]
{FPR declaration?> ::= <dcl head> FPR |
{dec1 head> FPR (<pointer>) [
{del head> <{register type> FPR |
{de1 head> <register type> FPP (<pointer>)

Motes:
If either of the first two forms are used, the type Is
assumed to be WORD; if either the second or fourth form is
used, a reference to the identifier will imply the use of
the pointer register. The FPR identifier may bhe used with
an explicit pointer other than the implied pointer by
writing the explicit pointer, followed by a pointer
operator, followed by the FPR identifier.
Examples:

DECLARE NAME FPR;

DECLARE AREA FPR (PTRP_1);

NCL COUNT WORD FPR;

DCL CTR WORD FPR (W23(DIGIT 6));

i s
{indirect CWR declaration> ::= <dcl head> CUR |
{dec1 head> CWR (<pointer>) |
{dcl1 head) <register type> CYR |
{decl head> <rezister type> CWR (<nointer>)

Notes:
If either of the first two forms are used, the type s
assumed to be WORD; if either the second or fourth form is
used, a reference to the identifier will imply the use of
the pointer register. The CHR identifier may be used with an
explicit pointer other than the implied pointer by writing
the explicit pointer, followed by a pointer operator,
followed hy the CWR identifier.
Examples:

DCL PTR CHWR;

DECLARE X CWR (ALPHA);

DCL ZED WORD CWR;

DCL FIMAL_COUNT WORD CWR (0_PTR);

IRM INTERMAL USE ONLY

MPL/135

2.2.3:12

Page 14

{direct CWR wonrdd> s:= CWRO | CWR1 | CWR2 | CWR3 |

2.2.3.13
<direct CWR

225 5500
{direct CWR

2 o245, 115
{direct CUR

[lotes:

The decimal
a CWR word,
double word,

2- 2. 3' 16
{direct CHWR

o AN B S 7
{direct CUR

[fotes:

CWRL | CWRS5 | CWRE | CWR7

db1> ::= CWRO1l | CWR23 | CYRL5 |CWRE7

name> ::= <direct CUR dbl> | <direct C'R word>

halfd e

lirect CUP named (NALF <&decimal digitd)

digit is used to specify the 0th or 1lst half of

or the 0th, 1lst, 2nd, or 3rd halfword of

syn> :1:= SYN (<lirect CYR name?>) |
SYN (<direct CWR halfd>)

declaration? ::= <del head> <direct CVP syn>
<decl head) <register type> <direct CVR syn>

a

If the register type is emitted, the type is assumed to he
WORD: if the type MIHALF or LOYALF is specified, and

conflicting

2.,2335.18

=

HALF subscript is specified, the PALF
specification will prevail.

{ext register) tet= EXTO | EXTY | EXT2, | EXT3 | EXTh. |

2. 2518
{ext syn>

EXTS | EXT6. ! EXTTab] EXT8A4 EXT%
EXTI0 | EXTI1 | EXTI2 | EXT13 | EXTI&I|
EXT15

t:= SYN (<ext register>)

I BM THTERMAL USE OMLY

MPL/135 Page 15

2.2.3.20

{ext declaration> ::= <dcl head> <ext syn> |
{dc1 head> BYTE <ext syn> |
<{dc1 head> HALF <ext syn>

Motes:
If the type is specified, only BYTE or HALF is valid; if the
type is not specified, BYTE is assumed.
Examples:
DECLARE F_PTR SYN (EXTO0);
DCL KONST BYTE SYN (EXT9);

2.2:3.21
{work type> ::= BIT | DIGIT | RYTE | HALF | WORD | DOUBLE

223 22

<uwork declarationd ::= <dcl head> SYM (<work regd>) |
<del head> SYN (<work subscript>) |
{dc1 head> <work typed> SYM (<work regd>) |
¢dec1 head> <work type> SYN (<work subscript)>)

llotes:
If the type specification is omitted, it is determined from
the type of the register appearing as the synonym. |If a
specified type conflicts with the register type, an error
will be indicated, and the type of the register appearing as
the synonym will prevail.
Examples:

DCL SCRATCH SYN (WQ);

DCL OME_BIT SYN (WO(BIT 2));

DCL HALFWORD HALF SYNM (113);

NDCL A_DIGIT DIGIT SYM (W23(DIGIT 5));

It 1is possible to relate more than one identifier to a
register or portion of a register. This can be achieved by
defining one identifier to be the synonym for another, or by
writing identical declarations for two or rore identifiers.
The general synonym form is:

2:1 243023
{synonyn declaration> ::= <decl head> SYN (<identifier-1>)

vhere identifier-1 refers to a previously defined

IBM INTERNAL USE OMLY

MPL/135 Page 16

identifier.

Examples:
DECLARE BETA SYN (ALPHA);
DCL THIS_ONE SYN (THAT_ONE);

2.2.4 Storage Declarations

The Model 135 has two classes of storage, namely MAIMN and
CONTROL storage.

A T |
{based clause> ::= BASED (<pointer))

2l
{storage type> ::= BYTE | HALF | WORD

252073

{main storage declaration> ::= <dcl1 head> MAIN |
{dc1 head)> <{storage type> MAIN |
{del head> MAIMN <based clause> |
{del head> <{storage type> MAIMN <based clause>

[lotes:
If the storage type is not specified, it is assumed to be
HALF. |If a based clause is used, the pointer must be a
previously=defined even-odd work register pair, €ahs
2,2.3.4; the pointer will be wused implicitly unless it is
overridden by a pointer operator and an explicit pointer
register used in conjunction with the identifier.
Examples:

DCL STORAGE MAIMN;

DECLARE CELLS WORD MAIN;

DECLARE AREA MAIN BASED (N_PTR);

DCL AREA_2 HALF MAIM BASED(1'01);

223830

{control storage declaration> ::= <{del h~ac 1 ROL |
{dc1 head> <{storage type> CONTROL |
{del1 head) COMTROL <based clause> |
{dc1 head> <{storage type> CONTROL <based clause>

IBM INTERMAL USE OMLY

MPL/135 Page 17

Notes:
If the storage type is omitted, it is assumed to be HALF.
If the based clause is specified, the pointer must be a
previously-defined halfword work register, c.f. 2.2.3.3; the
pointer will be used implicitly unless it is overridden by a
pointer operator and an explicit pointer register.
Examples:

DCL CSTG CONTROL;

DCL STORE HALF CONTROL;

DCL SPACE CONTROL BASED(W23);

DCL ROOM WORD COMTROL BASED(PTR);

Y e L

{private control> = DSP0O | DSP1 | DSP2 | DSP3 |
DSP4 | DSP5 | DSP6 | DSP7 |
DSP8 | DSP9 | DSP10 | DSP11 |
DSP12 | DSP13 | DSP14 | DSP15 |
DSP16 | DSP17 | DSP18 | DSP19 |
DSP20 | DSP21 | DSP22 | DSP23 |
DSP24 | DSP25 | DSP26 | DSP27 |
DSP28 | DSP29 | DSP30 | DSP31

L2sliab

{private control subscript> ::=
{private control)> (BYTE 0) |
{private control> (BYTE 1)

Zhdsili8
{directly addressed private control)> ::=
{dc1 head?> SYN (<private control>) |
{dcl1 head) SYN (<private control subscript>) |
{dcl1 head> <type> SYN (<private control>) |
<dcl1 head) <type)> SYN (<private control subscript>)

Notes:
The permissible type specifications are BYTE or HALF. If the
type specification is omitted, the type HALF is assumed.
Examples:

DCL PRIVATE SYN (DSP19(BYTE 1));

DCL OWHN SYN (DSP27);

DCL MEIN BYTE SYN (DSP12(BYTE 0));

DCL DEIN HALF SYN (DSP19);

IBM INTERNAL USE OMLY

MPL/135 Page 18

A % T

{common storage> ::= DSCO | DSC1 | DScC2 | DSC3 |
DSCL -'|"DSC5" 1 DSC6-~|=DSCT"1
DSE8A™ Y DSCY “1VPSCID '|"BSCIL |
DSC12 ' DSC13 | DSCl14 | DS€15 |
DSE€16"Y] DSEC17'|" DSEl8"| DSC19"|
BSC20 | DSGE21 | DSC22 | DSC235 |
DSC24 | DSC25 | DSC26 | DSC27 |
DSC28 | DSC29 | DSC30 | DSC31 |
DSC32 | DSC33 | DSC34 | DSC35 |
DSC36 | DSC37 | DSC38 | DSC39 |
DSCLO | DSC41 | DSCL2 | DSCuL3 |
DSC4L4 | DSCu4S5 | DSCue6 | DSCL7 |
DSC48 | DSCLY9 | DSC50 | DSC51 |
DSC52 | DSC53 | DscCs54 | DSCH5 |
DSC56 | DSC57 | DSC58 | DSC59 |
DSC60 | DSC61 | DSCE2 | DSCG3

2 210

{directly addressed common) ::=
{dc1 head> SYN (<common storage>) |
{dcl1 head> HALF SYN (<common storage))

Notes:
If the HALF specification 1is omitted, the type HALF
assumed.,
Examples:
DCL AREANA SYN (DSC59);
DCL SCHPAZE HALF SYN (DSC2);

2.2.5 Symbolic Constants

22557
{symbolic term> ::= <{identifier> | <constant)

Bl

{symbolic expression?> ::= <{symbolic term>
{symbolic expression> + <{symbolic term>
{symbolic expression> = <{symbolic term>

22253
{symbolic equate> ::= EQU (<{symbolic expression>)

IBM INTERNAL USE ONLY

MPL/135 Page 19

2452 5%
{symbolic constant> ::= <dcl head> <symbolic equate>

Notes:
Each identifier appearing in a symbolic expression must have
appeared previously as a symbolic constant. The effect of
the declaration of a symbolic constant is to produce a named
constant, fixed at compilation time.
Examples:

DCL RELCON EQU (ALPHA+BETA-'3F');

DCL REGNO EQU (13);

DCL BASE EQU (BETA-=4);

2.2.6 Offsets and Structures

PN sy |

{structure head> ::= DECLARE 1 <identifier> OFFSET |
DCL 1 <identifier> OFFSET

Notes:

The purpose of this portion of a structure declaration is to
name an entire structure, using the 1level number one as the
structure header. The keyword OFFSET rmust appear at this
level ., ™"

22t o2
{offset control) ::= OFFSET | <type> | <type> OFFSET |
{symbolic equate> | <null>

Notes:

The keyword, OFFSET, may optionally appear at any subitem
level in the structure definition. Permissible types are
BYTE, HALF, and WORD.

Zndiabes

{structure subitem> ::=

{structure head> , <integer> <identifier> <offset control) |
{structure subitem> , <{integer> <identifier)> <offset control)

Notes:

As the structure 1is decomposed from left to right, byte
offsets are determined from the top node and assigned as
symbolic constants to the various subitem identifiers.

IBM INTERMAL USE OKLY

MPL/135 Page 20

Integers used at the subitem levels must match, i.e. , an
integer must be equal to one of its predicessors or be
greater than its imnmediate predicessor. Elementary subitems
represent the lowest elements within the structure, and each
elementary subitem must have a type specification as part of
the offset control.

Pl

The byte counter within a structure declaration may be set
or reset by including a symbolic equate phrase, c.f.,
2.2.5.3, at any level.

An example of a structure declaration is as follows:

DCL 1 COUNTERS OFFSET,
2 WORD_1 WORD,
3 BYTE_1l BYTE,
3 BYTE_2 BYTE,
3 BYTE_3 BYTE,
3 BYTE_4 BYTE,
2 VORD_2,
L FIRST HALF,
' LASTT HALF,
/* THIS RESETS BYTE COUNTER TO OVERLAY WORD_2 */
2 WORD_3 EQU(WORD_2),
4 W_21 BYTE,
L W_22 BYTE,
b W_23 BYTE,
4 W_24 BYTE;

2.2.7 Label Declarations

Simple labels may be written with any MPL/135 statement,
except a DECLARE statement. A label definition is of the
form:

2.2.7.1
{label definition> ::= <{label>

llote:
Only 5 characters of a label are used, c.f, 2.2,1.5.

Subscripted labels of 4 or 16 elements may be used for 4 or

IBM INTERMAL USE ONLY

MPL/135 Page 21

16 way selective branching. In this case, each element of
the label must appear as a subscripted label:

252 od o2
{subscripted label definition> ::= <label> (<integer>) :

Hote:
Permissible values of the integer are 0 to 3 for a 4-element
label array and 0-15 for a 1l6-element label array.

Subscripted labels must also appear in a DECLARE statement:

26253

{label declaration>::=
DECLARE <identifier> <{label dimension> LABEL; |
DECLARE <identifier> LABEL;

2.2 .70

{label dimension)> ::= (4) | (16)

Notes:

The purpose of the label declaration is to declare a label
or a label array. Label arrays may be either L or 1¢

elements, and are further declared within the text of the
program. These subscripted labels may then be used in a GO
TO statement to perform 4 or 16-way branching.
Examples:

DCL LABELEG(4) LABEL;

DECLARE BRANCH_TAB(16) LABEL;

2.3 Specification Statements

2.3.1 Regzister to Register Specificatio

2l

{work/reg statement> ::=
{work target> <- <register source)> ; |
{work target> <- <work target> WITH <shifts> ;

Note:

In formm two the target register on the left side of the
assignment arrow must be the same register as the work

IBM INTERNAL USE ONLY

MPL/135 Page 22

target register on the right side of the assignment arrow.
The equal sign, "=", may be used in place of the assignment
arrow, "<-",

23152
{reg/work statement> ::=
{register target> <~ <work source> ;

Notes:
The type of the work source must match that of the register
target. The equal sign, "=", may be used in place of the

assignment arrow, ''¢-",

> ::= SL2 | RSL2 | SRL4 | RSRL | RSRS8

Notes:

These shift operations may only be used in conjunction with
work registers. SL2 specifies a left shift of 2 bits, RSL2
specifies a left ring shift of 2 bits, SR4 specifies a right
shift of 4 bits, RSR4 specifies a right ring shift of 4
bits, and RSR8 specifies a right ring shift of 8 bits.

2.3+71.4
{register source> ::= (identifier> |
{work reg> |
{direct CWR name>|
{constant> |
{identifier=1> => <identifier>

Notes:

The identifier may name a work register, constant, indirect
auxiliary register, or external register.

Examples:

/* IDENTIFIERS USED ARE SELF=DESCRIBING =/
WORK_REG1 <~ WORK_REG1 WITH SL2;
WORK_REG1 <- WORK_REG2;

WORK_REG_WD <- CONTROL_WORKO;
WORK_REG2 <- WORK_DIG -> GEN_REG(HALF 0);

/* NEXT, WORK_DIG 1S ASSUMED POINTER =/
WORK_REG_DBL <= FLT_PT_REG(DB);

WORK_REG1 <= EXTERN_3;
WORK_REG1 <- 25-SYMB_CONSTANT;

IBM INTERNAL USE ONLY

MPL/135 Page 23

Fds e s
{register target) ::= <{direct CWR name)> |
{identifier> |
Cidentifier-1> -> <identifier>

Notes:
The identifier may name a direct CWR register, an indirect
auxiliary register, or an external register.

The source register may be of type HALF, WORD, or DOUBLE; if
the constant option is specified, the constant may only be
of type HALF. The target register must be of the same type
as the source register.

The 2's complement of an indirect auxiliary identifier may
be used as the source operand in conjunction with a work
register as a target operand. This is specified by preceding
the indirect auxiliary identifier by a minus sign "-".

A source work register of type HALF may be shifted using any
of the shift specifications in the WITH field., A source work
register of type WORD or DOUBLE may only be shifted with SL2
or SR4.

The only types permitted 1in conjunction with an external
register operand are BYTE and HALF,

In half word operations using either an indirect auxiliary
or CWR direct operand as the source or target and a work
register as the other operand, the work register must be an
even register for the Hl half and an odd register for the LO
half.
Examples:

GPR_AUX(HI) <- WORK_3;

FPR_AUX <- WORK_23;

WORK_DIG -> CWR_AUX <- WORK_23;

CWR_DIR_3 <- WORK_AL5;

EXTERN_7" <= WORK:2;

2.3.2 Register to Storage Specification

v e S |
{work source) ::= <identifier>

Notes:
The identifier may only represent a work register of type

IBM INTERNAL USE ONLY

MPL/135 Page 24

HALF or WORD.

23252 }

{storage name> ::= : identifier=1> |
identifier-2> -> <Kidentifier-1> |
Cidentifier-2> => <(identifier-1>(B) |
Cidentifier=2> => <(identifier=1>(H) |
{identifier=2> => <(identifier=1>(W)

Notes:

The storage may be an identifier-1 representing an element
located in Control Storage, [Main Storage, Key Storage,
Directly-addressed Private Control Storage, or
Directly-addressed Common Control Storage. Permissible
types for Control or Main Storage are BYTE, HALF, or WORD;
the permissible type for Key Storage is BYTE; the
permissible type for Cormon Control Storage is HALF; and the
permissible types for Private Control Storage are either

BYTE or HALF. In the second form, above, identifier-2
specifies an explicit pointer register used with the pointer
operator "->" to locate the element in the designated
storage area. |If the first form is used, the implicit

pointer must have been declared using a BASED attribute.
Forms 3, &4, and 5, respectively, specify a type of BYTE,
HALF, or WORD.

Gy e A5
{register/storage specificationy ::=
{storage name> <~ <work sourcey ; |
{storage name> <= <work source> WITH <options-1> ;

P
options=1> ::= TEST | INC | DEC

Notes:
The types of the work register source and the storage target
must match. The equal sign, "=", may be used in place of the
assignnent arrow, "<¢=".
Examples:
WORK_PTR =-> MAINST(H) <= WORK_REG2; /*HALFWORDx/
FAINST_WPTR(B) <- WORK_SRC_HLF WITH INC;
CONTROLST <- WORK_HALF WITH TEST;
PRIV_COMTRL <- VWORK_REG2;
COMMON_CTL23 <- WORK_REG5;

IBM INTERNAL USE ONLY

MPL/135 Page 25

2.3.3 Storage to Register Specification

P 5 S S
{storage/register specification> ::=
{work target> <{- <{storage name> ;
{wiork target> <- {storage name> WITH <options=-2> ;

2.3.3.2
{options=2> ::= SET | TSK | SKIP | INC | DEC

Notes:
The types of the storage/storage source and the work
register target must match., The effect of this statement is
to replace the contents of the target work register with the
contents of the source storage <cell. The equal sign, "=",
may be used in place of the assignment arrow, "<-'",
Examples:

WORK_REG(BY 1) <= MAINST(B) WITH INC;

WORK_WORD <= MAINST(W) WITH SKIP;

WORK_REG1 <- PTR => CONTROL(H);

WORK_REG1 <- DIRECT_PRIV3;

WORK_REG <- DIRECT_CTRL;

2.4 Arithmetic Operations

2.4.1 Work Register Arithmetic

o e
<{work source? ::= <{identifier>

Hotes:
The identifier may only represent a work register of type
HALF, WORD, or DOUBLE.

7o s Gl

<work op> ::= |+| | I=| | 10| | 1Al | IX]

Notes:

The operator |+| denotes addition, |-| denotes subtraction,

JOI denotes "or", |A| denotes "and", and |X| denotes
'exclusive or'".

IBM INTERNAL USE OHNLY

MPL/135 Page 26

2.8k
<work/work register arithmetic statement)> ::=
{work target)> <- <work target> <work op> <work source> ;

Hotes:
The types of the work register target and the work register
source must match. The equal sign, "='", may be used in place

of the assignment arrow, "<-".
Examples:
WORK1 <- WORK1l <- !+| WORK2;

WORKO123 <- VIORKO123 |-]| WORKO0123;
2.1}.2.1
{constant op> ::= |+| | |=1 | Ol | |A™] | I|Al
Hotes:

The operator |+| denotes addition, |-| denotes subtraction,
|0| denotes "or", |A”| denotes "and not", and |A| denotes
!landll :

2'“.2.2
{work/constant arith statement)> ::=
<work target> <- <work target?> <{constant op> <{constant?> ;

Notes:

The type of the target and the constant must be HALF. The
equal sign, "=", may be used in place of the assignment
arrovu, "<¢-", If the operators |+| or |-| are used, the
hexadecimal format for the constant must be as follows, with

K indicating a hexadecimal digit:

COOK

COKO

0KOOD

KGO0

KOKO

GOKK

KKKK

Examples:

WORK1 <~ VIORK2 |A| 'FF1l1';
LIORK1 <- WORK1 |+]| '0303';
WORKI £~ WORK1 |=] 35~-SYMB.CONST;

2.4.3 VYiork to CWR

IEM INTERNAL USE OFLY

MPL/135 Page 27

2.“.3.1
<CWR op> ::= |+| | |-I

Note:
The operator |+]| denotes addition and the operator |[-=]
‘denotes subtraction.

Zeltsia2
<work/CWR arith statement> ::=
{work target> <- <work target> <CWR op> <identifier> ; |
{work target> <~ <work target> <CHR op> <identifier>
WITH <{shifts> ;

Notes:
The identifier may represent a CWR register of type HALF,
WORD, or DOUBLE; this type must match that of the work
register target. The equal sign, "=", may be used in place
of the assignment arrow, "<-"., The work register may be
shifted before the operation is performed if either SL2 or
SRL4 is specified in the WITH field.
Example:

WORK23 <~ WORK23 |+] CWR_REGO WITH SL2;

2.4.4 Work to Auxiliary Register

The following operations operate between the general purpose
register, the floating point registers, and the indirect CWR
registers and the work registers.

7P AN TN ¢

<aux reg op? ::= |+| | I=| | Jo) . { Al | IX|

NHotes:

The operator |+| denotes addition, |-| denotes subtraction,

|0l denotes "or", |A| denotes "and", and |X| denotes
" H "
exclusive or".

2.4.4,2
{work/auxiliary arith statement)> ::=
{work target> <- <work target)> <aux reg op> <identifier> ;

IBM INTERNAL USE ONLY

MPL/135 Page 28

Notes:
The identifier may represent a general purpose register,
floating point register, or an indirect CWR register, The
type of this register must match that of the work register.
The equal sign, "=", may be used in place of the assignment
arrow, "<-", Permissible types are: HALF, WORD, or DOUBLE.
In half word operations using indirect auxiliary or direct
CWR operands, the work register must be even for the HI half
and odd for the LO half.
Examples:

WORK0123 <- WORK0123 |A| FPR_REGO1;

WORK2 <- WORK2 |+| GPR_REG(H 0);

2.4.5 Set - Reset

24751
{set reset target> ::= <identifier>

Notes:
The identifier may represent a work register of type HALF,
or an external register of type BYTE.

2.“'5'2
{set statement) ::= SET <{set reset target> BY <constant?> ;

Notes:
The type of the constant must be BYTE for an external
register target and HALF for a work register target. The
effect of the statement is to '"or" the target register with
the value of the constant, so that each bit in the constant
will be placed in the target register.
Examples:

SET WORK2 BY 'FOFQ';

SET WORK2 BY 95-SYMB_CONST;

SET EXTERN15 BY '55';

2alebid3
{reset statement) ::= RESET <{set reset target> BY <constant>;

liotes:

The type of the constant must be BYTE for an external
register and HALF for a work register. The effect of this
statement is to "and not" the constant to the ‘target
register, so that bits 1in the constant are used to reset

IBM INTERNAL USE OHNLY

MPL/135 Page 29

corresponding bits in the register.
Examples:
RESET WORK2 BY 35+SYMB1-SYMB2+COMST3;
RESET EXTERN11l BY 'FF';

2.5 Control Statements

2.5.1 Branch Statement

255511
{label identifier> ::= <{identifier> |
{qualifier> . <Kidentifier>

Motes:

In the first form the identifier must be a label defined in
the current procedure nest. In the second form, the
qualifier must be a procedure name, and the identifier must
be a label within that procedure.

s I
{subscripted label> ::= <label identifier> (<identifier>)|
{label identifier> (<constant))

Notes:

The label identifier must have been defined previously in a
DECLARE statement with type LABEL and a subscript of L4 or
16. In form 1 the identifier within the parenthesis may
represent a constant or a work register digit. The value of
the constant or the work register digit must be 3 or less if
the label identifier is dimensioned 4, or 15 or less if the
label identifier is dimensioned 16.

{goto> ::= GO TO | GOTO

2.5.1.“
{goto statement> ::= <{goto> <label identifier> - |
{goto> <subscripted label> ;

llotes:

The effect of the goto statement is to branch to the
designated label.

IEM ITNTERNAL USE ONLY

MPL/135 Page 30

Examples:
GO TO FIXUP; /* FIXUP IS A LOCAL LABEL =*/
GO TO LABELEG(4); /= LABELEG IS SUBSCRIPTED 16 =/
GOTO LABELEG(W4L(D 3));
GO TO LABELEG(INDEX);

2.5.2 Call Statement

2ahe2al
{call label) ::= <(identifier) [
{qualifier> . {identifier>

AT 73 S
<{call statement> ::=
CALL <call label> USING <call register> ;

Notes:
The call register may be either W5 or WG.
Examples:

CALL SQRT USING W5;

CALL SQRT USING LINKREG; /* LINKREG = W5 %/

2.5.3 Return Statement

2ub%3.1
{return statement)> ::= RETURN ; |
RETURN USING <return register> ;

Notes:

The return register may be any work register, W0 - W7. If
form 1 is wused, and the procedure statement specifies a
return register, that register will be wused. If the

procedure statement does not specify a return register and
form 1 is used, W6 will be used.
Examples:

RETURN; /* W6 IS THE LIMK IF NOT DEFINED IN PROCEDURE =/

RETURN USING LINKREG; /* LINKREG = W5 =/

2.6 Blocks

Blocks are used to collect one or more statements and treat

IBM INTERNAL USE OHNLY

MPL/135 Page 31

the collection as a unit. Several types of blocks permit
conditional, iterative, or selective execution of the
statements contained within the block, each statement in
which may also be a sub-block, etc.

2.6.1 Simple Blocks

Simple blocks are used to collect groups of statements.
Conditional or iterative execution of the collection does
not occur as part of the block itself. Simple blocks are
headed by the simple DO statement and terminated by an END
statement.

2.6.2 Sinple DO

{simple do statement>

De" 3

2.6.3 END Statement
{end statement> ::= END ;

2.6.4 While Block

A while block 1is headed by a DO WHILE statement and
terminated by an END statement. |ts purpose 1Iis to execute
the statements within the block 0 or more times, as long as
the specified condition is met.

Zu bl
{condition> ::= <{identifier>
~ Lidentifier>

|

[
{identifier> = 0 |
{identifier> = 1 |
identifier> 7=0 |
{identifier> 7=1 |
{special condition>

Notes:
The identifier must be defined as a bit in a work register.
Exarmples:

A =0 /* HERE A = W4L(B 5) =/

TESTBIT /* HERE TESTBIT = W3(B 2) =/

IBM ITNTERNAL USE OMNLY

MPL/135 Page 32

2.6:04.2

{special condition> ::=
IRCHO | PRI | MODE | RELOC | CARRY | ALU |
ALU1_7 | INVDEC | RI

Note:

These special conditions are described in the Model 135
functional specifications.

2,003
{do while statement> ::= DO WHILE (<condition>) ;
Notes:
The effect of this statement 1is to execute repeatedly the
contents of the block headed by the DO WHILE statenent and
terminated by the matching EMD statement until the condition
is no longer valid. |If the condition is initially invalid,
the statements will not be executed.
Examples:

DO WHILE (A = 1);

END;

DO WHILE (TESTBIT);

END;

DO VHILE (W3(B 4));

END;

2.6.5 Case Block

A case block is headed by a DO CASE staterent and terminated
by an END statement. lts purpose is to execute the i-th
statement within the block. This statement may in turn be a
sub=block.

IBM INTERNAL USE OHNLY

MPL/135 Page 33

2:.6:5.1

{do case statement> ::=
DO CASE (<(identifier>)
DO CASE ((identifier>) OF 4 ; |
DO CASE (<identifier>) ;

Notes:
The identifier must represent a work register digit. The
effect of the statement is to execute selectively one of the
4L or 16 statements which constitute the DO CASE block. The
number of statements within the block must be exactly 4 or
16 (null statements designated by ";" may be used), each of
which may also be a block, etec. In form 1 a case of 16 is
assumed.
Examples:
DO CASE (Wu(D 3)) OF 4;
J/*CASE D®) « « o 2
/=CASE 1%/f < 5 & 3
L ¥CASE 2% . « » 3
/*CASE 3%/ ;
END;

2.6.6 Count Block

A count block is headed by a DO COUNT statement and s
terminated by an END statement. The effect of the statement
is to use the count register to iterate the execution of the
statements contained within the block. The count register
counts down to 0 from any value between 0 and 255,

b lind

{do count statement?> ::=
DO COUNT <= <identifier> ;
DO COUNT <= <identifier> BY 1 ;
DO COUNT <= <identifier> BY 2 ;
DO COUNT <= COUNT ;
DO COUNT <- COUNT BY 1 ;
DO COUNT <= COUNT BY 2 ;

Notes:

The equal sign, "=", may be used in place of the assignment
arrow, "<-". In forms 1, 2, and 3, the identifier represents
a work register whose contents are placed in EXT15 while the
low-order 8 bits are placed in the count register, which is
then decremented by 1, 1, or 2, respectively, at the end of

IBM INTERNAL USE ONLY

MPL/135 Page 3L

the block. In forms 4, 5, and 6 the current value of the
count register is decremented by 1, 1, or 2, respectively.
The statements in the block are executed at least once until
the count becomes-zero or negative. Statements within the
count block may not 'store from the work registers into
external registers without altering the contents of the
count register; similarly, a branch into a count block does
not initialize the count register.

Exaniples:

DO COUNT <- A BY 2:

- . -

. - .

END;

DO COUNT <- COUNT:

END;

2.7 IF Statement

2alsd
{if statenent> ::=
IF {condition> THEN <{statement)> |
IF <condition> THEN <{statement> ELSE <{statement)

lHotes:

Permissible conditions are those specified in sections
2,6.4.1 and 2.6.4.2, as well as the testing of any work
register digit for zero or non-zero. The statements in
either form 1 or form 2 may be simple non-if statements, or
any of the blocks described in section 2.6. |I|F statements
may not appear as statements within If statements, unless
they are contained in blocks.

In form 1, the effect of the |IF statement is to execute the
statement or block following the keyword THEN only if the
condition specified is true. |In form 2, the statement or
block following the keyword THEN is executed if the
condition is true, while the statement or block following
the keyword ELSE is executed if the condition is false.

IBM INTERNAL USE OHNLY

MPL/135 Page 35

Examples:
IF A=1 THEN WORK2 <- WORK2 |+| CONST;
IF CARRY THEN WORK2 <= WORK3; ELSE WORK2 <~ WORKL;
IF MODE THEN
DO;
IF ALU THEN WORKL <- WORK1;
ELSE WORKL4 <= WORKS;
END;
ELSE
DO;
IF CARRY1 THEN WORKL4 <= WORK3;
ELSE WORKL <- WORK2;
END;

2.8 Miscellaneous Statements

2,8.1 IFETCH Statement

< 0 IR e |
{ifetch statement) ::=
IFETCH ; |
IFETCH WITH <ifetch conditions> ; |
IFETCH USING <work reg> WITH Kifetch conditions> ;

Notes:
The purpose of this statement 1is to generate a System/370
instruction fetch microinstruction as indicated, For

further details, the reader is referred to the Model 135
functional specifications.

2,812
{ifetch conditions> ::=
NODBUG | NOIRPT | SUCCBR | CC= <integer>

Note:
The integer may only be a 0, 1, 2, or 3.

2.8.2 Special SET Statement

2.8'2.1

{special set statement)> ::=
SET SELECT (<work register digit>) ;
SET INTERRUPT (<work register digit>) ;

IBM INTERNAL USE OMNLY

MPL/135 Page 30

Note:

The work register digit may be specified directly or with a
predefined identifier. For further reference, the reader is
referred to the Model 135 functional specifications.

2.8.3 DATA Statement

Constants and addresses may be entered as data by means of
the DATA statement.

2.8.3.1
{datum> ::= {constant> | <label)
2.8.3.2
{data instruction head) ::=
DATA A
DATA (<hexadecimal location))
Note:

In form 2 the hexadecimal location may be specified as any
constant or constant expression. This will become the
starting address of the subsequent data.

2:8:3.3

{data instruction body) ::=
{data instruction head> <datun> |
{data instruction body> , <{datum>

208.3."b

{data instruction) ::= <data instruction body> ;
Note:

Constants are formatted as indicated in section 2,2.2,

2.9 Procedural Blocks

An MPL/135 program must be contained within at Jleast one
procedural block, to which the labels in the program and
identifiers appearing in the program and in DECLARE

IBM INTERNAL USE OMNLY

MPL/135 Page 37

statements are attached. Within this procedural block there
may be wholly contained subprocedural blocks nested
arbitrarily many levels. Such subprocedures must appear at
the end of the containing procedures.

Declaration statements must appear first within a procedural
block, and in subprocedural blocks declaration statements
may be used to specify identifiers local to that block.
Local identifier names may be the same as names In other
procedural blocks, but with other attributes. Their scope
is limited to the sub=-block in which they are defined as
well as any other subprocedural blocks contained in that
de;ining block, in whirh the identifier is not explicitly
defined.

2.9.1 Procedure- Btock

A procedure block is headed by a procedure statement and
terminated by a matching END statement, cf., 2.6.3.

2594151

{procedure statement)> ::=
{label)> : PROC ; |
{label> : PROCEDURE ; |
{label> : PROC (<identifier>) ;|
{l1abel> : PROCEDURE (<identifier>) ;

Notes:

.The label is used to name the procedure and may be up to 3

characters long, c¢f., 2.2.1.6. In form 3 and form 4 the

identifier is used to specify the standard return work

register, cf., 2.5.3.1.

IBM INTERNAL USE ONLY

MPL/135 Page 38

3. The Comp:ler

The MPL/135 compiler is written 1in PL/1 and translates
MPL/135 source programs into Model 135 assembler source text
in two passes. While the entire compiler constitutes a
single PL/1 procedure (separate procedures are used to
initialize the read-only syntax tables), it is essentially
separated into four sections, namely:

a. a syntax scanner, which collects meta symbols, or
tokens, to obtain the various syntax rules of the
language. Having collected tokens for a given
production, the syntax scanner invokes the code
generation routines to apply the appropiate semantic
interpretation, whereupon it then substitutes the left
hand meta symbol for the sequence of tokens which
constitute the right hand of the production. This
process continues until the entire program has been
parsed.

b. a lexical scanner, which accepts the source program
and produces from it the meta symbols as required by
the syntax scanner. A meta symbol number is returned
to the syntax scanner for each terminal symbol of the
language, c.f., Appendix II.

c. a code generation routine, which 1is invoked by the
syntax scanner whenever a syntax rule is Jlocated, so
that it may produce the proper semantics in the form
of table entries, object text generation, etc. for
each grammar rule,

d. a table adjustment routine and second text pass to
produce proper labels for the Model 135 Assembler.

The diagram in Appendix |l| shows the relation between these
four sections.,

IBM INTERNAL USE ONLY

MPL/135 Page 39

3.1 Syntax Scanner

The LALR syntax techniques described by Lalonde (D) are
employed. Appendix | contains the actual syntax employed in
the compiler, and Appendix Il 1lists the Terminal symbols
with a cross-reference to the productions in Appendix 1.

3.2 Lexical Scanner

The lexical scanner reads the source text and returns meta
symbol numbers, or tokens, for identifiers, constants,
strings, or reserved words. These are shown in Appendix II.

3.3 Code Generation

The code generation routines generate text suitatbtle for the
microassembler.

3.4 Second Pass

The purpose of the second pass is to delete superfluous
labels, which may have been generated in the first pass. At
the end of the first pass, the symbol table is examined for
the presence of such multiple l1abels, and the extraneous
cnes are marked; so that they can be replaced by the proper
label. The object text is then read, and the marked labels
deleted and replaced by the appropiate ones.

IBM INTERNAL USE OHNLY

MPL/135 PAGE 40

APPENDIX

MPL/135

CONCREYT SYNTAX

IBM INTERNAL USE OHLY

MPL/135

1 <PROGRAM> ::= _|_ <PROCEDURE NEST> _|_

2 <PROCEDURE WEST> ::= <PROCEDURK DEFINITION>

3 | <PROCEDURE NEST> <PROCEDURE DEFILITION>
4 <PROCEDURE DEFINITION> ::= <PROCLDURE HEAD> <STATEMENT LIST>
S <PROCEDURE HEAD> ::= <PROCEDURE NAME>

6 | <PROC ARG HEAD> <VARIABLE-A>) ;

7 | <PROCEDURE HEAD> <DECLARE STATEMENT>
8 <PROC ARG HEAD> ::= <PROCEDURE NAME> (

9 <PROCEDURE BAME> ::= <LABEL DEFINITION> PROCEDURE

10 | <LABEL DEFINITION> PROC

11 <STATEMENT LIST> ::= <STATEMENT>
12 | <STATEMENT LIST> <STATEMENT>

13 <DECLARE STATLMERT> ::= <DECLARE STATEMERT-A>

14 <DECLARE STATEMENT-A> ::= <DOCLARE HEAD> <AUT'TRIBUTE LIST>
15 | <DECLARE HEAD>

16 <DECLARE HEAD> ::= <DECLARE HEAD-C> <IDELUTIFIER-A>

17 | <DECLARE HEAD LIST>)

18 <DECLARE HEAD LIST> ::= <DECLARE HEAD-BD> <IDELYLIFIER-A>
19 <DECLARE [EAD-BB> ::= <DECLARE HEAD-C> (

20 | <DECLARE HEAD LIST>

21 <DECLARE HEAD-C> ::= <DECLARE HEAD-U> <IKTLGER>

22 | <DECLARE HEAD-D>

23 <DECLARE HEAD-D> ::= DCL

24 | DECLARE

25 | <DECLARE STATLMENT-A>

26 <ATTRIBUTE LIST> ::= <UMAPPING ATTRIBUTL>

27 | <STYPE-1> <MAPPING ATTRIBUTL>

28 | <S8TYPE-1>

29 <STYPE-1> ::= BIT

30 | DIGIT

31 | BYTE

32 | HALF

33 | WORD

34 | DousBLE

35 | HIHALF

36 | LOHALF

IbM INTERNAL USE ONLY

PAGE 41

<ENDIKNG>

HPL/13% PAGE 42

37 <STYPE> ::= <STYPE-1>
38 | <ABBREVIATION>
39 | BY

40 <MAPPING ATTRIBUTE> :: <STORAGE ATTRIBUTE>

41 | <SYN HEAD> <VARIABLE-B>)
y2 | LABEL (<IWTEGER>)

43 | <EQU HEAD> <PRIMARY EXPR>)
Ly | OFFSET

45 <STORAGE ATTRIBUTE> ::= <STORAGE HEAD> <VARIABLL-E>)
46 | <STORAGE>

47 <SYN HEAD> ::= SYN (

48 <STORAGE> ::= GPR

49 | FPR

50 | CHR

51 | MAIN

52 | CONTROL

53 <OSTORAGE HEAD> ::= <STORAGE> (

S <EQU. HEAD> ::= LQU (

55 <LABEL DEFINITION> ::= <VARIABLE-B> :

56 <STATEMENT> :: <BASIC-GR STATEMENT>

57 | <IF STATEMENT>

58 | <ADDR FIX> : <BASIC-GR STATEMENT>

59 | <ADDR FIX> : <IF STATEMENT>

60 | <DATA STATEMENT>

61 | <PROCEDURE DEFINITION>

62 <IF STATEMENT> ::= <IF STATEMENT-A>

63 | <IF STATEMENT-A> <ELSE> <BASIC-GR STATEMENT>
64 <IF STATEMENT-A> ::= <II' HEAD> <BASIC-GR STATEMENT>

65 <ELSE> ::= ELSE

66 <IF HEAD> ::= <IF0> THEN
67 | <IF1> SHEN
68 | <IF2> [THEW

I

69 <LABEL DEFINITION> <IF HEAD>
70 <IFO0> ::= IF ~ <VARIABLE-B>

74 | IF ~ <LATCHLS>

72 | IF <VARIABLE-B>

73 | IF <LATCHES>

T4 <IF2> ::= <IF1> <RELATION> <PRIMARY EXPR>

IBM INTERNAL USE OKL:

MPL/135

75 <BASIC-GR STATEMENT> ::= <BASIC STATEMENT>

76 | <GROUP>

77 <BASIC STATEMEHNT> ::= <ASSIGNNEKT>

78 | <SET-RESET> ;

79 | <CALL STATEMELT>

80 | <RETURN STATEVMENT>

81 | <GOTO STATEMEUT> ;

82 | <IFETCH STATEHEKT> ;

83 | <SELECT/IETERRUPT> ;

84 | RESTORE

85 [

86 | <URTRANS STATEMENT>

87 | <LABEL DEFIFITION> <BASIC STATEHENT>
88 <GROUP> ::= <GROUP HEAD> <ENDITIG>

89 <GROUP HEAD> ::= <DO> ;

90 | <D0 WHILE>) ;

91 | <DO CASE> ;

92 | <DOFOR> BY <INTEGLER> ;

93 | <DOroR> ;

aL | <GROUP HEAD> <STATEEELT>

95 <D0 CASE> ::= <DO CASE-4A>)

96 | <D0 CABE-A>) OF <ILTEGER>

97 <D0 CASE-A> :i:= <D0 CASE HLAD> <VARIABLE-D>

98 <DO CASE HEAD> ::= <DO> CASE (

99 <DO WHILE> ::= <WHIILE HEAD-1>

100 | <IHILE HEAD-2>

101 | <WHILE HEAD-3>

102 <WHILE HEAD-1> ::= <D0 VWHILE FEAD> <VARIABLE-E>
103 | <D0 WHILE HEAD> <LATCHIS>
104 <WHILE HEAD-2> ::= <D0 WHILE HEAD> ~ <VARTABLE-DB>
105 | <DO WHILE HEAD> ~ <LATCIHLS>
106 <WHILE HEAD-3> ::= <WHILE II[EAD-1> <RELATION> <FRTIARY LXPER>
107 <DO WHILE HEAD> ::= <D0> WIILE (

108 <DOFOR> ::= <DO COUNT HEAD> <VARIADLE-EB>

109 | <DO COURT HEAD> COUNT

110 <DO COUNT HEAD> ::= <D0O> COUNT <REPLACE>

111 <DO> ::= DO

112 | <LABEL DEFINITION> DO

IEM INTEREKAL USE ONLY

PAGE 43

IPL/135

113
114

115
116

117
118
119
120
121
122
123
124
125
126
127
128

129

130
131

132

133

134
135

136
137

138
139

140
141

142
143
144
145
146

147
148

148
150

151

<LNDING> :: <LUD HEAD> ;

<LABEL DEFINITION> <ENDING>

-

<END HEAD> ::= END <IDENTIFIER-A>
| &iND

<LATCHES> ::= IRCHO

| PRI

| MODE

| RELOC

| CARRY

| ALU

| CARERY1

| CARRYS

| FPO

| ALU1_7

| INVDEC

| RT

<SET-RESET> ::= <SET-RESET-A> <PRIMARY EXPE>

<SET-RCSET-A> ::= SET <VARIABLE-B> BY
| RESET <VARIABLE-B> BY

<CALL STATEMENT> ::= <CALL HEAD-A> <VARIABLE-B>
<CALL HEAD-A> ::= CALL <VARIABLE-B> USIIG

<RETURN STATEMENT> ::= RETURN USING <VARIABLE-B>
| RETURE

<GOTO STATEMENT> ::= GO TO <VARTABLE-G>

| GOTO <VARIABLE-B>

<IFETCH STATCMENT> ::= <IFETCH HEAD> <IFETCH OPTIONE>
| IFETCH

<IFETCH HEAD> ::= IFETCIH USING <VARIABLE-B> WITH
| IFETCH WITH

<IFETCH OPTIONS> ::= (C = <INTEGER>
| &ODBUG

| HOIRPYT

| SUCCER

<SELECT/INIERRUPT> ::= <SLDL/INT HEAD> <VARIADLE-DB>)

<SEL/INT HEAD> ::= SET SELECT (
| SET INTERRUPT (

<ASSIGNMENT> ::= <ASSIGNMELT-A>
| <ASSIGNMENT-A> <WITH CLAUSE>

<ASSIGWMENT-A> ::= <VARIABLE> <REPLACE> <EXPRESSION>

IBM IRTTRNAL USL ONLY

PAGE 4y

MPL/135 PAGE U5

152 <WITH CLAUSE> ::= WITH <WITH OPTIONS>
153 | <WITH CLAUSE> , <WITH OPTIONS>
154 <WITH OPTIONS> ::= SET

155 | TEST

156 | TSK

157 | SKIP

158 | INC

159 | DEC

160 | SL2

161 | Sku

162 | RSL2

163 | RSRu

164 | RSR8

165 <REPLACE> ::i= < -

166 " =

167 <RELATION> ::= =

168 | ~ =

169 <EXPRESSION> ::= <TERM>

170 | <EXPRESSION-A> <PRIMARY EXPR>
171 <EXPRESSION-A> ::= <VARIABLE> <MACHINE OPii>
172 <MACHIWE OPN> ::= |+]|

173 I =l

174 | 14|

175 | el

176 [X

177 | |A~]

178 <DATA STATEMENT> ::= <DATA LIST> ;

179 <DATA LIST> ::= <DATA HEAD> <PRIMARY EXPR>

180 | <DATA LIST-A> <PRIMARY EXPF:
181 <DATA LIST-A> ::= <DATA LIST> ,

182 <DATA HEAD> ::= DATA <ADDR FIX> :
183 | DATA :
184 | <DATA HEAD> <LABEL DEFINITION>

185 <ADDR FIX> ::

"

<ADDR FIX-4>)

186 <ADDR FIX-A> ::= <A HEAD> <PRIMARY EXPR>
187 <AT HEAD> ::= AT (
188 <PRIMARY BXPR> ::=, <PRINARY LXFR-A>

IBE INTERNAL USE ONLY

MPL/135 PAGE" u6

189 <PRIMARY EXPR-A> ::= <TERM>
190 | <PRIMARY EXPR-A> + <TERM>
I

191 <PRIMARY EXPR-A> - <TERM>
192 <TERM> ::= - <VARIABLE>

193 | - <CONSTANT>

194 | <VARIABLE>

195 | <CONSTANT>

196 <VARIABLE> ::= <VARIABLE-B>

197 | <VARIAELE-B> <PT ARROW> <VARIABLE-B>

198 <VARIABLE-B> ::= <VARIALLE-A>
189 | <SUBSCRIPT HEAD>)

200 <SUBSCRIPT HEAD> ::= <SUBSCRIPT HEAD-AA> <STYPL> <ILTEGER>
201 | <SUBSCRIPT HEAD-AA> <PRIIARY EXPR>

202 <SUBSCRIPT HEAD-AA> ::= <VARTADLE-4> (

203 <VARIABLE-A> ::= <IDENTIFIER-A>
204 | <IDEWTIFIER-B> <VARIABLE-A>

205 <IDENTIFIER-B> ::= <IDELTIFIER-A> .

206 <IDENTIFIER-A> ::= <IDENTIFTLE>
207 | <ABBREVIATION>
|

208 <FITH OPTIONS>
209 <CONSTANT> ::= <INTEGER>

210 | <WUMERIC STRING>
211 | <STRING>

IBN INTERNAL USE OKLY

MPL/135 PAGE u7

TERMINAL SYMBOLS

IBM INTERNAL USE ONLY

MPL/135 PAGE u8

Y, USED IN PRODUCTION

. 205

< 165

(8,19,42,47,53,54,98,107,147,
148,187,202

+ 190

) 6,17,41,42,43,45,90,95,96,
146,185,199

: 5,6,13,77,78,79,80,81,82,83,
84,85,89,90,91,92,93,113,178

~ 70,71,104,105,168

- 165,191,192,193

» 20,25,153,181

: 55,58,59,182,183

C 142,166,167,168

AT 187

BY 39,92,130,131

(5764 142

Do 191,112

GO 136

IF 70,74,72,73

OF 96

RT 128

O 136

[+] 172

|- 173

|4] 174

0] 175

|X] 176

o 1

ALU 122

BIT 29

CWR 50

DCL 23

DEC 159

LND 115,116

LQU 54

FPO 125

FPR 49

GPR 48

INC 158

PRT 118

SET 130,147,148,15L

SL2 160

IBM INTERKAL USE ONLY

MPL/135 PAGE 49

SR 161

Syn 47

TSK 156
|A~| 177
BYTE 31

CALL 133
CASE 98

DATA 182,183
ELSE 65

GOTO 137
HALF 32
MAIN 51
MODE 119
PROC 10
RSL2 162
RSRY 163
RSR8 164
SKIP 157
TEST 155
THEN 66,67,68
WITH 140,141,152
WORD 33
CARRY 121
COUNT 109,110
DIGIT 30
TRCHO 117
LABEL 42
RELOC 120
RESET 131
USING 133,134,140
WHILE 107
ALU1_7 126
CARRY1 123
CARRY8 124
DOUBLE 3l
HIHALF - 35
IFETCH 139,140,141
INVDEC 127
LOHALF 36
1ODBUG 143
NOIRPT 144
OFFSLT bl
RETURN 134,135
SELECT 147
SUCCBR 145

IBM INTERNAL USE ONLY

MPL/135

CONTROL
DECLARE
RESTORE
<STRING>
<INTEGER>
INTERRUPT
PROCEDURE

<PT ARROW>
<IDENTIFIER>
<ABBREVIATION>
<WNUMERIC STRING>

<UNTRANS STATEMENT>

52

24

84

211
21,42,92,96,142,200,208
148

9

197

206

38, 207
210

86

IBM INTERNAL USE ONLY

PAGE 50

MPL/135 PAGE 51

APPENDIX ITT

MPL/135

OVERALL FLOWCHART

IbM INTERNAL USE ONLY

/MPL/135

SOURCE PROGRAM

LEXICAL SCANNER

SYNTAX SCANNER

A

¢

CODE GENERATOR

ASSEMBLY CODE

LALR(2) SYNTAX
TABLES

COMPILER STACK

FINAL OUTPUT

-

MDDRESS ADJUSTMENT

IBM INTERNAL USE OLLY

PAGE 52

MPL /135 PAGE 53

REFERENCE, D BIBLIOGRAPH,

IBM INTERNAL USE ONLY

MPL/135 PAGE 54
References

(A). [Hciiabb, U.L. and ‘Walters, J.R., "MPL/145 A Langauge and Compiler for
System/370 lodel 145 HMicroprogramming", IBii Palo Alto
Scientific Center, (ilay 1971).

(B). Wirth, Niklaus, "A Programming Language for the 360 Computers",
Technical Report o CS 53, Computer Science Uepartment,
Stanford University, (June 1967).

(C). 1Bl Corporation, "System/370 iodel 135 System Specifications", IBi
Corporation, (1971).

(D). Lalonde, W., "An Efficient LALR Parser Generator", Technical Report
CSRG-2, University of Toronto, (1970).

Biblioaraphy

(1). Husson, S., “ficroprogramming: Practices and Principles",
Prentice-Hall, (1970).

(2). Rkosin, K., "Contemporary Concepts of [licroproararming and Emulation”,
Computing Surveys of the ACii, Vol 1, iHo 4, (becember 1969),
pps. 197-212.

IB:d IHTERNAL USE CHLY

	102679694.05.01.src.jpg
	102679694.05.02.src.jpg
	102679694.05.03.src.jpg
	102679694.05.04.src.jpg
	102679694.05.05.src.jpg
	102679694.05.06.src.jpg
	102679694.05.07.src.jpg
	102679694.05.08.src.jpg
	102679694.05.09.src.jpg
	102679694.05.10.src.jpg
	102679694.05.11.src.jpg
	102679694.05.12.src.jpg
	102679694.05.13.src.jpg
	102679694.05.14.src.jpg
	102679694.05.15.src.jpg
	102679694.05.16.src.jpg
	102679694.05.17.src.jpg
	102679694.05.18.src.jpg
	102679694.05.19.src.jpg
	102679694.05.20.src.jpg
	102679694.05.21.src.jpg
	102679694.05.22.src.jpg
	102679694.05.23.src.jpg
	102679694.05.24.src.jpg
	102679694.05.25.src.jpg
	102679694.05.26.src.jpg
	102679694.05.27.src.jpg
	102679694.05.28.src.jpg
	102679694.05.29.src.jpg
	102679694.05.30.src.jpg
	102679694.05.31.src.jpg
	102679694.05.32.src.jpg
	102679694.05.33.src.jpg
	102679694.05.34.src.jpg
	102679694.05.35.src.jpg
	102679694.05.36.src.jpg
	102679694.05.37.src.jpg
	102679694.05.38.src.jpg
	102679694.05.39.src.jpg
	102679694.05.40.src.jpg
	102679694.05.41.src.jpg
	102679694.05.42.src.jpg
	102679694.05.43.src.jpg
	102679694.05.44.src.jpg
	102679694.05.45.src.jpg
	102679694.05.46.src.jpg
	102679694.05.47.src.jpg
	102679694.05.48.src.jpg
	102679694.05.49.src.jpg
	102679694.05.50.src.jpg
	102679694.05.51.src.jpg
	102679694.05.52.src.jpg
	102679694.05.53.src.jpg
	102679694.05.54.src.jpg
	102679694.05.55.src.jpg
	102679694.05.56.src.jpg

