‘) = ,f‘ ‘ 2720-6410
May 1971

PALO ALTO SCIENTIFIC CENTER

IBM

Data Processing Division .
MPL/145 A LANGUAGE AND COMPILER FOR SYSTEM/370 MODEL 145 MICROPROGRAMMING

Daniel L. McNabb and John R. Walters, Jr.

¥

. ‘.‘3".4" P25 e Tally A el iv il &

w0l &~ witi #l Wi -
WS[PODEDP & Wiy R
WBi = wid] \ﬁfﬁ-’)-?!bp T e H'a’ WTRK |
3‘ wWeRN) = wé|
9 12
eT
kS D WKSPAS + SAVEY
w Wo = 6o
W)z CAVED
WOT = wot 14 wifs o5 ;
NelV g0
MPL/145
]m_q M _ A
| o dud RAfn I & RV
| B R i ROAY
LANGUAGE AMD COMPILER
kb 7O FOR

jul 50=0
'6 ::‘;ﬁ ﬁzj;‘*i &=

SYSTENM/370 MOLCEL 145

MICROPROGRAMMING

i SLA0 Tasfermplml g
Sl ol WWW_(M@&)
b o ol of camp-from o 1 i duasy (512)

G 2 eﬁngﬁa{n ot ol f Zueto (512)
o 0 wndaidth s 2t 1 o 23248)00t 0 (512)
o fonnkeulh 3 v 0 2(4408) -« o (224

S H432 ﬁfﬁ%’sﬂ'\w?ﬂ’fw“o Ligh
Hf}rxb .(,7& : fobo

S o I Y
Paniel L. McNMNabb ﬁ&g’i) -:%o
I ' John R. Walters, Jr. ”)'Mf

Pale Alto Scientific Center

ﬁﬁ'wf”fh'i{wmm,m&,

o 3 fll;-ﬂ% T}

f' I 3}(L 0-3 badh $20 of Memeo
BH % Lo} & timene

-3 L 4—? -?_- NU

piil 4 XL 0,90
7H,3%0

L 0,71

H P0,0

pel? SHIFT

’pﬂ g Qoo ‘-"}J"

with T24 orly 244 e T

L f gl 92
W_”‘ﬂ ‘gg s o

DS C e ‘@?‘r,.z gl = (o)

(<3) Se Wwkz(3) 46010 ceI (84, 87)
" o roey A 7 ansav 55;57_,‘{_*_&__
g - old wfﬁuu.% E ;;; 7-':‘(WOoR2(3)

@mm.m.é S a4 fﬁf.’f,

231 = b Ve
w512 252=1 ;f,?;ﬁﬂffﬁ;?.m rde

‘ w¥ S4s S t=1 of bels -3 - ruput wﬁ'

? 2 £5 =] 4_7
\ lyﬁgw“‘f.zf .
M"%t.%ﬁ;ﬁ)ﬁ&ww Hmfp.c'ﬁ?, IV weth 0 oHovens
i S e D ¢
/ PR (Fgﬁh M«g{hﬂ- wo, 24,6 !_\:\N\Qp
| 3 Qi 13,5647 .12
5 1 d= Zf msmd SE4 2SS uag?

PPAT & 30

=20 mveonz SetSs L

{o

e
Ll 0

;’? Y llare 0

(-2

1PL/ 145 e e s S SRS RO S Page 2

Abstract

IMPL/145 is an experimental lanFuare and compiler for
microprogramnming System/370 Model 145, employing compiler
techniques, rather than assembler lore. The level of detail
in the language is purposely kept high in order to erable
the microprogrammer complete freedom in the use of the
machine; therefore, MPL/1L45 may be termed either a
machine-dependent compiler or a syntax-directed assembler.
This report 1is intended as a reference manual for MPL/1LS
and is to be wused in conjunction with the functional
specifications of the System/370 Model 145,

Terms for IBM Subject Index

Microprogramning
Compilers

Programming Langauges
IBM System/370 Model 145

MPL/145 For IBM Internal Use Only Page 3

Table of Contents

Abstract page 2
Table of Contents page 3
U Introduction page 4
1l. Compiler Overview page 5
1.1 Examples page 5
11.2 Block Definition page 7
I11.3 Declaration Statements page 8
ll.4 Procedural Statements page 9
11l1. Language Description page 11
111,1.1 Branch Instruction page 11
I11.1.2 Full=Word Arithmetic page 15
I111.1.3 Byte Arithmetic page 18
111,1.4 Vord Move page 2
111.1.5 Storage Reference page 2C
I11.1.6 CALL Statement page 32
111.,1.7 RETURN Statement page 33
111.2 Declarations parge 34
I11.3 Special Control parce 38
IV. Bibliography page L2

vppsre P30

MPL/ 145 For IBM Internal Use Only Page 4

I INTRODUCTION

MPL/145 1is a machine-dependent language for microprosramming
System/370 Model 145. Generally speaking, MPL/145 statements have
a one~to-one relation with Model 145 object micro-instructions,
such that the detail of microprogramming is not subsumed in the
language. This was, indeed, a key tenet in the design of the
language, because it was considered absolutely essential for the
microprogrammer to retain complete control over the hardware for
whatever his purpose.

The MPL/145 langauge is derived from compiler techneology, not
assembler lore; the implementation enploys an LR(k)
syntax-directed scanning technique, and the desizn is highly
parameterized for ease of maintenance and modification, Many of
the features of the language have been borrowed from PL/I, ALGOL,
and PL/360 (A). The basic form is that of PL/Il; an MPL/145
program is a procedure, which may contain wholly nested
procedures. This permits block structure and name scoping
capabilities. A PL/I=-1ike DECLARE statement is used as the
principal way to name storage and constants peculiar to Model 145
microprogramming; however, there are no implicit naming rules, as
there are in PL/Il, so that all names must be declared explicitly.
Finally, the computational statements in MPL/1L5, although
essentfally 1limited to the assignment statement, the GO TO
statement, the CALL statement, and the RETURN statement, are
patterned after their PL/| counterparts, the difference being
that functions peculiar to Model 145 microprogramming have been
added, while other functions, foreign to this machine, have been
deliberately removed.

The remainder of this report presents the details of the MPL/1u5
language. It is assumed that anyone reading further for anything
but a cursory glimpse of the language will be well acquainted
with the micro-architecture of the Model 145, especially as
specified in System/370 Model 145 Functional Specifications (B).

MPL/145 For IP! Internal lUse Only Pare 5

1. COMPILER OVERVIEW

The following example, courtesy of L. E. Lyer, contains an
encompassing procedure, COMNP, in which the seven variables
appearing in the program are declared. Vithir thkis precedure arc
tvwo other procedures, SUMM and FIPB, whick find the surm from 1 to
' and the Ili=th Fikonacci number, respectively. These latter
procedures are called from a testing procedure, written as a
separate procedure, TEST,

1 COMP: PROCEDURE;
/* DECLARATIONS FOR FIPR AND SUMM %/
2 DECLAFE
S RYTE SYN(CESOL(0)),AMS2 \'ORD SYN(LS1h),
RTN WORD SYM(LS15), AMS WOPD SYM(LS1C),
ANS1 WOPD SYM(LS1E), MUM WORD SYM(LS17),
MUMB WOPD SYN(LS17);
/* FIND THE N-TH FIROMACCI MUMRER #/
3 FIBB: PROCEDURE;
I BCN: ANS1 <~ 1; ANS2 <- 1;
6 TST: NUMB <- NUMB |-| 2; GO TO MOR(MUMP(0:0));
8 MOR(0): ANS1 <= AMS1 |+| ANS2;
9 ANS2 <= ANS2 |+| AMS1 & GO TO TST;

10 MOR(1): GO TO FIX(MUMB(3:7));
11 FIX(0): NUMB <- AMS1 & CO TC EXIT;
12 FIX(1): NUMB <- AMS2;
13 EXIT: RTN <= PTN |+]| &4;
14 RETURM USING RTM;
15 END FIEB;
/* FIMD THE SUM FROM 1 TO N =/
16 . SUMM: PROCEDURE;
17 I MN: ANS <= MUM WITH DS;
18 MOR(1,1): RESET S BY '20'X;
19 MUM <- NUM |=| 1 WITH $12;
20 ANS <= AMS |+] NUM & GO TO MOR(S2,S3);
21 MOR(0,1): RTN <- RTM |+]| &;
22 oUT: RETUR!I" USINMG RTN;
23 END SUMM;

24 END COMP;

MPL/1L5 For IPM Internal Use Only Page 6

1 TEST:PROCEDURE;
/* PROCELURE TC TEST FIBB AND SUMM =/
2 DECLARE BALR WOPD SYM(LS15), COUMT WORD SYN(LS10),
ARCMT WORD SYN(LS17);
3 START: GROUP(DLS2); COUMT <- 7;
4 ALICN(1,0): COUMT <= COUNT |=] 2; GO TO DONE(COUNT(0:0));
6 DOMNE(O): ARGMT <= COUNT WITH DS;
7 ALICN(0,0): CALL FIBB,BCN USIMNG BALF;
8 ALICN(0,1): CALL SUMM.INN USIMG BALF;
9 DOME(1): RALR <- BALR WITH DS,STOP & €0 TO DOME(1);
0

10 END TEST;

Syntactically, these procedures resemble PL/| quite closely. A
free form is used, so that one or more statements may occupy a
line, and comments, enclosed by '/*' and '+/', may appear within
or between statements. Blanks are significant, only in that they
may be used as well as other punctuation to terminate
identifiers, constants, etc.

MPL/145 uses a '<-' to denote assignment in place of '=' used in
PL/I. Because the micro-operations of the Model 145 have a very
specific denotation, operations in MPL/145 are enclosed in '|"',

as seen in the operations |+| and |-| on lires 6, 8, 9, 13, 19,
20, and 21 of COMP, and line 4 of TEST. Hexadecimal constants are
enclosed in quotes, followed immecdiately by the letter X.

In microprogramming tre Model 145 it is possible to specify
numerous latches, bits, switches, etc., ancillary to the main
instruction, thereby providing many variants to a single
micro-instruction. This is achieved in MPL/145 by using an
optional WITH field, as seen in line 19 of COMP and line 6 of
TEST. A branching capability 1is also availatle in conjunction
with most micro-operations, and the optional & C0 TO field
appearing in lines 9, 11, and 20 of COMP, and in line 9 of TEST,
is typical of the use of this facility.

Finally, the Model 145 hardware is built to handle indexed
branches rather efficiently; and so MPL/145 permits the
specification of indexed labels and their use fnl GO« TO
statements, as can be seen in many places in the above examples.

MPL/145 For IPM Interral Use Only Page 7

An MPL/145 program must itself be a bleck which may contain other
blocks nested to any artitrary depth. A1l the declarative
statements in a given block must appear before the prccedural
statements in that bleck, and all the preccedural statements must
appear before the beginning of an irner block, i.e., contained
blocks must appear at the end of contairirg blocks. This is seen

in the COMP example ahove.
A block is headed by a PROCEDURF statement of tke form:
<label> : PPOCEDRURE;

The <label> names the procecdure and becores the narme of the code
module; it should consist of a letter followed by 3 alphanumeric
characters. The PROCEDURE statement is used tc establish the
scope of variable names used in the program. Py this means, a
variable name may be defined ir an inner block to have entirely
different attributes from those associated with the same nare in
an outer or disjoint block. Thus the block structure may be usec
to build programs from independently produced pieces. The EMD
statement is used to terminate a block and may have either the
form:

END:
Or,
EMP <{1ahel>;

In the latter case, the <{label)> corresponds to the <label) of a
procedure. By using the <label> of an outer procedure, all
procedures nested within the outer procedure may be terrirated
with a single END <label>; staterent.

11.2,1:. Labels

A procedural statement may have a lakel consisting of up to 12
alphanumeric characters, the first character of whick must be a
letter. For this implementaticn all statement labels are
truncated to 6 characters.

{l1abel>(<bx>,<bk>,<bl>):

The <label> may have up te three subscript fields specifyirg the
particular leg of a branch-set. These are terred the <{bx>, <hhk>,

MPL/145 For IPM Internal Use Only Page 8

and <b1> fields, respectively, and permissible values for them
are:

<bx>
O=15

<bh>
0,1,X

<bl1>
0,1,X

An X signifies that there is no leg corresponding to this
subscript; leading X's or trailing blanks are not allowed, as the
following examples indicate:

NAMEA(1) valid subscript for <bl>

NAMEB(1,X) valid subscript for <bh> and <bl>
NAMEC('D'X,0,1) valid subscript for <bx>, <bh>, and <bl)
MAMED('E'X) invalid subscript, should be MNAMED('E'X,X,X)
NAMEF(3,1) invalid subscript, should be MAMEF(3,1,X)

e e e e e e e e e e e e e e e e

A1l variables appearing in a program must be declared explicitly
in a DECLAR[I statement appearirg at the head of a precedure. The
DECLARE statement is patterned after the PL/! DECLARE statement
and is of the forr:

NECLARF <variable definition list> ;
where <variahble definition list> is a 1list of one or more
variable definitions, each of which contains the name of the

variable and a 1list of attritutes. The statement may begir with
either DECLARE or DCL.

Attributes are:
Data type attributes
B, YT E HALE, HaRD

Storage class attributes
HALM and COMTPROL

Special attrihutes
SYM, PASED, EOU, OFFSET, and LINK

MPL/145 For |IFM Interral Use Cnly Page ©

Furtker information can be found ir section Il1.C.

There are seven instruction types in the Vedel 145:

Branck Instruction

Full-werd Arithmetic Instruction
Byte Arithmetic Instructicon
Word=-move Instruction

Storage Reference Instruction
Call Instruction

Return Instruction

In MPL/145 all but the Call and PReturn staterments have the
general form:

Coperation> <with=field> <brench contrel>

The <operation> for each statement type is different and s
described in section |11,

The <with=-field> may optionally fcllow the <operation> and
usually contains keywords to specify modifiers, masks, and status
specifications. Tke <with=-field> is written:

WITH <keyword),<{keywcrd>,...,<keyword>

where the <keyword> list, separated by commas, neec not be in any
specific order,

The <branch control> is used to specify the label of thke next
instruction to be executed, and may be written in any of the
following forms:

& CO TO <label>(<bx>,<bh>,<bl>)
& CO TO <label>(<bh>,<b1>)
& CO TO <1abel>(<bhl1>)
& CO TO <label>

It must follow the <with-field>, if there is one. In the absence
of the <branch control>, the statement following is assumed to be
executed next.

The <label? in each example may be any label in the program. The

MPL/145 For IBM Internal Use Cnly Page 10

block structure is not used to limit the scope of a label. I f a
label is outside the current procedure, it must be qualified by a
procedure name:

{procedure name>.<label>

The <bx>, <bh>, and <bl1> fields are special identifiers or
constants used to specify a particular leg of a branch-set,
Permissible settings for these fields vary according to each
instruction type; therefore, they are described 1in conjunction
with the instructions in section 111,

MPL/145 For IPM Internal Use Only Page 11

111. LAMGUAGE DESCRIPTICONM

i i M B Branch Instruction

The general form of the Branch Instruction is:
{SET or RESET Function> & GO T0O <label>(<bx>,<bh>,<hl1>);

The branch-instruction provides four functions:

15 Branching to another lahel in the same module.

2. Module switching.

S Setting or resetting bits 0, 1, 2, %, 4, 6, or 8 in a
specified byte located in either Lecal or External
Storage.

L, Setting or resetting certain selector channel circuit
conditions.,

o)t Loading the S, T, or L-Fegisters.

Branching within a current module is permitted in comkination
with any of the functions, except module switching.

111.1.1.1 <bx>, <bh>, <bl> Subscript Fields

The 1label in the Pranch Instruction may have up to three
subscript fields, <bx>, <bbh>, and <bl>, respectively. The values
of these fields are used to determine which leg of the branch-set
will be taken. The number of subscripts must correspond to the
number of Jlegs associated with the particular branch-set. The
label may be written in any of the following ways:

{label>(<bx>,<bkr>,<bl1>)
{label>(<bh>,<bl1>)
{1abel>(<b1>)
{label>

Permissible <bx>, <bh>, and <bl> field subscripts are:

MPL/1L5 For IPM Interral Use Only Page 12

Absolute Values(May be Mnemonic)

<bx> <bh> <b1>
0-3 X,0,1 X041

Values Chtained from S-PRegister Settings

<bh> <b1>
S0,S1,52,S4,5S6 $3,85,87

Special identifiers C:E)thrnugh G}> designate the bit in the
S-Register used for the <bh> or <bl> subscript.

Branch-Source Rit Conditions

<bh> <b1>
B0O-B7,BH RO-R7,BL,NZ,Z0

Special identifiers B0 through B7 specify the bit in the
branch-source byte to be tested (see secticen I11.1.1.2),

The special identifier, RH, appearing as the <bh> subscript is
used to specify the first four bits, 0-3, of the branch=source
byte. |If all four bits are 0, the value of the subscrint field
is 0; otherwise the value is 1.

The special identifier, PRL, appearing as the <bl> subscript has a
similar effect as BH, except that the last four bits, 4-7, of the
branch-source byte are tested. Again, the value of the <bl>
subscript is 0 if all four bits are 0, and 1 otherwise.

The special identifier, Z0, is used as the <bl)> subscript to
specify bits 4 and 5 of the S-Register. |If both these bits are

%, the value 1 is used for the subscript; otherwise the value 0
s used,

The special identifier, NZ, appearing as the <b1> subscript is
used to test the entire branch source byte for 0's., If all 8 bits
are 0, a 0 is used for the <bl> subscript; otherwise a 1 is used.

Using TH for the <bx> Subscript

The special identifier, TH, may be used as the <hx> subscript to
designate bits 0 and 1 of the T-Register. This subscript is not
permitted in conjunction with set or reset operations.

NZ

MPL/1L5 For IPM Interrnal lUse Cnly Fage 13

111.1.1.2 Branch Source

The branch-source byte may be a Local or External storage
location, In addition to testing selected bits, as outlined
above, they may be set or reset in the same instructicn after
being tested. Mote that the testing of any bits in tte
branch-source byte is independent of any setting or resetting
which might follow.

GO TO LEV(A(2:7),A(2:PL));

In this example the identifier A is a word-source withk bit 7 of
byte 2 providing the <bh> subscript and thre low-ordecr four bits,
bits 4=7, specifying the <b1> subscript. The resulting 2 bits
provide a four-way branch to the branch-set LEV,

Another form of the branch statercnt is:

<{s>
{t> <= <branch-source> & €0 TO <lakel>(<bx>,<hh>,<bl1>);
<1>

wkere <s>, 5t>, and <1> are symbhelic narmes for the S, T, and
L-Fegisters. For example,

SREG <= A(Z) & GO TO LEVCEZ.,BL):

In this example bits 4-7 of byte 2 cf A are tested fcr zero. |If
all four bits are zero, the <bl> subscript is zero; othervise the
{b1> subscript is one. Rit 7 of byte 2 of A is used for thke <bh>
subscript,

The target register may only be: (1) the S=-Pepister, (2) the
T-Fegister, or (3) the L-Pegister, or an identifier wkich has one
of these registers as its synonym. This does not prevent the user
from using many names with these registers as synocnyms.

MPL/145 For IPM Internal Use Cnly Page 14

111.1.1.3 Branch Instruction SET or FESET Function

-

The general form of the SET or FESET functicn is:

<a>

SET (s>

RESET {p> PY <constant?> & €GO TO <label>(<bx>,<bk>,<bl1>);
GA

where: _
{a> names a byte in Local or External storege,
{s> is a name for the S-Fegister,
{p?> is a name fcr the P-Fegister.

The Branch Instruction may be used to set or reset bits in the
following various registers:

1. A Local or Exterral storage byte also specifiecd as the
branch-source ,

The S-Fegister,

The P-Register,

The CA selector-channel circuit.

AN
- & 0w

A branch-source byte may be used in the subscript field wkren
setting or resetting the S or P-Pegisters, or the selector
channel functions. The <constant)> may be as follows:

Yohix et RO Y%, o Uhh R
where h is a hexadecimal digit from 0 te F

The SET function operates as fcllovs:

wherever there is a 1 in the mask, the correspondirg bit in
the register is set to 1; all other bits remain unchanged.

Thie RESET finction Is similar in that:

wherever there is 2 1 in the mask, the corresponcding bit in
the register byte 1is reset te 0; all other hits renain
unchanged.

The selector-channel circuits can be set or reset using the
special identifier, CA. Further information orn this can be

ML/ IES For 1Tl Interral lise Only Fage 15

obtained in Systeri/370 t'ocdel 145 Functirnal GSpecifications ().

The general forr of full-word arithmetic irstructicns is:

{operation> 'ITH <with-Tield kevworcds>
& B0 TO <labhel><bxy,<hh>, <hld):

{11.1.2.1 Operations

The <operation> portion of the full-word arithmetic statement may
have one of the following forms:

{a> <= <a> <on> <(b>

{a)> <~ <{a> <or> <constant>

{ay <~ <a) <op> ({constant expression>)
<a> <= <h>

{a> (= =<h>

<a> <= <{constant>

{ay <= (<constant expression?)
{a> {- =<{constant>

{a> <= =(<{constant expression>)
 <= <a> <op> .
11 <hX <= =chb>

125 ZlL &= £a¥ Lony> <by

13. ZV! <= <a>

14, ZV <= =

Lo~y UF WM
- -

=
o
.

In which:
{a> specifies Local or External storage,
 may only specify lLocal storage, and
2 is a special identifier indicating no destination.

The {constant> can be a positive integer or symbeoclic constant
less than 256. A <constant expression> must be enclosed in
parenthesis.

MPL/145 For ITH Internal l'se Cnly Page 1C

The <op> refers tc the following full-word operations:

e O | true add; <a> and are added, and SO0 is set to
U.
25 Bl | two's complement add; 1 plus the complement of

is added tc <a>, and S0 is set to 1.

Srat 0 AR binary add; bit S3 is added tec the value of <a>
and or its corplement, depending on whether
the value of S0 is 0 or 1, respectively.

When a specific <op> does not appear, as indicated on lines 4, 6,
7, and 13 abecve, the operation actually produced is:

0 |+]
The minus sign, appearing or lines 4, 8, 9, 11, and 14 above,
actually procduces:

0 |[=]
Mote: SO0 is set to 1 as a recsult of this operation.

111.,1.2.2 Partial <a> and Source Inputs

A complete full=word for <a> or need not be used Iin every
operation. A word corsisting of 16 low-order bits of an <a>
source, such as ALPHA, may be indicated by writing:

ALPHACLE)

This 1is the only option fer the <a> scurce other than the
full-word.

Three options are permitted for specifying a word containing
low-order bhits from a source, such as FETA:

1. PETA(YL) four low-order bits.
2. BETA(B) low-order byte.
3. PETA(12) tvelve lovi-order bits.

The high-order bits of the word are set tec 0, unless the
operation is either |-| or |P| witk S0 set to 1, in wktich case
the rest of the word is set to 1's,

MPL/145 For IPM Internal l'se Only Pare 17

111.1.2.% Status Setting Specifications

- e G e e e e s e N S e e e

The <with=-field keywords> pernitted in conjuncticn with
full=word arithmetic statements are:
- "
Mﬂ*ﬂ' 1, S12 51 is set to the value of tke carry-cut of hyte 0,
yﬂ —_— bit 1. of the operatior. S2 is set to 1 If the

result is not 0; othervise it is unchanzed.
—

2. 124 Specifies that only 24 bits of the result are to
be stored. "o S-Fegister bits may be set or reset
in conjunctior with this option.

S2 is set tol if the lew-order 24 bits of thke
result are not 0; otherwise it is unchanres. Only
the low-order 24 bits of the result are retainecd.

Z24
L e

Vilad.250 Shitting

Shifting may also be specified using one of the folloving

<with=field keywords>: 5 'R
P >ﬂ"1"'?
1. SHIFT lorical right shift — =
25 SHIFIA arithretic right shift

5. SFIFTTH skift right usirg bits T0=3

In the 1logical shift, the high-order four hits are set to 0's,
while in the arithmetic shift the high=-order four bits are set to
the value of SC. SHIFTTH places thre contents of hits 0-3 of thre
T-Register, T0=-3, into the hisk-crder four bits of the result.

In all cases, the four bits shifted out. of tke low-orcder
positions are placed in T0-3,

e

Shifting is performed orly orn the source, and only hefcre the -~
operation begirs. YYhen SHIFTA is specified, the value of S0 cen
not be set or reset, even thourh it may be specificd in the
operation.

111.1.2.5 Franching

A lirited branching capability is possible with full=vord
arithmetic instructions; orly thrce settings are permitted for

MPL/145 For IBM Internal Use Cnly Page 18

the <bh> and <b1> subscripts, while <bx> may have four values:

<bx> <bh>,<b1>

0-3 $2,53
S4,S5
S6,S7

The corresponding bits in the S-Register are tested and used for

branching, as explained above.

[10 P N Byte Arithmetic

The general form of the byte arithmetic instruction is:
¢operation> WITH <with=-field keywords>

& GO TO <label>(<bx>,<bh>,<bl1>);

111.1.3.1 Operations

The <operation> portion of the byte-arithmetic instructicn may be
any of the following:

1. <a> <= <a> <op>

2. Kar <= «%ay <Lop> “constant? *

3, <a> (K- <a> <op> (<constant expression>) *

L, ¢a» <= Kb>

5. <a> <= = b

6 €Ay &= dconstantd

7. <a> <= (<constant expression)>)

8. <K= <a> <op>

G. 4b3> &= =¢hd>

10 Z (= Cay» <op>

Tl G=i L Kah | op © Kconstant? * %

T2 iz (= <a> <op> (<constant expression?>) * %

Tigia o {-

AlEae Z {= =

ISR AIGTon il . Cad-ulopys ! Kb * ok &

* Operations |=] and |!'] are net alloved with this form.

* % Only operations |=-| and |M| are allowed for thkis form.

x (Only operations [X]| and |+]| WITH CCUT are allowed.
{a> specifies a byte in Local or FExternal storage, and
specifies a byte in Local storage. They can be written as

either:

MPL/1L45 For IPM Internal Use Cnly Page 1¢

1. a byte=-source identifier, or

2. @a word-source identifier subscripted with 0, 1, 2, or 3
to specify a particular byte, or subscrinted with tre
special identifier, 1; to denote indirect byte
addressirg.

Examples are as follows:

byte-scurce icdentificr,
CRYTE

subscripted word-source icdentifier,
CHOPD(0), CHOrD(1); «.o OURRECEL)

A byte-source or subscripted vord=-source nay also have gating
information associated with the subscript. Examples of tkis arc:

CPYTE(<Lgeting cortrol)
or
coiri(l:<gating contreol>)

The result may be placed in the L-Register by desisnating an
identifier with the L=-Register as its synonym, as shewn on line
15, abtove.

The special identifier, Z, specified as the destination, is used
to indicate that the result of the operation is not to he saved.

The <{constant> may be a positive irteger or symholic ccocnstant
less than 25€&, A <censtant expression> must be enclesed in
parenthesis.

111.1.3.2 Operations and fssociated <with=-Ffield keyvords

- e e S e e e e e e e e e e e

The <op> field shovn ir the forms akove is an actual
micro-instructicn, whlichk may be modified wusing the fclloving
with=field keywerds>, subject to the excepticons noted on the
statement types alove:

Gpeode VITH Field Operetich

|+ | trtic, | biinary sacdsshaite o [Kan s addext &o
byte <h>.

MPL/145S

1Bl

0l

X1
101
1Al
INI

[CI

(1245

couT

NCIN

couT

BN Internal Ltse Gnly Fege 20

true bipary add; a 1 is added to the sum
of bytes <a> anc <b).

true: Kinary add withk carry out into 3.

tvo's corplement acdd; byte <a> is added
to the corplement of byte <hb>,

ore's ccmplement adcd; byte <a> is arlded
to the 1's corplement of byte .

two's complerent acdd; byte <a> is added
te the conmplerment of byte , and the
carry-out is places in 87,

hinary add; if S0 is 0, a true add is
performed on hytes <a> and , and if
S0 is 1, a complement add is performed.
decimal add; if S0 is 0, a true add is
perfoermed on bytes <a> and , and if
SO0 is 1, a complement add is performed.
exclusive 0@,

Inclusive OF.

AN

AMND: MOT.

exclusive OF with parity; byte <a> is
exclusive or'ed to byte and S4 is

set to 1 if a parity error is detected
on byte <a>.

IEelss A Gating Controls

Eyte <a>

following special

I

2. H

can be

a byte

gated by subscripting it with any of the
identifiers:

is formed with bits 0-3 set to 0's and bits

-7 from bits 4-7 of <ad.

a byte

is formed with bits 0-3 of <a> and bits 4-7

set to 0's,

e

T

a

(

MPL/145 For 1BM Internal Use Only Page 21

3, XH a byte is formed with bits 0-3 set to bits 4=7 of
<a> and bits 4-7 set to 0's.

e b, XL a byte is formed with bits 0-3 set to 0's and bits
4-7 set to bits 0-3 of <ad
S a byte is formed with bits 0-3 set to bits k=7 of

<a>, and bits 4=7 set to bits 0-3 of <a>

Gating controls L and H may be used in conjunction with either
<a> or ,. If they are used with , the only operations
permitted are |+| or |X|. Gating controls XL,XH, and X may only
be used in conjunction with <a> and only in conjunction with the
operations |+| or |X].

I11.1.3.4 Status Setting or Resetting

Certain bits in the S-Register can be set or reset in the course

of a byte arithmetic operation using one of the following
with-field keywords:
N\

13/812) S1 is set to the value of the carry-out from bit 1
AL S A of the result; S2 is set to 1 if the result is not
0; otherwise it is unchanged.

2.(?&;) S4 is set to 1 if bits 0-3 of the result are 0;

" otherwise S4 is set to 0, |If bits A4-7 of the
result are 0, then S5 is set to 1; otherwise S5 is
set Eon,)

3@ St s set to 1 If bits 0-5 of the result are 0;
otherwlse Sk is set to 0., S5 fs'set to 1"If blts
4-7 of the result are 0; otherwise S5 is set to 0.

11/)1.1.3.5 Branching

-

Branching may be specified in the same manner as described for
full-word arithmetic in section I11.1.2.5.

111.1.3.6 Indirect Byte Operations

-

The indirect byte operations operate as follows:
1. Bytes in a Local or External storage word may be selected

MPL/145 For IBM Internal Use Only Page 22

using bits 4-5 of the T-Register for the <a> source and
bits 6-7 of the T-Register for the source.

2., Bits T4-5 and/or bits T6-7 may be incremented or
decremented by 1

3., The execution of an instruction may be repeated until
some branch condition is met., These branch conditions
are determined by values of T4-5, T6-7, or S-Register
bits.

Items 2 and 3 are only permitted in conjunction with indirect
byte operations.

To specify indirect byte addressing, the reference to a word must

be subscripted with (1). For example, if ALPHA and BETA are
declared WORD then

ALPHA(I) <= ALPHA(CI) |A| BETAC(I);

will access the byte of ALPHA specified by bits L=5 of the
T-Register and AND this byte to the byte in BETA specified by
bits 6-7 of the T-Register, replacing the byte obtained from
ALPHA.

By specifying. one of the following <with=-field keywords>, the
values of Tu=5 and/or T6=-7 can be modified, so that further

execution of the same instruction will access different bytes in
ALPHA and/or BETA:

1. INCA to increase TL=5
2. INCB to increase T6-7
3. DECA to decrease TL4=5
L. DECB to decrease T6-=7

For example,
ALPHA(1) <- ALPHA(I) |X| BETA(!) WITH INCA,DECB;

If Tui-5 were initially 00 and T6=7 were 11, then byte 0 of ALPHA
would be exclusive or'ed with byte 3 of BETA, and TL-=5 would be
increased to 01 while TE-=7 would be decreased to 10. At the same
time T0-3 would be set by the value of T4=5, since the target of
the operation Is the same as byte 0 of ALPHA. The setting of T0-3
from either Ti-5 or T6-7, depending on the target is as follows:

Ay

ﬂ(;ﬁa F
>

MPL/1L5S For I18M Internal Use Only Parse 23

T45(or T67) T0-3
00 ; Ixxx
01 X1 xx
10 XX1x
11 Xxx1

The x's signify no change to the existing bits.

111.1.3.7 Branching in Indirect Byte Operations

- S R e -

If indirect byte addressing is specified along with INCA, DECA,
INCB, or DECB, then, and only then is indirect branching 1In
effect.

Indirect branching operates as follows:

1. If no branch condition 1is met, the (instruction address
register remains unchanged, and the instruction is
repeated.

2. If any one of the branch conditions 1is met, a branch
occurs.

The following special identifiers may be wused in the <bx>
subscript field of indirect byte branching operations:

A0, Al, AB, 1B, OB

The sienificance of these special identifiers is described in the
System/370 Model 145 Functional Specifications (B).

An example of this is:

ALPHA(1) <= ALPHAC(CI) [X| BETA(I) WITH S12, IICA
& GO TO NEXT(A0,S2,353);

The branch condition is met only if one or more of the following
are satisfied:

T45 = 11
2 =1
55 = 1

Assume that the arithmetic instruction is executed once and that
S2 1is set to 1 as @a result of the operation when S12 was
specified in the with=-field; also TiS5 is incremented to 01 and S3

S

MPL/1LS For IBM Internal Use Only Paze 2L

remains equal to 0, The instruction is then re-executed because
none of the branch tests that were made before S2 was set, were
met. Since S$2Z is 1 this second time, there will be a2 branch to
HEXTRG;1,0).

8 [A Vlord=Move Instruction

This instruction provides:

1. Moving a word, selected bytes in a word, or other special
bytes frow one register to another.

2. Displaying a word (via the A-Register) while performing
a STOP operation.

It is used to address directly either one of its operands without
using the P-Regjster. Thus, it is possible to obtain or storef
data in a location not covered by the current settinr of the
P=Register. One of the following with=-field keywords may be used
to designate whether the source or destination is to be addressed
directly:

ALPHA <- BETA WITH DS;
BETA <= ALPHA \iITH DD;

In these examples ALPHA is addressable with the current

P-Resgister, and LETA is addressed directly. The DS indicates
'Direct Source', addressing the source directly without using the
P-~Register. The DUD 1in the 1latter exarple indicates 'lL'irect

Destinatiorn' addressing. One restriction in this second case is
that the source may not be an External storage register, except
the SPTL register.

I11.1.4,2 Byte Selection Function

ettt e R L e ————

Instead of moving an entire word from one rerister to another, it

is possible to move only 1, 2, or 3 bytes. 7To do this, a
hexadecimal dizit is appendéah?ﬁﬁTFE_’ﬁgpsFiﬁﬁ_keyword, 8.7, NS5
or DUF, to specify which bytes are to be selected, as indicated
in the table below,

PS5

MPL/14L5 For IBEM Internal Use Only Page 2%
”1)_; i o+ 'ri r!' I
h Bit Representation Bytes to be moved . ¥y
- - = - W'? ANLENE A.'?r” L7
243
0 0000 none T3 %
8 1000 byte 0 =(H 1)
: Qiee byfeyl oI T T
2 0010 byte 2
1 0001 byte 3 1e0e cige peip 90
Any combination is valid, e.g., 1010, neo= "¢ " mard d,!a/ﬁﬂj
The keyword DSF indicates that all the bytes from the
directly-addressed source -are to be moved to the destination;
this is equivalent to using DS. Bytes in the destination register

not specified to receive a byte from the source are unaffected by
this instruction.

I11.1.4,3 STOP Function

The keyword STOP may be placed in the with=-field of the word-move
instruction.

ALPHA <- BETA WITH DS,STOP;

When the instruction is executed, the word In the source field is
placed in the A-Register, and the normal word-move is performed.
The instruction remains in the instruction register and s
executed every CPU cycle, If the START button (on the CPU
console) is pressed or an interrupt latch is set, the next
address is specified by the branch,

& GO TO <label>(<bx>,<bh>,<bl>)

from which location the next instruction will be taken.

111.1.4.4 Branching

A limited branching capability is associated with the word-move

instruction and is specified by writing:

& GO TO <label>(<bx>,<bh>,<bl1>)

MPL/145 For IBM Internal Use COnly Page 2C

Permissible values for <bx>, <bh>, and <bl> are:

<bx>
0=3

<bh>
05.1,50,51,52,54,56

<b1>
0,1,85,85,87,20

These are described under section 111,1.1.1 on the Branch
Instruction.

1. 1:5 Storage Reference Instruction

The storage reference instructions provide the ahility to read or
store data into Main or Control Storage. The general form of the
instruction is:

{destination?> <= <source> WITH <with=field keywords>
& GO TO <label>(<bx>,<bh>,<bl1>);

in which either the <destination> = or the <source> 1is an
identifier with a MAIN or COMTROL attribute having an implicit
pointer given in the DECLARE statement, or an explicit pointer
appearing in the instrucrtion. The form of the <source> or
{destination> with an explicit pointer is:

{pointer> -> <identifier with MAIN or COMTRDL attribute>

If the <destination> refers to storare, then the instructionrn is a
store instruction; otherwise, if the <{source> refers to storare,
then the instruction is a read instruction. |In the example,

NEPEHAS = PROG" <="BETAZ
BETA is placed in PPOG, to which ALPHA points. - This will result
in a store into MAIN or CONTROL storarce dependine on the

attribute associated with PROC in the DECLARE statement. In the
next example,

CETA <- ALPHA =-> PROG;

the reverse operation is performed, namely the contents of PROC,
to which ALPHA points, are placed in BE1A. If the declaration of

MPL/1LS For IBM Internal Use Only Pare 27

PROG had been,
CECLARE PROC VORD MAIN BASED(ALPHA);
The statement could then be written:

BETA <~ PPOC;

A byte, half-word, or full=word can be accessed in FMAIN or

CONTROL storapge in any of the following ways:

1. The attribute BYTE, HALF, or UYOPD may be inclucded in the
declaration of the identifier, such as PROC, above, e.r.,

DECLARE PRCG MAIN BASED(ALPIIA) HALF;

2. The identifier may be written with one of the followines
special identifiers as a subscript:

PROC(B) read or store a hyte
PROC(H) read or store a halfword
PROG(Y) reacd or store a full word

The second option will override any size attribute specifiecd in
the declaration of the identifier.

I11.1.5.2 Store Operation

The data may be in either Local or Exterrnal storage. In
byte-storage operations the byte to be stored is byte 3 of the
data register; in half-word storare operations it is bytes 2 and
3 of the data register; finally, in full-word operations the
contents of the entire data register are used.

However, if TH, DECTH, or INCTH 1is specified in the with=field
keyword 1ist, then the bytes actually stored will depend on the
setting of T0-3, These four bits provide a mask, such that the
byte will be stored if the corresponding bit is set to 1.

TS itEs Value Eyte to be Stored

MPL/145 For IBM Internal Usc Only Page 28

Any combination of bytes can be stored. For example, If T0-3 are
set to 1001, then bytes 0 and 3 from the data register are storcd
into bytes 0 and 3 of the addressed word in memcry. Mote: T0-3
are set to 0's after the bytes have been storcd.

The use of either the DECTH or INCTH keywords specifies masking,
as well as incrementing or decrementing as Indicated in section
b 5 S RS

111.1,5.3 Read Operation

Cata may be read from MAIN or CONTROL storage and placed in Local
or External storaze. In byte-read operations the byte is always
placed in byte 3 of the <destination> word. |In half-word read
operations, the data 1is entered 1in bytes 2 and 3 of the
{destination> register. In full-word read operations, the entire
{destination> register is used. It is not possi®le to use the
T-Register to select byte combinations for read operations as it
was for store operations.

Designating TA or TB as with=field keywords in a read operation
has the following effect:

I'A causes T4-5 to be set to the value of the two low-order
bits of the storapge address before that address is updated
in the address register.

T8 causes the same action for T6-=7.
In either case, even though byte selection can not be specified

in conjunction with the read operation, T0-3 are set to 0.

.1.5.4 Address and Count Update

e

A Local storage location may be used to address either MAIM or
CONTROL storage; an even-odd pair of local storage locations may
be used to address MAIN or COMTROL storage and count the number

of references at the same time., It is possible to increment or
decrement the address register and to decrement the count
register.
e —

Updating such registers may be specified with the follovine

MPL/145 For I1BEM Internal Use Only Page 29

with=-field keywords:

INC increment address register

DEC decrement address register

DCNT decrement count register

DECTH decrement address register using the T-Register
INCTH increment address register using the T-Register

For INC or DEC the address register is changed according to the
type of read or store operation performed. When DCNT s
specified, the count register is decremented by the same amount
as was used for the address register. It is Iimpossible to
increment the count register.

Operation INC DEC DCNT
byte +1 =1 -1
halfword +2 -2 -2
word +14 =l -1

When DECTH or INCTH are specified, the amount of the increment or
decrement is determined by T0-3:

TO=-3 Hex Value of INCTH/DECTH/DCNT
0000 0 0
coo1 | 1
0010 2 1
€100 b 1
0101 5 1
1000 8 1
1010 A 1
0011 3 2
0110 6 2
1100 C 2
0111 7 3
1110 E 3
1001 9 L
1011 B b
1101 D L
1111 F &

For example,
INDATA <= PTR => MAINPROG(W) WITH TA, INC,DCNT;

This is a word-read operation setting TL-5 according to the last
two bits in the address register, incrementing the address

MPL/14L5 For IBM Internal Use Only Pace 30

register by L, and decrementing the count register by I, T0=3 is
then set to 0,

111.1.5.5 Status Setting

Status bits 1in the S-Register can be set or reset according to
the result obtained from updating the count register. By
specifiying keywords S2, S45, or Z6 in the with-field,

--\

S S2 is set to 1 if the count register is not O0;

otherwise it is reset to 0.

(;hs: Sk 1is set to 1l if bits 0-3 of byte 3 of the count

__~ register are 0; otherwise SL4 is set to 0. S5 is set to
1 if bits L4~7 of byte 3 of the count register are 0;
otherviise S5 is set to OC.

ZG:) St 1is set to 1 (if bits 0-5 of byte 3 of the count
register are 0; otherwise S4 is set to 0. St is set or
reset the same way as was specified for Si4b5.

If S2, 345, or ZG is specified and the count register is not
updated, then the S-Register will be set or reset according to
the contents of the Z-Register. MNote: The S-Rezister may not
contain the value expected after this operation.

I11.1.5.€C Update Only Instruction

UPDATE <address register> WITH <with-field keywords>
& GO TC <label>(<bx>,<bh>,<bl1>);

It is possible to update the address register and/or the_count

register without accessing storage. To do this the assirnment
portion of the storaze reference instruction is replaced by
UPDATE <address register>, where <address register> iv a Local
storasge word. Keywords in the with=field will then desirnate how
the registers are to be adjusted.

=

MPL/14L5 For IBM Internal Use Only Page 31

Update Address Register

- - —

INC1, INC2, INCL, INCTH
DEC1,DEC2,DECL, DECTH

And Update Count Register

DCNT1,DCNT2,DCNTL, DCNTTH

The specifications S2, Su5, or Z6 can also be used in conjunction
with updating the count register.

111.1.5.7 Direct Storage Addressing

Instead of using an address register to access a location in MAIN
or COMTROL storage, it Is possible to address certain areas of
this storage directly.

The locations in main storage which may be accessed directly are
the low-order 256 bytes where the System/370 PS¥, timer, CSY,
etc, are located. To do this the special identifier, MMOD, is
written:

MMOD(<constant>,<w=h=b>)

where {constant> designates the absolute address between 0 and
255, and <w-h=b> 1is either VW, H, or B, a special ldentifier
designating a word, half-word, or byte, respectively,

Three methods exist to access CONTROL storage:

1. CMOD(<constant?,{w=h=b>) refers to the module 1in which
the instruction being executed is located. The address is
the start of the module plus <constant), a number
between 0 and 255 inclusive. As above, <w-h-b> indicates
one of the special identifiers, W, H, or B, specifying a
full-word, half-word, or byte. — — —

2. FMOD(<constant>,<w=h=b>) refers to the module of control
storage whose starting address Is hexadecimal FF00. The
address Is FF00 plus the value of {constant>, a number
between 0 and 255 inclusive. <w=-h=b> designate whether a

MPL/1L5 For IBM Internal Use Only Page 32

full-word, half-word, or byte is to be accessed,

3. {pointer> => FMOD(<constant)>,<{w=h=b>) refers to the Fh
module, where h is a hexadecimal constant. The address is
Fh0O plus the value of the low-order byte of <{pointer>.
The value of h is determined from <constant>, whose value
is between 0 and F, inclusive. {w-h=b> is wused to
specify the accessing of a full-word, half-word, or byte.

I111.,1.5.8 Branching

The following 1limited branching capability is provided 1In
conjunction with storage reference instructions:

<{bx>
0,123

<bh>
X.0,1,80,81,52,54,56,ME

<b1>
X‘ ‘J’ 1,53,85{5?,20"'1?

Special identifiers, M6 and M7, refer to the low-order two bits
of the wupdated storage address. The remaining special
identifiers are described in section I111.1.1.5,

) L 5 5 Call Statement

The general form of the Call Statement is:

CALL <procedure name>.<label>(<bx>,<bh>,<bl1>)
USING <1link register>
GROUP (<{keyword>,{keyword>);

When the Call statement 1is executed, the contents of the
S-Register, the P-Register, and the address of the Call statement
are placed In <link register>, a Local or External storage
location, in the following order:

MPL/145 For IBM Internal Use Only Page 33

Register {link register> bytes
S 0
P 1
Address 2=3

The contents of <link register> may be used by a subsequent
Return statement to link back to the call statement,

The point to which the Call statement branches is the leg of the
branch=set specified by,

{procedure name>.<label>(<bx>,<bh>,<bl1>)
If {procedure name> is the same as <{procedure name> associated
with the Call statement, then it may be ommitted. The following
are pernmissible settings for the subscript fields:

<bx>
U,:52,3

<{bh>
X,0,1,50,51,S2,S4,56

<bl>
X,0,1,83,85,87,20

The GROUP clause is used to specify how the P-Register 1Iis to be
set at the new location. The parameters are described under the
GROUP statement in Section II1.3.4, This function is optional and
may not be used in an instruction in which there is a branch to a
different module.

billilles: 157 RETURN Statement

-

The general form if the Return statement is:

RETURN USING <link register>(<bx>,<bh>,<bl1>);
Execution of the Return statement places information from the
{link register> Into the S-Register, P-Register, and address
register.

Data created by a LINK declaration statement may also be used by
a RETURN statement, see section I11.,2.3,

Permissible settings for the <bx>, <bh>, and <bl> fields are:

MPL/145 For IBM Internal Use Only Page 3L

<bx>
0-15

<bh>
X,0,1,50,81,82,S4,S0

<bl1>
X+9,1,83,55,57,20,10,11

A complete description of 10 and 11 can be found in the
System/370 Model 145 Functional Specifications (B).

I111.2 Declaration Statements

) b2l Register Declarations

The Register declaration is used to establish a symbolic name for
a Local or External storage location. |In this way it is possible
to define words, half-words, bytes, and bits of such locations.

The SYN attribute 1is used for this, The name appearing in
parenthesis following 'SYN' may be one of the following:

LShh (<bit)>)
EShh (<byte>:<bit>)
{identifier> (<byte>)

LShh designates a Local storage location with hexadecimal
address hh, The values of hh may be between 00 and FF
inclusive and must always be written as two hexadecimal
digits,

EShh designates an External storage register with address hh
in hexadecimal.

{identifier> designates the symbolic name that has bheen

declared previously for a Local or External storarge
location.

(<byte>), (<byte>:<bit>), or (<bit>) may be used to name a
specific bit and/or byte. Permissible values for <byte)> may be 0
to 3, and permissible values for <bit> may be 0 to 7.

For example,

MPL/145 For IBM Internal Use Only Page 35

example 1: DCL ALPHA SYN (ESO03) VIORD;
example 2: DCL BETA SYN (LS3F(3:7)) BIT;

In example 1 ALPHA is declared to be the third word in External
storacgce.

In the second example, BETA is defined to be bit 31 of Local
storaze location 3F., The first subscript of LS3F, 3, designates
the low-order byte of LS3F, while the subscript, 7, designates
the last bit of byte 3.

Fmm———— ———t e ———— Fmmm————— o ——— +
| byte 0 | byte 1 | byte 2 | byte 3 |
o ——— Frmmm————— b d o - +
3F

Rk ok e S A e S
[0121213141516]|7]
SR ok R A e

BETA

lote: BIT, BYTE, or VWORD may be written as part of the
declaration; this must then coincide with the type of the SYN'ed
variable,

111.2.1.2 Declaration of Structures

A structure may be used to give symbolic names to many parts of
contiguous storage.

For example,

DCL 1 FRUIT WORD SYN(LS10),
2 APPLES BYIE,
2 PEARS BYTE,
2 ORANGES BYTE,
3 FLORIDA BIT SYN(LS10(2:1)),
3 NEWMEX BIT,
2 PEACHES;

FRUIT is defined to be all of Local storage word 16, .while
portions of this word may be referenced as follows:

MPL/145 For IBM Internal lUse Only Page 3C

FRUIT

e e e et e o et i o e Fomm - +
| :BAPPLES™ " PEARS | ORANGES | PEACHE? |
| byte 0 | byte 1 | byte 2 | byte 3 |
e i fmmmemmmm—— b - Fmmm - +
10

The locations of the substructures are assigned as they appear,
but they may be located explicitly by using a 'SYN' clause;
further assigning will continue from the new point with correct
boundaries observed.

111.,2,1.3 Multiple Declarations

If several names are to be given the same set of attributes, the
declaration may be written:

CECLARE (A,BCD,E,F) BIT SYN (LS01(0:0C));

Thus A, BCD, E, and F all refer to the same bit in word 01 of
Local storarge.

122 MAIN and CONTROL Attributes

- W e e e e S S e

Names may be used to identify areas in MAIN or COMTROL storare ir
conjunction with word move Instructions described in section
111.1.4. When such an instruction is used, the MAIN or CONTROL
storage name must have a pointer to the address in storage from
which data is to be accessed. This pointer must be a Local
storage location and may be implicitly associated with the name
by the use of the BASED attribute.

DECLARE ALPHA WORD MAIM BASED(PTR);

Here, ALPHA is a name for MAIN storoge and will be referenced as

MPL/145 For IBM Internal Use Only Page 37

a word. Whenever ALPHA is used in the program, the pointer, PTR,
previously declared 1in Local storage, will contain the proper
address. The implicit pointer, PTR, may be overridden with an
explicit pointer in the program, and the reference to the whole
word may be overridden by subscripting ALPHA with (B) or (H), as
indicated Iin section [11.1.5,

111.2,3 The LINK Attribute

DCL <identifier> LINK (<label> (0,0,0), <constant>);
to At
F X X

A location containing the <label> as the last two bytes and the
{constant> as the first two bytes is formed with <identifier> as
its name,

This word may be loaded into a location in Local storage and used
in a Return statement to provide settings for the S-Register,
P-Register, and the return address.

1.2.4 The EQU Attribute

- e

The equivalence attribute is used to create a symbolic constant.
DECLARE <identifier> EQU (<constant>);

The <identifier> may be used in place of a constant. |Its value
can only be changed by another declaration. The <(identifier>
does not <correspond to a storage location; its purpose Is to
provide mnemonic capabilities for constants used as masks,
offsets, etc.

The OFFSET attribute 1Is used to create a set of constant offset
values for the elements in a structure. For example,

MPL/145 For IBM Internal Use Only Page 30

DCL 1 TAB OFFSET,

2 AB WORD CFFSET,

2' XY BYTE CGFFSET,

2 (BCD,MLQ) HALF OFFSET,
2 LASTBUNCH \IORD OFFSET,

3RS L2, 63, Lk ‘BYTE OFFSET);

The OFFSET attribute must appear at the first level of the

structure. Elements in the structure shown above have a constant
attribute with the following values:

TAB = 0 LASTEBUNCH = ©
AB =0 L1 = 9
XY =14 L2 = 10
ECC = 5 L3 =i A
MLQ = 7 Ly = 12

. e

-

V/ORD AT(<address constant?>):<label)>:<{data>;
or,
TABLE AT(<address constant>):<label>:
{data)>,<{data>,...,<data>;
ENDTABLE;

The WORD AT form may be used for <data)> which occupy a single
word; otherwise, the TABLE AT form 1is necessary. ENDTABLE is
only to be used in conjunction with the TABLE AT form.

The <address constant> can have three forms:

1. An absolute value written in hexadecimal, decimal, or
binary.

2. A hexadecimal value specifying the module in which to
place the data, but not the specific location within that
module is designated by:

("hhXX'X)
where hh are hexadecimal digits from 00 to FF used to
specify the module.

MPL/1LS For IBM Internal Use Only Paze 39

3. A hexadecimal value specifying the location in some
module where the data are to be placed, without
specifying the particular module. The form for this is:

("XXhh'X)
where hh specifies the hexadecimal location.

The <{data> can be either an instruction or a constant. A numeric
constant 1is placed in a single word. A string constant s
translated into its EBCDIC form, left-justified with blank fill,
and placed in as many words as necessary to handle the entire
string.

For example,

TABLE AT ('XXEO0'X): ALPHA:
8, ' ABCDEFGHIJKLMNOPORSTUVWXYZ';
ENDTABLE;

translates to 8 words of memory starting at address E0 in an
unspecified module and is 1labeled ALPHA, The following 1is the
resulting storage assignment:

Address Contents
XXED 00000008
XXEL ClC2C3Cu
XXE8 C5C6C7C8
XXEC C9D1D2D3
XXFO D4D5D6D7
XXFY4 D8DYE2E3
XXF8 ELESEEE7
XXFC ESEOLOLO

052 Module Equate Statement

This statement is used to assign microprogram words or
hexadecimal data to the same module, 1i.e., group of 64 control
words. |Its form is:

EQUATE MODULE <labell>,<label2>,...,<labelli);

where <labell> must be in the current procedure, The labels may
not have associated <bx>, <bh>, or <bl> fields, and must be
qualified with a procedure name (if they are located within
another procedure.

MPL/145 For IEM Internal l'se Cnly Paze L0

For example,
EQUATE ['ODULE FIRST,PROC1.LEG1,PROC2,.LECT;

places the microprogram instructions with the labels FIRST, LEC1
in PROG1 nrocedure, and LEGl in PROF2 procecure all in the same
module. If any of these labels are part of a branch-set, then the
entire branch-set will be placed in the same module,.

111.3.3 The RESERVE Statement

This statement reserves locations Iin control storcse, so that
instructions or data will not be assigned to these locations,
except with a ORD AT or TABLE AT statement.

RESERVE <constant?;
or,
RESERVE <constant> THRU <constant>;

where <{constant> denotes a word address in control storace, i.c.,
it is a mnultiple of L.

For example,
RESERVE 'EOQO'X THRU 'EFFC'X;

reserves all the words in modules E0 through EF. Data will not

hbe assigned to these locations unless an explicit instruction is
riven to do so.

111.3.k The GROUP Statement

GROUP (<keyword),<keyword>);
GROUP (<keyword>):;

This statement is used to set the P-Register for addressin-e
various locations in Local or External storage.

The three keywords associated with this statement are:

1. DLSd Direct Local Storare; where d is a dirit betweren 0
and 7,

MPL/14L5 For IBM Internal Use QOnly Page L1

2. EXTd External Storage; where d is a digit between 0 and
?.

3. s Indirect Local Storarse; where d is a dirit between
0 and 3.

The storage locations specifiéd by the dirit d are:

DLS! 'or EXT

-

d Addressable Storage (hexadecimal)

~NowmEWRNED I
o]
o
i
o]
~

ILS (Local Storarge)

Addressable Storase (hexadecimal)

wWroHRO 1L A
=
{=>]
]
—
m

EXT and ILS both set the high-order 4 bits of the P-Register, and
therefore cannot be used in the same instruction. The difference
between them is that EXT sets bit 3 of the P-Register (P3) to 1,
while ILS sets P3 to 0. MNote: If there 1is to be any indircct
byte addressing, P3 must be 0.

DLS sets the low=-order &4 bits of the P-Register. P3 must eauel C,
so EXT may not be used.

MPL/145 For IBM Internal Use Only Page L2

Bibliography

A. WIRTH, MNiklaus A Programming Language for the 360 Computers.
Technical Report No CS 53, Computer Science Department,
Stanford University, (June 19€7).

B. IBM Corporation,SYS/370 Model 145 System Specifications,
Section I, IBM Corporation, (November 1970).

	102679649.05.01.src.jpg
	102679649.05.02.src.jpg
	102679649.05.03.src.jpg
	102679649.05.04.src.jpg
	102679649.05.05.src.jpg
	102679649.05.06.src.jpg
	102679649.05.07.src.jpg
	102679649.05.08.src.jpg
	102679649.05.09.src.jpg
	102679649.05.10.src.jpg
	102679649.05.11.src.jpg
	102679649.05.12.src.jpg
	102679649.05.13.src.jpg
	102679649.05.14.src.jpg
	102679649.05.15.src.jpg
	102679649.05.16.src.jpg
	102679649.05.17.src.jpg
	102679649.05.18.src.jpg
	102679649.05.19.src.jpg
	102679649.05.20.src.jpg
	102679649.05.21.src.jpg
	102679649.05.22.src.jpg
	102679649.05.23.src.jpg
	102679649.05.24.src.jpg
	102679649.05.25.src.jpg
	102679649.05.26.src.jpg
	102679649.05.27.src.jpg
	102679649.05.28.src.jpg
	102679649.05.29.src.jpg
	102679649.05.30.src.jpg
	102679649.05.31.src.jpg
	102679649.05.32.src.jpg
	102679649.05.33.src.jpg
	102679649.05.34.src.jpg
	102679649.05.35.src.jpg
	102679649.05.36.src.jpg
	102679649.05.37.src.jpg
	102679649.05.38.src.jpg
	102679649.05.39.src.jpg
	102679649.05.40.src.jpg
	102679649.05.41.src.jpg
	102679649.05.42.src.jpg
	102679649.05.43.src.jpg
	102679649.05.44.src.jpg

