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Preface

The structures that we call computer systems continue to grow in complexity, in
size, and in diversity. This book is linked firmly to the nature of this growth. The
book is about the upper levels of computer structure: about instruction sets, which
define a computer system at the programming level; and about organizations of
processors, memories, switches, input-output devices, controllers, and communica-
tion links, which provide the ultimate functioning system. These levels are just
emerging into well-defined systems levels—with developed symbolic techniques of
analysis and synthesis and accumulated engineering know-how, all expressed in a
crystallized representation. These aspects of computer systems have always existed,
of course, but only in rudimentary form. The classical four-box picture of a com-
puter (arithmetic unit, memory, input-output, and control) is certainly an effective
organization of components to process information. But multiple-processors hier-
archies of memories and remote communications force the top level of organization
into a distinct level, requiring analysis and rational design. Similarly, the 25 instruc-
tions of the IBM 701 computer (developed around 1953) is certainly an instruction
set—indeed one worthy of study. But processors with dozens of registers and
almost unlimited logical circuitry, again force the instruction set to become a topic
of rational analysis and design.

This book is tied to the emergence of these upper levels of organization: eight
years ago (a computer engineer’'s half dozen) would have been too early to write
this book; eight years hence would be too late. Eight years ago the diversity and
complexity of computer structures was not sufficient to justify the attention this
book provides. This book would have been too thin. Eight years hence textbooks will
exist that treat these levels systematically. This book will then appear too descriptive.

But right now, as these aspects of computer structure are emerging, and with
systematic treatment still precluded, there is a need to make available material on
these levels for systematic reference and study. Our choice has been to present a
large set of examples, which illustrate the various design options and structural
possibilities, both in instruction sets and in overall configurations. These examples
are descriptions of actual computer systems, taken from the technical literature or
from technical reports and manuals. Descriptions of actual systems are to be much
preferred over idealized abstractions. The latter can reflect the real issues only after
successful systematization.

Not only are the chapters about actual computers, they present much detail. The
complexity of computers resides in part in their size and the multiplicity of their
parts—e.g., to their having 200 instructions rather than 20, or having to service
50 Teletypes rather than 2. It seems essential to describe computer systems in their
entirety, rather than via simplified vignettes. Again, this view stems from the existing
state of the art. Eight years hence, it will not necessarily hold.

We fall from grace on all the above principles, providing occasionally descrip-
tions of paper machines and partial descriptions of partial systems. But our feeling
that detail and reality is important remains. This is why this book is so large; and fit
for study rather than for reading.
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The book presents a large number of examples. Variation needs to be presented
along all the major dimensions that instruction sets and system configurations
currently exhibit. Thus, as a glance at the table of contents will show, the examples
in the book are hardly picked at random. The variation is empirical. It exists in the
population of computers that have actually been built. This characteristic of the
book stems, again, from our assessment that the upper levels of computer structure
are still in an essentially descriptive and empirical state of development. However,
as the book documents, ample variation occurs in existing computer systems. The
evidence presented here should finally lay to rest the remarks—once echoed almost
universally and still heard occasionally—that nothing has happened in computer
structure since the von Neumann machine.

Dimensions of variations imply a framework, for dimensions do not by them-
selves arise from a population of systems. They require the aid, witting or not, of a
conceptual framework. As the first three chapters of the book testify, we have most
wittingly created a framework, and have had no hesitation in imposing it throughout
the book. However, in keeping with our view already expressed, this framework is
primarily descriptive. It has come inductively from the common lore, from our own
experiences as designers, and from the effort of putting this book together. This
attempt at systematization has given rise to two notations: one for instruction sets
(ISP) and the other for configurations of major components (PMS). But, again, these
notations are primarily descriptive.

So much for what the book actually tries to provide. What are our goals for it?
The first is educational. There are three distinct populations of professionals whose
education is to be served by this book: the computer engineer, who will design
physical computer systems; the computer scientist, who is concerned primarily
with the programming level and with various abstract views of information processing;
and the electrical engineer, who sees computer systems simply as one part of a
larger technology.

For all of these, we see no sense in talking of elementary versus advanced treat-
ments of computer structure. There is surely ‘‘less” versus ‘“more,’”’ but consistent
with our view of the current art, no vertical stratification of education is possible
in instruction sets and device configurations. It is sufficient, in the present day, for
these aspects of computer systems to become accepted as worthy of study in their
own right,

This book will hardly make easy fare for undergraduate students, who do not
have an instructor somewhat skilled in the art that is being taught. However, this
book is meant for study. A good instructor can, we feel, develop an excellent course
(or part thereof) in computer structures, taking this book as the basic material. In
addition to the three introductory chapters, Chapter 5 (on the DEC PDP-8), by
providing a complete example of a computer system with descriptions at all systems
levels, helps to tie the aspects of computer structure discussed in this book to the
view students will pick up from a traditional course in logical design.

It goes without saying that for the computer engineer and designer, the material
of this book should be fully assimilated. In designing a new computer system, or
subsystem thereof, he should be familiar with all that this book has to offer—the
design choices, the structural variations possible, the experiments of the past and



the design needs they attempted to satisfy. Given that systematic analysis does not
yet exist, there is no substitute for extensive, critical understanding of the existing
examples of designed systems. We assume the student of computer engineering
comes to this book with a working knowledge of logical design. He should find it
possible to realize many of the systems described in this book at the next lower
levels of logic structure.

For the computer scientist, the levels of computer structure discussed in this book
constitute a substantial part of what he should know about the physical devices that
underlie his science. As we pass downward from these levels to lower ones—to
register-transfer systems, sequential logic circuits, combinatory circuits, continuous
circuits and on down—the relevance of each level gradually fades. The levels of this
book, along with the register-transfer level constitute the main aspects of computer
structure that the computer scientist must understand. It does not matter that they
are, as yet, basically empirical and descriptive. The computer scientist undoubtedly
will not be able to carry through the design of the systems described in this book
in terms of the lower logic levels, but this is not necessary for an appropriate grasp
of these upper levels of computer structure. Indeed, this is what it means for distinct
systems levels to exist.

For the electrical engineer, this book undoubtedly presents more examples than
he cares to know (or needs to). But an appropriate sampling, plus the overview
presented in the first three chapters, is appropriate to give him some insight into
the elaborate growth that has occurred on top of the basic digital technology created
within electrical engineering.

The student of systems engineering may also find the material presented here
useful, as an example of a class of complex systems which has evolved several
distinct levels of representation. Again, the book undoubtedly presents too massive
a dose of detail for him, but the overview in the first chapters, plus a sampling
throughout the space of computer systems, should prove highly instructive.

We have goals for the book in addition to the educational ones. We think the book
can serve as a useful reference for the practicing computer engineer. The time is
past when every computer engineer knows about all computer systems because he
has lived through all of computer history. That position is now reserved for those of
us who are past forty (and still active). For the rest, a source book that provides the
cumulated design experience of the field is a useful substitute, especially so if it
contains enough detail so that a designer can reasonably evaluate the actual com-
puter systems that embody a particular design alternative.

Behind the goal of the book as a guide for the practicing computer designer
lies the feeling that the field of computer engineering needs to develop a sense of
history and of looking to the past for guidance. The fantastic advance in basic logic
technology—in speed, cost, and reliability— makes each day seem an absolutely
new one. But, of course, it is not. Many alternative designs have been tried out in
past systems, in ways relevant to current design. Thus, we have the goal of saving
some of the past in a form accessible to the future needs of computer design. This
goal is mixed with a certain archival feeling. Many of the systems in this book have
never been documented, other than in manuals and various elementary how-to
programming books.

Preface vii
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A final goal comes from our feelings as computer scientists that the variety of
computer systems is a phenomena worthy of study in its own right. This book carries,
therefore, an invitation to taxonomy—to asking how to classify the diversity of
forms of computer systems that are coming into existence. Taxonomic endeavors
usually take place in a field of natural systems, particularly biological systems. It
may seem strange that a domain of artificial systems calls for taxonomic activity.
But the demand for empirical classification exists whenever there is a population of
significant size and rich structure. Rudimentary classification efforts have occurred
for many populations of artifacts—for ships, for aircraft, for houses. This book
should amply confirm that computer systems are complex and diverse enough—
and undergoing enough continual proliferation and evolution—to command sig-
nificant taxonomic endeavor.

Enough is said in the first two chapters about the new notations introduced in
the book, so that nothing substantive need be added here. We apologize for inflicting
new notation on the reader. We feel that good notations are really quite important
for the aspects of computer structure described in this book. Much would be gained
by the whole field of computers—by users, programmers, engineers, planners,
buyers, sellers, manufacturers, students, and scientists—if relatively uniform
notations came into common use. Although we have no illusions about the perfec-
tion of the notations we have introduced, we would be most happy if they cause a
rise in concern for standard notations and nomenclature.

A large number of distinct systems are described in substantial detail. We have
redescribed many of the systems in the common notation introduced in the book.
The accuracy of all these descriptions is a major problem. Even where the papers
are reproduced from the literature, this problem of accuracy remains—although
then it is not ours alone. Even though we have taken pains to obtain accurate in-
formation on the systems and to portray them faithfully in our various descriptions
and figures, there is no way we can be responsible for their ultimate accuracy. The
PMS and ISP figures, in particular, cannot be guaranteed to be accurate representa-
tions of the systems they purport to describe. Ultimately, one would like to have
simulation languages for such notations and to verify (up to the usual criteria of a
debugged program) that a system given by, say, an ISP description, simulates the
behavior of the target machine. But that day is still far off.

Our most fundamental acknowledgment is to the contributors to this volume,
not only for the articles they have written, but for the computers they have designed
and built, thereby creating a population of fascinating artifacts worthy of study. An
additional reason for reprinting their articles rather than simply describing their
computer systems is the importance of having available the views of the designers
themselves about the nature of their systems.

The research on the basic ideas underlying the notations was supported by
Advanced Research Projects Agency of the Office of the Secretary of Defense
(F 44620-67-C-0058) and is monitored by the Air Force Office of Scientific Research.

We would like to extend an acknowledgment to the organizations that have
produced all of these computers, oftentimes it would seem in defiance of the laws
of economics. Perhaps, as the old saw has it, a computer manufacturer is simply a
computer’s way of breeding another computer. This might account for the tenacity



shown by computer manufacturers in spawning the vast numbers of computer
systems that provide our field of study. Within this general acknowledgment, we
would like to extend a very specific one to all the people in these organizations who
heiped make information available to us—the manuals, photographs, dates, etc.,
that this book has demanded in such great quantity.

We are indebted to the students who have read and criticized the various PMS
and ISP figures: Richard Dove, Wayne Kohl, Michael Knudsen, Paul Mcobus, and
Charles Pfferkorn. Ken Fitzgerald and Anita Jones of IBM were kind enough to
read the introduction to the IBM System/360.

Professor David L. Parnas initially reviewed the text and contents, thus providing
many helpful suggestions. Our other colleagues, especially Professors Angel Jordan,
Alan Perlis, Herbert Simon and Everard M. Williams deserve a special thanks for
their patience and encouragement.

Finally, we would like to thank those who were a part of the machine that assembled
the book: the editors of McGraw-Hill; Mrs. Mary Ross who assembled the bibliog-
raphy, figures, and contributor articles; Mrs. Mildred Sisko who typed the PMS and
ISP Appendix; and especially Mrs. Dorothy Josephson who not only typed nearly all
drafts of the book, but also the final PMS figures, and ISP Appendices.

C. Gordon Bell
Allen Newell
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Chapter 1

This book presents many examples of computer systems. It presents
them in enough detail so that meaningful engineering study and
analysis are possible. Most of these examples are presented by
using the original descriptions of them in the technical literature.
Others have been redescribed by us, especially where the original
descriptions existed only in technical manuals. In both cases there
are considerable discussion and analysis of the computer struc-
tures: what problems they were intended to solve, what solutions
were adopted, and how these solutions have fared. Yet the em-
phasis has remained on detailed descriptions precise enough so
that the systems themselves are available for independent study.
Why should one want to produce such a book? Collections of
reprintings from the technical literature are common in many
science and engineering fields, e.g., “Programming Systems and
Languages” [Rosen, 1967]. We have departed from this tradi-
tional exercise in two ways, both of which seem important to us.
First, we have presented substantial amounts of detail: in effect,
block diagrams of computer structures and the equivalents of
programming manuals. These constitute neither good reading nor
a way of communicating the “essential ideas” in the field. Second,
we have introduced a system of notation and have used it not only
in the parts we ourselves have written but also to provide addi-
tional (sometimes redundant) descriptions of computer systems in
the reprinted articles. Why should there be a book like this? The
reasons are several and require some background discussion.

IR S

Computer systems oo

Computer systems are one example of man’s more complex arti-
ficial systems.! They have existed as successful engineering prod-
ucts long enough to undergo radical evolution and to give rise
to a number of basic, unique technologies. They are sufficiently
complex that they have given rise to a science, that is, to a con-
tinuing, institutionalized endeavor to understand what sort of beast
has been brought forth.2 Our fundamental interest is in the devel-

1We need not argue that they are his most complex system. That view
is myopic. Setting aside quasi-natural systems, such as cities and economies,
it is still the case that a modern aircraft carrier is more complex than a
modern computer by any reasonable measure.

2Here uniqueness can be claimed, perhaps, since few other artifactual
systems (again, excluding the quasi-natural ones) provide new phenomena
that require sustained scientific investigation to understand them. There
certainly is no science of aircraft carriers. But there is a computer science.

-

-

opment of this science and technology of computers (one of us
also likes to build computers). To understand why this particular
book seems to us to be the right way to push this development
at this particular time requires characterizing the current state
of computer-systems technology.

A computer system is complex in several ways. Figure 1 shows
the most important. There are at least four levels of system descrip-
tion, possibly five, that can be used for a computer. These are not
alternative descriptions in the sense that anything said one way
can be said another. On the contrary, each level arises from ab-
straction of the levels below it. Each does a job that the lower
levels could not perform because of the unnecessary detail they
would be forced to carry around.

A system (at any level) is characterized by a set of components,
of which certain properties are posited, and a set of ways of com-
bining components to produce systems. When formalized appro-

- priately, the behavior of the systems is determined by the behavior

of its components and the specific modes of combination used.
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4 Part 1

The structure of computers

Elementary circuit theory is an almost prototypic example. The
components are R’s, L’s, C’s, and voltage sources. The mode of
combination is to run wires between the terminals of components,
which corresponds to an identification of current and voltage at
these terminals. The algebraic and differential equations of circuit
theory provide the means whereby the behavior of a circuit can
be computed from the properties of its components and the way
the circuit is constructed.

There is a recursive feature to most system descriptions. A
system, composed of components structured in a given way, may
be considered a component in the construction of yet other sys-
tems. There are, of course, some primitive components whose
properties are not explicable as the resultant of a system of the
same type. For example, a resistor is not to be explained by a
subcircuit but is taken as a primitive. Sometimes there are no
absolute primitives, it being a matter of convention what basis
is taken. For example, one can build logical design systems from
many different primitive sets of logical operations (AND and NOT,
NAND, OR and NOT, etc.).

A system level, as we have used the term in Fig. 1, is charac-
terized by a distinct language for representing the system (that
is, the components, modes of combination, and laws of behavior).
These distinct languages reflect special properties of the types of
components and of the way they combine. Otherwise, there would
be no point in adopting a special representation. Nevertheless,
these levels exist in the system analyst’s way of describing the same

Structure Behavior
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Fig. 2. Electronic-circuit level: inverter circuit.

physically existing system. The fact that the languages are highly
distinct makes it possible to be confident about the existence of
different system levels. Where we are fuzzy, as in the existence
of an additional intermediate level, it is because new representa-
tions have not yet congealed into distinct formal languages. As
we noted, within each level there exists a whole hierarchy of
systems and subsystems. However, as long as these are all described
in the same language, e.g., a subroutine hierarchy, all given in
machine-assembly language, they do not constitute separate sys-
tem levels.

With this general view, let us work through the levels of com-
puter systems, starting at the bottom. Each level in Fig. 1 actually
has two languages or representations associated with it: an alge-
braic one and a graphical one. These are isomorphic to each other,
the same entities, properties, and relations being given in both.

The lowest level in Fig. 1 is the circuit level. Here the com-
ponents are R’s, L’s, C’s, voltage sources, and nonlinear devices.
The behavior of the system is measured in terms of voltage, current,
and magnetic flux. These are continuously varying quantities asso-
ciated with various components, and so there is continuous be-
havior through time. The components have a discrete number of
terminals, whereby they can be connected to other components.
Figure 2 shows both an algebraic and graphical description of
an inverter circuit, as well as an algebraic and graphical descrip-
tion of its behavior. We note that its structure is specified first
as a circuit (a directed graph), with symbols for the arcs and nodes.
The particular circuit still is an abstraction because the transistor
Q1, the resistor R, and the stray capacitors C are given only token
values. The structure can be described symbolically by first writing
the relationship describing each of the components (i.e., Ohm’s
law, Faraday’s law, etc.) and then the equation which describes
the interconnection of the components (i.e., Kirchhoff’s laws). We
observe the behavior of the circuit (probably using an oscilloscope)
by applying an input e(t) and observing an output e,(t). Alterna-
tively, if we solve the equations which specify the structure, we
obtain expressions which describe the behavior explicitly.

The circuit level is not in fact the lowest level that might be
used in describing a computer system. The devices themselves
require a different language, either that of electromagnetic theory
or of quantum mechanics (for the solid-state devices). It is usually
an exercise in a course on Maxwell’s equations to show that circuit
theory can be derived as a specialization under appropriately
restricted boundary conditions. Actually, even at its level of ab-
straction, circuit theory is not quite adequate to describe computer
technology since there are a number of mechanical devices which
must be represented. Magnetic tapes and drums are most likely



to come to mind first, but card readers, card punches, and Teletype
terminals are other examples. These devices obey laws of motion
and are analyzed in units of mass, length, and time.
The next level is the logic level. It is unique to digital technol-
ogy, whereas the circuit level (and below) is what digital technol-
ogy shares with the rest of electrical engineering. The behavior
of a system is now described by discrete variables which take on
only two values, called 0 and 1 (or + and —, true and false, high
and low). The components perform logical functions: AND, OR,
NOT, NAND, etc. Systems are constructed in the same way as
at the circuit level, by connecting the terminals of components,
which thereby identify their behavioral values. The laws of bool-
ean algebra are used to compute the behavior of a system from
the behavior and properties of its components. TESIA
"The previous paragraph described combinatorial circuits whose
outputs are directly related to the inputs at any instant of time.
If the circuit has the ability to hold values over time (store infor-
mation), we get sequential circuits. The problem that the com-
binatorial-level analysis solves is the production of a set of outputs
at time t as a function of a number of inputs at the same time t.
As described in textbooks, the analysis abstracts from any trans-
port delays between input and output; however, in engineering
practice the analysis of delays is usually considered to be still part
of the combinatorial level. In Fig. 3 we show a combinatorial
network formed from combinatorial elements which realize three
boolean output expressions, O;, O,, and O, as a function of the input
boolean variables A and B. Note that in the symbolic representa-
tion of the structure we can write an expression that reflects the
structure of the combinatorial network, but, on reduction, the
boolean equations no longer reflect the actual striub(;t‘ur‘(?’ of the
combinatorial circuit but become a model to predict its behavior.
The representation of a sequential switching circuit is basically
_the same as that of a combinatorial switching circuit, although
one needs to add memory components, such as a delay element
(which produces as output at time t the‘input at time t — 7). Thus
the equations that specify structure must be difference equations
involving time. Again, there is a distinction (even in representa-
tion) between synchronous circuits and asynchronous circuits,
namely, whether behavior can be represented by a sequence of
values at integral time points (t = 1, 2, 3, . . .) or must deal in
continuous time. But this is a minor variation. Figure 4 gives a
sequential logic circuit in both an algebraic and a graphical form
and shows also the representation of the behavior of the system.

Now it is clear that logic circuits are simply a subspecies of
general circuits. Indeed, to design the logic components one con-
structs circuit-level descriptions of them. For instance, Fig. 5
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shows a circuit for a NAND (or NOR) gate plus a table of its
behavior. It is evident that its behavior corresponds to that of the
NAND gate only if certain restrictions hold; namely, that one does
not look at the voltage (which is identified as the behavior variable
in the logic circuit) during certain periods when it is transient
(“settling down,” to use the common phrase). Thus the logic level
is an instance of the circuit level only in the same sense that the
circuit level is an instance of Maxwell’s equations—as a limiting
case in which certain features are deliberately ignored.

One buys a great deal from the specialization to logic circuits,
since one can compute the behavior of circuits at the logic level
that are extremely complex at the circuit level. The techniques
for doing so use an entirely different mathematical apparatus. In
general, we cross into another level when the representation at
the previous level provides information that is no longer relevant.
A lower level is concerned with explaining the behavior of a
certain structure, whereas the next highest level takes the lower
level as given (a primitive). The higher level is concerned not about
internal behavior but only how primitives are combined.

A glance at Fig. 1 shows that we have described only the lower
part of the logic level. There is another part, called the register-
transfer level (or RT level). This-is still an uncertain level; a matter
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we will discuss after we have finished describing it. The com-
ponents of an RT system are registers and functional transfers

" between registers. A register is a device that holds a set of bits.!
The behavior of the system is given by the time course of values
of these registers, i.e., their bit sets.

The system undergoes discrete operations, whereby the values
of various registers are combined according to some rule and then
are stored in another register (thus “transferred”). The law of
combination may be almost anything, from the simple unmodified
transfer (A < B) to logical combination (A <~ B /\ C) to arithmetic
(A <~ B + C). Thus a specification of the behavior, equivalent to
the boolean equations of sequential circuits or the differential
equations of the circuit level, is a set of expressions (often called
productions) which give the conditions under which such transfers
will be made. In Fig. 6 we give a picture of an RT system to
compute the sum of integers. The figure includes the specification

1This assumes that the elementary state variable of the system holds a bit
(i.e., one of two values, such as 0 or 1). This need not be; sometimes the
elementary variable holds a decimal digit (one of 10 values) or a character
(one of, say, 48 values). For present purposes we can talk in terms of
bits, without losing anything thereby.

of its behavior and a table that shows the resulting behavior over
time. Here the graphical structure of the system includes registers
(N, L, S), transfers (S «<— S + 1), data operators (S + 1,1 > N, etc.).
The flowchart shows the behavior of the control with time.
The register-transfer level is still uncertain because there is
substantial agreement neither on the exact language to be used
for the level nor on the techniques of analysis and synthesis that
go with it. As we will note below, for both the circuit level and
the logic-circuit level there exist well-defined representations,
guaranteed, so to speak, by standard textbooks and college courses
that teach these levels. Standard texts on digital computers make
only informal use of the RT level.
 We have indeed a systems level in emergence here. If one
restricts the transfer operations to boolean operations and thinks
of a register as simply a set of 1-bit memories, one can write a
set of logic equations for any register-transfer system. Furthermore,
if one considers the role of logic design in digital computers, this
has encompassed both sequential circuits and the register-transfer

*———  —»
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level. The practicing logic designer (by now an institutionalized
position, on a par with that of circuit designer) has sequential and
combinatorial circuits as his basic analytic tools, and he attempts
to design systems on the register-transfer level (e.g., central proc-
essors) with these as tools. The register-transfer level has emerged
from the informal attempts to create a notation closer to the job
to be done. ;

Recently there have been a number of efforts to construct
formalized register-transfers systems. Most of them are built
around the construction of a programming system or language that
permits computer simulation of systems on the RT level. Although
there is agreement on the basic components and types of opera-
tions, there is much less agreement on the representation of the
laws of the system (corresponding to the production system in Fig,
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Fig. 6. Register-transfer sublevel of the logic level: computation of the
sum of integers.

Fig. 7. State-system representation of the logic level: computation of
x + 1 from serial input string x.

6) or on the way to represent the dynamic behavior (correspond-
ing to the behavior table in the figure).

" There is another representation used at the logic level, the
state-system representation, but it has been put at one side in Fig.
1. The state system is the most general representation of a discrete
system available.! A system is represented as capable of being in
one of N abstract states at any instant of time. (For digital systems,
N is finite or enumerable.) Its behavior is specified by a transition
function that takes as arguments the current state and the current
input and determines the next state (and the concomitant output).
A digital computer is, in principle, representable as a state system,
but the number of states is far too large to make it useful to do
so. Instead, the state system becomes a useful representation in
dealing with various subparts of the total machine, such as the
sequential circuit that controls a magnetic tape. Here the number
of states is small enough to be tractable. Thus, we have placed
state systems at one side as an auxiliary to the logic level. In Fig,
7 we give the common representations of the state system. Co-

LThere have been energetic attempts to apply the state-system approach
to control systems of a more general nature [Zadeh and Desoer, 1963],
although they do not concern us here.
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incidently, we use the representations of Fig. 7 for the sequential
switching circuit of Fig. 4. That is, Fig. 7 may be viewed as an
abstraction of the physical system in Fig. 4. To the logic designer
the state system is a useful abstraction of a logic design. A design
usually passes through the following problem representations:

1 The problem exists in a natural language.

2 The problem is converted to a state diagram (output as
a function of state, and input).

3 The state diagram is represented as a state table and
output table.

4 States are assigned (physical memory elements are used).
5 The excitation table and output tables are formed.

6 The excitation and output logic equations are written
(constrained by the actual logic elements).

7 The sequential circuit is drawn.

Let us go to the next higher level, the program level. This
not only is a unique level of description for digital technology (as
was the logic level) but is uniquely associated with computers,
namely, with those digital devices that have a central component
that interprets a programming language. There are many uses of
digital technology, especially in instrumentation and digital con-
trols, which do not require such an interpretation device and
hence have a logic level but no program level.

The components of the program level are a set of memories
and a set of operations. The memories hold data structures which
represent things both inside and outside the memory, e.g., num-
bers, payrolls, molecules, other data structures, etc. The operations
take various data structures as inputs and produce new data struc-
tures, which again reside in memories. Thus the behavior of the
system is the time pattern of data structures held in its memories.
The unique feature of the program level is the representation it
provides for combining components, that is, for specifying what
operations are to be executed on what data structures. This is the
program, which consists of a sequence of instructions. Each in-
struction specifies that a given operation (or operations) be exe-
cuted on specified data structures. Superimposed on this is a control
structure that specifies which instruction is to be interpreted next.
Normally this is done in the order in which the instructions are
given, with jumps out of sequence specified by branch instructions.
Again, Fig. 8 shows a simple program, the data structures, and
the behavior.

Two things separate the logic level from the program level.
First, computer systems at the logic level are parallel devices, with

all components active simultaneously. At the program level, com-
puters are represented essentially as serial devices. Second, the
program level, but not the logic level, is essentially linguistic in
nature. At the program level things can be named, abbreviations
can be used, decisions can be made, instructions are interpreted
— all concepts that are strikingly absent from physical systems.
Of course, they are not “really” absent since one can give a full
description of the operation of a program at the logic level. But
one does so by carrying in mind the set of physical behaviors
discovered for computers that make them show the appropriate
linguistic behavior at the program level. Thus, one does not “go
to ALPHA if accumulator is negative’; one has a logic circuit that
transfers the contents of the address field of the instruction register
to the program counter, ANDing that transfer with the sign of
the accumulator, so that it does not take place if the accumulator
is not negative. Such a translation reveals how distinct is the
system boundary between the register-transfer level and the pro-
gram level. The size of the gap is also revealed in the ability of
people to become expert programmers without knowing anything
about any representations below the programming level.

The program level constitutes an entire technology in its own
right, and one that carries within it most of the emergent charac-
teristics of computer systems that make them worthy of a science.
Among the programming languages alone, there are levels of lan-
guage which are so distinct from each other as to constitute system
levels fully as important as the ones exhibited in Fig. 1. Never-
theless, from the viewpoint of someone basically concerned with
hardware systems, these can all be accounted a single level, at
least for the present. The one aspect of programming systems that
should be of most concern, that of operating systems, is still in
such a fragmented state that it does not even begin to be a distinct
system level.

One peculiarity of the program level is that there exists no
universal representation for it, as there does for the circuit or
logic-circuit level (and, it is to be hoped, soon for the register-
transfer level). Each machine has its own machine language (and
its own assemblers and command languages built on those ma-
chine languages). Each of these languages forms a complete sys-
tem at the program level, applicable only to the machine in
question. There is no universal machine language, although there
is much in common at a conceptual level between all existing
machine languages. There has existed a long-standing attempt
within the programming field to develop an UNCOL (for Uni-
versal Computer Oriented Language) [Steel, 1961] that would
play this role, but it has never been successful. The reasons are
not far to seek. The role of the machine language is to be inter-



preted by the machine in order to produce behavior. It is not free
to have arbitrarily desirable properties from our human viewpoint,
since its details affect the efficient operation of the computer too
much — how much space is devoted to the program, how much
time is saved by a special order oriented to matrix multiply, etc.
UNCOL was also attempting to fill the same role as machine
languages, being one from which to compile a machine code for
an arbitrary machine. Another reason why there has been no
universal programming representation is that each particular
machine language is a language, and so a universal description
would seem to be a description of a class of languages. This is
by no means impossible, as the wide use of notations such as
Backus Normal Form (BNF) show.! Nevertheless, it has contrib-
uted to the lack of any universal notation.

We now move to the fourth and last level. In Fig. 1 it is called
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the Processor-Memory-Switch-level, or PMS-level for short. The
name is not recognized, nor is any other, since the level exists
only informally. Nevertheless, its existence is hardly in doubt. It
is the view one takes of a computer system when one considers
only its most aggregate behavior. It then consists of central proc-
essors, core memories, tapes, disks, input/output processors, com-
munication lines, printers, tape controllers, busses, Teletypes,
scopes, etc. The system is viewed as processing a medium, infor-
mation, which can be measured in bits (or digits, characters, words,
etc.). Thus the components have capacities and flow rates as their
operating characteristics. All details of the program are sup-
pressed, although many gross distinctions of encoding and infor-

!We will propose a notation later. See also the work by F. Haney in his
Generalized Instruction System (GIS) [Haney, 1968].

Structure
Start
S «+—0;,/-—0,
. Loop

L
ﬁ
o
o]
Stop
POP-8 symbolic machine language program
Loc. Oper. Action Comments
Start  cla clear AC
dca S S-—0; deposit AC in M, clear AC
dca 1 I-—0;
Loop tad S twos complement add
N tad I }S<—5+I;
2 dca S
2 tad N }
+ cia I-N; negate AC (in twos complement)
T tad I
° smacla  [=NP skip if-AC, clear AC
2 Stop it halt
3 isz 1 I=—I+1,  index (by1),skip if O
(% jmp loop jump
S - sum=0,0+1,...,0+1+...+N
1 - integers 0,1,....,N
N N value of N where:

O<sg=<2"

ALGOL program
Stort S=—0;
for I+—0;step 1 until N do S+—S+1,
Stop

Time/{5 us

. = O N W =0

15X (N+1}+1

15x%

15X(N+1)+3

Volue

Behavior

p
(@]
—
w

Program
counter

start
start +1
start +2
loop
loop +1
loop +2
loop +3
loop +4
loop +5
loop +6
loop + 8
loop+ 9
loop

1 Z00000O0%

=4

1
=z
2200000000 GGG

- 00000000000 Gw

142+,
142+,
142+,
(haited)

+N
+N
+N

loop + 6
stop
stop +1

N
(N+1)+2 N
N
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mation type remain, depending on the analysis. Thus one may
distinguish program from data, or file space from resident monitor.
One may remain concerned with the fact that input data are in
alphameric and must be converted into binary, or are bit-serial
and must be converted to bit-parallel.

We might characterize this level as the “chemical engineering
view of a digital computer,” which likens it more to a continuous-
process petroleum-distilling plant than to a place where complex
FORTRAN programs are applied to matrices of data. Indeed, this
system level is more nearly an abstraction from the logic level
than from the program level, since it returns to a simultaneously
operating flow system.

One might question whether there is a distinct systems level
here. In the early days of computers almost all computer systems
could be represented as in the diagram in M.LT.s Whirlwind
computer programming manual in Fig. 9: with classic boxes of
memory (storage), control, arithmetic, and input/output. Actually,
this view of the computer in 1953 was considerably advanced,;
few texts on the logic design of computers in the 1960s have such
a detailed model. This model has secondary memory (magnetic
tape and drums in the Whirlwind’s case). The most interesting
aspect of the model, which text writers omit, is any kind of switch-
ing (the bus of Fig. 9). The bus provides a communication path
to link the other components. Certainly the pushbuttons (actually
the console) is novel for such a model. Compare this with the
diagram of a modern computer system in Fig. 10, which shows
a two-processor UNIVAC 1108, the level of abstraction being
the same as in Fig. 9. The arithmetic element of Fig. 9 has disap-

Storage j
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Forg\s: Takes instructions
L from storage
Difference then 9
Product

directs all other
elements properly

|
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(Positive or negative)

o4

Pushbut tons

Secondary
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Output
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Fig. 9. Automatic digital computation. (From the Whirlwind Computer
Manual, M.L.T. By permission of the publishers.)

peared and is replaced by a processor (a combined control and
arithmetic element) in Fig. 10. The central control of Fig. 9 is now
distributed throughout the remaining components. The control in
Fig. 10 is a combined unit for transforming a serial character-
information stream into words. It also manages the transmission
of a word vector between the primary memory and a terminal
or a secondary memory. The Resource Allocation Diagram is in-
troduced in Fig. 10 to describe the allocation (use), hence be-
havior, of the PMS components as a function of time. Chapter 2
describes these figures more fully.

Another indication of the emergence of the PMS level lies in
the models used in most operations-research types of studies on
computer systems. Again, in the early 1960s these were practi-
cally nonexistent. Now, with the advent of multiprogramming,
multiprocessing, and time sharing, and the imminent arrival of
computer networks, there are substantial numbers of such studies.
The level of abstraction is always one that considers only flows
and stocks of information, measured in bits {or an equivalent),
perhaps divided into several subtypes. The concerns are bottle-
necks, capacities, total flow rates, queuing problems, buffer sizes,
and the like. All this indicates a system level above both the logic
level and the program level.

There is no uniform language for representation at this level
and even, as we noted, no standard name., We have used the term
PMS in analogy to the use of RT for the register-transfer level.
Processors, memories, and switches are the main kinds of com-
ponents out of which systems at this level are built. If one names
a number of components at the PMS level, as we did previously,
one finds few switches in the list. “Busses” in our list would be
one, although many would think first of their data transfer charac-
teristics. But, as this book amply shows, what makes the PMS level
both interesting and complex is the existence of switches which
govern the pattern of information flow through the system. One
reason why they seem buried is their association with other com-
ponents as addressing systems. There are other components besides
processors, memories, and switches, namely, links, transducers, and
controls. But the first three, P, M, and S, seem appropriate to
characterize the level.

It is not known whether there will be yet other systems levels,
say one above the PMS level, as networks come into existence.
The simplicity of the top level argues against it, but that may only
show our narrow vision. It is important to realize that these levels
are not sacrosanct. They depend strongly on physical technology.
Thus, as we move toward integrated circuitry, there may emerge
representations other than register-transfer diagrams, and the lat-
ter may never develop into a clear systems level. One could even



imagine something happening to the circuit level, as continuous
distributions became more important (although the use of equiva-
lent circuits is well embedded in the engineering culture). We are
not concerned with predicting any particular changes. We wish
only to emphasize that the system-levels diagram of Fig. 1 is a
reflection both of current technology and of our ways of analyzing
given physical systems. As such, these levels have a certain im-
permanency about them.

What is the problem?

The systems levels we have just described correspond to the tech-
nologies that are available for the analysis and synthesis of com-
puter systems. Each of these levels exists, in fact, precisely to the
extent that a technology has become well developed. Thus both
the circuit level and the lower half of the logic level (combinato-
rial and sequential circuits) are highly polished technologies. They
are what one learns today, if one wants to become a computer en-
gineer. Textbooks exist, courses are taught, and there is a flourish-
ing, cumulative technical literature. As we progress up the systems
levels, matters become progressively worse. The register-transfer
level is not yet well established, although there is considerable
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current activity in the area, and the next few years may see its
universal establishment. Although programming is certainly well
defined, each machine is a king in his own court, with no common
technology of the program level that is relevant to the design of
computer systems. The latter phrase must be added since we are
taking a very specialized viewpoint here. We do not consider the
world of programming research at all, it being entirely divorced
from computer-systems design.! Finally, at the top, there is practi-
cally no consensus on the nature of the systems level.

There is nothing very surprising about this state of affairs. It
reflects accurately the fundamental fact that only in the past few
years have computer systems become complex enough for the
higher levels to emerge as distinct systems levels. When most
computers could be described in the diagram of Fig. 9—and such
a diagram was reprinted innumerable times in the first decade—
there was no need to have a technology at the PMS level. When
registers were so expensive that one could count the registers of
a processor on the fingers of one hand (no thumbs allowed), one
did not need a register-transfer language in order to describe the
1This is not entirely true. Each level must provide coupling with adjacent

levels. A major issue in computer-design is the trade-off between hardware
and software.

Graphic
Mpt—— S —— Pc —T.console -
Kio(#1:16) —Sfx—1—SK-—S—~T.line printer =
—Pc—T.console |~ )‘T :
Kio(#1:16) LSK—-T.cards-
—SK—— L—C{cards, lines| -
E)aper tape J
f— SKemS —Ms . drum
® LKio (#1:16)— —SK]- :
,:? L Kio(#1:16)—d |—Sk—S—Ms (moving head drum)
2 sk=
» —SK —Ff\s.magnetic tape -
SK] :
SK—S$—T (Telephone)
where:

Mp/primary memory; Ms/secondary memory;
Pc/central processor; T/terminal: and L/1ink

S/switch: K/control: Kio/control for io equipment;

1Mp (#0:7; core; 32768 word)

p
Ms (#1) —_— —
Kio{#j} —_— —_—

5 8

€ 9 I Pcl#2) - —_

g g

@ @ |Pc#n - —— E— _—

Fig. 10. PMS level: UNIVAC 1108.



12 Part 1l

The structure of computers

flows. In both cases, an informal block diagram conveyed all the
information adequately.

The question of the programming level is somewhat different,
since this level has existed as a formal language from the very start.
Here the key aspect, it seems to us, is that, since well-defined
languages existed, there was little pressure to find a better one.
The fact that such languages were completely idiosyncratic to the
machine, since they emerged as a product of the design itself,
simply did not worry anyone overly much. Each language provided
a design framework one could work into, and this seemed to suffice.
It led, it is true, to the game of “We have another bit left in the
mode field of the instruction—got another mode you'd like?”
But this has only made computer designers feel that creating an
order code was something of an art.

Thus we feel that the increased complexity of computer systems
is making these higher system levels of increasing importance.
Since this is only the second decade of the serious development
of computer systems, these upper levels are not in very good shape.
For instance, textbooks devote very little attention to the area.
Textbooks (especially good ones) tend to be technique-oriented,
giving most attention to what is known. (When we were students
we always used to wonder why there were no mathematics texts
which told you about the problems that were not solvable in closed
form.) Thus the present need for some material at these higher
levels constitutes a major motivation for this book.

There is a second feature of the current scene that enters into
our motivation for this book. Around 1,000 different computer
systems have been built. This represents a substantial amount of
pragmatic experimentation. This is especially true at the program-
ming level and PMS level, and also to some extent at the register-
transfer level. Many things have been tried, many found worth-
while, and many found wanting. A good deal of reinvention goes
on. Thus we are concerned that this history of experimentation
not be lost. It is true that, if the underlying technology changes
enough, the experience may become largely irrelevant, but this
does not appear to us to be an imminent development.

We will admit also to a third concern, which does not stem
from our role as computer engineers concerned with design, but
from our role as computer scientists, fascinated with the phenom-
ena of computers. The variety of about 1,000 computers represents
the beginning of a proliferation of a species. It is not under biologi-
cal control but rather under economic and intellectual control.
Nevertheless, it is in every sense of the word an evolutionary
population. We find ourselves feeling a little like naturalists must
have felt when confronted with the proliferation of the organic
world. We were at one time tempted to call this book “Computer

Botany” and at another “Computer Taxonomy.” We feel that the
attempt to gather, document, and classify these existing computers
is a worthy endeavor in its own right. One might think that all
this material is easily available. But the record fades rapidly,
especially when much of it exists only as manufacturers’ manuals
and papers in assorted proceedings.

The main reasons for producing this book and for its particular
character are by now evident. There is a need for material on the
upper levels of computer systems, both for teaching new students
of computer science and engineering and for making the past
record available for professional designers. Since the technologies
are not well developed for the upper levels, it is not possible to
write a textbook, making use only of well-accepted techniques,
notations, and results. Instead, one settles for making available a
collection of examples of systems, so that they can be studied and
analyzed directly.

Notations

It remains to say a word about two notations we have introduced,
both about our motivations for doing so and about their character.
Some, but not all, of this is already implicit in the foregoing ac-
count.

We started simply to produce a set of readings in computer
systems, motivated by the lack of detailed examples we could use
in a course one of us (GB) was giving on computer design. As noted,
we felt the need to expose the students to real examples of complex
computer structures. As we gathered material we became im-
pressed (depressed is actually a better term) with the diversity of
ways of describing these higher levels. Even more, the amount
of clumsy description—downright verbosity—even in purely
technical manuals acted as a further depressant. The thought of
putting such a congeries of descriptions between hard covers for
one person to peruse and study was almost too much to contem-
plate. Gradually, we began to rewrite and condense many of the
descriptions. As we did so, a set of common notations developed.
Becoming aware of what was happening, we devoted a substantial
amount of attention and effort to creating notational systems that
have some consistency and, we hope, some chance of doing the
job required. These are the PMS descriptive system for the PMS
level (sic) and the ISP (Instruction-set processor) descriptive sys-
tem for the program level. Each of these requires some comment
on its nature and the role we think it should play.

The PMS descriptive system is meant to provide a notation
for the top level of computer systems. Figure 10 is given in this
notation. On the surface it is largely self-explanatory, given the



mnemonics of P for processor, M for memory, S for switch, T for
transducer (hence also terminal), and K for control (since C is for
computer). There is also L for link, but in most computer struc-
tures it is unnecessary to distinguish a separate link component,
except to show connectivity. (It does become appropriate if com-
munication delays exist.)

There is an issue about whether this small set of components
is an appropriate set of primitives, but the issue is not of major
proportions. The real issues in the development of the notation
come from the stress of two opposite forces. On the one hand, one
wants extremely compact notations for expressing computer sys-
tems. The systems are large in any event, and if there is much
extra notational freight in the way of fixed formats, forced writing
of what is already known and assumed, etc., then the notation will
be neither useful nor used. On the other hand, there is a tremen-
dous variety and quantity of information that potentially must be
capable of being written into a description: word size, capacity,
flow, operation rate, data-types, variations of operation rate for
different classes of instructions, parity checking, technology, and
on and on. Thus one needs a notation that responds to both these
demands—and without being hopelessly complex and difficult to
learn. Our attempt at a solution involves a basically simple lan-
guage with comprehensive (and we think natural) ways of sys-
tematic abbreviation and abstraction.

The ISP descriptive system is meant to provide a uniform way
of describing instruction sets, that is, of giving the information
contained in a programming manual. It must provide the instruc-
tion format, the registers referenced by the instructions, the rules
of interpretation of the instruction, and the semantics of each
instruction in the processor’s repertoire. It must be able to do this
for any existing computer, plus the expected extensions into the
future. Its homeliest virtue is to make it possible to read the
descriptions of the forty-odd computer systems described in this
book, without having to fight a new notation for each system, and
still to know in detail what the instructions really do.

Our attempt at a solution turns out not to be a generalized
sort of instruction. Rather, it is very similar in flavor to a register-
transfer scheme. The differences lie in being able to suppress all
timing information and all detail that is not essential to under-
standing the instructions. ISP is not a variety of UNCOL, in which
one can program; rather it is a language in which one can describe
what any particular instruction set does. We thus avoid many of
the pitfalls of the UNCOL-like efforts.

There is a price to be paid for introducing new notations, for
they must be learned. We feel that the two systems we have
introduced here are natural enough to require almost no learning
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for superficial use (e.g., looking at Fig. 10) and only modest
amounts for full exploitation. They seem to us vastly preferable
to the array of ad hoc notations that we were faced with initially
(and with which we almost faced the reader). Still we are aware
of the price.

A word should be said about antecedents. The PMS descriptive
system is close to the way computer scientists talk informally about
the top level of computer systems; no one effort in the environment
stands out as a predecessor. Some notations, such as CPU (for
central processing units), have become widespread. We clearly
have assimilated them. Our modifications, such as Pc instead of
CPU, are dictated entirely by the attempt to build a consistent
notation over the whole range of computer systems. With respect
to ISP, we have been heavily influenced by the work on register-
transfer languages.! The one that we used most as a kernel from
which to grow ISP was the work of Darringer and Parnas [Dar-
ringer, 1969]. In particular, their decision to work within the
framework of ALGOL suited our own sensibilities, even though
the final version of ISP departs from a sequential algorithmic
language in a number of respects.

Finally, a word should be said about innocence and aspirations.
We are putting PMS and ISP forward as two notations. They are
that. But they also imply a particular view of digital processing.
Thus they are not entirely innocent. It would be appropriate to
explore fully this view and to justify the particular decompositions
and definitions used. This is not to say that these views are pecu-
liarly ours. They are implicit in the informal use of similar descrip-
tive systems. However, the attempt to formalize a notation makes
them more accessible. We accept the obligation to perform such
an exploration. But this volume is not the place to do so, for that
would turn it into something between a treatise and a textbook.
For this book, it is appropriate to take these notations at face
value. We have a companion volume in preparation that attempts
the other job. This is an aspiration.

We have other aspirations as well. Notations in the computer
world should turn into working tools. There are many tasks, such
as the communicative one of this book, where the notation by itself
is useful. Others are easy to imagine: writing specifications for new
machines; being sure what the computer salesmen are selling;
standardization of programming manuals, so that learning about
a new machine is easier; etc. But there are other tasks where the

1We have not been influenced in a direct way by the work of Iverson
[Falkoff, Iverson, and Sussenguth, 1964] in the sense of patterning our
notation after his. Nevertheless, his creation of a full description of the
IBM System/360 in APL stands as an important milestone in moving
toward formal descriptions of machines.
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notations must become formal programming languages, so that
analysis and synthesis procedures can be carried on automatically
in their terms. As we have noted, the development of ISP and PMS
germinated from purely notational issues. We have not let our
aspirations to turn them into simulation languages delay our use
of them for purely descriptive purposes. Thus we accept the obli-
gation also to develop them as operational tools. That is also an
aspiration and cannot be dealt with anywhere within this book.

Plan of the book

We now have enough background to explain the structure of the
book. Two other chapters complete the introductory part. Chapter
2 provides an exposition of the PMS and ISP descriptive systems.
As we have just noted, this does not attempt to explore seriously
the view of digital processing implicit in these notations, although
it does provide a small amount of motivation. A summary of the
language conventions and parameter values is given at the end
of the book in the appendix.

Chapter 3 provides a description of the space of computer
systems. One can view all computer systems as occupying a space
whose dimensions are the various important systems features.
Many features of the actual systems are relatively locked together.
For example, word size and number of instructions in the reper-
toire covary; no 12-bit machine has 200 instructions but several
with over 32 bits do. Thus the number of significant dimensions
of variation is much less than the total number of features of
computer systems. Such a space provides a basic frame in which
to choose representative computer systems for inclusion in the
book. We hope Chap. 3 will also justify our feeling that there is
a diversity and proliferation of computer systems that is worthy
of serious study.

The remainder of the book is divided into five parts (2 to 6,
with the introduction constituting Part 1), and each part into
sections. Each chapter gives a description of a computer system

that is an instance of the part and section. Usually a chapter
describes only one computer or computer system, although there
are a few exceptions in Part 6 on computer families.

A word needs to be said about the “Virtual” Table of Contents.
Many of the example computers are relevant to more than one
part and section. Physically, they have to be located at one place.
But we have permited multiple entries in the Contents, so that,
for instance, Chap. 33 on the IBM 1800 appears in Sec. 1 of
Part 2 as an example of a one-address ISP, in Sec. 1 of Part 4 as
a terminal control, and finally in Sec. 2 of Part 5 as an example
of a PMS with one central processor and multiple input/output
processors (1 Pe, multi-Pio); physically it is located in the latter
section. By using different type faces we hope the reader will not
become confused between virtual and actual.

There is little point in outlining the content of the various parts
and sections here. This is better done at the end of Chap. 3 after
the computer space has been laid out.
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Chapter 2
The PMS and ISP descriptive systems

The task of this chapter is to provide an introduction to the PMS
descriptive system for the top computer-system level and to the
ISP descriptive system for the program level. We take the view
that informal notations exist and are in use. PMS and ISP are an
attempt to tidy up these notations—to make them consistent and
more powerful. Thus we depend on the reader already to under-
stand implicitly much of the notation and how it is to be used.
In consequence, there is no attempt in this chapter to provide
a formal treatment of the whole system. The appendix 1, at the
end of the book contains a complete summary of the notation
rules, including the component attributes and values, and their
abbreviations (i.e., the main technical vocabulary). We will pro-
vide a brief discussion of the conceptual view underlying the two
systems, since it is an appropriate way to make the notation
understandable. But this is informal and heuristic.

The two descriptive systems are not independent. There is a
common set of notational conventions for abbreviating, for giving
parameter values, and so on. (The Appendix separates them.)
Likewise, there exists, in effect, an ISP description for every PMS
component, or, conversely, ISP statements imply particular PMS
component structures. A natural way is to present PMS first, which
will also serve to introduce the main notational devices. Then we
will give ISP. Finally, we will add more comments on the rela-
tionship between PMS and ISP.

PMS level of description

Digital systems can be characterized most generally as systems
that at any time exist in one of a discrete set of states and that
undergo discrete changes of state with time. This is a highly ab-
stract view. Nothing is said about what physical state corresponds
to a system state; nothing is said about what laws of physics trans-
form the system from one state to another. The states are given
abstract labels: S;, S, . .
state-transition table with many entries of the form: If the system
is in state S; and the input is 1;, then the system is transformed

.. The transitions are provided by a

to state S, and evokes output O,. (Alternatively, a state diagram
has the same information.) The virtue of this “state-system”
view is that it truly seems to capture what we mean by a dis-
crete (or digital) system. Its disadvantage lies in this same com-
prehensiveness, which makes it impossible to deal with large

systems because of their immense number of states (of the order
of 1019 '” states for a big computer).!

Existing digital computers can be viewed as discrete state
systems that are specialized in three ways. These three speciali-
zations make possible a much more compact and useful description
of these systems, the one that we call the PMS description.

First, the state is realized by a medium, called information,
which is stored in memories. Thus, a core store of N words each
of 32 bits is a digital device that can exist in one of 232N states. Sim-
ilarly, all the states of a processor are made explicit in a set
of registers: an accumulator, an address register, an instruction
register, status register, etc. Each holds a specified number of bits.
No permanent information is kept in digital devices except as
encoded in bits in a memory. There are two qualifications to this
blanket statement. First, the basic unit of information need not
be the bit; it could be any base: One can have ternary machines,
decimal machines, etc. Second, the sequential logic circuits that
carry out operations in the system have intermediate states. But
this is a strictly temporary affair while the operation is occurring,
for example, the intermediate, inaccessible, partial results during
a multiply operation. At the end—when the smoke has cleared,
so to speak—all information carried over to the next operation
has been encoded into bits in memories somewhere. At the PMS
level we care only about the end result of such operations.

The second specialization of the general state-system view is
that current digital computer systems consist of a small number
of discrete subsystems linked together by flows of information.
There is a distinct component called the memory, another called
the central processor, another called the card reader, etc. This
is analogous to the lumped-parameter specialization at the circuit
level. Thus the natural representation of a digital computer system
is as a graph which has component systems at the nodes and
information flows as branches. Now, in fact, the discrete character
of digital encoding in bits prevents there being any truly continu-
ous digital devices (in analogy to the continuously distributed
parameter circuits). But one can have distributed networks with
very small components. Such iterated arrays are a topic of much

*As we noted in Fig. 1 of Chap. 1, we actually describe some parts of
the control mechanisms of computers by state-system diagrams; however,
these are exceedingly small pieces. An example may be seen in Fig. 7 on
page 7.
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current investigation, as the possibility of manufacturing them by
integrated-circuit techniques has emerged. These distributed net-
works look very different from the computer systems of today,
although they are still digital systems. Thus, the representation
as a flow network with functionally specialized nodes is a real
specialization.

The third specialization of the general state-system viewpoint
is that associated with each component in a digital system is a
small number of discrete operations for changing its own state or
the state of neighboring components. All transitions must occur
through the application of these few operations, which are evoked
as a function of the current state of the component. The total
behavior of the system is built up from the repeated execution
of the operations as the conditions for their execution become
realized by the results of prior operations. The general state-system
view is more general. The state-transition table for a system may
exhibit an arbitrary pattern of immediate state transitions, without
regard to how such transition would be physically realized.

To summarize, within this specialized view one wants a way
of describing a system of an interconnected set of components,
which are individual devices that have associated with them a set
of operations that work on a medium of information, measured
in bits (or some other base).

The major complication in this picture is the amount of detail
involved in describing actual computers. It takes a whole manual,
for instance, to describe the operations of a major computer, such
as the IBM 7090. Thus the descriptive system must permit very
compressed descriptions. It must also permit description of only
those aspects of the components that are of interest, ignoring the
rest. And what is of interest at the PMS level? Besides a description
of the gross structure of a computer system, it is primarily the
analysis of the amounts of information held in various components,
the flows of information between components, and the distribution
of the control that accomplishes these flows.

Thus a PMS-level description is analogous to the chemical
engineer’s diagram of a refinery in which he is interested in various
kinds of liquid and gas flow. He has to account for matter and
energy loss with the system at various stages involving the trans-
duction of materials from one form to another. A specific chemical
plant’s external performance is measured in terms of its production
flow rate for a given cost. With computers, external performance
is concerned with the economical accomplishment of discrete
tasks, but at the PMS level this translates into operation rates and
cost of operations.

For the PMS level we ignore all the fine structure of informa-
tion processing and consider a system consisting of components

that work on a homogeneous medium called information. Infor-
mation comes in packets, called i-units (for information units), and
is measured in bits (or equivalent units, such as characters). I-units
have the sort of hierarchical structure indicated by the phrase: A
record consists of 300 words; a word consists of 4 bytes; a byte
consists of 8 bits. A record, then, contains 300 X 4 X 8 =
9,600 bits. Each of these numbers—300, 4, 8—is called a length,
since one often thinks of an i-unit as a spatial sequence of
the next lower i-units of which it is composed. For example,
one speaks of “word length” and of a record being “300 words
long.”

Other than being decomposable into a hierarchy of factors,
i-units have no other structure at the PMS level. They do have
a referent, that is, a meaning. Thus it is possible to say of an
i-unit that it refers to an employer’s payroll, to the pressure of
a boiler, or to a prime number satisfying certain conditions. To
do so, of course, the i-units encode the information necessary to
make the reference. At the PMS level we are not concerned with
what is referred to, but only with the fact that certain components
transform i-units but do not modify their meaning. In fact, these
meaning-preserving operations are the most basic information-
processing operations of all, and they provide the basic classi-
fication of computer components.

PMS primitives

In PMS there are seven basic component types, each distinguished
by the kinds of operations it performs:

Memory, M. A component that holds or stores information
(i.e., i-units) over time. Its operations are reading i-units out
of the memory and writing i-units into the memory. Each
memory that holds more than a single i-unit has associated with
it an addressing system by means of which particular i-units
can be designated or selected. A memory can also be consid-
ered as a switch to a number of submemories. The i-units are
not changed in any way by being stored in a memory.

Link, L. A component that transfers information (i.e., i-units)
from one place to another in a computer system. It has fixed
ports. The operation is that of transmitting an i-unit (or a
sequence of them) from the component at one port to the
component at the other. Again, except for the change in spatial
position, there is no change of any sort in the i-units.

Control, K. A component that evokes the operations of other
components in the system. All other components are taken to
consist of a set of discrete operations, each of which, when
evoked, accomplishes some discrete transformation of state.



With the exception of a processor, P, all other components are
essentially passive and require some other active agent (a K)
to set them into small episodes of activity.

Switch, S. A component that constructs a link between other
components. Each switch has associated with it a set of possible
links, and its operations consist of setting some of these links
and breaking others.

Transducer, T. A component that changes the i-unit used to
encode a given meaning (i.e., a given referent). The change may
involve the medium used to encode the basic bits (e.g., voltage
levels to magnetic flux, or voltage levels to holes in a paper
card), or it may involve the structure of the i-unit (e.g., bit-serial
to bit-parallel). Note that T’s are meaning-preserving but not
necessarily information-preserving (in number of bits), since the
encodings of the (invariant) meaning need not be equally opti-
mal.

Data-operation, D. A component that produces i-units with
new meanings. It is this component that accomplishes all the
data-operations, e.g., arithmetic, logic, shifting, etc.

Processor, P. A component that is capable of interpreting a
program in order to execute a sequence of operations. It consists
of a set of operations of the types already mentioned—M, L,
K, S, T, and D—plus the control necessary to obtain instruc-
tions from a memory and interpret them as operations to be
carried out.

Throughout PMS (and ISP, too) an operation is taken to mean
a transformation of bits from one specific memory to another. For
instance, it is an operation to transmit a word of information from
memory M to memory M’; it is a different operation to transmit
a word from memory M’ to M”. Similarly, it is an operation to
add the contents of memory M to that of M’ and a different
operation to add the contents of M’ to M”'.

The reason for emphasizing this point is that one often talks
as if addition were an operation, ignoring the specific locus of the
operands. In a discussion of computer systems, an operation must
include specification of the locus of its operands. The reason is
that the physical devices that realize operations are always local-
ized in space. If, for instance, we wish to have a physical device
that corresponds to addition on operands anywhere in some mem-
ory, we must couple the physical device that adds with other
devices that either transmit information to and from the memory
to the adder or (more exotic) that modify the adder to have differ-
ent cells of memory as its terminals. Thus the symbol + is to be
taken as an incomplete specification of an operation.

Chapter 2

Computer model (in PMS)

Components of the seven types can be connected to make stored-
program digital computers, abbreviated by C. For instance, the
classical configuration for a computer is

C:= Mp—Pc—-T—X

Here Pc indicates a central processor and Mp a primary memory,
namely, one which is directly accessible from a P and holds the
program for it. T is a transducer connected to the external environ-
ment, represented by X. (The colon-equals (: =) indicates that C
is the name of what follows to the right.) Thus a computer is
a central processor connected to its primary memory on the one
hand and to a transducer on the other, which is what an input/
output device is.

Actually the classic diagram had four components, since it
decomposed the Pc into a control (K) and an arithmetic unit or
data-operation (D):

Mp— T—T]MSI—X or Mp—?—'{]Ms—X
v

D \‘k//

where the solid information-carrying lines are for instructions and
their data, and the dotted lines signify control.

Often logic operations were lumped with control, instead of
with data operations, but this no longer seems to be the appro-
priate way to decompose the system functionally.

H we associate local control of each component with the ap-
propriate component, we get

Pc :=
data C

©

instructions 4

1
i
\ /M| processor
/
\ [ [state ]
i

B i T 3
B T

where the solid lines carry the information in which we are inter-
ested, and the dotted lines carry information about when to evoke
operations on the respective components. The solid information-

1The ““|” expresses mutually exclusive alternatives. Here, a T or Ms exists
at the periphery.
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carrying lines between K and Mp are instructions. Now, suppress-
ing the K’s, then lumping the processor state memory, the data
operators, and the control of the data-operations, and processor
state memory to form a central processor, we again get

Mp—Pc—T—X

Computer systems can be described in PMS at varying levels
of detail. For instance, in the diagrams above we did not write
in the links (L’s) as separate components. These would be of inter-
est only if the delays in transmission were significant to the dis-
cussion at hand or if the i-units transmitted by the L were different
from those available at its terminals. Since this is not usually the
case in current computers, one indicates simply that two com-
ponents (e.g., an Mp and a Pc) are connected together. Similarly,
often the encoding of information into i-units is unimportant; then
there is no reason to show the T’s. The same statement holds for
K’s. Sometimes one wants to show the locus of control, say when
there is one control for many components, as in a tape controller,
but often this is not of interest. Then there is no reason to show
K’s in a PMS diagram.

As a somewhat different case, D’s never occur in PMS diagrams
of computers, since in the present design technology D’s occur
only as subcomponents of P’s. If we were to make PMS-type
diagrams of analog computers, D’s would show extensively as
multipliers, summers, integrators, etc. There would be few mem-
ories and variable switches. The rather large patchboard would
be represented as a very elaborate manually fixed switch.

Components are often decomposable into arrangements of
other components. Thus, most memories are composed of a
switch—the addressing switch~—and a number of submemories.
Thus a memory is recursively defined. The decomposition stops
with the unit memory, which is one that stores only a single i-unit
and hence requires no addressing. Likewise, a switch is often
composed of a cascade of one-way to n-way switches. For example,
the switch that addresses a word on a multiple-headed disk might
lock like

—5 (random)\—s(random)——s(l inear)—S(cyclic)—M(word)

The first S(random) selects a specific Ms.disk_drive_unit; the sec-
ond S (random) is a switch with random addressing that selects the
head (hence the platter and side); S(linear) is a switch with linear
accessing that selects the track; and S(cyclic) is a switch with
cyclic addressing that finally selects the M(word) along the circular

track. Note that the switches are realized by differing technologies.
The first two S(random)’s are generally electronic (AND-OR gates)
with selection times of 10 ~ 100 microseconds or perhaps electro-
mechanical (relay). The S(linear) is the electromechanical action
of a stepping motor or a pneumatic-driven, servomechanism-
controlled arm which holds the read-write heads; the selection
time for a new track is 50 ~ 500 milliseconds. Finally, the S(cyclic)
is determined by the rotation time of the disk and requires from
16 ~ 60 milliseconds, depending on the speed (3,600 ~ 1,000
rpm).

We can write such decompositions of a component into sub-
components either when we actually know the structure of the
component or even when we know only the behavior. For example,
we could write a memory as random access (M.random) even if
it was, in fact, cyclic, as long as its behavior as far as the larger
system was concerned took no account of its cyclic character,
accepting the average access time as the random-access time.

When people speak of the control element of a computer, they
often refer mainly to the processors—not to the control of a disk
or magnetic tape, which, however, can often be more complex.
When we suppress detail, the control often disappears from a PMS
diagram. Similarly, when we agglomerate primitive components
(as we did above when combining Mp and K{(Mp) to be just Mp)
into the physically distinct subparts of a computer system, a sepa-
rate control, K, often occurs. The functionally and physically
separate control! has evolved in the past decade. These controls,
often as big as a Pc, can be computers with stored control pro-
grams. When we decompose a compound control, we find data-
operations (D) for calculating addresses or for error detection and
error correction data; transducers (T) for changing logic signal
levels and information flow widths; memory (M) as it is used in
D, T, K, and for buffering; and finally a large control (K) which
coordinates the activities of all the other primitives.

It should be clear from the above discussion that components
are named according to the function they perform and that they
can be composed of many different types of components. Thus,
a control (K} may have memory (M) as a subcomponent, and a
memory M may have a transducer (T) as well as a switch (S) as
subcomponents. All these subcomponents exist to accomplish the
total function of the component and do not make the component
also some other type. For instance, the M that does a transduction
(T) from voltages on its input wires to magnetism in its cores and
a second transduction from magnetism to voltages on its output
wires does not thereby become a transducer as far as the total
LA variety of names for K's are used: controller, adapter, channel, buffer,
interface, etc.



system functioning is concerned. To the rest of the system all the
M can do is to remember i-units, accepting and delivering them
in the same form (voltages). In the Appendix at the end of this
book we define for each type both a simple component and a
compound component, reflecting in part this fact that complex
subsystems can be put together to perform a single function from
the viewpoint of the total system. For example, a typewriter may
have 4~6 simple information transduction channels.

PMS notation

In the above discussions we used various notations to designate
additional specifications for a component, for example, Mp for a
functional classification, and S(cyclic) for a type of access function.
There are many other additional specifications one wants to give—
so many that it makes no sense to enumerate them all in advance.
A fixed position notation, such as standard function notation,
F(x,y,z), where the first, second, and third argument places have
fixed interpretation, is not suitable. Instead we agree on a single
general way of providing additional specifications. If X is a com-
ponent, we can write

X(ay:vy3a,:Ve5 .00

to indicate that X is further specified by attribute a, having value
v,, attribute a, having value v,, etc. Each parameter (as we call
the pair a:v) is well defined independently of whatever other
parameters are given; hence there is no significance to the order
in which they are written or the number which have to be written.

According to this notation we should have written M(function:
primary} or S(access-function:random) rather than Mp or S(ran-
dom). This shows immediately the price paid for the general
convention: It requires an excessive amount of writing (which
would be even more apparent if a large number of parameters
were given), and the extra information seems to be redundant in
some cases. We compensate for these disadvantages by several
conventions for abbreviating and abstracting parameters. All these
conventions are listed in the Appendix. Let us illustrate them by
showing some alternative ways of writing Mp:

M(function:primary) Complete specification.

M(primary) Drop the attribute “function,” since
it can be inferred from the value.

M.primary Use the value outside the parentheses,
concatenated with a dot.

M.p Use an explicitly given abbreviation,

namely, primary/p (only if it is not
ambiguous).

Chapter 2

Mp Drop the concatenation marker (the
dot), if it is not needed to recover the
two parts (all components are given
by a single capital letter—here M).

Each of these rules corresponds to a natural tendency to abbreviate
when redundant information is given; each has as its condition
that recovery must be possible.

In the full description in the appendix each component is
defined and given a large number of parameters, i.e., attributes
with their domain of values. Throughout, we use the slash (/) to
introduce abbreviations or aliases as we go.! Thus p is introduced
as an abbreviation for “primary” by writing primary/p when
“primary” is given as one of the values of the attribute “function”
of a memory with respect to processors (see page 607). The list
of parameters in the Appendix does not exhaust those aspects of
a component that one might want to talk about. For instance, there
are many distinct dimensions for any component in addition to
the information dimension: packaging, physical size, physical lo-
cation, energy use, cost, weight, style and color, reliability, main-
tainability, etc. Furthermore, each of these dimensions includes
an entire set of parameters, just as the information dimension
breaks out into the set of parameters we have given in the Appen-
dix. Thus the descriptive system is an open one, and new param-
eters are definable at any occasion.

The very large number of parameters provides one of the major
challenges to creating a viable scheme to describe computer sys-
tems. We have responded to this in part by providing automatic
ways in which one can compress the descriptions by appropriate
abbreviation while still avoiding a highly cryptic encoding of each
separate aspect. Abstraction is another major area in which some
conventions can help to handle the large numbers of parameters.
It often happens that one has only imperfect information about
an attribute, or one wishes to give its value only approximately
or partially. For instance, one attribute of a processor is the time
taken by its operations. This attribute can be defined with a com-
plex value:

Pc(operation-times: add:4 ps, store:4 pus, load:4 ps,
multiply:16 ps, .. .)

That is, the value is a list of times for each separate operation.
However, one might wish to give only the range of these numbers;

IThere is no difficulty in distinguishing this use from the use of the slash
as a division sign; the latter takes priority, since it is the more specific
use of the slash.
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this is done without introducing a new attribute (i.e., operation-
time-range) simply by indicating that the value is a range:

Pc(operation-time: 4 ~16 ps)

Similarly, one could have given typical times or average times
(under some assumed frequency mix of instructions):

Pc(operation-time: 4 us)
Pc(operation-time: average: 8.1 us)

The primary advantage of this notational convention, which per-
mits descriptions of values to be used in place of actual values
whenever desired, is that it keeps the number of attributes that
have to be defined much smaller than otherwise.

A PMS example using the DEC PDP-§

Let us now describe the PMS structure of an actual, though
small, general-purpose computer, the DEC LINC-8, which is a
PDP-8 with a LINC processor. Figure 1 gives the detailed PMS
diagram. In explaining it, we will concentrate on making the
notation clear rather than on discussing substantive features of the
system (which are described in Chap. 5). A simplified PMS diagram
of the system shows its essential structure:

‘-——T.console-

Mp~$——Pc—ST—T-

—Ms

P.display—T-

“_Pc('LINC)-l—_Ms-

This shows the basic Mp-Pc-T-X structure of a C with the addition
of a secondary memory (Ms) and two processors, one of which,
Pc¢('LINC), has its own Ms. Two switches are used: the I/O Bus
which permits access to all the devices, and the Data Break to
Mp via Pc for high-data-rate devices. There are many other
switches in the actual system, as one can see from Fig. 1; for
example, Mp is really one to eight separate modules connected
by a switch S to Pc. Also there are many T’s connected to the

input/output switch, Sio, which we collapsed as a single T, and
similarly for S(* Data Break).

Consider the Mp module. The specifications assert that it is
made with core technology, that its word size is 13 bits (12 data
bits plus one other with a different function); that its size is 4,096

words; and that its operation time is 1.5 us. We could have written
the same information as

M(function:primary; technology:core; operation-time: 1.5 us;
size: 4096 w; word: (12 + 1) b)

In Fig. 1 we wrote only the values, suppressing the attributes, since
moderate familiarity with memories permits an immediate infer-
ence about what attributes are involved. For example, it is com-
mon knowledge that computer memories store information in
words; therefore 4096 w must be the number of words in the
memory. As another example, we did not specify the function of
the additional bit in the word when we wrote (12 + 1) b. An
informed reader will assume this to be a parity bit, since this is
the common reason for having an extra bit in a word. If the extra
bit had some unusual function, we would have needed to define
it. That is, in the absence of additional information, the most
common interpretation is to be assumed.

In fact, we could have been even more cryptic and still com-
municated with most readers:

M.core(1.5 pus/w; 4 kw; 12 b)

This corresponds to the phrase “A 12-bit, 1.5-us, 4k core store,”
which is intelligible to any computer engineer. The 4 kw stands
for 4 x 1,024 = 4,096, which again is known to computer
engineers; however, if someone less informed took it to be 4 X
1,000 = 4,000, no real harm would be done.

Consider the magnetic tapes for Pc. Since there are eight
possible tapes that make use of the same controller, K, through
a switch S, we label them #0 through #7. Actually, # is an
abbreviation for index, which is an attribute like any other, whose
values are integers. Since the attribute is a unique character, we
do not have to write #:3 (although we could). The additional
parameters give information about the physical attributes of the
encoding. These are alternative values, and any tape has only one
of them. We use a vertical bar { | ) to indicate this (as in BNF
notation for grammars). Thus, 75{112 in/s says that one can have
a tape with a speed of 75 inches per second or one with 112 inches
per second, but not a tape which can be switched dynamically
to run at either speed.

For many of the components no further information is given.
Thus, knowing that M.magnetic_tape is connected to a control
and from there to the Pc tells generally what that K does. It
is a “tape controller” which evokes all the actions of the tape,
such as read, write, rewind; therefore these actions do not have
to be done by Pc. The fact that there is only one K for many Ms’s
implies that only one tape can be accessed at a time. Other infor-
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T.console -
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L T{('Data Terminal Panel: digital; input, output)-

"Mp(core; 1.5 ps/w; 4096 w: (12 + 1)b)
25 ('Memory Bus)

3pc(l ~2 w/instruction: data: w, i,bv; 12 b/w: M. processor state(2%~3-;—) w: technnloay: transistors;
antecedents: PDP-5; descendants; PDP-8S, PDP-81, PDP-L)

%5('1/0 Bus; from; Pc; to; 64 K)
SRV~ b instructions; M.buffer(l char~2 w))

Fig. 1. DEC LINC-8-PDP-8 PMS diagram.
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mation could be given, although that just provided is all that is
usual in specifying a controller in an overall description of a sys-
tem. (The next level of detail goes to the structure of the actual
operations and instructions and belongs to the ISP level, not the
PMS level.)

We have used several different ways of saying the same thing
in Fig. 1 in order to show the range of descriptive notations. Thus
the 64 Teletypes are shown by describing a single connection
through a switch and putting the number of links in the switch
above the connecting line.

Consider, finally, the Pc in Fig. 1. We have given a few param-
eters: the data-types, the processor state, the descendants, etc.
These few parameters hardly define a processor. Several other
important parameters are easily inferred from the Mp. The basic
operation time in a processor is a small multiple of the read time
of its Mp. Thus it is predictable that Pc stores and reads informa-
tion in 2 X 1.5 ps (one for instruction fetch, one for data fetch).
Again, where this is not the case (as in the CDC 6600) it is neces-
sary to say so. Similarly, the word size in the Pc is the same as
the word size of the Mp: 12 data bits. More generally, the Pc must
have instructions that take care of evoking all the components of
the PMS structure. These instructions do not see the switches and
controls as distinct entities; rather, they speak directly to the oper-
ation of the M’s and T’s connected via these switches and controls.

Other summary parameters could have been given for the Pc.
None of them would come close to specifying its behavior
uniquely, although to those knowledgeable in computers still more
can be inferred from the parameters given. For instance, knowing
both the data-types available in a Pc and the number of instruc-
tions, one can come very close to predicting exactly what the
instructions are. Nevertheless, the way to describe a Pc in full
detail is not to add larger and larger numbers of summary param-
eters. It is more direct and more revealing to develop a description
at the level of instructions, which is the ISP description.

Let us end this introduction to the PMS descriptive system by
returning to a critical item in its design philosophy. A descriptive
scheme for systems as complex and detailed as digital computers
must have the ability to range from extremely complete to highly
simplified descriptions. It must permit highly compressed descrip-
tions as well as extensive ones and must permit the selective
suppression or amplification of whatever aspects of the computer
system are of interest to the user. PMS attempts to fulfill these
criteria by providing simple conventions for detailed description
with additional conventions that permit abbreviation and abstrac-
tions, almost without limit. The result is a notation that may seem
somewhat fluid, especially on first contact in such a brief intro-

duction as this. But once assimilated, PMS seems to allow some
of the flexibility of natural language within enough notational
controls to enhance communication considerably.

ISP level of description

The behavior of a processor is completely determined by the
nature and sequence of its operations. This sequence is completely
determined by a set of bits in Mp, called the program, and a set
of interpretation rules that specify how particular bit configura-
tions evoke the operations. Thus, if we specify the nature of the
operations and the rules of interpretation, the actual behavior of
the processor depends solely on the particular program in Mp (and
also on the initial state of data). This is the level at which the
programmer wants the processor described—and which the pro-
gramming manual provides—since he himself wishes to determine
the program. Thus the ISP (Instruction-set processor) description
must provide a scheme for specifying any set of operations and
any rules of interpretation.

Actually, the ISP descriptive scheme need only be general
enough to cover some broad range of possibilities adequate for
past and current generations of machines along with their likely
descendants. As we saw earlier when discussing the PMS level,
there are certain restrictions that can be placed on the nature of
a computer system, specializing it from the more general concept
of a discrete state system. It processes a medium, called informa-
tion; it is a system of discrete components linked together by
information transfers; and each component is characterized by a
small set of operations. These assumptions are built into the PMS
descriptive scheme in an integral way. Similarly, for the ISP level
we can add two more such restrictions, which will in turn provide
the shape of its descriptive scheme.

The first specialization is that a program can be conceived as
a distinct set of instructions. Operationally, this means that some
set of bits is read from the program in Mp to a memory within
P, called the instruction register, M.instruction/M.i. This set of
bits then determines the immediately following sequence of oper-
ations. Only a single operation may be determined, as in setting
a bit in the internal state of the P; or a substantial number of
operations may be determined, as in a “repeat” instruction that
evokes a search through Mp. In a typical one- or two-address
machine the number of operations per instruction ranges from two
to five. In any event, after this sequence of operations has occurred,
the next instruction to be fetched from Mp is determined and
obtained. Then the entire cycle repeats itself.



The cycle of activity we have just described is called the inter-
pretation cycle, and the part of the P that performs it is called
the interpreter. The effect of each instruction can be expressed
entirely in terms of the information held in memories at the end
of the cycle (plus any changes made to the outside world). During
execution, operations may have internal states of their own as
sequential circuits which are not represented as bits in memories.
But by the end of the interpretation cycle, whatever effect is to
be carried on to a later time has been staticized in bits in some
memory.!

The second additional specialization is on the data-operations.
A processor’s total set of operations can be divided into two parts.
One part contains those necessary to operate other components
given in the PMS diagram: links, switches, memories, transducers,
etc. The operations associated with these components and the
extent to which they can be indirectly controlled from P are highly
restrained by the basic nature of the components and their con-
trols. The second part contains those operators associated with a
processor’s D component. So far we have said nothing at all about
them, except to exclude them completely from all PMS com-
ponents except P. These are the operations that produce bit pat-
terns with new meaning—that do all the “real” processing or
changing of information.? If it were not for data-operations, the
system would merely transmit information. As we noted in our
original definitions (page 17) a P (including a D) is the only com-
ponent capable of directly changing information. A P can create,
modify, and destroy information in a single operation. As we noted
earlier, D’s are like the primitive components in an analog com-
puter. Later, when we express instruction sets as simple arithmetic
expressions, the D’s are the primitive operators, for example,

1This description holds true for a P with a single active control (the inter-
preter). Some P’s (e.g., the CDC 6600) have several active controls and
get involved in “overlapping” several instructions and in reordering opera-
tions according to the data and devices available. With these, a more
complex statement is required to express the same general restriction we
have been stating for simple P’s: that the program can be decomposed into
a sequence of bit sets (the instructions), each of which has local control
over the behavior of the P for a limited period of time, with all interinstruc-
tion effects being staticized as bits in M’s.

2In principle, this view that only D components do “real” processing is
false. It can be shown that a universal Turing machine can be built from
M, S, L, and K components. The key operation is the write operation into
M, which suffices to construct arbitrary bit patterns under suitably con-
trolled switches. Hence arbitrary data operations can be built up. The stated
view is correct in practice in that the data-operations provided in a P are
highly efficient for their bit transformations. Only the foolish add integers
in a modern computer by table look-up.
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+, =, X,/, x 2 A\, V,®, concatenation, etc., which are evoked
by the instruction-set-interpreter part of a processor.

The specialization is that all the data-operations can be char-
acterized as working on various data-types. For example, there
is a data-type called the signed integer, and there are data-opera-
tions that add two signed integers, subtract them, multiply them,
take their absolute value, test for which of the two is greater, etc.
A data-type is a compound of two things: the referent of the bit
pattern (e.g., that this set of bits refers to an integer in a certain
range) and the representation in the bit pattern (e.g., that bit 31
is the sign, and bits 30 to 0 are the coefficients of successive
powers of 2 in the binary representation of the integer). Thus
a processor may have several data-types for representing numbers:
unsigned integers, signed integers, single precision floating point,
double precision floating point, etc. Each of these is a distinct
data-type, because it requires distinct operations to process it. On
occasion, operations for several data-types may all be encoded into
a single instruction with a data-type subfield that selects whether
the data are fixed or floating point. The operations are still sepa-
rate, no matter how packaged, and so their data-types remain
distinct.

With these two additional specializations—instructions and
data-types—we can define an ISP description of a processor. A
processor is completely described at the ISP level by giving its
instruction set and its inferpreter in terms of its operations, data-
types, and memories.

Let us concentrate first on the instruction set, leaving the
interpreter until later. The effect of each instruction is described
by an instruction-expression, which has the form

condition — action-sequence

The condition describes when the instruction will be evoked, and
the action-sequence describes what transformations of data take
place between what memories. The right arrow (—) is the control
action (of a K) of evoking an operation.

Recall that all operations in a computer system result in modi-
fications of bits in memories. Thus each action in a sequence
ultimately has the form

memory-expression < data-expression

The left arrow (<) is the transmit operation of a link and corre-
sponds to the ALGOL assign operation. The left side must describe
the memory location that is affected; the right side must describe
the information pattern that is to be placed in that memory loca-
tion. The details of data expressions and memory expressions are
patterned on standard mathematical notation and are communi-
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cated most easily by examples. The same is true of the condition,
which is a standard expression involving boolean values and rela-
tions among memory contents.

Before we get to the examples, let us note two features of the
action sequence. The first is that each action in the sequence may
itself be conditional, i.e., of the form, “condition — action-se-
quence.” The second is that some actions are sequentially de-
pendent on each other, because the result of one is used as an
input to the other; on other occasions a set of actions are inde-
pendent and can occur in parallel. The normal situation is the
parallel one. Thus, in the action sequence

Y, X Y, X Yye-Xy; YV, X,

all the transfers of information may be considered simultaneous.
In particular, all the X’s have their values defined by the situation
before the transfer. For example, if A and B are two registers, then

(A< B; BeA)

exchanges the contents of A and B. When sequence is required,
the term “next” is used; thus

(A < B; next B« A)

transfers the contents of B to A and then transfers it back to B,
leaving both A and B holding the original contents of B (and so
this contrived example is essentially just A < B).

An ISP example using the DEC PDP-8

The memories, operations, instructions, and data-types all need
to be declared for a processor. Again these are most easily ex-
plained by example, although full definitions are given in the
Appendix at the end of the book. Consequently, let us examine
the ISP description of the Pc of the PDP-8, given in Fig. 2 (the
PDP-8 is explained fully in Chap. 5). Throughout the book the
ISP descriptions of computers follow a more highly structured
format than the ISP notation requires, in order to help the reader
see the similarities among the computers.

Processor state. We first need to specify the memories of the Pc
in detail, providing names for the various bits. Thus,

AC(0:11) the accumulator

is a memory called AC, with 12 bits, labeled at 0 and 11 from
the left. Comments are given in italics!—in this case that AC is

1There are a few features of the notation, such as the use of italics, which
are not easily carried over into current computer character sets. Thus, the
ISP of Fig. 2 is a publication language.

called the accumulator (by the designers of the PDP-8). AC corre-
sponds to an actual register in the Pc. However, the ISP does not
imply any particular implementation, and names may be assigned
to various sets of bits purely for descriptive convenience. The colon
is used to denote a range or list of values. Alternatively, we could
have listed each bit, separating the bit names by commas, as

AC(0,1,2,3,4,5,6,7,8,9,10,11)

Having defined a second memory, L (which has only a single bit),
one could define a combined register, LAC, in terms of L and
AC as

LAC(L,0:11): = LOJAC

The colon-equal (:=) is used for definition, and the middle square
box (]} denotes concatenation. Note that the bit named L of
register LAC merely happens to correspond to the 1-bit L register.

Primary memory state. In dealing with addressed memory, either
Mp or various forms of working memory within the processor, we
need to indicate multidimensional arrays. Thus

Mp[0:7777,]¢0:11)

gives primary memory as consisting of 100004 (i.e., base 8) words
of 12 bits each, being addressed as indicated. Such an address does
not necessarily reflect the switching structure through which the
address occurs, though it often will. (Needless to say, it reflects
only addressing space, and not how much actual M is available
in a PMS structure.) In general, only memory within the processor
will occur as operands of the processor’s operators. The one ex-
ception is primary memory (Mp), which was defined as a memory
external to a P but directly accessible from it.

In writing memories it is natural to use base 10 for all numbers
and to consider the basic i-unit of the memory to be a bit. This
is always assumed unless otherwise indicated. Since we used base
8 numbers above for specifying the addressing range, we indicated
the change of number base by a subscript, in standard fashion.
If a unit of information other than the bit were to be used, we
would subscript the angle brackets. Thus

Mp[0:77774]¢0: 1),

reflects the same memory. The choice carries with it, of course,
some presumption of organization in terms of base 64 characters,
but this would show up in the specification of the operators (and
is not true, in fact, of the PDP-8). We can also have multi-
dimensional memories (i.e., arrays), though no examples occur in



Fig. 2. These add the extra dimensions with an extra pair of brack-
ets, for example,

Ma:b]fc:d]- - - [gh](x:y)

The PDP-8 memory might better be described as:
Mp[0:7]{0:31][0:127]<0:11)

representing 8 memory fields with 32 pages per field, 128 words
per page, and 12 bits per word.

Instruction format. It is possible to have several names for the
same set of bits; e.g., having defined instruction{0:11) we define
the format of the instruction as follows:

op{0:2) : = instruction{0:2)
indirect_bit/ib : = instruction{3)
page_0_bit/p: = instruction{4)
page_address{0:6) : = instruction{5:11)

The colon-equal (: =) is used to allow us to assign names to various
parts of the instruction. In effect, we are making a definition which

is equivalent to the conventional diagram for the instruction:

| op l i Ip | page _address

1. ('} 1 1 1 1 i 1

0 345 n
‘Lf—pageuo._,bi t

indirect bit

Notice that in page_address the names of all the bits have been
shifted, e.g., page_address(4) : = instruction{9}.

The Appendix gives the permissible alphabet of symbols for
ISP. In general, a “name” can be any combination of uppercase
and lowercase letters and numerals, not including names which
would be considered numbers (integers, mixed numbers, fractions,
etc.). A compound name can be sequences of names separated by
spaces ( ). In order to make certain compound names more reada-
ble, a space symbol (_) may optionally be used to signify the
non-printing character. Periods (.) and hyphens (-) are also used.

The instruction set. With all the registers defined, we can give
the instructions. These are shown on the second page of Fig. 2
(there are some unexplained parts left on the bottom of the first
page, to which we will return). The second page is actually a single
expression, named Instruction_execution, which consists of a list
of instructions. They are listed vertically down the page for ease
of reading. Each instruction consists of a condition and an action
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sequence, separated by the condition arrow (—). In this case the
condition is an expression of the form (op = octal digit). Recall
that op is instruction(0:2), and so this expresses the condition that
the operation code of the machine have a particular value. Each
condition has been given a name in passing; e.g., “and” is the name
of (op = 0). This provides the correspondence between the opera-
tion code and the mnemonic name of the operation code. If this
correspondence had been established elsewhere, or if we did not
care what numerical operation code the “and” instruction is, we
could have written

and — (AC «— AC \ M[z])

We would not have known what condition the name “and” stood
for but could have surmised (with little difficulty) that it was
simply an equality test on the operation code. We will do this
on a number of the ISP descriptions later in the book. Most gener-
ally the form of an instruction is written as

two’s complement add/tad(:= op = 1} —
(LOAC «~ LOAC + MJz])

Here, we simultaneously define the action of the tad instruction,
its name, an abbreviation for the name, and the conditions for tad’s
execution. The parentheses are, in effect, a remark to allow an
inline definition. For example, the above single ISP statement is
equivalent to

two’s complement add/tad — (LIAC « LIAC + M[z])

followed by
tad:= (op = 1)

All the instructions in the list constitute the total instruction
repertoire of the Pc. Since all the conditions are disjoint, one and
only one condition will be satisfied when a given instruction is
interpreted; hence one and only one action sequence will occur.
Actually, all operation codes might not be present, and so there
would be some illegal op codes that would evoke no action se-
quence. The act of selection is usually called operation decoding.
Again, ISP implies no particular mechanism by which this is car-
ried out. Normally a logic circuit works directly on the op part
of the instruction register, and the way op codes are assigned is
significant for the complexity of this decoding circuit. Thus, some-
times one exhibits the instructions in a two-dimensional decoding
diagram that makes it evident what these bit patterns are (see Fig.
2 in Chap. 5), rather than in a linear list.

It might be wondered why we do not in general introduce some
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Pe State
ACO: 11>
L
PC<O:11>
Run

Interrupt _state

10, pulse); 10_pulse 2; 10_pulse b

Mp State
Extended memory is not included.
M[0:77778]<0:H>
Pageu0[0:1778]<0:11> i= M[O:]778]<0:H>
Auto_index[0:7]<0:11> := Pageu0[108:178]<0:ll>

Pe Congole State

Data switches<0:11>

Instruction Format

instruction/i<0:11>

op<0:2> = 1<0:2>
indirect _bit/ib = i3>
page 0 bit/p = <>
page_address<0:6> = j<5:11>
this_page<0:4> = PC'<0:4>
PC'<0:11> i= (PC<O:11> -1)
10 select<0:5> i= i<3:8>
io_pl_bit = i<l >
iop2 _bit = i<10>
ioph bit = i<9>

sma = i<5>

sza i= i<b>

snl = i<T>

Effective Address Calculation Process

2<0:11> = (
—ib = 2'";
ib A (108 < z" < 178) - (M[2"} < M[2'"] + 1; next);
ib - M2"])

2'<0:11> = {— ib - 2'"; ib - M2'"])

2"'<0:11> := (page 0O _bit — this_pageppage_address;

—page_0_bit — Oppage_address)

u microcoded instruction or instructiom bit(s) within an instruction

Accwnulator

Link bit/AC extension for overflow and carry

Program Counter

1 when Pe is interpreting instructions or "vunning"

1 when Pe can be interrupted; under programmed control

I0 pulses to IO devices

special array of directly addressed memory registers

special array when addressed indirectly,is incremented by 1

Keys for start, stop, continue, examine (load from memory), and deposit (store in memory) are not included.

data entered via console

op code

0, direct; 1 indirect memory reference

0 selects page 0; 1 selects this page

selects a T or Ms device

these 3 bits control the selective generation of -8 volts,
0.4 ws pulses to I/0 devices

u bit for skip on minus AC, operate 2 group
u bit for skip on zero AC

w bit for skip on non zero Link

effective

auto indexing

direct address

Fig. 2. DEC PDP-8 ISP description.
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Instruction Interpretation Process
Run A — (Interrupt_request A Interruptustate) — (
instruction « M[PC]; PC < PC + 1; next
instruction_execution);
Run A Interrupt_request A Interrupt_state — (
M[O] « PC; Interrupt_state « 0; PC « 1)

Instruction Set and Instruction Execution Process

Instruction_execution :=
and (:= op = 0) — (AC « AC A M[2]);
tad (:= op = 1) = (LOAC « LDAC + M[z]);
isz (:=op =2) > (M[2'] «Mz] + 1; next
(M[z'] = 0) - (PC «PC + 1)};
dca (:= op = 3) = (M z] « AC; AC < 0);
jms {:= op = &) = (M[ 2] (.PC; next PC <z + 1);
jmp (:=op = 5} = (PC « 2);
iot (:= op = 6) » (
fouplubit — 10.pulse,l « 1; next
foup2.bit = 10 _pulse 2 « 1; next
fouph bit — 10 pulse i « 1);
opr (:= op = 7) - Operate_execution

)

Operate Instruction Set
The microprogrammed operate imstructions:
instruction set.

Operate_execution := (

cla (:= i<h> = 1) » (AC « 0);

opr,l {i= i<3> = 0) o (
cll (i= icB® = 1) 5 (L < 0); next
cma (= i<b6> = 1} - (AC « — AC);
emb {:= i<g>=1) 5 (L «—L); next
fac (:= i<l1> = 1) - (LOAC «LOAC + 1); next
ral (:= i<8:10> = 2) — (LOAC < LOAC x 2 {rotatel}};
rtl (= i<8:10> = 3) — (LOAC « LOAC X 22 {rotatel);
rar (:= i<8:10> = 4) — (LOAC « LOAC / 2 {rotatel);
rtr (:= i<8:10> = §) — (LOAC < LOAC / 22 {rotatel));

opro2 {:= i<3,11> = 10) - (
skip condition & (i<8 = 1) - (PC « PC + 1); next
skip condition :=
osr (:=

htt (:=

9> = 1) > (AC «- ACV Data switches);
i<10>= 1) - (Run «0));

EAE (:= i1<B3,11> = 11} SEAFUinstruction _gxecution)

((smaan (AC<0))v (szan (AC =

0))

no interrupt interpreter
feteh
execute

interrupt interpreter

logical and
two's complement add

index and skip if zero

deposit and clear AC

Jump to subroutine

Jurp

uw in out transfer, microprogrammed to generate up to 3 pulses
to an 1o device addressed by IO.select

the operate instruction is defined below
end Instruction execution

operate group 1, operate group 2, and extended arithmetic are defined as a separate

clear AC. Common to all operate instructions.
operate group 1

w clear link

u complement AC

w complement L

w increment AC

uw rotate left

u rotate twice left
uw rotate right

W rotate twice right

operate group 2

u AC,L skip test
v (snl A L))

B "or" switches
W halt or stop

optional FAE description
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additional conventions into the language, e.g., list the instructions
in a table with their mnemonic names in a special column, rather
than write the whole affair as an expression. (In fact, if you ex-
amine the first page of Fig. 2, you will note that the entire descrip-
tion of the PDP-8 Pc is a single expression.) The reason is that
although many processors fit such a format very well, not all do
50, e.g., microprogrammed machines. By making the ISP descrip-
tion a general expression for evoking action-sequences, we obtain
the generality we need to cover all the variations. We will have
two examples with the PDP-8 itself: the microprogrammed feature
and the fact that the interpretive cycle simply becomes part of
the total expression for the behavior of the processor.

Let us now consider the action-sequence. We use standard
mathematical infix notation. Thus we write

AC « AC A M[z]

This indicates that the word in Mp at address z is ANDed with
the accumulator and the result left in the accumulator. It is as-
sumed that the operation designated by /\ is well understood. (The
«, of course, is the transmit operation.) Each processor will have
a basic set of operations that work on data-types of the machine.
Here the data-type is simply the 12-bit word viewed as an array
of bits.

Operators need not involve memories actually within the Pc
(the processor state). Thus,

Mpl(z] < Mp[z] + 1

expresses a change in a word in Mp directly. That this must be
mechanized in the PDP-8 by means of some register in Pc is
irrelevant to the ISP description.

We also use functional notation; for example,

AC «abs(AC)

replaces the contents of the AC with its absolute value. When
an action has an unspecified function or operation we generally
write

A<f(AB,..) or

A«uB or A«<BbC

for function, unary operation, and binary operation, respectively.

Effective-address calculation process. In the examples just given
we used z as the address in Mp. This is the effective address and

is defined as a conditional expression (in the manner of ALGOL
or LISP):

z{0:11) : = (
—ib— 2"
ib N (10 < 27 < 175) = (M[2”] « M[z”] + 1); next
ib — M[z"])

The right arrow (—) is analogous to the conditional sign used in
7 of

ALGOL. The parentheses are used to indicate grouping in the

the main instruction, equivalent to the “if ... then ..

usual fashion. However, we arrange expressions on the page to
make reading easier.

As the expression for z shows, we permit conditionals within
conditionals and also the nesting of definitions (z is defined in terms
of z”). Again, we should emphasize that the structure of such
definitions may reflect the underlying hardware organization, but
it need not. When describing existing processors, as in this book,
the ISP description often reflects the hardware. But if one were
designing a processor, the ISP expressions would be stated as
design objectives for the RT structure, and the latter might differ
considerably.

Special note should be taken of the opr instruction (op = 7)
in Fig. 2, since it provides a microprogramming feature. There
are two separate options depending on instruction(3) being 0 or
1. But common to both is the operation of clearing the AC (or
not), associated with instruction{4). Then, within one option
(instruction{3) = 0) there are a series of independently executable
actions (following the clearing of L); within the other (instruc-
tion(3) = 1), there are three independently settable control ac-
tions. The nested conditionals and the use of “next” to force se-
quential behavior make it easy to see exactly what is going on
(in fact a good deal easier than describing it in natural language,
as we have been doing).

The instruction interpreter. We now have all the instructions
defined for the PDP-8, including the effective-address computation
(z). It remains to define the interpreter. From a hardware point
of view, an interpreter consists of the mechanisms for fetching a
new instruction, for decoding that instruction and executing the
operations so designated, and for determining the next instruction.
A substantial amount of this total job has already been taken care
of in the part of the ISP that we have just explained. Each instruc-
tion carries with it a condition that amounts to one fragment of
the decoding operation. Likewise, any further decoding of the
instruction that might be done in common by the interpreter



(rather than by the individual operation circuits) is implied in the
expressions for each instruction, and by the expression for the
effective address. The only thing that is left is to fetch the next
instruction and to execute it.

In a standard machine, there is a basic principle that defines
operationally what is meant by the “next instruction.” Normally
the current instruction address is incremented by 1, but other
principles are used (e.g., on a processor with a cyclic Mp). In
addition, several specific operations exist in the repertoire that can
affect what program is in control. The basic principle acts like
a default condition: If nothing specific happens to determine
program control, the normal “next” instruction is taken. Thus, in
the PDP-8 we get an interpretation process that is essentially the
classic fetch-execute cycle (ignoring interrupts):
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Run — (instruction <~ M[PC}; PC « PC + 1; next fetch
Instruction_execution) execute

The sequence is evoked so long as Run is true (i.e., its bit value
is 1). The processor will simply cycle through the sequence, fetch-
ing and then executing the instruction. In the PDP-8 there exists
a halt operation that sets Run to be 0, and the console keys can,
of course, stop the computer. It should be noted that the ISP
descriptions in this book do not, generally, include console behavior.

A state diagram (Fig. 3) is useful to represent the behavior of
the instruction-interpretation process. As an instruction is inter-
preted, the system moves from state to state. Any of the states
can be null, in which case a simple transition is to be made to
the successor of the null state. The K(instruction interpreter) con-

Mp!

Instruction

fetch
(read)
(aq)

Instruction complete,
fetch next instruction

Request Determines the Request Multiple Bestore' Muitiple
instruction effect of operond operands instruction results
q from Mp instruction g trom Mp resuits

Pe2 | pe2 Pc?

; ! Data Data Data
instruction Instruction operand operation operand
oddre;s operation address specified address
calculation decoding calculotion by culculuf‘mn
(oq) {00) {ov.r) qfo) (ov. w)

Return for string
or vector data

|Mp controlled state
2pc controlled state
Note: Any state may be null

Meaning

State name Time in a state
s0q/0q toq

saq/oq tagq

$0. 0/0.0 to.0
sov.r/ovr tov.r
sav.r/avr tav.r

so/o to
SOV.W/ov.W tov. w
sav.w/ov.w tav. w

Operation to determine the instruction g
Access {to Mp) for the instruction g
Operation to decode the operation of g
Operation to determine the variable address v
Access (to Mp) read the variable v

Operation specified in q

Operation to determine the variable address v
Access (to Mp) to write variable v

Fig. 3. ISP interpretation state diagram.
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trols these movements according to the information in the instruc-
tion. Which states are null and which of multiple alternative
transitions occur depend on the instruction being interpreted.

Within each state, various operations are carried out, under
the control of subordinate K’s. Note that the upper states in Fig.
3 are controlled by the Mp whereas the lower ones are controlled
by the Pc. We have tried to use a simple mnemonic scheme to
label these states: o for operation, q for instruction, a for access,
r for read, and w for write. Similarly, we prefix the state with t
to indicate the time duration of the state, and we may prefix the
state by s.

Figure 3 is somewhat more detailed than is usual. We will use
it in Chap. 3 to describe a number of different processors. However,
the figure simplifies the familiar fetch-execute cycle:

Fetch: {oq, aq})
t.fetch = toq + taq
Execute: {00, ov.r, av.r, 0, OV.W, av.w}
t.execute = too + tov.r + tavir + ..+ 4 tov.r

+ tavar 4+ -+ 4+ to 4+ tov.w 4 tav.w

Consider, by way of example, the tad instruction of the PDP-8,
using the general state diagram of Fig. 3. From the ISP, the net
effect is

Run — (instruction « M[PC]; PC «~ PC + 1; next
tad (:= op = 1) > (LOJAC « LOOAC + M[z])

where
2{0:11) := (specifies the effective-address calculation process)

The state diagram has more detail to explain the computer’s
behavior with respect to timing and its temporary registers. (Note
a complete state diagram for the physical PDP-8 is given in Fig.
11 of Chap. 5.) The actual state table appears on page 31.

Notice again that the ISP description does not determine the
way the processor is to be organized to achieve this sequencing
or to take advantage of the fact that many instructions lead to
similar sequences. All it does is specify unambiguously what oper-
ations must be carried out for a program in Mp. The ISP descrip-
tion does specify the actual format of the instruction and how it
enters into the total operation, although sometimes indirectly. For
example, in the case of the and instruction (op = 0), the definition
of AC shows that the AC does not depend on the instruction, and
the definition of z shows that z depends on other fields of the

instruction (indirect_bit, page_0_bit, page_address). Likewise, the
form of the ISP expression shows that AC and PC both enter into
the instruction implicitly. That is, in the ISP description ail de-
pendence on memory is explicit.?

Data-types and data-operations

This completes the description of the ISP for the PDP-8. For more
complex machines the number of data-types and the operations
on them are much more extensive. Then the data-types may be
declared independently of the instruction set, in the same manner
as we declared memory.

In fact, the one major piece of organization in the structure
of processors at the ISP level that has not appeared in our example
involves the data-types. Each data-type has a set of operations
that are proper to it. Add, subtract, multiply, and divide are all
proper to any numerical data-type, as well as absolute value and
negation. Not all of these need exist in a computer just because
it has the data-type, since there are several alternative bases, as
well as some levels of completeness. For instance, notice that the
PDP-8 first of all does not have multiply and divide (unless one
has its special option), thus having a relatively minimal level of
arithmetic operations, and second, it does not have a subtract
operation, using a two’s complement add, which permits negation
(—AQ) to be accomplished by complementation (—AC) followed
by add 1. Still, the options are rather few, provided one has de-
cided to include a given data-type in the repertoire. In the Ap-
pendix at the end of the book are given with each of the data-types
(or classes thereof) the sets of operations that are proper to that
data-type.

The PDP-8, for example, does not have several data representa-
tions for what is, externally considered, the same entity. An oper-
ator that does a floating add and one that does an integer add
are not the same. However, we will denote both by the same
symbol (in this case, +), indicating the difference parenthetically
after the expression. Alternatively, the specification of the data
type can be attached to the data. Thus, in the IBM 7094 we have
the instructions

IThis is not correct, actually. In physically realizing an ISP description,
additional memories may be utilized (they may even be necessary). It can
be said that in the ISP description these memories are implicit. However,
a consistent and complete description of an ISP can be made without use
of these additional memories whereas with, say, a single-address machine
it does not seem possible to describe each instruction without some refer-
ence to the implicit memories—as we see in the effective-address calcula-
tion procedures where definitions look much like registers.



Chapter 2

States \ Time J ISP effect Operational description
soq [ toq MA « PC; Calculate the address of the instruction, g, and calculate the address of the next
PC«PC +1 instruction, q + 1. The address is stored in the address register, MA, used
to control the access.
S.fetch Fetch the data from memory focation, M[MA] (i.e., essentially M[PC]), and place
saq l taq MB « M[MA] the result in a buffer (temporary) register.
S00 | too IR « MB(0:2) \ Calculate and decode the instruction.
Sov.r tov.r MA « f(MB,IR) ‘ Calculate the address of the data.
S.execute
sav.r tav.r MB «— M[MA] Fetch the data from Mp.
S0 to LOAC<—LOAC + MB Do the operation specified by the instruction.

Add — (AC « AC + M[e]);
Add and carry logical word/ACL — (
AC < AC + M[e] {unsigned.integer});
Floating add/FAD — (AC <= AC + M[e] {sf}):
Unnormalized floating add/UFA — (AC « AC + M[e] {suf});
Double-precision floating add/DFAD — (
ACMQ < ACMQ + M[e]lIM[e + 1] {df});
Double-precision unnormalized floating add/DUFA — (
ACMQ < ACMQ + M[e] (I M[e + 1] {duf})

The ﬁrst. one, without a special indicator of data-type, is taken
to be integer addition; the next, unsigned integer; the next, single
precision floating point; the next, unnormalized single precision
floating point; the next, double precision floating point; and the
last, unnormalized double precision floating point. Although there
are often clues that could be used to infer which form of addition
is being defined (e.g., double precision takes two words) we label
all but the integer operation.

We use braces { } to differentiate which operation is being
performed in the above examples. Thus, above, the data-type is
enclosed in braces and refers to all the memory elements (oper-
ands) of the expression. Alternatively, we use braces as a modifier
on any memory to signify the information meaning. For example,
a fixed point to floating point data-conversion operation would be
given as

AC{{floating} < AC{fixed}

We also use braces as a modifier for the operation-type. For exam-
ple, shifting (left or right) can be a multiplication or division by
a base, but it is not always an arithmetic operation. In the PDP-8,
for instance, we have

L 0AC « L [JAC x 2 {rotate}

where the end bits L and AC(11) are connected when a shift
occurs (the operator is also referred to as a circular shift).

In general, the nature of the operations used in processors are
sufficiently familiar to the computer professional that no definitions
are required, and they can all be taken as primitive. It is necessary
only to have agreed upon conventions for the different data repre-
sentations used. The Appendix provides the basic abbreviations.
In essence, a data-type is made up recursively of a concatenation
of subparts, which themselves are data-types. This concatenation
may be an iteration of a data-type to form an array. Fig. 4 shows
the structure of various data-types and how each is built from more
primitive data-types.

If required, an operation can be defined in terms of other
(presumably more primitive) operations. It is necessary first to
define the data format explicitly (including perhaps some addi-
tional memory). Variables for the operands are permitted in the
natural way. For example, binary single-precision floating-point
multiplication on a 36-bit machine could be defined in terms of
the data fields as follows:
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x1: = normalize(x2) {sf} := (
(x1 mantissa = 0) — (x1 exponent : = 0);

1
B;/b {((x2 mantissa 7= 0) /\ (x2(0) = x2{1))) — (
’ ’ x] mantissa : = x2 mantissa X 2;
Digit/d . Charocter /char/ch x1 exponent : = x2 exponent — 1; next
- Byte/by \ ! x1 : = normalize(x2) {sf}))
Sign 2 1 bit/sgn

Three additional aspects need to be noted with respect to data-
Bit vector /by Digit vector \ Byte vector\  Character vector types: two substantive and one notational. First, not everything

one does with an item of data makes use of all the properties of
its data-type. For example, numbers have to be moved from place

R

Pure number
unsigned integer

\

to place. This operation is not a numerical operation and does
not depend on the item being a number. In fact, for the purpose

of data transmission, the item is only a word (assuming it fits into
Address integer Unsigned

fraction a single word) and can be treated as such. Second, one can often

embed one kind of operation in another, so as to coalesce data-

types. We saw this to a small extent in the example above of the

Variation
precioion Dt sl"mg Byfe string  Character string }}:‘?3325 PDP-8 arithmetic operations. A more pervasive example is encod-
integer ing the Mp addresses into the same integer data-type as is used
for regular arithmetic. Then there need be no separate data-type
Signed imeger s1gned fraction for addresses.! The upshot of both these aspects can be seen

below where we present an outline structure of data-types that

l - . .
Wrs mumber Scu or for string) -t element shows how one data-type can be embedded in another for various
Smcks Lmked Vecmr n elements {Jinear list, purposes.
Queues lists / table,) dimensional array)
Mumx nxm elements (2 dimen_ ; .
sional array) Data-types embedded in other data-types for common operations
n dmensmnul array

Real/ floating /f dyxdz x...xdn elements word
Simple multiple type structures

un-normal fioating /uf integer
Complex Double floating fractlon
mixed
Double camplex unsigned integer
1 .
? are normally considered address integer
non -decomposable
primitives boolean vector

boolean (single bit)
integer sign (divide or multiply by two operations)
Fig. 4. Common data-types recognized by processor hardware. field
single precision floating
single precision unnormalized floating
double word

sf mantissa/mantissa := (0:27) double precision integer
. . fraction
sf sign/sign = (0 mixed
sf exponent/exponent : = (28:35) double precision floating point
sf exponent_sign 1= (28) double precision unnormalized floating point
x1:=x2 X x3{sf}: = ( character string
x1 mantissa : = x2 mantissa X x3 mantissa; digit string

x1 exponent : = x2 exponent + x3 exponent;

1THowever logical such a course may seem, it is not always done this way.
next x1 := normalize (x1) {sf}) & ’ 4 Y

For example, the IBM 7090 (and other members of that family) have a
15-bit address data-type and a 36-bit integer data-type, with separate
where normalize is operations for each.



The notational aspect is our use in ISP of a mnemonic abbre-
viation scheme for data-types. We have already used sf for single
precision floating point. More generally, as Table 1 shows, an
abbreviation is made up of a letter giving the precision, a letter
giving the name, and a letter giving the length. A full treatment
can be found in the Appendix.

The simple naming convention does not take into account all
that is known about a data-type. The information carrier for the
data is only partially included in the length characteristic. Thus
the carrier should also include the data base and the sign conven-
tion for representing negative numbers. The common sign con-
ventions are sign magnitude, true complement (i.e., two’s comple-
ment for base 2), and radix-1 complement (i.e., one’s complement
for base 2).

For each of the data-types the processor must have the implied
operators. In fact, being able to represent a particular entity is
useful only if particular transformations can be carried out on the
entity. The most primitive operation is data movement (i.e., trans-
mission). Data movement can be thought of as a complex operation
consisting of accessing (locating), reading, and writing. Data-types
which represent numbers require the ability to perform the arith-
metic operations +, —, X, /, abs ( ), sqrt, max, min, etc. The
address integer is a special case of an arithmetic quantity, and
often only additive arithmetic operations (+ and —) are available
for it. Boolean scalars (or vectors) require some subset of the 16
logical operations (sufficient subsets are -, /\ or o, V). When
character strings are represented, the concatenation, deletion, and
transmission operations are required. Alternatively, we can look
to string processing languages like SNOBOL or COMIT to see the
operations they require. If the strings also represent numeric quan-
tities, then the arithmetic operations are necessary. Almost all
arithmetic and symbolic data require relational operations be-
tween two quantities, yielding a boolean result (true or false).
Theserelational operators are = and ==, but for arithmetic quanti-
ties includes >, >, <{, <. The more complex structured data-
types (e.g., vectors and arrays) also have a range of certain primi-
tive operations such as scalar accessing and transmission. Typical
operations of vectors are search and element-by-element compare
operations.

Relationship between PMS and ISP

In the introduction to this chapter we discussed briefly the rela-
tionship between PMS and ISP. With the two described, we can
now be more precise. There are really two questions here. First,
where do these two descriptive systems fit in with respect to the
general hierarchical view of computer structures discussed in

Chapter 2

Table 1  Abbreviations used to name data-types
Precision Data-type-name Length-type
fractional/f boolean/b *scalar
quarter/q sign vector/v
half/h decimal digit/digit/d matrix
°single/s octal digit/octal/o array
double/d character/char/ch/c string/st
triple/t byte/by

quadruple/q syllable

multiple/m word/w

+ integer (eq. 10) signed integer/i
unsigned integer/ui
fraction/fr
fixed/mixed/mx
floating/real /f
unnormalized-floating/uf

complex real/complex/cx

Examples:
w word
bv boolean vector
i integer

sfr single precision fraction
mx  mixed

di double integer

10d 10 decimal digit (scalar)
3.ch 3 character (scalar)
ch.st character string

sf single precision floating
suf  single precision unnormalized floating
df double precision floating

duf  double precision unnormalized floating

*May be optionally omitted from name

Chap. 1. Second, what is the relationship between a PMS diagram
of a processor and the ISP of that same processor. The questions
are related, but each is best answered separately.

With respect to the first question, the PMS system describes
the topmost system level (recall Fig. 1 of Chap. 1), above the
programming, logic, and circuit levels. It lacks a characteristic that
all these other levels share, namely, that of providing a complete
description of the computer’s performance. The programming
manual (with timing) tells everything that is significant about the
performance of the computer (if it runs error-free). The same is
true of the full description at the register-transfer level, the logic-
circuit level, and on down to the electrical circuit level. But the
PMS level is only an approximate description, from which only
certain aspects of the system’s performance can be calculated.
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The ISP does not constitute a distinct system level. Rather, it
describes the interface between two levels, the register-transfer
level and the programming level. It is used to define the compo-
nents of the programming level—instructions, operations, and
sequences of instructions—in terms of the next lower level. In
principle, and usually in fact, the language of the lower level is
used to describe the components and modes of connections, one
level up. In many ways ISP is a register-transfer language (in
symbolic rather than graphical form—but as we noted in Chap.
1, there appear always to be two such isomorphic notations at
each system level). However, ISP has been extended by allowing
the instruction-expression to be a general linguistic expression for
a computation, just as if ISP were FORTRAN or ALGOL. This
is what permits us to talk of ISP as not necessarily determining
the exact set of physical registers and transfer paths. The instruc-
tion-expressions describe the functions to be performed without
entirely committing to the RT structure.

If the ISP is the interface language between the RT and pro-
gramming levels, what is its relationship to PMS, which is one
level above? Every PMS component has associated with it a set
of operations and a control structure for getting those operations
executed in connection with the arrival of various external signals.
As we noted earlier in the chapter, there is an ISP description
for each operation in its context of control. That is, ISP is the
interface language for describing all PMS components in terms
of the register-transfer level, not just P. It happens that only one
of these PMS components, the processor, carries with it an entire
new systems level —the programming level. All the other compo-
nents have no analog of the programming level and interface
directly to the register-transfer level (or even in simple cases to
the logic-circuit level). Precisely because of the simplicity, we have
not bothered to develop ISP descriptions of other components of
components other than processors.

The second question, namely, the relation between the ISP and
PMS descriptions of the same processor, arises from the ability
to represent PMS components recursively as PMS structures made
up from more elementary PMS components. Thus, Mp(32 kw, 16 b)
can be considered as compounded of 32k memories, M(1 w, 16 b),
with an addressing switch, S.random. Indeed, if one carries this
to the limit, where the M’s are single bit memories (flip-flops),
the S’s are one bit gates, a couple of specific K’s are defined for
AND and OR, etc., then it is possible to draw a PMS diagram
isomorphic to any logic circuit. Thus, a processor (P) can be rep-
resented as a PMS involving M’s, K’s, D’s, S’s, etc., and at varying
levels of detail. Since we also have a description of this same P
in ISP, it is appropriate to consider the correspondence.

First of all, every memory in the ISP description corresponds
to a memory in the PMS description. The data operations in ISP
imply corresponding D’s in PMS and every occurrence of transmit
(«=) implies a corresponding link between the M’s and D’s on the
right hand side and the M on the left, being written into. That
the instructions of the ISP are evoked only under certain condi-
tions implies that a control (K.operation-decode) exist in the PMS
structure. Similarly, the simple, two-state stored-program model
(instruction-fetch, instruction-execute) for the interpreter implies
an interpreter control (K.interpreter). The action-sequence of each
instruction, if it contains any semi-colons or next’s, requires addi-
tional K and possibly additional M (if the structure involves em-
bedded operations such as (A + B) X (C + D)). Thus for every
ISP component there is an implied component in the PMS struc-
ture of the processor.

The PMS diagram model for a computer shown initially on page
17 has the “natural units” implied by the ISP description (with
the exception of the instruction format part) as suggested on page
24. The data-operations D are therefore implied each time an
operation is written. Each process implies a control which we
lump into the single K of the figure. The model also shows both
the arrival of instructions and the flow of data between the proc-
essor (P) and memory (Mp).

There are several memories within Pc which are not explicitly
shown on page 17. These include temporary memory within D
and the K for carrying out complex arithmetic operations. The
interpreter control has temporary memory, of course. Finally,
other kinds of memories have been omitted to simplify the model.
In multiprogrammed computers a mapping control and memory
would be used, and in pipeline or highly parallel processors there
would be temporary memory for various buffering (e.g., instruc-
tions and data). The Appendix lists the various memories of the
processor.

K(P), the control for the processor above, controls data move-
ment among the Mp and M.processor_state and evokes the data-
operations of D. Functionally, K(P) can be broken into several
parts, each of which is responsible for a part of the overall instruc-
tion interpretation and execution process, and each corresponds
to a part of the ISP description. This decomposition is allowed
in PMS, and if we did so, each component would contain an
independent control for its own domain, e.g., a K(D), K(Mp),
K(Instruction-set interpreter). More elaborate processor structures
imply having controls for functions like multiprogram mapping.
The K(Instruction-set interpreter) is the supervisory component
which causes other processor K’s to be utilized in a complex
processor. In an ISP description of a C, the interpreter usually



selects only the next instruction and then after decoding (or exam-
ining it) proceeds to have the instruction executed by K(instruction
execution).

Resource Allocation. At the PMS level the concept of resources,
their uses and allocation, becomes a major focus of analysis. This
is obvious by now in multiprogramming and multiprocessing sys-
tems where many programs share the same Mp and hence must
be allocated space. But this holds equally well at all levels of
detail.

By giving a resource allocation diagram along with the state
diagram (Fig. 5) we show the relationship of resources, their func-
tion, and time for the instruction-interpretation process. In Fig.
5 the add instruction for a simple 1 accumulator computer con-
sisting of 1Pc-2Mp is given. The interpretation for Fig. 5 in ISP
is as follows:

1 Calculates the address of instruction ¢ in state soq.
ty — ty = togq.
PC <~ PC + 1; next advance the program counter

2 The instruction is fetched (accessed) from Mp in state saq.
t, — t; = taq.
M.instruction «— Mp[PC]; next

3 The operation o to be performed and the address part, v,
for the data in M.instruction to be added to A are obtained

in state soo + sov.r. t; — t, = too + tov.r
M.address «— M.instruction {v); next

4 The data Mplv] are fetched in state sav.r. t; — t; = tav.r
M.temporary <— Mp[M.address]; next

5 The operation part o of the instruction is carried out on
A; that is, the actual addition is performed on the data
previously accessed in the state so. t; — t, = to.

A < M.temporary + A; next

In the state diagram, each state represents the time spent for
a given activity. The two states at the top of the state diagram
(Fig. 5) are waiting for primary memory accesses, and the three
lower states represent processor activity waits. If we were to
specialize the state diagram for the conventional 1 address/
instruction computer, we would need one additional state, repre-
senting operand storage, sav.w, and this would occur after state,
s50. Note that we have ignored the operation decoding state, so.0.
Of course, conditional state transformation paths have to be added
to describe all instructions (e.g., a complement-the-accumulator
instruction has only states soq, saq, and so). Similarly, we could
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Instruction Data operand
fetch from fetch from
Mp # 1 Mp # O
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7= time spent in a state
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address address execution
calculation calculation ( operation on
processor state)
t.cycle
A
Mo O data fetch
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-Cycle i t.access i The instruction being
r.——"\*—**—\ int ted
instruction fetch Inrerpretea is
Mp #1 I e | tad ~——(A=—A+M[2Z])
| ! }
't.access | ! |
Pe - o T.._._.
Ysoq saq  Tsowr| sawr so | soq
tog| taq |Tovr| tav.r | to | toq
rl‘—I“ 1a [ i i |
| { | i
fo 1 72 73 fa ’s Time, 7
3a T e — T [ )
Instruction Data address Instruction execution
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Fig. 5. State and resource allocation diagram for a 1P¢-2Mp add instruc-
tion-interpretation process.

make a more general state diagram to handle the different proc-
essors (e.g., multiple addresses/instruction, stack, and general reg-
isters), as shown in Fig. 4. At the PMS level, a derivative of the
state diagram, the resource allocation diagram is more useful be-
cause it relates to the physical structure.

A resource allocation diagram expresses the above instruction
activity in terms of the time each unit is occupied with a particular
activity. In this diagram a slightly more complex computer struc-
ture with two primary memories has been assumed. In the case
of the add instruction, the long memory-cycle time suggests that
two memories can be used so that an operand be fetched while
the instruction memory restoration occurs. These diagrams show
the time various resources are utilized; thus performance and
utilization can be measured.

Resource allocation diagrams can express other time scales.
Interest in operating-system software analysis is often in the ac-
tivities on a longer time scale of the resources utilization as a
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function of various programs and subprograms. They may show
Mp memory occupancy in a multiprogrammed environment. Some
other time scales of particular interest are the instruction(s), short
instruction sequences or subprograms, and the program times. The
first two time scales are influenced predominantly by the hardware,
and the latter time scale is influenced by software and the ex-
ternal environment.

The resource allocation diagrams also can describe the utiliza-
tion of the C’s resources over time (e.g., throughout the instruc-
tion-interpretation process) and provide a basis for more detailed
analysis and design.

The design problem at the PMS-ISP interface is mainly one
of resources scheduling.

1 A fixed set of operations have to be performed on the jobs
(here, a job is an instruction).

2 Each instruction may create a few other small but defiitive
subjobs.

3 There can be a fixed set of operators which handle various
parts of the operations.

4 Jobs (or instructions) enter P sequentially.
We may ask:

1 How many operators of each type do we have?

2 What is the scheduling policy for assigning instructions to
the operators?

3 How many instructions can be in P at one time, and in what
order must the processing be performed? How are the jobs
interlocked?

We do not attempt to answer the above questions but intend
only to show the relationship of the various parts which define
the problem. ISP implies a certain structure (conversely, PMS
behavior is specified in terms of the ISP language). A particular
ISP structure and a program denote a certain path through a state
space as specified by a state diagram. Finally, the physical re-
sources (in PMS) are constrained to operate according to the state
diagram as expressed by using a resources allocation diagram. The

resource allocation diagram can then be used to evaluate the
structure’s performance (in PMS) at a higher level (e.g., the number
of instructions/second it executes).

PMS diagram

N\

Resource aliocation diagram
PMS level

Program level

State diagram
{behavior)

ISP {description
and program)

RT level

RT(description
behavior )

Summary

The ISP descriptions of computers are usually given as an appendix
to a chapter. We organize the description into the following units:

Memory P State
Declaration ] Mp State
P Console State

Instruction Format

Data-type Formats and Special Data
Operation Definitions

Effective-address Calculation Process

Formats and
Operators

Interpreter and
the Instruction-
set Execution

Instruction Interpretation Process
Instruction-set and Instruction Execution
Process

The above description format conveys a rather narrow-minded
view of the ISP structure of computer systems. However, almost
all present computers fit easily into such a format. We do not
presume to say whether it will suffice for future ISPs.

With the introduction given here and with the definitions and
example in the Appendix at the end of the book, it should be
possible to understand all the PMS diagrams and ISP descriptions
used throughout the book.



Chapter 3

The computer space

Introduction

The preceding two chapters have provided a view of a computer
system as an organized hierarchy of many levels: physical devices,
electronic circuits, logic circuits, register-transfer systems, pro-
grams, and PMS systems. We must remember that these are levels
of description for what, after all, remains the same physical system.
Each higher level describes more of the total system, but with
a loss of detail. As this is an engineered system, great care is taken
that each level represent adequately all the behavior necessary
to determine the performance of the system. In natural systems
too there are often many levels of description (e.g., in biological
systems, from the molecule to the organelle to the cell to the
tissue to the organ to the organism).

However, in natural systems we usually depend on statistics
to eliminate the details of lower levels and permit aggregation,
and they always do so imperfectly. In computer systems, on the
other hand, the aggregation is intended to be perfect. It fails, of
course, and so both error detection and error correction exist as
fundamental activities in computer systems. But these imperfec-
tions are ascribed to the system itself and not to our description
of it, which is just the opposite from how we treat natural systems.
Only the PMS level of description is natural, in the sense of not
being the intended result of the design. This is because perform-
ance is defined ultimately at the programming level. The aggrega-
tions and simplifications that go into a PMS description (e.g.,
measuring power by bits per second) are approximations, just as
they are for any natural system (e.g., measuring the productivity
of the economy by gross national product).

We have provided descriptive systems for the top levels of the
hierarchy: the PMS level and the ISP level, the latter defining the
basic components of the programming level in terms of the RT
level just below. These are the two descriptions that are of most
concern in the overall design of a computer system. We did not
define the lower levels, because they go beyond the focus of this
book. Neither did we define the program level, partly because
there exists no uniform description (no common programming
language) and partly because the computer designer works mostly
at the interface, defining the instruction set. This latter is what
the ISP provides.!

!An increasingly popular view is that the program and RT levels (with
ISP in between) are one, thus erasing the difference between hardware

PMS and ISP permit the description of an indefinite number
of computer systems—indeed, all that come within the scope of
the current design art. (They might even be taken as a definition
of what that current art is.) Some 10* ~ 105 individual computer
systems have in fact come into existence, each of which can be
described in PMS and ISP. They are not all radically individual.
There are about 103 types of computer systems represented, if
we define two systems with the same Pc to be of the same type.
{By exercising various options, a single computer type could take
on 10° different forms.)

Of these thousand-odd types, we present in this book just 40.2
What sort of total population do we have here? What does our
miniscule sample look like when compared with the whole? More
fundamentally, what are the significant aspects of the computer
systems that should be used in a comparison or classification? These
are the questions we will try to deal with in this chapter. We can
be neither comprehensive nor elegant. There has simply not yet
been done the necessary study on which to base an adequate
taxonomy of computer systems. But we can present a rough picture
based on the common lore of the field, filled in with our own
predilections.

For any system, either an entire computer, C,ora component,
such as P, M, or §, it is convenient to distinguish its function, its
performance, and its structure. The system is designed to operate
in some task environment; to accomplish such tasks is its function.
How well it does these tasks is its performance. Evaluation of
performance is normally restricted to these tasks. Although it is
always noteworthy when a system can perform adequately outside
its specified domain (e.g., when a business computer is also a good
control computer), it is rarely worth noting when a system cannot
perform those tasks it was not built to perform. Thus, function
denotes scope, and performance denotes an evaluation within that
scope.

Structure denotes those aspects of the system that allow it to
perform. This includes descriptions of its subcomponents and how
they are organized. Performance of subcomponents often may be
considered structure as far as the whole system is concerned,
especially if the performance can be taken as given. For example,
early digital transmission-oriented telephone lines came in two
capacities, ~200 bits/sec and ~2,000 bits/sec. From the view-
point of the telephone system, these are performance measures;

and software. The boundary appears to us not quite so invisible. We take
the important task to be drawing the boundary in the right place for any
specific design.

2Counting each of the families in Part 6 as one computer. The IBM Sys-
tem/360 is actually a series.
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from the viewpoint of a computer system with remote terminals,
these are structural parameters.

Typically, design proceeds in a context in which the function
of the to-be-developed system is taken as given and certain struc-
tures are available; the problem is to construct a structure that
achieves adequate performance.

These terms apply to any designed system. For example, con-
sider automotive vehicles. Function is a classification by use: cars
to carry people, trucks to carry goods, racers to win competitions,
antiques to satisfy nostalgia and collectors” pride. Performance is
those aspects of behavior relevant to function: maximum speed,
power-to-weight ratio, cargo capacity, run versus not run for an
antique, and so on. Structure is such things as number of wheels,
shape of the vehicle, stroke volume, and gear ratios. Structure
determines performance, although from the standpoint of design,
of course, causality runs the other way: from function to perform-
ance to structure.

There are, then, three main ways to classify or describe a
computer system: according to its function, its performance, or
its structure. Each consists in turn of a number of dimensions. Tt
is useful to think of all these dimensions as making up a large space
in which any computer system can be located as a point. In such
a space all the thousand computer types built to date constitute
a sparse scatter, clustering (it is to be hoped) in various regions
that make sense functionally and economically. The 40 computer
types in this book sample this larger scatter in some way, to give
a picture both of the entire space and of the part already explored.

How many dimensions are there in this computer space? In-
definitely many, if one wants to locate a computer with ultimate
precision. In fact, if one wants to go all the way, one might as
well give the PMS and ISP descriptions (and down through the
RT, logic, circuit, and device levels). The virtue of thinking of
such a space is to abstract to a small number of dimensions, and
to select those that are most relevant. Of the functions, one wants
those that most influence the design; of the performance, one
wants those that make the largest difference; of structure those
that not only affect performance but represent possible design
choices by the computer engineer. In addition, one wants dimen-
sions along which there is significant variation. Those aspects of
computer systems which are common to all, such as the use of
binary devices, though of supreme interest are not part of the
computer space.

What are the dimensions of the computer space? As we re-
marked earlier, there is no sufficiently comprehensive theory of
computer systems to tell us. Considerable lore has grown up from
experience to date in designing machines. But at some point one
must simply propose a set of dimensions and let them justify

themselves after the fact. Table 1 gives our set for function and
structure. Table 3 (page 52) gives our set for performance.
Table 1 gives only a single dimension for computer system func-
tion and 19 for computer structure; Table 3 gives 8 for per-
formance. However, the dimensions are not all independent. Many
of the structure dimensions are highly (though not perfectly)
correlated. Thus, in Table 1 we have put the structure dimen-
sions in seven horizontal groups, with the one at the left-hand
side being the most relevant. (In the first structure group, we
have also added two temporal dimensions, since a strong correla-
tion with time exists.) For performance, the dimensions form a
tree structure, where the higher dimensions are essentially aggre-
gate summaries of the lower ones. Finally, there is a general
correlation between overall performance and the various structure
dimensions, in Table 1, with increasing performance as one moves
down the dimensions. We have left off two important dimensions
because we do not have values; these are reliability (mean time
between failures per operation) and physical size density (e.g.,
bits/{t3), both of which increase with generation.

With each dimension we have indicated the range of possible
values. For some (Pc.speed, for example) this is a numerical quan-
tity. However, for most, the range is a discrete set of design
choices, which may or may not have a simple ordering. Clearly,
these discrete values are selections from a meaningful subspace
of design choices, but mostly we do not know how to construct
that subspace. The values given are those that have arisen in
practice, and they serve to classify the computers in the book.
Obtaining a more rational subspace is a task for future research.

The body of the chapter will be taken up with a discussion
of each of these dimensions, where we will discuss further their
definition, the basis for their selection, and the reasons behind the
arrangements of Tables 1 and 3. We give the entire set of
dimensions here at the beginning, both for later reference and to
emphasize the view of a single computer space in which com-
puter systems can be located. We will refer to Tables 1 and 3
from now on simply as the computer space or, more narrowly,
as the computer structure space, the computer performance
space, etc.

History

Like all systems subject to variation and selection, computers have
evolved through time. So striking and rapid has been this evolution
that the concept of “generation” has become firmly embedded in
the computer engineering culture (to say nothing of the marketing
culture and the view of the lay public). It is at best an ambiguous
term, having none of the sharpness of its root term in biological
evolution, where it is possible to draw a strict genealogical tree.



Nevertheless, the term is useful in stressing that the history of
computer systems is not just a story of particular men discovering
or building particular things, but of a somewhat more impersonal
and widespread series of advances that have changed computer
systems radically.

The generations are best defined solely in terms of logic tech-
nology: The first generation is that of vacuum tubes (1945 ~ 1938),
the second generation is that of transistors (1958 ~ 1966), and the
third generation is that of integrated circuits (1966~). In fact,
current usage describes hybrid logic technology machines, such
as the IBM System/360, as third generation, and so this extension
must be included. What will be called fourth generation is yet
to emerge; most likely it will be medium and large scale integrated
circuits with possibly integrated circuit primary memory.

Chapter 3

It is a measure of American industry’s generally ahistorical view
of things that the title of “first” generation has been allowed to
be attached to a collection of machines which were some genera-
tions removed from the beginnings by any reasonable accounting.
Mechanical and electromechanical computers existed prior to
electronic ones. Furthermore, they were the functional equivalents
of electronic computers and were realized to be such. They were
also separated by a wide gap in performance and structure, both
from each other and from vacuum tube machines. Thus, by rea-
sonable reckoning, we are currently in the fifth generation of com-
puters, not the third. But usage is now too well established to
change.

Actually, it was not always viewed thus. Figure 1 reproduces
a genealogical tree of the early computers prepared by the Na-

¥, 7/ LY v,
.'."'Illllv’-"”’ %lll,h“w’

L Present
generagtion

First
generation
" } Predecessors
IT,'] Relay and Mechanical
Y/, pacatie
. Serial
Roots
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Fig. 1. The “family tree”” of computer design. The remarkable growth of electronic computing systems in the Western world began primarily through
government support of research and development in the universities. The need for data-processing facilities of increased capacity inspired further
support for their development in both educational institutions and private industry. The current generation of computers is predominantly the
result of development by private industry. The tree lists many of the machines developed in these ways. At the roots are the contributions of many
existing technologies to the rapid growth from electromechanical to electronic systems. Some of the milestones are ENIAC (Electronic Numerical
Integrator and Computer), the first electronic computer; EDVAC (Electronic Discrete Variable Automatic Computer), the first internally stored-
program computer and first acoustic delay-line storage; MADM (Manchester Automatic Digital Machine), the first index registers (B lines) and first
cathode-ray-tube electrostatic storage; MTC (Memory Test Computer), the first core-storage computer. (Courtesy of National Science Foundation.)
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Table 1 The computer-space dimensions

Computer function

Scientific

Business

Control

Communications
(switching|store and forward)

File control
Terminal
Time sharing
Logic Historical Cost/operation
technology Generation date Pc.speed (sec) (8/bit/s)
Mechanical
Electromechanical 1930 10t 1000
(Fluidics) (1970) 102
Vacuum tube first 1945 10-3 10
Transistor second 1958 10— -1
Hybrid 1964 10-6
Integrated/IC third 1966 107 0.1
Medium to large- fourth? 197? 108 0.01
scale integrated/
MSI ~ LSI
Word size Base Data-types
8b binary word
12 b 3 decimal integer|address (integer)
16b ‘ \ 4 bit|bit vector
24 b LY instruction
32b Loy floating point
48 b v character
64b L character string
character (6b) word vector
character (8b) vector
matrix
array
lists, stacks
Addresses /instruction M.processor state (excluding program counter)
0 address (stack) stack
1 address 1 Accumulator
1 + x (index) address accumulator and index registers
1 + g (general register) address general registers array
2 address
3 address no explicit state

n + 1 address
Language determined
Compound
Microprogrammed
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PMS structure ‘ Switching Processor function
1Pc 1:n (duplex) P.microprogram
1Pc(interrupt) Pc

1Pc-nPio n:m (time-multiple x) Pc (no io)

1 Pc-nPio-P(display) ) Pio

2C (duplex) 2:n (dual-duplex) P.display
nPc(multiprocessing) n:m (cross-point)

nPc-P(array|special algorithm) P.array
nPc(parallel processing) P.vector move
C (network) P.algorithm
Network n/2:n/2 (non-hierarchy) P.language
Accessing algorithm Mp.size Ms.size Mp.speed (b/s) Ms.speed (b/s)

Linear (stack)
Linear (queue)

Bilinear tape (large) >10° r
Cyclic-random disk (medium)|magnetic card (large)| b Yy
Cyclic drum (large) drum (smali) |photostore (large) >10¢ A
Random core (medium) core (smaller) >107 >107
Content film (small) >10°
Associative integrated circuit _ >10°
Mp concurrency Interprocess communication
1 program subroutines and traps
1 program with interrupts interrupts
1 program with multiple concurrent interprocessor interrupts
subprograms (for example, 1Pc-nPio)
Monitor or fixed program(M) + 1 program extracodes (programmed operators for
m + n swapped programs monitor calls)
m + n programs (multiprogramming) y
No relocation ek
1 segment

2 segments (pure, impure)
>2 segments
Pages
m + n segments with shared programs intersegment communication
Fixed length, paged segments
Multiple-length paged segments
Variable-length segments
Named segments

! 2 S T o
Processor concurrency p VRS L A Cj T4 e

Serial by bit R .

Parallel by word R Cﬁ L’j CA oA G
Multiple instruction streams, 1Pc

Multiple data streams (arrays)

1 instruction buffer

n instruction buffer

Look-aside memories

Pipeline processing
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tional Science Foundation in 1959. Notice that the Harvard Mark
machines, which were constructed from relays (hence electro-
mechanical) are accorded the place of honor as first generation
(but Babbage is nowhere to be seen).

It is not appropriate to provide here an adequate history of
computer technology. The early story has often been told, starting
with Babbage and early mechanical calculators, through Hollerith
punched cards, on to the relay calculators at Bell Laboratories
and Harvard, up to the birth of electronic machines with ENIAC,
and finally to the stored-program concept with the von Neumann
machine at the Institute for Advanced Studies (IAS), EDSAC at
Cambridge University, and EDVAC at the University of Pennsyl-
vania (with the contemporary developments by ZUSE in Germany
often left out). And there have been a few scattered attempts to
tell some of the story of the last three generations. But to date
no really satisfactory historical account has been given. This is
due in part to recency and in part to the difficulties of evaluating
and sorting out the significant developments of a very complex
technology undergoing rapid growth.

What is appropriate here is to view the evolution of computer
systems as measured by the dimensions of computer space and
to localize the examples of this book in relation to calendar time
and other computers. The concept of generation has led others
to attempt the same thing by constructing a family tree, Fig. 1
being but one example. But the relationships between computers
is not nearly as simple as such a tree implies. We prefer to plot
a straightforward time chart,! as shown in Fig. 2, in which we group
the machines by manufacturer and within each group, by ac-
knowledged family relationship (for example, 701-704-709-etc.).
There is clearly relatively closer kinship within a company than

! Whereas we have checked the Time Chart numerous times for accuracy,
we make no claim about the number of errors it still has. We have relied
on the following source data: (1) Original papers. These are mostly shown
on the chart as “p”. Normally the reader can infer that the work pre-
sented in a paper occurs prior to the actual publication. There are notable
exceptions (e.g., the core memory, and Atlas papers) which were first pub-
lished to lay claims to certain ideas. (2) Historical reviews. Primary his-
torical papers include: Rosen [1969] and Serrell [1962]. Secondary his-
torical review papers include: Bowden [1953], Campbell [1952], Chase
[1952], Nisenoff [1966], and Samuel [1957]. (3) Encyclopedia. (4) Computer
surveys. Two sources have been used: The Adams Associates Computer
Characteristics Quarterly, published since 1960 [Adams, 1960; Adams
Assoc., 1966, 1967, and 1968); and Martin H. Weik’s four Surveys of
Domestic Electronic Digital Computer Systems [Weik, 1955; Weik, 1961
(third); and Weik, 1964 (fourth)]. The Adams’ Charts give the date of
first delivery, and the Weik Survey gives the date the computer was first
operating. (5) Manufacturer, organization or person supplied dates. In a
few cases we have asked directly for specific operational and delivery
information.

between companies. One advantage of such a time chart is its
depiction of the life history of a single system, showing how long
it takes for computer systems to go from paper through prototype
to production.

Not all computer types are shown on the chart, there being
about 250 out of the estimated 1,000 types. Lack of space (and
of perseverance) accounts for the omissions. The major United
States manufacturers, as well as some minor ones, and all ma-
chines of substantial historical interest are represented. All the
machines discussed in this book are gathered together on a sep-
arate line (though they also occur elsewhere, if appropriate).
Foreign machines are omitted, unless they are described in this
book. In addition, the machines of many early minor manufac-
turers are missing (ALWAC, ELECOM, etc.).

The second part of the time chart arranges many computers
by word size, to give the reader our classification. Unfortunately,
only a few samples are given, owing to space limitations. Thus,
the density on the graph does not indicate the true density of
existing machines. Many small computers, which are dedicated to
a particular task, are beginning to be built and a comparatively
small number of very large computers have been built. On the
bottom fine line we place the machines in this book.

The third part of the time chart deals with technology by
listing events along various dimensions that have been significant
in the evolution of computers. Besides the dimensions in the
computer space we have also added some dimensions describing
software systems. Although we have not been able to deal with
the programming level in this book (except for the ISP interface),
its development is clearly as important as that of the hardware,
and there exists strong mutual interaction between the two.

The fourth (and final) part of the time chart gives selected
technological events leading up to the development of the com-
puter. It includes the early work of Babbage, desk calculators,
and the Bell Labs and Harvard calculators.

Many stories can be read from the chart. For example, note
that the early Bell Telephone Laboratories relay calculator was
used remotely at Dartmouth in 1940, about 20 years prior to
remote use of time-shared computers. Note also that successful
manufacturers tend to have a small number of computer families,
but add members as the technology dictates. (We omit the exodus
of computer companies.) We hope the reader gets as much en-
joyment from browsing the chart as we have (even after we put
it together!).

The computer space in Table 1 and the time chart in Fig. 2
provide an overall framework. We are now ready to consider each
of the dimensions individually, starting with those of system func-
tion, then the performance, and finally structure.
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Function

The most striking fact about function is the existence of only a
single dimension, and with only a few values. Perhaps we have
taken a simplistic view of the functions that computers perform,
but we think our computer space represents reality: To wit, there
is remarkably little shaping of computer structure to fit the func-
tion to be performed.

At the root of this lies the general-purpose nature of computers,
in which all the functional specialization occurs at the time of
programming and not at the time of design. However, it might
seem that specialized environments would not require all the gen-
erality, so that functional adaptation would still be possible. But
this appears not to be so for two reasons. First, the level of opera-
tions of the Pc (as defined in the ISP) is too basic to reflect the
kind of specialization offered by the environment (think of infor-
mation-transfer or conditional-transfer operations). Second, all
environments ultimately require a variety of tasks in addition to
the main specialized task. These include at least language com-
pilation or assembly, readable formatted output, debugging aids,
and other utility routines. By the time these have been added, a
substantial requirement for generality has been generated.

However, this is not the whole story. A second part is the differ-
ence between the computer type and the specific configuration

assembled for a task. The latter is often carefully specialized to
the function to be performed. But this is mostly the amount of
Mp, the amount of types of Ms, and the number and types of T’s.
Within limits, these are all items that can be attached to any type
of computer (i.e., to any Pc) and are handled in an environment-
independent way. Thus there is little specialization of computer
types, but great specialization of particular configurations. That
this should be the case indicates something about the nature of
the functional specialization—that it can be expressed adequately
in gross PMS terms, as more bits of storage and more data rate.

There is still more to the story. Some functional specialization
exists, as indicated in the dimension. This depends primarily on
two kinds of things beyond the reach of the configurational adapta-
tion described above. The first consists of demands for reliability,
ruggedness, small size, etc. These have strong effects on design,
but below the ISP and PMS levels. The second consists of demands
for large amounts of processing power. One response to this again
affects design at the lower levels of logic, devices, and circuitry
and has little impact on design at the ISP and PMS level. But
response is also possible in terms of the data-types that are built
into the ISP. Large machines have data-types that are appropriate
to their tasks (with operations to match), and these affect the



design. In fact, this effect is the substance of the functional spe-
cialization shown in the computer-space dimension.

Finally, there is one last part of the story, and it is the most
interesting of all. Various groups of computer engineers have felt
strongly from time to time that functional specialization should
exist, and they have set out to create such machines. These efforts
have often produced machines that were different from the exist-
ing main line of computers, i.e., were appropriately specialized.
But the net effect of almost all such attempts has been that the
new idea was seen to be good in general for all computers and
was taken back into the main line of computers. Thus, what started
out to be a functional separation turned out to be simply a way
to produce rapid development of a more universally applicable
computer. A classic example is the expansion of input/output
facilities in creating a functionally specialized business machine,
which simply led to better 1/0O facilities for all computers. We
will have more to say about such examples as we discuss the values
along the dimension.

Computer-system function

Scientific. The first machines were clearly designed for scientific
calculations. In fact, Aberdeen Proving Grounds funded the early
work on the ENIAC for the computation of ballistic firing tables.
And the image used frequently by the early computer designers
was the computer as a statistical clerk, the arithmetic unit being
the desk calculator, the memory the work sheet, and the program
the instructions that the mathematician gave to the clerk.

From a design standpoint, scientific computation has posed two
striking requirements. The first is the great accuracy of the num-
bers, which has led to word lengths of 36 to 60 bits (11 to 18
decimal digits of significance) and arises from the propagation of
roundoff error during repeated arithmetic operations. The second
is the emphasis on fast arithmetic operations, i.e., for arithmetic
power. In the early machines the standard rule for estimating
computation times was to count the number of multiplications in
a program; all else could be neglected. The arithmetic unit has
developed to where the floating point multiply is hardly more
expensive than floating point add. This requirement on fast arith-
metic, however, has really been directed at the logical design level,
not at the ISP or PMS level. Thus, the main effect at the ISP is
the adoption of long word lengths, floating point data-types (in
addition to integers), and an extensive repertoire of arithmetic
operations in the ISP. The main PMS effect is the emphasis on
the classic “statistical clerk” PMS design.

The press for increased arithmetic processing has led in recent
times to the development of various forms of Pc concurrency, as
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in the look-ahead of Stretch (Chap. 34) and the n-instruction buffer
of the CDC 6600 (Chap. 39). This might be considered a unique
functional specialization for scientific computation. It is too early
to tell, but it is our impression that, although the needs for sci-
entific computation initiated the exploration of concurrency and
parallelism, we will eventually see them in all computers above
a certain power, whatever the task domain. Physical limits on
component speed and signal propagation will make these tech-
niques universally attractive.

A better case for permanent specialization can be made in the
special algorithm computers, which compute the fast Fourier
transform or do vector operations. Here we finally have systems
whose whole design is responsive to a narrow class of problems.
This may extend to the very special kinds of Pc parallelism exhib-
ited by the ILLIAC IV (Chap. 27), although there is substantial
generality in such systems.

Business. In the early days of electronic computing it was felt by
many that there was a major functional separation between busi-
ness computing and scientific computing.! Scientific problems were
“large computing-small input/output”; business problems were
“small computing-large input/output.” Certainly most of the
existing computers, designed for scientific computation, had poor
input/output facilities. The IBM 701, for example, used the Pc
to control everything dynamically, actually catching the bits from
running tapes on the fly (by executing well-timed small loops).
These design efforts for business computers resulted in the IBM
702 (and subsequently the IBM 705, 708, and 7080). This machine
had two major innovations for IBM: It used characters, and it had
a PMS structure that permitted more flexible and voluminous
input/output. The latter feature was immediately incorporated
into scientific computers, e.g., into the 709, and then into all large
scientific computers as separate input/output control (either Kio
or Pio), for it was realized that there were also demands on input/
output for scientific calculation. Thus the bifurcation was tempo-
rarily halted.

The specialization to characters as a basic type (as opposed
to long words) was already present in the IBM 702 but did not
have its effect until 5 years later with the development of the IBM
1401 (Chap. 18). The latter machine was adapted to business, both
in being character-based and in being small enough so that small
businesses could afford it. It was extremely successful (many thou-
sands were produced) and certainly represents a successful func-
1Such feelings are still extant, but we are concerned here not with the

validity of the feelings but with what they led to at a particular period
of computer development.
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tional specialization for business. However, it is interesting that
the specialization has not been maintained, for the IBM Sys-
tem/360 (Chaps. 43 and 44) is again a single machine, although
it has in essence two internal ISP’s, one centered around characters
and the other around floating point data-types, that is, a business
and a scientific specialization residing side by side.!

Control. The third functional value is a computer used for control
in real time. Examples are process-control computers, aerospace
computers, and laboratory instrument-control computers. The role
of the computer is to act as a sophisticated control (K) in some
larger physical process, and thus it plays a subordinate role. Their
relatively late arrival was due to the high cost and unreliability
of early computers, as well as to the lack of necessary interface
equipment.

The functional specialization is seen most strongly in the word
size, which reflects the appropriate numerical data-type. The
numbers used in control processes are generated by physical de-
vices and are rarely better than 0.1 percent accurate. Since elab-
orate arithmetic calculations are not called for, the numbers, and
hence the word size, can be around 12 bits. Most control com-
puters have been 12 to 18 bits/word. A second specialization, again
reflecting appropriate data-types, is that all control computers are
binary and have boolean operations. This arises because many of
the external conditions to be sensed and effected are binary in
nature.

About the only other functional specialization of control com-
puters is the interrupt? capability to allow them to respond to
many potentially simultaneous external conditions in real time.
This provides apparent parallelism, though still using a sequential
processor. This is another possible example of functional speciali-
zation leading to reunification rather than divergence, for it has
again been widely accepted that all general-purpose computers
must have good interrupt capabilities. However, in actuality,
interrupts, though not existing in early computers, were developed
to obtain good input/output facilities, not for control computers.

Chapters 7 and 29 give examples of aerospace computers, and
Chap. 33 describes the IBM 1800, which is specifically designed
for process control. As these examples show, a complex ISP is not

1The story above has been told exclusively in terms of IBM machines.
Although this does not distort the picture too strongly in terms of total
movements of the field, since IBM dominated the market, concurrent
developments were taking place throughout the field. UNIVAC 1 was the
first computer built by a manufacturer and did not have the idiosyncrasies
we ascribe to IBM; on the other hand, the marketing effort for it was nil.
2 Apparently introduced in the UNIVAC 1103.

necessarily required. This in part reflects the fact that control
computers may retain their programs over their whole lifetime,
so that programming and reprogramming is less important. (It is
not absent, however, and so this is not a very strong functional
adaptation.)

Communication. The functional specialization of communication
could be taken as a subfunction of a control computer. The function
is mainly to behave as a switch. In a message-switching application
the computer transfers messages from terminals (and links) into
primary (and sometimes secondary) memories and then transfers
them to other terminals (and links). In message switching, messages
are first stored and then forwarded. The computer in a telephone
exchange functions as a very sophisticated switch control. Here
the computer reads the off-the-hook signal, detects the dialed
numbers, rings the dialed parties, and finally sets the switches to
connect the telephones together. In some instances, when it an-
swers information inquiries about new telephone numbers or re-
routes calls to other phones, it functions as a memory. Thus a
communications computer is functionally a switch or a control
for a switch.

The main distinction between control computers and commu-
nications computers is that the task environment of the latter,
since it consists of digitally encoded messages (even in the case
of the voice telephone exchange), can be handled directly by the
communications computer. That is, the communications computer
can do the work of transshipment and storage as well as control.

There are no pure examples of communications computers in
this book. However, the Pio’s serve essentially the same function
within a single computer (Part 4, Sec. 1), and they can profitably
be examined from this viewpoint.

File Control. We list this as a separate specialization only because
a number of computers have been built to do exactly this task.
The specialization is easily described: It is a communication com-
puter with the messages being characters (since they are built for
business), and with the large memory (the file) being considered
to be part of the system. There are no examples of file-control
computers in this book, but the early IBM 305 and UNIVAC file
computers serve this function. An IBM 1800 is used as the control
for a 10'2-bit photo-optical memory, for example.

Terminal. Since it is possible to obtain a separate computer system
whose only function is to run a display, we have listed this as a
separate functional specialization. In fact, it is better viewed (and
almost always occurs) as a component of a larger computer system,



ie., as a special Pio. The DEC 338 is such a P.display and is
described both later in this chapter and in detail in Chap. 25.

Time-sharing. The requirement to have a large number of users
in simultaneous conversational interaction with a single large
machine has bred a new specialization, that of the time-sharing
computer. All the computers described above can be time-shared
(even if they do not have interrupts or inherent multiprogram-
ming). However, the emphasis on this mode of operation with the
particular timing and flexibility requirements of human users doing
general computing at consoles in multiple software systems has
led to a number of innovations in design. The most important
is the virtual-memory techniques for achieving multiprogramming
(described in Part 3, Sec. 6). There is also substantially increased
complexity of PMS structure to handle the integration of large
files, swapping memories, and the huge software systems that seem
to be endemic to time-sharing systems. Tt is still too early to tell
whether any of the design responses will produce permanent spe-
cialization or will again simply be the first instigation of design
features that will become universally used.

In summary, we see that there is functional specialization and
that it translates mostly into total size of the machine and into
the data-types available. Many of the other design aspects created
in response to functional specialization have instead become the
common property of all machines.

Performance

For a device that does a complex job, it is meaningless to ask for
a single precise index of performance. It is like asking for the
average speed of a given model of car over its lifetime without
specifying who will own it, where he will drive it, and what sort
of terrain he will encounter along the way. Notice that the diffi-
culty is as much in the complexity of the task environment as in
the complexity of the internal workings of the machine. Specify
everything about the environment, and the performance can often
be given in a single figure. It may be hard to determine, but at
least it is well defined. If you know the terrain and road conditions
perfectly and how the car was driven, then from the structure of
the car it is possible to figure out the instantaneous velocity and
from this to construct the average speed.

To put this in terms of computers, given a particular configura-
tion for a computer system, given a particular program, and given
a particular set of input data, it is possible to determine all aspects
of the performance: how long it took, how much space was used,
whether it was correct, and so on. But we are not interested in
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such specifics. We want to know how well the computer system
performs, given some vague notion of the kind of task—programs
and data—that will be used with it. Although we know that we
cannot have adequate measures, we believe that there is something
that can be said about the performance—that tells us that a CDC
6600 is many times more powerful in actual performance than a
PDP-8.

An interesting way to look at the problem of specifying perform-
ance is to play a simple game: We will give you a number, say
4. You are to give the best description of computer systems involv-
ing only that many parameters (equivalently, dimensions or attri-
butes). That is, what is the best description of a computer that
can be stated in four numbers? The game is easier to play if we
speak of the dimensions, rather than the information content of
the description (in bits, say).! We have still not defined “best,”
of course. It can be taken to mean the best prediction of the
relative ordering of the computer system; better on the index
means better on the same task.?

To start at the beginning, what single number would you give
to characterize a computer’s power? Such a question makes most
people uncomfortable, since strong feelings exist for at least two
kinds of numbers, dealing with speed and memory, respectively.
If forced, we would probably settie for something related to proc-
essing speed. The cycle time of the primary memory is a possibility
because for simple machines it determines (limits) the operation
rate. It is a structural parameter, but that is no reason to avoid
it as a performance index. The average number of instructions per
second, or operations per second, is a better indicator. Since the
latter does not take into account the size of the word being proc-
essed, perhaps average bits processed per second is the best single
number. (We measure this number at the processor, and it may
include both the instruction and data streams.)

To take an average we must adopt some weightings. The sim-
plest scheme is simply to add all the instruction (or operation)
times and divide by their number. This is equivalent to weighting
them equally, the rare ones and the common ones. If we want
to do better than that we need some data. Several sets of relative
frequencies, of instruction types, called “mixes,” have been used
in the literature. Table 2 gives four examples. The Gibson mix is

11t is not fair, of course, to invent tricks to encode many conceptually
independent dimensions into a single one, just to beat the limit. On the
other hand, composite dimensions, such as average operation time, are
perfectly acceptable.

ZDefinitional precision is not appropriate, since we are not attempting to
deal seriously with the technical questions of indices, only to illustrate the
issues.
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Table 2 Instruction-mix weights for evaluating computer power
Arbuckle [1966] Gibson' Knight (scientific) Knight (commercial)

Fixed + / — R 6 10(25)? 25(45)2
X - 3 6 1
- s 1 2
Floating + / — 9.5 10
Floating x 5.6
Floating — 2.0
Load/store 28.5 25 (move)
Indexing 22.5
Conditional branch 13.2 20
Compare .. 24
Branch on character .. 10
Edit o 4
1/0 initiate - 7
Other 18.7 72 74

1Published reference unknown.

2Extra weight for either indirect addressing or index registers.

probably the best known. The best source for such data comes
from instruction counts of running programs.

Knight takes the view (Fig. 3) that a single number can be used
to indicate power, and his formula has been evaluated for some
300 computers [Knight, 1966]. His formula is the product of
three factors: processing time, memory size (in words), and word
length. The formula was derived (roughly) to measure power so
that technological change could be modeled. Applying the formula
is like measuring automotive-vehicle power as a product of speed,
weight, and the number of wheels. (Such an indicator is roughly
proportional to a car’s momentum.) Thus, although it is a reason-
able single-number indication for power, a computer buyer could
not use it directly.

Taking averages, as in the case of mixes, suggests a more sophis-
ticated approach. A collection of programs, called a “bench mark,”
is developed that does a variety of different tasks. Then the one
number is the time it takes to do this collection. Such a bench
mark generates its own frequencies of occurrence of the primitive
instructions. It brings in a number of additional dimensions that
affect performance: the instruction code, the size of Mp, pro-
gramming skill, input/output devices, etc. It also carries with it
an implicit frequency of different kinds of task demands (how
much of the set involves compiling, how much number crunching,
how much 1/0, etc.).

There are severe practical problems in carrying out such meas-
urements on many computers, since the problems must be coded
and run on all the systems. It is somewhat easier if the task set

is restricted to programs coded in a procedure-oriented language,
such as FORTRAN, where all computers accept FORTRAN.
Nevertheless, although it has often been done to compare two
systems, only occasionally has it been done for even a modest
number. We feel that for a general-purpose computer the com-
piler-derived bench mark is a reasonable single-performance
number. Much actual use will be with the compiler, and good
compilers produce code to rival hand coding, so that special fea-
tures of the machine are utilized. Cox [1968] compares several,
using hand coding and compilers for several tasks.

There is a difficulty with the bench-mark scheme that is inher-
ent in its strongest advantage, that of doing a total problem and
thus integrating all features of the computer. The number obtained
depends not only on the type of computer, for example, an IBM
704, but on the exact configuration, for example, 16 kwords of Mp
versus 32 kwords, and even on the operating system and the soft-
ware (which version of FORTRAN). Thus, although the number
perhaps comes closest to an adequate single-performance figure,
it becomes much less of a parameter characterizing the structure
of the computer than one characterizing a contingent total system.

Let us underscore again the distinction between the computer
type and the particular configuration (possibly including basic
software) assembled in a particular installation. Computer systems
are designed with certain forms of variability. To specify a CDC
1604 is to specify many things, such as the ISP of the Pc, the cycle
time of Mp, the K’s used to control secondary memories (Ms), and
interfaces to the external world. But it leaves open many other
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[(L-7) (T) (WP} Ce weighting factor that indicates
P 1012 [32,000 (36-7)} the percentgge of
= —’———t It floa?lng additions o 10 0
o we Cs weighting factor that indicates
t, = 10%C,Ag + CoA, + C;M + C.D + C.L] the percentage of
tio = P X OLy [108 (W X B X 1/K) + (Wer X B X 1/Kor) multiply operations 6 1
4+ N(S; + HDIR, Cy weighting factor that indicates
+ (1-P) OL; [108 (Wiz X B X 1/Kr2) + (Woz X B X 1/Ko2) the percentage of
+ N(S2 + Hu)] divide operations 2 0
Cs weighting factor that indicates
the percentage of
Variables—attributes of each computing system logic operations 72 74
. . P percentage of the I/0 that
P = the computing power of the nt computing system uses the primary |/0 system
L = the word lengths (in bits) a. systems with only a
T = the total number of words in memory primary /0 system 1.0 1.0
t. = the time for the Central Processing Unit to perform 1 million operations b. systems with a primary and
ti,o = the time the Central Processing Unit stands idle waiting for 1/0 to take secondary /0 system variable variable
place ) ) ) ) " Wn number of input words per
Ag = the time for the Central Processing Unit to perform 1 fixed point addition million internal operations
Ag;, = the time for the Central Processing Unit to perform 1 floating point addition using the primary
M = the time for the Central Processing Unit to perform 1 multiply 1/0 system
D = the time for the Central Processing Unit to perform 1 divide a. magnetic tape 1/0 system 20.000 100,000
L = the time for the Central Processing Unit to perform 1 logic operation b. other 1/0 systems 2’000 10'000
B = the number of characters of 1/0 in each word Wor number of output words per ' '
K = the Input transfer rate (characters per second) of the primary |/0 system million internal operations the values are the
Koy = the Output transfer rate (characters per second) of the primary 1/0 system using the primary same as those given
Kiz = the Input transfer rate (characters per second) of the secondary /0 system 1/0 system above for Wy,
Koz = the Output transfer rate (characters per second) of the secondary 1/0 Wis number of input/output words
system N
S; = the start time of the primary |/0 system not overlapped with compute Woz g;gtl:g(r)‘: thi(:\rgn;:e tsr;;\leai'aietsh?);z thiSen
H; = the stop time of the primary |/0 system not overlapped with compute secondary |/0 system above for W g
S; = the start time of the secondary I/0 system not overlapped with compute N number of times separate data 1
H, = the stop time of the secondary 1/0 system not overlapped with compute is read into or out of the
R, = 1 4 the fraction of the useful primary {/0 time that is required for non- computer per million operations 4 20
overfap rewind time oL, overlap factor 1—the fraction
of the primary 1/0 system's
Semi-constant factors Values time not overlapped with
compute
Scientific Commercial a. no overlap—no buffer 1 1
Symbol Description computation computation b. read or write with com-
pute—single buffer .85 .85
WF the word factor c. read, write and com-
a. fixed word length memory 1 1 pute—single buffer 7 7
b. variable word length d. multiple read, write and
memory 2 2 compute—several buffers 60 .60
(o) weighting factor representing e. multiple read, write
the percentage of the and compute with
fixed add operations program interrupt—
a. computers without index several buffers 25 .55
registers or indirect oL, overlap factor 2—the fraction
addressing 10 25 of the secondary /0
b. computers with index system’s time not over-
registers or indirect lapped with compute values are the same
addressing 25 45 as those given above

. . . , for OL,, a through e
Fig. 3. Knight's functional model algorithm to calculate P for any com- i the exponential memory ! €

puter system. (Courtesy of Datamation, vol. 12, no. 9, September, 1966, weighting factor 5 .333
page 42.)
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things, e.g., the types and sizes of Ms and the size of Mp. On
some computers it can even leave open part of the ISP (e.g,
the multiply/divide options on many small machines), or the speed
of the Pc and Mp (e.g., in the IBM System/360).

When we ask questions about computer systems, we should be
clear whether we are talking about a computer “type,” such as
CDC 1604, or whether we are talking about a particular installa-
tion, with all the variability specified. It is possible to describe
either with PMS and ISP, provided we recognize that the diagrams
for the types represent maximal possibilities for assembling par-
ticular systems. This is how almost all the PMS and ISP diagrams
in this book were prepared. From the point of view of our “number
game,” if we are talking about computer types, we might prefer
numbers that do not depend on the particular configuration.

If two numbers were available for describing performance,
what would they be? Clearly there are several directions to go.
One could fractionate the bench mark, so that one has a bench
mark for arithmetic-rich tasks and a bench mark for others (a
composite of compiling and data processing). One could decom-
pose the processing rate into, say, operations per second and word
size (from which bits per second can be recaptured approximately).
Alternatively, one could retain only a single number for processing
rate and add a measure of the memory available, e.g., size of Mp
(in bits). Of the three we would choose the latter, especially if
we were talking about a particular installation rather than com-
puter types, for which Mp size remains variable.

We can continue this game through several numbers. Table 3
shows some of our choices. Various parameters drop out or change
only when they are decomposed into other parameters from which
they can be recovered. Thus, initially Mp must be measured into
bits, but when the word size is given, Mp is more reasonably
measured in words. One of the reasons for exposing such a list
is to emphasize its judgmental and approximate character. There
is as yet no way to validate such proposals for brief descriptions.

Table 3 Performance parameters specification
(as a function of an allowable number of parameters)

1f we had bench marks, which are themselves only approximations
at measuring performance, we might look at how well the param-
eters in Table 3 predict the bench marks. But there remain the
difficulties of how to take into account the additional aspects of
the total system (e.g., compiler efficiency) that are implied in the
bench mark. Alternatively, one might want to construct a mixed
description of bench-mark numbers and measurements of the kind
in Table 3. Then the relationship between bench marks and these
other measurements would become an indirect measure of the
efficiency of the rest of the system.

We have discussed performance in a crude and cavalier way,
but this accurately reflects the state of the art. There are no precise
measures for performance. There are precise structure and per-
formance measures of individual components (e.g., memory size,
and speed and word length, and processor instruction times). When
designers (and users) are faced with obtaining a certain total
performance for a given cost, the only method is that of the bench
mark, because the task is such a significant variable. If performance
is to be increased, unless the task is sufficiently trivial, it is difficult
to predict what effect changing even the most direct structural
variables will have (e.g., memory speed).

Structure

We now turn from function and performance, which provide
design constraints and objectives, to the dimensions of structure,
which provide the space in which the design is actually cast. A
structural dimension is one in which the designer can attain any
of the values along the dimension by relatively direct means. Thus
a machine is completely specified by listing all its values along
the structural dimensions. From this, the system’s function and
its performance within that function can be determined.

What dimensions should be selected for structure? The view-
point is distinctly different from that of performance, where one

Number of
parameters
allowed: 1 2

Parameters: Pc(i.rate:(b/s))

4 5

Pc(operation-rate:(op/s))

Mp(size:(B))——————— Pc(i.width(b))
Ms(si\Mp(i.(words)) N

ze:(b))
T Ms(i(words))
ST




averages and combines many features to summarize effective out-
put. This tends to obscure structure. For structure, one wants
maximally independent aspects which are easily obtained if se-
lected as a design choice. For example, if the computer designer
had only a single dimension to describe a computer, he would
undoubtedly select the logic technology used in the Pc and K’s.
This tells him a good deal about many aspects of the computer’s
structure. In fact, the technology and the average bits processed
per second by the Pc are correlated, and so each can be used to
predict the other, though only imperfectly. If one is interested
in performance, effective bits per second is preferred; if one is
interested in design, technology is preferred.

The computer space in Table 1 presents our choice of the major
structure dimensions. There is even less means to validate the
choice of dimensions here than there is for performance. Never-
theless, there are a few hallmarks. Perhaps the most important
is redundancy (the opposite side of the coin from independence,
mentioned above). Several dimensions of structure may covary,
so that giving any one of them is tantamount to giving the others.
This covariation need not come from physical dependence; it may
arise from the nature of an appropriate design and good engineer-
ing practice. Such a cluster of covarying dimensions is likely to
indicate an important dimension (which one among the correlates
is to be used is a secondary matter). Table 1 is organized in terms
of such clusters, with one of each selected as the main representa-
tive and placed at the left.

A second hallmark derives from the hierarchical nature of
computer systems. Generally a description of a system consists of
the union of the description of its parts, plus a description of the
interconnections. This is the basic style of PMS, for example. But
there are a few features that affect the total system, i.e., affect
many components. These are usually rather important. Technology
is a prime example.

Yet a third clue is that the dimensions discriminate the actual
population of computers. If all machines had single-address in-
structions, for instance, there would be no sense in using number
of addresses per instruction as a dimension. Any computer engineer
who had studied machines at all would know this to be true of
all computers. Thus one looks for dimensions that spread the
machines out evenly into a substantial number of categories.

If the dimensions of the space are known, a computer is sup-
posed to be defined by a single point. For most existing computers
this is actually the case. However, if a computer system were
complicated enough, say consisting of several processors, each built
with different technologies and having a different number of ad-
dresses per instruction, then such a representation would not be
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possible. For instance, the Rice University computer uses vacuum
tubes, transistors, and integrated-circuit logic. But such complexi-
ties are rare; time and good engineering practice work against
it. If it were necessary to consider such cases, then additional
dimensions (e.g., for secondary and tertiary logic) could be added,
or several points in the space for a given computer could be
used.

The computer-structure space is thus our choice of the seven
most important dimensions. It is our response, so to speak, to
playing the number game, given only seven descriptors. They are
arranged in order of importance, although clearly no simple way
exists to validate such an order. But, if we were to have only three
attributes to describe the structure of a computer system, we
would pick logic technology, word size, and PMS structure (i.e.,
what processors exist with what functions).

At this point we are ready to proceed through the space, de-
scribing the various dimensions and discussing how the computer
systems in this book illustrate various points along them. We take
up each major dimension separately. A few of the correlated
dimensions are accorded separate sections, but most are discussed
along with the main dimension.

Technology

Computers are constrained by the physical technology from which
they are constructed. It is not just that new technologies provide
greater speed, size, and reliability at less cost, although of course
they do that. But technologies dictate the kinds of structures that
can be considered and thus come to shape our whole view of what
a computer is. For instance, the emergence of the PMS system
level is due to advances in technology. Prior to transistor technol-
ogy, it did not make sense to think of elaborate PMS structures.
The costs of the various parts were too high and the reliabilities
were too low. When, occasionally, such a machine was in fact
designed, it invariably proved too far ahead of its time to succeed.
An example in this book might be the RW-40, described in 1960
(Chap. 38). A more classic example is the Analytic Engine of
Babbage, which he designed in 1844 and was never able to com-
plete.! The technology of the time was entirely mechanical, and
its crude state accounts for a large share of the failure. Thus the
technology is by all odds the most important single attribute to
know about the computer system.

Many technologies go into making up a computer. Each type
of component typically uses a different one. In current (so-called
1Thus, the first real digital computer established the precedent of failing

by a large margin to meet the expected dates of completion and full
operation.

The computer space 53



54 Part 1

The structure of computers

third-generation) machines the Pc may use hybrid- and inte-
grated-circuit technology for its logic, thin-film technology for the
Pc generalized registers, core technology for the Mp, electro-
mechanical technology for tapes and disks (with integrated circuits
for logic), mechanical technology for card punches and type-
writers, and even manual technology for mounting tapes and disk
packs. The existence of all these technologies poses major issues
of systems balance, issues which are only imperfectly resolved. For
example, it remains true in the current generation that input/
output is not in balance with the internal structures. This is due
to the crude state of terminal technology, so that it appears to
cost too much to provide an appropriate solution.!

The heterogeneity of technologies is not a consequence of
cost/benefit analysis; rather, each represents the forefront tech-
nology for the type of device shown. (There is, of course, cost/
performance exchange for any component, but this is usually
within a technology.) Thus there is a sense in which the leading
technology can be used to represent them all. This is the technol-
ogy used for the logic level and is the one listed in the computer
space. If it is known that transistor logic is used in the Pc of
a computer, it is a safe prediction that Ms is electromechanical,
Mp is core, Tio is electromechanical printers and punches, etc.
This reflects the fact that technology develops and hence be-
comes locked with calendar time. Thus a prediction is from
logic technology to date and then to all other things known to
be current at that date.

This correlation of date with technology is given in the com-
puter space along with the generation. It can also be seen in the
time chart. The correspondences must be taken as very rough only.
The technologies are listed in increasing power (and decreasing
cost). The dates run in exactly the same order. The one exception
is fluidics, which has been introduced very recently and is a special
technology for ruggedness, reliability, and direct external coupling
in certain control systems. (Small fluidic computers are at the early
prototype stage.)

Alongside the technology dimension we list the dimensions:
Pc speed (operations per second), and cost (dollars per million op-
erations), all of which vary directly (or inversely) with logic tech-
nology. In general, costs are extremely difficult to determine, espe-

1 Although beside the point of the current discussion, one reason why these
imbalances appear to be “permanent” is that the time constant for change
in the technology is of the same order as the time constant for human beings
(i.e., systems analysts, programmers, and users) to understand the imbal-
ance. Before system imbalance is diagnosed and solved, the terms of the
problem change, inducing new imbalances.

cially when technological costs are of interest rather than market
costs (which reflect numerous other factors). Nevertheless the
effect of technology on costs has been so striking (while simulta-
neously pushing up performance along all other dimensions) that
it seemed necessary to give a measure of cost in Table 1, no matter
how crude.

We have indicated only a few of the dimensions that are corre-
lated with technology. In fact, the only dimensions in Table 1 that
are independent of technology are the word length and the Pc
addresses/instruction. All the rest show dependence on technol-
ogy. For some, such as memory speed and size, there is a direct
correlation. For others, such as PMS structure and Pc concurrency,
the development of more complex versions—the leading edge, so
to speak-—depends on technology, but there is free use of all
versions that are in existence at any given time. There are still
other dimensions of importance, not shown in Table 1, that have
also changed with technology, e.g., electric-power consumption.

One way to see both what varies and what is independent of
technology is to compare selected machines. For instance, Whirl-
wind (Chap. 6), a first-generation system, and the IBM 1800 (Chap.
33), a third-generation system, have reasonably similar ISP descrip-
tions, if one ignores index registers, which were not invented at the
time of Whirlwind’s design. However, they have very different
PMS structures. In Whirlwind, the early system, transferred infor-
mation between Tio’s and Ms was under program control of the
Pc. The existing Pc registers and transfer gates were used because
it was too expensive to have separate ones. In the 1800, which
uses hybrid circuits, it is economical to have additional subsystems
devoted to special functions; hence there are many Pio’s operating
independently of the main Pc. It was not cost alone that limited
the complexity of first-generation vacuum-tube systems. The large
physical size of tubes introduced substantial transmission delays;
their large power consumption added dependency on a cooling
system; and their limited life and deteriorating nature constrained
the number of tubes that could be used in a system requiring high
reliability.

The IBM 700 scientific series (701, 704, 709, 7090, 7040, 7044,
7094 I and II) offers another comparison, where there is an evolv-
ing structure over time, hence across technologies, but where for
reasons of compatibility the ISP’s have remained almost constant
(except for the 701). Again we see radical increases both in perform-
ance (Pc speed increases by a factor of 5 from the 701 to the 704
and another 10 to the 7094 II) and PMS complexity. But various
other features, though not affecting compatibility, were locked in
with the ISP and remained fairly constant. For example, Mp size
went to 32 kw (kilowords) early in the series with the 704; and



it took a jerry-rigged modification to get 64 kw on a 7094 toward
the end of the lifetime of the series (see Chap. 41, page 517).

Throughout this section we have referred to technology as the
dominant factor in the computer. Does this mean that computer
development waits upon new fundamental windfalls? We have
been lucky in getting the transistor and, to a lesser degree, the
integrated circuit from external efforts. However, core memories
were invented for the computer and resulted because of need.
Read-only memories have also resulted both from development
at the circuit level and from pressure above, requiring the mem-
ories to be developed. All the electromechanical secondary mem-
ories (i.e., magnetic tape, drums, disks, and photostores) have
resulted from the computer’s needs. Thus, although technology
is dominant, the computer often forces the development.

The Pc operation rate is strongly correlated with logic tech-
nology, as we have indicated in the computer space. Our discussion
about technology and generations is also about operation rate. The
principal reason for the higher operation rate is because of faster
logic technology. Technology also has a secondary effect on in-
creasing speed. More reliable devices allow large computers to
be built. Smaller devices allow higher device densities, thus de-
creasing stray capacitance and inductance and shortening trans-
mission delays. Smaller components also allow increased inter-
connection density.

Operation rate is also relatively highly correlated with total
performance. If we hold the structure and concurrency constant,
the simplest way to increase performance is by increasing the clock
rate. The increase in the performance/cost ratio over the past two
decades of computer evolution has made their primary gains
through higher operation rates. The two 16-bit computers already
mentioned, Whirlwind (Chap. 6) and the IBM 1800 (Chap. 33),
provide a nice comparison of the evolution. With a difference of
10 years and two generations, their cost ratio is ~10:1 whereas
performance is ~1:5 and the internal clock rates are also ~1:5.1

Information structure: word length, information base,
and data-types

All computers structure their information in a hierarchy of units,
which we defined as an i-unit in Chap. 2. For example, the IBM
System/360 starts with the bit; then the byte, which is 8 bits; then
the word, which is 4 bytes; then the record, which is a variable
number of words. In between, playing minor roles, are decimal
'However, it is not as dramatic an example as we could find. By picking

a better third-generation example we might get a cost ratio of ~100:1 and
a performance ratio of ~1:10.
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digits (4 bits), the halfword, and the double word. A number of
features of the design are related to this hierarchical organization
of data. Before we consider them, we need to characterize the
organization itself. One characteristic of this organization, the
word length (in bits), gives most of the information, the rest of
the hierarchy adding only a little.

Let us see why this is so. At the bottom there is the bit, encoded
in two-state devices. Although other numbers of states are possible,
and ternary (three-state) machines have been proposed occasion-
ally, digital technology has developed exclusively to handle binary
information. There are several reasons for this. The first is the
requirement for high reliability and high signal-to-noise ratios in
the basic devices. Generally a basic n-state device (that is, one
not built up from other k-state devices) is realized by breaking
a continuous physical dimension, such as voltage, current, or
magnetic flux, into n discrete levels or regions. Reliability and
signal-to-noise ratio then depend on keeping adequate separation.
This is easiest to do with two states (e.g., in the limit they become
on-off devices) and becomes progressively more difficult as n in-
creases. The second reason is the simplicity of the logical design
for binary representations. A basic device for combining two
ternary digits must deal with 3 X 3 = 9 configurations, rather than
2 X 2 = 4 configurations for the binary case. This also gets worse
as n increases.

A final reason—the coup de grace, so to speak—is that no one
has ever found striking advantages for the resulting processing
structure in having more than two states. Thus there are no com-
pelling reasons to suffer the first two disadvantages. In short, what
might have been an important dimension on which to distinguish
computers, namely, the number of states in the basic encoding,
turns out instead to be one of the great uniformities in digital
technology.

Information base. That the physical devices deal ultimately in bits
does not imply that the information processing must be organized
in terms of bits. It is possible to select an arbitrary base (one with
any number of states) and construct the entire ISP in its terms.
A base unit is represented physically, of course, as a set of bits.
If one wanted a base 13 machine, for example, one would have
to use at least 4 bits (with 16 states) to encode it. But no operations
at the ISP level would refer to anything but base units and data
structures built up from sets of base units, and there would be
no way to manipulate directly the bits that represented the base.
Thus, using a base other than binary obtains whatever advantages
might accrue to n-state units, without any of the disadvantages
at the device level.
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Computers have been built with a variety of different bases,
the main ones being binary, decimal, and character. The character
has shifted between a 6-bit character and an 8-bit character
(byte).! The arguments for bases other than binary (which repre-
sents the natural base of the computer) all hinge on the alphabets
used externally by human beings and the desire to avoid conver-
sions into a different representation inside the computer. With
universal acceptance of higher languages, such as FORTRAN and
ALGOL, this argument has also lost much of its force. In fact,
all third-generation machines are binary. Nevertheless, in the fifties
there was much controversy over which base to use, and the
machines presented in this book exhibit all three bases.

There is little difference between binary and decimal com-
puters in their ISP organization. However, there is a great differ-
ence between these two and character machines. The latter are
designed for handling text and are constructed to deal with varia-
ble-length strings of characters. Correspondingly, they deempha-
size numerical computation. Both these decisions affect the ISP
considerably. Thus, in the computer space we indicate the base
dimension along with the word-length dimension. The two to-
gether make up a single dimension.

Word length. Let us now examine the role of word length. The
word is the first major information unit above the base. It is defined
as n bits for a binary computer or n digits for a decimal computer
(character machines being excluded as not having a fixed word
length). Sometimes there are intermediate units, but they always
play a minor role and we can disregard them at this stage. As we
noted earlier, the main determinant of word length has been the
function of the total system: large word lengths for arithmetic
systems, small word lengths for control systems (and character
strings for business). Thus, only within narrow limits is the word
length a free design choice.

However, the interesting thing about word length is not so
much its determinant as the way it affects other aspects of the
total system design. This starts with a design decision that the
unit of information transfer between components will be a word.
As soon as this becomes the case, then registers in various com-
ponents must hold a word, since that is what arrives or is to be
transmitted. Thus the word becomes the information unit of the
Mp, and most of the registers of the Pc hold one word. The instruc-
tion is designed to fit into one word, since that is the number
of bits that is obtained “at once” and hence can be used to effect
the next time increment of processing.

LSeven bits have been proposed for communication purposes but have never
been made the basis of a machine, as far as we know.

Once these basic features are set, others follow. An integer
number of any smaller units, such as the character, should fit into
a word, since otherwise a set of words will not provide a homoge-
neous sequence of subunits. (That is, only five 6-bit characters fit
into 32 bits, so that a set of 32-bit words filled with 6-bit characters
has a number of 2-bit holes in it. This can complicate algorithms
that deal with long character strings.) The constraint of compati-
bility is not so strong with Ms, since speeds are slow enough to
permit conversion algorithms (either hardware or software). Still,
the system is simpler (and therefore usually will work better) if
incommensurabilities of information units do not exist. Thus, to
pick an example, the number of parallel tracks on magnetic tapes
tends to divide evenly into the word length. IBM tapes for the
700 series of 36-bit machines have six data tracks; for the Sys-
tem/360, which has a 32-bit word, the tapes have eight data tracks.

There is an interesting correlation between the word length
of a computer and the number of data-types that it makes availa-
ble. As we saw in Chap. 2, the operations in a computer can be
classified according to the type of data they operate upon. Each
data type tends to have a certain set of operations appropriate
to it (for example, +, —, X, and / for numbers) and the decision
to include a data-type carries with it the decision to include
its operations. Thus the number of operations tends to grow with
the number of data-types. The total amount of hardware in a
computer grows as the word size (because data paths are word-
parallel?) and also as the number of operations. Thus machines
with large word size tend to be large machines and have many
data-types and many operations. ("Large” as an adjective for
machines invariably means big and expensive, hence—given eco-
nomics—capable of doing large amounts of processing.)

There are two additional, somewhat independent, features that
support the relationship between word size, number of data-types,
and size of computer. First, with a large system there will already
be available many of the pieces necessary to add additional oper-
ations. That is, the marginal cost of a new operation goes down
as the system grows. Therefore, given a large system, there is a
tendency to add more operations. The number of operations per
data-type is not easy to increase; rather, one adds new data-types.
Second, with small word lengths, one cannot define many worth-
while data-types that will fit into a word, and multiple-word data-
types are left to the programmer to define with software. With
large word lengths there are many different worthwhile data-types
that fit into the word, for instance, decompositions of the word
into partial words, or into character strings. Each of these requires

2The issue of bit-serial versus bit-parallel is discussed subsequently.



additional operations, since the initial data-types involve the entire
word or some large part of it (i.e., the word, address, and integer
operations).

In sum, the word length stands as an indicator of many aspects
of the machine. It not only tells something about the basic organi-
zation of many components but indicates how big the computer
is, both in number of data-types and number of operations. Figure
2 shows time lines of well-known computers with their word
length, with a special time line for the ones in this book. Five
groups are suggested in the figure which classify these computers.!
The classes overlap, and to separate a computer into one of two
classes requires more knowledge (e.g., the number of data-types).
For example, the 24-bit SDS 9300 and CDC 3200 appear in the
same class with the 36-bit IBM 7090 just because both machines
have floating point hardware and, in fact, perform comparably for
arithmetic tasks.

The one design choice that makes word length have few of the
consequences just described is making a computer bit-serial rather
than bit-parallel. In many machines information transfers are con-
ducted on a single bit stream (especially Pc-Mp transfers). Coinci-
dent with this is the construction of operations on a bit-by-bit
basis. This works well for arithmetic and logical operations. Time
is traded for hardware. The cost of the system becomes independ-
ent of word length, but the processing rates go down correspond-
ingly. This design decision was an extremely important one when
logic was expensive and unreliable. It has become less so in the
current era, where processors and transfer paths are relatively few
in number while both the cost and the reliability of components
have improved. However, as large parallel processors are con-
sidered (~103 P’s), bit-serial processors again become a serious
design alternative. (See the serial computers of Part 3, Sec. 2.)

In summary, word length is an important dimension, and we
find many characteristics either proportional to or inversely pro-
portional to it. To be sure, these relations hold only for current
design practice, as we have seen with the bit-serial designs. The
main-line computers in Part 2 are ordered according to increasing
word length.

Data-types. We have presented the number of data-types as being
correlated with word length and also with computer size through
the effect on number of operations. Although far from perfect,
there is a rough order in which specific data-types are included
in a computer. We have listed the main types in such an order
in the data-type dimension of the computer space. (See Chap. 2

!The class number is essentially [log,(Mp word length) — 2].
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for their definitions.) To be located at a point on this dimension
(say at floating point) means to have all the data types below it
on the dimension, (i.e., word, address, integer, boolean.) Occa-
sionally machines which violate this have arisen. Decimal ma-
chines do not generally have boolean data-types, and there has
been some attempt at machines with only floating point, i.e.,
without a separate integer type (e.g., the CDC G202).

The reason behind this cumulation of data-types in a fixed order
is that certain general tasks must be performed by any computer.
It must transmit data between the Pc and Mp, and this trans-
mission has nothing to do with the meaning or content of the data;
thus there is always the “unit of transmission,” which is the word
(except on character machines). Next, all computers manipulate
addresses to achieve generality (e.g., to compile), providing for a
second data-type. Next come integers, since almost all algorithms
make use of arithmetic (this could conceivably be absent in some
communications computers), and on up to floating point numbers,
multiple precision, and vector and string operations. At each stage
the uses are more specialized so that lower ones cannot be elimi-
nated, except for a few cases such as handling addresses as regular
integers.

Addpresses per instruction and processor state

The number of addresses in an instruction has been a traditional
way of describing processors (i.e., their ISP’s) and hence the com-
puter systems containing these processors.> We use it in Parts 2
and 3 to separate the different processors.

Originally the dimension was simple: one-, two-, three-, and
four-address machines were constructed. It has become somewhat
more complex. A “one plus one” machine has one address for data
and one for determining the next instruction, and is to be distin-
guished from a two-address machine, which uses both addresses
for data. Index registers and so-called general registers provide
instruction schemes which lie somewhere between one- and two-
address organizations. When processors admit several instruction
formats or variable-length instructions, matters become even more
complicated.

A correlated dimension in the computer space is the amount
of processor state, that is, the number of bits that exist in the
processor, as described in the ISP. This is the amount of informa-
tion that can be held at the end of one instruction to provide the
processing context for the next instruction. It consists of a number
of status and mode bits (in modern machines packaged into regis-

2Qriginally the Bendix G-20.
3Although used mostly to describe Pc’s, the description applies to any
processor.
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ters, but in earlier machines simply scattered around in the proc-
essor), the next instruction address, the accumulator and other
arithmetic registers, the index registers, and other general registers
making up a “scratch-pad” memory. It is a simpler descriptor of
the ISP than addresses per instruction, since it is independent of
the number and variety of instruction formats. It is easy to define
processor state generally for any ISP, but difficult to define ad-
dresses per instruction.

The processor state is not the total number of bits in the proc-
essor, since there may be registers in the physical system that are
used within the interpretation of one instruction but which carry
no information between instructions. Address registers for obtain-
ing operands from Mp are the most common such “underground”
or “temporary” registers, but there can be others. We implied this
distinction by defining processor state in terms of the ISP rather
than the physical processor.

The correlation between the processor state and the number
of addresses per instruction is not simple, since it rests on two
separate issues. For the first, note that larger programs perform
transformations on the state of Mp (or even Ms or Tio’s) and are
not concerned with the state of the processor. Processor state
enters only because, in decomposing the total algorithm into a
series of small steps, it is not possible (or efficient) to make each
step a transformation from Mp to Mp. Basically, this happens
because the instruction does not hold enough information to spec-
ify the Mp-to-Mp transformations. For example, if one wants to
add two numbers, two operands are required, and an instruction
must contain at least two addresses; if it does not, then an inter-
mediate state (i.e., processor state) must be created to hold the
information while the additional instructions are fetched. Thus,
one-address organizations require the most processor state, with
less for two- and three-address organizations. This consideration
stops at three (two operands and a result) because only a few
elementary operations are more than binary. The processor state
cannot be eliminated entirely, however, since there must be at
least an instruction address (a program register) to maintain con-
tinuity of the program.

The second source of correlation between processor state and
instructions per address comes from differential access time to
processor registers and to Mp. As long as there is an appreciable
differential, substantial gain, processing power can be obtained
from increasing processor state. This derives, again, from the struc-
ture of algorithms which generate intermediate results that are
used almost immediately afterward and then are of no further
interest. Rapid temporary storage and retrieval are beneficial
under these conditions. Thus, working against higher address

organization is the extra time to store in Mp results that need only
temporary storage. Thus, also, index registers and general registers
almost always imply increased processor state, although they need
not do so logically (that is, the registers could exist in Mp and
still have their effect on the instruction format).

With interrupts and multiprogramming the processor state
gains additional significance, since it is the amount of information
that has to be saved and restored when switching programs.
For example, in the Honeywell H-800, an early three-address
computer, the processor state per program consisted only of the
program counter and index registers, and when io-halts occurred
during processing, the Pc was switched immediately to another
program. Eight programs could run concurrently (by having a total
processor state of 64 program registers). In present computers with
general-register state, often 25 ~ 100 words must be stored, which
implies an appreciable time for switching contexts.

We can now consider briefly the different organizations accord-
ing to addresses per instruction. To show the common similarities,
we give in Fig. 4 a state diagram that can be used for all processors.
In common is the basic idea of the stored program: Fetch an
instruction, determine what the instruction is to do, then execute
it (the fetch-execute cycle). Other than this, only a part of the
state diagram will be applicable to a given processor type.

As shown in the computer space, the addresses-per-instruction
dimension starts with zero addresses, then one address, then one
plus indexing, one plus general registers, and on up to two, three,
and variable addresses. However, from an expository viewpoint
one should follow a different course, starting with single-address
machines, then indexing, then two- and three-address machines,
then general registers, and finally the zero-address and variable-
address organizations. This not only puts the more common
organizations first but makes it easy to relate the organizations
to each other.

P(1 address) and P(1 + index address). These Pc’s constitute most
first-, second-, and simple third-generation computers. The earliest
outline of the structure was the IAS computer (Chap. 4), which
has come to be known as the von Neumann computer. Although
fundamentally like the IAS computer, EDSAC’s adaptation ap-
pears to be the closest prototype to this class. Although EDSAC
is not described, it influenced M.L.T.’s Whirlwind I significantly
(Chap. 6).

A significant change to the IAS machine was the addition of
the index register (called B-tubes) in the Manchester University
machine in the early 1950s. The evolution can be seen by compar-
ing the first and third generations using Whirlwind (Chap. 6) and
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Fig. 4. ISP interpretation state diagram.

the IBM 1800 (Chap. 33) or looking at the IBM 701-7094 evolution
in Part 6, Sec. 1. Index registers are motivated by the frequent
occurrence, in 1 address systems, of circuitous address calcula-
tions that involve first computing the address (e.g., the index of
an array in Mp) and then planting it just ahead in the instruc-
tion stream in order to make use of it as an address. Providing
a set of index registers introduces a second address into the in-
struction, even though of extremely limited function. Thus we
classify processors with indexing as having (1 + x) addresses
per instruction.! An alternative view of index registers suggests
that they double the number of data-types by allowing operations
on vector data elements rather than just scalars.

!Indirect addressing, on the other hand, does not add to the addresses per
instruction; rather, it introduces a second operation per instruction.

For the 1 address processor, the processor state (Mps) typically
consists of the program counter (instruction location counter), an
Accumulator/AC, a Multiplier-Quotient register/MQ (the exten-
sion of AC), and one or more Index registers/X/XR.

With only one address in the instruction, the one arithmetic
register, A, must be used for temporary results. Thus an effective-
address integer (z) is computed as a function of the address part
(v part) of the instruction (q) and the index registers. This process
is typically

z:=v + X{j]

where X([j] is the jth index registers as specified in the instruction.

There are several forms for the transmission operators between
A and Mp.
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A7z load immediate
A «— Mplx] load direct

A <« Mp[Mp[x]]  load indirect
M[x] «~ A store direct

Mp[Mpl[z]] « A store indirect

In indirect operations a convention may be required to determine
what address in Mp|z] is to be used.

Similarly, the binary operations (+, —, X, /, /\, V, @®, con-
catenation, etc.) are generally of the form!

A < Ab Mplz]
Rarely do we find the symmetrical operation form
Mplz]| <~ A b Mp|z]

For unary operations (4, —, abs, sin, cos, etc.) the most com-
mon forms are

A—uA
A «uMp|z]

Rarely do we find

Mp{z] «<—u Mpl[z]
Mpl[z] < u A

In both the above cases, exclusion of the operations that place
results in Mp[z] stems from the added cost of including the sym-
metrical function and the marginal utility of such a function,
which stems from the result of applying u not being available for
further processing.

The transmission, unary, and binary operators account for al-
most all operations in these computers. If we allow A to stand
for any part of the Mps, rather than just the accumulator, then
the instructions not included above are input/output data trans-
mission, e.g.,

Mp «T and T « Mp
and conditional execution

(branch if zero AC) — ((AC = 0) - (P « z))

Having index registers requires operations to process them. At
a minimum they must be loaded and stored (usually from and to

Mp), ie.,
Mplz] « X
X < Mp[z]

store index
load index register

T Any of the addressing modes suggested above can be used for an operand:
that is, z immediate, Mplz] direct, and Mp[MP{z}} indirect.

But simple operations on an X are also desirable; for example,
Xe—X+1

Here X is used to point to (access) the next element in a vector.
More complex operations can be carried out by placing X in the
A register, via the program steps:

A<X load A with X
A «—f(A) manipulate A
XA load X with A

An operation to add k to X would then be

A< X; next
A <« A + k; next
X« A

instead of

Mpl[z] « X; next
A < Mp(z]; next
A« A + k; next
Mpl[z] < A; next
X < Mp][z]

which assumes no transmission paths between X and A. Ideally
we would like to perform any operation directly on X as simply

XeX+k

From this begins the idea that X should look like the main arith-
metic register, A. This is, no doubt, one evolutionary path to
general-register processors.

Part 2, Sec. 1 is devoted entirely to 1 address computers in
the first three generations. They were the “main line” of computer
development.

P(2 address) and P(3 address). The computers in Part 3, Sec. 1
have instructions which contain multiple addresses per instruc-
tion. The addresses (v) specify operands in Mp (Fig. 4). The Mps
decreases as the number of addresses per instruction increases,
since the operands need not be held temporarily between instruc-
tions (i.e., each instruction performs a complete operation).

The instruction form for the 3 address computer is

Mplvy] <~ Mplv,] b Mp|v,)

where b is a binary operator, and v, v,, and v; are the addresses
specifying the operands. In the case of unary operations, u, v, is
usually blank. In the case of a binary operation and a three-address
computer, the states are oq, aq, 00, OV.r, av.r, OV.I, av.r, 0, OV.W,



av.w (Fig. 4). MIDAC (Chap. 14) and Strela (Chap. 15) are typical
three-address computers.

A 2 address computer does not necessarily require more proc-
essor state than a 3 address computer, since the operations can
correspond to

Mpl{v,] <= Mp[v,] b Mp][v,]
and
Mplv,] «—u Mplv,]

However, sometimes extra Mps is usual. The RW-400 (Chap.
38) has an accumulator, and operations generally terminate with
results both in primary memory, Mp[v,], and in the accumulator.
The branch on accumulator instructions allows results to be
checked directly without referring to Mp. An especially nice
instruction in 2 address computers is the transmission instruction
(a special-case unary operation): Mp[v,] « Mp[v,].

The IBM 1401 (Chap. 18) has two registers, A_address and
B_address, which hold v, and v, and can be loaded by the v, and
v, parts of the instruction. These registers point to (address) oper-
ands and do not contain data. The remaining processor state is
the Instruction_address. The 1401 has instructions with no
address parts, and these instructions take as operand addresses
the values of A_address and B_address as of the previous in-
struction. The 1401 instruction-interpreter state diagram is given
in Chap. 18 (Fig. 3). The state-diagram specialization (Fig. 4)
is roughly:
0q, aq, 00 {OV.I},aV.I{,0V.I5,aV.I,,0,0V.W,,aV. Wy} - - -

{ov.r;,av.r;,0v.1,,av.1,,0,0v.W,,av.w, }

where the sequence delimited by the {.-.} is the operation on
a character; because the 1401 operates on variable-length strings,
it is repeated until the end of the string.

P(n 4 1 address). Processors with n + 1 addresses deviate only
slightly from the n-address processors above. The final, or +1,
address explicitly specifies the address of the next instruction. As
such, it can be used with any instruction set. There are two reasons
why +1 addressing is used. First, freedom is provided in the
placement of each instruction within the program address space.
Second, the next instruction address can be calculated in parallel
with the execution of the current instruction.

For computers with cyclic memories (Part 3, Sec. 2), the +1
address allows both data and the next instruction to be specified
independently, providing the opportunity to arrange the program
and data in an optimum fashion. Since each instruction completion
time depends on the location of data, it is desirable that the next

Chapter 3

instruction location be variable rather than the implicit next ad-
dress used for most processors. This is almost universal practice
in computers with Mp.cyclic (see LGP-30 in Chap. 16 for an
exception).

Microprogrammed processors may use the + 1 address to locate
the next instruction, and there may be several such next addresses.
Microprogram subroutines tend to be short (intrinsic to interpret-
ing an instruction set), and there are many jump addresses. The
increased speed from not having to compute the next instruction
address is worth the added space cost. The IBM System/360 Model
30 (Chap. 32) shows the use of multiple (+1) addresses and if
classified according to our scheme would be at least a P(micro-
program; 3 + 1 address).

P(general register). The general register processor has a small array
of registers that can be used for multiple functions. These have
fast access compared with the Mp, so that it pays to do as much
processing as possible within them. Since the general register array
is small, it requires only a small address (3 to 8 bits). Thus the
instruction format contains fields for one (or more) general regis-
ters. There must still exist addressing for Mp, though this never
exceeds a single address. Thus we classify general registers ma-
chines as (1 + g) addresses per instruction.

The organization of a (1 + g) system can vary from something
very close to a (1 + x) organization, in which essentially every
instruction involves some Mp information, to an organization in
which the only Mp instructions are transfers between Mp and Mps
(the processor state holding the general registers), and there is a
two- or three-address instruction set involving only Mps (see the
CDC 6600 in Chap. 39). That is, from a data point of view the
Mps acts like a directly addressable Mp.

The processor state of a general register processor is invariably
held entirely within the general register array (rather than having
additional independent registers). This is due in part to an already
available mechanism (the array) and in part to the need for pro-
gram switching, which is somewhat simplified by having all the
Mps held in a single homogeneous memory.

The general registers typically perform a variety of functions:

1 Arithmetic registers (accumulator and the accumulator ex-
tension for the multiplier-quotient).
2 Index registers.

3 A second index register or base register; if the program
addresses (v) are short, a base register is needed to address
any area of Mp.

4 Subroutine linkage registers.
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5 Program flag (sense) registers for boolean variables.

6 Stack pointer (P may have multiple simultaneously active
stacks).

7 Address pointers to data arrays and lists.
8 Temporary data storage for intermediate results.

9 Temporary program storage for short program loops.

The power of a general register processor is obtained because
the registers can serve many functions. Thus the operations on
these registers can be extensive, because the operations need not
be duplicated in other parts of the structure. For example, special
operations for index registers are not necessary because the opera-
tions for integers apply universally to both the accumulator and
index registers. Of course, such generality requires compromises.
The stack computer is faster for problems which can utilize stacks,
whereas the general register Pc must utilize Mp for the stack(s)
and does not have the encoding efficiency of a pure stack processor
(see below). In addition, the assignment (and reassignment) of
general registers is most crucial, since they are a scarce resource
with many uses. A general register organization allows processors
with a high degree of parallelism to be constructed, since several
instruction subsequences can be executed concurrently.

The actual number of registers is rather critical and depends
not only on the algorithms of tasks coded but also on the technol-
ogy. In multiprogramming and interrupt computers, the program
switching time increases with the number of registers. Thus the
upper bound on the number of registers is both cost and program
switching time.

We would expect to find instructions which produced the fol-
lowing affects.

Format Addresses/instruction
Glg] < u G[gl 1g
Glg,] « u G[g,] 2g
Mp[v] < u Mp[v] 1
Mp[vi1] < u Mp[vz] 2
Glg] < u Mplv] 1+g
Mp[v] « u Glg] 1+¢g
Glg] < Glg] b Mp[v] l1+¢g
Glg1] « Glgi] b Glg:] 2g
Gle1] < Glg:] b Glgs] 3g
Mp[v] < G[g] b Mp[v] l1+g
Mp{vi] <= Mpfvz] b Mpvs] 3

where
u are unary operators (| — |abs( )| —abs( )|etc.)
b are binary operators (+ | —|/| X |\ |V |@|etc.)
G is the general-register array
g, £1» 8> g3 are instruction parts specifying a general register, G
Vv, Vy, vy, V5 are Mp addresses specified as a function of instruction and
general registers (for example, v := (address + G|g]) or v := (ad-
dress + Glg;] + Glg,]) in the IBM System/360).

General registers can be thought of as an outgrowth (generali-
zation) of the 1 4 x processors, as we have already suggested.
Alternatively, they can be thought of as evolving from a 2 or 3
address structure. The UNIVAC 1103A, a 2 address processor
(Chap. 13), was no doubt a forerunner of the general register
UNIVAC 1107 and 1108. Pegasus (Chap. 9) is, we think, about the
earliest computer to use general registers (1956). In Part 2, Sec.
2 we discuss four general registers computers.

P.stack (0 addresses per instruction). From a PMS viewpoint the
P.stack is built around having a first-in-last-out memory (M.stack)
as part of the processor state. Conceptually, it is built around the
fact that computations can often be sequenced so that no explicit
names (i.e., addresses) are required for temporary results. All
operations are performed on the top of the stack. As each partial
result is computed, it is pushed down in the stack and appears
again to participate as an operand at exactly the appropriate point
in later calculation. Thus the stack operates as an implicit memory
for all intermediate products and not only are transfers between
P and Mp avoided but space in the instruction for Mp addresses
is eliminated.

Instructions in such a system consist only of operations, since
all their operands are in the stack. Thus the instruction format
is that of zero addresses per instruction. There must, of course,
be some addressing of Mp (just as in a general-register organiza-
tion). However, the addresses for Mp themselves sit in the stack
so that the instruction contains only the transfer (load or store)
operation, not the address. There still must exist some way of
getting fresh data in the stack, and all P.stacks have at least one
operation that loads an address written in the program stream onto
the top of the stack.

Why there should be this happy correspondence between cal-
culations and memory to be performed and stack memories re-
quires a little explication. It rests fundamentally on the phrase
structuring of calculation in which each partial result is required
at one and only one point, so that each subcomputation can be
nested in the program (and hence its result nested in the stack)



in the same order as it will occur as operand to the one operation
that uses it.

There are several arguments against a P.stack. Multiple stacks
are often required. Part of the power of a P.stack is derived from
having higher-speed Mps for the stack. Yet only the top few (2 ~ 8)
registers of the stack can be in Mps. When M.stack overflows into
Mp, the speed of operations can become much worse than not
having a stack at all. A simpler implementation, for example,
P.general_registers, is as fast and perhaps more general. Another
difficulty with the stack is the inability to access other than the
top. If full addressing is provided, then the organization has be-
come almost general register. Yet another difficulty arises from
inhomogeneity of data-types, especially if several of them are
packed into a single word (the width of the stack). Thus, for in-
stance, in one stack machine (the Burroughs B 5000 in Chap. 22)
there is a completely separate nonstack ISP for string manipula-
tion.

A simple numerical computation is given in Table 4 as a com-
parison of the P.stack, P.1 address, and P.general_registers. Here,
the P.stack is probably shown at its best as there are no array-
indices calculations or program-flow manipulations involving
testing, etc. The criteria we measure are the algorithm encoding
space and the problem running time.

The kinds of instructions interpreted by a P.stack are typically:

Interpreter state

Operation sequence Example
Load oq, aq, 00, ov.r, av.r  M.stack-top « Mp][v]
Store 0q, aq, 0o, ov.w, av.w Mp[v] « M.stack-top

oq, ag, oo, o(u)
oq, aqg, 0o, o(b)

M.stack-top « u M.stack-top
M.stack-top «- M.stack-top b
M. stack-top—1

Unary operation
Binary operation

Variable numbers of addresses per instruction. Although there are
a few operations that require the specification of three or more
addresses, these are of such low frequency that no machine has
ever been built (or seriously proposed, for that matter) that has
more than three data addresses and one next-instruction address.
(Some of the microprogrammed processors have more than one
next-instruction address, and they often do several operations in
parallel in one instruction.)

However, there have been developed processors that can have
a variable number of operands. Most of these involve the use of
an instruction that is larger than a single Mp word. Thus, bringing
in the first word of an instruction, which contains the operation
code, determines how many additional operands are needed and
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hence how many additional words to obtain from Mp. (In a char-
acter-based system this may require several reads per operand;
in a word-based system this may be one or two operands per read.)
The gain in such a system is the higher average density of opera-
tions per instruction, bought at the price of extra Mp accesses.

Most such variable-address processors have a mixture of one,
two, and three addresses per instruction—simply a mix of the types
already considered. The fundamental limit to such variability is
the processor state (plus the additional within-instruction tempo-
rary state). This, of physical necessity, must be finite, and the
number of addresses must yield an amount of information that is
less than this total state. Otherwise the processor cannot hold onto
it to process it.! Thus the various processors which claim to operate
from a higher language (see the P.languages of Part 4, Sec. 4) must
in fact either translate into another simpler programming lan-
guage, as does the FORTRAN machine (Chap. 31), or become an
interpreter which processes a small amount of a language state-
ment before the rest.

PMS structure

The idea that there is significant higher organization to computers
is relatively new. Texts on logical design of computers develop
a model based on an arithmetic section, input/output devices, a
memory for holding instructions and data, and a single control
to force the other components to interact. A PMS diagram of an
early model is given in Fig. 5 (X represents an external agent,
usually a man). The Whirlwind I manual-model figure (page 10)
used in Chap. 1 was rather highly developed because it had a
secondary memory and switching. Figure 6 is a PMS diagram
which reflects this more accurate model. Often computer designers
lump the devices at the periphery and call them all input/output;
these devices are both input/output terminals (T) and secondary
memories (Ms).

Hf it processes a large amount of information, but in pieces (i.e., sequen-
tially in real time), it is not really executing a single instruction based on
all the addresses but has decomposed the total computation, just as a
single address organization has.

Fig. 5. Early model of a stored program digital computer PMS diagram.
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Table 4 Comparison of stack, general registers, and accumulator Pc for evaluating the expression: f = (a — b)/(c — d X e)

Pc.stack [stack contents) Pc.general register Pc.laddress

Push a [a] Load G[1}, a Load d

Push b [a, b] Subtract G[1], b Multiply e
Subtract [a — b] Load G[2], d Inverse subtract ¢!

Push c[a — b, ¢]

Pushd[a — b, ¢, d]
Pushe[a — b, ¢, d, €]
Multiply [a — b, ¢, d X €]
Subtract[a — b,c — d x €]
Divide [(a — b)/(c — d x e)]
Pop f[ ] — stores stack at

Multiply G[2], e

inverse subtract G[2], c!
Divide G[1], G[2]

Store G[1], f

Store temporary
Load a

Subtract b
Divide temporary
Store f

location, f
Program size:
Address integer/ai 6 ai 6 ai + 8 ai(gr) 8 ai
Operation parts/o 40 70 80
Number of Mp refer-
ences for data:
Program size for 6 x (18 + 1) 6 x (18 + 6 + 4% 8 X (18 + 6)
hypothetical example 4x6 1X(6+2x4?%
machines: 138 182 192

Program size in bits B8501%:168

among specific C’s:

IBM System/360:208(above?!)
:224(actual)

+ base register overhead

(0 ~ 192)*

IBM 7090:288(above')
360(actual)

INot an instruction in the specific-example machines.
2Assume 16 general registers.
3The Burroughs Corporation B8501 Pc.stack (discontinued).

*Not completely true, since System/360 has only a 12-bit address and uses base registers. Some overhead should be assumed. Worst case (but not unreasonable) is

6 X 32 or 192-bit overhead.

If we separate each component according to its function, assign
control (K) to each element, and finally introduce the processor
(P), we get the structure of Fig. 7. Of course, a large part of P
is a data operator (D). The processor has the behavioral properties
attributed to the structure of Fig. 5. If we include the control
within each component, we get Fig. 8 from Fig. 7.

To consider larger structures, consisting of several Mp’s, P’s,
Ms’s, and T’s, one might think to expand the system as shown in
Fig. 9, in which we connect everything through a single switch.
If the central S has sufficient power for multiple conversations,
this indeed provides maximum generality. However, although

Mp

|
T

(input,output)-X

;
——_

- e x |~ — =

S -

P—K
I t
|
Mp s | T-X
| AN |
K—— — —— |- K—— — K
|
rs-K
X

Fig. 6. Early computer model (with Ms and S) PMS diagram.

Fig. 7. General computer model (with distributed control) PMS diagram.



designs have been proposed for such a system, technology and
economics have so far prohibited their actual realization. Instead,
there has developed the general latticelike structure shown in
Fig. 10. Each switch in this structure connects components on one
side with components on the opposite side (the S interconnecting
the P’s being the exception).

The lattice structure of Fig. 10 is hierarchical in the sense that
the Mp’s form the inner core and one travels out toward the
periphery in moving from left to right. With this movement there
is a general decrease in data rate, being highest through the Mp-P
switch and lower as one moves to the right.

The model has five switches (S). One switch connects the com-
puter’s peripheral devices with the external environment (human
beings, other processes, etc.). Three switches appear alike in the
way they interconnect Mp-P, P-K, and K-(T|Ms), respectively.
However, they are usually quite different. We would expect any
P to connect with any Mp. We probably would expect to have
only one or two Pio’s connected to a given set of K’s. Most cer-
tainly one or two K’s would manage a given set of Ms’s or T’s.
Thus the structure nearest the periphery becomes more like a tree,
rather than a lattice (examples are provided in Figs. 11 and 12).
The last switch in Fig. 10, unlike the above four, provides inter-
communication among the processors. In any multiprocessor struc-
ture (even 1Pc-nPio) there must be communication among the
processors. A switch of this type is organized as a nonhierarchy
and appears like a conventional telephone exchange, since any P
can call another. On the other hand, the amount of communica-
tion (measured in bits) is rather low.

The P’s and (usually) Mp’s have their controls associated with
them, and we have not bothered to show such K’s in the diagram.
The K’s that are shown provide control for the T’s and Ms’s. These
are separated in the figure because they are separated in current
computer systems and made into identifiable physical components.
Under current technology they are expensive devices, so that one
K per T or Ms is not economical. Therefore, each K needs to be

o

=~ —
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P P P

I
Mp —] |—T'X
Mp S T-X
Mp J l—T—

—tr

Ms Ms P?s

X

Fig. 9. General computer model (with multiple components) PMS
diagram.

—
periphery
1 X (human [computer‘network[mechanical process)
where
Pio := —Pjo— | —Kio—
K = nall|e—K— | —K—K—
T i =T K= T—
Ms = \%—Ms—‘ — K= M5 —

Fig. 10. General computer model (multiprocessors) PMS diagram.
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Fig. 8. General computer model (without K) PMS diagram.

Fig. 11. Tree-structured computer (1Pc) PMS diagram.
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shared among a set of T’s and Ms’s. (That is, one purchases a single
magnetic-tape controller for, say, four magnetic tapes.) The shared
K also explains why only one of a given class of devices (e.g.,
magnetic tapes) can operate at a time. As technology changes
(especially costs), these separate K's may disappear.

Nearly all the computers discussed in this book fit the lattice
model of Fig. 10. However, it is not unlikely that structures will
be or have been built that do not conveniently fit it. For example,
NOVA (Chap. 26) does not fit the model nicely, although the more
complex ILLIAC IV arithmetic-computer portion (Chap. 27) does.

The values along the PMS structure dimension of the computer
space have been generated from the general model and laid out
in the order of their evolution. This evolution is strictly from less
complex to more. The seemingly more complex network structures,
such as the duplexed computers, are not necessarily as complex
as a single multiprocessor computer. Duplex computers have been
used for some time. The slow evolution to the parallel processor
structure is due primarily to limitations in technology. A struc-
tured computer with a distributed control is more expensive than
a tightly integrated design with shared function. In addition,
multiprogramming—a question of software—must be present to
allow multiprocessing.

The PMS structure plays only a minor role in obtaining multi-
processing and parallel processing. The classical debate about
building large computers has always been resolved by building
a single large processor (e.g., the CDC 6600 and Stretch, Chaps.
39 and 34). Proponents of multiprocessors say that one can always
add several large processors to a structure and increase the per-

Mp S$—e—Pc— 5§
Mp] Pio S K—S-[T—l-—-x
T—x
K —SET—*—X
T TX
Kio — Ms |
K Ms—X

k— 50— 7L x
T—X
|

//

computer boundary
(periphery)

Pio S—E
lattice memory-processor
switching

Fig. 12. Tree-structured computer (1Pc-2Pio and lattice Mp-P switch)
PMS diagram.

formance of a one-processor structure. In Part 6, Sec. 3, when we
discuss the IBM System/360, we advocate multiprocessing.

Today there is no parallel processing in the form suggested
in Chap. 37. We include a discussion of parallel processing on the
bet that it will come in the future. Part 5 is dedicated to moving
along the PMS structure dimension.

The simple 1 Pc structure shown in Fig. 11 is a tree. Although
there are no values on the information rates, the nature of the
fixed! and time-multiplexed switches indicates that perhaps the top
two T’s, one Ms, and one of the bottom T’s can all be active at
a given time. In Fig. 12 a 1 Pc, 2 Pio computer is given. Here
we note that the control of one secondary memory is by a Kio
rather than the Pio. (The Kio cannot fetch its next instruction from
Mp and must rely on Pc for control.) Note that there is necessarily
a lattice connection between the 2 Mp and the Pc, 2 Pio, and
Kio. The special cases of P.displays multiprocessors, P(array | wired
algorithm), and parallel processing are all realized from the general
model of Fig. 10.

Switching

A principal issue of a computer design at the PMS level is switch-
ing (as we indicated in the preface). Unfortunately, we do not
illuminate switching problems in this book except to provide
examples. The switching dimension of the computer space is cor-
related with PMS structure, as we have just seen. To have a more
complex structure, more complex intercommunication (switching)
is required. Figure 13 shows the various logical switches, together
with some of the more common implementations. The switch
parameters are also given in the Appendix of this book. Each of
the switching issues will be discussed in turn as they apply to
various parts of the structural model (Fig. 10). The reader should
note that Fig. 13 has relatively primitive switches. More complex
switches can be formed by cascading (connecting) the primitives
together. (A noncomputer example is the manner in which tele-
phone exchanges are constructed and interconnected together.)

Processor-memory switching. Only recently, with the advent of
multiple processors, has memory-processor switching become an
important problem. But the Mp-P switch makes multiprocessing
possible, and it is a determining factor in both performance and
reliability.

The structure of the processor-memory switch for computers
which have multiple memories and multiple processors is a lattice
if simultaneous memory/processor dialogues are allowed. A cross-
A relative value for the attribute that denotes the time a switch is closed.

Fixed usually denotes a time duration such that more than 1 i-unit is
transmitted.
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Group |. Hierarchical switches for connecting a_ comoonents
to bn components for 2-way conversations, The loglical
structures are first given, followed by common physical
realizations, For the physical realizations links are
required between pairs of components. Not all physical
realizations are given; it s assumed the roles of the a's
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point switch provides redundancy and is used to form the lattice
structure. To vary from the full-duplex/duplex switch (for
m-memories and one processor, or p-processors and one memory)
requires more components to be devoted to the switching, to
buffering, and to arbitration control. Hence duplex switches are
used on most multiprocessor computers. The processor-memory
switching possibilities can be seen nicely in Fig. 13. The im-
portant switch parameters are the number of memories, the num-
ber of processors, and the number of simultaneous processor-
memory dialogues. In current designs P always originates the
dialogue, which is generally taken to mean the reading or writ-
ing of a given word in Mp. The range of complexity is roughly
S(null; 1M; 1P; concurrency: 1)|

S(simplex! | half-duplex? | full-duplex?;

concurrency:1)|
S(time-multiplex cross-point; mM; pP; concurrency:1}|

(mM; 1P)|(1M; pP);

S(cross-point; mM; pP; concurrency: min(m,p}))

An S.duplex can be used to increase the number of processors
which can be connected to the memory system while not having
to provide additional switch points on each memory. For example,
in the CDC 3600 [Casale, 1962] a basic S(8M; 4P; concur-
rency: 4) is expanded by placing another S(IM; 6P; concurrency: 1)
in series to give a possible overall S(8M; 24P; concurrency: 4).
This scheme was used to provide multiple processor accesses to the
memories.

Processor-conirol switching. The first switching problem developed
with the need to communicate with several input/output devices.
This switching is hierarchical in nature; one (or two) processors

LA switch which allows communication in one direction between two
ports.

2A switch which allows communication in either direction but only one
direction at a time.

3A switch which allows concurrent communication between two ports.
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maintain control of many K’s by giving a K a single instruction
task. At the completion of the task the K signals the processor
that the task has been completed.

The switch provides a link between processor and controls for
the secondary memory or the terminals and is parameterized by
the number of processors, the number of controls, the number of
simultaneous conversations, and who originates the dialogue. In
these switches the control of information transmission is always
by the processor. The evolution has been approximately as follows:

1 S(null; 1P; 1K; concurrency: 1; initiator: P)
P and K are connected during data transfers.

2 S(simplex|half-duplex | full-duplex/duplex; 1P; 1K;
concurrency: 1; initiator: P, K)
Each K operates independently because it can return or
request communication with P when control task is com-
pleted.

3 S(dual-duplex; 2P; 1K; concurrency: 2; initiator: P, K)
Duplex paths from dual P’s to each K for reliability.

4 S(cross-point; pP; kK; concurrency: min (p,k) initiator: P,K)
General case of multiple P’s and K’s with communication
among the components.

The early machines used the first structure, and concurrent
operation of controls was possible only by starting several controls
and by very carefully programming the timing for the data trans-
fers. Two conditions occurred to cause this: The buffering for a
T or an Ms was associated with the processor, and the control
could not signal the processor. Although rather trivial to imple-
ment, the idea (item 2 above) of allowing a K to signal the proc-
essor did not occur until after the idea of arithmetic processor
traps were incorporated into processors. The interrupt was used
as the method by which a K communicated its desire to converse
with a P. The early IBM 709 provided a separate, independent
processor for handling the communication with input/output
equipment. Simultaneous processor-to-input/output or secondary-
memory dialogues could take place (provided the devices were
connected to the right processor). In most of the early computers,
part of the control function (data buffering) was associated with
the Pc, and, as such, only one device could operate at a time. This
stemmed from the comparatively high cost of registers, so that
links were established for a fixed period of time during a com-
plete block transfer of data.

In some of the military computers a duplicate set of K’s is
provided for reliability. The more elaborate switching structures
(types 3 or 4 above) are rarely used between Pio’s and K’s; thus

to work on a peripheral requires the use of the rest of the com-
puter. The S. dual-duplex is becoming more common; it provides
a method of off-line operation for maintaining better component
utilization and a more reliable structure.

Control-terminal and control-secondary-memory switching. The
switches which link a control with a particular terminal or second-
ary memory are generally fairly straightforward. Normally, a fixed
duplex switch is used. However, a dual-duplex switch is used if
multiple access paths to the component are required. The switch
links a secondary memory to a control during the transmission
of relatively long information units (e.g., records). A typical ex-
ample of such a switch is the bus structure used when magnetic
tape units connect to a common control. Only one of the units
operates at a time (although all can be rewinding simultaneously).
The switches are far less interesting than those above. Because
they are nearer the periphery, failure in them does not imply a
failure in the complete system.

Processor function

The emergence of complex PMS structures is coincident with the
development of functionally specialized processors. In the simple
computers of Figs. 5 to 9 there is place only for Pc. In the general
lattice there can be a Pc specialized to perform no input/output
operations; one or more Pio’s specialized to communicate with
the T’s and Ms’s and even to organize information in Mp for
transshipment; additional Pio’s specialized to handle graphic dis-
plays (hence P.display); and even P’s specialized to work on spe-
cific data-types (for example, P.array) or specific algorithms (e.g.,
the fast Fourier transform). In addition, any of these processors
may be realized by microprogramming, which is to say, by having
its ISP interpreted by a specialized P.microprogram.

Although the existence of various functionally specialized
processors is coupled most closely with the PMS structure dimen-
sion, the processors themselves are defined primarily by the data-
types they can process. In this they agree entirely with the com-
puter-system-function dimension. Possibly the processor-function
dimension should be considered simply an extension of the com-
puter-system-function dimension. On the other hand, the inclusion
of microprogrammed processors really extends the PMS structure
dimension to where a P can be seen as a cascade of two P’s.

The processor-function dimension in the computer space is laid
out in an evolutionary way, so that its correspondence with PMS
structure is clear. P.microprogram is put at the beginning of the
dimension ahead of Pc, not because it occurs earlier in evolu-
tionary development, but because it extends the PMS dimension



down into the processor. Any of the P’s along the dimension can
be attained by a P.microprogram.

As an actual dimension characterizing a total computer it must
be viewed cumulatively (similarly to the data-type dimension).
Thus, if a computer has a Pio, it also has a Pc, and if it has a P.array
it also has the prior ones. There are numerous exceptions to this,
such as small Pc’s with P.displays (hence with no Pio’s). This
evolutionary ordering does not correspond to complexity or num-
ber of data-types in the P. Pc and P.array are the most complex;
Pio and P.vector_move are least.

We will make a few brief comments on each functional type,
taking them in the order of the dimension.

Microprogram processor (P.microprogram). The term microprogram-
ming was introduced initially in “The Best Way to Design an
Automatic Calculating Machine” (Wilkes, 1951a).
programmed” to mean that an ISP is defined by an interpreter

‘We use “micro-

program residing in an internal Mp, processed by an internal
processor (the P.microprogram). Thus the structure is really an
external processor (ISP) being defined by the computer formed as

P := Mp(internal; read-only)—P.microprogram

The operations that microprogram processors perform are
primitive in comparison with other processors. The task of the
microprocessor is to interpret the instructions of the ISP it is
realizing. This involves mostly data transfers among the registers
of the processor state (Mps) plus simple boolean tests. Although
it must handle all the data-types of the larger ISP, it does so only
as bit fields to be extracted and transferred from one register to
another. The complex data operations (e.g., multiplication) are
carried out by other units (D’s). In fact, if a complex instruction
set were to be used for the P.microprogram, the external processor
might as well be implemented directly in hardware. In very
minimal P’s, for example, C(PDP-8) in Chap. 5, the ISP is essen-
tially already at the level of a microprogram ISP, as shown by the
inclusion of instruction that can be microcoded.

The long lag between the idea of microprogramming and its
more widespread adoption is due to several reasons. Early ISP’s
were comparatively straightforward, so that a microprogram ap-
proach was not economically justified. The interpretation overhead
time is higher than with the hardwired approach, and unless
complex functions are realized this time becomes objectionable.
In addition, suitable read-only memories were not developed until
the mid 1960s (though it is unclear whether this is cause or effect).
An additional feature of using a P.microprogram is the ability to

Chapter 3

realize several ISP’s within a single physical processor. IBM has
exploited this feature extensively in the System/360 (Part 6,
Sec. 3), which is by far the most ambitious use of microprogram-
ming. One can argue that without the additional payoff, which
was used to ease the transition to a new incompatible computer
system by providing emulation of the old system, the micropro-
gramming would be marginal.

Several P.microprogram design approaches have emerged:
Kampe (Chap. 29) presents a design based on a short word; the
internal processor is very much like a conventional processor. At
the other extreme, the IBM System/360 (Chap. 32) is based on
a long word which allows multiple operations to be coded in
parallel. (The parallel operations are necessary to gain an accept-
able performance level.) Thompson Ramo Wooldridge called their
AN/UYK a “stored logic” computer, and it provided the ability
to use primary memory for defining the ISP. The IBM System/360
Model 25 (page 567) also uses this approach. The Hewlett-Packard
desk calculator (Chap. 20) shows the use of microprogramming
on a relatively circumscribed, but complex, task.

Central processors (Pc). These processors interpret an instruction
set for manipulating arithmetic, logical, and symbolic data-types.
In all simple systems it is the only processor and thus does all
tasks. The growth of processor specialization can be described in
terms of relieving the Pc of simpler functions that require sub-
stantial processing time but do not make full use of the devices
within the Pc, such as the arithmetic units. Crucial to this issue
is the time it takes the Pc to switch from one task to another (recall
the discussion on Mps, the processor state), since many of the jobs
that are extracted to specialized processors are demand jobs, such
as input/output.

With the removal of tasks from the Pc, it becomes more spe-
cialized. A very pure example of this is the Pc of the CDC 6600
(Chap. 39), which has no input/output instructions of any kind
in the Pc. That is, not only has the control and management of
communication and transmission with the T’s and Ms’s been re-
moved from the Pc, but the act of initiation has been removed
as well and placed in the Pio’s. Thus, the 6600 Pc is just an
engine for working on the arithmetic, logical, and symbolic (ad-
dress) data-types.

The mixture of operations to be performed in most complex
algorithms prevents specialization of the Pc from going very far,
e.g., from there being a P.arithmetic, for with every switch be-
tween capabilities distributed in distinct P’s there must be inter-
communication of the components, which introduces an overhead
cost in processing time,
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Input/output processors (Pio). The Pio specializes in the manage-
ment of peripherals (secondary memories and terminals). They are
also called peripheral processors, data channels, and channels.!
The tasks a Pio and its subordinate peripherals perform are the
transmission of information between Ms and Mp; the transmission
of information between some extra computer real-time system
(e.g., human); and the transmission of information outside the C,
via a T to some other information media (e.g., a card reader, card
punch, line printer, etc.). All the above tasks are similar and often
are considered the same, though in principle they can be quite
different. A task in this environment is the management of some
quanta of information, whether it be one bit or character, a voice
message, or a record or file from magnetic disk or magnetic tape.
Thus a Pio does not usually change any information; it is merely
an interpreter for moving information. There are three exceptions:
Computation is required for error and correction and/or detection;
computation is required if recoding and reformatting are done;
and computation is required when search operations are carried
out on Ms without Pc intervention.

To accomplish the above tasks requires a fairly simple instruc-
tion set. Typically it contains jump (branch); data transmission
within Mp to initialize process variables; simple counting ability,
e.g., to control error retries; subroutine calling; interrupt process
handling; initializing KMs or KT; testing the state of KMs or KT;
and sometimes code conversion (data in one code format is con-
verted to another code). Thus substantial arithmetic and logic
facility is not needed. Part 4, Sec. 1 provides a detailed discussion
of Pio’s.

Display processors (P.display). The P.display is a complex Pio that
processes information for display terminals. The data-type is a
representation of a complex graphic object, e.g., lines, points,
curves, and spatially localized text. The representations vary con-
siderably from system to system, using various list pointers and
vector encodings. The operations on the data-types include the
maintenance of the display (due to the short-term persistence of
the CRT); the selective modification of the representation under
commands from the T.display or the Pc, such as adding or deleting
a line, inserting text, etc.; the control of T.inputs such as key-
boards, light pens, joysticks; and the performance of more complex
spatial transformations, such as translation, rotation, scale change,
and determination of hidden lines.

tThese terms are usually used without distinguishing between a Pio and
a Kio, that is, whether the device interprets a sequential program (and
thus is capable of sustained independent activity) or only decodes a single
instruction.

The P.display is a good example of a highly complex but spe-
cialized data-type for which there are substantial local operations
to perform, that is, where no interaction is needed with a complex
algorithm (that requires the Pc). Users of displays wish to correct,
modify, and transform the display in geometrically simple ways
(in effect, edit and view) between processing of the graphic infor-
mation by complex algorithms. Thus the graphic display is a prime
candidate for the development of a specialized processor.

The DEC 338 (Chap. 25) is typical of these processors, being
neither the simplest nor the most complex (e.g., it does not have
rotation or hidden line elimination instructions).

Array processors (P.array). The array processor might be considered
a more general Pc. It has been proposed or discussed in the litera-
ture for some time. (See bibliography for Chap. 27, page 329.) The
information unit processed is an array of one (vector) or two
(matrix) dimensions. Instructions are provided to operate on these
data. The specification of algorithms for a P.array is based on the
assumption that an operation can be carried out in parallel for
array elements. Actually, both serial (sequential) and parallel
(concurrent) execution can be implemented. Both structures have
the same logical characteristics, from an ISP viewpoint, and may
differ only in execution rate. The three array processors, ILLIAC
IV (Chap. 27), NOVA (Chap. 26), and the IBM 2938 (page 577),
are discussed in Part 4, Sec. 2 (page 315).

Vector-move processors. The vector-move processor is a special-case
P.array. It is capable only of moving a word vector at some loca-
tion in Mp to some other location within Mp. Because of its limited
instruction set, such a P is found only in computers which require
constant Mp shuffling. This condition arises either because of a
hierarchy of Mp speeds or because the programs must have a
particular structure before they can be interpreted by the proc-
essor. A time-shared computer might require such a processor for
multiprogram memory management. It is therefore common to find
block (vector) transmission instructions in a Pc. The IBM Sys-
tem/360 has Pio(Storage channel) for this function (page 577).

Special algorithm processors (P.algorithm). Only a small number
of special algorithm processors have been specified and/or imple-
mented. High performance is almost guaranteed by hardwiring and
through specialization. The time to fetch the algorithm (instruc-
tion fetch time) and many of the references to Mp for temporary
data are eliminated by hardwiring. A hardwired algorithm can
easily outperform a stored program by a factor of 10 ~ 100. The
lack of these processors in systems stems mainly from lack of
market demand.



It is not clear that the special algorithm processors meet our
criteria for being a processor, because of the rather limited func-
tions they perform. In fact, some so-called processors are just K’s,
or D’s since they have no instruction location counter and inter-
pret only a single instruction at a time, requesting each new
instruction from a superior component,

Algorithms which have been hardwired (or proposed) include
the fast Fourier transform using the Cooley-Tukey algorithm;
cross-correlation, autocorrelation, and convolution processing;
polynomial and power-series evaluation; floating-point array
processing; and neural network simulation.!

Language processors (P.language). Language P’s interpret a lan-
guage that has been designed to some external criteria, such as
a procedure-oriented language (ALGOL or FORTRAN) or a list
language (IPL-VI). Thus complexity takes the form of a complex
data-type for the “instruction,” rather than a complex data-type
for processing (e.g., floating complex numbers). If such processors
were extended to do all the things a Pc also does, then they would
become more complex than a Pc. However, to date, most of them
are experimental and focus exclusively on language interpretation.

In Part 4, Sec. 4, several examples are presented. It is worthy
of note that of the three P.languages only EULER (chap. 32) has
been implemented in hardware using a P.microprogram.

Memory access

The most useful classification of memories is according to their
accessing algorithm.? These are queue (i.e., access according to
first-in-first-out discipline); stack (i.e., access according to first-
in-last-out discipline); linear (e.g., a tape with forward read and
rewind); bilinear (e.g., a tape with forward and backward read);
cyclic (e.g., a drum); random (e.g., core); and content and associa-
tive. All these memories are explicitly addressed except the stack
and queue, which deliver an implicitly specified i-unit on each
read.

Memory size and basic operation times (i.e., the time constants
in the access algorithm) are important too, of course. But once
a distinction is made between Mp and Ms, then for any given
technological era there have existed characteristic sizes and speeds

1Chasm: A Macromodular Computer for Analog Neuron Models [Molnar,
1967].

2 Access for writing should be distinguished from access for reading. Mem-
ories are conceivable with arbitrarily different read and write access algo-
rithms (e.g., random read and cyclic write). However, in general, the two
access algorithms are tightly coupled, and normally only the read access
algorithm is given.
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for memories of a specified access algorithm. Where there has
been variation, either it has been linear with size (e.g., buying
two boxes of magnetic core Mp versus buying one) or there has
been a narrow range of cost/performance tradeoff (as in data rate
for magnetic tapes, in which modest increases in density and tape
speed can be bought for substantially increased dollars). Table 5
shows the relative price, size, and performance of various mem-
ories. The memory-size versus information-rate plot (Fig. 14) shows
the clustering of memories and their suitability for a particular
function.

From a technology standpoint, Mp’s have been constrained to
either cyclic- or random-access memories (although one can easily
construct any type from random-access memories). In Part 2, Sec. 1
we have not separated the machines according to whether they
used cyclic- or random-access memories. The early first-generation
computers used cyclic-access memories. Part 3, Sec. 2 presents
only the cyclic-access memories.

Similarly, Ms’s have been constrained to be cyclic or linear,
although quasi-random access has been achieved with some disks
and magnetic-card memories (random by block and linear or cyclic
within a block). Any Ms’s can be part of almost any computer
structure. Thus there is no large effect of Ms structure on the main
design features of computer systems, and they are not discussed
to any extent in the remainder of the book. Our discussion of
memory type below deals exclusively with Mp and Mps.

Stack and queue memories (M.stack, M.queue). Data elements in
a stack and queue are not accessed explicitly, as we noted above.
The stack has some rather unique properties that aid in the com-
pilation and evaluation of nested arithmetic expressions. Although
there are no machines employing stacks exclusively for primary
memory, there are stacks in some arithmetic processors. Part 3,
Sec. 5 is devoted to processors with stack memories (i.e., with
stacks in the processor state).

The IPL-VI machine (Chap. 30) is the only computer in the
book to have its entire memory organized as a list of stacks.
Although no hardware exists that inherently behaves as a stack
or queue,” it can be simulated by a random-access memory. A shift
register capable of shifting in either of two directions is a stack.

Cyclic-access memories (Mp.cyclic). Nearly all the first-generation
{(vacuum tube) computers had Mp.cyclic. The Mp.cyclic acoustic,
magnetostrictive delay line, and magnetic drum provided an in-

3Small (10 ~ 1,000 word) queue- and stack-accessed memories are espe-
cially easy to build with large-scale integrated-circuit technology.
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Table 5 Memory characteristics

Memory size Memory performance

Module Modules/  Access Data
Access size computer  time rate
Memory module Function method (bits) sec (bits/sec) Cost/bit($)!
Punched paper card permanent, random + (500 ~ 1,000)/ 1~2 100 ~ 103 104 2 x 1076 4
archival linear card; ~ 2 x 1071
1,000 card/unit
Magnetic card secondary, linear + 3 x 10° 1~4 1071 ~ 100 0.4 x 108 1.5 x 1078 4+
archival constant + 5 x 10-°
cyclic
Magnetic tape secondary, linear 2 x 108 1~16 100 ~ 102 04 ~4x108 2x 1077 4+
archival 10—
Moving-head disk pack secondary, linear + 2 % 108 1~16 10-1 ~ 100 2.5 x 108 3 x 1076 4+
files swapping cyclic 104
Fixed-head disk secondary, cyclic 5 % 107 1~40 ~10-2 106 ~ 107 10-3
files swapping
Drum secondary, cyclic (1 ~5) x 107 1~10 (5 ~30) x 1073 108 ~ 107 10-3
swapping
Bulk core memory primary and/or random 107 1~8 (2 ~10) x 10-¢ 106 ~ 108 0.02 ~ 0.05
secondary,
swapping
High-speed core or primary random 105 ~ 108 1~16 (0.2 ~2)x 106 107 ~ 108 0.05 ~ 0.25
thin-film memory
Integrated circuit primary, random 103 ~ 108 1 ~10-17 109 0.25 ~ 1.0
(scratch-pad memory) processor
state
Integrated circuit primary, cache content, 2 x 105 1~2 ~10-7 100 1~3
(content addressable) random
Read only processor random (1 ~5)x 105 1 106 ~ 107 108 ~ 109 1073 ~ 102
(capacitor, inductor) instruction-set
definition

! The first component is the memory media (e.g., a disk pack), and the second component is the transducer (e.g., a disk drive).

expensive, simple, producible memory. By the second generation
the cost of Mp.random (though still more expensive than an
Mp.cyclic) was about equal to the processor logic. The incremental
cost for an Mp.random in a large system was then small, whereas
the performance gain could be a factor of up to 3,000 (access time
of 10 microseconds versus 30 ~ 30,000 microseconds). Some of the
first-generation machines were reimplemented using transistors
(the LGP-30 became the LGP-21). Only a few new cyclic
access machines were introduced in the second generation. Most
notable was the low-cost Packard-Bell PB-250 using transistor logic
and magnetostrictive delay lines (a derivative of the Bendix G-15
and NPL ACE).

Nearly all these computers use some form of n + 1 addressing.

The memory is organized on a digit-by-digit serial basis for a word
(e.g., ZEBRA with binary and IBM 650 with decimal). Hence, the
arithmetic or logic function hardware is implemented for only a
single digit. An operation is done for the entire word by iterating
over all digits in time; thus the cost of a serial computer is nearly
independent of its word length.

Because of the cyclic and synchronous nature of these Mp’s,
it is difficult to synchronize them with secondary memories and
terminals (which are also synchronous). The very early machines
had no large secondary memories. In some cases, where magnetic
tape was used, it was added at very low performance (low density,
low speed, and, therefore, low data rates) so that synchronization
was not a problem. In other cases a small random-access core
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memory was added to provide synchronization between the two
memories (for example, IBM 650).

Random-access memories (Mp.random). Random-access memories
were used late in the first generation, and they have remained
the predominant memory during the second and third generations.
It is unlikely that their popularity will decline unless content-
addressable memories can be constructed sufficiently cheaply (if
then). The earliest first-generation random-access memories were

electrostatic and depended on maintaining a charge on plates of
an array of capacitors. The most common was the Williams tube
(invented by F. H. Williams at the University of Manchester)
which works in essence like a CRT, with the beam used to charge
a capacitor array at the tube face [Williams and Kilburn, 1949].
Other schemes included an array of capacitors which were selected
by digital logic (Pilot, Chap. 35).

Late in the first generation Forrester [1951] invented the core
memory, which rapidly became the predominant primary-memory
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component. It is unlikely that it will be replaced in the near
future; the most likely candidate is large-scale integrated-circuit
arrays of flip-flops.

The random-access memory seems nearly perfect for the Mp’s
of present computers. Of course, enthusiasm for this memory may
be based on not knowing how computers would have developed
if we had not had them. However, with little or no effort an
M.random can be a stack, a queue, a linear, a cyclic, and even
(within limits) a content or associative memory. It is an organiza-
tion which is very hard to beat.

Content-addressable and associative memories. It is possible to
conceive of many exotic accessing capabilities, and numerous
proposals have been made involving either theoretical structures
or experimental prototypes. Since no particular varieties have
become widespread, terminology is still variable. Content-
addressable memories are usually taken to mean a collection of
cells of predetermined size (i.e., a fixed i-unit) such that if one
presents as “address” the contents of a predetermined part of the
cell (the tag or content address) then the contents of the entire
cell will be retrieved. An associative memory is usually taken to
mean a system such that, when presented with an item of informa-
tion, it delivers one or more “associated” items of information.
The principle of association is variable, yielding different kinds
of associative memories. Content-addressable memories provide
a form of association, as do all memories, in fact. Thus the term
“associative memory” tends to denote forms of association different
from familiar ones—forms that presumably have less sharp con-
straints imposed by the structure of memory (as opposed to the
structure of the information in the memory).

No examples exist of a computer with a content-addressable
memory as its primary-memory structure. However, both the IBM
360 Models 67 (page 571) and Model 85 (page 574) use 8 and
~1,000-word content-addressable memories, respectively, to in-
crease performance (in both cases they are transparent to the
program). The CDC 6600 instruction buffer is in effect a small
content-addressable memory. In the above three cases, the con-
tent-addressable memories vary in size and position in the struc-
ture; however, the pattern of use is common. There is a large but
slower Mp.random behind the content-addressable memory. The
purpose of the fast small content-addressable memory is to hold
local, current data so that an access will not have to be made to
the random-access memory.

Small prototype associative addressable M’s have been con-
structed, but they are normally based on random-access memories
under the control of special hardware. There are immediate uses

for content-addressable memories with a large information-content
address. For example, the read-only memories for microprogram
processors use long words principally because content-addressable
memories are not available. Ideally a microprogrammed processor
would like to look at a fairly large processor state to determine
what action is to be taken in the microprogram. It is interesting
to speculate about the evolution of computers if a content-
addressable memory had been developed in place of the random-
access memory.

Mp concurrency

Multiprogramming is the simultaneous existence of multiple,
independent programs within Mp being processed sequentially or
in parallel by one or more processors. Multiprogramming provides
each user program with a memory space independent of other
users. It may provide, in addition, the sharing by several users (for
independent use, not for communication) of a block of Mp, which
thus does not have to be duplicated. For example, operating sys-
tems software, including compilers, assemblers, loaders, and edi-
tors, can be usefully shared.

The ability to have multiple programs gives rise to a corre-
sponding problem of communication between programs. We have
defined this as a correlated dimension in the computer space
(interprogram communication) and will discuss it in the next sec-
tion. The issues it raises are just the opposite from those raised
by the requirement for multiple programs, which are discussed
in this section. Here we are concerned with protecting one pro-
gram from another—with assuring that no unjustified communica-
tion will occur—and with obtaining appropriate space in Mp so
that multiple programs can run.

The requirement for protection is obvious. If two independent
programs are to be resident in Mp at the same time, they must
not have access to each other’s space. Not only would such access
(especially for writing) have disastrous consequences when the
programs are running, but they would be entirely unpredictable
and undebuggable from the viewpoint of the programmer of each
individual program. Thus this requirement is absolute; i.e., it must
be highly reliable. This implies a hardware solution, although
purely software schemes are possible in special cases.

The requirement for appropriate space is somewhat more sub-
tle. Certainly there must be enough space in Mp for all the pro-
grams that are to be resident simultaneously. It must be possible
to find that space, assign it to a new program, and make it available
again when that program is finished. But what kind of space will
do? Must it be a single interval of Mp, large enough for the total
program with data? And if the program is assembled or compiled



in Mp and is removed temporarily to make room for another
program, must it be brought back into the exact same addresses
into which it was originally assembled?

The key issue resides in the kind of intercommunications that
hold within a program and its data, for these determine how and
in what way a program is interconnected and depends on the
specific Mp addresses that it occupies. These connections are of
two kinds: explicit addresses present in the program and data and
implict relations between addresses due to addressing algorithms
(e.g., that programs are laid sequentially in Mp, or that the ele-
ments of an array are to be accessed by indexing and hence must
occupy consecutive addresses). Again, although some purely soft-
ware solutions to the space issue exist, hardware is involved in
a fundamental way.

Thus, the two main questions of program concurrencyl—
protection and space assignment—imply basic design features of
a computer system. It might seem that they imply separate fea-
tures and should be separate dimensions in the computer space.
In fact, each proposal for how to solve the space-assignment prob-
lem also contains a particular proposal for the protection problem.
Thus we treat them as a single dimension.

Virtual-address space and Mp mapping. Before considering various
solutions to Mp concurrency (i.e., the values along the dimension),
let us introduce two concepts in terms of which all current solu-
tions can be understood. Consider a particular program, PRO-
GRAM-1, one of many that might wish to reside in the Mp. PRO-
GRAM-1 assumes a set of addresses, some explicitly and some
implicitly, in the addressing algorithm it uses. PROGRAM-1 re-
quires a memory space that has addresses that satisfy all these
requirements, the implicit and explicit ones. Other than that it
does not care how these addresses are realized. Let us call this
address space required by PROGRAM-1 its virtual memory, Mv.
Thus, each program has its own virtual memory. (You might think
of this as having its own Mp, except, as we shall see, this Mp may
be many times bigger than any actual Mp and still be entirely
feasible.)

Actually to run PROGRAM-1 requires that it be placed in the
real Mp in such a way that the real addresses of Mp containing
it satisfy all the requirements, that is, that it be a faithful image
of the virtual memory. Thus there must be some memory mapping
that maps the actual addresses into the actual memory. Once
PROGRAM-1 is placed in Mp there must be some process that
takes each virtual address (as it occurs to be processed in an

1See also Randell and Kuehner [1968].
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instruction) and finds the actual address in Mp, so that the correct
contents can be obtained.

This might seem simply a complicated and abstract way to view
matters, but it becomes essential as soon as we realize that the
computer can have hardware memory mappings other than the
familiar direct-addressing structure of Mp. Furthermore, if this
mapping is given the right properties, it may solve some of the
space-assignment and protection problems for Mp concurrency.
What we have really done is to divorce the addressing required
by the programs from that provided by the physical computer,
so that we can redesign it (via the memory mapping) to meet new
design requirements that were not apparent when the original
random-addressing schemes were created.

Let us make the notion of memory mapping more precise. The
program contains virtual addresses, z (that is, symbols in the pro-
gram that denote addresses are taken to denote addresses in Mv).
During the execution of the program, whenever there is a refer-
ence to an address z (either explicitly via an address calculation
or implicitly via, say, getting the next instruction), a computation
occurs on z to obtain the actual address in Mp. This computation
is part of the Pe, just as is an automatic indexing or indirect-
addressing calculation. It takes as input not just the virtual address
z but information on where the program is located in Mp. The
latter information is called the map, and a program’s map infor-
mation is determined when it is placed into Mp on a given run.
Thus, using our ISP notation, and calling the address calculation
f, we get

Mv[z] : = Mp[f(z,map))

That is, the information in virtual memory at virtual address z
is the same as the information in actual memory at address
f(z,map).

This whole scheme is built to permit programs to be placed
in Mp’s in various ways, e.g., relocated or scattered around, and
still make it possible to run the program. Any such scheme brings
a solution to the protection problem, namely, that for some values
of z the above calculation cannot take place or is invalid (i.e., there
is no mapping for z). This can correspond to a violation of protec-
tion, which can then be prevented. All calculations may even be
permissible, but f is so arranged that it never produces an address
in anyone else’s part of Mp.

The memory map is part of each user’s program. With many
users, it must reside in Mp, since there will not be enough space in
Mps to hold a large amount of mapping information. However,
when a program is being executed, some part of the mapping
information becomes part of the Mps (i.e., at least the Mp address
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of the rest of the map). In addition, the map may contain special
access control information, such as whether a part may be read,
read as data, written, or read as program. The map can also collect
statistical information concerning whether a part of the program
has been used or has been changed (written).

Random-access memories for Mp constrain the mapping by
requiring linear addresses of the form Mp[0:p], since the mapping
calculation must be economical (as it is performed with very high
frequency). We would not consider a map structure which provides
every word in Mv to be mapped into an arbitrary word in Mp,
for this would require a map exactly the same size as Mv. With
many programs in Mp, there would be little room for anything
but maps. Similarly, the amount of processing in {, the calculation,
must be very minimal. These two aspects constrain the mapping
scheme strongly.

The constraint to linear addresses appears to force the structure
of virtual memory to consist of a multidimensional array. This can

Table 6 Memory-allocation methods

be one-dimensional, Mv[0:n], or two-dimensional, Mv[0:s][0:m]. Tt
could be of higher dimension, but the need seems not to have been
felt (since within any single dimension one can have multi-
dimensional arrays as one normally does in a regular Mp). How-
ever, the two-dimensional array, which also is called segmented
addresses, since it can be taken as a discrete collection of s + 1
segments each of m + 1 linear addresses, has advantages in terms
of the mappings; namely, segments can be placed disjointly in Mp
without fear that virtual-address calculations will cross from one
segment to another.

With this introduction to the problems of multiprogramming
we will look at some of the hardware schemes. Table 6 provides
a summarization of them, including a brief description of how each
scheme operates.

No special mapping hardware. If no hardware exists in the Pc to
accomplish a memory address mapping, then when the address

Hardware designation
(arranged in order of increasing

hardware complexity) among multiple users

Method of memory allocation

Limits of particular
method (example of use)

No relocation Mv < Mp:
Conventional computer—no memory-al-
location hardware

1 + 1 users. Protection bit for each
memory cell

1 + 1 users. Protection bit for each
memory page. above scheme.)
Page-locked memory

number.

No special hardware. Completely done by inter-
pretive programming.

A protection bit is added to each memory ceil.
The bit specifies whether the cell can be
written or accessed.

A protection bit is added for each page. (See

Each block of memory has a user number which
must coincide with the currently active user

Completely interpretive programming
required. Very high cost in time is paid
for generality. (JOHNNIAC interpret-
ing JOSS).

Only 1 special user + 1 other user is al-
lowed. User programs must be writ-
ten at special locations or with special
conventions, or loaded or assembled
into place. The time to change bits if
a user job is changed makes the
method nearly useless. No memory
allocation by hardware. (IBM 1800)

No memory allocation by hardware. (SDS
Sigma 2)

Not general. Expensive. Memory reloca-
tion must be done by conventions or
by relocation software. A fixed, small
number of users are permitted by the
hardware. No memory allocation by
hardware. A program cannot be moved
until it is run to completion. (IBM
System,/360)



Relocation and protection: Mv < Mp:
One protection count and one field reg-
ister (addresses formed and checked
by logical operations)

One set of protection and relocation reg-
isters (base address and limit regis-
ters). Also called boundary registers.

Two sets of protection and relocation reg-
isters. Two segments.

n > 3 sets of protection and relocation
registers.

Mapping, Mv > Mp:
Memory page mapping

Memory page/segmentation mapping

Indirect references through a descriptor
table to segments.

All programs are written as though their origin
were [ocation 0. The count register deter-
mines the number of high-order bits to be
examined. The field register is then com-
pared for identity with the requested address.

All programs written as though their origin were
location 0. The relocation register specifies
the actual location of the user, and the pro-
tection register specifies the number of
words allowed.

Similar to above. Two discontiguous physical
areas of memory can be mapped into a homo-
geneous virtual memory.

Similar to above. More similar to page mapping.

For each page (26 to 212 words) in a user’s vir-
tual memory, corresponding information is
kept concerning the actual physical location
in primary or secondary memory. If the
map is in primary memory, it may be desir-
able to have ‘“associative registers’’ at the
processor-memory interface to remember
previous reference to virtuat pages, and their
actual locations. Alternatively, a hardware
map may be placed between the processor
and memory to transform processor virtual
addresses into physical addresses.

Additional address space is provided beyond a
virtual memory above by providing a seg-
ment number. This segment number ad-
dresses or selects the page tables. This al-
lows a user an almost unlimited set of ad-
dresses. Both segmentation and page map
look-up is provided in hardware. May be
thought of as two-dimensional addressing.

All data are considered part of a descriptor
array which is referred to by a number. A
descriptor table indexed by the descriptor
number is used to locate the array in Mp
and give its size.
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Memory atlocation blocks must be in
power of 2. Unless blocks are the
same size, the memory utilization can
be poor. Although faster than the foi-
lowing scheme (which requires a hard-
ware adder), the inflexibility of loca-
tion and size makes it restrictive.
(IBM 7040)

As users enter and leave, primary-mem-
ory holes form, requiring the moving
of users. Pure procedures can be im-
plemented only by moving impure part
adjacent to pure part. (CDC 6600,
PDP-6)

Similar to above. Simple, pure proce-
dures with one data array area can be
implemented. (UNIVAC 1108, PDP-10)

Has not been used in any conventional
computer.

Relatively expensive. Not as general as
following method for implementing
pure procedures. (Atlas, CDC-3500,
SDS-940)

Expensive. Little experience to judge
effectiveness. (GE 645, IBM 360/67)

An indirect reference must be made to
the description table in Mp. (B 5500)
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z is encountered in the program, the information at Mp[z] will
be obtained. There are still, however, two different ways to obtain
the effect of a virtual memory.

First, one can operate interpretively, with a software system
taking the place of hardware. That is, the programs of all the users
are in a nonmachine language (e.g., a higher procedure-oriented
language), and each access in the language is processed by the
software interpreter before an access is made to Mp. It is clear
that all the logical power of a memory mapping is available with
this scheme. The only drawback is the loss of efficiency from the
interpretation, which may range from a factor of 5 to 100. Conse-
quently this scheme is used only in special circumstances, such
as multiuser time-shared conversational algebraic languages.

The second scheme is to modify the code at the time it is placed
in the Mp for a given run, so that all addresses in the code corre-
spond to the actual Mp addresses used. That is, an assembly or
translation operation is performed each time the program is placed
in Mp. The advantage of this scheme is that no further address
calculations are necessary. There are three disadvantages. Assem-
bly operations are expensive so that, although the scheme is tolera-
ble if the program is brought in once and run to completion, it
is not tolerable if programs are continually being swapped in and
out of Mp. In addition, the program must be laid into continuous
intervals of Mp corresponding to predetermined segments of the
program, for assembly occurs on a static representation of the
program and cannot unravel the potential effect of address algo-
rithms. Finally, the size of Mv (i.e., the addresses used externally)
must be not greater than Mp.

Relative to these software schemes—one interpretive and very
expensive and one involving assembly (i.e., compilation) and load-
ing—the hardware schemes to be described appear as address
interpreters, where the cost of continuous interpretation has been
made tolerable.

Protection for words or pages hardware. There are three schemes
in Table 6 that provide a means of protecting one part of Mp
against references from other programs. The rationale for these
designs is that there will be only two users (or user classes), one
user being superior and assumed perfect (its program debugged).
References to Mp via the imperfect program to a perfected and
superior part of Mp are forbidden. These schemes provide no
method of hardware mapping, and physical addresses are the same
as virtual addresses. In the simplest scheme, as in the IBM 1800
(Chap. 33), a protect bit is added to every word in Mp, that is,

Mp[0: 216 — 1}K0: (w — 1), protect_bit)

Every reference Mv][z] takes place as

Mv[z]: = (Mp[z]{protect, bit) — Mp]z];
Mp[z]{protect_bit) — protection violation « 1)

That is, any reference to a word with a protect bit causes an error.
The other two schemes protect on the basis of blocks of words.

Protection and relocating register(s) hardware. A protection and
relocation register mechanism is used in four schemes of Table
6. These provide either one concatenated, one additive, two addi-
tive, or n additive register pairs for mapping a single program into
one, one, two, or n nonadjacent blocks in Mp. The authors know
of no schemes where more than three registers are used; this would
really be akin to using a more general page map. Generally, these
schemes restrict Mv < Mp.

An additive protection and relocation register pair is shown
in Fig. 15 in which four users are occupying a Mp[0:7999]. Each
user program is written to occupy a continuous address space in
a virtual Mv. Thus in ISP, when Pc is running programs for user-j,
which address Mv[z], with z varying from 0 to v; — 1 the map-
ping uses actual memory. The action is

Mv[z] : =((z < Protection) — Mp[z + Relocation];
z > Protection — (Protection violation « 1))

Protection and Relocation are the two registers that specify map-
ping. The implementation of this scheme generally takes the form
of adding the contents of the relocation register after all address
calculations have taken place. Thus, in PMS we might think of
the structure

Mp—K(address translation)—Pc.

M(' Protection,Relocation)

Page-map hardware. Figure 16 shows the memory allocation using
a page map. Note that, of the 4,096 words it is possible to define
by the map, the range 1,024 to 2,047 is actually undefined. Along
with the map containing the addresses to words in actual Mp, it
is desirable to have accessor protection control information. Such
information might specify:

1 No restrictions (any form of reading or writing can take
place).

2 Read only as data.

3 Read only as a program.

4 Writing.

5 Undefined.



6 Defined but located in Ms.

7 This page has been written in (to know whether a copy in
Ms has to be updated).

8 This page has been accessed.

This scheme is essentially a generalization of n protect/relocate
registers but includes more control bits, suggested above, and
restricts each block to be the same size. Note that Mv can be
greater than Mp. In addition, parts of the virtual memory may
remain unused.

There are two ways the above scheme is usually implemented:

1 A complete map is first considered as a conventional, ex-
plicitly addressed M whose addresses correspond to the
virtual-address pages. At a given page-memory address the
contents of the map specifies the address in Mp. The map
is similar to an indirect reference. However, the map is
usually about 10 times faster and about 1/1,000 the size,
since it keeps track only of pages, not words. The PMS
structure is

Mp—M.map—Pc

2 The map is retained in Mp and referenced by a protection
and relocation register which are set for the particular active
user. In order to avoid making references to Mp for each
word reference to Mv by a Pc, a small, fast M{content ad-
dress) is placed between Pc and Mp. The PMS structure is

J 1(data)

Mp Pc

«— K(address translation) < L(addresses) «

M(content address; 8 ~ 16 words)

Memory-segmentation hardware. Figure 9 (page 574) in the intro-
duction to the IBM System/360 shows the logical mapping process
for a segmented memory. There is provision for a very large two-
dimensional virtual-address space. This scheme is discussed exten-
sively in the literature [Arden et al., 1966; Dennis, 1965; Gibson,
1966]. The physical implementation is similar to that of paging.
Note that two levels of mapping are provided: the segment map
and the page maps. The two levels facilitate the sharing of a single
segment by two jobs.

The Burroughs B 5000 (Chap. 22) and the later B 6500 have
a mapping that is more closely integrated into the Pc because they
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Fig. 15. Memory allocation using a boundary (relocation and protection)
register.

provide a variable-sized address space (not paged) within a seg-
ment. The segments are named, and a large number of segments
exist.

Interprogram communication

The dimension of interprogram communication is completely cor-
related with the multiprogramming dimension as we have previ-
ously noted. To have a problem of intercommunication, there must
be a structure of components that require communication. At the
simplest level the dimension is represented by a single program,
and there is no need for intercommunication. Variables of the
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Map locating user, Us
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Fig. 16. Memory allocation using a page allocation map.
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program are completely accessible to the whole program, and the
address space is essentially uniform.

The second value of the dimension, subroutine calling, produces
a hierarchy of communication contexts. There is not a fixed num-
ber of levels to the hierarchy, since each subroutine may call others
ad nauseum. When subroutines are present, address names and
values within the subroutine become addresses which are local
to that part of the subprogram. Such a structuring is apparent
when looking at the higher-level languages such as FORTRAN,
ALGOL, and PL/1, where there are explicit statements for con-
trolling the names (addresses) that are available to each of the
parts of the program. The concept of subroutine structure has been
with us almost from the first programs.

The next value of the dimension relates to signaling within a
single process. It is akin to subroutines embedded in hardware.
These are called extracodes and were perhaps first suggested for
the Atlas (Chap. 23). Each extracode can be looked at as just a
call to a specific subroutine. The variables of the user (caller’s)
program are made available to the called (extracode defined)
program. The calling usually is accompanied by a context shift,
in which a completely different program (one that is used by any
number of calling programs) takes command to interpret the in-
struction. This scheme is used in systems which are controlled by
a special software monitor. When a function such as the input
or output of a file is required, the main program issues a call to
the monitor to make the transfer. (In theory, the monitor knows
about conditions in the system and has the capability to perform
the complex function.) A central monitor control can then begin
to run another program if the request is one which would normally
halt the computer. This form of communication is useful to supply
extra facilities to users and to have a method of knowing what
the users are doing (e.g., so that equipment will be better utilized).

As more complex program structures are directly represented
by the hardware, the intercommunication complexity also in-
creases beyond the simple subroutine call. If a segmented-memory
scheme is used, the problem of communicating between the seg-
ments can be solved in a range of ways. The value of the range
would be somewhere between ignoring the problem with the
hardware and providing methods for naming of addresses between
the communicating segments.

In the above cases, the communication among the various
programs or parts of programs is done explicitly by one program
to another program. The instruction trap does not fit this view
so nicely. Here, conditions occurring within a single process which
are not explicitly called cause another part of the program to be

called. Typical conditions which cause traps are arithmetic results
outside expected range or erroneous program conditions (e.g.,
trying to call someone else’s program). The trap causes a change
in context that is synchronized with the process causing it. Trap-
ping is a form of program interruption; a trap is an intraprocess
interrupt as distinct from interprocess interrupts.

Intercommunication between two independent processes (being
carried out by two independent components) is usually accom-
plished by using the program interrupt. The interrupting process
requests that a program interrupt occur in a component (inter-
ruptee). The interrupter’s request is acknowledged by the inter-
ruptee, and a change of process state occurs in the interruptee;
a new process is then run in the interruptee on behalf of the
interrupter. The program interrupt is used among processors in
a multiprocessor system and between 1Pc and nPio’s. A control
K may also use the program-interrupt request to communicate
with its superior Pio or Pec. For example, a Pio does not usually
have the logical capability to execute an algorithm which would
decide that action is to be taken for various error conditions.

Usually the interruptee is equipped with certain logic which
is capable of arranging priorities of requesting interrupters. The
typical kinds of interrupt requests are component faults (e.g.,
parity error), a timer has counted down, and various task comple-
tions (e.g., a program has completed, a tape unit has rewound,
a disk arm has stopped moving, a certain record has been found
on tape, a buffer is full).

State diagrams would show how each of the communication
methods above are similar to one another. A typical interrupt state
diagram is shown in Fig. 17. There are four states: normal process
interpretation, process state saving, interrupt process interpreta-
tion, and process state restoration. The sequence is as follows:

1 Normal instruction interpretation is occurring in the inter-
ruptee.

The interrupter requests an interrupt.

3 After some delay, t.acknowledgment, a state is reached in
which part of the interruptee’s process state is saved.

4 After t.acknowledgment + t.save, a program is running in
the interruptee in response to the interrupter.

5 The interrupt program is run for t.interrupt.

6 At the completion of the interrupt program, the original
process state is restored in the interrupter.

7 After trestore, normal processing resumes in the inter-
rupter.



The significant attributes of the system are the various times re-
quired to move from state to state. These times are directly related
to the amount of process state which must be saved (and restored)
when switching context.

The intercommunication problem is probably the least under-
stood dimension in the computer space. It is rather intimately
related to the ISP, in that the various calling methods (implicitly
and explicitly) depend on the ISP. Also, the amount of processor
state (a function of the ISP) affects the response time for making
context transitions. Most interrupt systems allow several inde-
pendent classes and/or sources of interrupters. The classes are
arranged in priority so that lower-level interrupters are ignored
until higher-level interrupt programs are run to completion (see
Chap. 42 on the SDS 910-9300 series). The design problems as-
sociated with intercommunication are not those of implementa-
tion but of knowing what should be implemented. The PMS
structure part and the corresponding register-transfer implementa-
tions for intercommunication are, by comparison, straightforward.

Processor concurrency

Concurrency (parallelism) in the processor is the number of events
or logical operations that are happening at a given time. If the
basic logic technology is held constant, decreasing the processing
time (increasing the power) requires increasing the number of
parallel operations. An exact measure of parallelism can be made
in terms of the number of n-bit operations made per clock pulse.
The parallelism in a structure is also a measure of its complexity;
to have a highly parallel structure implies control structure to-
gether with multiple data paths (and operations) which can be
concurrently evoked.

Processor parallelism is also necessary to overcome Mp speed
technological boundaries. Thus it is difficult to isolate completely
the processor from the memory.

Flynn [1966] categorized high-speed processors by whether
there are single or multiple instruction streams and whether each
stream has single or multiple data streams. The CDC 6600 and
IBM Stretch are examples of a single instruction stream and a
single data stream. An ILLIAC IV processor has a single instruc-
tion stream with multiple data streams. Thus, the single instruction
stream and multiple data stream are a form of array processing
in which an instruction performs an operation on multiple data
elements.

The CDC 6600 main processor has multiple instructions of a
single stream in the fetch, buffering, and decoding process at a
given time. In addition, instructions are being executed in parallel
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Fig. 17. State diagram for the interrupt process.

by the 10 parallel data-operations. The 6600 has functionally differ-
ent data operators, although a system could exist in which these
operators are the same, or, if the operator were much faster, a
single unit could be used sequentially. Depending on the utiliza-
tion of the 10 data units, there could be a computer with several
processors which share a common set of data-operations. The 6600’s
peripheral processors are implemented in a mode whereby several
instructions streams are processed in parallel by a single processor.
The simplicity of the shared processor for multiprocessing or
parallel processing thereby provides still another form of parallel-
ism. The following subsections discuss particular forms of paral-
lelism. At one end of the dimension there is the most primitive
structure, a serial processor, and at the other end there are pipe-
line processors.

Serial processors. At the most elementary level only one bit of an
n-bit word is operated on at a given time. There is no concurrency,
and even the most trivial operations on n bits requires a time of
n. The bit-serial processor was used in the first generation because
the cyclic primary memories to which it connected were funda-
mentally bit-serial (see page 73). Although the processor memory
could be made to operate on a parallel basis where words were
available in one unit of time, such a tradeoff was not worthwhile
because of the relatively long access time to Mp. The word lengths
for serial processors tended to be relatively long, because the cost
is independent of word length (see page 216).

Parallel-by-word processors. The simple parallel-by-word processor
is the most common processor of the first to third generation, This
occurred in part because Mp became parallel by word. Within
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the processor we assume that almost every internal register-
transfer operation requires one or more clock times. (A simple
multiply operation usually takes between n/2 and 2n clock times.)
We do not mean to rule out multiple simultaneous internal opera-
tions within the processor, but they are exceptions. With only a
view of a processor’s registers, it is easy to tell if multiple opera-
tions are possible. Most of these processors do only one operation
at a time. As a rule, the simple processor is locked to the primary-
memory cycle time (usually core). Approximately 2 ~ 10 events
(clock times) are available within the processor. For example, the
PDP-8 (Chap. 5) has four events, and the IBM 7090 (Chap. 41)
has 10 events. A precise measure of parallelism would count the
number of operations per clock time for given program conditions.

Multiple instruction streams, 1 Pc. The only example of this
structure in the book is the CDC 6600. Opportunities for such
a structure are possible with the parallel computer suggested by
Lehmann (Chapter 37).

Multiple data streams. The most obvious implementation of
multiple data streams with one or more instruction streams is
the array processor. Part 4, Section 2 is devoted to these struc-
tures.

1-Instruction buffer. The 1-instruction buffer is a form of looking
ahead in the instruction-interpretation cycle and is about the
simplest form of parallelism in a parallel-by-word processor. A
single register is assigned the role of holding the next instruction
to be interpreted. The IBM 7094 Instruction Backup Register
(Chap. 41) is typical of this case. In the 7094 two instructions are
fetched at a time. More generally the next instruction would be
fetched during the execution of the current instruction.

n-Instruction buffering. Multiple instruction buffering is a general-
ization of the l-instruction buffer above. It can take several forms
depending on the algorithms used to fetch the next instruction
(i.e., the look-ahead) and the organization of the memory holding
the instructions. Stretch (Chap. 34) and the CDC 6600 (Chap. 39)
use instruction buffers. A small, restricted content-addressable
memory holds a block of instructions. In the simplest case of these
computers a block of memory, relative to the instruction counter,
is kept in the local instruction buffer memory.

Look-aside buffering (slave) memories. Look-aside is a more general
form of instruction buffering because both instructions and com-
monly accessed data tend to migrate to the faster look-aside

memory. This scheme is discussed for the IBM System /360 Model
85 (page 574). The look-aside memory suggested by Wilkes
[1965] is a content-addressable memory for retaining the active
{(most recently used) memory words.

Pipeline processing. Pipeline (assembly-line) concurrency is the
name given to a system of multiple functional units, each of which
is responsible for partial interpretation and execution of the in-
struction stream. A pipeline processor has several partially com-
pleted instructions in process at one time. Each processor stage
operates on a specific part of the instruction, e.g., instruction fetch,
effective-address calculation, operand fetching, execution of opera-
tion specified by the instruction, and results storing. A PMS dia-
gram for a pipeline processor is given in Fig. 19. Thus there is
a separate functional unit for each state suggested by the state
diagram of Fig. 4. There must be interlocks so that sequence is
preserved, i.e., so that results are not used until they are available.
Figure 18 shows a time/function diagram of a pipeline processor.
There are at least three instructions being interpreted simultane-
ously. Although we have not extended Fig. 18, we would expect
the processor in the sketch to operate on about eight instructions
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toq Operation time to determine instruction q

taq Access time to determine instruction q

tov  Operation time to determine datum v

tav Access time to determine datum v

to Operation time for instruction

too Operation time to determine operation of instruction
+q  Total instruction time

Fig. 18. Time-function diagram for a pipeline processor.
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Pc = . -
M.processor state
’ (program counter)
Mp {—— K.instruction fetch K.data fetch—l——D—K.data store
M.instructions M.data M.data
- —— J — I
instruction fetch data setup execution data restore

Fig. 19. Example of processor parallelism by spatially independent control function (pipeline processing) PMS

diagram.

at one time. Note that the processor sometimes completes later
instructions first. In this model there is only one instruction fetch-
ing, one operand fetching, and one operand storing unit, while
there are multiple data operation units. The particular number
of each type of unit is obviously not fixed for all structures but
depends heavily on the memory system, the number of instruction
streams, and the ISP.

A processor may require many data-operation units in order
to avoid bottlenecks. Each unit is independent and may be
functionally capable of carrying out only selected tasks. Multiple
data-operations are normally desirable in a pipeline processor
so that several operations can be carried out at a time, since
most of the processing time within the processor is spent on the
operations (e.g., multiplication, division, shifting, etc.)

Conclusions

You now have our view of the important aspects of the stored-
program computer. We have tried to organize the parameters as
dimensions so that a computer can be viewed as a point (or points)

in a multidimensional space. The previous discussion has enumer-
ated the values of one dimension, while (in effect) holding the
values of other dimensions constant. The dimensions are highly
correlated, especially with cost and evolutionary time. We have
been brief in presenting the dimensions because the book is pri-
marily about computer examples. However, one should be able
to recognize the dimensions and values when they are encountered
within the context of a particular computer.

The remainder of the book is organized around these dimen-
sions. The examples lose the identity of dimensions because they
are descriptions of points in the space (computers). Furthermore,
the descriptions themselves are not especially organized around
these dimensions but are based on the designer’s own view of his
machine.
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PART 2

The Instruction-set Processor: main-line computers

To have a ‘‘main line”” of computers is to have a family that predominates through
the generations. Predominance can probably best be measured by the percentage
of distinct computers produced within the family, as opposed to outside it. Members
of the family need not all be identical; especially evolution over time can be tolerated.
But it must be the case that there is at any moment a ‘‘standard” design which
is seen as emerging from the just prior ‘‘standard’ design.

Within these definitions there indeed has been a main line in computer systems.
It is based on the Burks, Goldstine, and von Neumann memorandum, reprinted as
Chap. 4. The most striking characteristic is the evolution from 1 address organization
(1), through index-register (1 + x) to general-register (1 + g) organization. Left
outside the main line have been multiple-address organizations, character machines,
and stack machines. This seems to be an appropriate description, even though a
character machine (variable-length character string), the IBM 1401, probably holds
the record for number of machines produced (when each model of the IBM Sys-
tem/360 is counted as a separate computer).

A second characteristic feature has been the PMS structure, which has evolved
from a single P to a Pc-nPio structure. This has not been uniform within the family,
since it applies only to the larger members; the small machines, such as the PDP-8
(Chap. 5), have no separate Pio’s. It might seem that all computer systems, both
within and without the family, have evolved in this same way. But this disregards
the history of computer development. For a while, in the early fifties, there were
seen to be two main lines of potential development: scientific computers, featuring
large computation and small input/output, and business computers, featuring small
computation and large input/output. The latter started to develop into the Pc-nPio
structure (with the IBM 702) but, instead of a separate line developing, scientific
computers (with the IBM 704 and UNIVAC computers) adopted the more powertful
input/output structure. Again, despite its success, the 1401 has not bred a new
generation of computer systems in its image, either within IBM (where one might
argue that the overriding consideration was to have a uniform series) or by IBM's
competitors.

A third characteristic of the main line is the use of binary as opposed to decimal
as the basic radix of the machine. This affects both the arithmetic and whether logi-
cal processing (on bit vectors) can be done. The issue seems almost settled in the
third generation, with smaller machines being binary and larger machines having
multiple data-types. The last serious venture into a large pure decimal machine was
the UNIVAC LARC, delivered in 1960. In retrospect, the difference in organizations
between binary and decimal machines seems smail enough so that we have included
them all in the same section.

There are a number of striking features that are characteristic of the main line
but do not differentiate it from any of the alternatives that have actually been
produced. These features include the stored-program concept; the use of sequential
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instructions of the operator-operand variety; the use of the word as an information
unit, within the range of 12 to 64 bits; and a processor state of less than 100 words.
Alternative organizations are conceivable, though they have clearly not seemed
practical to computer designers. For instance, in the early fifties there was an at-
tempt to construct an electronic plugboard machine, after the fashion of the ENIAC
and the IBM CPC (Card Programmed Calculator). And we see in the new programmed
desk calculators (Part 3, Sec. 4) yet another organization that is rather far from
the main line (but because of low cost may yet be a part of the future main line).
These desk calculators, by the way, are decimal, rather than binary.



Section 1

Processors with one address per
instruction

This section is principally concerned with the ISP. It is the
largest section in the book, reflecting the dominance of the
one-address organization during the first two generations.
Machines with index registers are included, but not machines
with general registers, which are discussed in Sec. 2. Some
processors store two single-address instructions per word, fol-
lowing the pattern of the IAS! (von Neumann) machine (Chap.
4). In machines with short word lengths, one single-address
instruction is stored in one or two words, for example, in the
16-bit IBM 1800 (Chap. 33) and in the 12-bit PDP-8 (Chap. 5).
The evolution of these machines can be seen by comparing first-
and third-generation machines (e.g., Whirlwind and the IBM
1800). In general, the section is arranged by increasing word
length, alternatively complexity and performance.

Preliminary discussion of the logical design of an electronic
computing instrument

This article (Chap. 4) is important for historical as well as tech-
nical reasons. It is one of a series? written in 1946 prior to
building the first fully stored-program computer. Although its
authors were not engineers, it is written with the caution of
those responsible for the implementation of a rather significant
development task. The major problems for the computer are
identified, the alternatives analyzed, and a rationale for each
decision is given. If computer designers were all required to
analyze and describe their machines in such a fashion prior
to building them, there would be fewer, but better, computers.
Some of the especially enjoyable aspects of the discussion in-
clude:

Ynstitute for Advanced Study, Princeton University, Princeton, N.J.

2The articles in the series were:

1. On the Principles of Large Scale Computing Machines (1946) [Goldstine and
von Neumann, 1963a].

2. Preliminary Discussion of the Logical Design of an Electronic Computing
Instrument, pt. I, vol. 1 (1946) [Burks, Goldstine, and von Neumann, 1963].

3. Planning and Coding of Problems for an Electronic Computing Instrument,
pt. U, vols. 1, 2, 3 (1947-1948) {Goldstine and von Neumann, 1963b, 1963c,
1963d].

1 Selection of word length and number base.
Discussion of the instructions needed.

Concern for the input/output structure and the idea of
displays (now almost a reality).

4 Rationale for not including floating-point arithmetic
(caution about the technology).

5 The lack of necessity for the rather trivial binary-decimal
conversion hardware and the idea of cost effectiveness.

6 Analysis of the addition, multiplication, and division
hardware implementation. (This description includes a
nice, one-page discussion of the average carry length for
addition.)

It is difficult to say which machines have been influenced
by this memorandum since the idea of data and instructions
stored together in a homogeneous primary memory is so basic
to all computers. The idea of the single-address instruction set
and format is at the heart of all the machines discussed in this
section. However, it did not have index registers. Many of the
machines with long word length, like |AS, use the two-instruc-
tions-per-word format.

Subsequent machines built with only minor variations in-
clude ORDVAC; ILLIAC | at the University of Illinois with a 40-bit
electrostatic memory and vacuum-tube logic; AVIDAC, ORACLE,
MANIAC |, WEIZAC, SILLIAC, BESK, DASK, CSIRAC, and
JOHNNIAC at the RAND Corporation with a 40-bit core memory
and transistor logic [Gruenberger, 1968]. Other similar com-
puters include the IBM 701 with a 36-bit word, electrostatic
memory and vacuum-tube logic; and the CDC 1604, with a
48-hit word, core memory, and transistor logic (possibly in-
fluenced by MANIAC 1i).

The DEC PDP-8

The PDP-8 is included as Chap. 5 to illustrate the effects of
a 12-bit word length. It is given in detail using a ‘“‘top-down"’
approach in order that the student may thoroughly understand
it by simulating it, interpreting it, writing microprograms that
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emulate it, making incremental modifications to it, and com-
pletely redesigning it.!

The PDP-8, although not the first 12-bit computer, achieved
a status that made it the first standard for small, low cost
dedicated computers. There is an active market now for com-
puters in this size and price range to which the marketing
culture has responded with the names microcomputer, mini-
computer and midicomputer for 8- to 12-, 12- to 16- and 16-
to 24-bit word-length computers, respectively.?

The PDP-8 has a nearly minimal processor state because
the address and ISP integers are 12 bits. Twelve bits is just large
enough to represent data from external physical process
environments (analog signals) and also just right to address a
4096 word rhemory. System software (editors, assemblers,
compilers, etc.) can surprisingly all fit into this sized memory.3
The processor state is only 26 bits, and the predecessor PDP-5
had a hardwired state of only 14 bits.

The PDP-8 is also discussed in Part 5, Sec. 2, page 396.

The Whirlwind | computer

Whirlwind | is based on Wilkes’ EDSAC at Manchester Univer-
sity. Chapter 6 describes the computer and gives a brief descrip-
tion of vacuum-tube logic and electrostatic storage-tube tech-
nology. The PMS structure of Whirlwind | with core memory is
given in Fig. 1.

The Memory Test Computer (MTC) of M.I.T.’s Lincoln Labora-
tory was the first computer to use a core memory. MTC was
built to test the memory which Whirlwind | received in August,
1953. Subsequent modifications included the addition of an-
other 2,048-word magnetic-core memory in September, 1953.

The machine’s construction and technology are outstanding.
It has effective marginal checking and preventive-maintenance
test facilities. At the time the machine was dismembered and
moved from M.L.T., it had a use time availability of greater than
95 percent. Although Whirlwind | left M.I.T. in 1960, the ma-
chine was reassembled and was operational as late as 1966.

The machine’s PMS structure is a simple 1 Pc. The K to Mp
block transfers are via the Pc on a one-at-a-time, programmed
basis. A single data transfer can be initiated to a particular
device, thus providing some opportunity for input/output and
processing concurrency. The simple structure is due to the high

*Perhaps also because of one of the author’'s (GB) obvious attachment.
2See the computers in this size range Chapter 3, Figure 2, page 43.

3Conceivably a corollary to Parkinson's law: Programs expand to fill every word in
the primary memory of a computer.

Section 1 | Processors with one address per instruction

T.console-

[

Mp Pc2 K-—S2 K— T{paper tape; reader|punch}-
[_?_ K— T('Flexowriter; 10 char/s)-
K——T(CRT; display; area:Sz"]Oz inz)q
K—T(1ight; pen)el
K—T(film; camer‘a)Hl
Mp*. K —~S-Ms{#A:B; drum; td:16~17600 us;
{%6& ws/w; 12 < 2048 w; 16 b/w:

L K—S-Ms[#0,1,2,3a,3b; magnetic tape; -
800~1000 ft; 30 in/sec; (2+1

index) b/char; 100 char/in

*M{toggte switch; 8 us/w; 32 w; 16 b/w)

2pc (50 kop/s; 16 b/w; 1 instruction/w; 1 address/instruction;
M.processor state(3 w); technology: vacuum tube; 1948 ~
1966)

35 (fixed; from: Pc; to: 8 K; concurrency: 1)

“Mp(#0:1; core; 8 ws/w; 1024 w; 16 b/w; taccess: 2 us)

Fig. 1. Whirlwind | PMS diagram.

register costs of the vacuum-tube technology; thus only a single
central processor register is provided to hold (or buffer) data
during a K transmission to a T or Ms. Appendix 1 of Chap. 6,
which is from the programming manual, gives its instruction
set.

The IBM 1800

The IBM 1800 (Chap. 33) is a third-generation, 16-bit computer.
It is discussed in Part 5, Sec. 2, page 396. :

Some aspects of the logical design of a control computer:
a case study

Chapter 7 presents the aerospace computer Apollo designed by
M.L.T.'s Instrumentation Laboratory. It is presented in contrast
to the general-purpose 16-bit computers, Whirlwind (Chap. 6)
and the IBM 1800 (Chap. 33). The Apollo computer uses a
M(read only) because it is obviously a problem to reload pro-
grams. Kampe's SD-2 (Chap. 29) and Apollo (Chap. 7) are both
controllers and have other similar design constraints. The IBM
1800 is also used for control purposes. In fact, the computers
in this section up to and including the 24-bit SDS 910-9300
series are all designed for control environments. However, all
the latter machines have a goal of generality not present in the
Apolio.



The SDS 910-9300 series

The SDS 910-9300 computers are illustrative of typical, second-
generation, 24-bit computers. The computers are discussed in
Part 6, Sec. 2, page 542. Chapter 42 also attempts to show
how implementation affects performance for the series.

The LGP-30 and LGP-21

The LGP-30 and later LGP-21 is presented in Chap. 16 and dis-
cussed in Part 3, Sec. 2, page 216.

IBM 650 instruction logic

The IBM 650 (Chap. 17) is a one plus one address computer.
Its attributes as a cyclic-memory computer, though hardly ap-
parent at the ISP level, are discussed in Part 3, Sec. 2, page
216.

The IBM 7094 |, It

Part 6, Sec. 1 shows the evolution of the IBM 36-bit scientific
computers. The IBM 7094 |l (Chap. 41) is presented for many
reasons (page 517). Among them are its effect on the later IBM
System/360 and its position as the standard large scientific
computer of the late fifties and early sixties.

The UNIVAC system

The YNIVAC system, first defivered in March, 1951, was later
known as UNIVAC 1. UNIVAC (UNIVersal Automatic Computers)
was the second computer! to be manufactured by the Eckert-
Mauchly Computer Corporation, subsequently a division of
Remington-Rand.?

1The Eckert-Mauchly BINAC was apparently the first computer to be manu-

factured by a corporation.

2Eckert-Mauchly Computer Corporation was initially independent of Remington-

Rand.

Section 1

UNIVAC is a single-address, decimal computer with 12 digits/
word. Two instructions are stored per word. In effect, UNIVAC
is a decimal version of the IAS computer. The Mp consists of
1,000 words, made up of 10 words/delay line. Each delay line
requires 404 microseconds to recirculate.

UNIVAC is significant because it was the most important
computer during the early 1950s. Its performance record is
discussed in Chap. 8. The UNIVSERVO magnetic-tape system
was rather advanced for 1950, considering performance, error
checking, and buffering. Particularly nice is the ability to parti-
tion the input/output system for off-line printing and key
punching.

One-level storage system

The 48-bit Atlas was developed at Manchester University and
subsequently manufactured by Ferranti Corp. (now part of Inter-
national Computers and Tabulators). The development began
about 1960, and the paper was written in 1962. The importance
of Atlas with respect to current and future machines is dis-
cussed in Part 3, Sec. 6, page 274.

The engineering design of the Stretch computer

The IBM Stretch (also called the IBM Model 7030) single-
address computer (Chap. 34) is one of the earliest computers
built to provide maximum computing power subject to no ap-
parent cost, size, and producibility constraints. A discussion
of its importance is given in Part 5, Sec. 2, page 396.

Processors with one address per instruction 91
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Chapter 4

Preliminary discussion of the logical
design of an electronic computing
instrument!

Arthur W. Burks / Herman H. Goldstine /
John von Neumann

PART |

1. Principal components of the machine

1.1.
computing machine it should contain certain main organs relating
to arithmetic, memory-storage, control and connection with the
human operator. It is intended that the machine be fully automatic

Inasmuch as the completed device will be a general-purpose

in character, ie. independent of the human operator after the
computation starts. A fuller discussion of the implications of this
remark will be given in Sec. 3 below.

1.2,

in some manner not only the digital information needed in a given

It is evident that the machine must be capable of storing

computation such as boundary values, tables of functions (such
as the equation of state of a fluid) and also the intermediate results
of the computation (which may be wanted for varying lengths of
time), but also the instructions which govern the actual routine
to be performed on the numerical data. In a special-purpose
machine these instructions are an integral part of the device and
constitute a part of its design structure. For an all-purpose machine
it must be possible to instruct the device to carry out any compu-
tation that can be formulated in numerical terms. Hence there
must be some organ capable of storing these program orders. There
must, moreover, be a unit which can understand these instructions
and order their execution.

1.3. Conceptually we have discussed above two different
forms of memory: storage of numbers and storage of orders. If,
however, the orders to the machine are reduced to a numerical
code and if the machine can in some fashion distinguish a number
from an order, the memory organ can be used to store both num-

!From A. H. Taub (ed.), “Collected Works of John von Neumann,” vol. 5,
pp- 34-79, The Macmillan Company, New York, 1963. Taken from
report to U. S. Army Ordnance Department, 1946. See also Bibliography
Burks, Goldstine and von Neumann, 1962a, 19625, 1963; and Goldstine and
von Neumann 1963q, 1963b, 1963¢, 1963d.

bers and orders. The coding of orders into numeric form is dis-
cussed in 6.3 below.

1.4. If the memory for orders is merely a storage organ there
must exist an organ which can automatically execute the orders
stored in the memory. We shall call this organ the Control.

1.5.

there must be an arithmetic organ in it which can perform certain

Inasmuch as the device is to be a computing machine

of the elementary arithmetic operations. There will be, therefore,
a unit capable of adding, subtracting, multiplying and dividing.
It will be seen in 6.6 below that it can also perform additional
operations that occur quite frequently.

The operations that the machine will view as elementary are
clearly those which are wired into the machine. To illustrate, the
operation of multiplication could be eliminated from the device
as an elementary process if one were willing to view it as a prop-
erly ordered series of additions. Similar remarks apply to division.
In general, the inner economy of the arithmetic unit is determined
by a compromise between the desire for speed of operation—a
non-elementary operation will generally take a long time to per-
form since it is constituted of a series of orders given by the
control—and the desire for simplicity, or cheapness, of the ma-
chine.

1.6. Lastly there must exist devices, the input and output
organ, whereby the human operator and the machine can com-
municate with each other. This organ will be seen below in 4.5,
where it is discussed, to constitute a secondary form of automatic
memory.

2. First remarks on the memory

2.1.
tion in the design of a satisfactory general-purpose computing

It is clear that the size of the memory is a critical considera-
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machine. We proceed to discuss what quantities the memory
should store for various types of computations.

2.2.
requirements are likely to be quite extensive. In general, one must

In the solution of partial differential equations the storage

remember not only the initial and boundary conditions and any
arbitrary functions that enter the problem but also an extensive
number of intermediate results.

a For equations of parabolic or hyperbolic type in two inde-
pendent variables the integration process is essentially a
double induction. To find the values of the dependent vari-
ables at time ¢ 4+ At one integrates with respect to x from
one boundary to the other by utilizing the data at time ¢
as if they were coeflicients which contribute to defining the
problem of this integration.

Not only must the memory have sufficient room to store
these intermediate data but there must be provisions
whereby these data can later be removed, i.e. at the end
of the (t + At) cycle, and replaced by the corresponding
data for the (¢t + 2A%) cycle. This process of removing data
from the memory and of replacing them with new informa-
tion must, of course, be done quite automatically under the
direction of the control.

b For total differential equations the memory requirements
are clearly similar to, but smaller than, those discussed in
(a) above.

¢ Problems that are solved by iterative procedures such as
systems of linear equations or elliptic partial differential
equations, treated by relaxation techniques, may be ex-
pected to require quite extensive memory capacity. The
memory requirement for such problems is apparently much
greater than for those problems in (a) above in which one
needs only to store information corresponding to the in-
stantaneous value of one variable [t in (a) above], while now
entire solutions (covering all values of all variables) must
be stored. This apparent discrepancy in magnitudes can,
however, be somewhat overcome by the use of techniques
which permit the use of much coarser integration meshes
in this case, than in the cases under (a).

2.3. It is reasonable at this time to build a machine that can
conveniently handle problems several orders of magnitude more
complex than are now handled by existing machines, electronic
or electro-mechanical. We consequently plan on a fully automatic
electronic storage facility of about 4,000 numbers of 40 binary
digits each. This corresponds to a precision of 274 ~ 0.9 x 10712,
i.e. of about 12 decimals. We believe that this memory capacity
exceeds the capacities required for most problems that one deals
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with at present by a factor of about 10. The precision is also safely
higher than what is required for the great majority of present day
problems. In addition, we propose that we have a subsidiary
memory of much larger capacity, which is also fully automatic,
on some medium such as magnetic wire or tape.

3. First remarks on the control and code

3.1. It is easy to see by formal-logical methods that there exist
codes that are in abstracto adequate to control and cause the
execution of any sequence of operations which are individually
available in the machine and which are, in their entirety, con-
ceivable by the problem planner. The really decisive considera-
tions from the present point of view, in selecting a code, are more
of a practical nature: simplicity of the equipment demanded by
the code, and the clarity of its application to the actually impor-
tant problems together with the speed of its handling of those
problems. It would take us much toc far afield to discuss these
questions at all generally or from first principles. We will therefore
restrict ourselves to analyzing only the type of code which we
now envisage for our machine.

3.2. There must certainly be instructions for performing the
fundamental arithmetic operations. The specifications for these
orders will not be completely given until the arithmetic unit is
described in a little more detail.

3.3.
the arithmetic organ and back again. In transferring information
from the arithmetic organ back into the memory there are two
types we must distinguish: Transfers of numbers as such and trans-
fers of numbers which are parts of orders. The first case is quite
obvious and needs no further explication. The second case is more
subtle and serves to illustrate the generality and simplicity of the
system. Consider, by way of illustration, the problem of interpola-
tion in the system. Let us suppose that we have formulated the

It must be possible to transfer data from the memory to

necessary instructions for performing an interpolation of order n
in a sequence of data. The exact location in the memory of the
(n + 1) quantities that bracket the desired functional value is, of
course, a function of the argument. This argument probably is
found as the result of a computation in the machine. We thus need
an order which can substitute a number into a given order—in
the case of interpolation the location of the argument or the group
of arguments that is nearest in our table to the desired value. By
means of such an order the results of a computation can be in-
troduced into the instructions governing that or a different com-
putation. This makes it possible for a sequence of instructions to
be used with different sets of numbers located in different parts
of the memory.
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To summarize, transfers into the memory will be of two sorts:
Total substitutions, whereby the quantity previously stored is
cleared out and replaced by a new number. Partial substitutions
in which that part of an order containing a memory location-
number—we assume the various positions in the memory are
enumerated serially by memory location-numbers—is replaced by
a new memory location-number.

3.4. It is clear that one must be able to get numbers from
any part of the memory at any time. The treatment in the case
of orders can, however, be more methodical since one can at least
partially arrange the control instructions in a linear sequence.
Consequently the control will be so constructed that it will nor-
mally proceed from place n in the memory to place (n + 1) for
its next instruction.

3.5. The utility of an automatic computer lies in the possi-
bility of using a given sequence of instructions repeatedly, the
number of times it is iterated being either preassigned or depend-
ent upon the results of the computation. When the iteration is
completed a different sequence of orders is to be followed, so we
must, in most cases, give two parallel trains of orders preceded
by an instruction as to which routine is to be followed. This choice
can be made to depend upon the sign of a number (zero being
reckoned as plus for machine purposes). Consequently, we intro-
duce an order (the conditional transfer order) which will, depend-
ing on the sign of a given number, cause the proper one of two
routines to be executed.

Frequently two parallel trains of orders terminate in a common
routine. It is desirable, therefore, to order the control in either
case to proceed to the beginning point of the common routine.
This unconditional transfer can be achieved either by the artificial
use of a conditional transfer or by the introduction of an explicit
order for such a transfer.

3.6. Finally we need orders which will integrate the input-
output devices with the machine. These are discussed briefly in
6.8.

3.7. We proceed now to a more detailed discussion of the
machine. Inasmuch as our experience has shown that the moment
one chooses a given component as the elementary memory unit,
one has also more or less determined upon much of the balance
of the machine, we start by a consideration of the memory organ.
In attempting an exposition of a highly integrated device like a
computing machine we do not find it possible, however, to give
an exhaustive discussion of each organ before completing its
description. It is only in the final block diagrams that anything
approaching a complete unit can be achieved.

The time units to be used in what follows will be:
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1 usec = 1 microsecond = 10~¢ seconds
1 msec = 1 millisecond = 10~3 seconds

4. The memory organ

4.1. Ideally one would desire an indefinitely large memory ca-
pacity such that any particular aggregate of 40 binary digits, or
word (cf. 2.3), would be immediately available—i.e. in a time
which is somewhat or considerably shorter than the operation time
of a fast electronic multiplier. This may be assumed to be practical
at the level of about 100 psec. Hence the availability time for a
word in the memory should be 5 to 50 psec. It is equally desirable
that words may be replaced with new words at about the same
rate. It does not seem possible physically to achieve such a capac-
ity. We are therefore forced to recognize the possibility of con-
structing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.

The most common forms of storage in electrical circuits are
the flip-flop or trigger circuit, the gas tube, and the electro-
mechanical relay. To achieve a memory of n words would, of
course, require about 40n such elements, exclusive of the switching
elements. We saw earlier (cf. 2.2) that a fast memory of several
thousand words is not at all unreasonable for an all-purpose instru-
ment. Hence, about 105 flip-flops or analogous elements would be
required! This would, of course, be entirely impractical.

We must therefore seek out some more fundamental method
of storing electrical information than has been suggested above.
One criterion for such a storage medium is that the individual
storage organs, which accommodate only one binary digit each,
should not be macroscopic components, but rather microscopic
elements of some suitable organ. They would then, of course, not
be identified and switched to by the usual macroscopic wire con-
nections, but by some functional procedure in manipulating that
organ.

One device which displays this property to a marked degree
is the iconoscope tube. In its conventional form it possesses a linear
resolution of about one part in 500. This would correspond to a
(two-dimensional) memory capacity of 500 X 500 = 2.5 X 10°,
One is accordingly led to consider the possibility of storing elec-
trical charges on a dielectric plate inside a cathode-ray tube.
Effectively such a tube is nothing more than a myriad of electrical
capacitors which can be connected into the circuit by means of
an electron beam.

Actually the above mentioned high resolution and concomitant
memory capacity are only realistic under the conditions of tele-
vision-image storage, which are much less exigent in respect to
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the reliability of individual markings than what one can accept
in the storage for a computer. In this latter case resolutions of
one part in 20 to 100, i.e. memory capacities of 400 to 10,000,
would seem to be more reasonable in terms of equipment built
essentially along familiar lines.

At the present time the Princeton Laboratories of the Radio
Corporation of America are engaged in the development of a
storage tube, the Selectron, of the type we have mentioned above.
This tube is also planned to have a non-amplitude-sensitive switch-
ing system whereby the electron beam can be directed to a given
spot on the plate within a quite small fraction of a millisecond.
Inasmuch as the storage tube is the key component of the machine
envisaged in this report we are extremely fortunate in having
secured the cooperation of the RCA group in this as well as in
various other developments.

An alternate form of rapid memory organ is the acoustic feed-
back delay line described in various reports on the EDVAC. (This
is an electronic computing machine being developed for the
Ordnance Department, U.S. Army, by the University of Pennsyl-
vania, Moore School of Electrical Engineering.) Inasmuch as that
device has been so clearly reported in those papers we give no
further discussion. There are still other physical and chemical
properties of matter in the presence of electrons or photons that
might be considered, but since none is yet beyond the early dis-
cussion stage we shall not make further mention of them.

4.2, We shall accordingly assume throughout the balance of
this report that the Selectron is the modus for storage of words
at electronic speeds. As now planned, this tube will have a capac-
ity of 212 = 4,096 ~ 4,000 binary digits. To achieve a total elec-
tronic storage of about 4,000 words we propose to use 40 Selec-
trons, thereby achieving a memory of 212 words of 40 binary digits
each. (Cf. again 2.3.)

4.3. There are two possible means for storing a particular
word in the Selectron memory—or, in fact, in either a delay line
memory or in a storage tube with amplitude-sensitive deflection.
One method is to store the entire word in a given tube and then
to get the word out by picking out its respective digits in a serial
fashion. The other method is to store in corresponding places in
each of the 40 tubes one digit of the word. To get a word from
the memory in this scheme requires, then, one switching mech-
anism to which all 40 tubes are connected in parallel. Such a
switching scheme seems to us to be simpler than the technique
needed in the serial system and is, of course, 40 times faster. We
accordingly adopt the parallel procedure and thus are led to con-
sider a so-called parallel machine, as contrasted with the serial
principles being considered for the EDVAC. (In the EDVAC the
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peculiar characteristics of the acoustic delay line, as well as various
other considerations, seem to justify a serial procedure. For more
details, cf. the reports referred to in 4.1.) The essential difference
between these two systems lies in the method of performing an
addition; in a parallel machine all corresponding pairs of digits
are added simultaneously, whereas in a serial one these pairs are
added serially in time.

4.4. Tosummarize, we assume that the fast electronic memory
consists of 40 Selectrons which are switched in parallel by a com-
mon switching arrangement. The inputs of the switch are con-
trolled by the control.

4.5. Inasmuch as a great many highly important classes of
problems require a far greater total memory than 212 words, we
now consider the next stage in our storage hierarchy. Although
the solution of partial differential equations frequently involves
the manipulation of many thousands of words, these data are
generally required only in blocks which are well within the 212
capacity of the electronic memory. Our second form of storage
must therefore be a medium which feeds these blocks of words
to the electronic memory. It should be controlled by the control
of the computer and is thus an integral part of the system, not
requiring human intervention.

There are evidently two distinct problems raised above. One
can choose a given medium for storage such as teletype tapes,
magnetic wire or tapes, movie film or similar media. There still
remains the problem of automatic integration of this storage
medium with the machine. This integration is achieved logically
by introducing appropriate orders into the code which can instruct
the machine to read or write on the medium, or to move it by
a given amount or to a place with given characteristics. We discuss
this question a little more fully in 6.8.

Let us return now to the question of what properties the sec-
ondary storage medium should have. It clearly should be able to
store information for periods of time long enough so that only a
few per cent of the total computing time is spent in re-registering
information that is “fading off.” It is certainly desirable, although
not imperative, that information can be erased and replaced by
new data. The medium should be such that it can be controlled,
i.e. moved forward and backward, automatically. This considera-
tion makes certain media, such as punched cards, undesirable.
While cards can, of course, be printed or read by appropriate
orders from some machine, they are not well adapted to problems
in which the output data are fed directly back into the machine,
and are required in a sequence which is non-monotone with re-
spect to the order of the cards. The medium should be capable
of remembering very large numbers of data at a much smaller price
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than electronic devices. It must be fast enough so that, even when
it has to be used frequently in a problem, a large percentage of
the total solution time is not spent in getting data into and out
of this medium and achieving the desired positioning on it. If this
condition is not reasonably well met, the advantages of the high
electronic speeds of the machine will be largely lost.

Both light- or electron-sensitive film and magnetic wires or
tapes, whose motions are controlled by servo-mechanisms inte-
grated with the control, would seem to fulfil our needs reasonably
well. We have tentatively decided to use magnetic wires since we
have achieved reliable performance with them at pulse rates of
the order of 25,000/sec and beyond.

4.6. Lastly our memory hierarchy requires a vast quantity of
dead storage, i.e. storage not integrated with the machine. This
storage requirement may be satisfied by a library of wires that
can be introduced into the machine when desired and at that time
become automatically controlled. Thus our dead storage is really
nothing but an extension of our secondary storage medium. It
differs from the latter only in its availability to the machine.

4.7. 'We impose one additional requirement on our secondary
memory. It must be possible for a human to put words on to the
wire or other substance used and to read the words put on by
the machine. In this manner the human can control the machine’s
functions. It is now clear that the secondary storage medium is
really nothing other than a part of our input-output system, cf.
6.8.4 for a description of a mechanism for achieving this.

4.8. There is another highly important part of the input-
output which we merely mention at this time, namely, some
mechanism for viewing graphically the results of a given compu-
tation. This can, of course, be achieved by a Selectron-like tube
which causes its screen to fluoresce when data are put on it by
an electron beam.

4.9. For definiteness in the subsequent discussions we assume
that associated with the output of each Selectron is a flip-flop.
This assemblage of 40 flip-flops we term the Selectron Register.

5. The arithmetic organ

5.1. In this section we discuss the features we now consider
desirable for the arithmetic part of our machine. We give our
tentative conclusions as to which of the arithmetic operations
should be built into the machine and which should be pro-
grammed. Finally, a schematic of the arithmetic unit is described.

5.2. In a discussion of the arithmetical organs of a computing
machine one is naturally led to a consideration of the number
system to be adopted. In spite of the longstanding tradition of
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building digital machines in the decimal system, we feel strongly
in favor of the binary system for our device. Our fundamental unit
of memory is naturally adapted to the binary system since we do
not attempt to measure gradations of charge at a particular point
in the Selectron but are content to distinguish two states. The
flip-flop again is truly a binary device. On magnetic wires or tapes
and in acoustic delay line memories one is also content to recog-
nize the presence or absence of a pulse or (if a carrier frequency
is used) of a pulse train, or of the sign of a pulse. (We will not
discuss here the ternary possibilities of a positive-or-negative-
or-no-pulse system and their relationship to questions of reliability
and checking, nor the very interesting possibilities of carrier fre-
quency modulation.) Hence if one contemplates using a decimal
system with either the iconoscope or delay-line memory one is
forced into a binary coding of the decimal system—each decimal
digit being represented by at least a tetrad of binary digits. Thus
an accuracy of ten decimal digits requires at least 40 binary digits.
In a true binary representation of numbers, however, about 33
digits suffice to achieve a precision of 101°. The use of the binary
system is therefore somewhat more economical of equipment than
is the decimal.

The main virtue of the binary system as against the decimal
is, however, the greater simplicity and speed with which the
elementary operations can be performed. To illustrate, consider
multiplication by repeated addition. In binary multiplication the
product of a particular digit of the multiplier by the multiplicand
is either the multiplicand or null according as the multiplier digit
is 1 or 0. In the decimal system, however, this product has ten
possible values between null and nine times the multiplicand,
inclusive. Of course, a decimal number has only log,,2 ~ 0.3 times
as many digits as a binary number of the same accuracy, but even
so multiplication in the decimal system is considerably longer than
in the binary system. One can accelerate decimal multiplication
by complicating the circuits, but this fact is irrelevant to the point
just made since binary multiplication can likewise be accelerated
by adding to the equipment. Similar remarks may be made about
the other operations.

An additional point that deserves emphasis is this: An important
part of the machine is not arithmetical, but logical in nature. Now
logics, being a yes-no system, is fundamentally binary. Therefore
a binary arrangement of the arithmetical organs contributes very
significantly towards producing a more homogeneous machine,
which can be better integrated and is more efficient.

The one disadvantage of the binary system from the human
point of view is the conversion problem. Since, however, it is
completely known how to convert numbers from one base to
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another and since this conversion can be effected solely by the
use of the usual arithmetic processes there is no reason why the
computer itself cannot carry out this conversion. It might be
argued that this is a time consuming operation. This, however,
is not the case. (Cf. 9.6 and 9.7 of Part I1. Part Il is a report issued
under the title Planning and Coding of Problems for an Electronic
Computing Instrument.') Indeed a general-purpose computer, used
as a scientific research tool, is called upon to do a very great
number of multiplications upon a relatively small amount of input
data, and hence the time consumed in the decimal to binary
conversion is only a trivial percentage of the total computing time.
A similar remark is applicable to the output data.

In the preceding discussion we have tacitly assumed the de-
sirability of introducing and withdrawing data in the decimal
system. We feel, however, that the base 10 may not even be a
permanent feature in a scientific instrument and consequently will
probably attempt to train ourselves to use numbers base 2 or 8
or 16. The reason for the bases 8 or 16 is this: Since 8 and 16
are powers of 2 the conversion to binary is trivial; since both are
about the size of 10, they violate many of our habits less badly
than base 2. (Cf. Part II, 9.4.)

5.3. Several of the digital computers being built or planned
in this country and England are to contain a so-called “floating
decimal point”. This is a mechanism for expressing each word as
a characteristic and a mantissa—e.g. 123.45 would be carried in
the machine as (0.12345,03), where the 3 is the exponent of 10
associated with the number. There appear to be two major pur-
poses in a “floating” decimal point system both of which arise from
the fact that the number of digits in a word is a constant, fixed
by design considerations for each particular machine. The first of
these purposes is to retain in a sum or product as many significant
digits as possible and the second of these is to free the human
operator from the burden of estimating and inserting into a prob-
lem “scale factors”—multiplicative constants which serve to keep
numbers within the limits of the machine.

There is, of course, no denying the fact that human time is
consumed in arranging for the introduction of suitable scale fac-
tors. We only argue that the time so consumed is a very small
percentage of the total time we will spend in preparing an inter-
esting problem for our machine. The first advantage of the floating
point is, we feel, somewhat illusory. In order to have such a floating
point one must waste memory capacity which could otherwise be
used for carrying more digits per word. It would therefore seem

1See Bibliography [Goldstine and von Neumann, 1963b, 1963c, 1963d].
References in this chapter are all to this report.
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to us not at all clear whether the modest advantages of a floating
binary point offset the loss of memory capacity and the increased
complexity of the arithmetic and control circuits.

There are certainly some problems within the scope of our
device which really require more than 2740 precision. To handle
such problems we wish to plan in terms of words whose lengths
are some fixed integral multiple of 40, and program the machine
in such a manner as to give the corresponding aggregates of 40
digit words the proper treatment. We must then consider an addi-
tion or multiplication as a complex operation programmed from
a number of primitive additions or multiplications (cf. §9, Part
II). There would seem to be considerable extra difficulties in the
way of such a procedure in an instrument with a floating binary
point.

The reader may remark upon our alternate spells of radicalism
and conservatism in deciding upon various possible features for
our mechanism. We hope, however, that he will agree, on closer
inspection, that we are guided by a consistent and sound principle
in judging the merits of any idea. We wish to incorporate into
the machine—in the form of circuits—only such logical concepts
as are either necessary to have a complete system or highly con-
venient because of the frequency with which they occur and the
influence they exert in the relevant mathematical situations.

5.4. On the basis of this criterion we definitely wish to build
into the machine circuits which will enable it to form the binary
sum of two 40 digit numbers. We make this decision not because
addition is a logically basic notion but rather because it would
slow the mechanism as well as the operator down enormously if
each addition were programmed out of the more simple operations
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of “and”, “or”, and “not”. The same is true for the subtraction.
Similarly we reject the desire to form products by programming
them out of additions, the detailed motivation being very much
the same as in the case of addition and subtraction. The cases for
division and square-rooting are much less clear.

It is well known that the reciprocal of a number a can be
formed to any desired accuracy by iterative schemes. One such
scheme consists of improving an estimate X by forming X’ =
2X — aX?. Thus the new error 1 — aX’ is (1 — aX)?, which is the
square of the error in the preceding estimate. We notice that in
the formation of X', there are two bona fide multiplications—we
do not consider multiplication by 2 as a true product since we
will have a facility for shifting right or left in one or two pulse
times. If then we somehow could guess 1/a to a precision of 275,
6 multiplications—3 iterations—would suffice to give a final result
good to 249, Accordingly a small table of 24 entries could be used
to get the initial estimate of 1/a. In this way a reciprocal 1/a



98 Part 2

The instruction-set processor: main-line computers

could be formed in 6 multiplication times, and hence a quotient
b/a in 7 multiplication times. Accordingly we see that the question
of building a divider is really a function of how fast it can be made
to operate compared to the iterative method sketched above: In
order to justify its existence, a divider must perform a division in
a good deal less than 7 multiplication times. We have, however,
conceived a divider which is much faster than these 7 multipli-
cation times and therefore feel justified in building it, especially
since the amount of equipment needed above the requirements
of the multiplier is not important.

It is, of course, also possible to handle square roots by iterative
techniques. In fact, if X is our estimate of a'/2, then X’ =
V(X 4+ a/X) is a better estimate. We see that this scheme involves
one division per iteration. As will be seen below in our more detailed
examination of the arithmetic organ we do not include a square-
rooter in our plans because such a device would involve more
equipment than we feel is desirable in a first model. (Concerning the
iterative method of square-rooting, cf. 8.10 in Part II.)

5.5. The first part of our arithmetic organ requires little dis-
cussion at this point. It should be a parallel storage organ which
can receive a number and add it to the one already in it, which
is also able to clear its contents and which can transmit what it
contains. We will call such an organ an Accumulator. 1t is quite
conventional in principle in past and present computing machines
of the most varied types, e.g. desk multipliers, standard IBM
counters, more modern relay machines, the ENIAC. There are of,
course, numerous ways to build such a binary accumulator. We
distinguish two broad types of such devices: static, and dynamic
or pulse-type accumulators. These will be discussed in 5.11, but
it is first necessary to make a few remarks concerning the arith-
metic of binary addition. In a parallel accumulator, the first step
in an addition is to add each digit of the addend to the corre-
sponding digit of the augend. The second step is to perform the
carries, and this must be done in sequence since a carry may
produce a carry. In the worst case, 39 carries will occur. Clearly
it is ineficient to allow 39 times as much time for the second
step (performing the carries) as for the first step (adding the digits).
Hence either the carries must be accelerated, or use must be made
of the average number of carries or both.

5.6. We shall show that for a sum of binary words, each of
length n, the length of the largest carry sequence is on the average
not in excess of 2log n. Let p,(v) designate the probability that
a carry sequence is of length v or greater in the sum of two binary
words of length n. Then clearly p,(v) — p,(v + 1) is the proba-
bility that the largest carry sequence is of length exactly v and
the weighted average
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a, = D[ n(u) - Pn(“ + 1)]
0
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is the average length of such carry. Note that

émm—mw+m=1

since p,(v) = 0 if v > n. From these it is easily inferred that

a, = Z Palv)

We now proceed to show that p,(v) = min[l, (n — v + 1)/2"+1].
Observe first that

1—p,_,0)
Pal®) = pusle) + el

v=n

Indeed, p,(v) is the probability that the sum of two n-digit numbers
contains a carry sequence of length =v. This probability obtains
by adding the probabilities of two mutually exclusive alternatives:
First: Either the n — 1 first digits of the two numbers by them-
selves contain a carry sequence of length Zv. This has the proba-
bility p,_;(v). Second: The n — 1 first digits of the two numbers
by themselves do not contain a carry sequence of length =v. In
this case any carry sequence of length Zwv in the total numbers
(of length n) must end with the last digits of the total sequence.
Hence these must form the combination 1, 1. The next v — 1 digits
must propagate the carry, hence each of these must form the
combination 1, 0 or 0, 1. (The combinations 1, 1 and 0, 0 do not
propagate a carry.) The probability of the combination 1, 1 is Y,
that one of the alternative combinations 1, 0 or 0, 1 is ¥,. The
total probability of this sequence is therefore %(%,)"~1 = (75)"*".
The remaining n — v digits must not contain a carry sequence
of length Zwv. This has the probability 1 —-p,_ (v). Thus the
probability of the second case is {1 — p,_,(v)]/2°*!. Combining
these two cases, the desired relation

1- pn-v(u)

211+1

Pal0) = pp_s(v) +

obtains. The observation that p,(v) = 0 if v > n is trivial.

We see with the help of the formulas proved above that
Pp(v) — p,_,(v) is always =1/2"*1, and hence that the sum
>, [pil0) = pica(0)] = palv)

v

13
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is not in excess of (n — v + 1)/2°+! since there are n — v + 1
terms in the sum; since, moreover, each p,(v) is a probability, it
is not greater than 1. Hence we have

p.(0) = min[ L u]

ov+1

Finally we turn to the question of getting an upper bound on
a, = Sn_1p,(v). Choose K so that 2K < n =< 2K+1, Then

K-1
@ = 2 pu0)+ 2 ) = DT+ D oy =K— 145
v=1 =

This last expression is clearly linear in n in the interval
28 = p < 2%+1 and it is =K for n =2% and =K 4+ 1 for
n = 28+1 je. it is =%log n at both ends of this interval. Since
the function Zlog n is everywhere concave from below, it follows
that our expression is =<Zlog n throughout this interval. Thus
a, = 2log n. This holds for all K, i.e. for all n, and it is the in-
equality which we wanted to prove.

For our case n = 40 we have g, = log,40 ~ 5.3,i.e. an average
length of about 5 for the longest carry sequence. (The actual value
of a,, is 4.62.)

5.7. Having discussed the addition, we can now go on to the
subtraction. It is convenient to discuss at this point our treatment
of negative numbers, and in order to do that right, it is desirable
to make some observations about the treatment of numbers in
general.

Our numbers are 40 digit aggregates, the left-most digit being
the sign digit, and the other digits genuine binary digits, with
positional values 271,272, . . ., 2739 (going from left to right). Our
accumulator will, however, treat the sign digit, too, as a binary
digit with the positional value 2°-—at least when it functions as
an adder. For numbers between 0 and 1 this is clearly all right:
The left-most digit will then be 0, and if 0 at this place is taken
to represent a + sign, then the number is correctly expressed with
its sign and 39 binary digits.

Let us now consider one or more unrestricted 40 binary digit
numbers. The accumulator will add them, with the digit-adding
and the carrying mechanisms functioning normally and identically
in all 40 positions. There is one reservation, however: If a carry
originates in the left-most position, then it has nowhere to go from
there (there being no further positions to the left) and is “lost”.
This means, of course, that the addend and the augend, both
numbers between 0 and 2, produced a sum exceeding 2, and the
accumulator, being unable to express a digit with a positional
value 2!, which would now be necessary, omitted 2. That is, the
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sum was formed correctly, excepting a possible error 2. If several
such additions are performed in succession, then the ultimate error
may be any integer multiple of 2. That is, the accumulator is an
adder which allows errors that are integer multiples of 2—it is
an adder modulo 2.

It should be noted that our convention of placing the binary
point immediately to the right of the left-most digit has nothing
to do with the structure of the adder. In order to make this point
clearer we proceed to discuss the possibilities of positioning the
binary point in somewhat more detail.

We begin by enumerating the 40 digits of our numbers (words)
from left to right. In doing this we use an index h = 1, . . ., 40.
Now we might have placed the binary point just as well between
digits jand j + 1, = 0, . . ., 40. Note, that j = .0 corresponds
to the position at the extreme left (there is no digit h = § = 0);
j = 40 corresponds to the position at the extreme right (there is
no position h = j + 1 = 41); and j = 1 corresponds to our above
choice. Whatever our choice of j, it does not affect the correctness
of the accumulator’s addition. (This is equally true for subtraction,
cf. below, but not for multiplication and division, cf. 5.8.) Indeed,
we have merely multiplied all numbers by 2/-! (as against our
previous convention), and such a “change of scale” has no effect
on addition (and subtraction). However, now the accumulator is
an adder which allows errors that are integer multiples of 27 it
is an adder modulo 2/. We mention this because it is occasionally
convenient to think in terms of a convention which places the
binary point at the right end of the digital aggregate. Then j = 40,
our numbers are integers, and the accumulator is an adder modulo
249 We must emphasize, however, that all of this, i.e. all attribu-
tions of values to §, are purely convention—i.e. it is solely the
mathematician’s interpretation of the functioning of the machine
and not a physical feature of the machine. This convention will
necessitate measures that have to be made effective by actual
physical features of the machine—i.e. the convention will become
a physical and engineering reality only when we come to the
organs of multiplication.

We will use the convention j = 1, i.e. our numbers lie in 0 and
2 and the accumulator adds modulo 2.

This being so, these numbers between 0 and 2 can be used to
represent all numbers modulo 2. Any real number x agrees modulo
2 with one and only one number % between 0 and 2—or, to be
quite precise: 0 = x < 2. Since our addition functions modulo 2,
we see that the accumulator may be used to represent and to add
numbers modulo 2.

This determines the representation of negative numbers: If
x < 0, then we have to find the unique integer multiple of 2, 2s
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(s=1,2,...) such that 0 =x <2 for¥=x + 2s (ie. — 25 =
x < 2(1 — s)), and represent x by the digitalization of .

In this way, however, the sign digit character of the left-most
digit is lost: It can be 0 or 1 for both x = 0 and x < 0, hence
0 in the left-most position can no longer be associated with the
+ sign of x. This may seem a bad deficiency of the system, but
it is easy to remedy—at least to an extent which suffices for our
purposes. This is done as follows:

We usually work with numbers x between —1 and 1—or, to
be quite precise: —1 = x < 1. Now the x with 0 = x < 2, which
differs from x by an integer multiple of 2, behaves as follows: If
x =0, then 0 < x < 1, hence * = x, and so 0 =% < 1, the left-
most digit of xis 0. If x < 0, then —1 = x <{ 0, hencex = x + 2,
and so 1 =% < 2, the left-most digit of ¥ is 1. Thus the left-most
digit (of X is now a precise equivalent of the sign (of x): 0 corre-
sponds to + and 1 to — .

Summing up:

The accumulator may be taken to represent all real numbers
modulo 2, and it adds them modulo 2. If x lies between —1 and
1 (precisely: —1 = x <{ 1)—as it will in almost all of our uses of
the machine—then the left-most digit represents the sign: 0 is +
and 11is — .

Consider now a negative number x with —1 = x < 0. Put
x = —y, 0 <y =1 Then we digitalize x by representing it as
x+2=2—y =14+ (1 —y). That is, the left-most (sign) digit
of x = —y is, as it should be, 1; and the remaining 39 digits are
those of the complement of y = —x = |x|, i.e. those of 1 — y.
Thus we have been led to the familiar representation of negative
numbers by complementation.

The connection between the digits of x and those of —x is now
easily formulated, for any x Z 0. Indeed, —x is equivalent to

39
2 —x= {21 — 2799 — x} + 273 = (Z 9-i _ x) + 9739
i=0

(This digit index i = 1, . . ., 39 is related to our previous digit
index h =1, ..., 40 by i = h — 1. Actually it is best to treat
i as if its domain included the additional value i = 0—indeed
i = 0 then corresponds to h = 1, i.e. to the sign digit. In any case
i expresses the positional value of the digit to which it refers more
simply than h does: This positional value is 2-¢ = 2-%-1_ Note
that if we had positioned the binary point more generally between
jandj + 1, as discussed further above, this positional value would
have been 2-~?. We now have, as pointed out previously, j = 1.)
Hence its digits obtain by subtracting every digit of x from 1—by
complementing each digit, i.e. by replacing 0 by 1 and 1 by
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O—and then adding 1 in the right-most position (and effecting
all the carries that this may cause). (Note how the left-most
digit, interpreted as a sign digit, gets inverted by this procedure
as it should be.)

A subtraction x — y is therefore performed by the accumulator,
Ac, as follows: Form x + y’, where y’ has a digit 0 or 1 where
y has a digit 1 or 0, respectively, and then add 1 in the right-most
position. The last operation can be performed by injecting a carry
into the right-most stage of Ac—since this stage can never receive
a carry from any other source (there being no further positions
to the right).

5.8. In the light of 5.7 multiplication requires special care,
because here the entire modulo 2 procedure breaks down. Indeed,
assume that we want to compute a product xy, and that we had
to change one of the factors, say x, by an integer multiple of 2,
say by 2. Then the product (x 4+ 2)y obtains, and this differs from
the desired xy by 2y. 2y, however, will not in general be an integer
multiple of 2, since y is not in general an integer.

We will therefore begin our discussion of the multiplication
by eliminating all such difficulties, and assume that both factors
%, y lie between 0 and 1. Or, to be quite precise: 0 < x <1,
0=y<L

To effect such a multiplication we first send the multiplier x
into a register AR, the Arithmetic Register, which is essentially just
a set of 40 flip-flops whose characteristics will be discussed below.
We place the multiplicand y in the Selectron Register, SR (cf. 4.9)
and use the accumulator, Ac, to form and store the partial prod-
ucts. We propose to multiply the entire multiplicand by the
successive digits of the multiplier in a serial fashion. There are,
of course, two possible ways this can be done: We can either start
with the digit in the lowest position—position 2-3°—or in the
highest position—position 2-!—and proceed successively to the
left or right, respectively. There are a few advantages from our
point of view in starting with the right-most digit of the multiplier.
We therefore describe that scheme.

The multiplication takes place in 39 steps, which correspond
to the 39 (non-sign) digits of the multiplier x = 0, §.,§,, . . .,
£40 = (0.6,4,, . . ., &), enumerated backwards: &g, . . ., £,
Assume that the k — 1 first steps (k = 1, . . ., 39) have already
taken place, involving multiplication of the multiplicand y with
the k — 1 last digits of the multiplier: &, . . ., §,;_;; and that we
are now at the kth step, involving multiplication with the kth last
digit: £,,_,. Assume furthermore, that Ac now contains the quantity
Pr_1» the result of the k — 1 first steps. [This is the (k — 1)st partial
product. For k = 1 clearly p, = 0.] We now form 2p, = p,_; +

Es0-rYs e
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=0 for
=y for

£40—k =0
éao—k =1

2p; = i1 t Ypo Yx [ (1)

That is, we do nothing or add y, according to whether &,,_, = 0
or 1. We can then form p, by halving 2p,.

Note that the addition of (1) produces no carry beyond the 2°
position, i.e. the sign digit: 0 = p, <1 is true for h = 0, and if
it is true for h = k — 1, then (1) extends it to h = k also, since
0 = y, < 1. Hence the sum in (1) is =0 and <2, and no carries
beyond the 2° position arise.

Hence p, obtains from 2p, by a simple right shift, which is
combined with filling in the sign digit (that is freed by this shift)
with a 0. This right shift is effected by an electronic shifter that
is part of Ac.

Now
P3g = %;][2_1[2‘1{ c (270 + Lagy) - )+ Sy) + &l
=2, 27y = xy
1=1

Thus this process produces the product xy, as desired. Note that
this xy is the exact product of x and y.

Since x and y are 39 digit binaries, their exact product xy is
a 78 digit binary (we disregard the sign digit throughout). How-
ever, Ac will only hold 39 of these. These are clearly the left 39
digits of xy. The right 39 digits of xy are dropped from Ac one
by one in the course of the 39 steps, or to be more specific, of
the 39 right shifts. We will see later that these right 39 digits of
xy should and will also be conserved (cf. the end of this section
and the end of 5.12, as well as 6.6.3). The left 39 digits, which
remain in Ac, should also be rounded off, but we will not discuss
this matter here. (cf. loc. cit. above and 9.9, Part II).

To complete the general picture of our multiplication tech-
nique we must consider how we sense the respective digits of our
multiplier. There are two schemes which come to one’s mind in
this connection. One is to have a gate tube associated with each
flip-flop of AR in such a fashion that this gate is open if a digit
is 1 and closed if it is null. We would then need a 39-stage counter
to act as a switch which would successively stimulate these gate
tubes to react. A more efficient scheme is to build into AR a shifter
circuit which enables AR to be shifted one stage to the right each
time Ac is shifted and to sense the value of the digit in the right-
most flip-flop of AR. The shifter itself requires one gate tube per
stage. We need in addition a counter to count out the 39 steps
of the multiplication, but this can be achieved by a six stage binary
counter. Thus the latter is more economical of tubes and has one
additional virtue from our point of view which we discuss in the
next paragraph.
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The choice of 40 digits to a word (including the sign) is prob-
ably adequate for most computational problems but situations
certainly might arise when we desire higher precision, i.e. words
of greater length. A trivial illustration of this would be the com-
putation of 7 to more places than are now known (about 700
decimals, i.e. about 2,300 binaries). More important instances are
the solutions of N linear equations in N variables for large values
of N. The extra precision becomes probably necessary when N
exceeds a limit somewhere between 20 and 40. A justification of
this estimate has to be based on a detailed theory of numerical
matrix inversion which will be given in a subsequent report. It
is therefore desirable to be able to handle numbers of 39k digits
and signs by means of program instructions. One way to achieve
this end is to use k words to represent a 39k digit number with
signs. (In this way 39 digits in each 40 digit word are used, but
all sign digits excepting the first one, are apparently wasted; cf.
however the treatment of double precision numbers in Chapter
9, Part I1.) It is, of course, necessary in this case to instruct the
machine to perform the elementary operations of arithmetic in
a manner that conforms with this interpretation of k-word com-
plexes as single numbers. (Cf. 9.8-9.10, Part IL) In order to be
able to treat numbers in this manner, it is desirable to keep not
39 digits in a product, but 78; this is discussed in more detail in
6.6.3 below. To accomplish this end (conserving 78 product digits)
we connect, via our shifter circuit, the right-most digit of Ac with
the left-most non-sign digit of AR. Thus, when in the process of
multiplication a shift is ordered, the last digit of Ac is transferred
into the place in AR made vacant when the multiplier was shifted.

5.9. To conclude our discussion of the multiplication of posi-
tive numbers, we note this:

As described thus far, the multiplier forms the 78 digit product,
xy, for a 39 digit multipler x and a 39 digit multiplicand y. We
assumed x = 0, y = 0 and therefore had xy = 0, and we will only
depart from these assumptions in 5.10. In addition to these, how-
ever, we also assumed x < 1, y < 1, i.e. the x, y have their binary
points both immediately right of the sign digit, which implied the
same for xy. One might question the necessity of these additional
assumptions.

Prima facie they may seem mere conventions, which affect only
the mathematician’s interpretation of the functioning of the ma-
chine, and not a physical feature of the machine. (Cf. the cor-
responding situation in addition and subtraction, in 5.7.) Indeed,
if x had its binary point between digits j and j + 1 from the left
(cf. the discussion of 5.7 dealing with this f; it also applies to k
below), and y between k and k + 1, then our above method of
multiplication would still give the correct result xy, provided that
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the position of the binary point in xy is appropriately assigned.
Specifically: Let the binary point of xy be between digits ! and
I + 1. x has the binary point between digits j and j + 1, and its
sign digit is 0, hence its range is 0 = x < 2", Similarly y has the
range 0 = y < 2¥71, and xy has the range 0 = xy < 2!-1. Now the
ranges of x and y imply that the range of xy is necessarily
0= axy <P 1251 = 22 Hencel = j + k — 1. Thus it might
seem that our actual positioning of the binary point—immediately
right of the sign digit, i.e. j = k = 1—is still a mere convention.

It is therefore important to realize that this is not so: The
choices of j and k actually correspond to very real, physical, engi-
neering decisions. The reason for this is as follows: It is desirable
to base the running of the machine on a sole, consistent mathe-
matical interpretation. It is therefore desirable that all arithmeti-
cal operations be performed with an identically conceived posi-
tioning of the binary point in Ac. Applying this principle to x and
y gives j = k. Hence the position of the binary point for xy is given
by j + k — 1 = 2j — 1. If this is to be the same as for x, and y,
then 2j — 1 = j, i.e. { = 1 ensues—that is, our above positioning
of the binary point immediately right of the sign digit.

There is one possible escape: To place into Ac not the left 39
digits of xy (not counting the sign digit 0), but the digitsjtoj + 38
from the left. Indeed, in this way the position of the binary point
of xy will be (2j — 1) — (j — 1) = j, the same as for x and v.

This procedure means that we drop the left j — 1 and right
40 + j digits of xy and hold the middle 39 in- Ac. Note-that posi-
tioning of the binary point-means that x < 271, y < 21 and xy
can only be used if xy <{ 271 Now the assumptions secure only
xy < 2%-2, Hence xy must be 2/~ times smaller than it might be.
This is just the thing which would be secured by the vanishing
of the left j — 1 digits that we had to drop from Ac, as shown
above.

If we wanted to use such a procedure, with those dropped left
j — 1 digits really existing, i.e. with j== 1, then we would have
to make physical arrangements for their conservation elsewhere.
Also the general mathematical planning for the machine would
be definitely complicated, due to the physical fact that Ac now
holds a rather arbitrarily picked middle stretch of 39 digits from
among the 78 digits of xy. Alternatively, we might fail to make
such arrangements, but this would necessitate to see to it in the
mathematical planning of each problem, that all products turn
out to be 2/~ times smaller than their a priori maxima. Such an
observance is not at all impossible; indeed similar things are un-
avoidable for the other operations. [For example, with a factor
2 in addition (of positives} or subtraction (of opposite sign quanti-
ties). Cf. also the remarks in the first part of 5.12, dealing with
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keeping “within range”.] However, it involves a loss of significant
digits, and the choice j = 1 makes it unnecessary in multiplication.

We will therefore make our choice j = 1, i.e. the positioning
of the binary point immediately right of the sign digit, binding
for all that follows.

5.10. We now pass to the case where the multiplier x and
the multiplicand y may have either sign + or —, i.e. any combi-
nation of these signs.

It would not do simply to extend the method of 5.8 to include
the sign digits of x and y also. Indeed, we assume —1 =< x <1,
—1 = y <1, and the multiplication procedure in question is defi-
nitely based on the =0 interpretations of x and y. Hence if x < 0,
then it is really using x + 2, and if y <C 0, then it is really using
y + 2. Hence for x < 0, y = 0 it forms

(x+2)y =xy + 2y

for x = 0, y < 0 it forms

Hy +2) = xy + 2«

for x <0, x <0, it forms

(x+ 20y +2) =xy + 2x 4+ 2y + 4

or since things may be taken modulo 2, xy + 2x + 2y. Hence
correction terms —2y, —2x would be needed for x <{ 0, y <0,
respectively (either or both).

This would be a possible procedure, but there is one difficulty:
As xy is formed, the 39 digits of the multiplier x are gradually
lost from AR, to be replaced by the right 39 digits of xy. (Cf. the
discussion at the end of 5.8.) Unless we are willing to build an
additional 40 stage register to hold x, therefore, x will not be
available at the end of the multiplication. Hence we cannot use
it in the correction 2x of xy, which becomes necessary for y < 0.

Thus the case x < 0 can be handled along the above lines, but
not the case y < 0.

It is nevertheless possible to develop an adequate procedure,
and we now proceed to do this. Throughout this procedure we
will maintain the assumptions —1 =x <1, -1 <y <1 We
proceed in several successive steps.

First: Assume that the corrections necessitated by the possi-
bility of y < 0 have been taken care of. We permit therefore
y % 0. We will consider the corrections necessitated by the possi-
bility of x < 0.

Let us disregard the sign digit of x, which is 1, i.e. replace it
by 0. Then x goes over into 2’ = x — 1 and as —1 = x < 0, this
x will actually behave like (x — 1) + 2 = x + 1. Hence our
multiplication procedure will produce ¥y = (x + L)y = xy + v,
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and therefore a correction —y is needed at the end. (Note that
we did not use the sign digit of x in the conventional way. Had
we done so, then a correction —2y would have been necessary,
as seen above.)

We see therefore: Consider x = 0. Perform first all necessary
steps for forming x'y(y = 0), without yet reaching the sign digit
of x (i.e. treating x as if it were =0). When the time arrives at
which the digit &, of x has to become effective—i.e. immediately
after £, became effective, after 39 shifts (cf. the discussion near
the end of 5.8)—at which time Ac contains, say, p (this corresponds
to the pg, of 5.8), then form

(2

This p is xy. (Note the difference between this last step, forming
p, and the 39 preceding steps in 5.8, forming p,, po, . . . , Pag.)

Second: Having disposed of the possibility x <C 0, we may now
assume x = (. With this assumption we have to treat all y % 0.

if =0
-y if £

ol
=l sl
I
—

Since y = 0 brings us back entirely to the familiar case of 5.8, we
need to consider the case y < 0 only.

Let y’ be the number that obtains by disregarding the sign digit
of y’ which is 1, i.e. by replacing it by 0. Again y’ acts not like
y — 1, but like (y — 1) + 2 = y + 1. Hence the multiplication
procedure of 5.8 will produce xy’ = x(y + 1) = xy + x, and there-
fore a correction x is needed. (Note that, quite similarly to what
we saw in the first case above, the suppression of the sign digit
of y replaced the previously recognized correction —2x by the
present one —x.) As we observed earlier, this correction —x cannot
be applied at the end to the completed xy’ since at that time x
is no longer available. Hence we must apply the correction —x
digitwise, subtracting every digit at the time when it is last found
in AR, and in a way that makes it effective with the proper posi-
tional value.

Third: Consider then x = 0, £, £, .
The 39 digits £, .
of the multiplication procedure of 5.8, going from right to left.
Thus the operation No. k + 1 (k=0, 1,..., 38, cf. 5.8) finds
£, x in the right-most stage of AR, uses it, and then loses it
through its concluding right shift (of both Ac and AR). After this
step 39 — (k + 1) = 38 — k further steps, i.e. shifts follow, hence
before its own concluding shift there are still 39 — k shifts to come.
Hence the positional values are 23°-% times higher than they will
be at the end. &, , should appear at the end, in the correcting
term —x, with the sign — and the positional value 2-4°%. Hence
we may inject it during the step k + 1 (before its shift) with the

BRI 539 = (‘fp 52 s 539)*

.. &5 of x are lost in the course of the 39 shifts
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sign — and the positional value 1. That is to say, —&3,_; in the
sign digit.

This, however, is inadmissible. Indeed, £,,_, might cause carries
(if £3_, = 1), which would have nowhere to go from the sign digit
(there being no further positions to the left). This error is at its
origin an integer multiple of 2, but the 39 — k subsequent shifts
reduce its positional value 23~ times. Hence it might contribute
to the end result any integer multiple of 2-¥8-%_and this is a
genuine error.

Let us therefore add 1 — £;4_, to the sign digit, i.e. 0 or 1 if
£59_1 is 1 or 0, respectively. We will show further below, that with
this procedure there arise no carries of the inadmissible kind.
Taking this momentarily for granted, let us see what the total
effect is. We are correcting not by —x but by 2,
27t — x = 1 — 273 — . Hence a final correctionby —1 + 27%is
needed. Since this is done at the end (after all shifts), it may be
taken modulo 2. That is to say, we must add 1 + 2739, i.e. 1 in
each of the two extreme positions. Adding 1 in the right-most
position has the same effect as in the discussion at the end of 5.7
(dealing with the subtraction). It is equivalent to injecting a carry
into the right-most stage of Ac. Adding 1 in the left-most position,
i.e. to the sign digit, produces a 1, since that digit was necessarily
0. (Indeed, the last operation ended in a shift, thus freeing the
sign digit, cf. below.)

Fourth: Let us now consider the question of the carries that
may arise in the 39 steps of the process described above. In order
to do this, let us describe the kth step (k =1, ..., 39), which
is a variant of the kth step described for a positive multiplication
in 5.8, in the same way in which we described the original kth
step loc. cit. That is to say, let us see what the formula (1) of 5.8
has become. It is clearly 2p, = p_y + (1 — &49_s) + Ea0iy> i€

L= 1 for
yk[ ’

$40-k = 9
=y for ( )

Il
— O

2py = Pr—1 T Y Eos

That is, we add 1 (y’s sign digit) or ¢’ (y without its sign digit),
according to whether §,,_, = 0 or 1. Then p, should obtain from
2p, again by halving.

Now the addition of (2) produces no carries beyond the 2¢
position, as we asserted earlier, for the same reason as the addition
of (1) in 5.8. We can argue in the same way as there: 0 = p, <1
is true for h = 0, and if it is true for h = k — 1, then (1) extends
it to h = k also, since 0 = y';, = 1. Hence the sum in (2) is =0
and <2, and no carries beyond the 20 position arise.

Fifth: In the three last observations we assumed y < 0. Let
us now restore the full generality of y % 0. We can then describe
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the equations (1) of 5.8 (valid for y = 0) and (2) above (valid for
y < 0) by a single formula,

2P = Pr—1 + Y

“{: y's sign digit for
Yl = y without its sign digit  for

540—1: =0
fpox =1

Thus our verbal formulation of (2) applies here, too: We add y's
sign digit or y without its sign, according to whether §,,_, =0
or 1. All p; are =0 and <1, and the addition of (3) never originates
a carry beyond the 2° position. p, obtains from 2p, by a right
shift, filling the sign digit with a 0. (Cf. however, Part II, Table
2 for another sort of right shift that is desirable in explicit form,
i.e. as an order.)

3)

For y = 0, xy is pyg, for y < 0, xy obtains from p,4 by injecting
a carry into the right-most stage of Ac and by placing a 1 into
the sign digit in Ac.

Sixth: This procedure applies for x = 0. For x < 0 it should
also be applied, since it makes use of x’s non-sign digits only, but
at the end y must be subtracted from the result.

This method of binary multiplication will be illustrated in some
examples in 5.15.

5.11.
of our machine we must return to a consideration of the types
of accumulators mentioned in 5.5. The static accumulator operates

To complete our discussion of the multiplicative organs

as an adder by simultaneously applying static voltages to its two
inputs—one for each of the two numbers being added. When
steady-state operation is reached the total sum is formed complete
with all carries. For such an accumulator the above discussion is
substantially complete, except that it should be remarked that such
a circuit requires at most 39 rise times to complete a carry.
Actually it is possible that the duration of these successive rises
is proportional to a lower power of 39 than the first one.

Each stage of a dynamic accumulator consists of a binary
counter for registering the digit and a flip-flop for temporary
storage of the carry. The counter receives a pulse if a 1 is to be
added in at that place; if this causes the counter to go from 1
to 0 a carry has occurred and hence the carry flip-flop will be
set. It then remains to perform the carries. Each flip-flop has
associated with it a gate, the output of which is connected to the
next binary counter to the left. The carry is begun by pulsing all
carry gates. Now a carry may produce a carry, so that the process
needs to be repeated until all carry flip-flops register 0. This can
be detected by means of a circuit involving a sensing tube con-
nected to each carry flip-flop. It was shown in 5.6 that, on the
average, five pulse times (flip-flop reaction times) are required for
the complete carry. An alternative scheme is to connect a gate
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tube to each binary counter which will detect whether an incom-
ing carry pulse would produce a carry and will, under this cir-
cumstance, pass the incoming carry pulse directly to the next
stage. This circuit would require at most 39 rise times for the
completion of the carry. (Actually less, cf. above.)

At the present time the development of a static accumulator
is being concluded. From preliminary tests it seems that it will
add two numbers in about 5 psec and will shift right or left in
about 1 usec.

We return now to the multiplication operation. In a static
accumulator we order simultaneously an addition of the multi-
plicand with sign deleted or the sign of the multiplicand (cf. 5.10)
and a complete carry and then a shift for each of the 39 steps.
In a dynamic accumulator of the second kind just described we
order in succession an addition of the multiplicand with sign
deleted or the sign of the multiplicand, a complete carry, and a
shift for each of the 39 steps. In a dynamic accumulator of the
first kind we can avoid losing the time required for completing
the carry (in this case an average of 5 pulse times, cf. above) at
each of the 39 steps. We order an addition by the multiplicand
with sign deleted or the sign of the multiplicand, then order one
pulsing of the carry gates, and finally shift the contents of both
the digit counters and the carry flip-flops. This process is repeated
39 times. A simple arithmetical analysis which may be carried out
in a later report, shows that at each one of these intermediate
stages a single carry is adequate, and that a complete set of carries
is needed at the end only. We then carry out the complement
corrections, still without ever ordering a complete set of carry
operations. When all these corrections are completed and after
round-off, described below, we then order the complete carry
mentioned above.

5.12. It is desirable at this point in the discussion to consider
rules for rounding-off to n-digits. In order to assess the charac-
teristics of alternative possibilities for such properly, and in par-
ticular the role of the concept of “unbiasedness”, it is necessary
to visualize the conditions under which rounding-off is needed.

Every number x that appears in the computing machine is an
approximation of another number x’, which would have appeared
if the calculation had been performed absolutely rigorously. The
approximations to which we refer here are not those that are
caused by the explicitly introduced approximations of the numeri-
cal-mathematical set-up, e.g. the replacement of a (continuous)
differential equation by a (discrete) difference equation. The effect
of such approximations should be evaluated mathematically by the
person who plans the problem for the machine, and should not
be a direct concern of the machine. Indeed, it has to be handled
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by a mathematician and cannot be handled by the machine, since
its nature, complexity, and difficulty may be of any kind, depend-
ing upon the problem under consideration. The approximations
which concern us here are these: Even the elementary operations
of arithmetic, to which the mathematical approximation-formula-
tion for the machine has to reduce the true (possibly transcenden-
tal) problem, are not rigorously executed by the machine. The
machine deals with numbers of n digits, where n, no matter how
large, has to be a fixed quantity. (We assumed for our machine
40 digits, including the sign, i.e. n = 39.) Now the sum and differ-
ence of two n-digit numbers are again n-digit numbers, but their
product and quotient (in general) are not. (They have, in general,
2n or oo-digits, respectively.) Consequently, multiplication and
division must unavoidably be replaced by the machine by two
different operations which must produce n-digits under all condi-
tions, and which, subject to this limitation, should lie as close as
possible to the results of the true multiplication and division. One
might call them pseudo-multiplication and pseudo-division; how-
ever, the accepted nomenclature terms them as multiplication and
division with round-off. (We are now creating the impression that
addition and subtraction are entirely free of such shortcomings.
This is only true inasmuch as they do not create new digits to
the right, as multiplication and division do. However, they can
create new digits to the left, i.e. cause the numbers to “grow out
of range”. This complication, which is, of course, well known, is
normally met by the planner, by mathematical arrangements and
estimates to keep the numbers “within range”. Since we propose
to have our machine deal with numbers between —1 and 1,
multiplication can never cause them to “grow out of range”.
Division, of course, might cause this complication, too. The plan-
ner must therefore see to it that in every division the absolute
value of the divisor exceeds that of the dividend.)

Thus the round-off is intended to produce satisfactory n-digit
approximations for the product xy and the quotient x/y of two
n-digit numbers. Two things are wanted of the round-off: (1) The
approximation should be good, i.e. its variance from the “true”
xy or x/y should be as small as practicable; (2) The approximation
should be unbiased, i.e. its mean should be equal to the “true”
Xy or x/y.

These desiderata must, however, be considered in conjunction
with some further comments. Specifically: (a) x and y themselves
are likely to be the results of similar round-offs, directly or in-
directly inherent, i.e. x and y themselves should be viewed as
unbiased n-digit approximations of “true” x’ and y’ values; (b) by
talking of “variances” and “means” we are introducing statistical
concepts. Now the approximations which we are here considering
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are not really of a statistical nature, but are due to the peculiarities
(from our point of view, inadequacies) of arithmetic and of digital
representation, and are therefore actually rigorously and uniquely
determined. It seems, however, in the present state of mathe-
matical science, rather hopeless to try to deal with these matters
rigorously. Furthermore, a certain statistical approach, while not
truly justified, has always given adequate practical results. This
consists of treating those digits which one does not wish to use
individually in subsequent calculations as random variables with
equiprobable digital values, and of treating any two such digits
as statistically independent (unless this is patently false).

These things being understood, we can now undertake to dis-
cuss round-off procedures, realizing that we will have to apply
them to the multiplication and to the division.

Letx=(£,...§)andy = (9 .
mations of x’ and y’. Then the “true” xy = (.§; .

. . 1,) be unbiased approxi-
b )
and the “true” x/y = (... w,W, 1@, .5 ...) (this goes on ad
infinitum!) are approximations of 'y’ and x'/y’. Before we discuss
how to round them off, we must know whether the “true” xy and
x/y are themselves unbiased approximations of x’'y’ and x'/y’. xy
is indeed an unbiased approximation of x’'y’, i.e. the mean of xy
is the mean of x( = x’) times the mean of y( = y’), owing to the
independence assumption which we made above. However, if x
and y are closely correlated, e.g. for x = y, i.e. for squaring, there
is a bias. It is of the order of the mean square of x — «’, i.e. of
the variance of x. Since x has n digits, this variance is about 1 /22
(If the digits of x’, beyond n are entirely unknown, then our original
assumptions give the variance 1/12.22%) Next, x/y can be written
as x.y !, and since we have already discussed the bias of the
product, it suffices now to consider the reciprocal y~ 1. Now if
y is an unbiased estimate of y’, then y~! is not an unbiased estimate
of y’~1, i.e. the mean of y’s reciprocal is not the reciprocal of y’s
mean. The difference is ~y~3 times the variance of y, i.e. it is
of essentially the same order as the bias found above in the case
of squaring.

It follows from all this that it is futile to attempt to avoid biases
of the order of magnitude 1/22" or less. (The factor Y, above may
seem to be changing the order of magnitude in question. However,
it is really the square root of the variance which matters and
V(¥,» ~ 0.3 is a moderate factor.) Since we propose touse n = 39,
therefore 1/278(~3 x 1072%) is the critical case. Note that this
possible bias level is 1/239(~2 x 10712) times our last significant
digit. Hence we will look for round-off rules to n digits for
the “true” xy = (& ... &80y - &) and x/y = (w0 . ..
00y 1Wpin - - - ). The desideratum (1) which we formulated
previously, that the variance should be small, is still valid. The
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desideratum (2), however, that the bias should be zero, need,
according to the above, only be enforced up to terms of the order
1/22,

The round-off procedures, which we can use in this connection,
fall into two broad classes. The first class is characterized by its
ignoring all digits beyond the nth, and even the nth digit itself,
which it replaces by a 1. The second class is characterized by the
procedure of adding one unit in the (n + 1)st digit, performing
the carries which this may induce, and then keeping only the n
first digits.

When applied to a number of the form (v, . .. v, v, 17,0 . . . )
(ad infinitum!), the effects of either procedure are easily estimated.
> Vn-y)
plus a random number of the form (0 ..., 0v», v, .»...)
i.e. random in the interval 0, 1/2"1. Comparing with the rounded

In the first case we may say we are dealing with (v, . ..

off (wywy . ..
interval —1/2", 1/2" Hence its mean is 0 and its variance Y + 22",
In the second case we are dealing with (.»; . .

v,_,1), we therefore have a difference random in the

. 7,) plus a random
number of the form (.0 ... 00v, »,.,...), ie. random in the
interval 0, 1/2*, The “rounded-off ” value will be (.7, . . . »,) in-
creased by 0 or by 1/2%, according to whether the random number
in question lies in the interval 0, 1/2"+1, or in the interval 1/2"+1,
1/2". Hence comparing with the “rounded-off” value, we have
a difference random in the intervals 0, 1/2"*1, and 0, —1/27+1,
i.e. in the interval —1/27+1 1/27+1 Hence its mean is O and its
variance (¥,,)2%".

If the number to be rounded-off has the form (., ...
VoVnit¥pia - - - Vpyp) (p finite), then these results are somewhat
affected. The order of magnitude of the variance remains the same;
indeed for large p even its relative change is negligible. The mean
difference may deviate from 0 by amounts which are easily esti-
mated to be of the order 1/2" - 1/2° = 1/27+P,

In division we have the first situation, x/y = (w; ...
.. ), i.e. p is infinite. In multiplication we have the
o801 - - - &y,) 1.e.p = n. Hence for the
division both methods are applicable without modification. In
multiplication a bias of the order of 1/22* may be introduced. We
have seen that it is pointless to insist on removing biases of this
size. We will therefore use the unmodified methods in this case,
too.

It should be noted that the bias in the case of multiplication
can be removed in various ways. However, for the reasons set forth
above, we shall not complicate the machine by introducing such

Wy p 4 1Wnyg -
second one, xy = (.§; .

corrections.
Thus we have two standard “round-off” methods, both unbiased
to the extent to which we need this, and with the variances
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1/3 « 22", and (Y,)2%", that is, with the dispersions (1/+/3)(1/2")
= 0.58 times the last digit and (1/2+/3)(1/2") = 0.29 times the
last digit. The first one requires no carry facilities, the second one
requires them.

Inasmuch as we propose to form the product x'y’ in the accu-
mulator, which has carry facilities, there is no reason why we
should not adopt the rounding scheme described above which has
the smaller dispersion, i.e. the one which may induce carries. In
the case, however, of division we wish to avoid schemes leading
to carries since we expect to form the quotient in the arithmetic
register, which does not permit of carry operations. The scheme
which we accordingly adopt is the one in which w, is replaced
by 1. This method has the decided advantage that it enables us
to write down the approximate quotient as soon as we know its
first (n — 1) digits. It will be seen in 5.14 and 6.6.4 below that
our procedure for forming the quotient of two numbers will always
lead to a result that is correctly rounded in accordance with the
decisions just made. We do not consider as serious the fact that
our rounding scheme in the case of division has a dispersion twice
as large as that in multiplication since division is a far less frequent
operation.

A final remark should be made in connection with the possible,
occasional need of carrying more than n = 39 digits. Our logical
control is sufficiently flexible to permit treating k (=2, 3, ...)
words as one number, and thus effecting n = 39k. In this case the
round-off has to be handled differently, cf. Chapter 9, Part II. The
multiplier produces all 78 digits of the basic 39 by 39 digit multi-
plication: The first 39 in the Ac, the last 39 in the AR. These must
then be manipulated in an appropriate manner. (For details, cf.
6.6.3 and 9.9-9.10, Part IL.) The divider works for 39 digits only:
In forming x/y, it is necessary, even if x and y are available to
39k digits, to use only 39 digits of each, and a 39 digit result will
appear. It seems most convenient to use this result as the first step
of a series of successive approximations. The successive improve-
ments can then be obtained by various means. One way consists
of using the well known iteration formula (cf. 5.4). For k = 2 one
such step will be needed, for k = 3, 4, two steps, for k = 5, 6,
7, 8 three steps, etc. An alternative procedure is this: Calculate
the remainder, using the approximate, 39 digit, quotient and the
complete, 39k digit, divisor and dividend. Divide this again by
the approximate, 39 digit, divisor, thus obtaining essentially the
next 39 digits of the quotient. Repeat this procedure until the full
39k desired digits of the quotient have been obtained.

5.13. We might mention at this time a complication which
arises when a floating binary point is introduced into the machine.
The operation of addition which usually takes at most Y, of a
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multiplication time becomes much longer in a machine with
floating binary since one must perform shifts and round-offs as well
as additions. It would seem reasonable in this case to place the
time of an addition as about Y% to Y%, of a multiplication. At this
rate it is clear that the number of additions in a problem is as
important a factor in the total solution time as are the number
of multiplications. (For further details concerning the floating
binary point, cf. 6.6.7.)

5.14.  We conclude our discussion of the arithmetic unit with
a description of our method for handling the division operation.
To perform a division we wish to store the dividend in SR, the
partial remainder in Ac and the partial quotient in AR. Before
proceeding further let us consider the so-called restoring and
non-restoring methods of division. In order to be able to make
certain comparisons, we will do this for a general base m = 2,
3, .. ..

Assume for the moment that divisor and dividend are both
positive. The ordinary process of division consists of subtracting
from the partial remainder (at the very beginning of the process
this is, of course, the dividend) the divisor, repeating this until
the former becomes smaller than the latter. For any fixed positional
value in the quotient in a well-conducted division this need be
done at most m — 1 times. If, after preciselyk = 0,1, . . . , m — 1
repetitions of this step, the partial remainder has indeed become
less than the divisor, then the digit k is put in the quotient (at
the position under consideration), the partial remainder is shifted
one place to the left, and the whole process is repeated for the
next position, etc. Note that the above comparison of sizes is only
neededat k = 0,1, ..., m — 2, ie. before step 1 and after steps
1,...,m — 2 If the value k = m — 1, i.e. the point after step
m — 1, is at all reached in a well-conducted division, then it may
be taken for granted without any test, that the partial remainder
has become smaller than the divisor, and the operations on the
position under consideration can therefore be concluded. (In the
binary system, m = 2, there is thus only one step, and only one
comparison of sizes, before this step.) In this way this scheme,
known as the restoring scheme, requires a maximum of m — 1 com-
parisons and utilizes the digits 0, 1, ..., m — 1in each place in the
quotient. The difficulty of this scheme for machine purposes is that
usually the only economical method for comparing two numbers
as to size is to subtract one from the other. If the partial remainder
r, were less than the dividend d, one would then have to add d
back into , — d in order to restore the remainder. Thus at every
stage an unnecessary operation would be performed. A more sym-
metrical scheme is obtained by not restoring. In this method (from
here on we need not assume the positivity of divisor and dividend)
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one compares the signs of r, and d; if they are of the same sign,
the dividend is repeatedly subtracted from the remainder until
the signs become opposite; if they are opposite, the dividend is
repeatedly added to the remainder until the signs again become
like. In this scheme the digits that may occur in a given place
, =(m — 1), the posi-
tive digits corresponding to subtractions and the negative ones to

in the quotient are evidently =1, %2, . . .

additions of the dividend to the remainder.

Thus we have 2(m — 1} digits instead of the usual m digits.
In the decimal system this would mean 18 digits instead of 10.
This is a redundant notation. The standard form of the quotient
must therefore be restored by subtracting from the aggregate of
its positive digits the aggregate of its negative digits. This requires
carry facilities in the place where the quotient is stored.

We propose to store the quotient in AR, which has no carry
facilities. Hence we could not use this scheme if we were to
operate in the decimal system.

The same objection applies to any base m for which the digital
representation in question is redundant—i.e. when 2(m — 1) > m.
Now 2(m — 1) > m whenever m > 2, but 2(m — 1) = m for
m = 2. Hence, with the use of a register which we have so far
contemplated, this division scheme is certainly excluded from the
start unless the binary system is used.

Let us now investigate the situation in the binary system. We
inquire if it is possible to obtain a quasi-quotient by using the
non-restoring scheme and by using the digits 1, 0 instead of 1,
—1. Or rather we have to ask this question: Does this quasi-
quotient bear a simple relationship to the true quotient?

Let us momentarily assume this question can be answered
affirmatively and describe the division procedure. We store the
divisor initially in Ac, the dividend in SR and wish to form the
quotient in AR. We now either add or subtract the contents of
SR into Ac, according to whether the signs in Ac and SR are
opposite or the same, and insert correspondingly a 0 or 1 in the
right-hand place of AR. We then shift both Ac and AR one place
left, with electronic shifters that are parts of these two aggregates.

At this point we interrupt the discussion to note this: multipli-
cation required an ability to shift right in both Ac and AR (cf.
5.8). We have now found that division similarly requires an ability
to shift left in both Ac and AR. Hence both organs must be able to
shift both ways electronically. Since these abilities have to be
present for the implicit needs of multiplication and division, it is just
as well to make use of them explicitly in the form of explicit orders.
These are the orders 20, 21 of Table 1, and of Table 2, Part I1. It will,
however, turn out to be convenient to arrange some details in the
shifts, when they occur explicitly under the control of those orders,
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differently from when they occur implicitly under the control of a
multiplication or a division. (For these things, cf. the discussion of
the shifts near the end of 5.8 and in the third remark below on one
hand, and in the third remark in 7.2, Part II, on the other hand.)

Let us now resume the discussion of the division. The process
described above will have to be repeated as many times as the
number of quotient digits that we consider appropriate to produce
in this way. This is likely to be 39 or 40; we will determine the
exact number further below.

In this process we formed digits £ = 0 or 1for the quotient, when
the digitshould actuallyhavebeen§;, = —1lorl,with§] = 2§ — 1.
Thus we have a difference between the true quotient z (based on
the digits £;) and the quasi-quotient z’ (based on the digits &), but
at the same time a one-to-one connection. It would be easy to
establish the algebraical expression for this connection between z’
and z directly, but it seems better to do this as part of a discussion
which clarifies all other questions connected with the process of
division at the same time.

We first make some general remarks:

First: Let x be the dividend and y the divisor. We assume, of
course, —1 << x < 1, —1 = y < 1. It will be found that our pres-
ent process of division is entirely unaffected by the signs of x and
y, hence no further restrictions on that score are required.

On the other hand, the quotient z = x/y must also fulfil
—1 =z < 1. It seems somewhat simpler although this is by no
means necessary, to exclude for the purposes of this discussion

z= —1, and to demand |z| < 1. This means in terms of the
dividend x and the divisor y that we exclude x = —y and assume
x| <y

Second: The division takes place in n steps, which correspond
to the n digits §;, . . . , &, of the pseudo-quotient z’, n being yet to
be determined (presumably 39 or 40). Assume that the k — 1 first
steps (k = 1, . . ., n) have already taken place, having produced
the k — 1 first digits: £}, . . ., &§;_;; and that we are now at the
kth step, involving production of the kth digit; &. Assume
furthermore, that Ac now contains the quantity r,_,, the result
of the k — 1 first steps. (This is the (k — 1)st partial remainder.
For k = 1 clearly r, = x.) We then form r, = 2r,_; = y, accord-
ing to whether the signs of r,_; and y do or do not agree, i.e.

7 = 21, My
[is — if the signs of r,_; and y do agree
is + if the signs of r,_, and y do not agree

Let us now see what carries may originate in this procedure.
We can argue as follows: |r,| < |y| is true for h = 0(|r,| =
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x| < |y}), and if it is true for h = k — 1, then (4) extends it to
h = k also, since r,_; and [y have opposite signs. The last point
may be elaborated a little further: because of the opposite signs

Il = 2Imal = lyl <2[yl = |yl = |y

Hencewehave always |r, | <{ |y|,and thereforeafortiori |r, | < 1,
e —1<r, <1

Consequently in equation (4) one summand is necessarily > —2,
<2, the other is =1, <1, and the sum is > —1, <1. Hence we
may carry out the operations of (4) modulo 2, disregarding any
possibilities of carries beyond the 2° position, and the resulting
7, will be automatically correct (in the range > —1, <1).

Third: Note however that the sign of r,_,, which plays an
important role in (4) above, is only then correctly determinable
from the sign digit, if the number from which it is derived is = —1,
< 1. (Cf. the discussion in 5.7.) This requirement however is met,
as we saw above, by r,_,, but not necessarily by 2r,_,. Hence the
sign of r,_, (i.e. its sign digit) as required by (4), must be sensed
before r,_; is doubled.

This being understood, the doubling of r,_; may be performed
as a simple left shift, in which the left-most digit (the sign digit)
is allowed to be lost—this corresponds to the disregarding of
carries beyond the 2° position, which we recognized above as being
permissible in (4). (Cf. however, Part II, Table 2, for another sort
of left shift that is desirable in explicit form, i.e. as an order.)

Fourth: Consider now the precise implication of (4) above.
& =1 or 0 corresponds to Bl = — or +, respectively. Hence
(4) may be written

=2, + (1 = 28)y
ie.
24krk — 2—(k—1),¢k_1 + (2—lc _ 2—(k—1)$]/€)y
Summing over k =1, . . ., n gives
n
27", = x + [(1 -2 — Z 2-t-1g: ] y
k=1
ie.
n
x = ( — 14 > 2-b-1g 4 2—") y+ 27",
k=1

This makes it clear, thatz= —1 + $2_,27%=D¢& | 2-" corre-
sponds to true quotient z = x/y and 2-"r,, with an absolute value
<27"|y| = 27", to the remainder. Hence, if we disregard the term
—1 for a moment £,£), ..., &, 1 are the n + 1 first digits of
what may be used as a true quotient, the sign digit being part
of this sequence.
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Fifth: If we do not wish to get involved in more complicated
round-off procedures which exceed the immediate capacity of the
only available adder Ac, then the above result suggests that we
shouldputn + 1 = 40,n = 39.The {}, . . ., &g are then 39 digits
of the quotient, including the sign digit, but not including the
right-most digit.

The right-most digit is taken care of by placing a 1 into the
right-most stage of Ac.

At this point an additional argument in favor of the procedure
that we have adopted here becomes apparent. The procedure
coincides (without a need for any further corrections) with the
second round-off procedure that we discussed in 5.12.

There remains the term —1. Since this applies to the final
result, and no right shifts are to follow, carries which might go
beyond the 2° position may be disregarded. Hence this amounts
simply to changing the sign digit of the quotient z: replacing 0
or 1 by I or 0, respectively.

This concludes our discussion of the division scheme. We wish,
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however, to re-emphasize two very distinctive features which it
possesses:

First: This division scheme applies equally for any combina-
tions of signs of divisor and dividend. This is a characteristic of
the non-restoring division schemes, but it is not the case for any
simple known multiplication scheme. It will be remembered, in
particular, that our multiplication procedure of 5.9 had to contain
special correcting steps for the cases where either or both factors
are negative.

Second: This division scheme is practicable in the binary sys-
tem only; it has no analog for any other base.

This method of binary division will be illustrated on some
examples in 5.15.

5.15. We give below some illustrative examples of the opera-
tions of binary arithmetic which were discussed in the preceding
sections.

Although it presented no difficulties or ambiguities, it seems
best to begin with an example of addition.

Binary notation

Augend . .. ... ... 0.010110011

Addend . .. .. ... ... 0.011010111
Sum. ... 0.110001010
(Carries) . ... ... ... 1111 111

In what follows we will not show the carries any more.
We form the negative of a number (cf. 5.7):

Binary notation
0.101110100

1.010001011
1

1.010001100

A subtraction (cf. 5.7):

Binary notation

Subtrahend . . . ... . ... ... 0.011010111
Minuend . ... ... ... .. ... ... ... . ..., 0.110001010
Complement of subtrahend . . .. ... ... ... .. 1.100101000

1
Difference ... ... ... ... ... ... . ... .. .. 0.010110011

Decimal notation (fractional form)

179/512
215/512

394,512

Decimal notation (fractional form)
372/512

-1 +140/512

Decimal notation (fractional form)
215/512
394/512

-1 +297/512
179/512
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Some multiplications (cf. 5.8 and 5.9):

Binary notation
Multiplicand . . . ... ... ... ... . ... ..
Multiplier

Section 1 | Processors with one address per instruction

Decimal notation (fractional form)
5/8
3/8

Product

Multiplicand
Multiplier

15/64
Decimal notation (fractional form)

-3/8
-5/8

Correction 1t

101111
1 1

Correction 2§ (Complement of the multiplicand).

1.110111
0.010
1

A division (cf. 5.14):

Binary notation

0.001111

1.011000
0.001111

15/64

Decimal notation (fractional form)

—-5/8
15/64

QD3§

1.110110

0.011110
1.011000

0.010100

1.101100
0.100111
1

0.101000

1.011000

0.000000

0.000000
1.011000

1.011000

1.011000

0.110000
0.100111
1

Quotient (uncorrected)
" (corrected)

—1 4 39/64 = —25/64

T For the sign of the multiplicand. 1 For the sign of the

multiplier.

§ Quotient digit.
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Note that this deviates by Y,, i.e. by one unit of the right-most
position, from the correct result —3%. This is a consequence of
our round-off rule, which forces the right-most digit to be 1 under
all conditions. This occasionally produces results with unfamiliar
and even annoying aspects (e.g. when quotients like 0:y or y:y
are formed), but it is nevertheless unobjectionable and self-
consistent on the basis of our general principles.

6. The control

6.1.
an organ, called the control, which can automatically execute the

It has already been stated that the computer will contain

orders stored in the Selectrons. Actually, for a reason stated in
6.3, the orders for this computer are less than half as long as a
forty binary digit number, and hence the orders are stored in the
Selectron memory in pairs.

Let us consider the routine that the control performs in direct-
ing a computation. The control must know the location in the
Selectron memory of the pair of orders to be executed. It must
direct the Selectrons to transmit this pair of orders to the Selectron
register and then to itself. It must then direct the execution of
the operation specified in the first of the two orders. Among these
orders we can immediately describe two major types: An order
of the first type begins by causing the transfer of the number,
which is stored at a specified memory location, from the Selectrons
to the Selectron register. Next, it causes the arithmetical unit to
perform some arithmetical operations on this number (usually in
conjunction with another number which is already in the arith-
metical unit), and to retain the resulting number in the arith-
metical unit. The second type order causes the transfer of the
number, which is held in the arithmetical unit, into the Selectron
register, and from there to a specified memory location in the
Selectrons. (It may also be that this latter operation will permit
a direct transfer from the arithmetical unit into the Selectrons.)
An additional type of order consists of the transfer orders of 3.5.
Further orders control the inputs and the outputs of the machine.
The process described at the beginning of this paragraph must
then be repeated with the second order of the order pair. This
entire routine is repeated until the end of the problem.

6.2. Itis clear from what has just been stated that the control
must have a means of switching to a specified location in the
Selectron memory, for withdrawing both numbers for the compu-
tation and pairs of orders. Since the Selectron memory (as tenta-
tively planned) will hold 212 = 4,096 forty-digit words (a word is
either a number or a pair of orders), a twelve-digit binary number
suffices to identify a memory location. Hence a switching mecha-
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nism is required which will, on receiving a twelve-digit binary
number, select the corresponding memory location.

The type of circuit we propose to use for this purpose is known
as a decoding or many-one function table. It has been developed
in various forms independently by J. Rajchman [Rajchman, 1943]
and P. Crawford [Crawford, 197?]. It consists of n flip-flops which
register an n-digit binary number. It also has a maximum of 2"
output wires. The flip-flops activate a matrix in which the inter-
connections between input and output wires are made in such a
way that one and only one of 2" output wires is selected (i.e. has
a positive voltage applied to it). These interconnections may be
established by means of resistors or by means of non-linear ele-
ments (such as diodes or rectifiers); all these various methods are
under investigation. The Selectron is so designed that four such
function table switches are required, each with a three digit entry
and eight (23) outputs. Four sets of eight wires each are brought
out of the Selectron for switching purposes, and a particular loca-
tion is selected by making one wire positive with respect to the
remainder. Since all forty Selectrons are switched in parallel, these
four sets of wires may be connected directly to the four function
table outputs.

6.3.
number located in the Selectron memory, it is reasonable to adopt

Since most computer operations involve at least one

a code in which twelve binary digits of every order are assigned
to the specification of a Selectron location. In those orders which
do not require a number to be taken out of or into the Selectrons
these digit positions will not be used.

Though it has not been definitely decided how many operations
will be built into the computer (i.e. how many different orders
the control must be able to understand), it will be seen presently
that there will probably be more than 2% but certainly less than
28, For this reason it is feasible to assign 6 binary digits for the
order code. It thus turns out that each order must contain eighteen
binary digits, the first twelve identifying a memory location and
the remaining six specifying an operation. It can now be explained
why orders are stored in the memory in pairs. Since the same
memory organ is to be used in this computer for both orders and
numbers, it is efficient to make the length of each about equivalent.
But numbers of eighteen binary digits would not be sufficiently
accurate for problems which this machine will solve. Rather, an
accuracy of at least 1071° or 233 is required. Hence it is preferable
to make the numbers long enough to accommodate two orders.

As we pointed out in 2.3, and used in 4.2 et seq. and 5.7 et
seq., our numbers will actually have 40 binary digits each. This
allows 20 binary digits for each order, i.e. the 12 digits that specify
a memory location, and 8 more digits specifying the nature of the
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operation (instead of the minimum of 6 referred to above). It is
convenient, as will be seen in 6.8.2. and Chapter 9, Part II, to
group these binary digits into tetrads, groups of 4 binary digits.
Hence a whole word consists of 10 tetrads, a half word or order
of 5 tetrads, and of these 3 specify a memory location and the
remaining 2 specify the nature of the operation. Qutside the
machine each tetrad can be expressed by a base 16 digit. (The
base 16 digits are best designated by symbols of the 10 decimal
digits 0 to 9, and 6 additional symbols, e.g. the letters a to {. Cf.
Chapter 9, Part IL) These 16 characters should appear in the
typing for and the printing from the machine. (For further details
of these arrangements, cf. loc. cit. above.)

The specification of the nature of the operation that is involved
in an order occurs in binary form, so that another many-one or
decoding function is required to decode the order. This function
table will have six input flip-flops (the two remaining digits of the
order are not needed). Since there will not be 64 different orders,
not all 64 outputs need be provided. However, it is perhaps
worthwhile to connect the outputs corresponding to unused order
possibilities to a checking circuit which will give an indication
whenever a code word unintelligible to the control is received
in the input flip-flops.

The function table just described energizes a different output
wire for each different code operation. As will be shown later,
many of the steps involved in executing different orders overlap.
(For example, addition, multiplication, division, and going from
the Selectrons to the register all include transferring a number from
the Selectrons to the Selectron register.) For this reason it is
perhaps desirable to have an additional set of control wires, each
of which is activated by any particular combination of different
code digits. These may be obtained by taking the output wires
of the many-one function table and using them to operate tubes
which will in turn operate a one-many (or coding) function table.
Such a function table consists of a matrix as before, but in this
case only one of the input wires are activated. This particular table
may be referred to as the recoding function table.

The twelve flip-flops operating the four function tables used
in selecting a Selectron position, and the six flip-flops operating
the function table used for decoding the order, are referred to as
the Function Table Register, FR.

6.4. Let us consider next the process of transferring a pair
of orders from the Selectrons to the control. These orders first go
into SR. The order which is to be used next may be transferred
directly into FR. The second order of the pair must be removed
from SR (since SR may be used when the first order is executed),
but cannot as yet be placed in FR. Hence a temporary storage
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is provided for it. The storage means is called the Control Register,
CR, and consists of 20 (or possibly 18) flip-flops, capable of re-
ceiving a number from SR and transmitting a number to FR.

As already stated (6.1), the control must know the location of
the pair of orders it is to get from the Selectron memory. Normally
this location will be the one following the location of the two
orders just executed. That is, until it receives an order to do
otherwise, the control will take its orders from the Selectrons in
sequence. Hence the order location may be remembered in a
twelve stage binary counter (one capable of counting 212) to which
one unit is added whenever a pair of orders is executed. This
counter is called the Control Counter, CC.

The details of the process of obtaining a pair of orders from
the Selectron are thus as follows: The contents of CC are copied
into FR, the proper Selectron location is selected, and the contents
of the Selectrons are transferred to SR. FR is then cleared, and
the contents of SR are transferred to it and CR. CC is advanced
by one unit so the control will be prepared to select the next pair
of orders from the memory. (There is, however, an exception from
this last rule for the so-called transfer orders, cf. 3.5. This may
feed CC in a different manner, cf. the next paragraph below.) First
the order in FR is executed and then the order in CR is transferred
to FR and executed. It should be noted that all these operations
are directed by the control itself—not only the operations specified
in the control words sent to FR, but also the automatic operations
required to get the correct orders there.

Since the method by means of which the control takes order
pairs in sequence from the memory has been described, it only
remains to consider how the control shifts itself from one sequence
of control orders to another in accordance with the operations
described in 3.5. The execution of these operations is relatively
simple. An order calling for one of these operations contains the
twelve digit specification of the position to which the control is
to be switched, and these digits will appear in the left-hand twelve
flip-flops of FR. All that is required to shift the control is to transfer
the contents of these flip-flops to CC. When the control goes to
the Selectrons for the next pair of orders it will then go to the
location specified by the number so transferred. In the case of the
unconditional transfer, the transfer is made automatically; in the
case of the conditional transfer it is made only if the sign counter
of the Accumulator registers zero.

6.5. 1In this report we will discuss only the general method
by means of which the control will execute specific orders, leaving
the details until later. It has already been explained (5.5) that when
a circuit is to be designed to accomplish a particular elementary
operation (such as addition), a choice must be made between a
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static type and a dynamic type circuit. When the design of the
control is considered, this same choice arises. The function of the
control is to direct a sequence of operations which take place in
the various circuits of the computer (including the circuits of the
control itself). Consider what is involved in directing an operation.
The control must signal for the operation to begin, it must supply
whatever signals are required to specify that particular operation,
and it must in some way know when the operation has been
completed so that it may start the succeeding operation. Hence
the control circuits must be capable of timing the operations. It
should be noted that timing is required whether the circuit per-
forming the operation is static or dynamic. In the case of a static
type circuit the control must supply static control signals for a
period of time sufficient to allow the output voltages to reach the
steady-state condition. In the case of a dynamic type circuit the
control must send various pulses at proper intervals to this circuit.

If all circuits of a computer are static in character, the control
timing circuits may likewise be static, and no pulses are needed
in the system. However, though some of the circuits of the com-
puter we are planning will be static, they will probably not all
be so, and hence pulses as well as static signals must be supplied
by the control to the rest of the computer. There are many advan-
tages in deriving these pulses from a central source, called the
clock. The timing may then be done either by means of counters
counting clock pulses or by means of electrical delay lines (an RC
circuit is here regarded as a simple delay line). Since the timing
of the entire computer is governed by a single pulse source, the
computer circuits will be said to operate as a synchronized system.

The clock plays an important role both in detecting and in
localizing the errors made by the computer. One method of check-
ing which is under consideration is that of having two identical
computers which operate in parallel and automatically compare
each other’s results. Both machines would be controlled by the
same clock, so they would operate in absolute synchronism. It is
not necessary to compare every flip-flop of one machine with the
corresponding flip-flop of the other. Since all numbers and control
words pass through either the Selectron register or the accumu-
lator soon before or soon after they are used, it suffices to check
the flip-flops of the Selectron register and the flip-flops of the
accumulator which hold the number registered there; in fact, it
seems possible to check the accumulator only (cf. the end of 6.6.2).
The checking circuit would stop the clock whenever a difference
appeared, or stop the machine in a more direct manner if an
asynchronous system is used. Every flip-flop of each computer will
be located at a convenient place. In fact, all neons will be located
on one panel, the corresponding neons of the two machines being
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placed in parallel rows so that one can tell at a glance (after the
machine has been stopped) where the discrepancies are.

The merits of any checking system must be weighed against
its cost. Building two machines may appear to be expensive, but
since most of the cost of a scientific computer lies in development
rather than production, this consideration is not so important as
it might seem. Experience may show that for most problems the
two machines need not be operated in parallel. Indeed, in most
cases purely mathematical, external checks are possible: Smooth-
ness of the results, behavior of differences of various types, validity
of suitable identities, redundant calculations, etc. All of these
methods are usually adequate to disclose the presence or absence
of error in toto; their drawback is only that they may not allow
the detailed diagnosing and locating of errors at all or with ease.
When a problem is run for the first time, so that it requires special
care, or when an error is known to be present, and has to be
located—only then will it be necessary as a rule, to use both
machines in parallel. Thus they can be used as separate machines
most of the time. The essential feature of such a method of check-
ing lies in the fact that it checks the computation at every point
(and hence detects transient errors as well as steady-state ones)
and stops the machine when the error occurs so that the process
of localizing the fault is greatly simplified. These advantages are
only partially gained by duplicating the arithmetic part of the
computer, or by following one operation with the complement
operation (multiplication by division, etc.), since this fails to check
either the memory or the control (which is the most complicated,
though not the largest, part of the machine).

The method of localizing errors, either with or without a dupli-
cate machine, needs further discussion. It is planned to design all
the circuits (including those of the control) of the computer so
that if the clock is stopped between pulses the computer will
retain all its information in flip-flops so that the computation may
proceed unaltered when the clock is started again. This principle
has already demonstrated its usefulness in the ENIAC. This makes
it possible for the machine to compute with the clock operating
at any speed below a certain maximum, as long as the clock gives
out pulses of constant shape regardless of the spacing between
pulses. In particular, the spacing between pulses may be made
indefinitely large. The clock will be provided with a mode of
operation in which it will emit a single pulse whenever instructed
to do so by the operator. By means of this, the operator can cause
the machine to go through an operation step by step, checking
the results by means of the indicating-lamps connected to the
flip-flops. It will be noted that this design principle does not
exclude the use of delay lines to obtain delays as long as these
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are only used to time the constituent operations of a single step,
and have no part in determining the machine’s operating repeti-
tion rate. Timing coincidences by means of delay lines is excluded
since this requires a constant pulse rate.

6.6. The orders which the control understands may be divided
into two groups: Those that specify operations which are per-
formed within the computer and those that specify operations
involved in getting data into and out of the computer. At the
present time the internal operations are more completely planned
than the input and output operations, and hence they will be
discussed more in detail than the latter (which are treated briefly
in 6.8). The internal operations which have been tentatively
adopted are listed in Table 1. It has already been pointed out that
not all of these operations are logically basic, but that many can
be programmed by means of others. In the case of some of these
operations the reasons for building them into the control have
already been given. In this section we will give reasons for building
the other operations into the control and will explain in the case
of each operation what the control must do in order to exe-
cute it.

In order to have the precise mathematical meaning of the
symbols which are introduced in what follows clearly in mind,
the reader should consult the table at the end of the report for
each new symbol, in addition to the explanations given in the text.

6.6.1. Throughout what follows S(x) will denote the memory
location No. x in the Selectron. Accordingly the x which appears
in S(x) is a 12-digit binary, in the sense of 6.2. The eight addition
operations [S(x) » Ac+, S(x) > Ac—, S(x) > Ah+, S(x) > Ah—,
S(x)— Ac + M, S(x)— Ac — M, S(x) > Ah + M, S(x) > Ah — M]
involves the following possible four steps:

First: Clear SR and transfer into it the number at S(x).

Second: Clear Ac if the order contains the symbol ¢; do not
clear Ac if the order contains the symbol h.

Third: Add the number in SR or its negative (i.e. in our present
system its complement with respect to 21) into Ac. If the order does
not contain the symbol M, use the number in SR or its negative
according to whether the order contains the symbol + or —. If the
order contains the symbol M, use the number in SR or its negative
according to whether the sign of the number in SR and the symbol
+ or — in the order do or do not agree.

Fourth: Perform a complete carry. Building the last four addi-
tion operations (those containing the symbol M) into the control
is fairly simple: It calls only for one extra comparison (of the sign
in SR and the + or — in the order, cf. the third step above), and
it requires, therefore, only a few tubes more than required for the
first four addition operations (those not containing the symbol M).
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These facts would seem of themselves to justify adding the opera-
tions in question: plus and minus the absolute value. But it should
be noted that these operations can be programmed out of the other
operations of Table 1 with correspondingly few orders (three for
absolute value and five for minus absolute value), so that some
further justification for building them in is required. The absolute
value order is frequently in connection with the orders L and R
(see 6.6.7), while the minus absolute value order makes the detec-
tion of a zero very simple by merely detecting the sign of — | N|.
(If —|N| =0, then N = 0.)

6.6.2. The operation of S(x) — R involves the following two
steps:

First: Clear SR, and transfer S(x) to it.

Second: Clear AR and add the number in the Selectron register
into it. The operation of R — Ac merits more detailed discussion,
since there are alternative ways of removing numbers from AR.
Such numbers could be taken directly to the Selectrons as well
as into Ac, and they could be transferred to Ac in parallel, in
sequence, or in sequence parallel. It should be recalled that while
most of the numbers that go into AR have come from the Selec-
trons and thus need not be returned to them, the result of a
division and the right-hand 39 digits of a product appear in AR.
Hence while an operation for withdrawing a number from AR is
required, it is relatively infrequent and therefore need not be
particularly fast. We are therefore considering the possibility of
transferring at least partially in sequence and of using the shifting
properties of Ac and of AR for this. Transferring the number to
the Selectron via the accumulator is also desirable if the dual
machine method of checking is employed, for it means that even
if numbers are only checked in their transit through the accumu-
lator, nevertheless every number going into the Selectron is
checked before being placed there.

6.6.3. The operation S(x) X R — Ac involves the following six
steps:

First: Clear SR and transfer S(x) (the multiplicand) into it.

Second: Thirty-nine steps, each of which consist of the two
following parts: (a) Add (or rather shift) the sign digit of SR into
the partial product in Ac, or add all but the sign digit of SR into
the partial product in Ac—depending upon whether the right-most
digit in AR is 0 or 1—and effect the appropriate carries. (b) Shift
Ac and AR to the right, fill the sign digit of Ac with a 0 and the
digit of AR immediately right of the sign digit (positional value
2-1) with the previously right-most digit of Ac. (There are ways
to save time by merging these two operations when the right-most
digit in Ar is 0, but we will not discuss them here more fully.)

Third: If the sign digit in SR is 1 (i.e. —), then inject a carry
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into the right-most stage of Ac and place a 1 into the sign digit
of Ac.

Fourth: If the original sign digit of AR is 1 (i.e. —), then sub-
tract the contents of SR from Ac.

Fifth: If a partial carry system was employed in the main
process, then a complete carry is necessary at the end.

Sixth: The appropriate round-off must be effected. (Cf. Chapter
9, Part II, for details, where it is also explained how the sign digit
of the Arithmetic register is treated as part of the round-off
process.)

It will be noted that since any number held in Ac at the begin-
ning of the process is gradually shifted into AR, it is impossible
to accumulate sums of products in Ac without storing the various
products temporarily in the Selectrons. While this is undoubtedly
a disadvantage, it cannot be eliminated without constructing an
extra register, and this does not at this moment seem worthwhile.

On the other hand, saving the right-hand 39 digits of the answer
is accomplished with very little extra equipment, since it means
connecting the 2739 stage of Ac to the 27! stage of AR during the
shift operation. The advantage of saving these digits is that it
simplifies the handling of numbers of any number of digits in the
computer (cf. the last part of 5.12). Any number of 39k binary
digits (where k is an integer) and sign can be divided into k parts,
each part being placed in a separate Selectron position. Addition
and subtraction of such numbers may be programmed out of a
series of additions or subtractions of the 39-digit parts, the carry-
over being programmed by means of Cc— S(x) and Cc¢’ — S(x)
operations. (If the 2° stage of Ac registers negative after the addi-
tion of two 39-digit parts, a carry-over has taken place and hence
2739 must be added to the sum of the next parts.) A similar proce-
dure may be followed in multiplication if all 78 digits of the
product of the two 39-digit parts are kept, as is planned. (For the
details, cf. Chapter 9, Part I1.) Since it would greatly complicate
the computer to make provision for holding and using a 78 digit
dividend, it is planned to program 39k digit division in one of the
ways described at the end of 5.12.

6.6.4. The operation of division Ac + S(x) — R involves the
following four steps:

First: Clear SR and transfer S(x) (the divisor) into it.

Second: Clear AR.

Third: Thirty-nine steps, each of which consists of the following
three parts: (a) Sense the signs of the contents of Ac (the partial
remainder) and of SR, and sense whether they agree or not. (b)
Shift Ac and AR left. In this process the previous sign digit of
Ac is lost. Fill the right-most digit of Ac (after the shift) with a
0, and the right-most digit of AR (before the shift) with 0 or 1,
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depending on whether there was disagreement or agreement in
(a). (c) Add or subtract the contents of SR into Ac, depending on
the same alternative as above.

Fourth: Fill the right-most digit of AR with a 1, and change
its sign digit.

For the purpose of timing the 39 steps involved in division a
six-stage counter (capable of counting to 28 = 64) will be built
into the control. This same counter will also be used for timing
the 39 steps of multiplication, and possibly for controlling Ac when
a number is being transferred between it and a tape in either
direction (see 6.8.).

6.6.5. The three substitution operations [At — S(x), Ap — S(x),
and Ap’ — S(x)] involve transferring all or part of the number held
in Ac into the Selectrons. This will be done by means of gate tubes
connected to the registering flip-flops of Ac. Forty such tubes are
needed for the total substitutions, At — S(x). The partial substitu-
tion Ap — S(x) and Ap’ — S(x) requires that the left-hand twelve
digits of the number held in Ac be substituted in the proper places
in the left-hand and right-hand orders, respectively. This may be
done by means of extra gate tubes, or by shifting the number in
Ac and using the gate tubes required for At — S(x). (This scheme
needs some additional elaboration, when the order directing and
the order suffering the substitution are the two successive halves
of the same word; i.e. when the latter is already in FR at the time
when the former becomes operative in CR, so that the substitution
effected in the Selectrons comes too late to alter the order which
has already reached CR, to become operative at the next step in
FR. There are various ways to take care of this complication, either
by some additional equipment or by appropriate prescriptions in
coding. We will not discuss them here in more detail, since the
decisions in this respect are still open.)

The importance of the partial substitution operations can
hardly be overestimated. It has already been pointed out (3.3) that
they allow the computer to perform operations it could not other-
wise conveniently perform, such as making use of a function table
stored in the Selectron memory. Furthermore, these operations
remove a very sizeable burden from the person coding problems,
for they make possible the coding of classes of problems in contrast
to coding each individual problem separately. Because Ap — S(x)
and Ap’ — S(x) are available, any program sequence may be stated
in general form (that is, without Selectron location designations
for the numbers being operated on) and the Selectron locations
of the numbers to be operated on substituted whenever that se-
quence is used. As an example, consider a general code for nth
order integration of m total differential equations for p steps of
independent variable ¢, formulated in advance. Whenever a prob-
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lem requiring this rule is coded for the computer, the general
integration sequence can be inserted into the statement of the
problem along with coded instructions for telling the sequence
where it will be located in the memory [so that the proper S(x)
designations will be inserted into such orders as Cu — S(x), etc.].
Whenever this sequence is to be used by the computer it will
automatically substitute the correct values of m, n, p and At, as
well as the locations of the boundary conditions and the descrip-
tions of the differential equations, into the general sequence. (For
the details of this particular procedure, cf. Chapter 13, Part IL)
A library of such general sequences will be built up, and facilities
provided for convenient insertion of any of these into the coded
statement of a problem (cf. 6.8.4). When such a scheme is used,
only the distinctive features of a problem need be coded.

6.6.6. The manner in which the control shift operations
[Cu— S(x), Ct’ — S(x), Cc — S(x), and Cc¢’ — S(x)] are realized has
been discussed in 6.4 and needs no further comment.

6.6.7. One basic question which must be decided before a
computer is built is whether the machine is to have a so-called
floating binary (or decimal) point. While a floating binary point
is undoubtedly very convenient in coding problems, building it
into the computer adds greatly to its complexity and hence a
choice in this matter should receive very careful attention. How-
ever, it should first be noted that the alternatives ordinarily con-
sidered (building a machine with a floating binary point vs. doing
all computation with a fixed binary point) are not exhaustive and
hence that the arguments generally advanced for the floating
binary point are only of limited validity. Such arguments overlook
the fact that the choice with respect to any particular operation
(except for certain basic ones) is not between building it into the
computer and not using it at all, but rather between building it
into the computer and programming it out of operations built into
the computer. (One short reference to the floating binary point
was made in 5.13.)

Building a floating binary point into the computer will not only
complicate the control but will also increase the length of a num-
ber and hence increase the size of the memory and the arithmetic
unit. Every number is effectively increased in size, even though
the floating binary point is not needed in many instances. Further-
more, there is considerable redundancy in a floating binary point
type of notation, for each number carries with it a scale factor,
while generally speaking a single scale factor will suffice for a
possibly extensive set of numbers. By means of the operations
already described in the report a floating binary point can be
programmed. While additional memory capacity is needed for this,
it is probably less than that required by a built-in floating binary
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point since a different scale factor does not need to be remembered
for each number.

To program a floating binary point involves detecting where
the first zero occurs in a number in Ac. Since Ac has shifting
facilities this can best be done by means of them. In terms of the
operations previously described this would require taking the given
number out of Ac and performing a suitable arithmetical operation
on it: For a (multiple) right shift a multiplication, for a (multiple)
left shift either one division, or as many doublings (i.e. additions)
as the shift has stages. However, these operations are inconvenient
and time-consuming, so we propose to introduce two operations
(L and R) in order that this (i.e. the single left and right shift)
can be accomplished directly. These operations make use of facili-
ties already present in Ac and hence add very little equipment
to the computer. It should be noted that in many instances a single
use of L and possibly of R will suffice in programming a floating
binary point. For if the two factors in a multiplication have no
superfluous zeros, the product will have at most one superfluous
zero (if Y, = X < land Y% =< Y < 1, then %, = XY < 1). This is
similarly true in division (if ¥, =X < % and % = Y < 1, then
Y, < X/Y < 1). In addition and subtraction any numbers growing
out of range can be treated similarly. Numbers which decrease
in these cases, i.e. develop a sequence of zeros at the beginning,
are really (mathematically) losing precision. Hence it is perfectly
proper to omit formal readjustments in this event. (Indeed, such
a true loss of precision cannot be obviated by any formal proce-
dure, but, if at all, only by a different mathematical formulation
of the problem.)

6.7. Table 1 shows that many of the operations which the
control is to execute have common elements. Thus addition, sub-
traction, multiplication and division all involve transferring a
number from the Selectrons to SR. Hence the control may be
simplified by breaking some of the operations up into more basic
ones. A timing circuit will be provided for each basic operation,
and one or more such circuits will be involved in the execution
of an order. The exact choice of basic operations will depend upon
how the arithmetic unit is built.

In addition to the timing circuits needed for executing the
orders of Table 1, two such circuits are needed for the automatic
operations of transferring orders from the Selectron register to CR
and FR, and for transferring an order from CR to FR. In normal
computer operation these two circuits are used alternately, so a
binary counter is needed to remember which is to be used next.
In the operations Cu’ — S(x) and Cc — S(x) the first order of a pair
is ignored, so the binary counter must be altered accordingly.

The execution of a sequence of orders involves using the various
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Table 1
Symbolization
Complete Abbreviated Operation

1 S(x) —» Ac+ x Clear accumulator and add number located at position x in the Selectrons into it.

2 S(x) — Ac— x— Clear accumulator and subtract number located at position x in the Selectrons into it.

3 S(x) - AcM M Clear accumulator and add absolute value of number located at position x in the Selectrons
into it.

4 S(x) - Ac — M x—-M Clear accumulator and subtract absolute value of number located at position x in the Selec-
trons into it.

5 S(x) —» Ah+ xh Add number located at position x in the Selectrons into the accumulator.

6 S(x) —» Ah— xh— Subtract number located at position x in the Selectrons into the accumulator.

7 S(x) - ARM xhM Add absolute value of number located at position x in the Selectrons into the accumulator.

8 S(x) > Ah — M x — hM Subtract absolute value of number located at position x in the Selectrons into the accumulator.

9 S(x) —» R xR Clear registert and add number located at position x in the Selectrons into it.

10 R— A A Clear accumulator and shift number held in register into it.

11 Sx) x R—>A xX Clear accumulator and multiply the number located at position x in the Selectrons by the num-
ber in the register, placing the left-hand 39 digits of the answer in the accumulator and the
right-hand 39 digits of the answer in the register.

12 A+ S(x)— R x= Clear register and divide the number in the accumulator by the number located in position x
of the Selectrons, leaving the remainder in the accumulator and placing the quotient in the
register.

13 Cu — S(x) xC Shift the control to the left-hand order of the order pair located at position x in the Selectrons.

14 Cu' — S(x) xC’ Shift the control to the right-hand order of the order pair located at position x in the Selectrons.

15 Cec— S(x) xCe If the number in the accumulator is = 0, shift the control as in Cu — S(x).

16 Cc’ — S(x) xCc’ If the number in the accumulator is = 0, shift the control as in Cu’ — S(x).

17 At — S(x) xS Transfer the number in the accumulator to position x in the Selectrons.

18 Ap — S(x) xSp Replace the left-hand 12 digits of the left-hand order located at position x in the Selectrons by
the left-hand 12 digits in the accumulator.

19 Ap’ — S(x) xSp’ Replace the left-hand 12 digits of the right-hand order located at position x in the Selectrons
by the left-hand 12 digits in the accumulator.

20 L L Multiply the number in the accumulator by 2, leaving it there.

21 R R Divide the number in the accumulator by 2, leaving it there.

T Register means arithmetic register.

timing circuits in sequence. When a given timing circuit has
completed its operation, it emits a pulse which should go to the
timing circuit to be used next. Since this depends upon the partic-
ular operation being executed, these pulses are routed according
to the signals received from the decoding and recoding function
tables activated by the six binary digits specifying an order.

6.8. In this section we will consider what must be added to
the control so that it can direct the mechanisms for getting data
into and out of the computer and also describe the mechanisms
themselves. Three different kinds of input-output mechanisms are
planned.

First: Several magnetic wire storage units operated by servo-
mechanisms controlled by the computer.

Second: Some viewing tubes for graphical portrayal of results.

Third: A typewriter for feeding data directly into the com-
puter, not to be confused with the equipment used for preparing
and printing from magnetic wires. As presently planned the latter
will consist of modified Teletypewriter equipment, cf. 6.8.2 and
6.84.

6.8.1. Since there already exists a way of transferring numbers
between the Selectrons and Ac, therefore Ac may be used for
transferring numbers from and to a wire. The latter transfer will
be done serially and will make use of the shifting facilities of Ac.
Using Ac for this purpose eliminates the possibility of computing
and reading from or writing on the wires simultaneously. However,
simultaneous operation of the computer and the input-output
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organ requires additional temporary storage and introduces a syn-
chronizing problem, and hence it is not being considered for the
first model.

Since, at the beginning of the problem, the computer is empty,
facilities must be built into the control for reading a set of numbers
from a wire when the operator presses a manual switch. As each
number is read from a wire into Ac, the control must transfer it
to its proper location in the Selectrons. The CC may be used to
count off these positions in sequence, since it is capable of trans-
mitting its contents to FR. A detection circuit on CC will stop
the process when the specified number of numbers has been placed
in the memory, and the control will then be shifted to the orders
located in the first position of the Selectron memory.

It has already been stated that the entire memory facilities of
the wires should be available to the computer without human
intervention. This means that the control must be able to select
the proper set of numbers from those going by. Hence additional
orders are required for the code. Here, as before, we are faced
with two alternatives. We can make the control capable of exe-
cuting an order of the form: Take numbers from positions p to
p + s on wire No. k and place them in Selectron locations v to
v + s. Or we can make the control capable of executing some less
complicated operations which, together with the already given
control orders, are sufficient for programming the transfer opera-
tion of the first alternative. Since the latter scheme is simpler we
adopt it tentatively.

The computer must have some way of finding a particular
number on a wire. One method of arranging for this is to have
each number carry with it its own location designation. A method
more economical of wire memory capacity is to use the Selectron
memory facilities to remember the position of each wire. For
example, the computer would hold the number ¢, specifying which
number on the wire is in position to be read. If the control is
instructed to read the number at position p; on this wire, it will
compare p, with ¢;; and if they differ, cause the wire to move
in the proper direction. As each number on the wire passes by,
one unit is added or subtracted to ¢, and the comparison repeated.
When p, = ¢, numbers will be transferred from the wire to the
accumulator and then to the proper location in the memory. Then
both ¢, and p, will be increased by 1, and the transfer from the
wire to accumulator to memory repeated. This will be iterated,
until ¢, + s and p, + s are reached, at which time the control
will direct the wire to stop.

Under this system the control must be able to execute the
following orders with regard to each wire: Start the wire forward,
start the wire in reverse, stop the wire, transfer from wire to Ac,
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and transfer from Ac to wire. In addition, the wire must signal
the control as each digit is read and when the end of a number
has been reached. Conversely, when recording is done the control
must have a means of timing the signals sent from Ac to the wire,
and of counting off the digits. The 2° counter used for multiplica-
tion and division may be used for the latter purpose, but other
timing circuits will be required for the former.

If the method of checking by means of two computers operating
simultaneously is adopted, and each machine is built so that it
can operate independently of the other, then each will have a
separate input-output mechanism. The process of making wires
for the computer must then be duplicated, and in this way the
work of the person making a wire can be checked. Since the wire
servomechanisms cannot be synchronized by the central clock, a
problem of synchronizing the two computers when the wires are
being used arises. It is probably not practical to synchronize the
wire feeds to within a given digit, but this is unnecessary since
the numbers coming into the two organs Ac need not be checked
as the individual digits arrive, but only prior to being deposited
in the Selectron memory.

6.8.2. Since the computer operates in the binary system, some
means of decimal-binary and binary-decimal conversions is highly
desirable. Various alternative ways of handling this problem have
been considered. In general we recognize two broad classes of
solutions to this problem.

First: The conversion problems can be regarded as simple arith-
metic processes and programmed as sub-routines out of the orders
already incorporated in the machine. The details of these programs
together with a more complete discussion are given fully in Chap-
ter 9, Part II, where it is shown, among other things, that the
conversion of a word takes about 5 msec. Thus the conversion time
is comparable to the reading or withdrawing time for a word—
about 2 msec—and is trivial as compared to the solution time for
problems to be handled by the computer. It should be noted that
the treatment proposed there presupposes only that the decimal
data presented to or received from the computer are in tetrads,
each tetrad being the binary coding of a decimal digit—the infor-
mation (precision) represented by a decimal digit being actually
equivalent to that represented by 3.3 binary digits. The coding
of decimal digits into tetrads of binary digits and the printing of
decimal digits from such tetrads can be accomplished quite simply
and automatically by slightly modified Teletype equipment, cf.
6.8.4 below.

Second: The conversion problems can be regarded as unique
problems and handled by separate conversion equipment incor-
porated either in the computer proper or associated with the
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mechanisms for preparing and printing from magnetic wires. Such
converters are really nothing other than special purpose digital
computers. They would seem to be justified only for those com-
puters which are primarily intended for solving problems in which
the computation time is small compared to the input-output time,
to which class our computer does not belong.

6.8.3. It is possible to use various types of cathode ray tubes,
and in particular Selectrons for the viewing tubes, in which case
programming the viewing operation is quite simple. The viewing
Selectrons can be switched by the same function tables that switch
the memory Selectrons. By means of the substitution operation
Ap — S(x) and Ap’ — S(x), six-digit numbers specifying the abscissa
and ordinate of the point (six binary digits represent a precision
of one part in 2 = 64, i.e. of about 1.5 per cent which seems
reasonable in such a component) can be substituted in this order,
which will specify that a particular one of the viewing Selectrons
is to be activated.

6.8.4. As was mentioned above, the mechanisms used for
preparing and printing from wire for the first model, at least, will
be modified Teletype equipment. We are quite fortunate in having
secured the full cooperation of the Ordnance Development Divi-
sion of the National Bureau of Standards in making these modifi-
cations and in designing and building some associated equipment.

By means of this modified Teletype equipment an operator first
prepares a checked paper tape and then directs the equipment
to transfer the information from the paper tape to the magnetic
wire. Similarly a magnetic wire can transfer its contents to a paper
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tape which can be used to operate a teletypewriter. (Studies are
being undertaken to design equipment that will eliminate the
necessity for using paper tapes.)

As was shown in 6.6.5, the statement of a new problem on a
wire involves data unique to that problem interspersed with data
found on previously prepared paper tapes or magnetic wires. The
equipment discussed in the previous paragraph makes it possible
for the operator to combine conveniently these data on to a single
magnetic wire ready for insertion into the computer.

It is frequently very convenient to introduce data into a com-
putation without producing a new wire. Hence it is planned to
build one simple typewriter as an integral part of the computer.
By means of this typewriter the operator can stop the computation,
type in a memory location (which will go to the FR), type in a
number (which will go to Ac and then be placed in the first
mentioned location), and start the computation again.

6.8.5. There is one further order that the control needs to
execute. There should be some means by which the computer can
signal to the operator when a computation has been concluded,
or when the computation has reached a previously determined
point. Hence an order is needed which will tell the computer to
stop and to flash a light or ring a bell.
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Chapter 5
The DEC PDP-8

Introduction?

The PDP-8 is a single-address, 12-bit-word computer of the second
generation. It is designed for task environments with minimum
arithmetic computing and small Mp requirements. For example,
it can be used to control laboratory devices, such as gas chromoto-
graphs or sampling oscilloscopes. Together with special T’s, it is
programmed to be a laboratory instrument, such as a pulse height
analyzer or a spectrum analyzer. These applications are typical
of the laboratory and process control requirements for which the
machine was designed. As another example, it can serve as a
message concentrator by controlling telephone lines to which
typewriters and Teletypes are attached. The computer occasion-
ally stands alone as a small-scale general-purpose computer. Most
recently it was introduced as a small-scale general-purpose time-
sharing system, based on work at Carnegie-Mellon University and
DEC. It is used as a KT(display) when it has a P(display; '338);
this C is discussed in Chap. 25. The PDP-8 has achieved a produc-
tion status formerly reserved for IBM computers; about 5,000 have
been constructed.

PDP-8 differs from the character-oriented 8-bit computer in
Chap. 10; it is not unlike the 16-bit computers, such as the IBM
1800 in Chap. 33. The PDP-8 is typical of several 12-bit computers:
the early CDC-160 series (1960), CDC-6600 Peripheral and Con-
trol Processor (Chap. 39), the SDS-92, M.I.T. Lincoln Laboratory’s
Laboratory Instrument Computer LINC (1963), Washington Uni-
versity’s Programmed Console (1967), and the SCC 650 (1966).

The PDP-5 (transistor, 1963), PDP-8 (1965), PDP-8/S (serial,
1966) and PDP-8/1 (integrated circuit, 1968), PDP-8/L (integrated
circuit, 1968) constitute a series of computers based on evolving
technology. All of these have identical ISP’s. Their PMS structures
are nearly identical, and all components other than Pc and Mp
are compatible throughout the series. The LINC-8-338 PMS struc-
ture is presented in Fig. 1. A cost performance tradeoff took place
in the PDP-8 (parallel-by-word arithmetic) and PDP-8/S (serial-
by-bit arithmetic) implementations. A PDP-8/S is one-fifteenth of
a PDP-8 at one-half the cost. The performance factors can be
attributed to 8/1.5 or 5.3 for Mp speed and a factor of about 3
for logical organization, even though the same 2-megahertz logic
clock is used in both cases. The PDP-8 is about 6.7 times a PDP-5.

!The initials in the title stand for Digital Equipment Corporation Pro-
grammed Data Processor.

The ISP of the PDP-8 Pc is about the most trivial in the book.
It has only a few data operators, namely, «, +, — (negale), —,
N, /2, X 2, (optional) X, /, and normalize. It operates on words,
integers, and boolean vectors. However, there are microcoded
instructions, which allow compound instructions to be formed in
a single instruction.

The computer is straightforward and illustrates the levels dis-
cussed in Chap. 1. We can easily look at it from the “top down.”
The C in PMS notation is

C('"PDP-8; technology:transistors; 12 b/w;
descendants:'PDP-8/S, 'PDP-8/1, 'PDP-8/L;
antecedents: '"PDP-5;

Mp(core; #0:7; 4096 w; tc:1.5 ps/w);

Pe(Mps(2 ~ 4 w);
instruction length:1|2 w
address/instruction:1;
operations on data/od:(«-, +, —, /\, —(negate),
/2, +1)
optional operations:(X, /, normalize);
data-types:word, integer, boolean vector;
operations for data access:4);

P(display; '338);

P(c; 'LINC);

S('1/O Bus; 1 Pc; 64 K);

Ms(disk, 'DECtape, magnetic tape);

T(paper tape, card, analog, cathode-ray tube))

X 2,

ISP

The ISP is presented in Appendix 1 of this chapter (including the
optional Extended Arithmetic Element/EAE). The 2'*-word Mp
is divided into 32 fixed-length pages of 128 words each. Address
calculation is based on references to the first page, Page_0, or to
the current page of the Program Counter/PC. The effective-
address calculation procedure provides for both direct and indirect
reference to either the current page or the first page. This scheme
allows a 7-bit address to specify local page addresses.

A 2.word Mp is available on the PDP-8, but addressing
greater than 212 words is comparatively inefficient. In the extended
range, two 3-bit registers, the Program Field and Data Field
Registers, select which of the eight 2!2-word blocks are being
actively addressed as program and data.

There is an array of eight registers, called the Auto_index
registers, which resides in Page 0. This array (Auto_index[0:
11]€0:7): = M[104:175]<0:11)) possesses the useful property that
whenever an indirect reference is made to it, a 1 is first added
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K(#1:10)—-L (analog; output; O ~ -10 volts)—
K——S——L (#0:63; analog; input; 0 ~ =10 volts)e

K—— §—— K(#0:63; Teletype; 110, 180 b/s)-

K— S—.
K S—
K— §—

=P (display: '338)—

——=Pc| 'Laboratory |——

Instrument

Computer/LINC

YMp(core; 1.5 ps/w; 4096 w: (12 + N)b)
25 ('Memory Bus)

antecedents: PDP-5; descendants; PDP-8S,
*$('1/0 Bus; from; Pc: to; 64 K)

*k{1~ b instructions; M.buffer (] char~2 w))

Ms{ #0:7; 'DEC _tape: addressable magnetic tape:
{;33 ws/w; length: 260 ft; 350 char/in; 3 b/cha
Ms[ #0:7; magnetic tape; 36 |45|751112.5 in/s:]~
S[200,556,800 b/in; 618 b/char ]
Ms(#0:3; fixed head disk; tdelay: 0 ~ 17 ms;
66 us/w; 32768 w)| (16 us/w; 262144 w):
(12,1 parity) b/w
T(#0:3; CRT; display: area: 10 x 10 inz)!

T{#0:3; light; pen)ewl

T(#0:3; push buttons; console)e

T.console

Ms[%O:l; LINC_tape:; addressable magnetic tapei]-
6.25 kw/s: 2'7 w

T(#0:15; knobs, analog; input)e

T(CRT; display; 5 x 5 inZ)=

T(digital; input, output)-

T{'Data Terminal Panel; digital; input, output)-

pDP-81, PDP-L)

"

®Pc(l ~2 w/instruction: data: w, i,bv; 12 b/w: M.processor stacelz%-~ z%) wi technnloay: transistors;

Fig. 1. DEC LINC-8-338 PMS diagram.
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to its contents. (That is, there is a side effect to referencing.) Thus,
address integers in the register can select the next member of a
vector or string for accessing.

The instruction-set-execution definition can also be presented
as a decoding diagram or tree (Fig. 2). Here, each block represents
an encoding of bits in the instruction word. A decoding diagram
allows one more descriptive dimension than the conventional,
linear ISP description, revealing the assignment of bits to the
instruction. Figure 2 still requires ISP descriptions for Mp, Mps,
the instruction execution, the effective-address calculation, and

Section 1 | Processors with one address per instruction

design to determine which instruction numbers are to be assigned
to names and operations and instructions which are free to be
assigned (or encoded).

There are eight basic instructions encoded by 3 bits, that is
op{0:2) : = i(0:2), where instruction/i¢0:11). Each of the first six
instructions (where 0 < op < 6) have the 4 address operand deter-
mination modes (thus yielding essentially 24 instructions). The first
six instructions are:

data transmission: deposit and clear-accumulator/dca

two’s complement add to the accumula-

the interpreter. Diagrams such as Fig. 2 are useful in the ISP tor/tad
Principle addressable
instructions
\ Extended arithmetic
op= ) , ) element, EAE,
Operate microcoded instructions instructions
O|ond —
opra 1 A i<j> A time [1,2,3,4] EAE Altime 3)
: i<j> =
time 4 5 6 7 8 9 10 M g0
1]tad —~ i lda— |ci— 0
/nex? ——
- 25 cma— crnl— e
2lisz — next T f’
3 iac—
e next
31 dea —» 2 imuy —
4; rar — rtr —
ral— Pt —-
4 jms — opru2 A i<i> A time [1,2] 3 avi —
time 4 5 6 7 8 9 10
1, |cla— sma— |sza— snl— skip
—] invert
5|jmp — next 4| nmi —
2 osr— | hit —
6 iot — EAE A i<j> A time [1,2,3] 5|shl —
Operate, opr time 4 5 6 7 8 9 10
. 0 % | cla—
opr —= (1 .
P ™ next 6| asr
i<il> = |
0 1 2; mga— [sca—~ imgql—
+
i<3> = oprot — ¢ e 7[isr —
0 3, (Iterative step 7
instruction)
| opru2 EAE
- — instruction i<O: 11> : = I op ‘iblp’ pogeuaddress—[
Instruction word format

Fig. 2. DEC PDP-8 instruction-decoding diagram.



binary arithmetic: two’s complement add to the accumu-

lator/tad

binary boolean: and to the accumulator/and

program control: jump/set program counter/jmp
jump to subroutine/jms
index memory and skip if results are

zero/isz

Note that the add instruction, tad, is used for both data trans-
mission and arithmetic.

The subroutine-calling instruction, jms, provides a method for
transferring a link to the beginning (or head) of the subroutine.
In this way arguments can be accessed indirectly, and a return
is executed by a jump indirect instruction to the location storing
the returned address. This straightforward subroutine-call mecha-
nism, although inexpensive to implement, requires reentrant and
recursive subroutine calls to be interpreted by software, rather
than by hardware. A stack, as in the DEC 338 (Chap. 25), would
be nicer.

The input_output instruction/iot (:= op = 6) uses the re-
maining 9 bits of the instruction to specify instructions to input/
output devices. The 6 io_select bits select 1 of 64 devices. The
3 bits, io_pl_bit, io_p2_bit, io_p4._bit, command the selected
device by conditionally providing three pulses in sequence. The
instructions to a typical io device are:

io_pl_bit — (IO_skip_flaglio select] - (PC « PC + 1))
testing a condition of an 10 device output to a device input
from a device

io_p4,_bit — (Output_data[io select] < AC)
io_p2_bit — (AC « Input_datalio select])

There are three microcoded instruction groups selected by
op = 7. The instruction decoding diagram (Fig. 2) and the ISP
description (Appendix 1 of this chapter) show the microinstruc-
tions which can be combined in a single instruction. These instruc-
tions are: operate group 1 (:= (op = 7) /\ — i(3)) for operating on
the processor state; operate group 2 (:= (op = 7) N\ (i{3,11) =
10,)) for testing the processor state; and the extended arithmetic
element group (:= ((op = 7) /\ (i{3,11) = 1L,))) for multiply,
divide, etc. Within each instruction the remaining bits, (4:10) or
{4:11), are extended instruction (or opcode) bits; that is, the bits
are microcoded to select instructions. In this way an instruction
is actually programmed {or microcoded). For example, the instruc-
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tion set_link —»L «1 is formed by coding the two microinstruc-
tions, clear link, next, complement link.

opr_1— (i(5) — L <« 0; next
i{(7) »L « —L)

Thus, in operate group 1, the instructions clear link, complement
link, and set link are formed by coding instruction{5,7) = 10, 01,
and 11, respectively. The operate group 2 instruction is used for
testing the condition of the Pc state. This instruction uses bits 5,
6, and 8 to code tests for the accumulator. The AC skip conditions
are coded (0 ~ 7)as never, always, =0, 550, <0, >0, <0, and >0.
If all the nonredundant and useful variations in the two operate
groups were available as separate instructions in the manner of
the first seven (dca, tad, etc.), there would be approximately
7 + 12(opr_1) + 10(opr_2) + 6(EAE) = 35 instructions in the
PDP-8.

The optional Extended Arithmetic Element/EAE includes
additional Multiplier Quotient/MQ and Shift Counter/SC regis-
ters and provides the hardwired operations multiply, divide, logi-
cal shift left, arithmetic shift, and normalize. The EAE is defined
on the last page of Appendix 1.

The interrupt scheme

External conditions in the input/output devices can request that
Pc be interrupted. Interrupts are allowed if (Interrupt_state = 1).
A request to interrupt clears Interrupt_state (Interrupt_state

«—0), and Pc behaves as though a jump to subroutine 0 instruction,
jms 0, had been given. A special iot instruction (instruction =

6001,) followed by a jump to subroutine indirect to O instruction
(instruction = 5200,) returns Pc to the interruptable state with
Interrupt_state = 1. The program time to save M(processor
state/ps) is 6 Mp accesses (9 microseconds), and the time to restore
Mps is 9 Mp accesses (13.5 microseconds).

Only one interrupt level is provided in the hardware. If multi-
ple priority levels are desired, programmed polling is required.
Most io devices have to interrupt because they do not have a
program-controlled enable switch for the interrupt. For multiple
devices approximately 3 cycles (4.5 ps) are required to poll each
interrupter.

PMS structure

The PMS structure of the LINC-8-338 consisting of a P¢('LINC),
Pc("PDP-8), and P.display('338) is shown in Fig. 1. The PDP-8 is
just a single Pc. The Pc('LINC) is a very capable Pc with more
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instructions than the main Pc. It is available in the structure to
interpret programs written for the C('LINC), a computer devel-
oped by M.LT.’s Lincoln Laboratory as a laboratory instrument
computer for biomedical and laboratory applications. Because of
the rather limited ISP in Pc, one would hardly expect to find all
the components present in Fig. 1 in an actual configuration.

The S between the Mp and the Pc allows eight Mp’s. This S
is actually S("Memory Bus; 8 Mp; 1 Pc; (P requests); time-multi-
plexed; 1.5 ps/w). Thus the switch makes Mp logically equivalent
to a single Mp(32768 w). There are two other L’s which are con-
nected to the Pc, excluding the T.console. They are L('1/O Bus)
and L('Data Break; Direct Memory Access). These links become
switches when we consider the physical structure. Associated with
each device is a switch, and the bus links all the devices; the
L('I/O Bus) is really an S('I/O Bus). Each time a K connects to
it, the S is included in the K. A simplified PMS diagram (Fig. 3)
shows the structure and the logical-physical transformation. Thus,
the 1/0 Bus is

S('L/O Bus; duplex; bus; time-multiplexed, 1 Pc; 64 K; Pc
controlled, K requests; t:4.5 us/w)

The S('I/O Bus) is the same for the PDP-5, 8, 8/S, 8/1, and 8/L.
Hence, any K can be used on any of the above C’s. The 1/0 Bus
is the link to the K’s for Pe-controlled data transfers. Each word
transferred is designated by a Pc instruction. However, the 1/0
Bus allows a K to request Pc’s attention via the interrupt request
signal. The Pc polls the K’s to find the requesting K if multiple
interrupt requests occur. A detailed structure of the Pc-Mp
(Fig. 4) shows these L('l/O Bus, 'Data Break) connections to the
registers and control in the notation used by DEC. This diagram
is essentially a functional block diagram.

The S('I/O Bus) in Fig. 1 is only an abstract representation of

;I'.console-
Mp (#0: core)——S——]—-L Pc L{'1/0 Bus) S-K-
L L('Data Break) L
Mp (#1)—s H !
: L S-K=
Mo (#1)—s | b
— L
S('Memory Bus) L-S-K-
S('1/0 Bus)

Fig. 3. DEC PDP-8 PMS diagram (simplified).
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the structure. Since it is a bus structure, the S can be expanded
into L’s and simple S’s as shown in Fig. 3. The termination of the
L in Pc is given in Fig. 3. The corresponding logic at a K is given
in Fig. 5 in terms of logic design elements (AND’s and OR’s).
(Fig. 5 also shows the S('I/O Bus) structure of Figs. 1 and 3). The
operation of S('I/O Bus) shown in Fig. 5 starts when Pc sends
a signal to select (or address) a particular K, using the 10_select
0:5) signals to form a 6-bit code to which K responds. Each
K is hardwired to respond to a unique code. The local control,
K{[jl, select signal is then used to form three local commands when
ANDed with the three iot command lines from Pe, io_pl_bit,
io_p2_bit, and io_p4_bit. Twelve data bits are transmitted either
to or from Pc, indirectly under K’s control. This is accomplished
by using the AND-OR gates in K for data input to Pc, and the
AND gate for data input to K. The data lines are connected to AC
as shown in Fig. 4. A single skip input is used so that Pc can
test a status bit in K. A K communicates to Pc via the interrupt
request line. Any K wanting attention simply ORs its request signal
into the interrupt request signal. Program polling in Pc then selects
the specific interrupter. Normally, the K signal causing an inter-
rupt is also connected to the skip input.

The 1('Data Break; Direct Memory Access) provides a direct
access path for a P or K to Mp via Pc. The number of access ports
to memory can be expanded to eight by using the S('DM01 Data
Multiplexer). The S is requested from a P or K. The P or K supplies
an Mp address, a read or write access request, and then either
accepts or supplies data for the Mp accessed word. In the config-
uration (Fig. 1), P('LINC) and P('338) are connected to S('DMO1)
and make requests to Mp for both their instructions and data in
the same way as the Pc. The global control of these processor
programs is via the S('I/O Bus). The Pc issues start and stop com-
mands, initializes their state, and examines their final state when
a program in the other P halts or requires assistance.

When a K is connected to L('Data Break) or to S'DMO01 Data
Multiplexer), the K only accesses Mp for data. The most complex
function these K’s carry out is the transfer of a complete block
of data between the Mp and an Ms or a T, for example,
K('DECtape, disk). A special mode, the three-cycle data break,
is controlled by Pc so that a K may request the next word from
a queue in Mp. In this mode the next word is taken from the queue
{(block) in Mp, and a counter is reduced each time K makes a
request. With this scheme, a word transfer takes three Mp cycles:
one to add one to the block count, one to add one to the address
pointer, and one to transmit the word.

The DECtape was derived from M.LT.s Lincoln Laboratory
LINCtape unit. Data are explicitly addressed by blocks (variable
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Fig. 4. DEC PDP-8 timing and control-element block diagram.
(Courtesy of Digital Equipment Corporation.)
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L(*ACinput<0:4D input ;12 b) ————

L{CIoLskip)————m—

1* e L ('ACCOD; output; 12 b )

L(*1/0 Bus)—Pc—Mp

L IO interruptorequest) ——————
— L{IO_.pulsepl,p2,p4; puise; output J—
'7 L('TO_select<0:80utput }e——

Select code =100101=k
1
'/ kuselect:={I0uselect =k)

»—— — 10 pulsepl A k_select
(used for: 10..skip [k]=PC~—PC+1)

I0_pulsewp?2 A kselect
(used for AC=Input..data [K])
I0Lpulsepgd A k._seiect

(used for outputdata [k]=—AC)

|
In?errupf...r’eques* [k]

1
|
|
7‘ 10..skip [K]
|
|
|

SR e TN
: t2 * : ; Inputodata k] <0:1D
ACO>

—af
g P e A

—»{ P }To Outputdatak] 01D
ACHD:

\(,2, ! = -
[

To K{#K)'s registers

S logic (withina K)

S——Pc— Mp

—«KSTL—PC—— Mp —K

Actual Bus Structure Logical Structure

Fig. 5. DEC PDP-8 S('1/0 Bus) logic and PMS diagrams.

but by convention 128 w). Thus information in a block can be
replaced or rewritten at random. This operation is unlike queue-
accessed tape (conventional IBM format magnetic tape) in which
data can be appended only to the end of a file.

The control for the T(telephone) links 64 Teletypes or type-
writers to the Pc. The final K which connects to a line is on a
bit-serial basis. Since a telephone line sends and receives informa-
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tion serially by bit, there are special input/output instructions in
the Pc to sample the line and to convert the sampled bits to coded
characters. There are 11 bits transmitted per character (although
other codings use 7, 7.42, 7.5, and 10 bits per character). Of the
11 bits, there are 3 control, 1 parity, and 7 information bits. The
action of the Pc instruction, which is issued 5 X 11 (55) times for
every character, is to control the line by forming the 7-bit charac-
ters. The instruction is a good example of tradeoff in the hard-
ware/software domain toward almost pure software; the only
hardware state associated with a telephone line is a 1-bit register
to hold the state of the outgoing line, and a single AND gate to
sample the incoming line state. This sampling process requires
about 0.3 per cent of Pc-Mp capacity per active line (each of
10 ~ 15 char/s). In general, the PDP-8 hardware controls are
minimal—in turn fairly elaborate control programs must be used
as part of them.

Computer levels

In this section we describe all the systems levels in the PDP-8
computer from the top down. The reader should already have a
sketchy knowledge of the PDP-8 because the registers and ISP
have been exposed. Here, we wish to clarify how it operates. A
map of the hierarchy is given in Fig. 6, starting from PMS to ISP
and down through logic design to circuit electronics. These de-
scription levels are subdivided to provide more organizational
detail. For example, the register-transfer level has the more de-
tailed registers, data operators, functional units, and macro logic
of the processor, whereas the next logic level below has sequential
and combinational networks, and the sequential and combinatorial
elements.

It should be apparent that the relationship of the various de-
scription levels constitutes a tree structure where the organiza-
tionally complex computer is the top node and each descending
description level represents increasing detail (or smaller com-
ponent size), until the final circuit element level is reached. For
simplicity, only a few of the many possible paths through the
structural description tree are illustrated. For example, the path
showing mechanical parts is missing. The path shown proceeds
from the PDP-8 computer to the processor and from there to the
arithmetic unit or, more specifically, to the AC register of the
arithmetic unit. Next, the macro logic implementing the register-
transfer operations and functions for the jth bit of the AC is given;
the flip-flops and gates needed for this particular implementation
are shown. Finally, on the last segment of the path, come the
electronic circuits and components of which flip-flops and NAND
gates are constructed.
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Mp, as shown in Fig. 5. The implementation of these switches

within the K and Mp was shown in Fig. 5. In Fig. 7 we present
a more conventional functional diagram and the equivalent PMS

PMS

diagram of the computer, with Pc decomposed into K, processor

Programming state (Mps), and D. The functional diagram has the same compo-

’ y Interpreter nents of the characteristic elementary computer model, namely,
. g ol y P y
IR . Contro . , .
i Tstate | \instrustion O K, D, M, and T(input, output). These figures give a somewhat
Regist: ! ‘e -a RT network [4,7,8] . .
T e | . ' general idea of what processes can occur in the computer, and
: Compound operation . . L.
Logic | how information flows, but it is apparent that at least another
: Register *Transfer Y Operator “$Control [I3 . . . .
T sequennal | A ch Y /kspc' : Q‘::‘:fol[ ! level is needed to describe the internal structure and behavior of
u | 7 e
crcuits 1" | array e tion the Mp and Pc. We should look at these primitives (although still
Switching f H . Stote . . .
circuits L 4sE Flipoflor | e together as a C) at the register-transfer level.
Combinatorial ® 4 CC (with $£C “wcc 4 [eveIHJ
circuits [9) feed back) (data 10, .
operation) Programming level (ISP)
NAND
5] & . T . . .
ppo— inverter 157 e vBraer The ISP interpretation is given in Appendix 1 of this chapter and
circuits ﬂw\ {active component) is the specification of the programming machine. In addition, it
Diode Transistor . . . > . :
R ( R (passive component) constrains the physical machine’s behavior to have a particular
[X1 indicates figure number of instance ISP. The ISP has been discussed earlier in the chapter.

Register-transfer level
Fig. 6. DEC PDP-8 hierarchy of descriptions.
The C can also be represented at the register-transfer level by

using PMS. Figure 4 (by DEC) shows the register-transfer level;
Abstract representations

Figure 6 also lists some of the methods used to represent the
physical computer abstractly at the different description levels.
As mentioned previously, only a small part of the PDP-8 descrip-
tion tree is represented here. The many documents, schematics,
diagrams, etc., which constitute the complete representation of

Console

Processor state

circuit schematics and printed-circuit board layout masks, pro- Dato operations

: H : : : : i Primary {arithmetic and Input-output, and
duction description diagrams, production parts lists, testing speci ﬁﬁl‘: logical)
¥

fications, programs for testing and diagnosing faults, and manuals
for modification, production, maintenance, and use. As the discus-

even this small computer include logic diagrams, wiring lists,

sion continues down the abstract description tree, the reader will
observe that the tree conveniently represents the constituent ob-
jects of each level and their interconnection at the next highest

level. Each level in the abstract-description tree will be described
. der |jT.console
in order.

ri/I. processor registers

Mp D MsT
The PMS level R ,ﬁ __________ !
t
The simplified PMS structure in Fig. 3 has been reduced from T.clock
Fig. 1. The computer is small enough so that the physical delinea- (o)

tion of the PMS components, such as K’s and S’s, is less pro-

nounced than in larger systems. In fact, in the case of the  Fig 7. DEC PDP-8 function block and PMS diagrams. (a) Processor
S('Memory Bus, '1/0 Bus), the S’s are actually within the K and functional block diagram. (b) Pc PMS diagram.
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Fig. 8. DEC PDP-8 register-transfer-level PMS diagram.

only registers, operations, and L’s are important at this level. We
still lack information about the conditions under which operations
are evoked. Figure 8 is a PMS diagram of Pc-Mp registers. Here
we show considerably more detail (although we do not bother with
electrical pulse voltages and polarities) than in Fig. 4. We declare
the Pc state (including the temporary register) within Pc. The
figure also gives the permissible data operations, D, which are
permitted on the registers. It should be clear from this that the
logical design level for the registers and the operators can easily be
reached. The X logic design cannot be reached until we use the
programming level constraints (ISP), thus defining the conditions
for evoking the data operators.

The core memory. The Mp structure is given in Fig. 8. A more
detailed block diagram which shows the core stack with its twelve

64 X 64 1-bit core planes is needed. Such a diagram, though still
a functional block diagram, takes on some of the aspects of a
circuit diagram because a core memory is largely circuit-level
details. The Mp (Fig. 9) consists of the component units: the two
address decoders (which select 1 each of 64 outputs in the X and
Y axis directions of the coincident current memory); selection
switches (which transform a coincident logic address into a high-
current path to switch the magnetic cores); the 12 inhibit drivers
(which switch a high current or no current into a plane when
either a 0 or 1 is rewritten); 12 sense amplifiers (which take the
induced low sense voltage from a selected core from a plane being
switched or not switched and transform it into a 1 or 0); and the
core stack, an array M[0:77774]¢0:11). Since this is the only time
the Mp is mentioned, Fig. 9 also includes the associated circuit-
level hardware needed in the core-memory operation, such as



power supplies, timing, and logic signal level conversion amplifiers.
The timing signals are generated within Pc(K) and are shown
together with Pc’s clock in Fig. 10.

The process of reading a word from memory is:
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have selection current. Only one core in each plane is
selected since Ix = Iy = Iswitching/2, and the current at
the selected intersection = Ix + Iy = Iswitching.

a core is switched to aving Iswitching amperes
4 If tched to O (by h Iswitch p
-bit selection address is established on the : rough it), then a 1 was present and is read a e outpu
1 A 12-bit select dd tablished the MA(0:11 th h it), th 1 p t and d at th tput
address lines, which is 1 of 100004 (or 4096, ) unique num- of the plane (bit) sense amplifiers. A sense amplifier receives
bers. The upper 6 bits, (0:5), select 1 of 64 groups of Y an input from a winding that threads every core of every
addresses and the lower 6 bits, {6:11), select 1 of 64 groups bit within a core plane [0:77774]. All 12 cores of the selected
of X addresses. word are reset to 0. The sense time at which the sense
L . amplifier is observed is tms (memory strobe), and the strobe
2 The read logic signal is made a 1. amp ( Y )
in effect creates MB «— M[MA].
3 A high-current path flows via the X and Y selection
switches. In each of the X and Y directions 64 X 12 cores 5 The read current is turned off.
tnhibit
“777**ﬁ“_—_________—_**77 On/off
Time | I l* V/ control
_— c Inhibit {0~12)x Is /2 for inhibit Inhibit
_ =2 T Read driver<il> c:;;leer:?
Control | — _ T _—_. . Write = (Cuf;ez; supply
signals ™ | } swite _
o I Me;'ory sltrobe
,,,,,,,,,,,,,,, O S,
| |
| |
| Core stack Core plane <> |
Inhibit o % %
From <!> J\ drl(ver<o> (12 planes) (2°x 2° cores/plane) }
e | —————— — — — — r= f(current
MB <O:li> . | switch) |
(data . | 1
input) <60 ! T 1 P >7<l>7’
l e
10 S| . To
- ] . MB dat
2w SeT @ . Sense omplifiers .npu¢50<%;|[>
(<0:5> £3 ced v
From | — ——— — — e ] § % é;
MA <O:11> N = - -
(data 261 > _<Oi .
input) |
<6l 14>ﬁ 4+1s/2 read Canse
| 572 m —(Read) T;[:/Zwme 7 wire
| il X selection +(Write) (induced
| 5/2 yite (current -— ‘ voltage)
| switches) Read
—-— Logic signals | _*—rs Write
S oL E ‘_‘ ey e
—-- Low leve! winding + (Read) current Is/2—wread wire
(Sense signals) ‘ X-address -(Write) power supply I5/2=write 157210
i decoders inhibit wire
\ T | |
| | Read Write Y= Select wire
e 2 :
Current direction controls Four wires through a core

Fig. 9. DEC PDP-8 four-wire coincident current (three dimensions) core-memory-logic block diagram.
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Clock
pulses  [(t2) (tms) o Jitmad) [(t2)
0 .5 1.0 1.5 time
Read ] (us)
Write —
Inhibit e —T
Memory [(MB=M{MA])
strobe jeo———— Memory cycle ————— |

Fig. 10. DEC PDP-8 clock and memory timing diagram.

6 The write and inhibit logic signals are turned on. The bit
inhibit signal is present or not, depending on whether a 0
or 1, respectively, is written into a bit.

7 A high-current path flows via the X and Y selection
switches, but in an opposite direction to the read case (2
above). If a 1 is written, no inhibit current is present, and
the net current in the selected core is —Iswitching. If a
0 is written, the current is —Iswitching + (Iswitching/2)
and the core remains reset.

8 The inhibit and write logic signals are turned off, and the
memory cycle is completed.

Registers and operations. As Fig. 8 shows, the registers in the Pc
cannot be uniquely assigned to a single function. In a minimal
machine such as the PDP-8, functional separation is not economi-
cal. Thus there are not completely distinct registers and transfer
paths for memory, arithmetic, and program and instruction flow.
(This sharing complicates understanding of the machine.) How-
ever, Fig, 8 clarifies the structure considerably by defining all the
registers in Pc (including temporaries). For example, the Memory
Buffer/MB is used to hold the word being read from or written to
Mp. MB also holds one of the operands for binary operations (for
example, AC < AC /\ MB). MB is also used as an extension of
the Instruction Register/IR during the instruction interpretation.
The additional registers, not in the ISP, are:

Memory Buffer/MB(0:11} holds memory data,
instruction, and oper-

ands

holds address of word
in Mp being accessed

Memory Address/MA(0:11)

holds the wvalue of
current instruction
being performed

Instruction Register/IR{0:2)

Section 1 | Processors with one address per instruction

State_register, a ternary state register
holding the major
state of memory cycle

being performed

Fetch/F : = (State_register = 0) memory cycle to

fetch instruction

Defer/D/Indirect
:= (State_register = 1) memory cycle to get

address of operand

Execute/E

:= (State_register = 2) memory cycle to fetch
(store) operand and
execute the instruc-

tion

Figure 8 has been concerned with the static definition (or
declaration) of the information paths, the operations, and state.
The ISP interpretation (Appendix 1) is the specification for the
physical machine’s behavior. As the temporary hardware registers
are added, a more detailed ISP definition could be given in terms
of time and temporary registers. Instead, we give a state diagram
{Fig. 11) to define the actual Pc which is constrained by both the
ISP registers, the temporary registers implied by the implementa-
tion, and time. The relationship among the state diagram, the ISP
description, and the logic is shown in the hierarchy of Fig. 6. In
the relationships of the figures, we observe that the ISP definition
does not have all the necessary detail for fully defining a physical
Pc. The physical Pc is constrained by actual hardware logic and
lower-level details even at the circuit level. For example, a core
memory is read by a destructive process and requires a temporary
register (MB) to hold the value being rewritten. This is not repre-
sentable within a single ISP language statement since we define
only the nondestructive transfer <, but it can be considered as
the two parallel operations MB « M[MA]; M{MA] < 0. The
problem of explaining rewriting of core using ISP is also difficult,
because explicit time is not in the ISP language (although we can
define clock events, or at least relative time).

The state diagram (Fig. 11) describes the implementation be-
havior using the registers and register operations (Fig. 8) and the
temporary registers declared above.

The implementation is fundamentally Mp-timing-based, as we
see from both the state diagram and the times when the four clock
signals are generated (Fig. 10). Thus there are three (State_regis-
ter = 0,1,2) X 4 (clock), that is, 12 major states, in the implemen-
tation. We use the IR to obtain two more states, F2b and F3b,
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“Fetch" instruction memory
cycle

tms—={MB=M[MA); IR-—IR v M [Ma]<0:2> );

t—(

(_ship._,cond(hionq)
(MB<4>AMBG>)—>( ;ac<—- PC+2):
AC+T777Tg);

]
{ skipcondition = MBA —-(

€8}
PC—PC+1); =

Ajms—{
MB=0}:

LeAC-——LoAC X Z(rotme) I8
(MBC9> A MB10> —~(
LSAC~— LBAC * 4{rotate});

| MBAD~LoaceLoaces;

MB-—PC

AMBLA)> —{
PCLO4>=-0);

;. Statew
IR+ 0;Stateuregister+0 Jrsqisﬁr«i);

(to DO)

{to EO)

Note: State diagram does not include
Data Break, Interrupt, and EAE.

(Operate) /10 o of)_(1R-10)~MBAD—{ | (and v tad v | (impyms)
(Oprud (0prui2) PCePCH) | iszvdea) | (IR=10$)—=;
Or4) MB 3 A MBU -l (IR=0¢¢ )=

PCe-PC+1);

<& —=(
TOupulseudl;)
F2b)
Tmd —(
MALSAD=—MBL5:11;
|) "MBL>—-MAc0<-0);
(opru2) @
+2AMB<3 AMBIDAMB 9D ~(
{oprt) " ACS- _‘V Do?uisw-fcﬁe? t2—(
(MB(B)MMB<10>)—>(
LnAc«LnAC/z{mfufe)) (~imp A
(MBGEAMBAIC) —=( (jmp A -MBCD ) [MBCD—=( Imp A MBC3 }{
LoAC LOAC/4 {rotate}}; MB=-0; MB=-0): 1
(MBA) A WBI0) = ( PCE AT +MBE DY,

ims—(
PCS5! 11)<—MB(5 49D,
-MB <4>-PC<0 4=-0);

State.register<—2);

“Execution” memory
cycle

"Deter"(indirect) address
Memory cycle

tms-=(MB=—M[MA]); (tms 4 (iszvtad v and )}—(

MB-—M[MA] )

H—e{

(0= MAZ17)—={
MB=~—MB+1)); isz—
MB-—MB+1;

MB=7777)—{
PC-PCH));

dea—={
MB=—AC:
AC=-0));

tod-~{
AC+—AC® MB));

Lms —{
C=-PCH);

md 4 tmd— ((MA=—PC);
MA=—MB);
— O
tad —=( and—{ (jms v decav
) AC=—carry(AC MBI ;| AG=-ACAMBIY]  isz) —
t2—{ M [MA]-—MB));
jmp—={ jms—={ ajms—e{
PC‘—MB PC<—MB; | MB=0);
MB=—0), |MB=-PC);

12—
MB=—0; IR=~
Srafe..megnsrer«-o) {to FO)

Stateu
Stateuregister<+—0; register=—2);
IR=0);{to FO) {to EO)

Fig. 11. DEC PDP-8 Pc state diagram.

for the description. The State_register values 0, 1, and 2 corre-
spond to fetching, deferring (indirect addressing, i.e., fetching an
operand address), and executing (fetching or storing data, then
executing) the instruction. The state diagram does not describe
the Extended Arithmetic Element/EAE operation, the interrupt
state, and the data break states (these add 12 more states). The
initialization procedure, including the T.console state diagram, is
also not given. One should observe that when t2 occurs at the
beginning of the memory cycle, a new State_register value is
selected. The State_register value is always held for the remainder
of the cycle; i.e., only the sequences (FO— Fl1— F2— F3 or
DO0— D1-»D2— D3 or E0 — E1 > E2— E3) are permitted.

Figure 8 alludes to Pc(K), that is, the sequential network used
for controlling Pc. The inputs and the present state (including
clocks) determine the operations to be issued on the registers.

Logic design level (registers and data operations)

Proceeding from the register-transfer and ISP descriptions, the
next level of detail is the logic module. Typical of the level is the
1-bit logic module for an accumulator bit, AC(j), illustrated in
Fig. 12. The horizontal data inputs in the figure are to the logic
module from AC(j), MB(j), IO Bus(j), and Data_switch(j). The
vertical control signal inputs command the register operations (i.e.,
the transfers); they are labeled by their respective ISP operations
(for example, AC < MB A AC, AC <~ AC X 2 {rotate}). The
sequential network Pc(K) (Fig. 8) generates these control signal
inputs.

Logic design level (Pc control, Pc(K) sequential network)

The output signals from the Pc(K) (Fig. 8) can be generated in
a straightforward fashion by formulating the boolean expressions
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Bus to each bit of AC

LAC«—Ccrry(AC,MB) AC~ACx 2 {rotate };

TAC= AC +1 is formed by AC<12> carry input

MB<J> AC<J+1> :JZ}
“MB<
AN *AC<J_1>T—:]Z}V v R Op -~AC<J>
Al ':/-l 1 ™ T
AC<J-1>1
A
Data.switch _j, S e Ac<d>
<J>
AC<J+1>1
10 Bus AC | —E’\ v
AC<J>Y  input<d> ‘
carry AC=AC v I
input 2g<--\ Datauswitch; AC‘*;} AC
; L_AC+0O;
. AC=AC A MB; | commands
LAC+ACHMB; L
L AC~AC/2 { rotate };

Fig. 12. DEC PDP-8 AC(J) bit register-transfer logic diagram.

'AC+0

= |

Logic diagram for AC=~0

(1 A (IR = 111} A {5 MB<3> A MB<4> A - MB<6>) A (Stateregister=0)) v

(11 A {IR = 111) A (MB<3> A = MB<W{> A MB<4>) A (State_register=0)) v
(t1 A (IR =111) A (MB<3> Ao MB<!1> A MB<4>)a (Stateoregister=0))tv
(t1 A (IR =01t) A (Stateuregister = 2)))
{11 A {{({Statecregister = O) A (IR =111) A MB<4> 5 (MB<3> v - MB<6>)) v
({Stoteuregister = 2) A (IR=011))
Logic equation for ‘AC=—0
11

SIR<O> A AC=0

IR<1> v

IR<2> A
(State_register = 2)

[R<0>

IR<1>

IR<2>
(Statecregister = 0) A

MB<4>

i

MB<3>

2 MB<6> v

This term is derived from EAE and is not on the state diagram

Fig. 13. DEC PDP-8 Pc(K) 'AC < O signal-logic equations and diagram.
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clear Output
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set Output

Direct set-clear flip-flop
sequentiol logic element

Table of flip~flop input-output

of flip-flop
Table of circuit input-output
Outputs  {at #) Inputs Outputs (at #+)' Qutputs (at #) Inputs Outputs (at #4)'
1 0 Direct Direct 1 o] 1 ¢} Direct Direct 1 0
set clear set clear
o} -3 -3 -3 o] -3 1 o] o} o] 1 o]
-3 0 -3 -3 -3 o] 0] 1 o} o] o] 1
-3 0] -3 o] -3 o] 0] 1 o) 1 0] 1
o} -3 -3 o] -3 o} 1 o} 9] 1 o} 1
-3 o} 0] -3 o] -3 o] 1 1 o} 1 o]
o) -3 [} -3 o} -3 1 0 1 0 1 0
"Wote, This is not an “ideal" sequential circuit element, because there is no delay in the output.

B

Fig. 14. DEC PDP-8

sequential-element circuit and logic diagrams.
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Input lnpgt
Qutput 1 Qutput
tput — | ——
R (VA 2 |NOR
= 3, = 3

Inputs
+10volits NAND logic elernent NOR logic element

Node

Multiple input inverter circuit

Table of circuit Table of NAND Table of NOR
behavior behavior behavior

Input Qutput Input Qutput Input Qutput
12 3 1.2 3 12 3
0 00 -3 00O 1 111 0
0 0-3 -3 o 01 1 11 0 0
0-3 0 -3 01 0 1 101 ¢}
0-3-3 -3 o1 1 1 100 0
-3 00 -3 100 1 o1 o]
-3 0-3 -3 1.0 1 1 01 0 0
-3-3 0 -3 110 1 0 0 1 0
-3 -3-3 o] 11 o] 000 1

Fig. 15. DEC PDP-8 combinational element circuit and logic diagrams.

directly from the state diagram in Fig. 11. For example, the
AC <0 control signal is expressed algebraically and with a com-
binatorial network in Fig. 13. Obviously these boolean output
control signals are functions which include the clock, the
State_register, and the states of the arithmetic registers (for
example, A = 0, L = 0, etc.). The expressions should be factored
and minimized so as to reduce the hardware cost of the con-
trol for the interpreter. Although we are rather cavalier about
Pc(K), it constitutes about one-half the logic within Pc.

Chapter 5

Circuit level

The final level of description is the circuits which form the logic
functions of storage (flip-flops) and gating (NAND gates). Figures
14 and 15 illustrate some of these logic devices in detail.

In Fig. 14 a direct set and direct clear flip-flop, a sequential-
logic element, is described in terms of circuit implementation,
combinational logic equivalent, a table of its behavior, and its
algebraic behavior. Note that this is not an ideal element, be-
cause it has no delay and responds directly and immediately to
an input. Some idealized sequential logic elements are used in
the PDP-8 (but not illustrated), including the RS (Reset-Set),
T(Trigger), JK, and D(Delay). A delay in the flip-flops makes them
behave in the same way as the ideal primitives in sequential-
circuit theory. The outputs require a series delay, At, such that,
if the inputs change at time t, the outputs will not change until
t + At. In fact, the PDP-8 uses capacitor-diode gates at the flip-
flop inputs to delay the inputs.

Figure 15 illustrates the combinatorial logic elements used in
the PDP-8. The circuit selection is limited to the inverter circuit
with single or multiple inputs. These are more familiarly called
NAND gates or NOR gates, depending on whether one uses posi-
tive and/or negative logic-level definitions.

Conclusion

We could continue to discuss the behavior of the transistor as it
is used in these switching-circuit primitives but will leave that
to books on semiconductor electronics and physics. It is hoped
that the student has gained a grasp of how to think about the
hierarchical decomposition of computers into particular levels of
analysis (and synthesis).

The DEC PDP-8 133
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APPENDIX 1 DEC PDP-8 ISP DESCRIPTION

Appendix 1 —’

DEC PDP-8 ISP Description

Pe State
AC<C:11> Accumulator
L Link bit/AC extension for overflow and carry
PC<O:11> Program Counter
Run

1 when Pe is interpreting instructions or "rumning'
Interrupt _state 1 when Pe can be interrupted; wnder programmed control
10 pulse l; 10 pulse 2; 10 pulse h I0 pulsee to I0 devices
Mp State
Extended memory is not ineluded.
M[O:77778]<0: 1>
Page 0[0: 1771<0:11> == M[O: 177 g1<0: 11> special arvay of directly addressed memory registers
Auto,index[0:7]<0: 11> := Pageu0[108:178]<0:11> special array when addressed indirectly,is incremented by 1
Fe Console State
Keys for start, step, continue, examine (load from memory), and deposit (store in memory) are not ineluded.

Data switches<0:11> data entered via console

Instruction Format

instruction/i<0:11>

op<0:2> i= 02> op code

indirect bit/ib = i3> 0, direct; 1 indirect memcvy reference
page 0. bit/p = i<k 0 selects page 0; 1 selecte this page
page_address<0:6> := i<5:11>

this_page<0:4> 1= PC'<0:d4>

PC'<0:11> i= (PC<O:11> -1)

10 select<0:5> 1= 1<3:8> selects a T or Ms device

iopl_bit = 0l 1> these 3 bits control the szlective generation of -3 volts,
fo_p2.bit = icl0> 0.4 us pulses to I/0 devices

io ph bit =<9

sma t= j<b> w bit for skip on mivus AC, operate 2 group
sza 1= j<b> uw bit for skip on zero AC

sni = i< u bit for skip on non zerc Link

fective Addrese Calculation FProcess

z<0: 11> = { effective
—ib = 2';
ib A (\08 < z" ¢ \78) - (M[2''] - M[2"] + 1; next); auto indexing
ib - M[2'"])

2'<0:11> = (— ib = 2"; ib - M[2"])

2''<0:11> := {page_O_bit — this_pagegpage_address; direct address

—page_0_bit — Ogpage_address)

w microcoded inmstruction or instruction bit(s) within an instruction
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APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued)

Instruction [nterpretaticn Process

Run A — (Interruptorequest A Interrupt.state) - ( no interrupt interpreter
instruction « M[PC]; PC « PC + 1; next leteh
instruction_execution); execute

Run A Interrupt_request A Interrupt_state — ( interrupl interpreter

M[0] « PC; Interrupt_state — 0; PC « 1)

Instruction Set and Instruction Execution DProcess

Instruction_execution := (

and (:= op = 0) = (AC « AC A M[2]); logical and

tad {:= op = 1) -> (LOAC «- LOAC + M[z]); two's complement add

isz (:= op = 2) » (M[2'] <Mz} + 1; next index and skip 1f zero

(Mz'] =0) - (PC <PC# 1)):

dca (:= op = 3) - (M{2] « AC; AC « 0); deposit and elear AC

jms {:=op = 4) » (M[z] « PC; next PC « z + 1); Jump to subroutine

jmp (:= op = 5} = (PC « 2}; Fump

iot (:= op = 6} = ( u in out transfer, microprogrammeld to generate wp to 3 pulses
fouplubit - 10Lpulsel] « 1; next to an o device addressed by IO zelect
fop2.bit = 10 pulse 2 « 1; next

io_ph bit 10 pulse b - 1);

opr (:= op =7) = Operate _execution the operate instruction is defined below
) end Instruction execution

Operate Instruction fet
The microprogrammed operate instructions: opevate group 1, operate growp 2, and extended aritnmetic are defined as a separate
instruction set.

Operate_execution := (

cla (i= i<h> = 1) 5 {AC « 0); elear AC. Common to all operate imstructions.
oprol (= i<3> = 0) 5 ( operate group 71

cll (= i«% = 1) 5 (L « 0); next w clear link

cma (i= i<b> = 1) - (AC - AC); u complement AC

cml (= i<7>=1) - (L «—L); next w complement L

fac (:= i<l1>=1) - (LOAC «LOAC + 1); next u increment AC

ral (:= i<8:10> = 2) = (LOAC < LOAC x 2 {rotate}); u rotate left

rtl (:= i<8:10> = 3) — (LOAC « LOAC X 22 {rotatel); u rotate twice left

rar (:= i<8:10> = 4) = (LOAC < LDAC / 2 {rotate}); U rotate right

rtr (= i<8:10% = 5) = (LOAC < LOAC / 22 {rotatel)); u rotate twice right
opro2 (:= i<3,11> = 10) - ( operate group &

skip condition &€ (i<8> = 1) = (PC « PC + 1); next W AC,L skip test

skip conditfon := ({sma A (AC < 0)) v {(szaA (AC = 0)) v/ {snl A L))
osr {:= i< = 1) - (AC — AC V Data switches); u "or" switehee
hlt (:= i<10>= 1) - (Run « 0)); u halt or stop

FAE (:= i<3,11> = 11) » EAF.instruction.execution) optional FAE description
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APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued)

KT and KMs State . ,
Fach K may have any or all of the following registers. There can be up to 64 optional K's.

lnput_data[():778]<0:1\> 64 Input buffers

0utput_data[0:778]<0:11> 64 output buffers

IO‘__,skip\_,flag[O:778] 64 test conditions

IOuinterrupturequest[0:778] 1 signifies a request. If interruvt _state = 1, then an

interrunt occurs.
interrupt_request := "or” of all requests from each IO device
max(IO,_,interrupturequest[0:778]))
Extended Arithmetic Element, FAE (optional)

Provides additional arithmetic instructions (or operators) including x, /
EAE State

, normalize, logical shift and arithmetic shift.

MQ<0:11> Myltinlier Quotient:
SC<0: 4> Shift Counter
Instruction Format and Data
mds<0:11> multivlier divisor shift data
s<0:4> := mds<7:11> shift count parameter

Instruction Set for FAE

EAE_instruction_execution := (next

mga (:= i<5>) — (AC «AC v MQ); M) into AC

sca (:= i<6>) — (AL «AC v SC): SC into AC

mql (:= i<7>) — (MQ « AC; AC «<0); next AC into MO, clear AC
Note only one of wmi, shl, asr, lsr, muy, or Jvi can be given at a time.

i<8:10> = 00%8 — ; I0 operation

— nmi »>{mds « M[PCJ]; PC «PC + 1); next

muy (1= i<B:10> = 2) - (LOACOMQ « MQ x mds; SC «0) multinlu

dvi (:= i<8:10> = 3) — (MQ « LOACOMQ/mds; divide

LOAC « LOACOMQ mod mds: SC « 0):
nmi (= i<8:10> = 4) — ( ACOMQ « normalize (ACTMQ) ; normalize (AC,M7) irto OC

SC « normalize_exponent (ACIMQ)) ;
i<8:10> = 5) - (LOACOMQ « LOACOMQ x 25t sc «0); shift left
i<B:10> = 6) — (LoACOMQ « LoAcaMa / 2%%1: SC  0):  shift night
Isr (:= i<8:10> = 7) — (LOACOMQ « LoACaMQ / ZSH{]oqicaI}; logical shift

SC «0)
) end FAF instruction execution

shl

—
1]

n

asr (:
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Chapter 6
The Whirlwind | computer!

R. R. Everett

Project Whirlwind is a high-speed computer activity sponsored
at the Digital Computer Laboratory, formerly a part of the Servo-
mechanisms Laboratory, of the Massachusetts Institute of Tech-
nology (M.L.T.) by the Office of Naval Research (O.N.R.) and the
United States Air Force. The project began in 1945 with the
assignment of building a high-quality real-time aircraft simulator.

Historically, the project has always been primarily interested in
the fields of real-time simulation and control; but since about the
beginning of 1947 most of its efforts have been devoted to the
design and construction of the digital computer known as Whirl-
wind 1 (WWI). This computer has been in operation for about
1 year and an increasing proportion of project effort now is going
into application studies.

Applications for digital computers are found in many branches
of science, engineering, and business. Although any modern gen-
eral-purpose digital computer can be applied to all these fields,
a machine is generally designed to be most suited to some particu-
lar area. Whirlwind I was designed for use in control and simula-
tion work such as air traffic control, industrial process control, and
aircraft simulation. This does not mean that Whirlwind will not
be used on applications other than control. About one-half the
available computing time for the next year will be assigned to
engineering and scientific calculation including research in such
uses supported by the O.N.R. through the M.LT. Committee on
Machine Methods for Computation.

These control and simulation problems result in a specialized
emphasis on computer design.

Short register length

WWI has 16 binary digits and the control problems are usually
very simple mathematically. Furthermore, the computer is almost
always part of a feedback rather than an open-ended system.
Consequently, roundoff errors are seldom troublesome and the
register length can be shortened to something comparable to the
sensitivity of the physical quantities involved, perhaps five decimal
places or less.

WWI has a register length of 16 binary digits including sign
or about four and one-half decimals. The register length was
AIEE-IRE Conf., 70-74 (1951)

chosen as the minimum that would provide a usable single-address
order, in this case five binary digits for instruction and 11 binary
digits for address. In a future machine we would probably increase
this register length to 20 or 24 binary digits to get additional order
flexibility; the increased numerical precision is less important.

For scientific and engineering calculation, greater than 16-digit
precision is often required. There is available a set of multiple-
length and floating point subroutines which make the use of
greater precision very easy. It is true that these subroutines are
slow, bringing effective machine speed down to about that ob-
tained by acoustic memory machines. It is much more efficient
occasionally to waste computing time this way than continuously
to waste a large part of the storage and computing equipment of
the machine by providing an unnecessarily long register.

High operating speed

WWI performs 20,000 single-address operations per second. Con-
trol and simulation problems require very high speeds. The neces-
sary calculations must be carried out in real time; the more com-
plex the controlled system is, the faster the computer must be.
There is no practical upper limit to the computing speed that
could be used if available.

Where the problems are large enough, and these problems are,
one high-speed machine is much better than two simpler machines
of half the speed. Communication between machines presents
many of the same problems that communication between human
beings presents.

Great effort was put into WWI to obtain high speed. The target
speed was 50,000 single-address operations per second, and all
parts of the machine except storage meet this requirement. The
actual WWI present operating speed of 20,000 single-address
operations per second is on the lower edge of the desired speed
range.

Large internal storage

WWI now has 1,280 registers. A large amount of high-speed in-
ternal storage is needed since it is not in general possible to use
slow auxiliary storage because of the time factor. In many cases
a magnetic drum can be useful since its access time is short com-

137



138 Part 2

The instruction-set processor: main-line computers

pared to the response times of real systems. Even with a drum
there is considerable loss of computing and programming efficiency
due to shuffling information back and forth between drum and
computer.

WWI is designed for 2,048 registers of storage. Until recently
there has been available only about 300 registers. This number,
while small, has been adequate for much useful work. Very re-
cently a second bank of new-model storage tubes has been added.
These new tubes operate at 1,024 spots per tube bringing the total
WWI storage to 1,280 registers. These tubes have been in the
computer and under test for 2 months and in active use for about
2 weeks. In the next few months the tubes in the first bank will
be replaced by new-model storage tubes bringing the total storage
to 2,048. This number is on the lower end of what the project
considers desirable. What the computer business needs, has
needed, and will probably always need is a bigger, better, and
faster storage device.

Extreme reliability

In a system where much valuable property and perhaps many
human lives are dependent on the proper operation of the com-
puting equipment, failures must be very rare. Furthermore, check-
ing alone, however complete, is inadequate. It is not enough
merely to know that the equipment has made an error. It is very
unlikely that a man, presumably not too well suited to the work
during normal conditions, can handle the situation in an emer-
gency. Multiple machines with majority rule seem to be the best
answer. Self-correcting machines are a possibility but appear to
be too complicated to compete, especially as they provide no
standby protection.

The characteristics of the Whirlwind I computer may be re-
capitulated as follows:

Register length 16 binary digits, parallel

20,000
second

Speed single-address operations per

Storage capacity Originally 256 registers
Recently 320 registers
Presently 1,280 registers

Target 2,048 registers
Order type Single-address, one order per word
Numbers Fixed point, 9’s complement
Basic pulse 1 megacycle

repetition
frequency

2 megacycles (arithmetic element only)

Section 1 | Processors with one address per instruction

Tube count 5,000, mostly single pentodes

Crystal count 11,000

There are 32 possible operations, of which about 27 are as-
signed. They are of the usual types: addition, subtraction, multi-
plication, division, shifting by an arbitrary number of columns,
transfer of all or parts of words, subprogram, and conditional
subprogram. There are terminal equipment control orders and
there are some special orders for facilitating double-length and
floating-point operations.

One way to increase the effective speed of a machine is to
provide built-in facilities for operations that occur frequently in
the problems of interest. An example is an automatic co-ordinate
transformation order. The addition of such facilities does not affect
the general-purpose nature of the machine. The machine retains
its old flexibility but becomes faster and more suited to a certain
class of problems.

From March 14, 1951, at which time we began to keep detailed
records, until November 22, 1951 a total of 950 hours of computer
time were scheduled for applications use. The machine has been
running on two shifts or a total of about 3,000 hours during this
interval. The two-thirds time not used for applications has been
used for machine improvement, adding equipment, and preventive
maintenance.

Of the 950 hours available, 500 have been used by the scientific
and engineering calculation group, the rest for control studies. The
limited storage available until recently has been admittedly a
serious handicap to the scientific and engineering applications
people. There has not been room in storage for the lengthy sub-
routines necessary for convenient use of the machine. The largest
part of their time has been spent in training, in setting up pro-
cedures, and in preparing a library of subroutines.

A partial list of the actual problems carried out by the group
includes:

1 An industrial production problem for the Harvard Eco-
nomics School

2 Magnetic flux density study for our magnetic storage work
3 Oil reservoir depletion studies

4 Ultra-high frequency television channel allocation investi-
gation for Dumont

5 Optical constants of thin metal films
Computation of autocorrelation coeflicients

7 Tape generation for a digitally-controlled milling machine



The scientific and engineering applications time on Whirlwind
I has been organized in a manner patterned after that originated
by Dr. Wilkes at EDSAC. The group of programmers and mathe-
maticians assigned to WWTI assist users in setting up their own
problems. Small problems requiring only a few seconds or minutes
of computer time are encouraged. Applications time is assigned
in I-hour pieces two or three times a day. No program debugging
is allowed on the machine. Program errors are deduced by the
programmer from printed lists of results, storage contents, or order
sequences as previously requested from the machine operator. The
programmer then corrects his program which is rerun for him
within a day or perhaps within a few hours.

Every effort is made to reduce the time-consuming job of print-
ing tabulated results. In many cases a user desires large amounts
of tabulated data only because he doesn’t really know what an-
swers he wants and so asks for everything. Such users are encour-
aged to ask only for pertinent results in the form of numbers or
curves plotted by the machine on a cathode-ray tube and auto-
matically photographed. If these results prove inadequate or the
user gets a better idea of his needs, he is allowed to rerun his
program, again asking only for what appear to be significant re-
sults. Figure 1 shows a sample curve plotted by the computing
machine showing calibrated axes and decimal intercepts.

-

oot
ol woee § won § Yow

Fig. 1. Sample computer output.
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Fig. 2. Simplified computer block diagram. —Whidwn &

WWI system layout

Figure 2 shows the major parts of any computer such as WWL
The major elements of the computer communicate with each other
via a central bus system.

WWTI is basically a simple, straightforward, standard machine
of the all-parallel type. Unfortunately, the simple concept often
becomes complicated in execution, and this is true here. WW’s
control has been complicated by the decision to keep it completely
flexible, the arithmetic element by the need for high speed, the
storage by the use of electrostatic storage tubes, the terminal
equipment by the diversity of input and output media needed.

Control

The WW control is divided into several parts, as shown in Fig. 3.

Central control

The central control of the machine is the master source of control
pulses. When necessary the central control allows one of the other
controls to function. In general there is no overlapping of control
operation; except for terminal equipment control, only one of the
controls is in operation at any one time.

Storage control

Storage control generates the sequence of pulses and gates that
operate the storage tubes. Central control instructs the storage
control either to read or to write.

Arithmetic control

Arithmetic control carries out the details of the more complex
arithmetic operations such as multiplication and division. The
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Fig. 3. Control.

setup of these operations plus the complete controlling of the
simpler operations such as addition are carried out by central
control.

Terminal equipment control

Terminal equipment control generates the necessary control
pulses, delay times, and interlocks for the various terminal equip-
ment units.

Program counter

The program counter which keeps track of the address of the next
order to be carried out is considered as part of control. This is
an 11-binary counter with provision for reading to the bus.

Most of the functions of these subsidiary controls could be
combined with the central control. The major reason they are not
is that they were designed at different times. The arithmetic ele-
ment and its control came first, followed by central control. At
the time central control was designed, the necessary characteristics
of storage control were unknown. In fact, the machine was de-
signed so that any parallel high-speed storage could be used. The
form of terminal equipment control was also unknown at this time.
Since flexibility was a prime specification, it was felt preferable
to build separate flexible controls for the various parts of the
computer than to try to combine all the needed flexibility in one
central control.

In a new machine we would attempt to combine control func-
tions where possible, hoping to have enough prior knowledge
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about component needs to eliminate subsidiary controls com-
pletely. We would still insist on a large degree of control flexibility.

Master clock

The master clock consists of an oscillator, pulse shaper and divider
that generate 1- and 2-megacycle clock pulses, and a clock pulse
control that distributes these clock pulses to the various controls
in the machine. It is this unit that determines which of the sub-
sidiary controls actually is controlling the machine. This unit also
stops and starts the machine and provides for push-button opera-
tion.

Operation control

The operation control, see Fig. 4, was designed for maximum
flexibility and minimum number of operation“digits, and, conse-
quently, minimum register length. It is of the completely decoding
type.

The operation switch is a 32-position crystal matrix switch that
receives the 5-bit instruction from the bus and in turn selects one
of 32 output lines corresponding to the 32 built-in operations.

There are 120 gate tubes on the output of the operation control.
Pulses on the 120 output lines go to the gate drivers, pulse drivers,
and control flip-flops all over the machine; 120 is a generous
number. The suppressors of these gate tubes are connected to
vertical wires that cross the 32 output lines from the operation
switch. Crystals are inserted at the desired junctions to turn on
those gate tubes that are to be used for any operation.

(1]
32-POSITION |99
1)
SWITCH —
FROM
BUS 1o

o
8-POSITION X3
r.
TIME-PULSE [
DISTRIBUTOR [~~~

CLOCK - l
PULSES T

6Tkt 6]

G’TE}‘

RESET

Fig. 4. Operation control.



The time pulse distributor consists of an 8-position switch
driven from a three binary-digit counter. Clock pulses at the input
are distributed in sequence on the eight output lines. The control
grids of the output gate tubes are connected to these timing lines.
The output of the operation control is thus 120 control lines on
each of which can appear a sequence of pulses for any combination
of orders at any combination of times.

Central control

The Central Control of the machine is shown in Fig. 5. The control
switch is in the foreground with the operation matrix to the right.

Electrostatic storage

The electrostatic storage shown in Fig. 6 consists of two banks
of 16 storage tubes each. There is a pair of 32-position decoders

Ahirlwind

Fig. 5. View of central control.
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Fig. 6. View of electrostatic storage.

set up by address digits read in from the bus. There is a storage
control that generates the sequence of pulses needed to operate
the gate generators, et cetera. A radio frequency pulser generates
a high power 10-megacycle pulse for readout.

Each digit column contains, besides the storage tubes, write
plus and write minus gate generators and a signal plate gate
generator for each tube. Ten-megacycle grid pulses are used for
readout in order to get the required discrimination between the
fractional volt readout pulses and the 100-volt signal plate gates.
For each storage tube there is a 10-megacycle amplifier, phase-
sensitive detector and gate tube, feeding into the program register.
The program register is used for communicating with the storage
tubes. Information read out of the tubes appears in the program
register. Information to be written into the tubes must be placed
in the program register.
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Fig. 7. Arithmetic element.

Arithmetic element

The arithmetic element, see Fig. 7, consists of three registers, a
counter, and a control.

The first register is an accumulator (AC) which actually consists
of a partial-sum or adding register and a carry register. The accu-
mulator holds the product during multiplication.

The second or A-register holds the multiplicand during multi-
plication. All numbers entering the arithmetic element do so
through AR.

The third or B-register holds the multiplier during multiplica-
tion. The accumulator and B-register shift right or left. A high-speed
carry is provided for addition. Subtraction is by 9’s complement
and end-around-carry. Multiplication is by successive additions,
division by successive subtractions, and shift orders provide for
shifting right or left by an arbitrary number of steps, with or
without roundoft.

The arithmetic element is straightforward except for a few
special orders and the high speed at which it operates. Addition
takes 3 microseconds complete with carry; multiplication, 16
microseconds average including sign correction.

In Fig. 8 are shown several digits of the arithmetic element.
The large panels are accumulator digits. Above the accumulator
is the B-register, below it the A-register.

Test control

Test control, shown in Fig. 9, is used at present both for operating
and for trouble shooting the computer. The control includes:
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Power supply control and meters.
Neon indicators for all flip-flops in the machine.
Switches for setting up special conditions.

Manual intervention switches.

Ut &~ W =

Oscilloscopes for viewing wave forms. A probe and amplifier
system allows viewing any wave form in the computer on
one scope at test control.

6 Test equipment to provide synchronizing, stop, or delay
pulses at any step of any order of a program, allowing
viewing wave forms on the fly anywhere in the machine.

An important part of the test facilities is the test storage, a
group of 32 toggle-switch registers plus five flip-flop registers that
can be inserted in place of any five of the toggle-switch registers.
This storage has proved invaluable not only for testing control and

Fi

g. 8. View of arithmetic element. ~ 11 el el
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arithmetic element before electrostatic storage was available but
also for testing electrostatic storage itself. When not in use for
test purposes test storage earns its keep as part of the terminal
equipment system. The toggle-switches hold a standard read-in
program; the flip-flop registers are used as in-out registers for
special purposes.

Checking

Logical checking facilities built into WWI are rather inconsistent.
A complete bus transfer checking system has been provided, dupli-
cate checking of some terminal equipment is permitted, but little
else is thoroughly checked. We felt that it was worthwhile to
thoroughly check some substantial portion of the machine. This
portion would then serve as a prototype for studying the tube
circuitry used throughout the machine. We did not feel it was
worthwhile to check all the machine, a procedure that requires
a great deal of added equipment and logical complexity plus a
substantial loss in computing speed.

Operating experience has shown us that it is not worthwhile
to provide detailed logical checking of a machine. In a new
machine we would leave out the transfer checking. The amount of
information and security given by the detailed checking system is
not enough to warrant the expense of building and maintaining it.

This decision is based on the expectation that a computing
machine should operate 95 per cent of total time or better and
that the average time between random failures should be of the
order of 5 to 10 hours or approximately 10° operations.
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In our opinion the way to achieve the extremely high reliability
needed in some real-time control problems is to provide three or
more identical but distinct machines, thus obtaining error correc-
tion as well as detection, plus such features as standby, safety, and
damage control. Even so the failure probability of each machine
must be kept low by proper design, marginal checking, and pre-
ventive maintenance.

Extremely high reliability means a reliability far beyond that
achieved in existing machines and not conveniently represented
as a per cent. Consider a system consisting of three machines, each
operable 98 per cent of the time and each averaging 10 hours
between random errors.

One machine will be out of operation ¥, hour per day.

Two machines will be out of operation ¥, hour per month.

All three machines will be out of operation 4 minutes per year.
Furthermore undetected random errors might occur on the aver-
age of once a year. Such reliability is needed in some systems.

Our decision to omit detailed checking does not extend to
checking devices intended to detect programming errors. Devices
to check for overflow from the arithmetic element or for non-
existent order configurations are necessary. Programmers make
many mistakes. Techniques for dealing with programming errors
are very important and need future development.

Terminal equipment
At the present time, Whirlwind is using the following terminal
equipment:

1 A photoelectric paper tape reader

2 Mechanical paper tape readers and punches
3 Mechanical typewriters
4

Oscilloscope displays 5 to 16 inches in diameter with phos-
phors of various persistencies including a computer-con-
trolled scope camera

5 Inputs from various analogue equipments needed for control
studies

6 Outputs to analogue equipment
To be added during the next year:

1 Magnetic Tape (units by Raytheon). One such unit is now
being integrated with machine.

2 Magnetic drums (units by Engineering Research Associates,
Inc.).

3 Many more analogue inputs and outputs.
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This great complexity of terminal equipment requires a flexible
switching system. There is a single in-out register (IOR) through
which most of the data passes.

There is a switch which is set up by an order to select the
desired piece of terminal equipment. Other orders put data into
IOR or remove data from IOR. The in-out control provides the
necessary control pulses to go with each type of equipment. In

Section 1 | Processors with one address per instruction

general the computer continues to run during terminal equipment
wait times; suitable interlocks are provided to prevent trouble.
This complete equipment has not yet been fully installed.

References
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Note: In operations mr, mh, dv, sir, srr, srh, sf, the C(BR) is assumed to be
the magnitude of the least significant part of AC + BR. For the ab and dm oper-
ations, the BR is treated just as any storage register.

IWhirlwind | Instruction Code came from *‘Comprehensive System Manual, A
System of Automatic Coding for the Whirlwind Computer,” published by Massa-
chusetts Institute of Technology, Digital Computer Laboratory, Cambridge, Mass.
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Chapter 7

Some aspects of the logical design of
a control computer: a case study!

R. L. Alonso / H. Blair-Smith / A. L. Hopkins

Summary Some logical aspects of a digital computer for a space vehicle
are described, and the evolution of its logical design is traced. The intended
application and the characteristics of the computer’s ancestry form a frame-
work for the design, which is filled in by accumulation of the many decisions
made by its designers. This paper deals with the choice of word length,
number system, instruction set, memory addressing, and problems of multi-
ple precision arithmetic.

The computer is a parallel, single address machine with more than
10,000 words of 16 bits. Such a short word length yields advantages of
efficient storage and speed, but at a cost of logical complexity in connection
with addressing, instruction selection, and multiple-precision arithmetic.

1. Introduction

In this paper we attempt to record the reasoning that led us to
certain choices in the logical design of the Apollo Guidance Com-
puter (AGC). The AGC is an onboard computer for one of the
forthcoming manned space projects, a fact which is relevant pri-
marily because it puts a high premium on economy and modularity
of equipment, and results in much specialized input and output
circuitry. The AGC, however, was designed in the tradition of
parallel, single-address general-purpose computers, and thus has
many properties familiar to computer designers [Richards, 1955},
[Beckman et al., 1961]. We will describe some of the problems
of designing a short word length computer, and the way in which
the word length influenced some of its characteristics. These
characteristics are number system, addressing system, order code,
and multiple precision arithmetic.

A secondary purpose for this paper is to indicate the role of
evolution in the AGC’s design. Several smaller computers with
about the same structure had been designed previously. One of
these, MOD 3C, was to have been the Apollo Guidance Computer,
but a decision to change the means of electrical implementation
(from core-transistors to integrated circuits) afforded the logical
designers an unusual second chance.

It is our belief, as practitioners of logical design, that designers,

computers and their applications evolve in time; that a frequent

\IEEE Trans., EC-12 (6), 687-697 (December, 1963)

reason for a given choice is that it is the same as, or the logical
next step to, a choice that was made once before.

A recent conference on airborne computers [Proc. Conf. Space-
borne Computer Eng., Anaheim, Calif., Oct. 30-31, 1962] affords
a view of how other designers treated two specific problems: word
length and number system. All of these computers have word
lengths of the order of 22 to 28 bits, and use a two’s complement
system. The AGC stands in contrast in these two respects, and
our reasons for choosing as we did may therefore be of interest
as a minority view.

2. Description of the AGC

The AGC has three principal sections. The first is a memory, the
fixed (read only) portion of which has 24,576 words, and the
erasable portion of which has 1024 words. The next section may
be called the central section; it includes, besides an adder and a
parity computing register, an instruction decoder (SQ), a memory
address decoder (S), and a number of addressable registers with
either special features or special use. The third section is the
sequence generator which includes a portion for generating various
microprograms and a portion for processing various interrupting
requests.

The backbone of the AGC is the set of 16 write busses; these
are the means for transferring information between the various
registers shown in Fig. 1. The arrowheads to and from the various
registers show the possible directions of information flow.

In Fig. 1, the data paths are shown as solid lines; the control
paths are shown as broken lines.

Memory: fixed and erasable

The Fixed Memory is made of wired-in “ropes” [Alonso and
Laning, 1960], which are compact and reliable devices. The num-
ber of bits so wired is about 4 X 105. The cycle time is 12 ysec.

The erasable memory is a coincident current system with the
same cycle time as the fixed memory. Instructions can address
registers in either memory, and can be stored in either memory.
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Fig. 1. AGC block diagram.

The only logical difference between the two memories is the
inability to change the contents of the fixed part by program steps.

Each word in memory is 16 bits long (15 data bits and an odd
parity bit). Data words are stored as signed 14 bit words using
a one’s complement convention. Instruction words consist of 3
order code bits and 12 address code bits.

The contents of the address register S uniquely determine the
address of the memory word only if the address lies between octal
0000 and octal 5777, inclusive. If the address lies between octal
6000 and octal 7777, inclusive, the address in S is modified by the
contents of the memory bank register MB. The modification con-
sists in adding some integral multiplies of octal 2000 to the address
in S before it is interpreted by the decoding circuitry. The memory
bank register MB is itself addressable; its address, however, is not
modified by its own contents.

Transfers in and out of memory are made by way of a memory
local register G. For certain specific addresses, the word being
transferred into G is not sent directly, but is modified by a special
gating network. The transformations on the word sent to G are
right shift, left shift, right cycle, and left cycle.

Central section

The middle part of Fig. 1 shows the central section in block form.
It consists of the address register S and the memory bank register

MB both of which were mentioned above. There is also a block
of addressable registers called “central and special registers,”
which will be discussed later, an arithmetic unit, and an instruc-
tion decoder register SQ.

The arithmetic unit has a parity generating register and an
adder. These two registers are not explicitly addressable.

The SQ register bears the same relation to instructions as the
S register bears to memory locations; neither S nor SQ are ex-
plicitly addressable.

The central and special registers are A, Q, Z, LP, and a set of
input and output registers. Their properties are shown in Table 1.

Sequence generator

The sequence generator provides the basic memory timing, the
sequences of control pulses (microprograms) which constitute an
instruction, the priority interrupt circuitry, and a number of scal-
ing networks which provide various pulse frequencies used by the
computer and the rest of the navigation system.

Instructions are arranged so as to last an integral number of
memory cycles. The list of 11 instructions is treated in detail in
Sec. 6. In addition to these there are a number of “involuntary”
sequences, not under normal program control, which may break
into the normal sequence of instructions; these are triggered either
by external events, or by certain overflows within the AGC, and
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Table 1 Special and central registers
Octal

Register (s) address Purpose and/or properties

A 0000 Central accumulator. Most instructions refer
to A.

Q 0001 If a transfer of control (TC) occurred at L,

Z 0002 Program counter. Contains L + 1, where L
is the address of the instruction presently
being executed.

LP 0003 Low product register. This register modifies
words written into it by shifting them in a
special way.

IN - Several registers which are used for sampling
either external lines, or internal computer
conditions such as time or alarms.

ouT - Several output registers whose bits control

switches, networks, and displays.

may be divided into two categories: counter incrementing and
program interruption.

Counter incrementing may take place between any two mem-
ory cycles. External requests for incrementing a counter are stored
in a counter priority circuit. At the end of every memory cycle
a test is made to see if any incrementing requests exist. If not,
the next normal memory cycle is executed directly, with no time
between cycles. If a request is present, an incrementing memory
cycle is executed. Each “counter” is a specific location in erasable
memory. The incrementing cycle consists of reading out the word
stored in the counter register, incrementing it (positively or nega-
tively), or shifting it, and storing the results back in the register
of origin. All outstanding counter incrementing requests are proc-
essed before proceeding to the next normal memory cycle. This
type of interrupt provides for asynchronous incremental or serial
entry of information into the working erasable memory. The pro-
gram steps may refer directly to a “counter” to obtain the desired
information and do not have to refer to input buffers. Overflows
from one counter may be used as the input to another. A further
property of this system is that the time available for normal pro-
gram steps is reduced linearly by the amount of counter activity
present at any given time.

Program interruption occurs between normal program steps

Section 1 | Processors with one address per instruction

rather than between memory cycles. An interruption consists of
storing the contents of the program counter and transferring con-
trol to a fixed location. Each interrupt line has a different location
associated with it. Interrupting programs may not be interrupted,
but interrupt requests are not lost, and are processed as soon as
the earlier interrupted program is resumed. Calling the resume
sequence, which restores the program counter, is initiated by
referencing a special address.

3. Word length

In an airborne computer, granted the initial choice of parallel
transfer of words within it, it is highly desirable to minimize the
word length. This is because memory sense amplifiers, being high-
gain class A amplifiers, are considerably harder to operate with
wide margins (of temperature, voltages, input signal) than, say,
the circuits made up of NOR gates. It is best to have as few of
these as possible. Furthermore, the number of ferrite-plane inhibit
drivers equals the number of bits in a word in this case. Similarly,
the time required for a carry to propagate in a parallel adder is
proportional to the word length, and in the present case, this factor
could be expected to affect the microprogramming of instructions.
The initial intent, then, was to have as short a word length as
possible.

Another initial choice is that the AGC should be a “common
storage” machine, which means that instructions may be executed
from erasable memory as well as from fixed memory, and that data
(obviously constants, in the case of fixed memory) may be stored
in either memory. This in turn means that the word sizes of both
types of memory must be compatible in some sense; for the AGC,
the easiest form of compatibility is to have equal word lengths.
So-called “separate storage” solutions which allow different word
lengths for instructions and data can be made to work [Walend-
ziewicz, 1962] but they have a drawback in that three memories
are then required: a data memory (erasable), and two fixed memo-
ries, one for instructions and one for constants. In addition, we
have found that separate storage machines are more awkward to
program, and use memory less efficiently, than common storage
machines.

There are three principal factors in the choice of word length.
These are:

1 Precision desired in the representation of navigational vari-
ables.

2 Range of the input variables which are entered serially and
counted.



3 Instruction word format. Division of instruction words into
two fields, one for operation code and one for address.

As a start, the choice of word length (15 bits) for two previous
machines in this series was kept in mind as a satisfactory word
length from the point of view of mechanization; i.e., the number
of sense amplifiers, inhibit drivers, the carry propagation time, etc.,
were all considered satisfactory. The act of “choosing” word length
really meant whether or not to alter the word length, at the time
of change from MOD 3C to the AGC, and in particular whether
to increase it. The influence of the three principal factors will be
taken up in turn.

Precision of data words

The data words used in the AGC may be divided roughly into
two classes: data words used in elaborate navigational computa-
tions, and data words used in the control of various appliances
in the system. Initial estimates of the precision required by the
first class ranged from 27 to 32 bits, 0(10%*1), The second class
of variables could almost always be represented with 15 bits. The
fact that navigational variables require about twice the desired
15-bit word length means that there is not much advantage to
word sizes between 15 and 28 bits, as far as precision of represen-
tation of variables is concerned, because double-precision numbers
must be used in any event. Because of the doubly signed number
representation for double-precision words, the equivalent word
length is 29 bits (including sign), rather than 30, for a basic word
length of 15 bits.

The initial estimates for the proportion of 15-bit vs 29-bit
quantities to be stored in both fixed and erasable memories indi-
cated the overwhelming preponderance of the former. It was also
estimated that a significant portion of the computing had to do
with control, telemetry and display activities, all of which can be
handled more economically with short words. A short word length
allows faster and more efficient use of erasable storage because
it reduces fractional word operations, such as packing and editing;
it also means a more efficient encoding of small integers.

Range of input variables

As a control computer, the AGC must make analog-to-digital
conversions, many of which are of shaft angles. Two principal
forms of conversion exist: one renders a whole number, the other
produces a train of pulses which must be counted to yield the
desired number. The latter type of conversion is employed by the
AGC, using the counter incrementing feature.

When the number of bits of precision required is greater than
the computer’s word length, the effective length of the counter
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must be extended into a second register, either by programmed
scanning of the counter register, or by using a second counter
register to receive the overflows of the first. Whether programmed
scanning is feasible depends largely on how frequently this scan-
ning must be done. The cost of using an extra counter register
is directly measured in terms of the priority circuit associated
with it.

In the AGC, the equipment saved by reducing the word length
below 15 bits would probably not match the additional expense
incurred in double-precision extension of many input variables.
The question is academic, however, since a lower bound on the
word length is effectively placed by the format of the instruction
word.

Instruction word format

An initial decision was made that instructions would consist of
an operation code and a single address. The straightforward
choices of packing one or two such instructions per word were
the only ones seriously considered, although other schemes, such
as packing one and a half instructions per word, are possible
[England, 1962]. The previous computers MOD 3S and MOD 3C
had a 3-bit field for operation codes and a 12-bit field for addresses,
to accommodate their 8 instruction order codes and 4096 words
of memory. In the initial core-transistor version of the AGC (i.e.,
MOD 3C), the 8 instruction order codes were in reality augmented
by the various special registers provided, such as shift right, cycle
left, edit, so that a transfer in and out of one of these registers
would accomplish actions normally specified by the order code
(see Sec. 6). These registers were considered to be more economical
than the corresponding instruction decoding and control pulse
sequence generation. Hence the 3 bits assigned to the order code
were considered adequate, albeit not generous. Furthermore, as
will be seen, it is possible to use an indexing instruction so as to
increase to eleven the number of explicit order codes provided
for.

The address field of 12 bits presented a different problem. At
the time of the design of MOD 3C we estimated that 4000 words
would satisfy the storage requirements. By the time of redesign
it was clear that the requirement was for 10> words, or more, and
the question then became whether the proposed extension of the
address field by a bank register (see Sec. 7) was more economical
than the addition of 2 bits to the word length. For reasons of
modularity of equipment, adding 2 more bits to the word length
would result in adding 2 more bits to all the central and special
registers, which amounts to increasing the size of the nonmemory
portion of the AGC by 10 per cent.
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In summary, the 15-bit word length seemed practical enough
so that the additional cost of extra bits in terms of size, weight,
and reliability did not seem warranted. A 14-bit word length was
thought impractical because of the problems with certain input
variables, and it would further restrict the already somewhat
cramped instruction word format. Word lengths of 17 or 18 bits
would result in certain conceptual simplicities in the decoding
of instructions and addresses, but would not help in the represen-
tation of navigational variables. These require 28 bits, and so they
must be represented to double precision in any event.

4. Number representation
Signed numbers

In the absence of the need to represent numbers of both signs,
the discussion of number representation would not extend beyond
the fact that numbers in AGC are expressed to base two. But the
accommodation of both positive and negative numbers requires
that the logical designer choose among at least three possible forms
of binary arithmetic. These three principal alternatives are: (1)
one’s complement, (2) two’s complement, and (3) sign and magni-
tude [Richards, 1955].

In one’s complement arithmetic, the sign of a number is re-
versed by complementing every digit, and “end around carry” is
required in addition of two numbers.

In two’s complement arithmetic, sign reversal is effected by
complementing each bit and adding a low order one, or some
equivalent operation.

Sign and magnitude representation is typically used where
direct human interrogation of memory is desired, as in “post-
mortem” memory dumps, for example. The addition of numbers
of opposite sign requires either one’s or two’s complementation
or comparison of magnitude, and sometimes may use both. No
advantage is offered in efficiency with the possible exception of
sign changing, which only requires changing the sign bit. A disad-
vantage is engendered in magnetic core logic machines by the
extra equipment needed for subtraction or conditional recomple-
mentation.

The one’s complement notation has the advantage of having
easy sign reversal, which is equivalent to Boolean complementa-
tion; hence a single machine instruction performs both functions.
Zero is ambiguously represented by all zero’s and by all one’s,
so that the number of numerical states in an n-bit word is 2" — 1.

Two’s complement arithmetic is advantageous where end
around carry is diflicult to mechanize, as is particularly true in
serial computers. An n-bit word has 2" states, which is desirable
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for input conversions from such devices as pattern generators,
geared encoders, or binary scalers. Sign reversal is awkward, how-
ever, since a full addition is required in the process.

The choice in the case of the AGC was to use one’s complement
arithmetic in general processing, and two’s complements for cer-
tain input angle conversions. Since the only arithmetic done in
the latter case is the addition of plus or minus one, the two’s
complement facility is provided simply by suppressing end around
carry and using the proper representation of minus one. The latter
is stored as a fixed constant, so that no sign reversal is required.

Modified one’s complement system

In a standard one’s complement adder, overflow is detected by
examining carries into and out of the sign position. These overflow
indications must be “caught on the fly” and stored separately if
they are to be acted upon later. The number system adopted in
the AGC has the advantage of being a one’s complement system
with the additional feature of having a static indication of over-
flow. The implementation of the method depends on the AGC’s
not using a parity bit in most central registers. Because of certain
modular advantages, 16, rather than 15, columns are available in
all of the central registers, including the adder. Where the parity
bit is not required, the extra bit position is used as an extra column.
The virtue of the 16-bit adder is that the overflow of a 15-bit sum
is readily detectable upon examination of the two high order bits
of the sum (see Fig. 2). If both of these bits are the same, there
is no overflow. If they are different, overflow has occurred with
the sign of the highest order bit.

The interface between the 16-bit adder and the 15-bit memory
is arranged so that the sign bit of a word coming from memory
enters both of the two high order adder columns. These are de-
noted S, and S, since they both have the significance of sign bits.
When a word is transferred from the accumulator A to memory,
only one of these two signs can be stored. Our choice was to store
the S, bit, which is the standard one’s complement sign except
in the event of overflow, in which case it is the sign of the two
operands. This preservation of sign on overflow is an important
asset in dealing with carries between component words of multi-
ple-precision numbers (see Sec. 5).

In a standard one’s complement system, a series of additions
may result in subtotals which overflow, yet still produce a valid
sum so long as the total does not exceed the capacity of one word.
In a modified one’s complement system, however, where sign is
preserved on overflow, this is no longer true; and the total may
depend on the order in which the numbers are added; this is not
a serious drawback, but it must be accounted for in all phases
of logical design and programming.
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STANDARD MODIFIED
S 4 3 2 1 S S 4 3 2 1
EXAMPLE 1: Both operands positive; Sum positive, no overflow. Identical results ©¢ 0 0 0 1 6 0 0 O 1
in both systems. 0 0 0 1 1 0 0 0 0 1 1
0O 0 1 0 oO 0O 0 0 1 0 O
EXAMPLE 2: Both operands positive; positive overflow. Standard resultisnega- 0 1 0 O 0 0 1 0 0 1
tive; Modified result is positive using Ss as sign of the answer. 1 0 1 1 0 O 0 1
Positive overflow indicated by S; - S.. 1 0 1 0 O 0O 1 0 1 0 ©
EXAMPLE 3: Both operands negative; Sum negative, no overflow. Endaround 1 1 1 1 O 1 1 1 1 1 O
carry occurs. ldentical results in both systems using either S; or S, 1 0 1 1 1 1 0
as the sign of the answer. 1 1 0 1 O 1 1 1 0 1 0
1 carry 1 carry
1 1 0 1 1 1 1 1 0 1 1
EXAMPLE 4: Both operands negative; negative overflow. Standard resultisposic 1 0 1 1 O 1 1 0 1 1 O
tive; modified result is negative using S; as the sign of the answer. 1 0 1 0 1 1 0 1 0
Negative overflow indicated by S; - Sa. 0 1 0 1 0 1 0 1 0 1 O
1 carry 1 carry
0O 1 0 1 1 1 0 1 0 1 1
EXAMPLE 5: Operands have opposite sign; Sum positive. Identical resultsizboth 1 1 1 1 0 1 1 1 1 1 0
systems. 1 1 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1
1 carry 1 carry
0 0 0o 1 O 0 0 0 0 1 o©
EXAMPLE 6: Operands have opposite sign; sum negative. Identical resultsin 1 1 1 0 O 1 1 1 1 0 O
both systems. 0o 0 0o 1 o] 0 o 1
1 1 1 0 1 1 1 1 0 1

Fig. 2. lllustrative example of properties of modified one’s compiement system.

5. Muitiple precision arithmetic

A short word computer can be effective only if the multiple-
precision routines are efficient corresponding to their share of the
computer’s word load. In the AGC’s application there is enough
use for multiple-precision arithmetic to warrant consideration in
the choice of number system and in the organization of the instruc-
tion set. Although the limited number of order codes prohibits
multiple-precision instructions, special features are associated with
the conventional instructions to expedite multiple-precision opera-
tions.

Independent sign representation

A variety of formats for multiple-precision representation are
possible; probably the most common of these is the identical sign

representation in which the sign bits of all component words agree.
The method used in the AGC allows the signs of the components
to be different.

Independent signs arise naturally in multiple-precision addition
and subtraction, and the identical sign representation is costly
because sign reconciliation is required after every operation. For
example, (+6, +4) + (—4, —6) = (+2, —2), a mixed sign repre-
sentation of (41, +8). Since addition and subtraction are the most
frequent operations, it is economical to store the result as it occurs
and reconcile signs only when necessary. When overflow occurs
in the addition of two components, a one with the sign of the
overflow is carried to the addition of the next higher components.
The sum that overflowed retains the sign of its operands. This
overflow is termed an inferflow to distinguish it from an overflow
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that arises when the maximum multiple-precision number is ex-
ceeded.

The independent sign method has a pitfall arising from the fact
that every number has two representations, either one of which
may occur as a sum. There are some numbers for which one of
the representations exceeds the capacity of the most significant
component. The overflow is false in the sense that the double-
precision capacity is not exceeded, only the single word capacity
of the upper component. Sign reconciliation can be used in this
case to yield an acceptable representation. This problem can be
avoided if all numbers are scaled so that none are large enough
to produce false overflows. Such a restriction is not necessary,
however, since the false overflow condition arises infrequently and
can be detected at no expense in time. The net cost of reconcilia-
tion is therefore very low.

Multiplication and division

For triple and higher orders of precision, multiplication and divi-
sion become excessively complex, unlike addition and subtraction
where the complexity is only linear with the order of precision.

The algorithm for double-precision multiplication is directly
applicable to numbers in the independent sign notation. False
overflow does not arise, and the treatment of interflow is simplified
by an automatic counter register which is incremented when
overflow occurs during an add instruction. The sign of the counter
increment is the same as the sign of the overflow; and the incre-
ment takes place while one of the product components of next
higher order is stored in that counter.

Double-precision division is exceptional in that the independ-
ent sign notation may not be used; both operands must be made
positive in identical sign form, and the divisor normalized so that
the left-most nonsign bit is one.

Triple precision

A few triple-precision quantities are used in the AGC. These are
added and subtracted using independent sign notation with inter-
flow and overflow features the same as those used for double-
precision arithmetic.

6. Instruction set
Basic design criteria
The implicit requirements for any von Neumann-type machine

demand that facilities exist for:

1 Fetching from memory
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Storing in memory
Negating (complementing)

Combining two operands (e.g., addition)

Ut R~ WD

Address modification (more generally, executing as an in-
struction the result of arithmetic processing)

6 Normal sequencing (to each location from which an instruc-
tion can be executed there corresponds one location whose
contents are the next instruction)

7 Conditional sequence changing, or transfer of control
Input
9  Output

An instruction can, of course, provide several of these facilities.
For instance, some computers have an instruction that subtracts
the contents of a memory location from an accumulator and leaves
the result in that memory location and in the accumulator; this
instruction fulfills all of requirements 1-4 above. Requirement 5
is met in a somewhat primitive manner if instructions can be
executed from erasable memory, and is met elegantly by the use
of index registers. Still another scheme, somewhat similar to one
used in the Bendix G-20, is employed in the AGC. Requirement
6 is usually fulfilled by having an instruction location counter
which contains the address of the next instruction to be executed,
and is incremented by one when an instruction is fetched. Alter-
natively, each instruction may include the address of the next
instruction, as is often done in machines having drum memories.
In the AGC, as in most short-word computers, the former method,
with one single-address instruction per word, is clearly the simplest
and cheapest. Requirement 7 is generally met by examining a
condition such as the sign of an accumulator and, if the condition
is satisfied, either incrementing the instruction location counter
(skipping), or using an address included in the instruction as that
of the next instruction (conditional transfer of control). An uncon-
ditional transfer of control is usual but not necessary, since any
desired condition can be forced. Most machines have special
input-output instructions to satisfy requirements 8 and 9. In the
AGC, however, since input and output is through addressable
registers, input is subsumed under fetching from memory, and
output under storing in memory. Counter incrementing and pro-
gram interruption aid these functions also.

Further criteria

The major goals in the AGC were efficient use of memory, reason-
able speed of computing, potential for elegant programming, effi-



cient multiple precision arithmetic, efficient processing of input
and output, and reasonable simplicity of the sequence generator.
The constraints affecting the order code as a whole were the word
length, one’s complement notation, parallel data transfer, and the
characteristics of the editing registers. The ground rules governing
the choice of instructions arose from these goals and constraints.

a Three bits of an instruction word are devoted to operation
code.

b Address modification must be convenient and efficient.

¢ There should be a multiply instruction yielding a double
length product.

d Treatment of overflow on addition must be flexible.
¢ A Boolean combinatorial operation should be available.

f No instruction need be devoted to input, output, or shifting.

This list is by no means complete, but gives a good indication of
what kind of computer the AGC has to be. In the following para-
graphs the ways in which the instructions fulfill the above require-
ments are described.

Details of the instruction set

In the listing that follows, L denotes the location of the instruction;
K denotes the data address contained in the instruction. Paren-
theses mean “content of,” and the leftward arrow means that the
register named at the arrowhead is set to the quantity named to
the right.

L: TC K; Transfer Control

Q<L+ 1;gotoK.

This is the primary method of transferring control to any stated
location, and thus meets part of requirement 7. The setting of the
return address register Q renders complex subroutines feasible. TC
Q may be used to return from a subroutine (with no other TC’s)
because the binary number “L + 1” is the same as the binary word
“TC L + 1,” by virtue of the TC code being all zeros. TC A
behaves like an “execute” instruction, executing whatever instruc-
tion is in A, because Q follows A in the address pattern, see
Table 1.

L: CCS K; Count, Compare, and Skip

If (K) > +0,A < (K) —1, no skip; if (K) = +0, A « +0, skip

to L + 2; if (K} < =0, A« 1 — (K), skip to L + 3; if (K) =

—0, A« +0, skip to L + 4.

This instruction fulfills the remainder of requirement 7 and
provides several features. It is clear that in a machine with a 3-bit
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operation code there should be only one code devoted entirely to
branching, if at all possible. It is inefficient to program a zero test
using only a sign-testing code; it is even more inefficient to pro-
gram a sign test using only a zero-testing code. This instruction
was therefore designed to test both types of conditions simultane-
ously. It has to be a four-way branch, and since there is only one
address per instruction, it follows that CCS must be a skipping-
type branch.

The function of (K) delivered to A is the diminished absolute
value (DABS). It serves two primary purposes: to do most of the
work in generating an absolute value, and to apply a negative
increment to the contents of a loop-counting register, so that CCS
has some of the properties of TIX in the IBM 704.

L: INDEX K; Index using K

Use (L + 1) + (K) as the next instruction.

In a short-word machine where there is no room in the instruc-
tion word to specify indexing or indirect addressing, this code
meets requirement 5 in a way far superior to forming an instruction
and placing it in A or in erasable memory for execution. INDEX
operates on whole words, so that the operation code as well as
the address may be modified. It may be used recursively (consider
the implications of several INDEX’s in succession, assuming that
no operation codes are modified). Finally, it permits more than
8 operation codes to be specified in 3 bits, since overflow of the
indexing addition is detectable.

L: XCH K; Exchange

(A)—=(K).

This instruction meets requirements 1, 2, and 8. When X is
in fixed memory, it is simply a data-fetching (clear and add) code.
Its use with erasable memory aids efficiency by reducing the need
for temporary storage. XCH is also an important input instruction
in a machine where addressable counters, incremented in response
to external events, are an input medium, because a counter can
be read out and reset (to zero or any desired value) by XCH with
no chance of missing a count.

L: CS K; Clear and Subtract

A « —(K).

CS is the primary meaus of sign-changing and logical negation,
and so fulfills requirements 1 and 3. Since there is no clear and
add instruction, it is the usual operation for nondestructive readout
of erasable memory in simple data transfers, that is, when no
addition or other arithmetic is required. Usually the programming
can be arranged so that complementing during transfer is accept-
able; otherwise the CS can be followed by CS A before storing.

L: TS K; Transfer to Storage

K «(A); if (A) includes == overflow, A « =1, skip to L + 2.
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This instruction is the primary means of transfers to memory
and output, satisfying requirements 2 and 9. It is also the most
convenient method of testing for overflow. Since A and the other
central registers have two sign positions, overflow indication is
retained in a central register. TS always stores (A) and tests
whether overflow is present. If K is in erasable memory and is
not a central register, the lower-order sign bit S, is not transmitted;
this is the process or overflow correction. If positive overflow
indication is present in A, TS skips over the next instruction and
sets A <« +1 (41 denotes octal 000001); if negative overflow is
present, TS skips over the next instruction and sets A « —1 (—1
denotes octal 177776); otherwise (A) are unchanged. The sequence

TS K

XCH ZERO (ZERO in fixed memory)

suffices to store in K an overflow-corrected word of a multiple-
precision sum and leave in A the interflow to the next higher-order
part. TS A skips if either type of overflow is present, but leaves
all 16 bits of (A) unchanged.

Finally, a computed transfer of control may be achieved by
TS Z because Z is the program counter; only the low-order 12
bits of (A) are significant, being the address of the instruction to
which control is transferred. Overflow in (A) in this case does not
affect the transfer but sets A « =*=1.

L: AD K; Add

A<« (A) + (K); if the final (A)

OVCTR « (OVCTR) =*1.

Addition is the most frequently used combinatorial operation
(requirement 4). The property of OVCTR is used chiefly in devel-
oping double-precision products and quotients, partly because the
additions in these processes are less susceptible to false overflow
than are multiple-precision additions.

L: MASK K; Mask

A «—(A) N (K).

This is the only combinatorial Boolean instruction, and may

includes = overflow,

be used with CS to generate any Boolean function.

Extracodes

The AGC instruction set was carried over in large part from its
ancestor, MOD 3C [Alonso et al., 1961]. All instructions of MOD
3C were retained in the AGC, modifications and additions being
adopted where a substantial increase in computing power could
be obtained at small cost. The MOD 3C instruction set was like
the one described above for the AGC with two major exceptions:
first, instead of a mask instruction, MOD 3C had a multiply in-
struction. Second, the transfer to storage instruction did not in-
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clude the property of skipping on overflow, although it did have
properties which aided masking.

After the design of MOD 3C was completed, it was discovered
that the INDEX instruction could be used to expand the instruc-
tion set beyond eight instructions by producing overflow in the
instruction word following the INDEX. For example, the addition
of octal 47777 to the instruction word “CS K” in the course of
an INDEX instruction will cause negative overflow, producing MP
K, a multiply instruction with operand address K.

In order to implement the extracodes in the AGC, it was
necessary to provide a path from the high-order 4 bits of the adder
to the unaddressable sequence selection register SQ. Part of this
path is the unaddressable buffer register B; these requirements
helped to suggest the benefits of retaining two sign bit positions
in all the central registers.

In principle, eight additional instruction codes can be obtained
by causing overflow, but we did not feel obliged to use them all.
Because every extracode must be indexed, the instructions chosen
for this class had two properties to some degree: they are normally
indexed, or they take long enough so that the cost of indexing
without address modification is small. All the extracodes are com-
binatorial, and therefore relate to requirement 4.

L: MP K; Multiply

A < upper part, LP < lower part, of (A) - (K); the two words
of the product agree in sign, which is determined strictly by the
sign bits of the operands.

Experience with MOD 3C showed that it was worthwhile
making a completely algebraic, self-contained multiply instruction,
especially in doing double-precision multiplication whose oper-
ands have independent signs. The AGC multiply is much faster
than that of MOD 3C, being limited by adder carry propagation
time rather than core-switching time.

L: DV K; Divide

A « quotient, Q «— — |remainder|, of (A)/(K); LP < nonzero

number with the sign of the quotient.

Many facets of AGC design originally adopted for other reasons
combined to make a divide instruction inexpensive. The foremost
of these is the nature of the editing registers, which are in the
standard erasable memory and have no special wiring. The special
properties of these registers are supplied by a shift or cycle of the
word being written into the memory local register G, when the
address of an editing register is selected. The central loop of DV
selects such an address and inhibits memory operations, so that
all the left shifts required in division are accomplished in the G
register while the editing register itself remains unchanged. The
microprogrammed nature of order construction makes a restoring



algorithm more efficient than a nonrestoring one. The quotient
delivered to A has a sign determined according to normal algebraic
rules by the signs of (A) and (K); the same sign is available in LP
to aid in determining the correct sign of the remainder from those
of the divisor and quotient in case the quotient has been absorbed
by subsequent processing. DV is not usually indexed, but it pays
such large benefits in space and time, especially in double-pre-
cision division, that the cost of extracode indexing is negligible.
If the divisor is less in magnitude than the dividend, or is zero,
the quotient has correct sign and, in general, maximum magnitude.
No infinite loop results in any case.

L: SU K; Subtract

A« (A) — (K); if the final (A)

OVCTR « (OVCTR) =1.

The primary justification for this instruction is that it allows
multiple-precision addition subroutines to be changed into multi-
ple-precision subtract subroutines merely by changing the indexing
quantity. There are occasions in the middle of involved calcula-

includes = overflow,

tions where it is clumsy to construct a subtraction out of comple-
mentations and additions, especially when the sign of an overflow
is of interest. Since SU differs from AD only in that the operand
from memory is read out of the complement side of the buffer
register B rather than the direct side, its cost is virtually zero.
This last is not necessarily true when using core-transistor logic,
or two’s complement notation.

7. Expansion of memory addressing

The AGC’s 12-bit address field is insufficient for specifying directly
all the registers in its memory. This predicament seems increas-
ingly to afflict most computers, either because indirect addressing
is assumed as a necessary evil from the start or, as was our case,
because our earliest estimates of memory requirements were wrong
by a factor of two or three. The method of indirect addressing
we arrived at uses a bank register MB, but with an important
modification: the 5-bit number stored in MB has no effect unless
the address is in the range (octal) 6000 to 7777. The MB register
contents are not interpreted as higher-order bits of the address;
they are interpreted as integers which specify which bank of 1024
words is meant in the event of the address part of the instruction
being in the ambiguous range. The over-all map of memory is
shown in Table 2. The unambiguous, fixed memory addresses
domain has come to be known as “fixed-fixed.”

It is interesting that this method of extending the addressing
capability was not the result of trying to improve upon more
conventional methods, but was almost a consequence of the phys-

Chapter 7

Table 2 Address part of an instruction word

(Decimal)
0-3071 Fixed and erasable memory; unambiguous addresses.
3072-4095 Fixed memory, ambiguous address. Contents of MB

used to resolve the ambiguity. Up to 32 such banks
are possible.

ical difference between fixed and erasable memory. Since all data
other than constants are concentrated in the erasable memory,
these had to be exempt from modification by the MB register. An
alternative arrangement, whereby only the addresses of instruc-
tions (as opposed to the addresses within an instruction word) are
modified, would be deficient in that it would allow only instruc-
tions to be stored in banks; there would be no way to refer to
constants stored in banks, or to use bank addresses to store argu-
ments of arithmetic operations. The possibility of using two bank
registers is worthy of serious consideration [Casale, 1962], but it
did not occur to us.

In addition to the addresses in erasable, it is necessary to
exempt the addresses of interrupting programs (i.e., the addresses
to which a program interrupt transfers control) from the influence
of the MB register. It was clear that it would be valuable to have
a large body of unambiguous addresses for use in executive and
dispatcher programs.

The most frequent and critical applications of bank changing
are in the AGC’s interpretive mode. Most of the programs relevant
to navigation are written in a parenthesis-free pseudocode notation
for economy of storage. An interpretive program executes these
pseudocode programs by performing the indicated data accesses
and subroutine linkages.

The format of the notation permits two macrooperators (e.g.,
“double-precision vector dot product”) or one data address to be
stored in one AGC word. Thus data addresses appear as full 15-bit
words, potentially capable of addressing up to 32,768 registers.
Each such address is examined in the interpreter and the contents
of the bank register are changed if necessary; preparation is also
made for subsequent return if a subroutine call is being made.

The structure of the interpretive program, and its relationship
to the computer characteristics discussed in this paper will not
be taken up here except to point out that parenthesis-free notation
is particularly valuable in a short-word computer such as the AGC.
It permits a very substantial expansion of the address and pseudo-

operation fields without sacrificing efficiency in program storage
[Muntz, 1962].
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The conversion of a 15-bit address into a bank number and an
ambiguous 12-bit address is as follows: the top 5 bits correspond
directly to the desired bank number. The remaining lower-order
10 bits, logically added to octal 6000, form the proper ambiguous
address. If the 15-bit address is less than octal 6000, however, the
address is in erasable or fixed-fixed memory. In this case the logical
addition of octal 6000 is suppressed.

It is possible to have a program in one bank call a closed
subroutine in another bank, and then have control returned to the
proper place in the bank of origin. This is done by means of a
short bank switching routine which is in fixed-fixed memory.

One potential awkwardness about this method of extending
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memory addresses is the possible requirement for a routine in one
bank to have access to large amounts of data stored in another.
There are many programming solutions to this problem, obviously
at a cost in operating speed; a better solution would be to have
two bank registers. No problems of this nature have yet material-
ized, however.
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Chapter 8
The UNIVAC system!

J. Presper Eckert, Jr. / James R. Weiner
H. Frazer Welsh / Herbert F. Mitchell

Organization of the UNIVAC system

In March 1951, the first UNIVAC? system formally passed its
acceptance tests and was put promptly into operation by the
Bureau of the Census. Since the UNIVAC is the first computer
which can handle both alphabetic and numerical data to reach
full-scale operation so far, its operating record and a review of
the types of problems to which it has been applied provide an
interesting milestone in the ever-widening field of electronic digi-
tal computers.

The organization of the UNIVAC is such that those functions
which do not directly require the main computer are performed
by separate auxiliary units each having its own power supply. Thus
the keyboard to magnetic tape, punched card to magnetic tape
and tape to typewritten copy operations are delegated to auxiliary
components.

The main computer assembly includes all of those units which
are directly concerned with the main or central computer opera-
tions. A block diagram of this arrangement is shown in Fig. 1. All
of the elements shown are contained within the central computer
casework except the supervisory control desk (SC) and the Uni-
servos,? to which the lines in the upper right section of the diagram
connect.

The supervisory control, in addition to all the necessary control
switches and indicator lights, contains an input keyboard. Also
cabled to the supervisory control is a typewriter which is operable
by the main computer. By means of these two units, limited
amounts of information can be inserted or removed either at the
will of the operator or by the programmed instructions.

The input-output circuits operate on all data entering or leav-
ing the computer. The input and output synchronizers properly
time the incoming or outgoing data for either the Uniservos (tape
devices) or the supervisory control devices. The input and output
registers (I and O) are each 60 word (720 characters) temporary
storage registers which are intermediate between the main com-
puter and the input-output devices.

The high-speed bus amplifier is a switching central through

'AIEE-IRE Conf., 6-16, December, 1951.
2Registered trade mark.

which all data must pass during transfer between any arithmetic
register and the main memory or between the memory and the
input-output registers. The arithmetic registers are shown along
the bottom of diagram each connected to the high speed bus
system.

The L, F-, X-, and A-registers are each of one word or 12-
character capacity and are directly concerned with the arithmetic
operations. The V- and Y-registers are of 2- and 10-word capacity,
respectively. They are used solely for multiple word transfers
within the main memory. Associated with the arithmetic registers
are the algebraic adder (AA), the comparator (CP), and the multi-
plier-quotient counter (MQC).

Addition-subtraction instructions

The addition-subtraction operations are performed in conjunction
with the comparator since all numerical quantities are absolute
magnitudes with an algebraic sign attached. Before either an
addition or subtraction is performed, the two quantities, one
already in the A-register and the other either from the memory
or from the X-register, depending upon the particular instruction,
are compared for magnitude and sign. The adder inputs can then
be switched so as always to produce a noncomplemented result
for any operation. The choice of adder input arrangement is there-
fore under the control of the comparator. The comparator also
determines the proper sign for the result according to the usual
algebraic rules.

One additional function performed by the comparator for addi-
tion and subtraction is to control the complementer. This deter-
mination is based upon which operation (+, or —) is indicated,
and, whether the signs are like or unlike. For a subtract instruction,
the sign of the subtrahend is reversed before entering the com-
parator. The comparator then compares the signs of the quantities
in order to determine whether the two quantities are subtracted
or added.

Multiplication instruction

The multiplication process requires the services of the adder, the
comparator, the multiplier-quotient counter and the four arith-
metic registers. During the first step of multiplication the X-reg-
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ister receives the multiplier from the memory and the comparator
determines the sign of the final product by comparing the signs
of the multiplier and multiplicand. During the next three steps
the multiplicand, which has been stored in the L-register by some
previous instruction, is transferred three times to the A-register
through the algebraic adder. The result, three times the multi-
plicand, is then stored in the F-register. During the next 11 steps
of multiplication, the successive multiplier digits, beginning with
the least significant, are transferred from the X-register to the
multiplier-quotient counter. The multiplier-quotient counter then
determines whether each particular multiplier digit is less than
three, or greater than or equal to three.

If the former, the L-register releases the multiplicand to the
A-register via the adder, and the multiplier-quotient counter is
stepped downward one unit. If the multiplier digit is equal to or
greater than three, the multiplier-quotient counter sends a signal
to the F-register which releases three times the multiplicand to
the A-register and the multiplier-quotient counter is stepped three
times. Thus a multiplier digit of seven would be processed as two
transfers from the F-register to the A-register and one transfer from
the L-register to the A-register, or a total of three transfers.

When the multiplier-quotient counter reaches zero, the next
multiplier digit is brought in from the X-register, while the A-reg-
ister, containing the first partial product, is shifted one position
to the right.

During the final step of multiplication, the sign is attached to
the product which has been built up in the A-register. One of the
several available multiplication instructions causes the least sig-
nificant digits, as they are shifted beyond the limits of the A-reg-
ister, to be transferred to the X-register where they replace the
multiplier digits as they are moved to the multiplier-quotient
counter. Thus 22 place products can be obtained as well as 11
place.

Division instruction

The division operation is performed by a nonrestoring method. The
divisor is stored in the L-register by some previous instruction and
the dividend is brought from the memory and put in the A-register
during the first step of the division instruction. As in multiplica-
tion, the signs of the two operands are compared in the comparator
at this time and the sign of the quotient is then stored in the
comparator pending completion of the division operation. The
principal stages of division consist of transferring the divisor from
the L-register to the A-register through the complementer and
adder as many times as required to produce a quantity less than
zero in the A-register, the dividend having been first shifted one
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position to the left. The multiplier-quotient counter counts each
transfer, thereby building up the first quotient digit. As soon as
the quantity in the A-register, (neglecting its original sign) goes
negative, the digit in the multiplier-quotient counter, not counting
the transfer which causes the remainder to go negative, is trans-
ferred to the X-register and the remainder in the A-register is
shifted one place to the left. The divisor is then added to the
A-register until the quantity becomes positive. This time the
multiplier-quotient counter must give the complement of the
number of transfers for the real quotient digit. Special comple-
menting read-out gates provide this method of interpreting the
multiplier-quotient counter.

The X-register therefore collects the quotient, digit by digit,
from the multiplier-quotient counter until the full 11 digits have
been obtained. The quotient is then transferred to the A-register
and the sign from the comparator (CP) is aflixed during the final
stage of the divide instruction.

The other internal operations of the UNIVAC include many
transfer instructions by which words may be moved among the
registers and memory with and without clearing, the extraction
instruction by which certain digits of a word may be extracted
into another word according to the parity of the corresponding
digits of an extractor word; shift instructions; and special control
instructions such as breakpoint, transfer of control, (explained in
subsequent paragraphs) and stop.

Basic operating cycle

The basic operating cycle of the UNIVAC is founded upon single
address instructions which specify the memory location of one
word. In the case of the arithmetic instructions which require two
operands, one of the operands must be moved into the proper
register by some previous instruction. In order to control the
sequence of instructions, a special counter, called the control
counter (CC), retains the memory location from which the succeed-
ing instruction word is to be obtained. Each time a new instruction
word is received from the memory, the quantity in the control
counter is passed through the adder where a unit is added to it.
Therefore the normal sequence is to refer to successive memory
locations for successive instruction words. Initially the control
counter is cleared to zero and the first group of instructions must,
therefore, be placed in memory locations from zero upward. A
transfer of control instruction enables the programmer to change
the control counter reading whenever desired and thus shift from
one sequence to another. After a transfer of control takes place,
the new number in the control counter is increased by unity each
time a new instruction word is obtained from the memory.

The UNIVAC system 159



160 Part 2

The instruction-set processor: main-line computers

Transfer of control instructions

The transfer of control instructions are of three types, the uncon-
ditional transfer which changes the control counter reading with-
out question, and two conditional instructions which require that
either equality or a specific inequality exists between the words
in the A-register and the L-register. In the former case the quan-
tities must be identical for transfer of control to occur and in the
latter the quantity in the A-register must be greater than the
quantity in the L-register for the control counter reading to be
changed.

Since the UNIVAC can handle alphabetic as well as numerical
data, these conditional transfer instructions are as useful for alpha-
betizing as they are to determine if a certain iterative arithmetic
process has been performed often enough to come within specified
numerical tolerances.

Control register

Since six characters (intermixed alphabetic and numerical) are
sufficient to specify an instruction and there are 12 characters per
word, each instruction word can represent two independent in-
structions. A 1-word register, called the control register (CR), has
been provided which stores each instruction word as it comes from
the memory. Thus one memory referral is sufficient for a pair of
instructions and the control register stores both halves so that the
second instruction is available as soon as the first has been com-
pleted.

The general term control circuits includes all those elements
which work together to process the instruction routine. As each
instruction word reaches the control register, the first half of it
is passed immediately into the static register (SR). The static
register drives the main function table and memory switch. The
instruction digits are translated by the function table into the
appropriate control signals for the instruction called for. The
memory switch selects the location called for by the memory
location digits and opens the proper memory channel to the high-
speed bus system at the proper time. Since the memory is con-
structed of 100 channels, each holding ten words, the memory
switch is a combination of spatial and temporal selection.

Cycle counter

Implicit within each instruction, as translated by the function
table, is an ending signal which causes the computer to move on
to the next instruction. The key to this sequence is the cycle
counter (CY), which is advanced by the ending pulse. The cycle
counter is a 2-stage 4-position counter, which is connected into
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the function table. By virtue of this relation, CY develops signals
in addition to those developed by the instruction, which, for ex-
ample, can cause the control register to transfer the second half
of the instruction word into the static register when the first half
has been completed. Similarly, after the second half instruction
is finished the cycle counter causes the reading of the control
counter to pass into the memory location section of the static
register and thus cause the next instruction word to be transferred
from the memory to the control register. When the word reaches
the control register, the cycle counter also causes the control
counter reading to be increased by unity. The four cycles are
designated by the first four Greek letters a (transfer CC to SR),
B (transfer memory to CR), v (perform first instruction), and &
(perform second instruction).

Program counter

The multistage instructions, such as multiplication, are guided
through their various steps by the program counter (PC). The
program counter has four stages or 16 positions. All multistage
instructions can be performed within this number of steps.

Checking circuits

The checking circuits of the UNIVAC are of two main types,
odd-even checkers and duplicated equipment with comparison
circuits. The odd-even checker depends upon the design of the
pulse code used within the computer. This code provides seven
pulse positions for every character. Six of the seven positions are
significant as the actual code while the seventh is the odd-even
channel. If the number of pulses or ones within the first six chan-
nels of any character is even, a one is placed in the seventh channel
to make the total odd. Thus, the total number of ones across the
seven channels is always odd. By means of a binary counter and
a few gates, an odd-even checker has been constructed which
examines every seven pulse group which passes through the high
speed bus amplifier. In this connection, mention must be made
of the periodic memory check which interrupts operation every
five seconds to pass the entire contents of the memory over the
high speed bus system and, consequently, through the odd-even
checker. Any discrepancy is immediately signalled to the super-
visory control and further operation ceases.

The duplicated equipment type of checking consists of dupli-
cating the most essential part of the arithmetic circuits and their
controls and producing simultaneously independent results, which
can then be compared for equality. For this type of checking, the
A-, F-, X-, and L-registers, algebraic adder, comparator, multi-



plier-quotient counter, and the high speed bus amplifier are dupli-
cated.

The memory is not duplicated, but is checked by the periodic
memory check mentioned previously. Various sections of the con-
trol circuits are duplicated such as the program counter and cycle
counter.

Timing pulse generator and cycling unit

The timing pulse generator and cycling unit (CU) are the source
of the basic timing signals throughout the computer. The timing
pulses occur at 2.25 megacycles per second. The cycling unit
subdivides this rate into the character rate and word rate. The
character rate is one seventh of the basic pulse rate since there
are seven pulses for each character. There are 12 characters per
word but space for a 13th character is included in a word time
and is called the space between words. This time is used for
switching purposes.

The cycling unit, therefore, develops the word signals at
Yo X Y4 or Y, of the basic pulse rate. Within the cycling unit
(CU) are numerous duplications and comparisons to ensure com-
plete reliability.

Input-output circuits

The operation of the input-output system is dovetailed as effi-
ciently as possible with the operation of the arithmetic circuits.
Whenever possible, parallel operations are allowed to proceed so
as to minimize the time lost on internal operation while the slower
input-output operations are taking place.

The principal input-output instructions are handled in a man-
ner identical to that for the internal operations, except that now
the function table develops signals which bring the input-output
control circuits into operation. The information supplied to the
input-output control circuits by the function table includes the
following:

1 Which of the ten possible Uniservos is being called on

2  Whether it is a read or write, that is, an input or output
operation

3 If it is “read,” the direction in which the tape is to move

The input-output control circuits, therefore, begin by testing
whether or not the Uniservo indicated now is in use or not. If
it is already in use, everything else waits until that Uniservo is
free. Next, the input-output control circuits test to determine
whether the Uniservo selected last moved backward or forward.
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If the previous direction does not agree with the new direction
called for, the input-output control circuits generate the proper
signals to prepare the Uniservo to move in the opposite direction.
If the instruction is to rewind a Uniservo, the input-output control
circuits then direct the center drive of the selected Uniservo to
rewind the tape to the beginning and stop.

As soon as the instruction has proceeded to the point where
the input-output control circuits need no further information from
the function table, the instruction ending signal is generated
and the internal circuits proceed to the next instruction, even
while the reading, writing or rewinding continues. The UNIVAC
can process an input, an output and several rewind operations
while simultaneously carrying on internal computation.

So far the method by which the words are transferred from
the [-register to the memory has not been mentioned. This opera-
tion is combined with certain read instructions in a manner not
immediately obvious. There are two instructions which read from
the tape to the I-register, one causing the tape to move forward,
the other causing it to move backward. There are two other input
instructions similar to those just mentioned, but they have the
additional operation of first reading from the I-register to the
memory and then reading a new group of 60 words from tape into
the I-register. Thus the first type of input instruction reads from
tape to the I-register only. It must be followed by the second type
of instruction in order first to clear the I-register and then read
in the second block of 60 words.

The output instructions do not operate in this way but instead
read directly from memory to the O-register and then to the tape
as one instruction.

A third type of checking circuit occurs in the input-output
control circuits which counts the number of characters transferred
from the tape in each block. Since there must always be 720
characters per block, the 720 checker signals any discrepancy to
the supervisory control.

One other phase of the input-output operation concerns the
two supervisory control input-output instructions. One of them
permits a single word to be typed in from the input keyboard and
the other causes a single word to be typed out automatically.

Auxiliary equipment

The two principal auxiliary devices mentioned earlier were the
Unityper,! which converts keyboard operations to tape recording,
and the Uniprinter,! which converts magnetic recording to type-
written copy.

1Registered trade mark.
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Unityper. A simple block diagram of the Unityper is shown in Fig.
2. Each keyboard operation pulses the input to an encoding func-
tion table which, in turn, drives the appropriate heads for record-
ing the particular combination on the tape. Simultaneously, the
same pulse triggers a motor delay flop which operates the tape
motor for an interval sufficient to move the tape across the head
for the distance required to record one character. However, there
is a punched paper loop system associated with the Unityper for
the purpose of providing the typist with various guideposts individ-
ually set up for each problem. The loop control system serves three
distinct control functions. First, it allows the programmer to set
up various numbers of characters for the individual items being
entered for a given problem. If the typist ever enters other than
the specified number of characters, the loop control signals an
error. Although the basic word length is 12 characters, the pro-
grammer may subdivide or group the words to suit any length of
item. The loop can then be punched with what are called ““force
check” punches. Whenever the typist completes a correctly en-
tered item, she must operate a release key before entering the next
item. If the forced check is released too early an error is created,
or if an additional character is typed after the forced check should
have been released, an error is similarly indicated.

The second function of the loop is to control the erase opera-
tion. The erase operation is the only way in which an error can
be recalled. When the erase key is operated, the loop and tape
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Fig. 2. Simplified block diagram of Unityper.
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are both stepped backward until a stop punch (usually associated
with each forced check) is encountered. Thus the entire erroneous
item is erased, and at a much higher rate than that at which the
backspace key can be operated. The backspace, incidentally, can-
not cancel an error indication, but it can be used to correct a
wrongly typed character if the typist recognizes it.

The third function of the loop system is to enter, automatically,
various fill-in characters. Under one such system of operation, the
loop control records the characters only at the behest of the oper-
ator. This function is useful where individual entries, such as
personal names, do not fill out all of the space allotted. The other
operation is fully automatic in which the loop assumes full control
to record, for example, a group of fill-in characters later to be
replaced by computed data within the central computer.

The block diagram therefore shows the loop motor connected
to the same delay flop that steps the tape motor. The same signal
which moves the two motors also sets a second delay flop (DF2)
which produces a delayed probing pulse. The probing pulse exam-
ines the paper loop photoelectrically for the new combination.
A third delay flop (DF3) produces another probing pulse after the
relays associated with the loop photocells have had time to set
up. If any automatic function is indicated by the photocells, the
probing pulse passes through the interpreting relays, enters the
encoding function table to generate the fill-in characters, and thus
starts the cycle over again. All automatic functions take place at
about 22 characters per second.

Numerous odd-even checks are introduced in the Unityper to
provide checks on tape and loop motion and on the recorded code
combination.

Uniprinter. The Uniprinter is shown in simplified block diagram
in Fig. 3. Its operation is a simple cycle which is initiated by a
start button. The start button triggers the motor flip-flop (MFF).
The motor pulls the tape across the reading head until a combina-
tion is detected. The presence of pulses on any of the seven lines
between the reading head and the relay decoding function table
is sufficient to restore the motor flip-flop (MFF) and stop the tape
motion. Simultaneously a print delay flop (DFI) is triggered.
During the delay flop interval, the decoding relays are given time
to set up. When the delay flop recovers, a pulse is sent through
the relay table which reappears at one of the typewriter magnetic
actuators. As the typebar reaches the platen, a printer action
switch (PAS) is operated which pulses the motor flip-lop and starts
a new search for the next character on the tape. The odd-even
properties of the UNIVAC pulse code are utilized for checking
purposes.
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Engineering aspects

The entire UNIVAC system is constructed of circuits which are
as conservative as is consistent with the desired reliability and
speeds of operation. The circuits have been designed as building
blocks and the entire computer is constructed around these blocks.

One of the most important of these blocks is the pulse reshap-
ing circuit which consists of a timing pulse gate and a fast acting
flip-flop which generates the pulse envelope equivalent of the
gated timing pulses. Two polarities of timing pulse are used, the
one being capable of tripping the flip-flop into one state, the other
polarity of tripping it to the other state. As a deteriorated pulse
envelope is applied to the timing pulse gate input, either one or
the other polarity of pulse is always gated. The flip-flop therefore
produces a sharpened and correctly timed output waveform.

The gating and switching circuits in the central computer are
constructed of germanium crystal diodes, which include the main
and subordinate function tables.

The registers are all circulating delay type using a mercury
tank of one, two, or ten word-times of delay, except the static
register. The latter is composed of 27 flip-flops which are required
to maintain the static signals applied to the function tables, for
at least an entire word-time.

The switching time allowed by the seven pulse-times of the
space between words is, in general, not sufficient for a new func-
tion table excitation to stabilize. Therefore the time-out system
used successfully in the BINAC, also is employed in the UNIVAC.
Whenever an ending pulse is generated, or any other pulse which
indicates that a new set of control signals are required from the
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function table, an interval of one word-time is introduced to allow
the function table signals to reach equilibrium. The time-out in-
terval is controlled by a single fast-acting flip-flop. All gates
attached to the function table signals which are critical as to
opening and closing can be inhibited by the time-out flip-flop
during time out. Regardless of the presence of the function table
signals, the gate does not operate until the time-out flip-flop re-
leases it. Thus, the burden of speed imposed by the short space
between words has been shifted to a single Hip-flop which can
accommodate the needs of the entire computer.

The UNIVAC uses the excess-three pulse code system which
requires a second binary adder after the main binary adder in order
to provide the excess-three correction after each addition. On the
other side of the ledger, the complementing operation for sub-
traction and division is very much simplified, since the substitution
of ones for zeros and vice versa is sufficient to form a complement.
The excess-three part of the pulse code occupies the four least
significant digit positions. The next two positions beyond the
excess-three digits are used as zone indicators. When these digits
are both zero, the last four positions are interpreted as a numerical
quantity; when nonzero, an alphabetic or punctuation symbol is
indicated. The seventh channel is the check pulse channel.

The adder is provided with an alphabetic bypass circuit which
allows an alphabetic letter to enter one input and emerge un-
scathed provided a numeral enters the other input. Thus additive
numerical constants can be combined with instruction words to
adjust the memory location part of an instruction without affecting
the alphabetic instruction symbols.

The power supply for the computer is separately housed. It
can be placed any reasonable distance from the central computer.
Almost all rectification is done by dry disc rectifiers. The power
supply provides all a-c and d-c potentials to the central computer,
supervisory control, directly-connected printer, and the Uniservos.

A complete fusing system has been included which serves both
as protection and as a short-circuit isolating means. Each section,
of which there are 39, is locally fused, enabling the engineer to
locate a short within only 12 chassis, rather than the total of 468.

An automatic voltage monitoring system may be used to test
every d-c voltage at the rate of one per second. A meter movement
relay signals any discrepancy from standard. Similarly, overheat
thermostats detect any unfavorable temperature condition in the
bays or mercury tanks.

Cooling for the power supply and central computer is provided
by three blowers. Local cooling in the Uniservos is provided by
small fans in each unit. The operating statistics of the UNIVAC
are as follows:
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Tape reading and recording:
Pulse density: 120 per inch
Tape speed: 108 inches per second
Input block size: 60 words: 720 characters
Tape width: ¥, inch: 8 channels
Internal operations:
Memory capacity: 1,000 words; 12,000 characters

Memory construction: 100 mercury channels; 10 words/
channe]

Access time:
Average: 202 microseconds
Maximum: 404 microseconds

Word length:
12 characters
9 pulses
(include space between words = 7 pulses)

Basic pulse rate:
2.25 megacycles
Addition: 525 microseconds
Subtraction: 525 microseconds
Multiplication: 2,150 microseconds
Division: 3,890 microseconds
(All times shown include time for obtaining instructions and
operands from memory)

Applications of UNIVAC
Types of problems for which UNIVAC is applicable

True to its name, Universal Automatic Computer, the UNIVAC
system is capable of handling data processing or calculation in
virtually all fields of human endeavor. It is particularly well suited
to applications requiring large volumes of input or output data,
or both.

For convenience and classification, applications of the UNIVAC
will be treated under four headings: scientific, statistical, logistical,
and commercial. The scientific problem usually, though not al-
ways, has relatively small amounts of input and output data, with
emphasis on computation. The statistical problem has relatively
large volumes of input data with a small volume of output data
and simple processing procedures. The commercial and logistical
problems both have relatively large amounts of input and output
data with processing requirements varying from slight to relatively
great. A number of problems in each of these four fields have been
studied and found suited for solution on the UNIVAC system.
Several in each field have actually been processed on the com-
puter.
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Scientific problems

A general-purpose matrix algebra routine designed to add, sub-
tract, multiply, and reciprocate matrices of orders up to 300 has
been prepared and applied to a number of matrices. Inverses have
been calculated for three different matrices of orders 40, 50, and
44. The error matrices for the first two of these inverses also were
calculated. In both, the largest error term was of the order of 1072,
A triple product matrix was formed from component matrices
ranging from 5 by 40 to 40 by 40. A check product was obtained
by reversing the sequence of multiplications, verifying the original
product to within 2 units in the 11th place. The computer time
required for these calculations was 1 hour and 15 minutes to
calculate the inverse of order 50, 45 minutes to determine its error
matrix. The other calculations were proportionately shorter. In all
of this work, magnetic tapes were used as temporary storage for
the bulk of the matrix elements involved. The high speed of the
tape reading units more than kept up with the computer’s need
for data. No mathematical checks, other than the over-all check
mentioned, were included in the computation, the self-checking
features of the system making these completely unnecessary.

A second computation—that of obtaining six different specific
solutions to a system of 385 simultaneous equations—was com-
pleted in 27 minutes on the computer. The system of equations
arose from a second order nonlinear differential equation of gas
flow through a turbine. The error terms resulting from the sub-
stitution of the computed unknowns into the basic equation were
of the order of 10-11,

The third example is that of a 2-dimensional Poisson equation,
using a 22 by 22 mesh. Each iteration required 13 seconds and
produced a maximum separation of successive surfaces of the order
of 10~% after approximately 300 iterations.

Statistical problems

In the second major field of statistical computation, the Census
problem has been a prime example. The Census problem produces
a part of the Second Series Population on Tables for the 1950
Decennial Census.

The Second Series contains 30 types of tables covering the
statistics of our population—age, sex, race, country of birth, edu-
cation, occupation, employment, and income. These tables are to
be compiled for every county, and for every city, rural farm, and
rural nonfarm area within a county.

The preparation of these tables by the UNIVAC system requires
three major steps:

1 Tabulation of each individual’s characteristics by groups of
about 7,000



2 Arranging these groups by cities, counties

3 Assembling from the tabulations the data required for each
table

The raw data were prepared in the form of a punched card
for each individual in the United States. The data from these
enumeration cards are then transcribed onto magnetic tape. From
these tapes, the computer processes the data sequentially through
the three steps, producing output tapes from which the tables are
printed on Uniprinters. The only manual operations encountered
in this entire procedure are the handling of the original punched
cards, mounting and demounting tape reel (the equivalent of 9,700
cards), and the removal of the printed tables from the Uniprinters.

The most important feature of the present procedure is the elim-
ination of handling and sorting tremendous quantities of punched
cards. Each handling of the card stacks is a source of potential
error and delay. The UNIVAC memory permits the simultaneous
accumulation of the 580 tallies which describe our population
for each local area being studied by the UNIVAC system.

Commercial problems

In the commercial field, the UNIVAC system has handled premium
billing for a life insurance company. This program produces pre-
mium notices, dividends, and commissions. In a particular example
worked out, approximately 1,000,000 bills, 340,000 dividends, and
100,000 commissions have to be produced monthly. The necessary
information for processing a particular policy is contained in 240
digits, or, in special cases, 480. This compactness is made possible
by a logical system of 40 symbols, comprising both alphabetic and
numeric characters, which denote over 90 definitions. The UNI-
VAC processes the policies as directed by the symbols, policy
dates, and policy numbers.

The problem includes inserting over 250,000 changes each
month before further handling is done. After this step, the policies
to be processed are selected from a file of 1,500,000 items. Next,
a list is produced of the cases which have symbols indicating that
special notices must be sent to the policyholders. Following the
calculation of dividends and commissions, additional lists are pro-
duced: one group contains information pertaining to commissions
and agents; another contains information regarding dividends; and
finally, there is a listing of option changes for later insertion into
the policy files. Policies requiring premium notices are then edited
and the notices are automatically printed from the data contained
on magnetic tapes.

The UNIVAC time needed for a program of this proportion
is about 135 hours a month. The average computer time per policy
processed is less than 0.5 second. The average time for all change
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insertions, printing, calculations, and unityping is 9 seconds per
item.

Logistical problems

In the field of logistics, five major studies have been conducted,
four of these resulting in actual problems executed on the com-
puter.

The first is the type of computation in which the basic purpose
is to determine quantitively whether a given operational or mobi-
lization plan can be logistically supported. The ultimate desired
is to find, by calculation, the optimum program for carrying out
such plans. At the time of writing, only a small model has been
actually run on UNIVAC, but full size models will be run within
the next few weeks. Two computations have been executed, one
a set of three tables of thousands of lines each, giving a detailed
breakdown of machine deployment, fuel requirements, and over-
haul requirements. The other problem was a computation of the
amounts of critical raw materials required to construct a given
number of each type of equipment, these requirements being
phased by quarters over a 2-year period. The fourth problem,
which was actually computed, was a sample of a similar calcu-
lation in which every pound of critical raw material required each
month for the ultimate construction of a complete building pro-
gram was computed.

The UNIVAC program which was prepared is capable of
accommodating every type of equipment, individually tailored
construction schedules, detailed bills of materials running into the
millions of items and of determining the actual amounts of alloy
elements based on thousands of tables of percentages for the many
alloys employed. The demonstration showed that this computation
for 400 pieces of equipment of a given type could be executed
in three hours of computer time. The last problem in this field
has not yet been run, but the study has shown that the entire
gamut of stock control for a large supply office can be covered
by the computer in approximately 3 weeks time.

This program involves the maintenance of stock balances of
hundreds of thousands of stock items for many service points and
provides for the preparation of stock transfer orders, purchase
requisitions, critical lists and summary reports.

Performance record of the UNIVAC
Acceptance tests

The Acceptance Tests, prepared jointly by the Bureau of Standards
and Bureau of Census, are fully discussed in the following paper
by Dr. Alexander and Mr. McPherson.! However, a few comments

!Paper not included in this book. See McPherson and Alexander [1951].
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concerning them from the engineering point of view are appro-
priate.

The Census computer was given two tests; the first, a test of
its computational ability; the second, a test of its input-output
system which particularly stressed the tape reading and recording
abilities.

The Central Computer Acceptance Test A consisted of two
parts. During Part 1, every available internal operation, except
input-output operations, was performed. Among these operations
were addition, subtraction, comparisons, division, and three
different types of multiplication operations. Each of the arith-
metic operations handled a pair of 11-decimal digit quantities.
Altogether there were about 2,500 operations in the routine, yet
the entire routine required only 1.26 seconds to do. The routine
was performed 808 times in 17 minutes making a total of about
2,000,000 operations in all.

The second part of Test A included the solution of a heat
distribution equation, a short routine involving the input-output
device and a sorting routine. The sorting routine arranged ten
numerical quantities each containing 12 decimal digits in correct
numerical order in about 0.2 second. All three routines took a total
of 11, minutes to perform. They were performed twice for each
test and when added to Part 1 made a total of 20 minutes for
unit test A.

The Acceptance Test B examined the input-output tape devices
{(Uniservos). During the first part of Test B, 2,000 blocks or about
1.4 million digits, which included every available character
(numeric and alphabetic) were recorded on a tape and then read
back into the computer with the tape moving backward. The
information read back was then compared with the original data
read out. The recording operation required about 4 minutes while
reading back and comparison required about 8 minutes. The sec-
ond part of Test B consisted of recording and reading over one
spot of tape for 700 passes in order to determine the readability
of tape as it wears. This test required 13 minutes and when com-
bined with Part 1, made a total of approximately 25 minutes for
Test B. This test was repeated 19 times.

The first test run passed in 6.6 hours (minimum theoretical
time: 6.0 hours) and the second test was passed in 9.47 hours
(minimum theoretical time: 7.45 hours). Of the 2.02 hours down
time, 1.45 hours were accumulated at one time with the remaining
0.58 hours spread over the rest of the test.

The Uniprinter test required that a block of information (60
words) be printed 200 times in tabular form. The minimum time
for printing was five hours. The test was passed in 6.16 hours.

The card-to-tape test required that ten good reels of tape be
produced in 12 hours. There were certain restrictions as to reading
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accuracy and other criteria of reproducing ability which defined
“good” reels. In 10 hours, the converter had prepared over 15 reels,
14 reels had been tested, 11 of the 14 were found satisfactory and
the converter was accepted for payment.

Although the test was run on only one of two converters, the
Bureau of Census put both card-to-tape machines into operation
and after six months of use, the acceptance test was run on the
second card-to-tape converter. This test differed to some extent
from the first test in that the Census Bureau was satisfied with
the reading ability of the machines and did not require a digit-by-
digit verification of the information. However, a new stipulation
was added that, after the engineers had checked the converter
out preparatory to running the test, the converter was to be used
in actual operation for eight hours before doing the remainder of
the test with no engineering intervention between the two portions
of the test. The first part was run on Friday, October 5, 1951; the
device remained idle Saturday and Sunday and was turned on
Monday morning to complete the test. It passed with flying colors,
preparing ten acceptable reels (out of ten reels) plus two decks
of check cards in slightly less than 7 hours. Both card-to-tape
converters now are in Washington and the remainder of the system
is in operation by the Bureau of the Census on the Eckert-Mauchly
premises in Philadelphia.

Reliability and factors affecting performance

The first UNIVAC system now has been operating for approxi-
mately 8 months. In that time, much has been learned about how
UNIVACs should be operated and maintained. The situation has
been somewhat complicated by having to shake down the equip-
ment while in the customer’s possession; that is, there were certain
faults in the system from both engineering and production stand-
points which could only become apparent in the course of time
and under actual operation conditions. For example, weak tubes
or faulty solder joints did not reveal their presence at the time
of installation. Another type of difficulty only became apparent
under certain duty cycle conditions imposed by various types of
problems. Because only certain problems present this particular
duty cycle, these troubles remained in the machine causing inter-
mittent stoppages until they could be tracked down.

Patient isolation and elimination of such problems, most of
which have occurred only with conditions of operation infre-
quently encountered, is a powerful, though sometimes painful
proving ground for the engineering group charged with such re-
sponsibility. The experience and depth of judgment acquired by
such a group in the course of performing such work have become
unmistakably apparent in the already noted improved performance
of following UNIVACs and generally advanced ability to predict



and realize performance in any large scale and complex apparatus
of the same character.

Some of the troubles encountered are interesting to study in
detail. On a rather complicated routine requiring the use of a
number of Uniservos, all ran smoothly for 15 minutes. At that time,
one of the Uniservos executing a backward read somewhere in the
middle of the reel, did not stop at the end of the block but con-
tinued to run until it ran off the end of the tape. After much work,
it was shown that a cycling unit signal was being overloaded
because it was being used both by a multiplication instruction and
the backward read which were occurring simultaneously. The
input precessor loop was cleared as a result and the count of the
pulses coming off the tape was thereby lost. Once the trouble was
found, it was simple to remedy.

Another rather interesting case occurred intermittently over
an extended period. Normally when reading out of the memory,
the contents should not be cleared. Occasionally, however, reading
from the memory also caused the contents to be cleared. As the
trouble only remained for a period of seconds or, at most, a few
minutes, it was somewhat difficult to localize. Of course, parasitic
oscillations of some sort were suspected and, in fact, the trouble
was traced to the actual source on a logical basis; but the source,
a high power cathode follower, showed no evidence of oscillation.
Before the problem was remedied, various combinations of para-
sitic suppressors were tried; the trouble would vanish for perhaps
a week and then return. The oscillation finally cropped up during
a maintenance shift, was found to be in the suspect tube at 100
megacycles and was eliminated rather easily.

Other types of troubles that have occurred include intermittent
parasitic oscillations in other circuits, bounce in Uniservo relay
circuits, various mechanical problems in Uniservos, time constants
not consistent with the longest duty cycle signals, and various
types of noise in the input circuits. The tubes, which initially were
bothersome, have now stabilized to the point where two tubes
per week (on the average) stop the computer during computation.

All of the above troubles and others not discussed here have
contributed to lost computing time on the UNIVAC. However,
they cannot influence future operation because the reasons for
them have been found and eliminated. The fact that these troubles
will not occur in future UNIVACs cannot be emphasized too
strongly.

Under a contract with the Bureau of Census, Eckert-Mauchly
Computer Corporation maintains the Census installation. This
system is operated 24 hours a day, seven days a week, except for
four 8-hour preventive maintenance shifts each week. This allows
approximately 32 hours for regular maintenance and 136 hours
for operation or 21 and 79 per cent respectively. Table 1 shows
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the engineering time spent on the computer system during typical
weeks of operation. The figures are given both in hours and per-
centages. Both nonscheduled engineering time as well as preven-
tive maintenance time are shown. The sum of the two gives the
total engineering time spent on the computer per week. It should
be noted that this is actual engineering time and does not include
time that the computer may have been shut down while waiting
for an engineer to report. According to our maintenance contract,
this must be within a half hour during regular working hours and
within two hours at all other times. Attention should be given to
the fact that the preventive maintenance time does not total
exactly 32 hours each week. This is due in part to a half-hour
period each morning devoted to checking and cleaning the
mechanical portions of Uniservos. It is expected that this work
will be taken over by the UNIVAC operators since the procedures
and the techniques involved are quite simple.

In addition, one extra shift was required the week ending June
3 and three extra shifts the week ending October 7, 1951. These
shifts were required to incorporate engineering changes which had
been developed over a period of time and could not be incor-
porated in the equipment during the normal preventive main-

Table 1
Total
Week Nonscheduled Preventive engineering Percentage of
ending engineering maintenance time nonscheduled
1951 Hours Per Cent Hours Per Cent Hours Per Cent engineering
June 3 189 11.3 40 23.8 58.9 35.1 14.8
26 205 122 34 20,2 545 32 15.3
July 14 14.7 88 33 196 477 28 10.9
21 194 116 345 205 539 32 14.5
28 392 233 345 205 737 438 29.4
Aug. 4 26.2 156 33 19.6 59.2 35.2 194
Sept. 2 28.8 171 345 205 633 377 21.6
9 16.1 96 345 205 50.6 30 12.1
16 22.6 135 33 19.6 55.6 33 16.7
23 423 252 345 205 76.8 457 31.7
30 21.8 13.0 345 205 56.3 335 16.3
Oct. 7 159 9.5 56 333 719 428 14.2
14 140 83 345 205 48.5 28.9 10.5
21 104 6.2 345 205 44.9 26.7 7.8
28 20.8 124 33 19.6 53.8 32 15.4
Nov. 4 404 240 345 205 749 446 30.3
11 10.1 6.0 345 205 446 265 7.6
18 305 182 345 205 65 38.7 22
25 13.7 82 345 205 48 28.6 10
Dec. 2 1438 87 345 205 493 293 12.6
9 196 11.7 345 205 541 322 14.7
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tenance time. The nonscheduled engineering time has varied from
as little as 10.1 hours or 6 per cent to 42.3 hours or 25 per cent.
The last column in the Table shows the amount of nonscheduled
engineering time as compared to the allowable operating time
(total time less preventive maintenance time). Here there is a
variation of from 7.6 to 31.7 per cent and an average for the weeks
shown of 16.9 per cent. It is believed that these figures, while good
for the first months of operation of a new piece of equipment, will
show definite improvement over the next year.

Although the opportunity to prove or disprove the following
theory of operation has not presented itself, it is believed logical
that optimum use of the UNIVAC equipment might be obtained
by means of scheduling preventive maintenance only at such times
as it is indicated in the judgment of competent operators. In other
words, there are many occasions preceding a scheduled main-
tenance shift when the system is performing very well. At such
times, it is extremely inefficient to shut down the operation in
order to provide maintenance. For many reasons, however, it has
been impossible to operate and maintain the first system in this
way. It is hoped that such operation will be possible in following
installations.

It should be realized that the UNIVAC system requires a super-
visor of the same caliber as the one required for a large punched
card installation. However, the large group of operating personnel
would be replaced by a small group of well-trained extremely
competent people thoroughly familiar with the details of the
computer and associated equipment. The time spent in providing
a high degree of training for these people is more than repaid in
increased operating efficiency and consequently higher work out-
put. For example, situations arise in the course of running a prob-
lem where a correct operational decision can save hours of elapsed
computation. Also, a competent operator will recognize malfunc-
tions sufficiently early to prevent serious delays. He is capable of
deciding whether to continue with machine operation or to stop
to diagnose. The second UNIVAC system which is ready for
installation in Washington, will be operated by a group of engi-
neers who have been trained in operation and maintenance. This
procedure, it is believed, will result in the UNIVAC system being
of maximum benefit to the Air Comptroller’s Office.

Evaluation of UNIVAC design
Checking features

Maintenance of the UNIVAC has been vastly simplified by use
of duplicate arithmetic and control equipment and other checking
methods. Many factors which would have led to undetected errors
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have, by virtue of duplication, immediately stopped the computer.
Although checking by means of inverse operations can provide
operational checks on the arithmetic circuits, there is some ques-
tion as to whether it provides as good a check as duplication.
However, in connection with odd-even codes, it may conceivably
be comparable. It should be remembered, however, that this is
from an operational standpoint and not a maintenance standpoint.
When the control equipment is considered it is difficult to visualize
a check that is as good as duplicated equipment. Other checks
that are utilized in UNIVAC include the periodic memory check,
intermediate line function table checker, function table output
checker, memory switch checker, and 720 checker.

As explained earlier in the paper, the periodic memory check
is accomplished by reading out of all memory channels sequen-
tially and performing an odd-even check on each digit as it passes
through the high speed bus amplifier. The period at which the
check is repeated may be varied over a large interval. At present,
it is set at 5 seconds, the check taking 52 milliseconds or about
1 per cent of the computing time.

The function table has a check at the very input by bringing
in the check pulse in each character so that if an odd-even error
occurs between the control register and the static register, no order
will be set up and the computer will grind to a halt! If the input
sets up properly but an error occurs farther on in the table, but
not ahead of the intermediate lines (the linear set into which the
input combinations are decoded), the error is caught at this point.
The intermediate lines are broken into groups in such a way that
an error is indicated when more than one line is set up in one
group or the entire set. There is an exception to this in some groups
where no error is indicated by this checker if more than one line
is set up within the group.

This has been allowed only in those cases where it has been
shown that setting up two or more lines will cause some other
checker or checkers to indicate the trouble.

If the error occurs beyond the intermediate lines, the output
checker then comes into play. This checker makes an odd-even
count on the number of gates used on each instruction: dummy
lines having been added so that the count is normally always odd.

The memory switch or tank selector checker ensures that one
and only one memory channel is selected on any instruction. It
checks each of the two digit positions separately indicating which
if either, is in error.

The 720 checker counts the digits coming off the tape and if
there are either more or less than 720 in one block, the computer
stops; by examining the indicators on the supervisory control
console, the operator can determine the number of digits actually



read. By means of some rather simple manipulations, the operator
can then reread the block without losing his place in the routine;
and if the information is then read correctly, he may again start
the computer on the routine. The same procedure may be followed
if an odd-even error is made in reading from the tape.

Many checks other than those mentioned before have been
built into the UNIVAC. On the basis of operating experience, the
engineers cannot recommend too strongly the use of built-in
checking facilities. All in all, the faith that can be put into results
obtained from an unchecked computer comparable in size to
UNIVAC is in the writers” opinion exceedingly low.

More than this, however, the methods by which the UNIVAC
is checked have been of extreme usefulness in trouble shooting.
The duplication of circuits has amply repaid the increase of space
and the number of components required by this checking system.

General comments

After evaluating UNIVAC performance over a period of eight
months, the over-all picture of the UNIVAC design, in the minds
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of its designers, is extremely good. Certain phases of its design
exceeded expectations, while of course, other phases were some-
what disappointing. The first eight months of actual operation
have taught more than years of experimentation with laboratory
models. Many improvements have already been conceived of this
experience and are continuing daily to increase reliability.

The other major factor influencing computer design, cost, has
been duly considered in the UNIVAC design; and it is being met
with plans for a continuing full-scale production of UNIVAC sys-
tems. As the production techniques are developed concurrently
with the engineering design details, the UNIVAC becomes the
realization of a hope which has long been in the minds of its
designers: An economical, completely reliable commercial com-
puter for performing the routine mental work of the world much
as automatic machinery has taken over the routine mechanical
work of the manufacturer.

References
McPhJ51.

The UNIVAC system 169



170

Section 2

Processors with a general register
state

The processors described in this section all have a processor
state consisting of registers which are used for multiple (i.e.,
general) purposes. Perhaps a better name might be processors
with a state consisting of a register array(s). The foilowing
machines are fairly similar in their ISP structure: Pegasus
(Chap. 9), the DEC PDP-6,10, the SDS Sigma 5 and 7, and
the UNIVAC 1107 and 1108. However, other computers includ-
ing an 8-bit character computer (Chap. 10) and the CDC 6600
(Chap. 39) also use arrays of registers.

The general register organization appears as a compromise
between the 1 and 2 address organizations. It avoids some of
the extra instructions for shuffling data, inherent in a 1 address
system, but avoids taking the space for a full additional address.
The index register organization is also such a compromise, but
one that is specialized to address calculations. The general
register organization moves further toward a full 2 address
organization without much additional cost. This assumes a
small relative cost for a small amount of memory that is sig-
nificantly faster than the larger Mp.

The design philosophy of Pegasus,
a quantity-production computer

Chapter 9 describes Pegasus’s logical organization and the

technology from which it was implemented. The technology

includes vacuum tubes, a cyclic memory, and dynamic logic
based on delay lines. Pegasus has the nicest ISP processor
structure discussed in this section—perhaps in the book. It is
included because it is probably the first machine to use an array
of general registers as accumulators, multiplier-quotient regis-
ters, index registers, etc. This ISP organization should be com-
pared with the IBM System/360 (Chap. 43). Note that the

multiple-register organization is independent of Mp.cyclic. This
organization improves performance by generality.

The structure of System/360
Part |—outline of the logical structure

The IBM System/360 is described in Part 6, Sec. 3, and is
included mainly because of the very large number of such
systems that have been built.

An 8-bit-character computer

This computer (Chap. 10) has been invented by the authors to
show the composite features of a small character/word-oriented
computer. In reality, 8-bit machines turn out to look either like
16-bit machines, because the Mp size accessed is usually >28
words, or like character-string processors. Because of the
primitive nature of this machine, it is a possible alternative to
the larger more complex microprogrammed processors for
defining more complex ISP’s.

Parallel operation in the Control Data 6600

The CDC 6600, described in Chap. 39, has three arrays of eight
registers each. Two of the arrays are used rather generally, and
the third array is used to access words in Mp. The design of
the CDC 6600 is a classic because of the computing power it
provides. It is also worth studying as an example of a Pc
assigned exclusively to data operation, with all concern with the
larger PMS structure located in Pio’s. A discussion of it is given
in Part 5, Sec. 4, page 470.



Chapter 9

The design philosophy of Pegasus,
a quantity-production computer!

W. S. Elliott / C. E. Owen / C. H. Devonald
B. G. Maudsley

Summary The paper gives an historical account of the development of
the packaged method of construction of computers, and the advantages
of this method are discussed. The packages used in the computer Pegasus
are described from both an electronic and a mechanical point of view. The
specification of the machine is given and the arguments which led to this
specification are discussed. The detailed logical design procedure leading
from the specification to the wiring lists is described. The method of
maintenance and some reliability figures are given.

Introduction

The development of standard plug-in unit circuits (‘packages’) for
digital computers began in this country [England] in 1947, and
some of the advantages of the method have been discussed in
earlier papers [Elliott, 1951; Johnston, 1952; Elliott et al., 1952;
Elliott et al., 1953]. The advantages start in the design stage of
a new computer project and follow through production and com-
missioning to maintenance.

In the design stage, what is known as ‘logical” design is sepa-
rated from engineering design. Once the packages have been
designed by electronic engineers and the rules for their inter-
connection have been laid down, the ‘logical designers’ (usually,
but not necessarily, mathematicians) can begin organizing the
packages into various computers to carry out different functional
requirements. The electronic and mechanical design work invested
in the packages is thus drawn on for more than one computer
design, and each computer can be assembled from stock parts
without further engineering effort. Design time and cost are there-
fore much reduced.

In production, whether we consider one design of computer
or several designs using the same packages, costs and time are also
much reduced. Quantity production lines for the relatively few
types of standard package are set up, and are common to different
computer designs, thus reducing inspection and planning costs.
Standard cabinet work has been designed for Pegasus, and this

YProc. IEE, pt. B, vol. 103, supp. 2, pp. 188-196, 1956.

too can be taken from stock or established production lines to make
other computers.

In commissioning a computer, because all the packages have
been pretested, when power is first applied to the complete
machine it is known that a large part is already fault-free. It
remains to detect a few errors which may have been made in the
interconnections.

Perhaps an even more important consideration is ease and
speed of maintenance. Test programmes will usually indicate the
part of the machine in which a fault is occurring. Several monitor
sockets are located on the front of each package, and by inspection
the faulty package is speedily found and replaced.

The package method has been criticized on the grounds of the
cost and questionable reliability of plugs and sockets, and some
redundancy of components.

The authors believe that the many advantages far outweigh
the cost of plugs and sockets. The present trend is to use copper-
etched printed circuits, and these fall naturally into the plug-in
unit idea, the plug contacts being part of the printed wiring; there
has been no trouble in Pegasus from plugs and sockets. Component
redundancy in Pegasus is about 10% of the diodes and a few
resistors, the cost of redundant components being about £150.

Electrical design of the packages

Circuits used for arithmetic and switching operations

Historical. A previous data-processing machine [Elliott et al,
1952; Elliott et al., 1956b] used 330 kc/s serial-digital circuits; they
had originally been designed for 1 Mc/s operation, but 330 ke/s
was chosen to suit an anticipation-pulse cathode-ray-tube store. This
frequency has been retained to the present time because it suits
the magnetostriction delay-line store [Fairclough, 1956] and the
magnetic-drum store {Merry and Maudsley, 1956]. Experience
with the data processor led to work (commenced in 1951) on a
new set of circuits [Elliott et al., 1952], particular emphasis being
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laid on flexibility of use and ability to work without error in high
electrical interference fields. These circuits form the basis of those
in Pegasus.

Operations to be carried out. The following well-known opera-

tions are used to build up the logical structure of the computer:

a ‘And. This operation, which may be carried out between
two or more input serial trains of pulses, produces an output
train in which pulses occur only when pulses are present
at the same time on all inputs.

b ‘Or’ This operation produces an output train in which
pulses occur at all times when a pulse is present on any
of a number of inputs.

¢ ‘Not” 1Us are changed into 0’s and O’s into 1’s; this is
achieved by inverting the pulse train.

d Digit Delay. The passing of a pulse train through a digit
delay produces a pulse train similar to the input, but each
pulse is one pulse position later in timing and restandard-
ized in shape.

All operations in the computer, including addition, subtraction,
and staticizing, are carried out by combinations of these elements.
There is no circuit specifically for addition, and there are, in
general, no flip-flops such as are often used for staticizing or storing
a single digit. A similar philosophy was arrived at independently
by the designers of SEAC and DYSEAC [Elbourne and Witt, 1953],
but the detailed working out is considerably different.

Digit waveforms. The timing of digit pulses throughout the ma-
chine is controlled by a common ‘clock’ waveform—a 3 micro-
sec square wave (Fig. la) in which the positive-going portions
define digit positions.

The digit pulses, which are routed about the machine and ap-
plied to logical circuits, are generally of the form shown in Fig,
1b; as generated, they have their leading edges well in advance
of the clock pulse and are of a greater amplitude. This means that
considerable distortion of the pulse is tolerable, since only the
portion which coincides with positive clock pulse is of conse-
quence. Digit pulse trains are ‘clocked’ ("and’ operation with clock)
only at their entry into a storage system or into a digit-delay
circuit.

Inverted pulses are also employed: as an illustration, consider
the operation ‘A and not B’. Pulses A and B (Fig. 1) are on two
lines and are of the same nominal timing, and we wish to form
A . B (symbolic representation of ‘A and not B’). To do this pulse
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B is inverted (forming B, or ‘not B’) and is used to gate pulse A
and prevent its passage. The inverted pulse B will be a little late
on B, which also may have been later than A, as shown in Fig.
lc; thus when A and B are ‘anded’ together a spike may be pro-
duced, as shown in Fig. le. This spike, however, lies between clock
pulses and so will be rejected on clocking.

The pulse system used allows several logical operations to be
performed in cascade without any loss in nominal timing, so easing
the problem of logical design (particularly by permitting after-
thoughts). The maximum number of logical operations performed
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Fig. 2. Digit-delay circuit.

in cascade in Pegasus is five, though up to 12 could be performed
in special circumstances.

The logical circuits. Each of the logical packages has more than
one circuit unit. A circuit unit is defined as that part of a package
which has input and output pins, and no connections to other parts
of the package other than supplies. We may make the following
generalizations:

Each unit has an ‘and’ gate at its input.

Each unit has a cathode-follower output (half a 12AT7
valve}.

¢ Each unit has an additional output via a germanium diode
for making ‘or’ gate connections.

[Note: There are exceptions to (a) and (¢) on one package type.]

There are three possibilities for the part of the circuit unit
between the input ‘and’ gate and the output cathode-follower,
namely a digit delay (half a 12AT7 valve), an inverter (half a
12AT7 valve), and a direct connection. Space does not permit a
description of all the circuits, so it is proposed to deal only with
the digit delay.

The circuit is shown in Fig. 2, and some typical waveforms
are shown in Fig. 3. The input circuit can be of two forms, namely
a 3-input ‘and’ gate and two such gates with their outputs ‘or-ed’
together. In both cases there is a further gating with a clock pulse.
The clocked digits from the gate input circuit are applied to the
grid of V,, the anode voltage of which falls, so building up a
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current in L. When V| is cut off at the end of the digit, this current
flows through diodes D; and charges up a storage condenser, C,
which is discharged at the end of the next clock pulse by a ‘reset’
pulse applied through D,. The reset pulse supply is a common
computer supply whose amplitude and phasing relative to the
clock pulse is shown in Fig. 3.

It will be noted that the reset pulse is also present at a time,
just after V, is cut off, when the current in the inductor is about
to charge the storage condenser. This merely has the effect of
deferring the charging of C until the end of the reset pulse, the

-1 ke 3u sec +8volts
-10 volts ta)
0.6 u sec
—'.i l‘- ol +18 volts
(&)

—-20 to -25 volts

-10 volts (¢)

+ 20 volts approximate
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+

-20 volts

+20 volts opproximate

-10 volts

Fig. 3. Digit-delay waveforms.
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current in the meantime continuing to flow through the diodes
with little loss in the stored energy of L, since the voltage across
L is low at this time.

The output cathode-follower V, is caught at —10 volts in the
negative direction by a diode; this safeguards the crystal-diode
circuits driven by it in the event of failure of the h.t. supply or
V,, and it removes residual ripple on the bottom of the input
waveform, and thus reduces the back voltage and hence leakage
in diodes of gates driven by the output.

The second output through a diode can be used in conjunction
with similar outputs from other circuits and a resistor (pins 3 and
4) to make an ‘or’ (up to about 16-way).

In general, each output circuit has two available load resistors,
disposed between direct and ‘or’ outputs according to a set of rules
which are applied for each case. The number of units which can
be driven by an output can vary between three and 16 according
to circumstances; where more have to be driven than the rules
allow, use is made of ‘booster’ cathode-followers available on one
of the packages.

Some examples of the use of the logical circuits

Two examples will be given, the first being a simple arrange-
ment—the staticizor—which is used frequently, and the second
being a complicated arrangement—the adder/subtracter—which
is used infrequently. The symbols used to indicate the circuit units
are shown in Figs. 2¢ and 5b.

The staticizor. The function of a staticizor is to remember the
fact that a digit occurred at a particular time, for an indefinite
period, the method generally used in Pegasus being shown in Fig.
4. A digit delay with a twin ‘and’ gate input has its output con-
nected to one of its inputs. It is turned on by gate 1, which causes
a digit to circulate as long as the inputs to gate 2 remain positive.

Staticizor is turned
_ oft it either of these
leads is negative

Staticizor is set if
these leads are
positive

Fig. 4. The staticizor.
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Fig. 5. The adder/subtracter.

It is normally turned off by an inverted pulse (a ‘0" following a
series of 1's) on one of the gate 2 inputs.

The adder/subtracter. Figure 5 shows an adder/subtracter unit
with inputs X and Y and an output X + Y for the sum or X — Y
for the difference. There are two further input control leads
marked ‘add’ and ‘subtract’. If the ‘add’ lead is held positive
while the ‘subtract’ lead is held negative, the unit acts as an adder.
If the ‘subtract’ lead is held positive and the ‘add’ lead negative,
the unit acts as a subtracter. Carry suppression is controlled by
the lead marked ‘carry suppression’. Carries are allowed to propa-
gate when this lead is held positive, so that a negative signal on
this lead will suppress carry.

Table 1 gives the digits appearing at the outputs of logical
elements in the adder/subtracter unit for all combinations of input
and carry digits when the unit is operating as an adder.

Arrangement of circuits based on packages

It was required to base the logical circuits on a stundard size of
package which could also be used for other circuits, e.g. a nickel-
line 1-word store [Fairclough, 1956]. A unit which could accom-
modate three valves and had a 32-way plug was decided on; the
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Table 1 Digits at various internal points of the adder/subtracter unit 1 and 2. The circuit units based on package type 1 can perform
when set to add, for all combinations of the input and carry digits all the functions of those on type 2. However, there are many uses
Present Digits at internal points for a digit-del:jly circuit wit.h a sing.le ‘zfmd’ gate input (package
Inputs digits carry type 2), and since three units of this kind (instead of two for a
digit A B C D E F 2- ‘and’-gate input delay) can be based on one package, a saving

(Sum) (Next

can be effected. In Pegasus this saving amounts to 32 packages,

X Y carry) which is considered to be well worth an extra package type.
0 0 0 0 1 0 1 0 0 In addition to the five logical packages, a further 16 types (three
0 0 1 1 1 0 1 1 0 of which are peculiar to each computer) are required. The numbers
0 1 0 1 1 0 1 1 o0 used for the various functions are given below:
0 1 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0 1
) 1 0 0 1 11 1 Number
i 1 (1’ 0 0 1 111 Type L 113
! ! 1 o 1 1 TYPE 2 .\ 64
Note.—A and C are at the grids of the digit delay units, Logical typesyType 3 ... ... . . ... ... 55
Type d . ... ... 45
Type8 . .. . . 37
problem then was to arrange the various circuits in such a way Nickel-line 1-word store . . .. . . ... .. ... .. .. .. .. . ... ... 61
as to enable a computer to be designed using a minimum total Drum-store packages (8 types) .. ................... .. 38
number of packages without too many types. Five types were Input/output packages (3 types) ... 17
, . X Clock and reset waveforms (3 types). .. .............. .. 14
arrived at and these are shown in Fig. 6. —
Total. ... . . 444

As an example of the factors involved, consider package types

D~ D~ 1D~
NOTE  Clock connections

are not shown, they are
(a) implied whenever a delay (o)
symboi is used.

(c)

o= - D D= D>

D b S

(e)

Fig. 6. Contents of logical packages. The arrowhead on an output lead denotes the presence of an OR crystal connection.
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The magnetic-drum store and the circuit packages used with
it are described in another paper [Merry and Maudsley, 1956],
as is the nickel-line store [Fairclough, 1956].

The mechanical design of the packages
General form

Fach standard package consists of three main parts, namely the
valve panel, the component panel and the plug.

The valve panel is an aluminium pressing, there being three
types—a 3-valve type, a 2-valve type and a blank. The package
type number is marked on the panel by two dots according to
the standard resistor colour code.

The component panel houses up to 100 components, including
small transformers, chokes and coils, the panel and the handle
being made in one piece from sheet insulating material. This
design provides a minimum resistance to airflow over the valves
and gives ample protection to the valves against accidental dam-
age.

The plugs and sockets are used in multiples of eight connec-
tions. Most of the packages have four plugs providing 32 connec-
tions, but up to 64 are possible in each package. The plug contacts
are made of brass and are heavily silver-plated. The socket uses
a proprietary valve-holder contact, which can readily be replaced
if damaged.

SOCKETS
PLUGS

COMPONENT
MOUNTING
PANEL

CODING

Fig. 7. Standard package.
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This combination of plug and socket has a consistently low
contact resistance (0.003 ohm at 1 amp); the insertion and with-
drawal force is about 4 oz per contact.

The wiring of the packages

At present packages are wired and soldered by hand. The wiring
is point-to-point, and within the limitations of layout for efficient
performance, wire lengths are standardized for mass production on
automatic wire-cutting and stripping machines. The symmetry of
the eyelet positions makes it possible to use components which
are preformed to a standard pitch and would allow for automatic
preforming and insertion of components.

Experimental packages have been produced by photo-etched
wiring and dip soldering.

Specification of the computer Pegasus
Summary specification

A detailed specification would cover the ground of the program-
ming manual [Pegasus Programming Manual, Ferranti Ltd.,
London] and would be out of place here.

Pegasus is a binary serial-digital computer. The word length
is 42 binary digits, of which 39 digits are used for a number and
its sign (negative numbers are represented by their complements
with respect to two), one digit is used for a parity check and the
other two are gap digits. The length of an order is 19 binary digits,
so that one word may consist of two orders, the remaining digit
being a ‘stop-go’ digit. If the ‘stop-go’ digit is a “0’, the computer
will stop before obeying the orders in the word, but will proceed
unhindered if the digit is a ‘1",

There is a 2-level store, a magnetic drum holding 5120 words
and an immediate-access or computing store of 55 single-word
magnetostriction delay lines.

An order is made up of seven N-digits, three X-digits, six F-digits
and three M-digits, the N-digits being the most significant and the
M-digits the least significant. The N-digits allow 128 addresses in
the immediate-access store (of which only 63 are used). The reg-
isters in this store are shown in Fig. 8. The X-digits refer to one
of the accumulators, the registers corresponding to N-addresses
0-7. Thus the order code is a 2-address code with one address
referring to only a limited part of the store. The F-digits indicate
the function of the order. A list of functions and their correspond-
ing F values are given in the appendix of this chapter. The M-digits
indicate a modifier for the order: they select one of the accumula-
tors, and the modification process is to add certain parts of the
contents of the selected accumulator to the order before it is
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Fig. 8. Allocation of addresses in store.

obeyed, the part chosen depending on the function of the order
to be modified. Figure 9 gives a schematic representation of the
modification process. The effect of modifying an order depends
on the function of the order and can be to make the effective order
length 22 digits. This extension is necessary when specifying an
address in the main store.

Transfers of information can take place between the computing
store and the main store, and vice versa, either in single words
or in blocks of eight words. For single-word transfers, only the
register with address 1 in the computing store is involved. For
block transfers the address on the drum of the first word of the
block must be divisible by eight, and the registers in the computing
store that are involved will be one of the discrete blocks indicated
in Fig. 8.

Input and output is by means of punched paper tape. An ‘exter-
nal conditioning’ order is included in the code to enable a choice
of input and output equipment to be made. In the standard
machine, two tape readers are used.
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All stored information is checked (when read) by means of a
parity digit, which is such that the total number of I’s in any
correctly stored word is odd. The input and output of decimal
characters on tape can be checked by a similar process.

The considerations which led to the
specification and the logical design

The main features of the design are

a The use of a computing store from which all orders and
numbers are taken while computing

b The provision of multiple accumulators

¢ The provision of special orders and facilities for dealing
easily with ‘red tape’!

The computing store. The use of a fast-access store from which
all numbers and orders are taken increases the speed of the
machine and eliminates the need for optimum programming. It
is this computing store which makes it possible to use an inexpen-
sive magnetic drum (with a relatively long access time) as the main
store, and yet have a machine which is fast and relatively simple
to programme. On the other hand, programmes have more ‘red
tape’ and are not as simple as with single-level storage.

Transfer between levels is in blocks of eight words; this is a
simplification and saves time. One block holds a reasonable amount
of programme and other blocks hold data. Four blocks in all (32
words) would be just sufficient, and Pegasus was originally de-
signed with this number. The design was subsequently modified
to six blocks, which is quite adequate, in conjunction with the
seven accumulators. Any further increase in the size of the com-
puting store would be achieved by increasing the size, not the
number, of blocks. As it is there is an economic balance between
the usefulness and the cost of the computing store.

1“Red tape’ is an expression for the non-arithmetic orders in a programme.

N X F M
ORDER BEING MODIFIED |. 4o/, ...Ls. .]...s. - .I 2
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IN X REGISTERS IN
SIGNIFICANCE SUCH THAT
THE MOST SIGNIFICANT
DIGIT CORRESPONDS TO
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70 27'%)

§
3
\

Fig. 9. Order-modification process.
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The provision of several accumulators. This is the most novel
feature of the logical design of Pegasus. It is generally agreed that
the simplest order code from the user’s aspect is the 3-address code
with orders of the form, A + B— C. An examination of this
form of code, however, shows that in many cases two of the ad-
dresses are the same, so that the order takes the 2-address form,
A + B— A. A further examination shows that in a large propor-
tion of cases the address A is confined to a very few addresses.
This leads to the suggestion of a code of the form N + X — X,
where X covers only a small part of the store while N covers the
whole store. This will have the advantage of yielding a reasonably
short order. In Pegasus two such orders are incorporated in one
word, leaving sufficient digits to specify a modification register (a
Mancunian B-line) in each order.

The extreme case of this code is, of course, the single-address
code, where X is confined to one address, the accumulator. How-
ever, experience had convinced the programmers collaborating in
the design of Pegasus that, with single-address codes, a large
number of orders are concerned solely with transfers of numbers
from one register to another; the single accumulator is a restriction
through which all numbers must pass and in which all operations
have to be performed.

In the Manchester University computer the B-lines serve two
very valuable but distinct purposes: they allow order modification
and rudimentary arithmetic (such as counting) to be done without
disturbing the accumulator. It was felt that fuller arithmetic and
logical facilities on these B-lines would have been extremely valu-
able. The seven accumulators in Pegasus, used for modification
and arithmetic, are a development of the B-line concept.

Special facilities for dealing with ‘red tape’. The difficulties asso-
ciated with the 2-level storage system have been greatly reduced
by having an order-modification procedure which depends on the
function of the order (Fig. 9). This method of modifying orders,
used in conjunction with order 66 of the code (the unit-modify
order), enables the counting through blocks of information to be
done with relative ease.

The use of the group-4 orders of the code enables counters to
be set conveniently and a constant (up to 127) to be placed in
an accumulator, the constant being the value of the N-digits of
the order. Order 67 (the unit-count order) enables the counting
of cycles of operations to be dealt with in a simple way. A jump
to another part of the programme can be programmed to take
place automatically when the required number of cycles has been
performed.
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Having a large number of jump instructions greatly helps in
organizing a programme. In particular, one order enables a jump
to be made depending on the condition of an accumulator (being
zero, for example), and another order on the complementary con-
dition (being not zero). When only one of these orders is available
it is necessary to think ahead to see whether or not the correct
condition will be satisfied. Although the eight jump instructions
included in the code were felt initially to be enough, it is now
suggested by programmers that even more such orders would be
helpful.

The logical shift orders, 52 and 53, are also included to simplify
‘red tape’. In particular, they are used for packing and unpacking
words holding several items of information.

As a result of including these various orders, the order code
of Pegasus is quite large. It is worth remarking, however, that by
a sensible grouping of the orders in the code the remembering
of the code is a very simple task. A sensible arrangement of the
code tends to reduce the amount of equipment needed to engineer
it. For example, when the equipment for dealing with group 0
of the code has been allocated, groups 1 and 4 require the addition
of only three gates.

Facilities for checking programmes. The features mentioned above
make the computer easier to programme, and there are other
facilities in Pegasus that make it easier to check out and develop
new programmes. These include causing the machine to stop
obeying orders, either under programme control or when the
programme is in error. In particular, the machine stops if an order
for writing in the main store is reached and an overflow indicator
is set. A further aid when testing new programmes is the automatic
punching out of all main-store addresses appearing in block-
transfer orders. When this information is examined an indication
of the course of a programme is readily obtained. The punching
can be inhibited by a switch when a return to full-speed running
is needed.

Machine rhythm

The logical design of Pegasus is built around a nucleus that deals
with the simple arithmetic orders, groups 0, 1 and 4, of the code.
This nucleus contains the control section, i.e. the order register
and order decoding equipment, and the mill in which these orders
are executed. The design of this nucleus could not begin until a
basic rhythm for dealing with the extraction from the computing
store and the execution of such a pair was determined. When the
outline of this nucleus was clear, the equipment for dealing with
the remaining orders in the code was designed to fit it.



The following arguments led to the basic rhythm. Since the
orders of groups 0, 1 and 4 are similar in many respects, for
definiteness, it will be sufficient to consider a particular order, 11
of the code, say. This is an order which takes two numbers from
the computing store and replaces one of them by their sum. It
would take a prohibitive amount of equipment to extract these
numbers, add them together and have the least significant digit
of the sum available for replacing in the store in the same digit
time as the least significant digits of the two components taken
out of the store. In practice, some four digit times at least would
be needed for this sequence of operations. Thus, it would be im-
possible to return the sum to the store in the same word as the
operands are extracted without having an entry point to each
register which is in a different timing from the normal circulation
entry. To produce two such entry points to each register would
mean more equipment associated with each register, which was
considered an uneconomical use of extra equipment. Instead, it
was decided to delay the sum so that it could enter the register
in the computing store in the next word time in standard timing.
This involves one common delaying circuit instead of one for every
register. Such an order therefore takes two word times to execute.
It may be argued that this second word time could be made to
overlap with the first word time for the next order. Two reasons
oppose this: the new contents of the register being changed might
be required by the next order; and two different sets of equipment
for selecting a storage register would be needed if numbers were
to be extracted from one and replaced in another register in the
same word time,

Thus, the execution of a pair of orders taken from the comput-
ing store requires four word times. The reasons for opposing the
overlapping of the execution of two orders also oppose the extrac-
tion of an order pair while the previous pair is being dealt with.
Five word times are therefore needed for the process of extracting
and obeying a pair of simple arithmetic orders. More time may
be needed for some of the other orders in the code.

The basic 3-beat rhythm is thus established:

a Extract the order pair from the computing store.
b Obey the first order of the pair.

¢ Obey the second order.

The duration of beat (a) is one word time; beats (b) and (c)
are each two word times long for orders in groups 0, 1, 4 and 6
of the code, but may be longer for other orders.
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Times for typical operations

The times for the various arithmetic operations are:

millisec
Addition and subtraction .. ... .. 0.3
Multiplication . . ............ 2.0
Division . . ... .......... ... 5.4

These times include an allowance for the time to extract the
orders.
Some times for standard subroutines are:

millisec
Exponential function . . .. ... ... 29
Sine function . . . ... ... ... .. 24
Logarithmic function. . . . ... ... 34

Finally, to give some indication of the time for a typical prob-
lem, a set of 50 simultaneous equations (with a single right-hand
side) takes about 10%, min. Of this time, 3 min 8 sec is for input,
7 min 17 sec is for calculation and 18 sec is for output.

Realizing the specification
The detailed logical design

It would take too long to describe fully the detailed logical design.
One aspect is worth mentioning, however, namely the avoidance
of all ‘exceptions’ in the results of orders. As an example of an
exception consider the overflow indicators, which should be set
whenever the final result of an order is outside the permissible
range of numbers. In multiplication this can occur only when both
the multiplier and the multiplicand are —1, and this is likely to
occur very infrequently. Rather than provide equipment to sense
this infrequent case, it is easier to put a footnote in the program-
ming manual, where the overflow indicator is described, pointing
out the exception. It was felt, however, that such exceptions should
be avoided even at the expense of extra equipment or extra com-
plication. For this and other reasons concerned with facilitating
machine use, the logic of Pegasus is quite complicated.

The end-product of the detailed logical design is a series of
diagrams with symbols corresponding to the circuit units of the
packages, as shown, for example, in Fig. 5. The inputs and outputs
of the units on these diagrams correspond to the pins of the sockets
into which the packages plug. Thus, the wiring lists of connections
of these pins can be produced from these logical diagrams. The
first step in the production of these lists is to allocate a position
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in the cabinets to each logical circuit in such a way as to reduce
the amount of wire needed. When the layout has been completed,
the last stage of producing the wire lists can proceed.

General construction of machine

The main units are shown in Fig. 10.

The package frame. This unit is a simple light-alloy frame sup-
porting diecast light-alloy frame racks to which the back socket
panels are fixed. The packages slide into grooves in the rack and
plug into sockets at the back, a polarizing feature preventing the
insertion of a package upside down. If electrical or magnetic

BAY |

LOGIC PACKAGES

PACKAGED
MONITOR UNIT

PROGRAMMERS
CONTROL PANEL

ENGINEERS
CONTROL PANEL:

INPUT
EQUIPMENT

OUTPUT
EQUIPMENT

Fig. 10. Main units.
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screening is necessary between any packages, a special metal plate
is inserted in slots in the cast rack and is fixed by a single screw
in the back panel. Coded aluminium strips containing coloured
plastic studs which identify the position of each package are fixed
to the front of each casting.

Arrangement of the packages. There are 200 packages per cabinet,
arranged in ten horizontal rows of 20 units per row. The metal
valve panels are placed so that the edges almost touch. The com-
ponent panel of each unit is in register with the unit in the corre-
sponding position in each of the other rows, thereby providing
vertical chimneys for cooling the components secured to these
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panels. Warm air from the main source of heat, the valves, is
prevented by the valve panels from reaching the more tempera-
ture-sensitive components, such as diodes, secured to the com-
ponent panel.

The back panel wiring. For locating long signal wires between
sockets a system of plastic strips is used, which hold the wires
at definite positions given by the instructions on the wiring lists.
The exact route of every wire is predetermined, thus making
wiring and inspection more reliable and fault finding and mainte-
nance easier.

Final assembly. The completely wired frame is assembled in its
cabinet, which has already been fitted with the control and auxili-
ary supply circuit unit, heater transformers, fuses, cooling assembly
and cableforms. The work of connecting the cableforms, heaters
and earths can be done by relatively unskilled labour working to
clearly written instructions and diagrams.

The cooling system. Each cabinet has its own cooling system as
an integral part of the construction; there is therefore no difficulty
in cooling cabinets added to existing computers. Two axial-flow
turbo blowers are mounted in the base beneath an airtight pressure
chamber, each providing 300 ft*/min of air at a total pressure head
of 1 in (water gauge). The maximum temperature rise is 10° C.

The power supply. A separate cubicle houses metal rectifiers, shunt
stabilizing valves and control circuits. The power is obtained from
the mains through a motor-alternator set, the output of which is
stabilized to 2%, the main purpose of this set being to act as a
buffer against switching surges and other mains voltage variations.
The valve heaters in the computer are energized from the stabi-
lized alternator output, which is expected to extend the valve life.

Maintenance
General

All digital computers so far have a fault rate which cannot be
ignored. When the best has been done in the choice of components,
circuits and mechanical construction, attention must be paid to
the following points to get the best out of a machine:

Rapid fault location

b Getting the machine working again as soon as possible after
locating a fault

¢ Preventive maintenance
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Fault location

There are parity-checking circuits on both the main and the high-
speed stores. Errors of a single digit in the stores stop the machine.
The fault can then be quickly located by examination of the
monitors.

For other faults the general method is to run a test programme
(assuming the fault is not in the main control) which will indicate
the area of the fault. Detailed examination can then be carried
out with the monitors.

All outputs of circuit units are readily accessible at monitoring
sockets on the front of each package, and in addition about 80
points can be directly selected by switches from the monitoring
position: these include all store lines and 2 number of key wave-
forms. Fault-finding is normally a matter of tracing 0’s and 1’s
through the machine with reference to logical diagrams rather
than electronic circuit diagrams.

A variety of triggers can be selected for the monitor time-bases,
these including

a Trigger at any word position within a drum revolution (128
different times selectable by switches)

b Trigger at any word time of any selected order

These triggers and some other monitoring facilities are pro-
duced by 19 standard packages and are found to be well worth
the extra equipment.

Fault repair

Once a faulty package has been located, the machine can be got
working again immediately by replacement of the package with
a spare; repair of the faulty package can be done at leisure with
the aid of a package tester. With this equipment a package can
quickly be given a series of standard tests; each is selected by
switches, and the performance is measured either by observation
of meters or a built-in oscillograph.

During commissioning not one case was found of the first
machine doing other than what one would expect from the logical
diagram (except for a very few cases of incorrect wiring).

Preventive maintenance

The machine h.t. supplies are reduced while the test programmes
are being run. This marginal testing shows up incipient faults such
as deterioration in valves, crystal diodes or resistors. The machine
is at present kept in good running order down to 10% margins

The design philosophy of Pegasus, a quantity-production computer 181



182 Part 2

The instruction-set processor: main-line computers

(the supplies are normally controlled to about 1% of nominal),
although correct running at about 20% reduction has been ob-
served.

Conclusions

The first machine has been computing regularly for only a few
months and has been on regular preventive maintenance (about
1 hour per day) for a few weeks. Error-free runs of over 30 hours
are common, and at the time of writing there has been no error

APPENDIX

The Pegasus Order Code

00 x'=n

0l v =x+n
02 x' = —n
03 x=x—n
04 x"=n—x
05 ¥ =x&n
06 x"=x%£n

07 Not allocated

10

n =x
11 n=n4+x
12 0’ = —x

13n =n—x
4n =x—n
15n =n&x
16 n =n#kx

17 Not allocated

20 (pgy =n-x
21 (pg) =n-x+ 2739
22 (pq) =p + 27%q + nx

this order assumes that any

overflow is due to opera-
23 (ng) = n 4+ 2738

(nq) + q tions in 7. Clears overflow

unless n’ overflows

0<p/n<1 (unrounded
24]q, i 2738(E) _xr+ 2-%y division)
25 " n Y% <p'/n<Y, (rounded
division)

Section 2 | Processors with a general register state

for 55%, hours’ running. The majority of package replacements are
done during routine maintenance.

The packaged method of construction of computers has proved
to have great advantages in design, construction and operation.
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26 ¢ + 2*38(%) = —Z—; —Y, < p'/n <Y, (rounded single-
length division
27 Not allocated

30

31

32

gi Not allocated
35

36

37

40 ¥’ = ¢

41 ' = x4+ ¢
42 x' = —c

43 X’ =x — ¢ tc = N238
4 x'=c—x
45 ¥ =x & ¢
46 x’:xg'_:c

47 Not allocated

50 x" = 2Mx } single-length arith-
51 x' = 2% (rounded) metical shifts Note: ' = x
52 Shift x up N places single-length logical fN=0
53 Shift x down N places } shifts
2‘; qu;’ = zl_vszq) ) . | double-length arith- NOte;lP'IZ_”
par = pq)tun metical shifts ancq =q
rounded) ifN=0




56 (Normalize) (pg) = 24(pg);

either (1) ¥, < (pq) < Y, and

~1<p<<N-1
X = ax— 2%y or (2) —% < (pq) < 7Y, and
—1<p<N-1
or (3) =% < (pq) < and
,lL:N—l

57 Not allocated

60 Jump to N if x = 0
61 Jump to N if x40
62 Jumpto Nif x> 0
63 Jump to N if x <0

64 Jump to N if overflow staticizor clear; clear overflow staticizor.
65 Jump to N if overflow staticizor set; clear overflow staticizor.

66 (Unit-modify) x,, = x,, + 1. Jump to N if x;, Z£ 0 (mod. 8)
67 (Unit-count) x, = x, — 1. Jump to N if x, £ 0

70 Single word read to accumulator 1. 1'=s
71 Single word write from accumulator 1. s =1
72 Block read from main store W =50
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73 Block write into main store

b=u
74 External conditioning
75
11
76}Not allocated
77 Stop

The notation used here is as follows:

N is the first address (the register address) in an order.

X is the accumulator specified in an order.

n is the word in N before obeying the order.

x is the word in X before obeying the order.

p and q are the words in 6 and 7 before obeying the order.

(pg) = p + 2738, with ¢ > 0. This is a double-length number.

a’, n’, p’ and g are the corresponding values after obeying the
order.

B is a block in the main store (the drum).

U is a block in the computing store.

P is the position number of a word within a block.

OVR is the overflow indicator.

xm is the modifier in X, i.e. an integer represented by the digits
1to 13 of x.

xc is the counter in X, i.e. an integer represented by the digits
14 to 38 of x.
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Chapter 10

An 8-bit-character computer

Introduction

We present in this chapter the result of an exercise to design an
8-bit computer. Although a rather trivial machine, it is not without
interest, either as manipulator of variable-length character strings
or as an interpreter of more complex computers in a role similar
to a microprogrammed Pc. In the latter role a read-only memory
could be used as Mp to speed up the Pc.

This computer is typical of 8-bit character-oriented computers.
Among the similar machines are the Interdata Model 3, the RCA
1600, the IBM System /360 Model 25, and the Data Machines Inc.
DMI 520/1. A processor of this type rarely stands alone but is used
with a fixed program in the following ways: as a control in a larger
C, as a control to a laboratory or other complex instrument, and
as a microprogrammed processor to interpret an ISP.!

The processor must perform fixed-length operations on both
8-bit characters and 16-bit addresses. The address (double length)
operations are necessary for performance reasons, because almost
all programs operate on address integers. (For example, see the
program on page 185.) Thus, extending (generalizing) the operation
length to three and four characters is comparatively inexpensive.
It should be noted that a processor might allow the operation
length to be specified between 1 and perhaps 28 (256) characters
for a much more general capability. We limit the directly addressa-
ble Mp to 216 (or 63,384) characters. An alternative design might
allow the maximum addressable Mp to be 22* words, or, alter-
natively, it could be variable. Although 24-bit operations are
defined, their implementation might be expensive. Aligning the
24-bit words on 32-bit-word boundaries would simplify the address
calculation hardware.

The ISP

The basic information unit is the 8-bit character. Instructions are,
in general, one character in length. However, both instructions
and data formats are of variable length, instructions being 1, 2,
3, 4, and 5 characters long, and data being 1, 2, 3, and 4 characters
long. The Pc state contains ~35 characters, which are organized
to be dealt with as eight 8-, 16-, 24-, or 32-bit registers (shown

!The structure should be compared with the elaborate microprogrammed
IBM System 360/Model 30 (Chap. 32).

in the ISP description in Appendix 1 of this chapter). Of these
registers, the first (register 0) is taken to be a special accumu-
lator, A.

The Pc state contains both operands and addresses to operands.
The instructions to load or store register A, from or into Mp, with
or without incrementing a general register, all use the general
registers as a two-character address pointer. Any general register
may be loaded or stored direct from or to Mp. The binary arith-
metic and logical operations are with a register and the accumu-
lator, and leave the result in the accumulator; i.e., they are of the

form
A <~ AbRIr]
Instruction execution :=
(op=xxxyy,)
mzyyz 00 o1 10 1
la 1a1 sa sal
000 A<—M[RD] , [A=-MRO,R=-R+L| M[RD]=A MRD]=A: R+—R +L'
1 (1) (1) (1)
i ari srd
001 R=—im R=—R+im M[d]=—R R-—M[d]
(2-5) (2-5) (3) (3)
ad{ sul br bld
010 R—R+L' R=—R - P=—R Pe—d;RP
(1) (1) (2) (3)
cbr cbd cnr cnd
oM|— f{r,i,N,Z,Cr=(P=—f(s,d) e
(2) (3) (2) (3)
ad ade sb sbe
100 Awp+R A=+A+R+C AlwA-R A'=—A-R-C
1) 1 {1) (1
mui muf dii dit
101]  a=—axr{i} A XR{fr} A=-a/R{i} A=—A/R{fr}
50} (1) 1 1
and or xor cmpr
10 A<—AAR A=AV R A--ABR N,Z=-A-R
1 [§H (1) (1)
1d st shift st
" AR R~—A Aapx28 L=t
) (1) (1) (N
Instructions Formats
Format Character length Name Behavior2
(o T ] 1 No parameters a
c 4 7
Integer or relative
[P [F] 5 ] 2 address
o 7 18
(% 7] d 3 Direct address c
(9] 7 23
[P e M7 25 Immediate data d
0 7 15 23 3 39
(( ) encloses instruction length in characters shown in formats table
25ee state diagram, Fig. 2

Fig. 1. Instruction coding for an 8-bit-character computer.



Instruction lengths
1 character 2 characters 3 characters 2-5 characters

P I——Fa[) @) E——E)
@9 (9

A
<_MuTuu.I ly
exclusive °

sfcfes}

{a) (6) {c) (a}

o] The operation specified by the instruction g

0q Opergtion ta determine lacation of instruction g

ag Access to obtain instruction g

ov  Operation to determine variables specified by instruction g
av  Access to obtoin variables or return result variables

Fig. 2. An 8-bit-character-computer instruction-interpretation state dia-
gram. (a) No parameters; (b) integer or relative address; (c) direct ad-
dress; (d) immediate data.

The general registers discussed above are similar to those of
the general register processors. Since it is assumed that this type
of processor might be used to interpret another ISP, the +1 and
—1 instructions provide for both string and stack memory opera-
tions. The instructions for a microprogrammed P and the 1/0
devices are not defined. For example, a 16-way branch instruction
which branched to one of 16 locations based on 4 bits of the
accumulator might facilitate writing an interpreter.

The ISP is given in Appendix 1 of this chapter. The Pc state
is organized about a small scratch-pad memory, although Mp could
be used instead. The instruction formats and the operation code
assignments are shown in Fig. 1.

The instructions behave as illustrated in the state diagram (Fig.

2). For example, the instruction “Iri 3, A907,,” is coded

00100,011 |} 1010,1001 | 0000,0111

and the effect is

R[3](0:15) « A907,
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The instruction, xor 3, with L = 2, is coded

11010,011

and the effect is

R[0](0:23) «— R[0]{0:23) @ R[3]{0:23)
In these examples, the behavior of Iri and xor is specified in the
state diagrams of Fig. 1d and la, respectively.

An open subprogram to perform the n-component vector
(16-bit) addition! A < B + C is

start s12 — 1 set register length = 2

Iri 4, A set up vector pointers to
Iri 5, B locations A, B, C in Mp
Iri 6,C
Iri 7,2 X n set up count at 2n
loop lal 5 fetch B
st 3 store B temporarily
lal 6 fetch C
ad 3 add
stl 4 store in A
sul 7 decrement n count
cnr 4, loop branch if negative n

The above program loop is nine characters long. A program
loop for the IBM System/360 is about 16 characters long. The

setup is 13 characters, as opposed to 6 ~ 16 characters for the
360.

Conclusions

We have violated our principle of showing “real” computers by
designing this computer. We think it is typical of a small processor,
but slightly more interesting.

1The length is specified by register L.
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APPENDIX 1 AN 8-BIT-CHARACTER COMPUTER ISP DESCRIPTION

Appendix 1

An 8 Bit Character Computer |SP Description

Pe State

The following array of 8 genmeral registers, R, are mapped into the first 8 x (I+1) Mp cells. The register length is
0:8 x (L+1)) - 1> The first register of each array, R{0)is an accumulator, and has special properties.

R[O:710: (8 x L'} ~1> := M[0:7](0:L])<0:7>

A<0: (B ¢ L') ~1> :=R[0]<0:(8 x L') -1>
RQEO:7]<0:31> 1= M[0:71[0:3)}<0:7>
AQ<D:31> t= RQ[0]<0:31>

RTL0:71<0:23>

]

M[0:71T0:23<0:7>

AT<0:23> = RT[0]<0:23>

RD{0:7]<0:15> = M[0:7](0:11<0:7>
AD<D: 15> = RD{01<0:15>

RS[0:71<0:7> = M[0:7][0:01<0:7>
AS<D:7> = rs[ol<0:7>

General Registers of length (L+1) x 8 bits
Aceurulator (generally)

Quadruple Registers

Quadruple Accumulator

Triple Registers

Triple Accurmulator

Double Registers

Double Accumulator

Single Registers

Single Accumulator

The following flags are set by the result of all arithmetic and logical instructions on the Accumulator, A. These are conmnected

to A to form A'.
N
z
c

A'<N,Z,C,0:(8 X L') ~1> := NoZoCoh<O: (8 x L') -1>
L<D: 1>

L‘<1>L| = L+
P<0:15>

Mp State
MLO:177777g1<0:7>

Instruction Format

i[0:4)<0:7>
op<O:l> 1= 1[0]<0:le>
r<0:2> = i[0]<5:7>
s<0:7> = i[1]
d<0 :15>:= i[1:2]
im<0: (B x L'} =1> = ([1:L']<0:7>

Instruction Interpretation Process
((instructionf0:4]<0:7> « M[P:P+h]; P « P + 1); next

((op
({op = 1180} v (op = 1010)) = (P « P + 1}:
(op = 0108) » (P« P + L+1); next

i

Instruction_execution)

0118} v (op = 1811) v {op = 1001)) = (P < P + 2}

Negative result flag
Zero flag, set if the register contains a zero

Carry flag, set if there is a carry or borrow from bit 0 of the
addition

2 bit register to indicate the character length of operations;
1,2,3,4 for 5,D,7,Q

Program counter

primary memory

1 to & character instruction
op code

register address

gsigned integer for shifts

address integer

variable length immediate data

feteh

execute
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Instruction Set and Instruction Execution Process
Instruction.execution ;= (
la (i=op = 0) = (A «M[RD{r11);

lal (:= op = 1) = (A <~ M[RD[r]]; next RD{r] « RD[r] + L');
(:=op = 2) - (M[RD[r 1] «A};
(:= op = 3) - (M[RD[r]] < A; next RD[r] «RD[r] + L');
(i=0p = 4) 5 (R[r] «im);
(:=op = 5) > (R[rj < im+ R[{r]);
(:=op = 6) - (M[d] «R[r]);

Trd (:= op = 7) - (R[r] «M[d]);
(
(
(
(
(
(
(

sa

adl (:= op = 01000) — (R[r] «R[r]+ L');

sul (:= op = 01001) — (R[r] «R[r]) - L');

br (:= op = 01010) — (P «R[r]);

bld (:= op = 01011) - (P «d; R[r] «P);

cbr {:= op = 01100) - ((cond # 0) 5P P + s);
cbd (:= op = 01101) — ((cond # 0) P «d);

cnr (:= op = 01110) - ((cond = 0) =P «P + s5);
end (= op = 01111) - ((cond = 0) P «d);

cond := (r A NoZgoC)
ad (= op = 10000) — {A' A + R{r]);

adc (:= op = 10001) = (A" A + R[r]+ C);
sb (:= op = 10010) - (A' « A - R(r]);

sbc (:= op = 10011) — (A" A - R[r] - C);
mui (= op = 10100) — (A" <A x R[r] {i}]);
muf (= op = 10101) — (A' « A x R[r] {fr});
dii (:= op = 10110) s (A" A / R[r] {i});
dif (= op = 10111) = (A" —A / R[r] {fr});
and (:= op = 11000) = (A « A A R[r]);

or (:i=op =11001) - (A« Av R[F]);

xor (:= op = 11010) » (A « A @ R[r]});

cmpr (= op = 11011) = (NaZ « A - R[r]);

1d (:=op = 11100) » (A' «R[r]);
st (:=op = 11101) = (R[r] «A);
shift{:= op = 11110) = (A" « A x 2%);
st fi=op = 111) 5 {L 1)

)

load A

load A, tnerement

store A

store A, increment

load register immediate
add register immediate
store register

load register

add 1 to register

subtraet 1 from register
branch return

branch and link direct
conditional branch relative
conditional branch dirgct
conditional not branch relative

conditional not branch direct

add

add with ecarry
subtract

subtract with earry
integer multiply
fraction multiply
integer divide
fraction divide
logical and

logical or
exclusive or

compare used to N and 2
load

store

shift right or left
set operation length

end Instruction_execution
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Part 3

The instruction-set processor level:
variations in the processor

In this part we discuss computers whose ISP’s are variations from the main-line
computers in Part 2. These variations represent historical computers that have not
remained viable in the judgment of the computer engineering community, responses
to particular technology, and explorations that were either too advanced for their
time or still exist as open options.

Section 1, Processors with greater than 1 address per instruction, is mostly of
historical and comparative interest. The general register organization with large Mp’s
(hence large addresses) almost surely dominate them.

Section 2, Processors constrained by a cyclic, primary memory, describes a
response to a historical feature of Mp technology. The use of a drum, delay line,
or disk was a matter of necessity rather than choice. When better random access
core memories were available, the drum ceased to be a primary memory component.

Section 3 presents processors for variable string data. These processors are no
longer built in their original form. However, they were very successful for a while
(IBM 1401). Furthermore, string data-types have been incorporated in later proc-
essors.

Section 4 presents two desk calculator computers. Although we too often dismiss
these devices as mere desk calculators, they have facilities that qualify them as
general purpose stored program computers. Unlike most computers, because of the
production cost constraint, these calculator computers are all very cleverly designed.

Section 5, Processors with stack memories, describes an organization that has
never reached the main line state. Nevertheless, the idea of a stack memory is
gradually being assimilated. For example, the DEC PDP-6 and PDP-10 computers
use their general registers for stack pointer control, as suggested in Chap. 3, page
62.

In Sec. 6 the ideas of multiprogramming are presented. These ideas are recent
and have not yet been adequately incorporated in main line designs. They undoubt-
edly will be standard features in the next generation, although the exact form can-
not yet be known.

189






Section 1

Processors with greater than 1
address per instruction

Multiple-address instruction formats exist for several reasons.
The addition of an explicit address to determine the next in-
struction occurs with cyclic Mp’s to make them efficient. Section
2 is devoted to this case, and it will not be considered further
here. These processors are known as n + 1 address. A second
reason is that many operations have more than one operand
(asin A + Bor AV B), and it seems to be efficient encoding
to put them all into an instruction. A third reason is that many
operations need to be followed by writing the result in memory,
to permit the Pc to be used for operations on other data. Thus,
coupling each operation with the address where the result
is to be stored seems to be advantageous. However, in evalu-
ating complex arithmetic expressions, more instruction bits and
memory references are required than in a single-address com-
puter. Also, for unary operators one address field is unused.
It seems fair to say that ISP organizations with two or three
addresses have not proved themselves in competition with the
main lineof 1, (1 + index), or (1 + general register) organiza-
tions. However, no definitive demonstration of their inefficiency
under all technological conditions exists, and they are worth
studying.

For microprogrammed processors, multiple-address instruc-
tions allow a high degree of parallelism to be obtained in a
single instruction. Multiple-address formats survive in this form.

The Pilot ACE

The National Physics Laboratory's Pilot ACE is the first of
several cyclic memory computers which have been designed to
provide optimum coding of instructions. Subsequent machines
which it influenced include the nearly identical English Electric
Deuce, the Bendix G-15, and the Packard Bell PB-250.1 The
PMS structure does not strictly follow our lattice model (page
65). The Deuce PMS structure is given in Fig. 1. A 32-word
block in Mp.delay_line can be transferred to Ms.drum in one
instruction (transfer time of 1,024 us). Another capability of

TH. D. Huskey was involved in the design of ACE, G-15, and PB-250; he was
undoubtedly the idea carrier.

ACE allows it to perform operations on vectors of up to 32
elements in 1 instruction.

The ACE structure (Chap. 11) has a common M which con-
tains much of the processor state and Mp. Many of the locations
used for processor state can store programs for direct execu-
tion. The diagram on page 198 in Chap. 11 describes the in-
struction execution process and implementation.

Alan M. Turing is credited with the basic design of ACE
(see introduction, page 193, and Turing’s biography [Turing,
1959)).

ZEBRA, a simple binary computer

ZEBRA illustrates the organizational details of another serial
arithmetic computer with Mp.cyclic. ZEBRA, like ACE, allows the
user to construct instructions for the hardware which are aimost
directly interpreted. In both ACE and ZEBRA very little decoding
is built into the machine; a large instruction set is available
since the instructions are microcoded. In these computers the
programming problem can be as complex as the user wishes,
because a large number of different instructions can be micro-

S T.console -
Mp (#0:8)t1 s Pc® K—T[card; reader; 200 card/min; |«
[;2/80 card ]
Mps(delay K—T{card; punch; 100 card/min}—
[}ine;} K—T(audio; buzzer)-
i ~10 w
Mp (#9:10)1—S K-—Ms{ moving head drum; 8192 w;

32 b/w; 16 tracks/posi-~
tion; 32 w/track; 16 posi-

tions

IMp{delay line; cyclic; 32 ~ 1024 us/w; 32 w; 32 b/w)
u
2Pc(technology: vacuum tubes; 1955 ~ 1961; (2+1) address/

instruction; ancestors: NPL ACE)

Fig. 1. English Electric Deuce PMS diagram.
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coded. The LGP-30 (Chap. 16), by contrast, has only a basic
instruction set. Hence a problem can be coded only one or two
ways. ZEBRA’s performance of 60 percent memory-cycle utiliza-
tion is rather outstanding and raises the possibility that ran-
dom-access primary memories may not be necessary.

UNIVAC scientific (1103A) instruction logic

The UNIVAC 1103A (Chap. 13) is a two-address computer. The
computer was designed initially by Engineering Research Asso-
ciates (ERA) of St. Paul.! UNIVAC acquired ERA in 1952 as a
scientific-computer division. The evolution of the 1103A later
yielded the 1107 and 1108 general register processors. The
reader should compare the 1103A with the IBM 704 series
(Chap. 41). At the time both were used, it was not clear which
computer was better.

LAs the third in a series that started with the ERA 1101 and 1102.

Section 1 | Processors with greater than 1 address per instruction

The RW-400: a new polymorphic data system

The RW-400 in Chap. 38 is a two-address, binary computer. It
is discussed in Part 5, Sec. 4, page 470.

Instruction logic of the MIDAC

The University of Michigan's MIDAC (Michigan Digital Auto-
matic Computer) is based on the National Bureau of Standards’
SEAC (Standards’ Electronic Automatic Computer). MIDAC, a
three-address, binary computer, is presented in Chap. 14.

Instruction logic of the Soviet Strela (Arrow)

The Russian Strela is presented in Chap. 15. Since it is used
only to illustrate a three-address organization, the chapter con-
sists of only the instruction set.



Chapter 11
The Pilot ACE!

J. H. Wilkinson

Introduction

A machine which was almost identical with the Pilot ACE was
first designed by the staff of the Mathematics Division at the
suggestion of Dr. H. D. Huskey during his stay at the National
Physical Laboratory in 1947. It was based on an earlier design
by Dr. A. M. Turing and its principal object was to provide experi-
ence in the construction of equipment of this type. It was not
intended that it would be used on an extensive programme of
computation, but it was hoped that it would give practical experi-
ence in the production of subroutines which would serve as a
useful guide to the design of a full scale machine. An attempt to
build the Pilot Model, during Dr. Huskey’s stay, was unsuccessful,
but a year later after the formation of an Electronics Section at
the NPL a combined team consisting of this section and four
members of the Mathematics Division started on the construction
of a Pilot Model, the design of which was taken over almost
unchanged from the earlier version. The machine first worked, in
the sense that it carried out automatically a simple sequence of
operations, in May 1950 and by the end of that year it had reached
the stage at which a successful Press Demonstration was held. The
successful application of the machine to the solution of a number
of problems made it apparent that, in spite of its obvious short-
comings, it was capable of being converted into a powerful com-
puter comparable with any then in existence and much faster than
most. Accordingly a small programme of modifications was em-
barked upon early in 1951, but the machine was not functioning
satisfactorily again until November of that year. After a month
of continuous operation it was transferred from the Electronics
Section to Mathematics Division where it has since been in use
on a 13-hour day. During its first year of full scale operation it
achieved a 65% serviceability figure based on a very strict criterion.
Its performance during its second year has so far been considerably
better than this.

*Automatic Digital Computation, National Physical Laboratory, Tedding-
ton, England, pp. 5-14, March, 1953,

General description

The Pilot ACE is a serial machine using mercury delay line storage
and working at a pulse repetition rate of 1 megacycle/sec. Its high
speed store consists of 11 long delay lines each of which stores
32 words of 32 binary digits each, with a corresponding circulation
period of 1024 microseconds, 5 short lines storing one word each
with a circulation period of 32 microseconds and two delay lines
storing two words each. It was inevitable that in the design of
a machine originally intended for experimental purposes, over-
riding consideration should be given to the minimization of equip-
ment rather than to making the machine logically satisfying as
a whole. This is reflected to a certain extent in the code adopted
for the machine and in its arithmetic facilities, which are in gen-
eral fairly rudimentary. The design of the machine was also de-
cisively influenced by the attempt to overcome the loss of speed
due to the high access time of the long storage units. The machine
in fact uses what is usually known as a system of “optimum
coding.”

Code of Pilot ACE

The Pilot ACE may be said to have a “three-address code” though
this form of classification is not particularly appropriate. Each
instruction calls for the transfer of information from one of 32
“sources” to one of 32 “destinations” and selects which of eight
long delay lines will provide the next instruction. This third
address is necessary because consecutive instructions do not occupy
consecutive positions but are placed in such relative positions that,
in so far as is possible, each instruction emerges during the minor
cycle in which the current instruction is completed. An unusual
feature of the instructions is that the transfers they describe may
last for any number of consecutive minor cycles from one to thirty-
two. The instruction word contains three other main elements
which are known as the wait number, the timing number and the
characteristic which together determine when the transfer starts,
when it stops and which instruction in the selected instruction
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source is the next to be obeyed. The structure of the instruction
word is as follows:

Next instruction source Digits 24
Source Digits 5-9
Destination Digits 10-14
Characteristic Digits 15-16

Wait number Digits 17-21
Digits 25-29

Digit 32

Timing number

Go digit

The remaining digits are spare.

Coding of a problem takes place in two parts, in the first of
which only the source, the destination and the period of transfer
are specified, the last being a function of the characteristic, wait
number and timing number. In the second part, the detailed cod-
ing, the other elements are added.

The sources and destinations

Simplest among the sources and destinations are those associated
with the short delay lines. The six one-word delay lines are each
given numbers and these for reasons associated with the history
of the machine are 11, 15, 16, 20, 26 and 27. They are usually
referred to as Temporary Stores or TS’s because they are used to
store temporarily those numbers which are being operated upon
most frequently at each stage of a computation. In general TSn
has associated with it a source, source n, and a destination, des-
tination n. An instruction of the type

15-16

in the preliminary stage of the coding represents the transfer of
a copy of the contents of TS15 via source 15 to TS16 via the
destination 16. After it has taken place both stores contain the
number originally in TS15. The period of the transfer is not
mentioned in the coding because a transfer of more than one minor
cycle is irrelevant. Most transfers are for one minor cycle and
hence the period of transfer is not specified unless it is greater
than one minor cycle. Associated with the TS’s are a number of
functional sources and destinations. TS16 for instance has two
other destinations 17 and 18 associated with it, in addition to
destination 16. Any number transferred to destination 17 is added
to the contents of TS16 while any number transferred to destina-
tion 18 is subtracted from the contents of TS16. TS16 may be said
to have some of the functions associated with the accumulator

Section 1 | Processors with greater than 1 address per instruction

on an orthodox machine. The period of transfer to destinations
17 and 18 is very important. Thus

15-17 (n minor cycles)

has the effect of adding the contents of TS15, n times to the
contents of TS16. This prolonged transfer is used in this way to
give small multiples (up to 32) of numbers. Similarly, we may have

15-18

(n mc)
The instruction

16-17 {(n mc)

is of special significance because it has the effect of adding the
content of TS16 to itself for each minor cycle of the transfer, that
is it gives multiplication by 2" or a left shift of n binary places.

TS26 has associated with it a number of functional sources.
Source 17 gives the ones complement of the number in TS26,
Source 18, the contents divided by 2, and Source 19, the contents
multiplied by 2. The instruction

18-26 (n mc)

thus has the effect of dividing the contents of TS26 by 2", that
is a right shift of n places. Similarly

19-26 (n mc)

gives a left shift of n places.

There are two functional sources which give composite func-
tions of the numbers in TS26 and TS27. These are Source 21 which
gives the number

TS26 & TS27
and Source 22 which gives the number
TS26 == TS27

There are a number of sources which give constant numbers which
are of frequent use in computation. These are Source 23 which
gives the number which has a zero everywhere except in the 17th
position, usually known as P17, Source 24 which gives P32, Source
25 which gives P1, Source 28 which gives zero and Source 29
which gives a number consisting of 32 consecutive ones. These
sources are valuable because they provide numbers with an access
time of one minor cycle and are thus almost as useful as several
extra TS’s.

The use of a number of TS’s with the arithmetic facilities
distributed among them makes it possible to take advantage of
the placing of instructions in appropriate positions in the long



storage units so that they emerge as required. The coding of a
trivial example will illustrate the uses of the TS’s and their asso-
ciated sources. It is required to build up the successive natural
numbers, their squares and their cubes simultaneously. It is natural
to store the values in TS’s and we may suppose TS15 contains
n, TS20, n2 and TS26, n°.

Instruction Description
1. 28-15 zero to TS15i.e. 0  These 3 instructions set the
2. 28-20 zero to TS20 i.e. 02 initial values
3. 28-26 zero to TS26 i.e. 03

4. 26-16 TS16 contains n3

5. 20-17 (3mc) TS16 contains n3 + 3n2

6. 15-17 (3mc) TS16 contains n3 + 3n2 4 3n

7. 25-17 TS16 contains n3 + 3n2 + 3n + 1
8. 16-26 TS26 contains (n + 1)3

9. 20-16 TS16 contains n?

10. 15-17 (2mc) TS16 contains n2 4+ 2n

11. 25-17 TS16 contains n2 + 2n + 1

12. 16-20 TS20 contains (n + 1)

13. 15-16 TS16 contains n

14, 25-17 TS16 contains (n 4+ 1)

15. 16-15 TS15 contains (n + 1) Next instruction (4)

The instructions (1) to (3) set the initial conditions. The instruction
(4) — (15) have the effect of changing the contents of 15, 20, 26
from n, n%, n® to (n + 1), (n + 1), (n + 1)%. As remarked earlier,
each instruction selects the next instruction and here instruction
(15) selects instruction (4) as the next instruction. In the prelimi-
nary coding this is usually denoted by using an arrow; it must be
catered for in the detailed coding by the correct choice of the
timing number, as will be shown below.

The branching of a programme is achieved by the use of two
destinations, destination 24 and destination 25. If a transfer is made
from any source to destination 24 then the next instruction is one
or other of two according as the number transferred is positive
or negative. Similarly if a transfer is made to destination 25 then
the next instruction is one or other of two according as the number
transferred is zero or non-zero. In the preliminary coding the
bifurcation is denoted by the use of arrows, thus:

15-24

+ve —ve

In the detailed coding the effect is that if the number transferred
to destination 24 is negative then the timing number is increased
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by 1. Similarly for destination 25; the two possible next instructions
are consecutive in the store.

The two double word stores are numbered DS12 and DS14.
DS12 has only source 12 and destination 12 associated with it,
but DS14 has, in addition to source 14 and destination 14, a
number of functional sources and destinations. Source 13 gives the
contents of DS14 divided by 2, while transfers to destination 13
have the effect of adding the numbers transferred to DS14. In
specifying transfers from, and to, the double length stores, the time
of the transfer must be specified, i.e. whether it takes place in an
even or an odd minor cycle or both. Thus the transfer

12-14 (odd minor cycle) usually written
12-14 (o)

represents the transfer of the word in the odd positions of DS12
to the odd position in DS14 while

12-14 (2 minor cycles)

represents the transfer of both words in 12 to the corresponding
positions in 14. The operation

13-14  (2n)

gives us a method of shifting the contents of TS14 n places to the
right while

14-13  (2n)

produces a shift of n places to the left.

The machine is not equipped with a fully automatic multiplier.
To multiply two numbers, a and b, together, a must be sent to
TS20, b to DS14 odd, zero to DS14 even and a transfer (source
irrelevant) made to destination 19. The product is then produced
in DS14 in 2 milliseconds, but a and b are treated as positive
numbers. Corrections must be made to the answer if a and b are
signed numbers. To make multiplication fast, it has been made
possible to perform other operations while multiplication is pro-
ceeding. Thus the corrections necessary if a and b are signed
numbers may be built up in TS16 during multiplication, and signed
multiplication takes only a little over two millisecs. It is, of course,
therefore, a subroutine but a very fast one. The amount of equip-
ment associated with the multiplier is very small. The main part
of the store consists of the long storage units known as DL1, DL2,
..., DLI11. Each of these has a source and a destination with the
same number as the DL number. The words in each DL are
numbered 0 to 31 and the nth word in DLM is usually denoted
by DLM,. Transfers to and from long lines in the preliminary
coding are denoted thus:
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§- 16

n

8- 17

m—n

(transfer nth word of DL8 to TS16)
(add all the words from 8, to 8, i.e.n — m + 1 con-
secutive words of DL8™ to TS16)

Detailed coding

In the second stage of the coding the true instruction words are
derived from the preliminary coding. This is a fairly automatic
process and recent experience has shown that it can be carried
out satisfactorily by quite junior staff. The timing of each instruc-
tion is given relative to the position of that instruction in the store.
This is an incidental feature of the code which arose from the
attempts to minimize equipment. It would be dropped in any
future machine in favour of an absolute timing system. If an in-
struction occupies position m in a DL and has a wait number
W and timing number T then the transfer always begins in minor
cycle (m + W + 2) and the next instruction is always in minor
cycle (m + T + 2) of the selected next instruction source. The
period of transfer depends on the value of the characteristic. If
the characteristic is zero then the transfer lasts for the whole
period from (m + W + 2) to (m + T + 2), that is (T — W + 1)
minor cycles. If the characteristic is one, then the transfer is for
one minor cycle, that is minor cycle (m + W + 2). If the charac-
teristic is three then the transfer is for two minor cycles
(m + W + 2) and (m + W + 3). The characteristic value, two,
isnot used. The characteristic value zero gives a prolonged transfer
which is peculiar to the Pilot ACE. The characteristics 1 and 3
are analogous to the facility on EDSAC whereby full length or
Yy-length words may be transferred. On the Pilot ACE we transfer
single or double length words. This facility is invaluable for double
length, floating and complex arithmetic. In the above definitions
the numbers (m + W + 2) etc. are to be interpreted modulo 32.
In general, timing and wait numbers are simpler than they appear
from the definitions because they are very frequently both zero,
corresponding to a transfer for one minor cycle. The detailed
coding of the problem given earlier will illustrate the procedure.
All the instructions are in DLI so that the next instruction source
is always one. The key to the headings in the following table is:

m.c. Minor cycle position of instructions in DL1
N.LS. Next instruction source

S Source

D Destination

C Characteristic

w Wait number

T Timing number

Section 1 | Processors with greater than 1 address per instruction

The last column gives the position of the next instruction in DL1;
it is given by (m + T + 2). The first 4 instructions occupy minor
cycles, 0, 2 and 4, 6 and each takes two minor cycles, and gives
a transfer for one minor cycle only. The next instruction occupies
minor cycle number 8 and it requires a transfer lasting 3 minor
cycles. The simplest and fastest way of getting this is to have
W =0and T = 2 giving a transfer of (2 — 0 4+ 1) minor cycles.
The next instruction is in position (8 + 2 + 2), that is minor cycle
12, and so on. When we reach the instruction in minor cycle 31,
viz. 25-17, a transfer for one minor cycle is required. The simplest
way is to have W = 0 T = 0 and this makes the next instruction
occupy position (31 + 0 + 2) i.e. position 33 which is position 1.
If position 1 had been already occupied, a value of T could have
been chosen in order to land in an unoccupied position. In order
to ensure that a transfer of one minor cycle only took place, the
characteristic could have been made 1. It should be appreciated
that the choice of C, W and T is far from unique. Whenever
possible T =0 and W = 0 are chosen because this gives the
highest speed of operation besides being simplest. The instruction
occupying position 1 is of special interest because this is the last
instruction of the cycle needed to build up a square and cube and
it must select as its next instruction the first of the cycle, which
is, in position number 6. This is achieved by making T = 3 (giving
the next instruction in m.c. 1 + 3 + 2 = 6). This incidentally
gives a transfer lasting four minor cycles but since it is a transfer
from one TS to another and no functional source or destination
is in use, the prolonged transfer produces no harmful effect. If a
prolonged transfer had to be avoided then the characteristic could
be taken as 1. It is seldom necessary to use any characteristic other
than zero for transfers to and from TS’s but when transfers are
made to and from DL’s, characteristic values of 1 or 3 are almost
universal. All 12 instructions which comprise the repeated cycle
of the computation take a total time of one major cycle exactly
(32 minor cycles) the last instruction of the cycle having been
specially designed to get back to the beginning of the cycle. This
is in contrast to the position in a machine not using optimum
coding, where 12 major cycles would be necessary quite apart from
the fact that the multiplications by factors of 3 and 2, each of
which uses one instruction, would normally need more than one
instruction if a prolonged transfer were not available. Figure 1
gives a simplified diagram of the machine. The sequence of events
in obeying the instruction

N §
2 16 -

D C W T
2C 0 8 10

occupying DL1, for example is as follows. Starting from the time
when the last instruction was completed, the instruction from
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Minor cycle

Minor cycle

position of Next position of
instructions instruction Charac- Wait Timing next
in DL1 source Source Destination teristic no. no. instruction
0 1 28 15 0 0 0 (2)
1 1 16 15 0 0 3 (6)
2 1 28 20 0 0 0 €Y
3
4 1 28 16 0 0 0 ®)
5
6 1 26 16 0 0 0 (8)
7
8 1 20 17 0 0 2 (12)
9
10
11
12 1 15 17 0 0 2 (16)
13
14
15
16 1 25 17 0 0 0 (18)
17
18 1 16 26 0 0 0 (20)
19
20 1 20 16 ¢] 0 0 (22)
21
22 1 15 17 0 0 1 (25)
23
24
25 1 25 17 0 0 0] (27)
26
27 1 16 20 0 0 0 (29)
28
29 1 15 16 0 0 0 31
30
31 1 25 17 0 0 0 )

DL1, will have passed into the special TS marked TS COUNT
during minor cycle number 2. By the end of minor cycle number
3, S switch number 16 will be over and also N switch number
2. The contents of TS16 will be passing into HIGHWAY and those
of DL2 into INSTRUCTION HIGHWAY. At the beginning of
minor cycle number 12 (i.e. 2 + 8 + 2), D switch number 20 will
go over, and TS20 will stop recirculating and the number on the
HIGHWAY will pass into TS20. The transfer will continue until
minor cycle 14 (i.e. 2 + 10 + 2) when the D switch number 20
will switch back. At the beginning of minor cycle 14, the switch
X on COUNT will go over and the number on INSTRUCTION
HIGHWAY during this minor cycle, DL2,,, will pass into COUNT.
At the end of minor cycle 14, the X switch will close again and

DL2,, will be trapped in COUNT. The cycle of events is now
complete. COUNT is associated with a counter and it is this
counter which determines from the wait, timing, and characteristic
numbers of the trapped instruction, when the D and X switches
go over and back.

Input and output

The only part of the instruction word not described is the GO
digit. If the GO digit is a one, the instruction is carried out at
high speed, but if it is a zero the machine stops and does not
proceed until a manual switch is operated. The GO digit is omitted
in strategic instructions when a programme is being tested. It also
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HIGHWAY
~</saa-<—— FROM HOLLERITH READER
A !
:‘; %“J N
L i
<<I DL.i
4 >
— > >
.4_4 DL.2 ] |
4
0
DL.3 to [—
DLIO 2
=
1l
Iz
>
Y
LZ‘
COUNT
ounTer]
T5.15
L TS5.27 Yy
DS. 14
DS.12 etc.
D.2g
TO HOLLERITH PUNCH e
'
'

Fig. 1. Simplified diagram showing some sources, destinations, and
next-instruction sources.

serves a further purpose in synchronising the input and output
facilities with the high speed computer. Input on the machine is
by means of Hollerith punched cards. When cards are passed
through the reader the numbers on the card may be read row by
row as each passes under a set of 32 reading brushes. When a row
of a card is under the reading brushes, the number punched on
that row, regarded as a number of 32 binary digits, is available
on source 0. In order to make certain that reading takes place
when a row is in position and not between rows, transfers from
source 0, have the GO digit omitted and it is arranged that the
Hollerith reader has the same effect as operating the manual
switch each time a row comes into position. The passage of a card
through the reader is called for by a transfer from any source to
destination 31. No transfer of information from the card takes place
unless the appropriate instruction using source 0 is obeyed during
the passage of the card. Output on the machine is also provided

Section 1 | Processors with greater than 1 address per instruction

by a Hollerith punch. The passage of a card through the punch
is called for by a transfer from any source to destination 30. While
a card is passing through the punch a 32 digit number may be
punched on each row by a transfer to destination 28. Again syn-
chronisation is ensured by omitting the GO digit in instructions
calling for a transfer to destination 28, and arranging that the
Hollerith punch effectively operates the manual switch as each
row comes into position. The reader feeds cards at the rate of 200
cards per minute and the punch, at the rate of 100 cards per
minute. The speed of input for binary digits is 200 X 32 X 12 per
minute or 1280 per second. The output speed is 640 digits per
second. Data may be fed in and out in decimal, but it then requires
conversion subroutines. The computation involved in the conver-
sion is done between the rows of the card and up to 30 decimal
digits per card may be translated. This speed of conversion is only
possible because of the use of optimum coding. The facility for
carrying out computation between rows of cards is used extensively
particularly in linear algebra when matrices exceeding the storage
capacity of the machine are involved. The matrices are stored on
cards in binary form with one number on each of the 12 rows of
each card, all the computation being done either between rows
when reading or when punching. Times comparable with those
possible with the matrices stored in the memory are often achieved
in this way, when the computation uses a high percentage of the
available time between rows. Up to 80% of this time may be safely
used.

Initial input

The initial input of instructions is achieved by choosing destination
0 in a special manner. When a transfer is made to destination 0,
then the instruction transferred becomes the next to be obeyed
and the next instruction source is ignored. Source 0 has already
been chosen specially since it is provided from a row of a card.
The instruction consisting of zeros has the effect of injecting the
instruction punched on a row of a card into the machine as the
next to be obeyed. The machine is started by clearing the store
and starting the Hollerith reader which contains cards punched
with appropriate instructions. Destination 0 is also used when an
instruction is built up in an arithmetic unit ready to be obeyed.

Miscellaneous sources and destinations

Destination 29 controls a buzzer. If a non-zero number is trans-
ferred to destination 29 the buzzer sounds.

Source 30 is used to indicate when the last row of a card is
in position in the reader or punch. This source gives a non-zero
number only when a last row is in position. The operation of the
arithmetic facilities on DS14 may be modified by a transfer to



destination 23. If a transfer with an odd characteristic is made
from any source to destination 23 then, from then on, DS14 be-
haves as though it were two single length accumulators in series.
This means that carries are suppressed at the end of each of the
single words. This condition persists until a transfer is made to
destination 23 using an even characteristic, when DS14 behaves
as an accumulator for double length numbers with their least
significant parts in even minor cycles and more significant parts
in odd minor cycles.

The operation TS20 is modified by transfers to destination 21.
If a transfer with an odd characteristic is made to destination 21
then TS20 ceases to have an independent existence and from then
on is fed continuously from DLI10. Source 20 then gives the con-
tents of DL10 one minor cycle later than from source 10. TS20
reverts to its former condition when a transfer with an even char-
acteristic is made to destination 21. The facility is used to move
the 32 words in DL10 round one position so that the word in minor
cycle n is available in minor cycle (n + 1).

Assessment of optimum coding

A detailed assessment of the value of optimum coding is by no
means simple. Roughly speaking, subroutines are on an average
about 4 or 5 times as fast as on an orthodox machine using the
same pulse repetition rate. In main tables a somewhat lower factor
is usually achieved. The factor of 4 or 5 would be exceeded if less
of the advantage given by optimum coding were used to overcome
disadvantages due to the rudimentary nature of the arithmetic
facilities on Pilot ACE. Even so, the bald statement of the average
ratio of speeds does not do full justice to the value of optimum
coding on the Pilot ACE. Its value springs as much from the fact
that it has made possible the programmes in which computing
is done between the rows of cards and also the high output speed
of decimal numbers. The binary decimal conversion routines for
punching out several decimal numbers simultaneously on a card
and also decimal-binary conversion routines for reading several
numbers, achieve a ratio of something like 14 to 1, and on a
machine which is being used extensively for scientific computatioh
on a commercial basis this is of immense importance.

Future programme

Engineered versions of the Pilot Model are now under construction
by the English Electric Company. These machines will be similar
to the Pilot Model but will have a little more high-speed store,
an automatic divider, two quadruple length stores and a subtrac-
tive input on the double length accumulator besides several minor

modifications including a rationalization of the numbering of the
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stores! In addition a magnetic drum intermediate store with the
equivalent of 32DL’s storage capacity will be added. A full scale
machine will probably soon be under development employing a
4 address code. Typical instructions will be of the form

A*xBC

and will select the next source of instruction. This code is more
economical in instruction storage space and since all single word
stores will then become complete accumulators with all facilities
except multiplication on them, it will be possible to take much
fuller advantage of optimum coding.

Sources, destination and next instruction sources

Sources Destinations Next instr, sources
0. Input 0. INSTRUCTION 0. DL11
1. DL1 1. DL1 1. DL1
2. DL2 2. DL2 2. DL2
3. DL3 3. DL3 3. DL3
4. DL4 4. DL4 4. DL4
5. DL5 5. DL5 5. DL5
6. DL6 6. DL6 6. DL6
7. DL7 7. DL7 7. DL7
8. DL8 8. DL8
9. DL9S 9. DL9

10. DL1O 10. DL1O

11. DLI11 11. DL11

12. DS12 12. DS12

13. DS14 + 2 13. DS14 add

14. DSi4 14. DS14

15. TS15 15. TS15

16. TS16 16. TS16

17. TS26 17. TS16 add

18. TS26 = 2 18. TS16 subtract

19. TS26 x 2 19.% MULTIPLY

20. TS20 20. TS20

21. TS26 & TS27 21. Modifies Source 20
22, TS26 £ATS27 22. —

23. P17 23. Modifies Source 13,
Destination 13

24. P32 24. DISCRIMINATE on sign

25. P1 25. DISCRIMINATE on zero

26. TS26 26. TS26

27. TS27 27. TS27

28. Zero 28. Output

29. Ones 29. BUZZER

30. Last row of card 30.f PUNCH

31, — 31.f READ

T Independent of source used.
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Chapter 12
ZEBRA, a simple binary computer!
W. L. van der Poel

Summary The computer ZEBRA is a computer based on the following
ideas:

1. The logical structure of the arithmetic and control units of the
machine have been simplified as much as possible; there is not even
a built-in multiplier nor a divider.

2. The separate bits in an instruction word are used functionally and
can be put together in any combination.

3. Conventional two stage operation (set-up, execution) has been aban-
doned. Each unit time interval can be used for arithmetical opera-
tions.

4. A small number of fast access registers is used as temporary storage;
at the same time these registers serve as modifier registers (B-lines).

5. Optimum programming is almost automatically done to a very great
extent. The percentage of word times effectively used is usually
greater than 60%.

6. An instruction can be repeated and modified while repeated by
using an accumulator as next instruction source and the address
counter as counter. This can be done without any special hardware.

This has resulted in a machine which has a very simple structure and hence
contains only a very moderate number of components, giving high relia-
bility and easy maintenance. Because of the functional bit coding, the
programming is extremely flexible. In fact the machine code is a sort of
micro-programming, Full-length multiplication or half-length multiplica-
tion in half the time are just as easy, only require a different micro-
programme. The minimum latency programming together with the effec-
tive use of word times lost in other systems results in a very high speed
of operation compared to the basic clock pulse frequency.

Introduction

In the Dr. Neher Laboratory of the Dutch Postal & Telecom-
munications Services the logical design of a computer called ZE-
BRA has been developed, and this computer has been engineered
and constructed by Standard Telephones & Cables Ltd, England.
The logical system is so different from most computers, that it
is worth while to devote a special lecture to it. As time is limited,

'Proc. ICIP, UNESCO, pp. 361-365, June, 1959.

no technical details nor questions about dimensions or capacity
will be discussed. They can all be found in the literature [van
der Poel, 1956; van der Poel, 1952].

The main idea of the machine is to economise as far as possible
on the number of components by simplifying the logical structure.
For example, multiplication and division are not built in but must
be programmed. Of course this system can only work with an
appropriate internal code which has enough properties to execute
basic arithmetic and logical routines effectively. In fact, the inter-
nal machine code is more or less a system of microprogramming
[Wilkes and Stringer, 1953].

Operation part of the instruction

The most conspicuous, but probably not the most important,
characteristic is the functional use of the separate bits in the
operation part of an instruction. An instruction word in ZEBRA
is composed as follows:

15 bits 5 bits
AKQLRIBCDE | Vxsxexs | W | 00000
test bits fast store

operation part address

13 bits
XXXXXXXXXXXXX

drum store address

It is a binary, two-address machine with one address of 13 bits
for the selection of a location in the main store (a drum of 8192
locations divided into 256 tracks of 32 words each), and a second
address of 5 bits for the selection of one of 12 fast access store
registers and several permanently wired locations (e.g., input,
output, accumulators, constants). The operation part has 15 bits,
each one having a separate and independent meaning. The most
important of these are the A, K, D and E bits.

A- and K-bits

There are four main components in the machine: the drum store,
the fast store, the arithmetic unit and the control. The A-bit in
the instruction controls the interconnection of the drum and the



Arithmetic Control
unit unU
K A
Fast Drum
store store

Fig. 1. The main units of the computer.

arithmetic unit or the control. In the same way the K-bit controls
the interconnection of the fast store with the arithmetic unit or

the control unit. These interconnections can be seen from Fig. 1.

It will be seen that A and K can have 4 possible combinations:

Case 1. A = 0, K = 0. This is called the adding jump (Fig. 2a).

While a new instruction is coming into the control from the drum,
the arithmetic unit can at the same time do an operation with
the operand coming from the fast store. This is the fastest type
of operation. When the following instruction is placed in the next
location on the drum there is no waiting time, and 32 instructions
of this type can be executed per revolution. (One revolution = 10
ms, one word time = 312 ps.)

Case 2. A = 0, K = 1. This is called the double jump (Fig. 2b).

Both stores are now used for giving information to the control,
i.e., making a jump. Since the fast store is used for the control,
the instruction coming in from the drum is modified by the con-
tents of a fast register. In this way the B-line facility, as it is often
called, is realised.

Case 3. A = 1, K = 0. This is called the double addition (Fig. 2¢).

Both stores are now connected to the arithmetic unit. The control
must take care of itself using the address counter which is stepped
up by 2 at a time, thus enabling this type of instruction to reach
the number lying between the two successive instructions without
any waiting time. Constants in particular will always be taken
from optimum places on the drum.

Case 4. A = 1, K = 1. This is called the jumping addition (Fig.
2d).

While the drum is used for the arithmetic unit the address counter
is modified by a fast register. Control may thus be passed to any
instruction, and not only to the next instruction.

Chapter 12

D- and E-bits

The functional bits D and E control the direction of flow of infor-
mation.

D = 0 means: read from the drum.

E = 0 means: read from the fast store.
D = 1 means: write to the drum.
E

= 1 means: write to the fast store.

A few possible instructions will be given below. In the written
code a drum address will always be written with 3 or more digits
and the absence of the A-bit will be indicated by the letter X.
(This is necessary for the input programme to recognize the be-
ginning of a new instruction.)

A200.5 Add <200) (the contents of address 200) and ¢{5)
to the accumulator. Step the address counter

by 2.

X200E5 Take next instruction from 200 (= jump to 200)

and store contents of accumulator in 5.

X200KE5 Jump to 200 and store previous contents of ad-
dress counter in 5. This amounts to placing a link

instruction for return from a sub-routine.

X200K5 Take next instruction from 200 but modify it with

{5) thus making a variable instruction.

Arithmetic bits

The remainder of the function bits have arithmetic meanings. We
shall only briefly indicate their different actions.

B: Do not use the A accumulator (most significant accumulator)
but the B accumulator.

Fig. 2. The possible combinations of the A- and K-bits.
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C: Clear the accumulator specified by B after storing, or before
addition. (In a serial machine like ZEBRA this is auto-
matically the case, cf. Fig. 3.)

I: Subtract instead of add.

Q: Add one (unit in the least significant place) to the B-accu-
mulator.

L: Shift both accumulators one place to the left.

R: Shift both accumulators one place to the right. The accu-
mulators are always coupled together in shifting except
when C is present.

A few more examples will be given.
A200BCE25

Store (B) in 5, clear B and add (200)
to B.

X200QLIBCE6 Jump to 200. Store (B} in 6, put —1 in B
(because of QIBC) and shift the A accumu-
lator one place to the left. Shifting from B

into A is prevented by the presence of C.

X200RBC3 Jump to 200. Shift A to the right. Copy (3)
into B. As register 3 is just an address for
the B accumulator itself, this means that

A is shifted while B is static.

X200K3QIBC Take the instruction from 200 and modify
it with the contents of the B accumulator

(= register 3). Put —1 in B afterwards.

Orum store Fast store

Tostore

Fig. 3. Accumulator.
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As can be seen, many complicated operations can be composed
by the elementary possibilities of the separate bits.

The accumulator

A simplified block diagram of one of the accumulators is shown
in Fig. 3.

Shifting is effected by looping the accumulator over one place
less or one place more. In a double addition the contents of the
drum store and the fast store are first added together in the pre-
adder (possibly augmented by unity in the B accumulator, if Q
is present) and this result is added into the accumulator (or sub-
tracted in case of I). A clearing gate controlled by C interrupts
the recirculation of the previous contents.

The control unit

The control unit has two shifting registers, the C-register which
receives the next instruction to be executed and the D-register
or counter. The block diagram is shown in Fig. 4. After a new
instruction has come into C, it is taken over in parallel form into
E in the interword time. It remains in E while the next instruction
is coming into C. Let us explain the action of this control with
a short programme.

Examples of programmes

100 X101E5
101 AC102
102 constant
103 etc.

The actions in the several registers are now:
(A KC) (D)

X100 Suppose X100 is in C at the start.

This will take (100} into C. (Cy + 2— D.

X101E5 X102  Another jump comes into C taking in (101}
and storing (A) — 5.

(C> + 2 — D gives X103E5.

AC102 X103E5 Note that the operational part is kept in the
counter. The necessary constant from 102 is

just becoming available.

const. X103E5  The next instruction is taken from 103 which
is immediately following. The constant in
A is stored to 5 by E5, and is still active

after coming back from D.
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+ C + 0

Orumstare Fast store £ +2 To store

Fig. 4. Control unit.

This is the most important aspect of the machine. An instruction
in the address counter comes back after an A-instruction and can
do something useful. To our surprise we found that in many more
cases than we first suspected, the second action could be used
effectively. In most other computers the time of access to the next
instruction is lost because nothing can be done concurrently in
the arithmetic unit.

Another example of the action of the control is the jump to a
sub-routine. Suppose that we have the following piece of pro-
gramme:

100 X200KE5  Jump to sub-routine starting in 200. Place
return jump in 5.
102 etc. Sub-routine returns here.

The action is as follows:

(G <(D»
X100 The instruction is taken from 100.

X200KE5 X102 X200KE5 - C and X100 + 2 — D. Now
KES5 stores D in 5. Thus (3) = X102.

(200) The subroutine at 200 is executed and ends
with XK5: jump to 5.

XK5 Take instruction from 5.

X102 Now the main programme proceeds to 102

(102) etc.

By ending the sub-routine:

220 X221K5
221 — 1
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we can return not two but one location further on, i.e., X221K5
takes as next instruction {5) — 1 = X101. Here 5 contains the
instruction and the drum modifier.

The test bits

The digits V x, x, x;, will not be dealt with extensively but the
different combinations of these 4 digits represent different types
of test. When for example V1 is attached to an instruction, this
instruction will be executed when (A) is negative, but will be
skipped altogether when (A) is positive or zero. The harmless
A-instruction will then be executed instead. The test can be at-
tached to a jump, giving a conditional jump, as well as to an
A-instruction, giving a conditional addition.

The W-bit

So far the digit W has not been mentioned. When W is present
in an jnstruction the drum address is not used. The instruction
is not kept waiting but is immediately executed and the drum is
completely disregarded. With the help of this digit W, jumps can
be made to instructions in the fast store, e.g., XK5W takes the
instruction from 5 only, and the drum does not deliver any number.
The use of this type of instruction has very peculiar consequences.
Let us take the following example:

100 X101KE6 {5 = ARW
101 X8186K5RW (6) = filled with return instruction
102 etc.

The action is as follows:

Ay <Gy (D)

a X100 Take instruction from 100.

X101KE6 X102 Jump to 101 and store return

instruction X102 in 6.

X8186K5WR: Do 1 right shift.

Ya ARW X8188K5RW Do another right shift by ARW.
The drum address in D is
counted up but is not active.
The register address remains
the same. Hence the instruc-
tion in 5 is repeated.
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2-2.3 X8188K5RW
l well as the repeated instruction

The repeating instruction as

are both shifted one place to
273-a ARW X8190K5RW the right.
274.a X8190K5RW\
2-5<a ARW XO000K6RW As the drum address overflows
into the fast store address the

repeating instruction becomes

X8192K5RW = X000K6RW
taking the next instruction from
276-a XO00K6RW 6.
277+a X102 As (6) = X102 the repetition

returns to the main programme
and the A accumulator is shifted
over 7 places.

The instruction ARW has thus been repeated p times when the
drum address of the repeating instruction is 8192—2p. This way
of repeating an instruction has made it possible to do multipli-
cation, division, block transfers, table look up and many other
small basic repetitive processes in a very simple way. There is no
special hardware present in the machine to do the counting neces-
sary for the repetition, as this counting is done by the normal
address counter.

As a last example we shall give a programme for the summa-

Section 1 | Processors with greater than 1 address per instruction

tion of a block of locations from 200 to 300 in the store. This
involves 101 locations. The programme reads:

100 A101BC
101 A200Q

Put A200Q in B (B has address 3).

102 X103KE4C Put return jump X104 in 4. Clear A in

advance,

103 X7990K3W Repeat A200Q 101 times. Because A200Q
is standing in B the Q augments the in-
struction itself at every repetition. Hence
successively (200), (201} etc. are added
to A. At the end the sum is left in A and

the programme proceeds at 104.

104 etc.

It is left to the reader to work out the action diagram.

This example is not programmed for minimum waiting, but by
supplying the repeating instruction X7990K3W with a Q it will
step up the repeated instruction A200Q by 2 every time. Now,
once the first instruction has been located, all even locations follow-
ing are emerging from the drum just at the right time. The odd
numbered locations must be summed in a second, similar repeti-
tion.
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UNIVAC Scientific (1103A)
instruction logic!

John W. Carr I11

The UNIVAC Scientific computer is a (35, 0, 0)2 binary machine,
with option of (27, 8, 0). The arithmetic unit contains two 36-bit
X (exchange) and Q (quotient) registers and one 72-bit A register
{accumulator). Negative numbers are represented in one’s com-
plement notation.

Input-output is via high-speed paper tape reader and punch,
direct card reader and punch, and Uniservo magnetic tape units,
which may be connected to peripheral punched card readers and
punches and a high-speed printer. In addition, information may
be recorded on magnetic tape directly from keyboards by the use
of Unitypers. Communication with external equipment is via an
8-bit (I0A) register and a 36-bit (IOB) register. Information sent
to these registers controls magnetic tapes as well as other input-
output equipment. The program address counter (PAK) contains
the present instruction address. Storage is in up to 12,288 locations
of magnetic core storage, along with a directly addressable drum
of 16,384 locations. Instructions are of the two-address form,
with six bits for the operation code and two fifteen-bit addresses
(u and v).

The following information is taken from a Univac Scientific
Manual [Univac Scientific Electronic Computing System Model
1103A, Form EL338].

Definitions and conventions

Instruction word

oc u v
6 bits 15 bits 15 bits
1g5- - log- - - lig- - 1

In E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 77-83, John
Wiley & Sons, Inc., New York, 1959.

2Carr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

oc Operation code
u  First execution address
v Second execution address

For some of the instructions, the form jn or jk replaces the u ad-
dress; for others the form k replaces the v address.

j One-digit octal number modifying the instruction

n Four-digit octal number designating number of times in-
struction is to be performed

k Seven-digit binary number designating the number of places
the word is to be shifted to the left

Address allocations (octal)

00000-07777 4096

00000-17777 8192 or
00000-27777 12,288 36-bit words
Q 31000-31777 1 36-bit word

A 32000-37777 1 72-bit word
40000-77777 16,384 36-bit words

MC

MD

Fixed addresses
F, 00000 or 40001
F, 00001
F, 00002
F, 00003

Arithmetic section registers

A 72-bit accumulator with shifting properties
Ay Right-hand 36 bits of A

A;, Left-hand 36 bits of A

Q  36-bit register with shifting properties

X  36-bit exchange register

Note: Parentheses denote contents of. For example, (A) means
contents of A (72-bit word in A); (Q) means contents of Q (36-bit
word in Q).
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Input-output registers
IOA  8-bit in-out register
IOB  36-bit in-out register
TWR
HPR

6-bit typewriter register
7-bit high-speed punch register

Word extension

D(u) 72-bit word whose right-hand 36 bits are the word at
address u, and whose left-hand 36 bits are the same as
the leftmost bit of the word at u.
S(u) 72-bit word whose right-hand 36 bits are the word at
address u, and whose left-hand 36 bits are zero.
72-bit word—right-hand 36 bits are in register Q, left-
hand 36 bits are same as leftmost bit in register Q.
$(Q) same as D(Q) except left 36 bits are zero.
D(Ag), S(Ag) are similarly defined.
L(Q)(u} 72-bit word—Ileft-hand 36 bits are zero, right-hand
36 bits are the bit-by-bit product of corresponding
bits of (Q) and word at address u.
72-bit word—Ileft-hand 36 bits are zero, right-hand
36 bits are the bit-by-bit product of corresponding
bits of the complement of (Q) and word at ad-
dress v.

D(Q)

L(Q")(v)

Transmit instructions

11' Transmit Positive TPuv?: Replace (v) with (u).

13 Transmit Negative TNuv: Replace (v) with the comple-
ment of (u).

12 Transmit Magnitude TMuv: Replace (v) with the absolute
magnitude of (u).

15 Transmit U-address TUuv: Replace the 15 bits of (v) desig-
nated by v, through v,4, with the corresponding bits of
(u), leaving the remaining 21 bits of (v) undisturbed.

16 Transmit V-address TVuv: Replace the right-hand 15 bits
of (v) designated by v,, through v,,,, with the corresponding
bits of (u), leaving the remaining 21 bits of (v) undisturbed.

35 Add and Transmit ATuv: Add D(u) to (A). Then replace
(v) with (Ap).

36 Subtract and Transmit STuv: Subtract D(u) from (A). Then
replace (v) with (Ag).

22 Left Transmit LTjkv: Left circular shift (A) by k places.
Ifj = Oreplace (v) with (A;); ifj = 1replace (v) with (Ag).

1Qctal notation.
2Mnemonic notation.
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Q-controlled instructions

51 Q-controlled Transmit QTuv: Form in A the number
L(Q)(u). Then replace (v) by (Ag).

52 Q-controlled Add QAuv: Add to (A) the number L{Q)(u).
Then replace (v) by (Ag).

33 Q-controlled Substitute QSuv: Form in A the quantity
L(Q)(u) plus L(Q’)v). Then replace (v) with (Ag). The
effect is to replace selected bits of (v) with the corre-
sponding bits of (u) in those places corresponding to 1’s
in Q. The final (v) is the same as the final (Ag).

Replace instructions

21 Replace Add RAuv: Form in A the sum of D(u) and D(v).
Then replace (u) with (Ag).

23 Replace Subtract RSuv: Form in A the difference D(u)
minus D(v). Then replace (u) with (Ay).

27 Controlled Complement CCuv: Replace (Ag) with (u)
leaving (A;) undisturbed. Then complement those bits of
(Ag) that correspond to ones in (v). Then replace (u) with
(Ag):

54 Left Shift in A LAuk: Replace (A) with D(u). Then left
circular shift (A) by k places. Then replace (u) with (Ag).
If u = A, the first step is omitted, so that the initial content
of A is shifted.

55 Left Shift in Q LQuk: Replace (Q) with (u). Then left
circular shift (Q) by k places. Then replace (u) with (Q).

Split instructions

31 Split Positive Entry SPuk: Form S(u) in A. Then left circu-
lar shift (A) by k places.

33 Split Negative Entry SNuk: Form in A the complement
of S(u). Then left circular shift (A) by k places.

32 Split Add SAuk: Add S(u) to (A). Then left circular shift
(A) by k places.

34 Split Subtract SSuk: Subtract S(u) from (A). Then left
circular shift (A) by k places.

Two-way conditional jump instructions
46 Sign Jump SJuv: If A;; = 1, take (u) as NI. If A;, =0,
take (v) as NI. (NI means next instruction.)

47 Zero Jump ZJuv: If (A) is not zero, take (u) as NI. If (A)
is zero, take (v) as NI



44  Q-Jump QJuv: If Q,; = 1, take (u) as NI If Q;; = 0, take
(v) as NL Then, in either case, left circular shift (Q) by
one place.

One-way conditional jump instructions

41 Index Jump IJuv: Form in A the difference D(u) minus
1. Then if A;; = 1, continue the present sequence of in-
structions; if A;; = 0, replace (u) with (Ag) and take (v)
as NL

42 Threshold Jump TJuv: If D(u) is greater than (A), take (v)
as NI; if not, continue the present sequence. In either case,
leave (A) in its initial state.

43 Equality Jump EJuv: If D(u) equals (A), take (v) as NI,
if not, continue the present sequence. In either case leave
(A) in its initial state.

One-way unconditional jump instructions

45 Manually Selective Jump MJjv: If the number j is zero,
take (v) as NI If j is 1, 2, or 3, and the correspondingly
numbered M]J selecting switch is set to “jump,” take (V)
as NI; if this switch is not set to “jump,” continue the
present sequence.

37 Return Jump RJuv: Let y represent the address from
which CI was obtained. Replace the right-hand 15 bits of
(u) with the quantity y plus 1. Then take (v) as NI

14 Interpret IP: Let y represent the address from which CI
was obtained. Replace the right-hand 15 bits of (F,) with
the quantity y + 1. Then take (F,) as NI.

Stop instructions

56 Manually Selective Stop MSjv: If j = 0, stop computer
operation and provide suitable indication. If j = 1, 2, or
3 and the correspondingly numbered MS selecting switch
is set to “stop,” stop computer operation and provide

suitable indication. Whether or not a stop occurs, (v) is
NI

57 Program Stop PS-—Stop computer operations and provide
suitable indication.

External equipment instructions

17 External Function EF-v: Select a unit of external equip-
ment and perform the function designated by (v).
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76 External Read ERjv: If j = 0, replace the right-hand 8 bits
of (v) with (IOA); if j = 1, replace (v) with (IOB).

77 External Write EWjv: If j = 0, replace (I0A) with the
right-hand 8 bits of (v); if j = 1, replace (IOB) with (v).
Cause the previously selected unit to respond to the infor-
mation in JOA or I0B.

61 PRint PR-v: Replace (TWR) with the right-hand 6 bits of
(v). Cause the typewriter to print the character corre-
sponding to the 6-bit code.

63 PUnch PUjv: Replace (HPR) with the right-hand 6 bits
of (v). Cause the punch to respond to (HPR). If j = 0, omit
seventh level hole; if j = 1, include seventh level hole.

Arithmetic instructions

71 Multiply MPuv: Form in A the 72-bit product of (u) and
(v), leaving in Q the multiplier (u).

72 Multiply Add MAuv: Add to (A) the 72-bit product of (u}
and (v), leaving in Q the multiplier (u).

73 Divide DVuv: Divide the 72-bit number (A) by (u), putting
the quotient in Q, and leaving in A a non-negative re-
mainder R. Then replace (v) by (Q). The quotient and
remainder are defined by: (A), = (u) - (Q) + R, where
0 =R < |(u)|. Here (A), denotes the initial contents
of A.

74 Scale Factor SFuv: Replace (A) with D(u). Then left cir-
cular shift (A) by 36 places. Then continue to shift (A) until
Ag4 7 Ags. Then replace the right-hand 15 bits of (v) with
the number of left circular shifts, k, which would be neces-
sary to return (A) to its original position. If (A) is all ones
or zeros, k = 37. If u is A, (A) is left unchanged in the
first step, instead of being replaced by D(Ay).

Sequenced instructions

75 RePeat RPjnw: This instruction calls for the next instruc-
tion, which will be called NIuv, to be executed n times,
its u and v addresses being modified or not according to
the value of j. Afterwards the program is continued by the
execution of the instruction stored at a fixed address F,.
The exact steps carried out are:

a Replace the right-hand 15 bits of (F,) with the
address w.

b Execute NIuv, the next instruction in the program,
n times.

UNIVAC Scientific (1103A) instruction logic 207
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¢ 1If j = 0, do not change u and v.
If j = 1, add one to v after each execution.
If j = 2, add one to u after each execution.
If j = 3, add one to u and v after each execution.

The modification of the u address and v address is done
in program control registers. The original form of the
instruction in storage is unaltered.

d On completing n executions, take (F,), as the next
instruction. F; normally contains a manually selec-
tive jump whereby the computer is sent to w for
the next instruction after the repeat.

e If the repeated instruction is a jump instruction,
the occurrence of a jump terminates the repetition.
If the instruction is a Threshold Jump or an Equality
Jump, and the jump to address v occurs, (Q) is
replaced by the quantity j, (n — r), where r is the
number of executions that have taken place.

Floating point instructions

64

65

66

Add FAuv: Form in Q the normalized rounded packed
floating point sum (u) + (v).

Subtract FSuv: Form in Q the normalized rounded packed
floating point difference (u) — (v).

Multiply FMuv: Form in Q the normalized rounded
packed floating point product (u) * (v).

67

01

02

03

04

05

Section 1 | Processors with greater than 1 address per instruction

Divide FDuv: Form in Q the normalized rounded packed
floating point quotient (u) + (v).

Polynomial Multiply FPuv: Floating add (v) to the floating
product (Q); * (u), leaving the packed normalized rounded
result in Q.

Inner Product Fluv: Floating add to (Q); the floating
product (u) * (v) and store the rounded normalized packed
result in Q. This instruction uses MC location F, = 00003
for temporary storage, where (F,); = (Q);. The subscripts
i and f represent “initial” and “final.”

Unpack UPuv: Unpack (u), replacing (u) with (u), and
replacing (v); with (u)g or its complement if (u) is negative.
The characteristic portion of (u); contains sign bits. The
sign portion and mantissa portion of (v); are set to zero.
Note. The subscripts M and C denote the mantissa and
characteristic portions.

Normalize Pack NPuv: Replace (u) with the normalized
rounded packed floating point number obtained from the
possibly unnormalized mantissa in (u); and the biased
characteristic in (v),. Note. It is assumed that (u), has the
binary point between u,; and u,g; that is, that (u), is scaled
by 227,

Normalize Exit NEj-: If j = 1 normalize without rounding
until a master clear or until the instruction is again exe-
cuted with j = 0.
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Chapter 14
Instruction logic of the MIDAC!

John W. Carr 111

The MIDAC, Michigan Digital Automatic Computer [Carr, 1956],
was constructed on the basis of the design of the SEAC at the
National Bureau of Standards. Its instruction code is particularly
of interest because it incorporates the index register concept into
a three-address binary instruction. Numbers in this machine are
(44, 0, 0)? fixed points. The word length is 45 binary digits with
serial opeiation.

Word structure

The data or address positions of an instruction are labeled the «,
B, and vy positions. Each contains twelve binary digits represented
externally as three hexadecimal digits. Four binary digits, or one
hexadecimal digit, are used to convey the instruction modification
or relative addressing information. The next four binary digits or
single hexadecimal digit represents the operation portion of the
instruction. The final binary digit is the halt or breakpoint indi-
cator for use with the instruction.
For example, the 45-binary-digit word

000001100100000011.001000000100101100000001011
considered as an instruction would be interpreted as

«a B Y abed Op halt
000001100100 000011001000 000100101100 0000 0101 1

In external hexadecimal form this would be written
064 0c8 12¢ 0 5 —

The above binary word is the equivalent machine representation
of the following instruction: “Take the contents of hexadecimal
address 064, add to it the contents of hexadecimal address 0c8,
and store the result in hexadecimal address 12c. There is no
modification of the 12-binary-digit address locations given by the

IIn E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 115-121,
John Wiley & Sons, Inc., New York, 1959.

2Carr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

instruction. Upon completion of the operation, stop the machine
if the proper external switches are energized.” The binary com-
bination represented by 5 is the operation code for addition.

Data or addresses

The addresses given by the twelve binary digits in each of the
three locations designate in the machine the individual acoustic
storage cells and blocks of eight magnetic drum storage cells. The
addresses from 0 to 1023 (decimal) or 000 to 3FF (hexadecimal)
correspond to acoustic storage cells. The addresses from 1024 to
4095 (decimal) or 400 to FFF (hexadecimal) correspond to mag-
netic drum storage blocks. In certain operations, however, the
addresses 0 to 15 (decimal) or 0 to F (hexadecimal) represent
input-output stations rather than storage locations.

These twelve-binary-digit groups will in some cases be modified
by the machine in order to yield a final twelve-binary-digit address.
The method of processing will depend on the values of the instruc-
tion modification digits. After modification, the final result will
then be interpreted by the control unit as a machine address.

In some instructions, namely those that perform change of
control operations, which involve cycling and counting rather than
simple arithmetic operations on numbers, the « and B positions
in an instruction are not considered as addresses. In those cases,
they are used instead as counters or tallies. In other instructions,
which do not require three addresses, but only one or two, the
B position is not considered as an address. In these cases, the
oddness or evenness of the 8 address is used to differentiate be-
tween two operations having the same operation code digits. That
is, the parity of binary digit P22 is used as an extra function
designator.

Instruction modification digits

The four binary digits P9-P6 are used as instruction modification
or relative addressing digits. Their normal function is relatively
simple; nevertheless, the possible exceptions to the general rule
can make their behavior complicated. These four digits are labeled

209
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the a, b, ¢, and d digits. Ordinarily the a digit is associated with
the a position, the b digit with the £ position, and the ¢ digit
with the y position in an instruction.

When binary digit P22 (or the £ position) is used in an instruc-
tion to represent extra operation information, the instruction
modification digit b is ignored. In the case of input and output
instructions, when the various address positions represent machine
address locations on the drum, input-output stations, or block
lengths, and modification of these addresses is not desired in any
case, the corresponding relative addressing digits are ignored.

The purpose of the instruction modification digits is to tell the
machine whether or not to modify the twelve binary digits making
up the corresponding address position in an instruction by addition
of the contents of one or the other of two counters. In the normal
case, if the a, b, or ¢ digit is a zero, the twelve binary digits in
the corresponding position are interpreted, unchanged, as the
binary representation of the machine address of the number word
to be processed by the instruction.

If one or more of the a, b, or ¢ digits is a one, the contents
of one of two auxiliary address counters is added to the corre-
sponding twelve binary digits to yield a final address usually differ-
ent from that given by the original twelve-digit portion of the
instruction word. The addresses are then said to be relative to the
counter.

The two counters involved in the address modification feature
of the MIDAC are known as the instruction counter and the base
counter. In the normal case, if the fourth instruction modification
or d digit is a zero, the contents of the instruction counter will
be added to the contents of the various twelve-digit addresses
(dependent on the values of the a, b, and c digits) before further
processing of the instruction. If the a digit is one and the d digit
zero, the contents of the instruction counter will be added to the
« address; similarly for b and d digits and B address, etc.

If the d digit is a one, the contents of the base counter will
be normally added to the contents of the twelve digits in the a,
B, and vy positions (again dependent on the values of the a, b, and
c digits), before further processing of the results. If the a digit is
one and the d digit one, the contents of the base counter will be
added to the a address, etc.

The effect of the instruction modification digits may be sum-
marized as follows:

The contents of the two counters will be designated by C,
(d=0,1).

Co
o

contents of the instruction counter
contents of the base counter

Section 1 | Processors with greater than 1 address per instruction

Then the modified addresses o, 8/, and y’ are related to the «,
B, and y addresses appearing in the instruction by the following:

o« = a + aC, B =8+ bC, Y =v+ cCy

(a,b,¢,d=0,1)

In certain instructions addresses relative to one of the two
counters may be prohibited. Thus, if in a particular instruction
« may be relative only to the instruction counter, then for that
instruction

o' = a + aC,

no matter whether the d digit is a 0 or a 1.
The notation (a’), ("), or (y') is used to indicate the word stored
in the location whose address is a’, ', or ¥'.

Instruction counter

The instruction counter is a twelve-binary digit (modulo 4096)
counter which contains the binary representation of the address
of the instruction which the control unit is processing or is about
to process. In normal operation when no change of control opera-
tion is being processed, the contents of the instruction counter
is increased by one at the completion of each instruction. Thus,
normally the next instruction to be processed is stored in the
acoustic storage cell immediately following the cell which contains
the present instruction.

A change of control operation is one which selects a next in-
struction not stored in sequence in the acoustic storage. That is,
at the completion of such instructions the contents of the instruc-
tion counter is not increased by one, but instead is changed en-
tirely.

Base counter

The base counter is a second twelve-binary-digit counter (modulo
4096), physically identical to the instruction counter, which con-
tains the binary representation of a base number or tally. Unlike
the instruction counter, however, the base counter does not se-
quence automatically, but remains unchanged until a change of
base instruction is processed. This counter serves two primary
purposes, dependent on the usage to which it is put:

1 Tt may contain the address of the initial word in a group,
thus serving as a base address to which integers representing
the relative position of a given word in the group of words
may be added by using the address modification digits.



2 It may contain a counter or tally which can be increased
by a base instruction. This instruction makes use of the
address modification digits to change the counter so as to
count the number of traversals of a particular cycle of
instructions.

Instruction types

Instructions used in MIDAC can be divided into three categories:
change of information, change of control, and transfer of informa-
tion. The first category can be further subdivided into arithmetic
and logical instructions. In the arithmetic instructions are included
addition, subtraction, division, various forms of multiplication;
power extraction, number shifting; and number conversion instruc-
tions. The sole logical instruction is extract, which modifies infor-
mation in a nonarithmetic fashion.

The transfer of information or data transfer instructions include
transfers of individual words or blocks of words into and out of
the acoustic storage and drum and magnetic tape control.

The possible change of control instructions includes two com-
parisons that provide different future sequences dependent on the
differences of two numbers. In the compare numbers or algebraic
comparison, the difference is an algebraic, signed one. In the
compare magnitudes or absolute comparison, the difference is one
between absolute values. Two other instructions, file and base,
perform other tasks beside transferring control. The file instruction
transfers control unconditionally. The file instruction files or stores
the contents of the base or instruction counter in a specific address
position of a particular word in the storage. The base or tally
instruction provides a method for referring addresses automatically
relative to the address given by the base counter, irrespective of
its contents. The base instruction also gives a conditional transfer
of control.

The nineteen MIDAC instructions can be described function-
ally as follows:

Change of information

1 Add. («’) + () is placed in y’. Result must be less than
1 in absolute value.

2 Subtract. (@) — (8’) is placed in y’. Result must be less
than 1 in absolute value.

3 Multiply, Low Order. The least significant 44 binary digits
of (a’) X (B’) are placed in y'.

4 Multiply, High Order. The most significant 44 binary digits
of (a’) X (B’) are placed in y".

Chapter 14

5 Multiply, Rounded. The most significant 44 binary digits
of (@) X (B) = 1-27% are placed in y. The 1 - 274 is
added if (a) X (B’) is positive, and subtracted if (¢’) X (8')
is negative.

6 Divide. The most significant 44 binary digits of (8’)/(«’)
are placed in y’. (Note the inversion of order of « and f8.)
Result must be less than 1 in absolute value.

7 Power Extract. The number n - 27#* is placed in y’ where
n is the number of binary 0’s to the left of the most signifi-
cant binary 1 in (a’). The b digit is ignored; 8 may be any
even number. If («’) is all zeros, zero is placed in y'.

8 Shift Number. The 44 binary digits immediately to the
right of the radix point in (a’) - 2%67°2'* are placed in ¥'.
The result, in v/, is the equivalent of shifting (a’) n places,
where n - 274 = (#’) and n positive indicates a shift left,
n negative a shift right. If |n| = 44, zero is placed in v’

9 Extract or Logical Transfer. Those binary digits in ('),
including the sign digit, whose positions correspond to 1’s
in (B’) are replaced by the digits in the corresponding
positions of (a).

10 Decimal to Binary Conversion. This operation may be
interpreted in two ways: (a) (') is considered as a binary-
coded-decimal integer times 27%4. 1t is converted to the
equivalent binary integer times 2737 and the result is
placed in v', or (b) (a’) is considered as a binary-coded-
decimal fraction, D. It is converted into an intermediate
binary fraction, B,, such that B, = D x 10! x 2737 and
the result placed in y’. To obtain B, the true binary equiv-
alent of D, B, must be multiplied by (10~ x 237). How-
ever, since this factor is greater than 1 and therefore can-
not be represented in the machine, two operations must
be performed. For example,

B, X (10711 x 237 — 1) = B,
B =B, + B

Here the b digit is ignored, and 8 may be any even number.

11 Binary-to-Decimal Conversion. (a’), considered as a binary
fraction, is converted into the equivalent eleven-digit bi-
nary-coded-decimal fraction. The result is placed in y’. The
b digit is ignored, and 8 may be any odd number.

Change of control

12 Compare Numbers. y can be relative only to the instruc-
tion counter. If («’) = (B’), the contents of the instruction
counter are increased by one as is normally done at the
end of each instruction. If (a’} < (f’), the contents of the
instruction counter are set to y'.

Instruction logic of the MIDAC 211
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Compare Magnitudes. y can be relative only to the instruc-
tion counter. If |(a’)} = |(8’)], the contents of the instruc-
tion counter are increased by one as is normally done at
the end of each instruction. If |(a”)| < |(8")], the contents
of the instruction counter is set to y’.

Base or Tally. The d digit is ignored. a and 8 may be
relative only to the base counter, y only to the instruction
counter. If a’ = f3, the contents of the base counter are
set to zero and the contents of the instruction counter
increased by one as usual. If a’ < 8/, the contents of the
base counter are set to a’ and the contents of the instruc-
tion counter to y'. (Note. The comparisons made here are
of addresses themselves, not their contents.)

File. 8 may be any odd number. o and y may be relative
only to the instruction counter.

If d = 0, the contents of the instruction counter in-
creased by one is placed in the y position of («’), and the
instruction counter is set to y’.

If d = 1, the contents of the base counter is placed in
the a position of (a’), and the instruction counter is set
to v’. In addition, if b = 1, the contents of the base counter
is set to zero; if b = 0, the contents of the base counter
is not changed.

Transfer of information

16

17

Read In. The a digit must be 0; the b digit is ignored.
If B is in the range 0 to 7 (decimal) or 000 to 007 (hexadeci-
mal) a words are read into the acoustic storage from in-
put-output station 8. The first word read in is placed in
¥, the second in ¥’ + 1, etc. If B is in the range 1024 to
1791 decimal (400 to 6FF hexadecimal), @ words are read
into the acoustic storage from the drum starting with the
first word in the drum block whose address is 8. The first
word is placed in v’, the second in ¥ + 1, etc.

Read Out. The a digit must be 0, the ¢ digit is ignored.
Starting with (8), read out «a consecutive words from the
acoustic storage to input-output station v, if y is in the
range O to 7 decimal (000 to 007 hexadecimal), or to the
drum starting at the beginning of the drum block whose
address is v, if v is in the range 1024 to 1791 decimal (400
to 6FF hexadecimal).

Section 1 | Processors with greater than 1 address per instruction

16 Alphanumeric Read In. The a digit must be I; the b digit
is ignored. If B is in the range 0 to 7 (decimal) or 000 to
007 (hexadecimal) a characters are read into the acoustic
storage from input-output station 8. The first character
read in is placed in v/, the second in y’ + 1, etc. Each
character occupies the six most significant digit positions
of the register into which it is read; the other positions
are set to zero. This operation may not be used to read
words from the drum into the acoustic storage.

17 Alphanumeric Read Out. The a digit must be 1; the c digit
is ignored. Starting with (8’), read out « consecutive char-
acters from the acoustic storage to input-output station
v; ¥ must be in the range 0 to 7 (decimal) or 000 to 007
(hexadecimal). This operation may not be used to read
words from the acoustic storage onto the drum.

18 Move Tape Forward. (a, b, ¢ and d digits are ignored.)
may be any even number; y must be in the range 0 to 15
decimal (000 to 00F hexadecimal). The magnetic tape at
input-output station y is moved forward n blocks where

_la-—1
“‘[ 8 ]+1

that is, one plus the integral part of & — %, or the number
of blocks that include « words.

19 Move Tape Backward. (a, b, ¢, and d digits are ignored.)
B may be any odd number; y must be in the range 0 to
15 decimal (000 to 00F hexadecimal). The magnetic tape
at input-output station y is moved backward n blocks
where

|l a-=1
n“[ 8 ]+1

that is, one plus the integral part of & — ¥, or the number
of blocks that include a words.
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Chapter 15

Instruction logic of the
Soviet Strela (Arrow)!

John W. Carr II1

A typical general purpose digital computer using three-address
instruction logic is the Strela (Arrow) constructed in quantity
under the leadership of Iu. Ia. Basilewskii of the Soviet Academy
of Sciences, and described in detail by Kitov [1956]. This com-
puter uses a (35, 6, 0)? binary floating point number system.
Its instruction word, of 43 digits, contains a six-digit operation
code, and three 12-digit addresses, with one breakpoint bit. In
octal notation, two digits represent the operation, four each the
addresses, and one bit the breakpoint. This machine operates with
up to 2048 words of high-speed cathode ray tube storage.

Input-output is ordinarily via punched cards and punched
paper tape. A “standard program library” is attached to the com-
puter as well as magnetic tape units (termed “external accumula-
tors” below). Note. This computer is different from both the BESM
described by Lebedev [1956] and the Ural reported by Basilewskii
[1957]. Apparently, it is somewhat lower in performance than
BESM.

Since all arithmetic is ordinarily in floating point, “special
instructions” perform fixed point computations for instruction
modifications.

Ordinarily instructions are written in an octal notation, but
external to the machine operation symbols are written in a
mnemonic code. The two-digit numerals are the octal instruction
equivalent.

Arithmetic and logical instructions

0. + a B y. Algebraicaddition of («) to (8) with result
in vy.

02. +, a B vy. Special addition, used for increasing ad-
dresses of instructions. The command (a) or (8) is added to the
number () or («) and the result sent to the cell with address vy.

1In E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 111-115,
John Wiley & Sons, Inc., New York, 1959.

ZCarr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

As a rule, the address of the instruction being changed corresponds
to the address vy.

03. — a B v. Subtraction with signed numbers. From
the number (a) is subtracted the number (8) and the result sent
to v.

04. —, ‘a B vy. Difference of the absolute value of two
numbers |(a)| — [(8)] = (v)-

05. X a B y. Multiplication of two numbers (a) and ()
with result sent to 7.

06. N\ a B 1.
cells « and B. This instruction is used for extraction from a given
number or instruction a part defined by the special number (8).

07. V a B 7v. Logical addition of two numbers (a) and
(B) and sending the result to cell y. This instruction is used for
forming numbers and commands from parts.

10. Sh o B . Shift of the contents of cell & by the
number of steps equal to the exponent of the (8). If the exponent
of the (B) is positive then the shift proceeds to the left, in the
direction of increasing value; if negative, then the shift is right.
In addition, the sign of the number, which is shifted out of the
cell, is lost.

1. —, a B y. Special subtraction, used for decreasing
the addresses of instructions. In the cell « is found the instruction
to be transformed, and in cell B the specially selected number.
Ordinarily addresses « and y are identical.

12. # « B y. Comparison of two numbers (a) and ()
by means of digital additions of the numbers being compared

Logical multiplication of two numbers in

modulo two. In the cell y is placed a number possessing ones in
those digits in which inequivalence results in the numbers being
compared.

Control instructions

13. C a B 0000. Conditionaltransfer of control either to
instruction («) or to instruction (8), depending on the results of
the preceding operation. With the operations of addition, sub-
traction, and subtraction of absolute values, it appraises the sign
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of the result: for a positive or zero result it transfers control to
the command (a), for negative results to the command (6).

The result of the operation of multiplication is dependent on
the relationship to unity. Transfer is made to the command («)
in the case where the result is greater than or equal to one, and
to command (f), if it is smaller than one.

For conditional transfer after the operation of comparison,
transfer to the instruction (a) is made in the case of equality of
binary digits, and to (8) when there is any inequivalence.

After the operation /\ (logical sequential multiplication) the
conditional transfer command jumps to the instruction () when
the result is different from zero, and to instruction (8) when it
is equal to zero.

A forced comparison is given by

C a a 0000

The third address in this command is not used and in its place
is put zero.

14. IO a 0000 0000. Thisinstruction isexecuted paral-
lel with the code of the other operations, and guarantees bringing
into working position in good time the zone of the external ac-
cumulator (magnetic tape unit) with the address a.

15. H 0000 0000 0000. This instruction executesan ab-
solute halt.

Group transfer instructions

Special instructions for group transfer serve for the accomplish-
ment of a transfer of numbers to and from the accumulators. In
the second address in these instructions stands an integer, desig-
nating the quantity of numbers in the group which must be trans-
ferred. Group transfers always are produced in increasing sequence
of addresses of cells in the storage.

16. T, 0000 n <y. Theinstruction T, guarantees transfer
from a given input unit (with punched cards, perforated tape, etc.)
into the storage. In the third address y of the instruction is indi-
cated the initial address of the group of cells in the storage where
numbers are to be written. With punched paper tape or punched
cards the variables are written in sequence, beginning with the
first line.

17. T,

of a group of n numbers from an input unit into the external

0000 n vy. Theinstruction T, guarantees transfer

accumulator in zone y.

20. T, a n 7. Thisinstruction guarantees a line-by-line
sequence of transfers of n numbers from zone « of the external
accumulator into the cells of the storage beginning with the cell
with address y.

Section 1 | Processors with greater than 1 address per instruction

2l T,
fer to the input-output unit (to punched paper tape or punched
cards) of a group of n numbers from the storage, beginning with
address a. The record on punched paper tape or punched cards
as a rule will begin with the first line and therefore a positive
indication of the addresses of the record is not required.

22. T,
group of n numbers from one place in the storage with initial

a n 0000. This instruction guarantees the trans-

a n vy. Instruction T, guarantees transfer of a
address « into another place in the storage with initial address y.
23. T,
group of n numbers from the storage with initial address a into
the external accumulator with address vy.
24. T, a n 0000.
numbers from the zone of the external accumulator with address

a n v. Instruction Ty guarantees transfer of a

Instruction T, serves for transfer of n

a into the input-output unit.
Instructions T, and T, cannot be performed concurrently with
other machine operations.

Standard subroutine instructions

Certain instructions in the Strela, although written as ordinary
instructions, are actually “synthetic” instructions which call on
a subroutine for computation of the function involved. The amount
of machine time (number of basic instruction cycles) for an itera-
tive process depends on the required precision of the computed
function. The figures given below are based on approximately
ten-digit decimal numbers with desired precision one in the tenth
place.

25. D a B vy. This standard subroutine serves for exe-
cution of the operation of division: The number («) is divided into
the number (8) and the quotient is sent to cell vy.

The actual operation of division is executed in two steps: the
initial obtaining of the value of the inverse of the divisor, by which
the dividend is then multiplied. The computation of the inverse
is given by the usual Newton formula, originally used with the
EDSAC [Wilkes et al., 1952].

Yne1 = Yn(2 = Yu¥)
Forx = d + 2°, where ¥, < d < 1, the first approximation is taken
as 27P. The standard subroutine takes 8 to 10 instructions and can
be executed in 18-20 machine cycles (execution time for one
typical command).

26. vV~ a 0000 vy. Thisinstruction guarantees obtaining
the value V/x from the value x = (a) and sending the result to
cell y. Initially 1//x is computed by the iteration formula

Ynr1 = 1/2yn(3 - xynz)



where the first approximation is taken as
Yo = 9lp/2]

the bracket indicating “integral part of.” After this the result is
multiplied by x to obtain V/x. This standard subroutine contains 14
instructions and is executed in 40 cycles.

27. e « 0000 y. This instruction guarantees formation
of ¢ for the value x = (a) and sending the result to cell y. The
computation is produced by means of expansion of ¢* in a power
series. The standard subroutine contains 20 instructions and is
executed in 40 cycles.

30. Inx a 0000 y. This instruction guarantees forma-
tion of the function In x for the value x = (@) and sending the re-
sult to location y. Computation is produced by expansion of In x in
series. The subprogram contains 15 instructions and is executed
in 60 cycles.

31. sinx a 0000 y. This instruction guarantees execu-
tion of the function sin x and sending the result to location y. The
computation is produced in two steps: initially the value of the
argument is translated into the first quadrant, then the value of
the function is obtained by a series expansion. The subroutine
contains 18 instructions and is executed in 25 cycles.

Chapter 15

32. DB « n y. This instruction performs conversion of
a group of n numbers, stored in locations «, « + 1, ... from bi-
nary-coded decimal into binary and sending of the result to loca-
tions v, vy + 1,.... The subroutine contains 14 instructions and
is executed in 50 cycles (for each number).

33. BD a n y. Thisinstruction performs the conversion
of a group of n numbers stored in locations &, & + 1, ... from the
binary system into binary-coded decimal and sends them to loca-
tions v, v + 1, .... The subroutine contains only 30 instructions
and is executed with 100 cycles (for each number).

34. MS a n vy. This is an instruction for storage sum-
ming. This instruction produces the formal addition of numbers,
stored in locations beginning with address «, and the result is sent
to location y. Numbers and instructions are added in fixed point.
This sum may be compared with a previous sum for control of
storage accuracy.

References
Basil57; KitoA56; LebeS56; WilkM52.
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Section 2

Processors constrained by a cyclic,
primary memory

These processors use one extra (the + 1) address to specify
the address of the next instruction. Obviously this address is
used to allow complete freedom in the location of both operands
and next instructions in an optimum manner. The IBM 650,
a1l + 1 address computer, is the most straightforward to un-
derstand. ACE and ZEBRA have subtle microcoded instructions
to achieve powerful instruction sets. The LGP-30 and LGP-21
have a simple 1 address instruction format; they interlace sev-
eral logical addresses between the physical addresses to help
with the optimum location of operands.

The Olivetti Underwood Programma 101 desk calculator

The Programma 101 is a desk calculator computer implemented
with a cyclic Mp. The cyclic memory is not apparent from the
user’'s viewpoint because the response is adequate (less than
0.1 sec for simple arithmetic operations). The Programma 101
is discussed in Part 3, Sec. 4, page 235.

ZEBRA, a simple binary computer

The ZEBRA is presented in Chap. 12 and is discussed in Part
3, Sec. 1, page 190. ‘

The LGP-30 and LGP-21

The LGP-30 (Chap. 16) is a first-generation, 31-bit computer
with an Mp.cyclic and a very simple ISP. The computer appears
to be characteristic of small-scale drum computers in the first
generation. We think of this class of computer as having very
little power when compared, for example, with the IBM 701.
However, the power is mostly related to the drum-based tech-
nology, with 0.26 ~ 16.66 millisecond access times.

The Pilot ACE

The NPL Pilot ACE is presented in Chap. 11. Its relationship in
the computer space is discussed in Part 3, Sec. 1, page 190.

The UNIVAC system

The UNIVAC | is described in Chap. 8. A discussion is given
in Part 2, Sec. 1, page 91.

The design philosophy of Pegasus,
a quantity-production computer

The Pegasus cyclic memory, general register computer (Chap.
9) is discussed in Part 2, Sec. 2, page 170.

IBM 650 instruction logic

The IBM 650 has a 1 + 1 address format and a very complete
instruction set. Because of the long word length (10 decimal
digits) we would consider it to have general utility. The 650's
high performance is achieved by using a fast drum (6 millisec-
onds/revolution). The characteristics given in Chap. 17 present
the machine as it was first introduced in 1954. Later versions
provided options for floating point arithmetic and index regis-
ters. A 96-word core buffer was also added for disk and mag-
netic-tape buffering. The machine structure is a simple 1 Pc
without concurrent processing and input/output transfer abil-
ity. Although the 650 has a large word, it initially processed only
fixed point integers.

NOVA: a list-oriented computer

The NOVA (Chap. 26) is a specialized computer for processing
array data. It is discussed in Part 4, Sec. 2, page 315.



Chapter 16
The LGP-30 and LGP-21

The LGP-30 is a small computer with an Mp.drum. It is distinct
from the first (and succeeding) generation computers using
Mp.random_access and can be described by using the PMS dia-
gram in Fig. 1. The LGP-21, a direct descendant of the LGP-30,
having the same ISP, is also described by Fig. 1.

Since there is only one address/instruction, a method is needed
for the optimal allocation of operands. Otherwise, each instruction
might have to wait a complete drum (or disk) revolution each time
a data reference is made. The LGP-30 provides for operand-
location optimization by interlacing the logical addresses on the
drum so that two adjacent addresses (e.g., 00 and 01) are separated
by nine physical locations.! These spaces allow for operands to
be located next to the instructions which use them. There are 64
tracks, each with 64 words (sectors). Each word is accessed by
a track address of 6 bits and a word address of 6 bits. The sequence
of words (sectors) within a track is 00, 57, 50, 43, 36, 29, 22, 15,
08, 01, 58, 51, 44, 37, . . ., 06, 63, 56, 49, 42, 35, 28, 21, 14,
07, 00. The time between two adjacent physical words is approxi-
mately 0.260 millisecond, and the time between two adjacent
addresses is 9 X 0.260 or 2.340 milliseconds. The actual maximum
t.access is 16,66 ms.?

Half of the instruction (15 bits) is unused. It could be used for
extra instructions, indexing, indirect addressing, or a second (+1)
address to locate the next instruction, all of which increase the
preformance.

1The LGP-21 has a space of 18 words.
2The later LGP-21 appears to have a lower performance than the LGP-30
by about a factor of 3.

~ -
'LGP-30; technology: (113 vacuum tubes), (1350 diodes);

o

power: 1500 watts; weight: 800 pounds; number produced:

320 ~ 490; t.delivery: September 1956; descendant: 'LGP-21:

Pc(] address; 1 imstruction/w; data: w,bv,i,fr; Mpsi{~ 2 w);
operations: (,-.x,/,A,x 2))

Mp(drum; t.cycle: 260 us/w; t.access: (.260 ~ 16.6) ms;
i.rate: 2.34 ms/w eontiguous addresses: 4096 w; (31,

space) b/w)

T(Flexowriter, paper tape)
J

'LGP-21; technology: (460 transistors), (375 diodes); power:

2]

300 watts; weight: 90 pounds; number produced: ~ 1503

t.delivery: December 1962;

Mp (fixed head disk; cyclic; t.cycle: 400 us/w; t.access:
(0 ~52) ms: i.rate: 7.26 ms/w contiguous addresses:
4096 w; (31,1 space) b/w)

LT(#]:32; Flexowriter, paper tape, analog, CRT, card)

Fig. 1. LGP-30 and LGP-21 PMS diagrams.

The ISP, given in Appendix 1 of this chapter, is about the most
straightforward in the book. There are only 16 instructions, and
the program state is less than two words. Although the perform-
ance is limited because of an Mp.cyclic_access, an Mp.ran-
dom_access would serve to make the ISP fairly similar to other
faster computers, e.g., an IBM 701.
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APPENDIX 1 LGP-30 AND LGP-21 ISP DESCRIPTION

Appendix 1

LGP-30 and LGP-21 ISP Description

pc State
A<D:30> Accumulator
€<18:23,24:29> Program Counter register
Ov Overflow, LGP-21 only on LGP-3C machine stops if an overflow
Run

Pe Console State

BP<4,8,16,32> Break Point switches

TC Transfer Control switch
Mp State

M[0:778][0:778]<0:30> primary memory; 212 w; track and sector (word)
K State

The following Imput Output devices do not have synchronization deseription variables, LGP-21 only. LGP-30 has a Flexowriter,
Input_device[0:31]1<):6>
stop code condition signifying input device has read a special code

Output device [0:31]<1:6>

Instruction Format

i<0:30> instruction
op<0:3> = (<12:15> operation code
t<0:5> = i<18:23> track select bit on Mp
tr<Dih>i= t<1i5> Input-output select, LGP-21 only
s<0:5> i= T<24:29> sector select bit of M

skip condition := ({t<0:3> A - BP) # 0)

Instruetion Interpretation Process
Run — (i «M[C]; € «C + 1; next feteh

lnstruction‘_pxecution) execute

TInstruction Set and Instruction Execution Process

Instruction _execution := (
Z (:=op =0) = (
(t = 000003) — (Run «0); stop
skip condition = (C «C + 1); sense BP and transfer
i<0> - (0v » (0v «0; C «C + 1))); sense overflow and transfer
B (1=op=1) - (A <M[t]ls]); bring from memory
Y (1= op = 2) — (M[t }s J<18:29>A<18:29>); store address
R (= op = 3) = (M[t]ls1<18:29> «C + 1) set return address
I (:=op = k) - ¢( shifts, and input

— 1<0> A (t=62) = (A <A X 26 {logical });
i<0> A (t=62) = (A <A x 2" {logicall}):
— i<D> A (t#62) — (input 6_bit):
i<0> A (t#62) — (input 4 pit)):




APPENDIX 1 LGP-30 AND LGP-21 ISP DESCRIPTION (Continued)

- X Zz O

-

»nw » o T

(:
(:
(:
(:

inputububit = (A « Ay 26 {logical}; next

A<25:30> « Input_devicelt']; next
A<O> Vv stop code) — input b_bit)

input bobit := (A« Ayx 2 {logical}; next

op
op
op

op =

A<27:30> « Input device[t']l<1:l>; next
A<D> V stop code) = inputububit)

5) - (Ov,A « round(A / M[t1[s]));

6) - (A « A x M[tl[s] {s.inteqger});

7) = (A « A x M[tI[s] {s.fraction});

108) - (

— i<0> - (Output_device[ t']<1:6> « A<D:5>):
i<0> — (Output,device[t']<1:6> « A<D:3>0100)).

e~

op
op
op

op
op
op
op

Tg) = (A <A A M ][sD);

12) - (C « toms);

13) = (i<®> = ((A<G> v TC) = (C « tOs));
—~i<0> - (A<O> > (C < tO0s)));

14) » MLtlls] «A);

15) = (M[t1[s] « A; next A «0);

16) - (OvoA « A + M{t][s]);

17) — (OvoA « A - M[t]1[s])
)

input processes

wait

divide
multiply, save right
multiply, save left

print 6 bit

print 4 bit

extract

unconditional transfer
transfer control
conditional transfer
hold and store

clear

add

subtract

end Instruction execution

Chapter 16
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Chapter 17
IBM 650 instruction logic!

John W. Carr II1

The basic IBM 650 is a magnetic drum (10, 0, 0)? decimal computer
with one-plus-one address instruction logic. It has a storage of 1000
or 2000 10-digit words (plus sign) with addresses 0000-0999 or
0000-1999. More extended versions of the equipment have built-in
floating point arithmetic and index accumulators, but the basic
machine will be described here. There are three arithmetic regis-
ters in addition to the standard program register and program
counter, All information from the drum to the arithmetic unit
passes through a signed 10-digit distributor. A twenty-digit ac-
cumulator is divided into a lower and upper part, each of 10 digits
with sign. Each of these is addressable (distributor 8001, lower
accumulator 8002, and upper accumulator 8003). Each accumula-
tor may be cleared to zero separately (in IBM 650 terminology,
“reset”). The entire 20-digit register can be considered as a unit,
or each part separately (but affecting the other in case of carries).
The 10-digit instruction is broken down into the following form:

0]9|8|7]6[514]2]13]1 0

Op.
Code

Data
Address

Next Instruction

Address Sign

One particular instruction, Table Look-Up, allows automatic table
search for one particular element in a table, which can be stored
with a corresponding functional value. Input-output is via 80-digit
numerical punched cards. An “alphabetic device™ allows limited
alphabetical entry on cards. Only certain 10-word groups on the
magnetic drum are available for input and output. The following
information is taken from an IBM 650 manual [Type 650, Magnetic
Drum Data-Processing Machine Manual of Operations]. Much of
the input-output is handled via board wiring, which is not de-
scribed in detail below. The two-digit pair represents the machine
code. The BRD (Branch on Digit) operation is used with special
board wiring to tell when certain specific card punches exist.

!In E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 93-98,
John Wiley & Sons, Inc., New York, 1959.

2Carr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

Input-output instructions

70 RD (Read). This operation code causes the machine to
read cards by a two-step process. First, the contents of the 10
words of read buffer storage are automatically transferred to one
of the 20 (or 40) possible 10-word groups of read general storage.
The group selected is determined by the D address of the Read
instruction. Secondly, a card is moved under the reading brushes,
and the information read is entered into buffer storage for the next
Read instruction.

71 PCH (Punch). This operation code causes card punch-
ing in two steps. First the contents of one of the 20 (or 40) possible
10-word groups of punch storage are transferred to punch buffer
storage. The group selected is specified by the D address of the
Punch instruction. Secondly, the card is punched with the infor-
mation from buffer storage.

69 LD (Load Distributor).
contents of the D address location of the instruction to be placed
in the distributor.

24 STD (Store Distributor). Thisoperation code causes the
contents of the distributor with the distributor sign to be stored

This operation code causes the

in the location specified by the D address of the instruction. The
contents of the distributor remain undisturbed.

Addition and subtraction instructions

10 AU (Add to Upper).
contents of the D address location to be added to the contents
of the upper half of the accumulator. The lower half of the ac-

This operation code causes the

cumulator will remain unaffected unless the addition causes the
sign of the accumulator to change, in which case the contents of
the lower half of the accumulator will be complemented. Also,
the units position of the upper half of the accumulator will be
reduced by one.

15 AL (Add to Lower).
contents of the D address location to be added to the contents
of the lower half of the accumulator. The contents of the upper
half of the accumulator could be affected by carries.

11 SU This operation code causes
the contents of the D address location to be subtracted from the

This operation code causes the

(Subtract from Upper).



contents of the upper half of the accumulator. The contents of
the lower half of the accumulator will remain unaffected unless
the subtraction causes a change of sign in the accumulator, in
which case the contents of the lower half of the accumulator will
be complemented. Also, the units position of the upper half of
the accumulator will be reduced by one.

16 SL (Subtract from Lower). This operation code causes
the contents of the D address location to be subtracted from the
contents of the lower half of the accumulator. The contents of
the upper half of the accumulator could be affected by carries.

60 RAU (Reset and Add into Upper). This operation code
resets the entire accumulator to plus zero and adds the contents
of the D address location into the upper half of the accumulator.

65 RAL (Reset and Add into Lower). This operation code
resets the entire accumulator to plus zero and adds the contents
of the D address location into the lower half of the accumulator.

61 RSU (Reset and Subtract into Upper).
code resets the entire accumulator to plus zero and subtracts the
contents of the D address location into the upper half of the
accumulator.

66 RSL
code resets the entire accumulator to plus zero and subtracts the
contents of the D address location into the lower half of the
accumulator.

This operation

(Reset and Subtract into Lower). This operation

Accumulator store instructions

20 STL This operation code
causes the contents of the lower half of the accumulator with the
accumulator sign to be stored in the location specified by the D ad-
dress of the instruction. The contents of the lower half of the

(Store Lower in Memory).

accumulator remain undisturbed.

It is important to remember that the D address for all store
instructions must be 0000-1999. An 8000 series D address will not
be accepted as valid by the machine on any of the store instruc-
tions.

21 STU (Store Upper in Memory). This operation code
causes the contents of the upper half of the accumulator with the
accumulator sign to be stored in the location specified by the
D address of the instruction. If STU is performed after a division
operation, and before another division, multiplication, or reset
operation takes place, the contents of the upper accumulator will
be stored with the sign of the remainder from the divide operation
{Op-Code 14). The contents of the upper half of the accumulator
remain undisturbed.

22 STDA (StoreLower Data Address). This operation code

Chapter 17

causes positions 8-5 of the distributor to be replaced by the con-
tents of the corresponding positions of the lower half of the ac-
cumulator. The modified word in the distributor with the sign of
the distributor is then stored in the location specified by the
D address of the instruction.

23 STIA (StoreLowerInstruction Address). Thisoperation
code causes positions 4-1 of the distributor to be replaced by the
contents of the corresponding positions of the lower half of the
accumulator. The modified word in the distributor with the sign
of the distributor is then stored in the location specified by the
D address of the instruction. The contents of the lower half of
the accumulator remain unchanged, and the sign of the accumu-
lator is not transferred to the distributor. The modified word re-
mains in the distributor upon completion of the operation.

Absolute value instructions

17 AABL (Add Absolute to Lower). This operation code
causes the contents of the D address location to be added to the
contents of the lower half of the accumulator as a positive factor
regardless of the actual sign. When the operation is completed,
the distributor will contain the D address factor with its actual
sign.

67 RAABL (Reset and Add Absolute into Lower). This
operation code resets the entire accumulator to zeros and adds
the contents of the D address location into the lower half of the
accumulator as a positive factor regardless of its actual sign. When
the operation is completed, the distributor will contain the D ad-
dress factor with its actual sign.

18 SABL (Subtract Absolute from Lower). This operation
code causes the contents of the D address location to be subtracted
from the contents of the lower half of the accumulator as a positive
factor regardless of the actual sign. When the operation is com-
pleted, the distributor will contain the D address factor with its
actual sign.

68 RSABL (Reset and Subtract Absolute into Lower). This
operation code resets the entire accumulator to plus zero and
subtracts the contents of the D address location into the lower
half of the accumulator as a positive factor, regardless of the actual
sign. When the operation is completed, the distributor will contain
the D address factor with its actual sign.

Multiplication and division

19 MULT (Multiply). This operation code causes the ma-
chine to multiply. A 10-digit multiplicand may be multiplied by

IBM 650 instruction logic 221
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a 10-digit multiplier to develop a 20-digit product. The multiplier
must be placed in the upper accumulator prior to multiplication.
The location of the multiplicand is specified by the D address of
the instruction. The product is developed in the accumulator
beginning in the low-order position of the lower half of the ac-
cumulator and extending to the left into the upper half of the
accumulator as required.

14 DIV (Divide). This operation code causes the machine
to divide without resetting the remainder. A 20-digit dividend may
be divided by a 10-digit divisor to produce a 10-digit quotient.
In order to remain within these limits, the absolute value of the
divisor must be greater than the absolute value of that portion of
the dividend that is in the upper half of the accumulator. The
entire dividend is placed in the 20-position accumulator. The
location of the divisor is specified by the D address of the divide
instruction.

64 DIV RU This operation
code causes the machine to divide as explained under operation
code 14 (DIV). However, the upper half of the accumulator con-
taining the remainder with its sign is reset to zeros.

(Divide and Reset Upper).

Branching instructions (decision operations)

44 BRNZU (Branch on Non-Zero in Upper). This opera-
tion code causes the contents of the upper half of the accumulator
to be examined for zero. If the contents of the upper half of the
accumulator is nonzero, the location of the next instruction to be
executed is specified by the D address. If the contents of the upper
half of the accumulator is zero, the location of the next instruction
to be executed is specified by the I address. The sign of the ac-
cumulator is ignored.

45 BRNZ (Branch on Non-Zero). This operation code
causes the contents of the entire accumulator to be examined for
zero. If the contents of the accumulator is nonzero, the location
of the next instruction to be executed is specified by the D address.
If the contents of the accumulator is zero, the location of the next
instruction to be executed is specified by the I address. The sign
of the accumulator is ignored.

46 BRMIN (BranchonMinus). Thisoperation code causes
the sign of the accumulator to be examined for minus. If the sign
of the accumulator is minus, the location of the next instruction
to be executed is specified by the D address. If the sign of the
accumulator is positive, the location of the next instruction to be
executed is specified by the I address. The contents of the accu-
mulator are ignored.

47 BROV (Branch on Overflow). This operation code

Section 2 | Processors constrained by a cyclic, primary memory

causes the overflow circuit to be examined to see whether it has
been set. If the overflow circuit is set, the location of the next
instruction to be executed is specified by the D address. If the
overflow circuit is not set, the location of the next instruction to
be executed is specified by the I address.

90-99 BRD 1-10
1-10). This operation code examines a particular digit position
in the distributor for the presence of an 8 or 9. Codes 91-99 test
positions 1-9, respectively, of the test word; code 90 tests position
10. If an 8 is present, the location of the next instruction to be
executed is specified by the D address. If a 9 is present, the location
of the next instruction to be executed is specified by the I address.
The presence of other than an 8 or 9 will stop the machine.

(Branch on 8 in Distributor Position

Shift instructions

30 SRT (Shift Right). This operation code causes the con-
tents of the entire accumulator to be shifted right the number of
places specified by the units digit of the D address of the shift
instruction. A maximum shift of nine positions is possible. A data
address with units digit of zero will result in no shift. All numbers
shifted off the right end of the accumulator are lost.

31 SRD (Shift Round). This operation causes the contents
of the entire accumulator to be shifted right the number of places
specified by the units digit of the D address of the instruction.
A 5is added (—5 if the accumulator is negative) in the twenty-first
(blind) position of the amount in the accumulator. A data address
units digit of zero will shift 10 places right with rounding.

35 SLT (Shift Left). This operation code causes the con-
tents of the entire accumulator to be shifted left the number of
places specified by the units digit of the D address of the instruc-
tion. A maximum shift of nine positions is possible. A data address
with a units digit of zero will result in no shift. All numbers shifted
off the left end of the accumulator are lost. However, the overflow
circuit will not be turned on.

36 SCT (Shift Left and Count). This operation code causes
(1) the contents of the entire accumulator to be shifted to the left
until a nonzero digit is in the most significant place, (2) a count
of the number of places shifted to be inserted in the two low-order
positions of the accumulator. This instruction is to aid fixed-point
scaling,

Table look-up instructions

84 TLU (Table Look-up). This operation code performs an
automatic table look-up using the D address as the location of



the first table argument and the I address as the address of the
next instruction to be executed. The argument for which a search
is to be made must be in the distributor. The address of the table
argument equal to, or higher than (if no equal exists) the argument
given is placed in positions 8-5 of the lower accumulator. The
search argument remains, unaltered, in the distributor.

Miscellaneous instructions

00 No-Op (No Operation).
tion. The data address is bypassed, and the machine automatically

This code performs no opera-
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refers to the location specified by the instruction address of the
No-Op instruction.

01 Stop. This operation code causes the program to stop
provided the programmed switch on the control console is in the
stop position. When the programmed switch is in the run position
the 01 code will be ignored and treated in the same manner as
00 (No-Op).

References

Type 650 Magnetic Drum Data-Processing Machine Manual of Operations;
HughE54; SerrR62.
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Section 3

Processors for variable-length-string data

Although only two computers are described in this section, the
reader might refer to other computers in the book which handle
variable-length strings. The IBM System /360 processes a string
whose length is specified in the instruction. The Burroughs
B 5000 has a very nice string data ISP (both simple and power-
ful).

Variable-length strings imply some method to specify at in-
struction execution time the actual length of the character
strings being processed. Which method is used has a substan-
tial effect on the ISP of the resulting machine, and it is note-
worthy that a wide variety of devices has been tried without any
apparent consensus yet on the appropriate mechanism:

1 An extra bit in each character to mark the string bound-
ary (IBM 1401)

2 A special terminal character to mark the string boundary
(IBM 702)

3 A field variable in the instruction to specify the string
length (IBM System/360)

4 A register variable in the processor to specify the string
length (an 8-bit-character computer—Chap. 10)

5 A fixed number of characters at the head of the string

to specify the length (and data type) of the string (used
extensively for variable-length records on tape and disk,
though we know of no ISP that uses it)

The IBM 1401

The 1401 was IBM's most popular computer, measured by
quantity produced, prior to the 1130/1800 and System/360.
However, the authors of this book were unable to find any
technical papers on its design or design philosophy. The 1401
is based on earlier business-oriented computers (Fig. 1, page
225). It evolved a great deal, as can be seen from the number
of “features’” which can be appended to improve it. Successors,
the 1440 and 1460, are also improvements. It is assumed that
early computers mainly influence successor computers within
the same organization.

An 8-bit-character computer

An 8-bit-character computer (Chap. 10) has been suggested by
the authors. It is a very restricted computer for processing
string data and illustrates another approach to string defini-
tions; the string length is specified by a variable in the proc-
essor.
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The IBM 1401

The second-generation transistor-technology IBM 1401 has been
included both because a large number! have been produced and
because it differs from common fixed word length binary and deci-
mal computers. IBM 1401s are used in business data-processing
applications requiring variable-length character strings or fields
and rather limited calculating ability. Two specific applications
are as a card processor in making a transition from plugboard
programmed calculators to full-scale automatic computations and
for converting data from one medium to another, for example, from
card to tape. The 1401 was little used by the scientific, engineer-
ing, and scientific business data-processing communities, probably
because of the limited Mp size, the low overall processing speed,
and the lack of concurrent I/0 operation in the smaller configura-
tions. However, it did achieve considerable use as a stand-alone
Cio in C('7090) installations, perhaps because of the speed and
quality of the T('1403; line; printer).

Although undoubtedly influenced by machines outside the IBM
organization, the IBM 1401 is derived primarily from the IBM 702
and 705, which are variable word length decimal machines. The
relationship of the various IBM decimal computers to one another
is shown in Fig. 1. (RCA’s early computers? also use a combination
of fixed-length and variable-length 7-bit character strings and may
have influenced the 1401.)

The IBM 1401’s ISP was the first to be adopted by another
company. Honeywell defined its H-200 ISP to be a superset of the
IBM 1401 ISP. The ISP of the H-200 is more complex and increases
performance by organizing Mp by both characters and words.

The IBM 1401, 1440, and 1460 are the only IBM computers
to be completely character-string oriented. That is, both instruc-
tions and data are stored in variable-length character strings; these
strings are addressed by a pointer register to the string. The ad-
dress integer is fixed at three characters. The encoding process
for addresses is given in Appendix 1 of this chapter. The 3-char-
acter address (3 X 6 bits) is assigned as 3 X 4 bed characters for
encoding addresses 0:999; 2 X 2 bits for selecting 16 X 1,000
addresses; and 2 bits for selecting one of the three index registers.

The IBM 1620 processes variable-length data strings, although

1Up to 1966, more 1401s were produced than any other model. An esti-
mated 7,500 1401s, 1,500 1401 G’s (card-only system), 3,600 1440s, and 1,500
1460s were produced. About 1,800 1620s were produced.

2RCA 301, 501, and 601.

the instruction length is a fixed 12-digit string corresponding to
a word in Mp. The 1620, though not identical to the 1401, is
almost a member of the same family.

The 1401 evolved. Figure 1 shows the evolution of “features”
which have created new computers. The 1401’s optional features
are mainly design afterthoughts; they sometimes increase perform-
ance, sometimes make certain operations possible, and sometimes
provide substantive change. There are approximately 19 features
in the 1401: memory expansion beyond the anticipated 4,000
characters and index registers required encoding the field bits of
the A and B addresses; store A-Address and store B-Address register
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Fig. 1. IBM decimal and character-string computer relationships.
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The instruction-set processor level: variations in the processor

instructions are necessary for subroutines—the Store Address Regis-
ter Feature; Indexing Feature; Multiply-Divide Feature; High-
Low-Equal Compare Feature; Read Release and Punch Release
Feature; the Column Binary Feature; Early-Card-Read Feature;
Processing Overlap Feature, etc.

PMS structure

The 1401 PMS structure (Fig. 2) is an early 1 Pc structure. The
diagram does not show the S(fixed) Pc interconnection structure
with the Ms and T. The Pc-(Ms|T) interconnection restricts the
concurrency of T and Ms. The optional processing overlap feature
provides a link to Mp to allow the T(card; read, punch) to be run
concurrently with Pc processing. When any of the peripheral
devices are operating without the processing overlap feature, the
Pc is dedicated to be a data transmission link or K (as in earlier
computers). The device K is connected directly to Pc. For example,
Ms(disk, magnetic tape) data transfers use the main registers of
the Pc and can tie it up full time during data transmission. By
careful programming, several devices can be synchronized and
thus run concurrently for communicating with Pc from a K. The
Pc does not have an interrupt system. Thus the peripherals have
no way of communicating with Pc. Subsequent models, the 1440
and 1460, added interrupt capability and made it easier to control
multiple simultaneous data transfers among the peripheral K’s
and Pec.

T.console~
pct T('1402; card; reader,punch)-
U OT('1403 [ 14045 Vine; printer)—

Mpz

T{'1407 Console !Inquiry Station; typewriter)-
T(paper tape; reader)—

Ms (#1:6; magnetic tape)-

Ms ("1405; disk)

'Pc(string; 1~ 8 char/instruction; M.processor state
(7 ~ 16 char); technology; vacuum tubes; 1960 ~1965;
descendants: 1440, 1460)

ZMp (core; 11.5 us/char; 4000 ~ 16000 char; (7,1 parity)
b/char)

Fig. 2. IBM 1401 PMS diagram.

Section 3 | Processors for variable-length-string data

ISP structure

The IBM 1401 ISP is given in Appendix 1 of this chapter. Instruc-
tion strings and data strings are delimited by the special F bit
in a character. A character in Mp is of the form!

C(check,F.B’,A’, 8, 4, 2, 15
An n-character string is C[0], C[1],...C[n — 1]
and would be stored in Mp[j:;j + n — 1]

The first character (or head) of an instruction must contain the
word-mark flag or F bit. The head of the instruction, which is to
be interpreted next, is held at Mp[l], and succeeding characters
of the instruction are at Mp[I + 1], Mp[I + 2], etc. Correctly
defined instructions are 1, 2, 4, 5, 7, and 8 characters long. Un-
defined instruction lengths of up to 8 characters are also inter-
preted without an error condition. The interpretation algorithm
presented in the ISP description does not explain the action of
instructions which have an incorrect length. Actually, the 1401
Reference Manual does not go into details of general instruction
interpretation but dwells on “correct” operation. Table 1 presents
the correct instruction lengths and formats. If we take the instruc-
tions in the table, the set is not variable in length but is fixed at
these six sizes. The instruction set (not including the input/output
instructions) is presented in Table 2. This table also provides a
hint of the implementation, since the execution times are given
in terms of memory cycles.

The ISP state, unlike that of more conventional processors, has
no temporary operand storage (e.g., accumulators)., The ISP state
has registers which point to operands. The state of the machine
(see Appendix 1) is basically: Mp, the Instruction Location Counter,
Indicators or miscellaneous bits, three 3-character blocks of Mp
reserved for Index registers, and the two registers A_address and
B_address which point to data operands.

Instruction interpretation

There are three principal state types in processing an instruction:
0.q., when the instruction is being formed; o.v., when the operands
are being accessed or the results are being stored in Mp; and o,
when the operation specified by the instruction is being carried
out. Each state transition corresponds essentially to a memory
access. The three instruction types of Fig. 3 each have their own
particular states. Only types 1 and 2 process the variable-length

See Appendix 1 of this chapter for the meaning of the bits in a character.
We have renamed the A and B bits A’ and B’ to avoid confusion with
the registers.
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Table 1 1BM 1401 instruction formats
Length Location:
(char) M[1] MI( + 1):0 + 3)] ML 4 4331 + 6)] Ml + 7] Types
1 C[o] no-op, halt, or single character to specify
a chained instruction
2 C[0] Cl1) the d_character is used to specify addi-
tional instruction information (e.g.,
select, card stacker)
4 C[ol ClL, 2, 3] unconditional branch instruction or sin-
gle address arithmetic; M[A] « f(M[A])
5 C{o] Cl1, 2, 3] Cl4] conditional branch instruction; C[4] se-
lects a specific test
7 C[o] C[1, 2, 3] Cl4, 5, 6] two address instruction;
M[B] « M[B] b M[A]; (e.g., add, sub-
tract)
8 C[o] C[1, 2, 3] C[4, 5, 6] Cl7] conditional branch based on Mp{B] char-

acter; d_character is test character;
(e.g., branch if character equal)

Function of instruction characters:
C[0] op code; always contains a word-mark flag or F bit.

C[1, 2, 3] = branch address for |_Address register or first operand address for the A_Address register.
C[1] or C[4] or C[7] d_character; used as a single character for additional operation code information or a character for comparison, or to

select a test.
C[4, 5, 6] primary operand (B_Address register specification).

character strings, {char.string}, and the state diagram accounts for
strings on a character-at-a-time basis. For an add instruction
Fig. 3 oversimplifies the execution because it implies that each
character of the A and B operand is accessed, the addition is per-
formed, and the result is restored according to the B_address
register. A more complex description must account for A and B
strings of unequal length, and the case of getting a number which
must be recomplemented because it is the wrong sign. The re-
complementation process requires a reverse scan to find the end
of the B string and then a forward scan to recomplement each
character of B. Figure 4 is a detailed state diagram of the add
execution process.

The states in the ISP description (Appendix 1) within the in-
struction-interpretation process correspond to the three state types
just described: the single-instruction character-fetch operation, the
fetch-operand-addresses for the remainder of the instruction, and
Instruction,_execution. Instruction_execution is not given in any
detail. For example, the execution of add is defined as “A”(:=
op = 110001) - OvIIMI[B] «<— M[B] + M[A] {char.string};. The
state diagram (Fig. 4) presents this execution in detail. Note that
in the ISP description we omit telling the reader that the A and B

address registers point to the next lowest variable-length string in
M after an operation is performed. We allow the definition of a
variable-string operation, for example, + {char.string}, to imply
the action on the processor state.

Some instructions can be defined with a single character, and
these are called chained instructions. Chained instructions take
the previous values of the pointer registers, the A and B address
registers, as the operand addresses. The add instruction, for exam-
ple, can be either 1 (chained), 4, or 7 characters; the forms of all
instructions appear in Table 1. The 4-character add instruction
places the A address field in both the A and B address registers;
thus the effect is an instruction to double a string (add it to itself).

Data

An n-decimal-digit numeric data string is represented as

Cln — 1], C[n — 2], ..., C[1], C[0], C[M]

The underlined characters, C[n — 1] and C[M], have the flag bit
present, that is, (C[n — 1{F) = 1) and (C[MKKF) = 1). The n
characters are stored in locations Mp[j], Mp[j + 1],..., Mp[j +

The IBM 1401 227
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Table 2 IBM 1401 instruction set (excluding input, output)

Op Execution time Length Data
Instruction Codet in memory cycles} (char.) type
Add (no recomplement) A Li + 3+ La + g 1,4,7 char. string
Add (recomplement) A Li + 3 + La + 4Lp 1,4,7 char. string
Branch B Ly +1 4 3 char
Branch if Bit Equal§ W Li+ 2 8 1, 3 char
Branch if Character Equal B Li+ 2 8 1, 3 char
Branch if Indicator On B Li+1 5 1, 3 char
Branch if Word Mark and/or Zone A Li + 2 8 1, 3 char
Clear Storage / Lr+ 1+ L 1,4,7 char. string
Clear Word Mark huf Ly +3 1,4,7 1 char
Compare C Li+1+Ls+1Ls 1,7 char. string
Divide (aver.)§ % Li + 2 + 7Lrlg + 8Lg 7 char. string
Halt . Lr + 1 1
Load Characters to A Word Mark L L+ 1+24, 4,7 char. string
Modify Address§ # L +9 4,7 3 char
Move Characters to A or B Word Mark M L+ 1+ 2L, 4,7 char. string
Move Characters and Edit E L+l+la+ls+ Ly 7 char. string
Move Characters to Record or Word Mark§ P L + 1 + 2La 7 char. string
Move Characters and Suppress Zeros Z Li+ 1+ 3La 7 char. string
Move and Insert Zeros§ X Li + 1 + 2514 + 2L, 7 char. string
Move Numeric D Li + 3 1,7 1 char
Move Zone Y L + 3 1,7 1 char
Multiply (aver.)§ @ Li + 3 + 2L¢ + 5lely + 7Ly 7 char. string
No operation N Li+1 1
Set Word Mark , Lr + 3 4,7 1 char
Store A-Address Register§ Q Li+5 4 3 char
Store B-Address Register§ H Lr + 4 4 3 char
Subtract (no recomplement) S Ly +34+Ls+ Lp 1,4,7 char. string
Subtract (recomplement) S Ly + 3 + La + 4Lg 1,4,7 char. string
Zero and Add ? Li+1 4+ La+ Lg 1,4,7 char. string
Zero and Subtract ! L+ 1+ Ly + Lg 1,4,7 char. string

T Alphanumeric code used to specify instruction.
EM(t.cycle: 11.5 ps/char)
§ Optional-feature instructions.

Abbreviations for symbols used in timing:
La = length of the A-field (in characters)
Lg = length of the B-field

Lc = length of multiplicand field
L; = length of instruction

Ly = length of multiplier field
Lq = length of quotient field

Lr = length of divisor field

1

Ly = number of significant digits in divisor (excludes highorder Os and blanks)
length of A- or B-field, whichever is shorter

,_
2
il

Lx = number of characters to be cleaned

number of Os inserted in a field

&
[T

= number of fields included in an operation

number of characters back to rightmost O in control field
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Fig. 3. IBM 1401 instruction-interpretation state diagram.

n — 1]. The values of the string are based on the bed value of
the 8, 4, 2, 1 bits of each digit. The magnitude of the integer is

Cln — 1] X 1™ 4 C[n — 2] X 10™2 4 ... + C[0] X 10°

and the sign is
Sign := (1 C[0]CA") A C[OKBY)) — —;
~(RCIOKAY A CIOKBY) — +)

A string is addressed (or accessed) via the A_address or B_ad-
dress pointer registers. These point to the tail (or least significant
digit), that is, C[0], of the string. The instruction-execution state
diagram of a variable-string add is shown in Fig. 4. The state
diagram assumes that A and B address registers are set up accord-
ing to Fig. 3. Thus Fig. 4 is a more detailed description of states
0.v, 0.v, 0, and o.v’. Each horizontal pair of states (Fig. 4) corre-
sponds to a single scan of the states of type 1 instruction o.v, 0.v, o,
o.v' in Fig. 3. Transitions among states 2 and 3 correspond to the
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character-by-character scan with string A and B being added
together; the result string is placed in B. States 4 and 5 define
the string addition, when string A is terminated; i.e., it is con-
sidered to be zero. States 7, 8, 9, and 10 define the recomple-
mentation process in which the B string has to be recomplemented.
This condition occurs when the operand signs differ, and the
A-field result is greater than the B field; the results are in ten’s
complement form. States 7 and 8 define the B-field scan (to return
to find the least digit of B), and states 9 and 10 define the recom-
plementation of each character. Thus an add operation may re-
quire up to three scans of the B string.

The 1401 ISP (Appendix 1 of this chapter) has four parts: State
Declaration, Instruction-interpretation process, Instruction-exe-
cution process, and Operand address-register calculation proc-
ess. The Operand address-register calculation process is analogous
to the Effective-address calculation in more conventional Pc¢’s and
is the most elaborate part of the instruction interpretation. The
operand address registers A_address and B_address are part of the
Pc state and must be retained between instructions. At the end
of an instruction, these registers point to the character of the next
lowest data string in Mp, that is, the character at C[n].

Implementation

The 1401 has a sma