
A C O U R S E  OF 


A L G O  L 60  P R O G R A M M I N G  

with special reference to the DASK ALGOL system 

Second edition 

by 

P e t e r  N a u r  

REGNECENTRALEN, COPENHAGEN 

1961 



C ~ 0 

~ t ~ , ~ 1 ( ~ 1 ~ . t . ~  ~ • • • • ~ • o • ~ ~ ~ • • ~ i ,  • • t B ~ o. o, o • • ~ e, • • 

C o ~ ' ~  ~ - . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  7 


, ~ r m m m ,  ' t o  m ~ e  o f  t ,  h e  l w ~ , l e m  . . . . . . . .  . . . . . . .  . . . . .  . . . 28  

I .  X ~ f o r  a ~ ' ~ b l e  . . . . . . . . . . . . . . . . .  ~2 


- 2 .  '1'he so , I .d . . foR o i l  z ~ . l ~ t e  ~ . . . . . . . . .  . . . .  ~ ,  

- 3 .  ~ e  . t , u ~ : r , ~  o t  L lSo~ ' r , ~mm . . . . . . . . . . . . . . . . . . . .  ~?  

- 4. The ~use o~ b.lo~iras ~ 1~eeednz~s ................ ~8  




5 INTRODUCTION. 

~TRODUCTI~. 

The d i f f i c u l t y  of  l e a r n i n g  the  a l g o r i t h m i c  language  ALGOL 60 may be 
bo th  under  and o v e r - e s t i m a t e d .  While i t  i s  t r u e  t h a t  a few hours  of  s tudy  
under sult~ble supervision may place the student in a position to express 

himself intelligently in a basic part of the language, it is clear that a 

complete mastery of all the possibilities of the language will require 

conslderably more stu~v. On the other hand the feeling of despair which 

may seize the student who for the first time tries to acquaint himself 

with the ALGOL 60 report is caused largely by the special character of 

this report. In fact, being designed to present as concise and complete a 

description of the language as possible, ~he ALGOL 60 report cannot be ex- 

pected to act as a well balanced first introduction as well. 


The purpose of the present course is to act as a guide for the stu- 
dent who wishes to acquire a thorough knowledge of the is~guage and some 
facility in expressing himself in it. Since thoroughness is aimed at it 
seems obvious from the outset that the course must be based firmly on the 
ALGOL 60 r e p o r t  itself. For this reason the course itself basically con- 
sists only of a set of directions in how to read the AL~0L 60 report and 
a set of accompanying exercises. 0n~y occasionally have special notes, 
dealing with l~rticular points in the ALGOL 60 report, bee~ added. Thus 
it is hoped that having worked through the d41rections given in the present 
course, the student will be in a position to understand the ALGOL 60 re- 
port and to use it as his stendard refere~e. 

Since the course ~s written primarily for students of the DASK ALGOL 

translator syste~ the special characteristics of this system are explained 

end used. This gives the added a~Ivantage over a pure reference is~guage 

course that conventions for input and output are available. On the other 

hand since the DASK ALGOL representation in its appearance lies very close 

to the reference lam~uage ~ch of the material presented will probably be 

of more general interest. 


Because of the special character of %~ course the student who is 

completely u~rel~red will need an informal introduction to the language. 

Danish readers may use one of the following articles for this purpose: 


W. Heise: AL~0L - et internationalt sprog for elektronregnemaskiner. 
Lugeni~re~ mr. 17, i. sept. i959 (this article is s~what out of date, 
being based on a preliminary version of the language, but will serve as 
introduction all the same). 

P. Naur: ALGOL - det internationals sprog til at beskrive logiske og 

n ~ e r i s k e  p r o c e s s e r .  Nordisk ~ t e m a t i s k  T i d s s k r i f t ,  Bind 8 (1960) 117. 



6 XIfi'~3DUCTION. 


The course is divided into consecutively n~bered points. Within each 
of these points additional notes and problems ~y appear. Section nmnBers 
will refer to the secti~s of the ~ ~60 report. References to A MANUAL 
OF THE DASK ALGOL LA~UAGE will be written a s  for example MANUAL section 
7.1.2. For each point there is left space open for the student to note the 

time required to ~ork thltt point. 




7 THE COURSE. 

~ E  COURSE. 

1. Read th rough  s e c t i o n  1, n o t  i n c l u d i n g  1 .1 .  (Time mln. ) 

2. Reed through the same section, this time noticing particularly the fol- 

lowing concepts: 


arithmetic expressions 

assi~ent stat~ents 

s t a t e m e n t s  

l a b e l s  

c ~pound statements 
declarations 
blocks 
p r o g r a m  (TAme m~.. ) 

3 .  Read c a r e f u l l y  t h rough  the  problem d e s c r i p t i o n  g i v e n  i n  Appendix 1. Try  
t o  r e c o g n i z e  i n s t a n c e s  o f  some o f  t h e  concep t s  l i s t e d  i n  p o i n t  2. 

3 Problem i. Which of the concepts listed in 2 do not sppear in the pro- 

blem description of Appendix i ? . 


4. Study section 1.1 Formalism for syntactic description. (Time rain. ) 


A~ Note 1. The meani~ of the syntactic formulae may he further explained 
by ~ that words enclosed in the bracket < >, like (ab>, denote clas- 
ses whose members are sequences of basic symbols. Class desiKnatlons of 
this kind are found in any description of a language. For describing ordi- 
nary natural languages designations like word, verb, noun, are used. This 
of co'uLrse introduces the logical difficulty that a clear destinctlon be- 
twee~ the languaKe described and the language used for description (the 
meta-la~uage) is not ~e (the designatlon verb is itself a word, but not 
a verb). This difficulty is avoided in the description of AI~0L by intro- 
ducing the special mark < > for metal~nulstic classes. 

The fact that the syntactic rules of AlgOL may be described fully and 
c o n v e n i e n t l y  by  means o f  t h e  very simple forn~!is~n of section 1.i i8 of 
course simply a consequence of the ~wy the Is~uage has been defined. 



8 TEE COURSE. 


4 Problem 1. Half of the following sequences are values of <ab> as defined 

in section 1.1, the rest are not. Find those which are. 

I. 213 5. [2.73( 	 9- (a + b) 

3. f~(34 	 v. [2?(3((( 11. [22(2(3) 
~. 	 s. ((a 12. (987(65 

5. Read once carefully through sections 2, 2.1, 2.2.1, 2.2.2, 2.3, inclu- 

the footnote 1 to section 2.1. Do not try to learn this section by 


heart. 


5 Note I. Note the following special features of the DASX AL00L represen- 

ration: 

The DASK ALGOL alphabet includes m,£,~,@. 

. is not included in DASK ALGOL. 

For  T DASK ALGOL uses  


is not included in DASK ALGOL 
For -~ DASK ALGOL uses -, 
For ' and ' DASK ALGOL ~ea ¢ and 
For Boolean DASK ALGOL ~ea boolean 
The third form of c~ent is permitted only in the restricted form 
end <any sequence of digits or letters> (Time =in.) 

5 Problem i. Some of the following characters or groups of characters re- 

present basic ALGOL 60 symbols, others do not. Using sections 2 - 2.3 as 

reference, find those which do. 

1. a7 	 5. ~ 9. end 

2. function 6. x 	 i0. 

3. value 	 7. := 11. unt_.__~ 
4. 	 : 8. - :  12. -> 

rain. ) 

5 Problem 2. Use the ccmnent conventions to contract the followi~ sequen-

ces as much as syntactically possible: 

1. a:=b+3 ! ccmam~t Now comes the inner loop ! V: l~/:=n ! 

2. be~in comment This is executed whenever q~7 ! if I~0 then o ~  W ! 

3. ~I~T.'-~ ~ section 2 els___~ ~ t_~ W 
 . . . . . . 


4. tu:=v~2 end block V and ~_d block sub V ! 

(Ti=e ~ .  ) 

6. Study section 6: 8-channel punch tape code and flexowriter keyboard. 


6 Problem 1. Fo r  each  o f  t h e  d e l i m i t e r s  which i s  n o t  an u n d e r l i n e d  word, 
find out how it will be typed using the DASK ALGOL keyboard. Ass~ that 
the previous case shift is unknmm, find the number of keys to be depres- 
sed for each of the delimiters. Arrange the dellmlters in groups according 
to the number of keys to be depressed and find the ntmber of dellmiters in 
each group. (Time mln. ) 

mailto:m,�,~,@


9 THE COURSE. 


7. Study sections 2.4.1 - 2.4.3. 

7 Note 1. In DASK ALGOL only the first six characters of an identifier 

will be recognized. Thus, although identifiers of any length may be used, 

two identifiers, to be different, must differ in one or more of the first 

six characters. 


7 Note 2. The complete list of reserved identifiers of DASK ALGOL is given 

i n  MANUAL s e c t i o n  7.4. 

7 Note 3. The sentence in section 2.4.3 on the same identifier denoting 
different quantities implies that at any one place in an ALGOL program one 
cannot have an identifier denoting, say, both a simple quantity (a nulber) 
and a m a t r i x  (an  a r r a y  o f  nmabers) .  Th is  r e s t r i c t i o n  i s  n o t  obvious s i n c e  
it is al~ays possible to recognize array identifiers by the following bra- 
cket [ ]. (Time lldJm.) 

7 Problem 1. Some of the following sequences of characters can be used as 

identifiers, others cannot. Mark those which can. 

1. b e g i n  5. P7.2 9. 7VPQ 
2. axv 6. Start value I0. _~ 

3. 4711 7. nmnber 11. a29v3 
Ii.. PPP3 8. Q(2) 12. e p s i l o n  

xL,.) 


8. Reed section 2.5.1 -2.5.4. (~ ,~.n. ) 

8 Note 1. In DASK ALGOL nmnbers must be confined to the following ranges 

- 524288 < integer ~ 524287 

2.9%.9 ~ ~bs(~) ~ 3.40~8 


8 Problem 1. Write numbers having the same values as t h e  followlng, but 
which do not include an exponent pert. 
1. +7.293~o8 3. ~+3 5. -~-6 

2. 98.121o+2 4. - .  lt:~4~-5 6. •-g. 81o~ 

8 Problem 2. The values given by the following n~bers may, in some cases, 
be e x p r e s s e d  more e c o n o m i c a l l y  by u s i n g  a number wi th  an exponent  p a r t .  
Show where t h i s  i s  t he  ca se .  
1. 17ooo 3. -o.oo134 5. -o.oo2oo41298 
2. 1000 4. 1.0024 6. 170 

(TJ.ffi~ ,~. } 


8 Problem 3. Some of the followir~ sequences of characters represent num- 

bers, some do not. Mark those which do. 

1. - . 0  08 5. -17.2.30 9- 13.411 732 
2. +13.47m+18 6. +4.2 10. 2.48~n 

3. 4 ~ _-2 7. --88 -7 11. ~ 64~.2 

4. (16.2%) 8. 1,2]~ ~2. 12.1o8 


(T~,~ ~n. ) 




10 THE COURSE. 


9. The sections 2.6 end 2.7 may be skipped for the moment. Read section 

2.8. Continue to read section 3 up to and including section 3.1.3 leaving 

out, however, anything dealing with subscripts or arrays. 


9 Note 1. A recursive definition is a definition which uses the defined 

object itself as a part of it. 


9 Note 2. The d e f i n i t i o n  i n  s e c t i o n  3 . 1 . 1  of a s imple  v a r i a b l e  i s  unne -
c e s s a r i l y  complicated since the construction <variable identifier> is com- 
pletely equivalent with <simple variable>. The formulation given ~as cho- 
sen because it ~as considered desirable that there exist a <variable iden- 
tifier> analogous to <array identifier>, <procedure identifier>, and 
<switch identifier>. (Time rain. ) 

9 Problem 1. Which of the examples of section 3.1.2 denote simple varia- 

b:e, ~. ( Ti,,,e ~n. ) 

10. Study section 5.1.1 - 5.1.3 on type declarations. 


10 Note 1. Remember that DASK ALGOL writes boolean. (Time rain. ) 

10 Problem 1. Same of the following sequences denote type declarations, 

some do not. Mark those which do. 

i. i n_~_~r ql0 qll, h 7. own boolean t r u e  
2, _~._~.£~r 8. _~..'~,._~. xz, (v) 
3.  boo__l~H} i n t e g e r  9. r~! k I B 
4. ..~..~.~r.a5, 7 10. 
5- ~_~_ number, HH ii. r ~  2.3~ 
6. im_~r 2,~b, L2, ~ 12. E~! STUFF 


(TJ.m ~.n. ) 

11. Read sections 3.3.1, 3.3.2, the first paragraph of 3.3.3, and 3.3.4 -
3.3.5.2, leaving out, however, anyth!n= dealing with function designators, 
if clauses, end subscripted variables. (Time rain. ) 

11 Note 1. DASK ALGOL does not include ,. 


11 Example 1. The proof that a given construction is an ALGOL 60 arithme- 

tic expression is equivalent to showing that the construction may be for- 

reed through applications of the rules Of section 3.3.1. Thus for elmmple 

the construction 


(b+c e f) g 

is proved to be an expression through the following steps: 
Primaries: a b c d e f g 
Factors: a b c d g 

and therefore also: d 


Terms: a b c 

and therefore also: c x d ~ e ~ f 


Simple arit~etic expressicas: b 

and  t h e r e f o r e  a l s o :  b + c x d ~ e ~ f 



11 THE COURSE. 


A r i t h m e t i c  e x p r e s s i o n :  b+cxd IeI' 
P r i m r y :  e r) 
F a c t o r :  + c  d e f) 
Term: a x • r) 

and. t h e r e f o r e  a l s o :  a x + c  d e f) xg 
Simple arithBetlc expression: a x + c  d e f) ~g 
Arithmetic e x p r e s s i o n :  a x e f) xg 
Through the analysis we have had o c c a s i o n  t o  introduce the following num- 
bers of syntactic units: 
P r i m a r i e s :  8 
Factors: 8 
Terms: 6 
Simple arithmetic expressions: 3 
Arithmetic expressions: 2 (Time rain. ) 

11 Problem 1. Analyze in the sane way as in the previous example the con- 

struction of each of the following arithmetlc expressions and find the 

nt~ber of different syntactic units in each case. 

1. ((e)) 
2. ~/~s+~) 

3.  +A-2x ( C+D,~,(E-F ) ) 

Having worked through these examples  you will realize that the apparently 

rather c~pllcated rules of section 3.3.1 essentially are only a concise 

formulation of the ordinary rules for writing arithmetic ex~resslons. 


(~ ~ n .  ) 

11 Problem 2. Sue of the followir~ sequences are arithmetic expressions, 
some are not. Mark those which are. 

i. ~b/~/exr 5. 3.~(V+n)/4 

2. +ax-b 6. PQ~+7.3 + 


• ~6x4.3 + Q 7.  - ( + ( - v ) )  
4. 2,5o6/4.3 8. p/qrsxtu-v (Time rain. ) 


11 problem 3. For each of the correct arithmetic expressions of 11 Problem 

2 write a reasonable type declaration for the variables which occur in the 

expression. (Time rain. ) 


11 Problem 4. Assuming that at a certain point in a program t h e  values of 

seven slmple variables are as follows: 

va = 2, vb - 3, vc = 4, vd = 5, ve - 6, vf = 7, vg - 8, 

f i n d  the v a l u e s  of the following e x p r e s s i o n s :  

1. "V'a -I- YC x v b  / v e  
2. vd x VC + V g ) /  v e  / ',m 
3. vc + vd - vb) 

4. vf a ~  ( ~ - v c ) / v b /  ( v h + v c )  
5. 

6. 

7. (VC vb~ .~ Va 
8. 

9. vb ~ ~ - v e )  ~ ( - v a )  + ~ )  ~ v a  + v e ) ~ ( ~  - ~ ) )  -vS + 2 
10. vc + (vs-vb) 

11. I v S - ~ )  ~ v b  + r e  
12. ve v r  - va) + vc (Time ~n.) 



12 THE COURSE. 

11 Problem 5. Write the following mthesmtical exI~'eulo~ as AT.J~OL ex- 
pressions, without using redtmdant parentheses: 

8 - t
I. S + - - 


v 2 

2 .  ( u  - w)O.  - ~ - ~ - - - ~  ~ 

n+m 


5. d °+~ 

6. (4') g 


7. 
 ~t 

r 


b 

a 


~(j-k) (~) 

h + q (~e ran.) 


12. Read sections 4.2.1 - 4.2.1~ ignoring f o r  the ~ent the references to 
subscripted variables and the entler funeti~. 

12 Example  1.  As e x p l a i n e d  i n  g r e a t e r  d e t a i l  l a t e r  s t a t e m e n t s  a n d  d e c l a r a -
t i o n s  a r e  n o r ~ y  l e p ~ r ~ t e d  b y  a s e m i c o l o n  a n d  c o n s e c u t i v e  i t a t e m e n t e  
w i l l  n o r ~ l l y  b e  e x e c u t e d  i n  t h e  o r d e r  i n  w h i c h  t h e y  a r e  w r i t t e n .  Thus  a 
p a r t  of  a p r o g r a m  might l o o k  llke this: 

real a, b, p, q ! 
a := b := 7 ! 

p :- a + 3 x b - 2.310-1 ! 

q , -p+(~+3) / ( -b - l~ )  I 
a : - p : = q - b  x 0 . 2  ! 

In o r d e r  t o  f o l l o w  t h e  sntl~ o f  l:~ese stateaents it is useful t o  w r i t e  a 
table with a colmm for each variable, where each new value of this varia- 
ble is entered. Such a table II s h o ~  below, where in addition the inser- 
ted numbere from 1 to 6 show the order in which the new values are formed. 

a b p q 

I: 7 2: 7 3, 27.77 ~: 27.27 

5:25.87 6:25.87 


Thus the final values of a, b, p, and q, are 25.87, 7, 25.87, and 27.27, 

respectively. (Time rain. ) 




13 THE COURSE. 


12 Problem 1. Using the same system as in 12 Exmmple 1, follow the action 
of the following statements and find the final values of the variables. 

re_al rl, r a ,  rb ! 

n :==5 ; 
r l  : n ~ ( n  + 15) ; 

r b  := n + 6/(6 x r l  + 0 . 5 )  ; 

i := n := n - 2 | 

J :=rb-i ; 

ra := (J - I )  x rl x (rb - /4) ! 

rl := ra+ rb + n+ I + J + 8 x rl ! 

rb := (rl - rb x n + J - ra) $ (rb -j) + ra , 

J := n :- l+n~- (J - 2) ; 

i :=n+ ra; (~NJe ,~.,.) 


13. Read sections 3.4.1 - 3.4.6.2. ( ~ e  ran.) 

13 Note 1. In DASK ALGOL the implication operator D is not included. 


13 Problem 1. Using the ssme technique as the one explained in 11 Exsmple 

1, analyze the following Boolean expressions and find the number of rela- 

tions, Boolean pr~v'ies, Boolean secondaries, Boolean factors, Boolean 

terms, Implications, simple Booleans and Boolean expressions entering into 

each of them: 

i. (( )^(P>QvW)) 


17.2 vWAQv-, T 


13 Problem 2. For each of the expressions of 13 Problem I, write suitable 

type declarations for the identifiers. (Time min. ) 


13 Problem 3. Using the s a n e  scheme as in 12 Example 1, work through the 
following statements and find the final values of all variables. 

Ee_~ ra, rb ; 

boolean ha, bb | 

:'7.3 ! 


la :=5 ; 

rb := 3 x ra- 2 x ia l 

ba := rb > la ^ ia > ra ; 

ra := 2 x (ra- la) - 1 ; 

ba := -, ra > lavba ; 

bb := (ba = rb > ia) A ra < rb ! 

ba := -,(ha vbb) , (Time ~.) 




14 THE cotr~E.  

14. Convince yourself that according to section 3.5.1 a label may be an 

unsigned integer or an identifier and that a designational expression may 

be a label. Read sections 3.5.5 and 4 and the first three lines of section 

4.1.1. Read sections 4.3.1 - 4.3.3. 


14 Note 1. In DASK ALGOL unsigned integers cannot be used as labels. 


14 Problem I. The following statements generate a sequence of values for 

SUM. Find the first four of these values. 

re___~ p, q, SUM ! 
i n ~ e ~ r  n 1 
n : = l !  
p := 0.5 ! 
SUM :=0 ! 
q:~l! 

loop:SUM :- SUM + q/n ! 
q : m q x p !  
n :-n+ 1 ; 
~qto loop ! (Time mln.) 

15. Reed sections 4.4.1 - 4.4.3. (Time mln. ) 

16. Read sections 4.5.1 - 4.5.4 ignoring for the moment those syntactic u- 

nits which have not yet been defines during the course. 


16 Note 1. The necessity of introducing the <unconditional statement> ari- 
ses because  a construction like 

If B1 then if B2 t_h_en S := exp els___S V :- Q + 1 ! 
must be avoldecl since its meaning is not clear. (Time sin. ) 

16 Note 2. The basic point of the syntax of conditional statement is the 
following: 

An i__f can never follow a th_e_n. 

16 Problen i. Using the syste~ of 12 Example 1 follow the action of the 

following statements and find the final values of all variables. 


~rea.! u, W ! 
boo l ean  B ! 
u : = 3 !  
B : =  t ~ _ e  ! 

repeat : W : = u - 2 !  
i ~  ~ -	 1/u > o ^ w > -2  th_.~ u : - 1 /u 
e l s e  i~' B t.,3e_n 6_o_~ Z 
e l s e  ~o t .~  end ! 

Z: 	 B :- f~lje ! 

u:=W+2xu! 

~2to repeat I 


end: 	 B := u _> W (Time mln.) 




• • • • • 

• • • • • 

15 THE COURSE. 


17. Read sections 4.1.1 - 4.1.3 ignoring the syntactic units which have 

not yet been covered: procedure statea~nts, for statements. Reed also sec- 

tion 5. 


17 Note 1. Section 4.1.1 gives the important rules of how to Join state- 

ments and declarations together to form a program. The -w~n difficulty of 

this section is that of punctuation, particularly of when to write semi- 

colon and when not to. The difficulty is directly connected with the use 

of the delimiter .~. As a guide for the student the relevant rules may be 

restated as follows: 


PUNCTUATION RULE I: Within a program the first symbol following any 

statement (whether basic or not) must be one of the following three: 


; e_lse ~__.d 
Ptq~C 'FJATION RULE 2 :  A n y  s e q u e n c e  . . . e n d  e n d  e n d  . . . w i t h i n  a 

p r o g r a m  m u s t  a l w a y s  b e  t e r m i n a t e d  b y  s e m i c o l o n  o r  el_...se. 
Punctuation rule 1 follows directly from the syntactic rules gover-


ning statements (sections 4.1.1, 4.5.1, 4.6.1, and 5.4.1). Punctuation ru- 

le 2 follows from observing that an end, whenever it occurs, is the last 

symbol of some statement, and then applying punctuation rule 1. 


(Time rain. ) 


17 Note 2. Recall the special comment conventions for e n_d (section 2.3). 


17 Note 3. In DASK ALGOL the declarations in a block head cannot be given 
in an arbitrary order, but must a p p e a r  i n  the following order: 

First: type declarations 
S e c o n d :  a r r a y  -

T h i r d :  s ~ r J . t c h  -

Fourth: procedure -


17 Exawple i. The concept local may be illustrated by an example of a pro- 

gram structure as follows: 

LI: her re___~ A, B, C ! 


L2: P: A :-B+ 2 x C ! 


L3: ~s_~ _~_ A, ~ ; 


Q i ; - '2" . 'B ÷ c , 
LS: D:-2+B+A! 


L6: P: C := 2 x A-D ! 


L7: 


58: 


Lg: _~d ! 


L10: R: ~o_~P 


Ll1: ena 


http:el_...se


16 T~C0~E. 


Here we have a larger block, from L1 to Lll, containing as one statement a 

mml]er block froR L3 to Lg. In the outer block we work with the identi- 

fiers A, B, and C, which are local to this block. In the statement at L2 a 

value is asslgned to this A. The inner block introduces a new, local, A 

an~ a D. Thl8 A, then, has no relation to the A of the outer block, which 

is now screenecl. The variables B and C, on ~he other hand, are the same in 

both blocks. At L4 they are used to aselgn a value to the local A. This 

value is again used ~o assign a value to the local D at L5 • These opera- 

tions make no use whatsoever of the A of the outer block. At L6 a value is 

assignecl to the non-local C, using the local A and D. Labels are autoaBti- 

cally local. Thus the labels Q and P at lJ~ and L6 are only accessible from 

inside the inner block. The gO to statement at L7 will therefore lead to 

the sta~a~nt at L6. The go to statement at LS, on the other hand, will 

lead out of the inner block to L10 because the identifier R, bein 6 not de- 

clarecl in the inner block, will be non-local. The moment this passe~ge out 

of the inner block occurs the local variables A and D are completely lost. 

The go to sf~tf~ent at L10 will lead to L2 because the label P at L6 is 

local to the inner block end thus inaccessible from L10. (Time min. ) 


17 Problem 1. Using the system of 12 Example 1 follow the action of the 

following program and find the values of those variables which are defined 

at the label STOP. 


beD__ ~__~W, S, B, C ; 

Li: W := 8; 

L2: S := 3 ! 

L3: B := 2 x W - S ! 

IJt: C :- B - W ; 


LS: W := B- 2 x C ; 

56: P :- C~2 - B ! 

L7: AA: W :- P - 2 x W ! 

LS: C :-C+ 1 ; 

Lg: i_f W > 1 then 6o_t_o AA ! 

L10z S :=W - P + S 


Lli: 	 W := W - C + S ! 

STOP: 

en_~ ! (Time rain. ) 


17Problem 2. Cheek the syntactic structure of the program of 17 Problem 

i ~ainst the rules of section 4.1.1 and find the number of unlabelled 

basic statements, basic statements, unconditional statements, statements, 

colpouncltails, block heads, unlabelled c~apounds, unlabelled blocks, com-

pound statements, and blocks. (Time min.) 


18. Read section 2.7. 


18 Note i. The scope of a label comprises, so to speak, all those state- 

ments from~hich the label may be seen. 


18 Note 2. The definition of scope should be changed to read: 

The scope of a quantity is the set of basic statements, if clauses 


and for clauses .... 




17 THE COURSE. 


18 Example 1. The concept of scope may be illustrated by the e~-.Dle given 

in 17 E~mple i. The scopes of the different quantities are as follows: 


Scope includes stat~__ents at 

A and P in outer block L2 L10 

B, C, and R L2, L4, L5, L6, L7, LS, L10 

D, Q, and A and P in inner block L4, L5, L6, LT, L8 


(Time ~.) 


18 Problem 1. Find the scopes of all the identifiers of 17 Problem 1. 

(TiMe IE[n. ) 


18 Note 3. The meaning of the second paragraph of section 2.4.3 should now 

be clear. 


19. Read sections 5.2.1 - 5.2.4.4. (Time rain. ) 


19 Note 1. In DASK ALGOL ~ ar~ys cannot be handled (cf. MANUAL section 

7.12). 


19Problem 1. Write a declaratlon for tb~ following arrays: 

MatA and~tB, having two subscripts, the first runningfrom 1 to k, 


the second from 1 to n, 

Zoop, having four subscripts, the first running from -7 to +7, the 


second from 1 to 10, and the third and fourth from 0 to I. 

(~ ~n.) 


20. Read (revise) sections 3.1.1 - 3.1.4.2, paying special attention to 

the subscripted variables. (Time min.) 


21. Convince yourself that according to section 3.3.1 subscripted varia- 

bles maybe used in the same wayas simple variables in arithmetic expres- 

sions. (Time min.) 


22. Read (revise) sections 4.2.1 - 4.2.4. (Time rain. ) 


22 Note 1. In the fourth example of section k.2.2 there is a mistake in 

some of the editions of the AI~0L 60 report. The first symbol should be S 

(not s, cf. section 2.4.3). (Time min.) 


22 E~ple 1. The detailed exllanations of secti~)ns 4.2.3.1 - 4.2.3.3 8re 

relevant in a case llke: 


~nl ~A[I : 1o] 

n:=2| 

A[n+ 1] := n :=n + 2 ! 


Section 4.2.3.1 produces: 

A[3] :=n := 

Section 4.2.3.2 gives the value of the expression as 4. 
Section 4.2.3.3 assigns 4 to n and A[3]. (~i~ ~.n.) 



 

18 THE COURSE. 


22 Problem I. Using a~in the system of 12 Exsmple 1 follow the action of 

the following program and find the values of all variables at the label 

STOP. 

b_e6~ ~te~r i, J I ~!~_r ~r~ A[i:3, 1:2], C[0:2] I 

J := i :== 1 ! 

C[J-I] ; A[J,i] := J :~ i + 2 x J + 2 , 

A[2~i, C[J-2-3.i!-3] : J-2 ~iI 
C[A[2,2~J-8]-3] : i := i + J ;. 
A[C[J-i+I~2. 4xA[l,l] - 3xi] : All, 2x(i-J)] : , ,  A[2,2] - A[1,1] , 
i := - A[3,2] , 
~:=i-J! 

All -J-2] , - c[i-1] : .  7 
A[A[2,2], C[I] - C[O]] : ~[i] := 2 x i , 
STOP: 

~.) 


23. Read sections 3.2.1 - 3.2.5. Ignore the concepts <string> and <switch 

identifier> and the references to procedure declarations and procedure 

statements. If necessary use the alphabetic index at the en~ of the ALaOL 

60 report to find the definitions of any other syntactic units. 


24. Convince yourself that, according to section 3.3.1, function desi~a- 

tc s be In t tio . .ions in the m 

riables. 


24 Problem I. Follow the action of the following stat~ents and find the 
final values of all variables. 
bes_L_l r e a l  r ,  p, s ,  log I 

~-:--4-V~ct~(1) , 
 . 

r :- 4 ~ sln(W6) ; 
p : , ,  p/r | 

s := 5 + cos(p x sqrt(2xr~2 + 1)) 

r :- sign(r~ - 2 ~ s)~(s - r) , 
log , - ~,x(s+r))/ln(1o) , 
p := p x (s+r) 
e n_a • (T~ ~. ) 




19 THE COURSE. 


24 Problem 2. Write an algorithm for calculating the complete solution of 

the second order equation 


Az 2 + Bz + C = 0 

The algorithm should be written as a block having the real variables A, B, 

and C, supplied from outside and itself supplying the solution in the form 

of two complex numbers. These should be expressed as four real variables 

using the following identifiers: 


zlr real part of first solution 

zli ~m~inary part of first solution 

z2r real part of second solution 

z2i ~.~ginary part of second solution. 

The quantities which have a meaning outside the block of course 


should not be declared in the block head. 

The solutions are given by the usual formula: 


- B ± - 4 A C  
Z ~ 

2A 

If B2-~AC is negative this formula should be used for finding both of the 


complex solutions. If, however, B2-4AC is positive the following method 

should be used for avoiding forming the numerator as the difference be- 

tween two nearly equal nt~bers: The above formula should be used only for 

finding one of the roots, nsmely the one which results from taking that 

siga of the square root which makes the ntmaerator be formed as the sum of 

two numbers of equal sign in other words from taking + the square root 

when B is negative and - the square root when B is positive. The other 

real root may then be formed from 


C

z2 - ..... 


Ax zl 0 

where zl denotes the first ro~. 


If AgO the equation is ~inear and should be solved as such. If also 
B~O the algorithm should go to a label outside the block c-11ed INDE~MI- 
NATE. 

If the two solutions degenerate to one both zl and z2 should be set 

equal to the correct solution. If the solutions are real the imaginary 

parts should, of course, be set to zero. 


Check your algorithm by following the action of it for the following 

sets of the parameters: 


Parameter set A B C 

1 0 0 2 

2 o 4 8 

3 2 o -8  


1 - l o  9 

5 -i +1o -9 

6 -i -4 -4 

7 2 -8 26 
8 4 o o (~ime rain. ) 

25. Read ( r e v i s e )  s e c t i o n s  3 . 3 . i  - 3 . 3 . 3  p e y i n g  s p e c i a l  a t t e n t i o n  t o  t h e  
mechanism of the if clause and _else (see particularly the second paragraph 

of section 3.3.3). 




20 THE COURSE. 


25 Note 1. In an expression like 


it is important to notice that the meaning is equivalent to 

i_fBth__y~p else (q + r) 


and not equivalent to 

( i f  B the_..n p els__.e q) + r 

The reason for this is the following: The + in the original expression 
must, according to section 3.3.1, stand between a <simple arithmetic ex- 
pression> on the left, and a <term> on the right. The <term> obviously is 
r. The <simple arithmetic expression> must be q. It cannot be 


i_f B 	 .t..he~ p els..__.~ q 
since this is not a <simple arithmetic expression>. (Time min.) 


25 Problem 1. Follow the action of the following statements and find the 

final values of all variables. 


a:-7; 

V: 	 b := if a > i0 th_e_n 15+a e__lse 13-a ! 


a :- 17-b ! 


STOP: 

end (Time rain. ) 


25 Problem 2. Find out whether the following construction is correct or 

not, and prove your conclusion on the basis of sectlon3.3.1: 


A + if q<O the___n 7 sls~ 4 (Time man.) 


25 Problem 3. Write an al~orithm for finding the polar coordinates r and 

v when the rectangular coordinates x and y are given. This is equivalent 

to solving the equations 


r cos v = x 

r sin v ~ y 


The angle v, which should lie in the range from 0 to 27~, should be deter- 

mined through the use of the standard function arctan. The quadrant must, 

however, be determined from the sign of x or y. Be sure that your algo- 

rit~ will work also for x and/or y - O. If both are zero v should be set 

to zero. 


Check your algorithm by following its action when x and y are given 

initially as follows: 


Case: 1 2 3 4 5 6 7 B 9 

x 0 1 1 0 -1 -1 -1 0 i 

y o o I I i o -i -i -I (Time rain.) 


26. Read section 3.3.6 and MANUAL section 7.6. on the arithmetics. 

(T~ min. ) 

27. 	 Read (revise) section 3.4.1 paying special attention to the if clause 

and e~s_e. 	 (T:bne ~i . .  ) 



21 THE COURSE. 


27 Problem 1. Find the value of the sixth expression of section 3.4.2: 


for the following three sets of values of the variables: 
k s w h c 

Set i -1 2 2 4 3 
2 2 2 2 4 3 
3 1 4 5 2 2 	 (Time ~n.) 

27 Problem 2. F ind  the  v a l u e  o f  t h e  l a s t  e x p r e s s i o n  o f  s e c t i o n  3 . 4 . 2 :  
if if if a th_s_n b el s_e c then d else f then g e_ls_e h<k 

for the following three sets of values of the entering variables: 
a b c d f g h k 

Set I true true true false false false 5 7 
2 false true false false true f~ise 5 4 
3 fals_e _f_~_s..e _f_~.se_ t_~_e fa lse  fa lse 5 

m4n,) 


28. Read s e c t i o n s  3 . 5 . 1  - 3 . 5 . 4  and 5 .3 .1  - 5 . 3 . 5 .  These s e c t i o n s  a r e  i n -
t i m a t e l y b o u n d  t o g e t h e r  and cannot  be under s tood  w i t h o u t r e f e r e n c e  t o  each 
other. React (revise) sections 4.3.1 - 4.3.5. 


28 Note i. The kind of situation referred to by the remark of section 

5.3.5 may be illustrated by the followlng example: 

her switch W :- tt, Q[n + 2] ! 


switch 	Q : - Q1, Q2, Q3 ! 

blL " " 
end 
~ e  go t o  s t a t e m e n t  a t  TT r e f e r s  t o  W[2]. The d e s i g n a t i o n a l  e x p r e s s i o n  f o r  
W[2] is Q[n+2]. Into ~his expression the variable n enters. Owing t o  the 
declaration real n in the head of block A the statement TT is outside the 
scope of the-n-of q[n+2]. Consequently the go to statement is undefined. 

(Time ~ . )  

28 Problem 1. Follow the action of the following statements, write a list 

of the labels to which the go to statements successively refer and find 

the final values of the variables: 


switch S :-SB, $2, $3 STOP ! 

~to---~ w := ~, s[n - ~ + 7] , 


n:=7 	 t 


SB: 	 n :-n - 1 ! 

s : - s + n !  
o~w[n - 2] , 


$3: 	 n :-n-2 ! 

s :=n-2| 

~__to w[n - s - 1 ] ,  

STOP: 

(Time mln. ) 




22 THE COURSE. 


29. Read sections 4.6.1 - 4.6.6. (Time sin.) 


29 Note 1. The definition of <for statement> contains an ambiguity which 

has not yet been officially resolved. Until this happens it is recommended 

that it be corrected to read: 


<for statement> := <for clause><unconditional statement> I 

<label: <for statement> 


29 Note 2. In DASK ALGOL the ~ontrolled variable of a for clause can only 

be a simple variable, not a subscripted variable. 


29 Problem 1. Find the values assigned to the controlled variable in the 

following for statements and the final value of s: 

b esln ~ p, q, r, s ; !n...~er k, m ; 

p := 1 ! q := 2 ! r := 3 ! s := 0 ! 

f_2r k := p + q, q - p, rxp - q _d_o s :- s + k ! 

f o_r m :- q _s~_~ r until 7xq + 1 do s := s - m ! 

fo_r k := 2, s, 2 _s~'p 2 unt_._i.1 6 -~2 s :- s + 2xk ! 
for m := s + 4.5 ,m + 2 while s<0 d_o s := s - m I 

to_! k := i ~ta..~ I ~tl../ 5 do 

for m := 3 st~ -i ~til 0 do s :- s + k + m ~ (Time sin.) 


29 Example I. For statements are particularly useful for executing opera- 

tions on vectors and matrices (described in ALGOL as arrays). A simple ex- 

ample is the addition of tvo vectors VA and VB to give a third VC. This 

may b e  expressed as 

i nteser i ! a ~  VA, VB, VC [I : n] ! 

fo_.E i := i s_t~ i ku~ti~ n do VC[i] := VA[i] + VB[i] ! 


Note that the quantity n cannot be declared in the same block head as the 

arrays VA, VB, VC (cf. section 5.2.~.2). 


29 Problem 2. Write a block for multiplying matrix A (subscripts from 1 to 

i and 1 to J) by matrix B (I to J by 1 to k) to form a matrix C (I to i by 

1 to k). Mathematically this is expressed as 


c = ~ ~s x Beq 
s (Time sin. ) 


30. As an introduction to the study of the remaining part of the langus~e, 

the procedure mechanism, the following notes may be of help. 


The procedure concept essentially has developed from the desire of 

being able to. introduce any needed extension the basic mechanisms of the 

language. A few ex~ples of such extensionb are matrix arithmetics, tran- 

scendental function such as Bessel functions, and integration of differen- 

tial equations. 


In ALGOL all such mechanisms may be expressed by means of procedures. 

The ALGOL procedure concept is based on procedure declarations and proce- 

dure statements. A procedure declaration is the means of defining a new 




23 THE COURSE. 


mechanism and associating an identifier with it. Thus the essential part 

of a procedure declaration is a piece of more ele~taryALGOL language, 

the so-called procedure body. The rest of the procedure declaration, the 

procedure heading, only serves to specify the ~anner in which the proce- 

dure body is connected with the rest of the program. 


The procedure declaration never executes any operations by itself. In 

order to put the process defined in it to work it is necessary to call it 

by means of a procedure stat~-~nt. This, then, maybe thought of as a 

short hand description of the complete process defined in the procedure 

declaration. This is all the more apt since the same procedure maybe cal-

led from~uy n~er of different places within the same program. 


Now read section 5.4.1 - 5.4.6. If necessary use the alphabetic in- 

dex of definitions. (Time min.) 


30 Note  1. In agreement with the correction of 29 Note 1 the declaration 
for Ab~xshould be corrected as follows: Insert a b~in ~-~diatelybe-
fore i fandanendbet~en the two en__d's. 

30 Problem 1. In each of the 5 examples of section 5.4.2 localize the pro- 

cedure heading and its constituents: procedure identifier, formal Parame- 

ter l~art, ! , value l~rt, specification part, and also the parameter deli- 

miters. Find the formal parameters. Finally for each of the identifiers in 

the procedure bodies find out whether it is local, for.~], or non-local. 


30 Froblam2. Quote  the procedure identifier of those of the procedure de- 
clarations of section 5.4.2 which define the value of a function designa- 
tor. (Time sin. ) 

31. Read sections 4.7.1 - 4.7.4 and 4.7.7. 


31 Example i. The important rules of section 4.7.3 may be illustrated by 

the following elaboration of the examples of sections 4.7.2 and 5.4.2. The 

first procedure statement of section 4.7.2: 


Spur(A)0rder: (7)Result to: (V) *~: 

can only make sense if it occurs in a block where, besides the declaration 

for the procedure Spur, declarations for A and V hold as follows: 


A[1:7o 1:7] ! _~=~ V ! 
Now the effect of the rule of section 4.7.3.1 will be to add the as- 

sigr~ent statement 
n :=,7 

and the declaration ~__~ n at the head of the procedure body. 
The effect of the rule of section 4.7.3.2 will be to replace a by A 

and s by V throughout the procedure body. Thus, the effect of the above 
procedure statement is the same as that of the following block 

b_.~_n !_n_t_eger k, n ! 

n:=7! 

V:=O; 

f o=r k := I ~_te~ I until n _a 2 V := V + AEk,k] 


en~ (Time rain. ) 



24 THE COURSE. 


31 Probl~m 1. In the same ~V as in 31 Example 1 execute the operatlons of 

section 4.7.3 to find the effects of the remaining procedure stat~ents of 

section 4.7.2: 


Transpose (W, v+l) 

Ab...nx (A, N, M. Yy, I, K) 

Innerproduct (Air, P, u], B[P], 10, P, Y) (Time mln.) 


31 Problem 2. Assuming that the value part: value n were removed fro the 

heading of the declaration of Transpose (section-5.4.2), what would be the 

effect of the procedure statement 


Transpose (W, v+l) (Time mln.) 


31 Problem 3. Find the values of the quantities R, I, and K, at the label 

FINIS of the following program (the declaration for Absmax is that of sec- 

tion 5.4.2) : 

be6in ~ zero[l:2, 1:2] ! r e a l  R ! integer I, K ! 


z e r o ! l , 2 ]  : - : - 0 ,  
Absmax (zero)slze.(2,2)Result:(R, I, K) ! 

FINIS: 

e~! 

If you find the result unsatisfactory what improv~ent of the procedure 

declaration could you suggest. (Time min. ) 


32. Read sections 4.7.5 - 4.7.6. 


32 Note 1. In DASK ALGOL it ~ not be possible to call arrays by value. 


32 Note 2. In DASK ALGOL procedures calling th~elves, or using their own 

identifier within their bodies recc1~ively, cannot be handled. 


32 Note 3. The re~ark of section 4.7.6 is closely related to that of sec- 
tion 5.3-5 ( s e e  28 Note 1 ) .  

32 Example 1. Formal  p a r a m e t e r s  shou ld  g e n e r a l l y  be  c a l l e d  b y  v a l u e  when 
t h e y  r e p r e s e n t  pu re  i n p u t  d a t a  t o  t h e  p r o c e d u r e ,  i n  o t h e r  words when i n  
t h e  p r o c e d u r e  s t a t e m e n t  t h e y  may c o r r e c t l y  c o r r e s p o n d  t o  e x p r e s s i o n s .  The 
e f f e c t  o f  c a l l i n g  a fo rma l  p a r a m e t e r  by  v a l u e  i s  

a) To screen the corresponding actual parameter, i.e. to mBke sure 
that it is left unaltered by the proca~ure, stat~ent. 

b) To economize the procedure call in the case that an expression, 
and not Just a simple variable, is entered in the c o r r e s p o n d i n g  position. 

C) To allow the use of the formal ~raaeter as an internal worki~ 
variable of the procedure body. 

The following example will serve to bring out these points: 



25 THE COURSE. 


procedure EX(A, B) ; value A ! re__~ A, B ! 

beg~ix~ inteser k ! 

. A . - : V ' - - A ~ , 2  - sin(A x (A~ - i)) ; 
B:=O! 

_for k := 1 _stem 1 until 5 _d_o B := B + A x (B + 1)/k ~5 

_en_d 

If this procedure is called only as follows: 


m(a,b) 

value A may correctly be omitted. In this came the value of the variable a 

would, however, be changed by the procedure statement. If the procedure is 

called as follows: 


ZX(p+q, b) 

value A is necessary, since if it were not present the meaningless con-

struction 


p + q := (p+q)~. - sinCC~-q) x ((p+q)~ - I)) 
would result from the application of the rules of section 4.7.3. In addi- 
tion Lal_ue A evidently achieves an economy in evaluating the first basic 
statement of the procedure body, since the sum p+q is only evaluated once. 

It should be noted, however, that not all pure input data should be 

called by value. An example of this is presented by the formal parameters 

a and b of the procedure Innerproduct of section 5.4.2. Evidently, the 

whole meaning of this procedure depends on the possibility of not calling 

these parameters by value. (Time rain. ) 


32 Problem i. Write the declaration for a procedure for solving second or- 

der equations, using the principles of 24 Problem 2. (Time mln. ) 


32 Problem 2. Write a declaration for a procedure for finding the polar 

coordinates from the rectangular ones (cf. 25 Problem 3 ). (Time rain. ) 


32 Example 2. If a procedure has no formal parameter pert it must work on 

non-local quantities of the procedure body. An example would be the follo-

wing: 

procedure R ; Q := sqrt(x~2 + %2) 

This procedure works on the three non-local parameters Q, x, and y. These 

must, of course, have a scope which includes the block in the heading of 

which the above declaration occurs. 


Another variant is 


This must, to be useful, be used in expressions, e.g. 

S :=p+q+R 


This example will serve to warn the reader that an apparently simple addi- 

tion may, in fact, imply a procedure call. 




26 THE COURSE. 


52 Exsmple 5- The most intractable consequences of ALGOL will be  realized 
if the above possibilities are combined. Thus the procedure 
real ~roeedure Sneaky(z) | _v~u~ Z ; r e a l  Z ; 

W :=i+l 
e.nd Sneaky  
will, when used in an expression such as 

P :- Sneaky(v - 1) + 2 

cause a change of the value of W behind the back of the user, so to Sl0eak. 

Furthermore this construction will cause the effect of 


Pip := Sneaky(k) x W 

to be different from that of 


Pip := W x Sneaky(k) 

Evidently such possibilities, if used must be handled with utmost cau- 

tion. (Time min.) 


33.  Read section 2.6.1 - 2.6.3. 

33 Note i. DASK ALGOL uses the symbol A for space and effectively two dif- 

ferent kinds of string quotes: 


¢~ I forlayouts 

for other strings 


Strings within strings cannot be used. 


34. Read sections 5.4.6, 4.7.8 and MANUAL sections 8 - 8.7 on DASK ALGOL 

STANDARD OUTPUTPROCEDURES. 


34 Note i. Most of the complications of the syntax of section 8.3.1 arise 

from the following restrictions: 


1. The neighbours of a space symbol A on either side must be n, d, 

or 0, and cannot be . or another A 


2. The sequence of letters d anddigits O may start witha number of 

d's and must be followed by a number of O's, but the two cannot be mixed. 


(Time rain. ) 


34 Problem i. Show the printed r e s u l t s  of the following statements: 

'> 
q :-

tryk vr ; 

tryk tekst (~<PA=~) ;


p) 

tryk (¢+dd.ddddJ~, -p+q~) 

e_n_~ ; (Time mln. ) 

3~ Problem 2. Write four layouts which will produce the numbers in the 

following four columns 


, 12.34 , ,-.973 24, ,+ 17 , , 7 777 ~5, 

' 0.027 43, ,+.000 12, ,- 230 , , -628.3 l 


,555.6 , ,-.015 45, ,+ 15m+ 6, , -1.538 2m-10, 

,-1300~-12, , 0.222 




27 THE COURSE. 


35. Read MANUAL sections 9 - 9.7 on STANDARD INPUT PROC~URES. 

35. Problem 1. F ind the enact output fr~ the following program when sup- 
plied with the input symbols shown ,below: 
b_e~_ _~r u, v, w 

re_..~ Rr_oc_eecl_~_ Innerproduct (a, b, k, p) ! ~ u e  k ! 

b eg..~, reel m 

s:= 0 ! for p:= I _lte_~ I unt____~ k _d R s:= s + a x b ! 

Innerproduct :. s 


Innerproduct ! 


PROGRAM: 

t~op~ (¢q,~), 

T: iRS (U, v, W)! 

b~ _~ . . . : jmr  P, Q, R~- • 

-
~rAT~, All:u, l:v], B[i:U, l:w], 


S: 	 Imsstreng| if strong (~<Ar}) then ~o to T; 

line(Q, R)! trykvr! tryk(~-~K-Q,-R~ 

tryk(~-~a,dd~, Innerproduct(A[P, Q], B[P, R], u, P))! 

g_oto S! 


_en~ 


S~le In~t ~ta / 

Ex~ple of ~z~, l~streng, streng. 


Q R Sum(A[i,Q]xB[i, R]) 

; 

Arrays: u-3, v = 2, w- 4, 

A: 

.1, .2, 

•3, .4 

•5, .6, 

B: 

I, 2, 3, 4, 

5, 6, 7, 8, 

9, 	 lO, 11, 12, 

Q, R: 1, 3, 

Q R: 2, 2, 

Arrays: u = 2, v = 3, w = 2, 

A: 

-.9, -.8, -.7, 

-.6, -.5, -.4, 

B: 

6, 7, 

8, 9, 

Q, R: 5, 2, 




28 ANSWERS TO SOME OF THE PR0"RT.'P~S. 

3 Problem 1. Asslgr~ent statements, labels. 

4 Problem 1. 3,4,6,7,10,12. 

5 Problem 1. 3,4,5,7,11. 

5 Problem 2. 1. a:=b+3 ! V: pW:=n ! 


2. herin if PQ-O then ~ W ! 

3. ~I~-~-7 ~ ~ ~_t_o ww 

4. tU:~VU/2 e ~  end ! 

6 Problem 1. 
2 keys: + - x / < = >~^ , • I0 : , ( ) [ ] 

3 keys: ~<_ t -, := A 
4 keys: ~, -

7 Problem 1. 17476,7,11,12. 
8 Problem 1. 1. +729300000. 2. 9812. 3. 1000. 4. -.000(~31834. 

5. -.000001. 6. -4800. 

8 Problem 2. 1. 171o3. 2. ~. 3. -1341o-5. 

8 Problem ~. 1,2,7,9. 

9 Problem 1. The 3 first. 

10 Problem 1. 1,3,5,7,10,12. 

11 Problem 1. Expression: I 2 3 


pr~ mantles: 3 5 8 

Factors: 3 5 8 

Terms: 3 5 7 

Simple arith, expr. : 3 3 6 

Arithmetic expr. : 3 2 3 


11 Problem 2. 1, 3, 4, 7, 8. 

11 Problem 3. 1. inte6s E a, b ! real c, d, e, f. 3. _~__~ Q. 4. - . 


7. real v. ~-.-real p, qrs,-tu--T v. 

11 Problem-~. 	 1: 4, ~T~, 3: 16, At: 7, 5: 2, 6: 4096, 7: 4096, 8:2 to the 


18th power, 9: 10, 10:0 11: 4, 12: O. 

11 Problem 5. I S + (s - t)/v~ 


2. 	 (v - w)x(1 - a ~, 3 1 k l(a - k)) 

3. 	 a 4(n + m) 


4. 	 a 4(~n) n
5. 	 ~ ( b + s ~  ) 
6. 	 q v g 

7. 	 Plq~ r*(s + t) 

8. (e-b/c/(d-e~x(f+q) ) )/(h4~lJb(J-k)+o~(m/(n+P) ) ) 


12 Problem 1. rl = 23, re = 2, rb = 10, n = 2, i = 4, J = 2. 

13 Problem 1. Expression no. 1 2 


Relations 1 1 

Boolean primaries 7 4 

Boolean secondaries 7 4 

Boolean factors 7 4 

Boolean terms 6 3 

Implications 5 i 

Simple Boolean expressions 5 i 

Boolean expressions 4 I 


13 Problem 2. 1. boolean c, s, w! re~! P, Q 

2. real u ! boolean W, Q, T 


13 Probl-em 3. re = I~, rb = 12.5, ia= 5 ba= z~s~, bb=_%~_e 

14 Problem 1. SUM - O, 1, 1.25 1.333333. • 

16 Problem 1. B = _t~__e, u - 13/15 w - -17/15. 




29 ANSWERS TO S0~ OF THE PR0~LE~S. 

17 Problem 1. W l -8, S - -9, B I 13, C I 7. 
17 Problem 2. Umlabelled basic stat~enta: 12, basic statements: 24, un- 

ecmdltlomal statements: 26, statements: 28, coz~ouncl tails: 28, block 
heads: 2, unlabelled c~pounde: 0, unlabelled blocks: 2, compound sta- 
~ents: 0, blocks: 2. 

18 Problem 1. S, B, C: all statements. W in outer block: 1, 2, 3, 4, 11, 

STOP. W in inner block, P, AA : 5, 6, 7, 8, 9, 10. 


19 Problem i. ~ MmtA, MatB [l:k, l:n], Zoop [-7:+7, i:I0, 0:i, 0:11 

22 m~bZem %. i.2~ ~3, A[1,1~5. A[1,2]--2, A[2,1~7, A[2,2~3, A[3~1~ 


4, AL3,2Jb2, CLO]-6, c [ 1 ] - 7 , - c [ 2 ~ .  
24 Problem 1. ~3.1~i59.., r--3, s-5, log-1. 
25 Problem 1. a I -9, b I 26. 
25 Problem 2. Not correct. If q<0 then 7 _~s_e 4 is not~a <term>. 
27 ~blem 1. 1. r_~_e. 2. ~_ala__~. 3. t_~_. 

27 Problem 2. I. true. 2. false. 3. false. 

28 n~bxem 1. n --~,-~7. s3~-~, sB, mm--~- 

29 Problem 1. k = 3, 1, 1. S - 5. 


m- 2, 5, 8, 11, 1~. s ..35. 

k i 2, -31, 2, 4, 6. a I -69. 

m = -24, -22, -20, -18. s = 15. 

kl 1, m=3, 2, i, 0. S = 25. 

kl 2, ml3, 2, I, O. s'39. 

k'3, m=3, 2, 1, O. a'57. 

kl 4, m=3, 2, 1, O. s I 79. 

k . 5, m i 3, 2, 1, O. s 1105. 


29 Problem 2. The arrays must be declared in a block outside of the block 

in which the mBtrix lu.ltiplioation is tattled out. 

b_e~_ ~rE~ Y A[l.i,- l:J], B[I:J, l:k], C[l:i, l:k] ! 


for  m :l 1 _s~p 1 ~t___~ i 

for n := I _st~ I until k 

- - - h e R s  :=0 !--- 


for p := 1 a_~_~ 1 un t i l  ~ do s : .  s + A[m,p]xB[p,n] ! 
: =  ,V . . . .  

c,~nt For running time economy the simple variable s, 
and not C[~,n], is used during the s,-~.~tion! 

enc~ for m og n 
en_~ block ! 

30 Problem 2. Step. 
31 Problem 1. T r a n s p o s e  (W, v+l) will be executed as: 

~ w | in_t_e~r i, k, n | 
n :iv+ 1 | 

fo__E I :- 1Lied luntiln do 


for k :l 1+I s~M~ 1 until n ~o 

v ,. wEiT~ , -----

WEik ,. W[k,l], 

WLk01J :- w 


ez~Z £or k 



30 ANSWERS TO S0~ OF THE PROHL~S. 


Ab~ (A, N, M, Yy, I, K) will be executed as: 


Yy :-0 ! 

for p := 1 step 1 until N do for q := 1 s_t~ 1 until M do 

~ _ ~ _ i~ ~ p , q ~ - ~ - Y y  ~ e ~  . . . . . . . . . .  


~S_~. YY :" abs (A[p ,q~- !  I := p ! K := q ~_d 
e~nd f o r  p 
en_d procedure AbR~x 
Note that an extra b~_ end bracket has been inserted in order to make 

the statement following d_o unconditional. 


Innerproduct (A[t, P, u], B[P], 10, P, Y)will be executed as: 

begin real s | ~_~_~el 2 k | 

k := i0 ! S := 0 

_f_or P := I _s_te~ 1 ~mtil k do s :- s + (Air, P, u]) x (B[P]) ! 

Y:.,s 

_~d Innerproduct 


31 Problem 2. 
_~_~! w ! inner i ,  k ! 

~or i :-.i s~p-1 ~_i.i (~+i) do 
--- for k ;~ 1+I ~p i until (v+l) do 


~ d  Transpose 

31 Problem 3. R = 0, I and K are undefined. Since the user must expect 

that all of these quantities are defined upon exit from the procedure 

this is unsatisfactory. Two possible improvements of the procedure decla- 

ration may be su~ested to remedy this: 1. Replace the first statement of 

the procedure body by, e.g., y := -1. 2. Replace the relational operator 

> hy > 


32 Problem 1. 

p roced__~ ~20R (A, B, C, zlr, zli, z2r, z2i, IRDETER~INATE) ; 

value A, B, C ! _~ A, B, C, zlr, zli, z2r, z2i ! label I~DETE~ATE ! 

b e~_~ ~ dAscr~nant ; 

if A + 0 then So to normal | 

if B = 0 then f~ to ~DETE~41NATE ! 

~ir := z2~-~; - c~ ~ so~ set zer o , 


normal: 	 dlscriminant :- B ~ 2 - /t x A x C ! 

if dlscriminant > 0 then g~to real solution ! 


complex: 	 ~ r  := z2r := - B / 2-7-A ; --
Zll := sqrtC-dlser4_mlnsnt)121A ! 
z2i :- - zli ! ~_to finis ! 

real solution: zlr := (-B+(if B>0 t h_en-i e_l_se l)xsqrt(discr~m~nant))/2/A! 

• 2~ := cl~/z~ 	, 


set zero:  zli := z2i := 0 ! 
finis: 



31 AgSWER5 TO SON OF THE p~wr.~34S. 


32 Problem 2. 

procedure  P o l a r  (x, y,  r ,  v)  ! va l ue  x, y ! ~ x, y, r ,  v ! 

v :- if 3~0 then (if x>O then 0 else 3.14159265) 


.) 


34 Problem 1. 

p - 9.0- 8.7778 


34 Problem 2. nda.d0OmO0 +.dad dd i~dOO~_+dd -n~ddd.0OOzO~-dd 


35 Problem 1. 

Exsmple of  lms, lmet reng,  s t r e n g .

Q ~ S=(A[1,Q]xB[i ,~])  

'i 3 7.90 

2 2 8.8o 

3 2 -8.50 




32 Appendix 1. A PROGRAMFOR A SMALE TABLE. 

A PROGRAM FOR A SMALL TABLE. 


An illustration of ALGOL. 


As an illustration of the use of ALGOL the complete solution of a 

simple problem is given below. The additional notes will enable the reader 

to pick up some of the basic features of the language in an informal man- 

ner. 


It should be noted that the ALGOL program gives a complete descrip- 

tion of the solution of the problem. Indeed, an ALGOL translator system 

will be able to build up a complete machine code for the solution on the 

basis of the ALGOL program in precisely the form given below. Both the 

translation and the solution will be performed with the speed and effici- 

ency characteristic of the electronic calculators. Consequently, once the 

ALGOL program has been written the problem is practically solved. There 

remains only a purely routine operation of the electronic calculating ma- 

chine. 


Definition of the problem. 


It is desired to calculate a table of the following function: 


Acab(u, length) = u(len~ch2 - 0.037 u 3 ) 


The p a r a l e t ~ r  u va r ies  from 0,0 to  5.0 i n  steps o f  0.2.  The parameter 
length assumes the following six values 


length-1.0, 1.2, 1.4, 1.6, 1.8, 2.0. 


The results should be printed in a table with seven colm~s end a heading 

as shown below (the cos indicate spaces): 


,,,,,,,,,,,,,,,,,,,,,,,,,,,Table of function Acab. 

! 


,U,, ,,,,,I.0, , , ,,, , ,1.2, ,, ,, ,, ,1.4,,,,, , ,,I.6, ,,, ,,,,i.8,,,, , ,,,2.0 

i 

0.0, , , I iXX.XXXi i , I ,XX.XXX, i , , l ~ . l i  , , I iXX.XXX, i , i IXX'XXX! , i , ,XXeXXX 

0.2i , , , ,XX.XXX, , , , ,XX.XXX ,, , ,XX.XXX, I , i X ~ I C . I i  , , , ,XXeXXX! , , , XX.XXX 

etc. 



33 Appencllx 1. A PROGRAM FOR A SMALL TABLE. 


ALGOL program: Notes: 
Any program must be embraced within the 
statement bracket ~ end. 

c~ent Program for Acab| Notes in plain language my easily be 
included. 

real u, len~h! This declares that the quantities deno- 
ted by u and length represent arbitrary 

qf~titnumbers. There is a considerable 
in choice of designations for 

lea in ALGOL. 
try~om (5o) I This is the first active instruction of 

the program. It causes 50 empty ro~ of 
tape to be punched by the output punch. 
This will facilitate the handling of the 
tape of results. - The following i n -
struction punches the heading. 

tryktekat (~< 

Table of function Acab. 


length 

u 1.0 1.2 1.4 1.6 1.8 2.O 

$), 

for u :- o.o s~ 0.2 This construction causes the following 


until 5.Ol ao statement (from be~i_n to en_d) to be exe- 

cu%ed repeatedly by with u = 0.0, 0.2, 

0.4, etc. 

Output of a carriage return code (vr = 

yogn_retur). This includes llne feed. 


t~k(¢d.~, u),  	 u is printed with one dec4,~1. 
for ~ :- 1.0 s~ 0.2 	 Inside the larger repetitive process a 

--- l~ntil 2.01 d_o 	 smaller repetition is performed, for the 


calculation and printing of the six co- 

lumns in each llne. 


b eg~ trykml (5) , 	 In front of each function value 5 spaces 
( ~ e _ n ~ )  are p r i n t e d .  

tryk ( ~dcl. ddd.~,, The function value is calculated and
w,(l~ngt~2-o,o37xu,~,~)/ printed in a layout of two digits before 

and three after the dec~-~! point. A-
rithmetic expressions must be written 
linearly. Spaces and carriage returns 
may, however, be inserted freely. 
This ,~ the section controlled by the 
fo__E I ~  construction. 

ena ; 	 This ends the section controlled by the 
f o_r u construction. 

tryktom (50) 	 Output of a suitable piece of empty 
tape. 

re_a; 	 This is the end of the program. 



3k Appendix 2. THE SOI.DTION OF A REALISTIC PROl~r!~l,i. 

T~ SOLUTION OF A I~ALISTIC pR0nT1214. 

The following formulation of a problem is taken over directly from 
that presented by a physicist: 

It is desirer to tabulate the following expressions for 12 and Aber: 
1 

2e 2 + 

12 I -r 

_ 	 2e 2 + 2 . e 2  

whe re 


c " 
r
i ; t ,  g e l  

rc 
(for e 2 = -~5 °, 12 becomes r~c) 


A b e t  -	 - H r [c  I + c 2 ]  

where 


H 21 11 ~ [i + 
11 

+ "~ e l )2 ]  + 12 + ~ e2 )2 
I 


r 

Cl I 	 - ~  [1 + ( E - el  )2 [2  
11 11 + ~ ]3 

r 

r 2 1"2 + 3 ~ e 2 

c2 " 	 -2 [ 1 .  (z'_
z2 z 2 * .~ e2)2~7 ~ 

The parameter values are the following: 

11 is 50 

e I assumes the values 0 to 50 dmgrees, in steps of 5 degreel 

e 2 assumes the values -20 to -50 degrees, in steps of 5 degrees 

r assumes the values 30 to 120 in steps of 5 


The results should be tabulated in 11 tables, one for each of the va 

lues of e~, the value of which shouL~ be printed at the head of the table. 

The a~n~nt of the tables should be as follows: 


11 = 50, e l  = 20 

e2 -	 -20 -25 -3O -35 -~0 -45 -5O 


r 	 12 Abet 12 Abet 12 Aber 12 Aber etc. 


The results, which will be ~11er than 1000, should be printed with 

one decline1. 




55 Appendix 2. THE SOLUTION OF A REALISTIC PR0~L~4. 


SOLUTION 1. 


be~_ comment This is a direct, but uneconomical program for 12 and Aber! 

_in~e_~e_r 11, el; e2, r ! 

re__~ 12, c, cl, c2, Aber ! 

~a~ .  procedure ~g(u) ! value u ! ~ u ! 
k ~ _ n  ~ cos 

u := u/57.2957795 ! C0S := cos(u) ! 
tg := ~ CO,g~O t h e n  1o20 e l s e  sin(u)/OOS 

e_nd tg ! co~men% It is easy to see that this way of treating the singula- 
rity of tg is correct in the present application ! 

BEGIN OF PRO6RAM: 
trykt~a (50) ! 11 :- 50 ! 
for ~1 := 0 ste_~ 5 until 50 do 
--- b_e~ tryktekst~<-- --

tryktekst (~< 


tryktekst (~<A~±x~ LA±ZZZA, -40XlX.~.AAZ, .U.J.A--45AJ..L.~ZA.LL~.A.~.A --50 

~) , 

for r :- 30 s_~..~ 5 until 120 do 


- -- C :==r/ll + is(el)

cl : ( r / l l+Sx~(e l l )x r .~ /1 .~ / ( l+( r / l l+~(e l ) )~)  

/ s q r t (  1 + ( r / l l + t g ( e l )  )~2) , 

for e2 := -20 ste_~ -5 until -50 do 


( 1 - t g ( 2 x e 2 ) / c +  ( ' ~ ( 2 x e 2 ) + l / c ) x ' ~ ( e 2 ) )  ! 

c2: ,-- (r112+5 xtg(e2) ) xr,~2[l~2/( 1+( r/12+tg( e2 ) ),~2 ) 
" 

Isq~(~+(rll~+"~Ce2) ),I,2) , 


Abet := -11.,l~.~121~Ir~(l+(r/11+'~(e1))~) 

~sqr~(~+(rll~+~(e~))~)x(c~+cZ) 


tryk ($dddd.d~, Aber) 

_e_nd for e2 


end for r ! 

tryk sum 

_en_d for el ! 


tryk tom (50) 

e n_d program ! 


This  program may be improved c o n s i d e r a b l y ,  l ~ r t i c u l a r l y  wi th  r e s p e c t  t o  
e f f i c i e n c y .  Obviously  many p a r t s  of  the  e x p r e s s i o n s  w i l l  be e v a l u a t e d  over  
and over  aga in  wi th  the  same numbers.  This  may be avoided by r e w r i t i n g  the  
formulae so as  %o e v a l u a t e  as much of  an e x p r e s s i o n  as p o s s i b l e  as  soon as  
the entering quantities have been assigned. Also the repeated evaluations 

of tg(e2) may be avoided by preparing a table of this quantity. Finally 

the denominators of the formulae for cl and c2 may conveniently be evalua- 

ted through a procedure. These features have all been incorporated in the 

following version of the progrsm. 




- -  

36 Appendix 2. THE SOLUTION OF A REALISTIC I~3~4. 


SOLUTION 2. 


~__~_ cogent Improved program for 12 and Aber! 

i_n~e__r 11, el, r, Q, i ! 

real 12, crec, M, ml, m2, tee1, tgelt3, Aber ! 

_ ~ z  	 ~ e 2 ,  t ~ 2 e 2 ,  ~ t 3  [1:'7] , 
~ ~roceaure re(u) I y~1__u_e u ; x ~ Z  u 
~ n  	~ COS 


u := u/57.2957795 ! COS := cos(u) ! 

t g := if COS=0 then ~20 el_se sin(u)/COS 


end tg ! co~aent It is easy to see that this way of treatise the singula- 

rity of tg is correct in the present application ! 

~ p_roc~ _~ HELP (y)! c_~n_t This helps to calculate the den~immtors 

or cl and c2 ! value y ! real y ! 

. ~ _ ~  	 ~ : - 1 . ~ , - ~ . . ~  := 17~7;~ t (~ )  ~ ~ - ~  ! 

BEGIN OF PROGRAM: 

for i := 1 seep 1 until 7 do 


t a n 2 e 2 [ i ] :  "tg(-10 x i : 3 0 )  ! 
t ~ t 3 [ i ]  : - 3 ~ t ~ e 2 [ I J  

end for i ! 

~ k  to=(5o) ; z l  : - 50 ; Q : -  125o , 
for el := 0 ~ 5 until 50 do 


zz~-=5o,=ez~=D) , tryk(¢d,.1..1,, eZ) , 
tryktekst (~< 

.LLj.j.e 2A=AAJ.A--20_j_t,J.J.AA.L4~J_L A-- 25~.A.L.t.A.I.J.AJ..A.JL,J.--30 ' J • L.IJ.J.A.AAJ..I,J.--35~ ) ! 


tgeZ : =  t g ( e l )  ! tgelt3 : =  3 x "~e l  ! 

f o r  r := 30 s t y  5 unt:l.Z 120 do 


b _ ~ .  	 t ~ k  ~ ,  ;~'~¢d,:m.1.-;'r) , 

cr~c =- 1 / ( r / n  * t , ~ z ) . ,  

M := Q x ( ( r / l l  . "l.,gel)4~.~ + 13 ! 
=1 : - 	 ( r / z1  • t ~ e l t 3 ) / z ~  x ~ ( r / z l  * ~ e l )  ; 
f o r  I 	 := 1 ste~ 1 u n t i l  7 do 
. . . .  begin Z~-:= - r ~ - t ~ 2 ; ~ [ i ]  • crew) 

- - , - - - . / ( 1-ta.n2e2 [:I. ]xcree+(tan2e2 [ i  ~ c r e c  ) xtan.e2 [ i  ] )  
t r y  k=(~-dddcl,dd.d,~;, e2 ) ;~  

: ( r / z 2 * ~ t 3 F t D / z ~ 2 x ~ ( r / z 2 * ~ e 2 E i D  , 
~er :- - - - ~ Z 2 ~ r t ( ( r / Z 2 * t ~ e 2 [ i  ] )~+1)~(=1*=2)  , 
t ~ k ( ¢ - a a ~ a . ~ ,  Abet) 

end f o r  e2 

e~.  for r ! 

tryk sum 

end for el ! 


tryk t--~ (503 
e~r,.d, program ! 

It will be clear from this example firstly that the efficiency by 
which a process will be carried out may be Improved e v e n  by Just a simple 
revision of the formulae. Secondly that the establishment of the most 
suitable formulae in a given case depends directlY on the desired form of 
the output. 



37 Appendix 3. THE TESTING OF ALGORITHMS. 


THE TESTING 0FALGORITHMS. 


Experience shows that it is rare for an algorithm to be correct when 

it is first written up. The testing of algorithms must therefore be consi- 

dered to be a very important part of ALGOL progr~n~ng. The following 

notes are intended as a first guide to this subject. 


Errors in an ALGOL program may be of two essentially different kinds: 

(1) errors of form and (2) errors of content. In testing an algorithm 

these two kinds of errors should be treated sepatately. 


Errors of form (syntax). 


Errors of form (syntactical errors) may be eliminated completely 

through a purely mechanical process. Indeed it is possible to let the AL- 

GOL-to-machine-code translator perform syntactic checking and reject In- 

correct programs. Likewise a manual checking maybe (and should bet) per-

formed in a routine manner. In ALGOL programs this is a comparatively easy 

matter owing to the easily readable form of the language. In performing 

the check the following list of some frequent errors maybe useful: 

i. 	 Forgotten or wrong occurrence of ! or ~l_se or ~n_d (cf. the punctuation 


rules 1 and 2 , point 17 Note I). 

2. 	 Declarations of simple variables forgotten. 

3. 	 Multiplication symbol x omitted. 

4. 	 the_ ~itted (there must be one for every if). 

5. 	 Underlinln~ of basic symbols foxrgotten. 

6. 	 Mixture of integer and ~__~ type variables on the left side of assign- 


ment statements. 


Errors of content. 


Errors of content are errors which cause the algorithm to perform a 

different action from the one intended. Since the description of the in- 

tended action is often vague and leaves a considerable freedom for the 

writer of the algorithm the detection of this type of error may often be 

quite difficult. Even so there are scae general suggestions which may be 

of help: 

I. 	 For each variable check that it is never used before a value has been 


assigned to it. 

2. 	 Make sure that no division by zero or any other undefined operation 

(in, sqr%, e t c . )  can  o c c u r .  
3. 	 Check for special values of input parameters, particularly zero. 

4. 	 Remember to take absolute value when doing test on magnitudes of quan- 


tities. 

5. 	 For each if clause of the program establish two test situations one 


which makes the Boolean true and one which mRkes it f_a_ise, and check 

that the algorithm behaves correctly in both cases by following its 

action statement by statement. 


6. 	 Note that the method of following an algorithm step by step, as ex- 

plained in point 12 Example I, far from being a beginners device must 

be considered as th e basic method for testing algorithms. When combin- 

ed with a choice of values of input parameters merle according to 

points 3 and 5 above it is the most efficient method for constructing 

correct algorithms. 




38 Appendix 4. THE t~E OF N~0CE5 AND PROC~ES. 


THE ~ 0F N.OCI~ AWD FBDCC~I~ES. 


An i m p o r t e n t  s t e p  i n  t h e  p l a n n i n g  o f  a n  AI~OL p r o g r s m  i s  t h e  s u b d i v i -
s i o n  o f  t h e  l ~ r o c e s s  i n t o  p a r t s  w h i c h  m y  c o n v e n i e n t l y  b e  w r i t t e n  a s  b l o c k s  
o r  p r o c e d u r e s .  I n  order  t o  b e  a b l e  t o  do t h i s  t h e  p r o g r u , ~ r  ~ t  h a t e  a 
c l e a r  i d e a  o f  t h e  p r o p e r t i e s  o f  t h e s e  AI~OL u n i t s .  As a f i r s t  i n t r o d u c t i o n  
t h e  f o l l o w i n g  n o t e s  1 7  b e  u s e f u l .  

~ l o c k s  a r e  u s e f u l  f o r  e x p r e s s i n g  s u c h  l ~ r t e  o f  t h e  p r o g r e l  w h i c h  f o r m  
a c l o s e d  p r o c e s s .  I n  p a r t i c u l a r  a b l o c k  i s  i n d i r p e n s a b l e  i f  i n  a p r o c e s s  
a n  a r r a y  i s  n e e d e d  whose  s i z e  d e p e n d s  on  t h e  r e s u l t s  o f  p r e v i o u s  c a l c u l a -
t i o u s .  Such  a n  a r r a y  m a s t  b e  l o c a l  t o  a b l o c k .  I n  a d d i s o n  a p t  o t h e r  q u a n -
t i t y  (simple variable, label, switch, procedure) which is used only inter- 
nally during the work of the block, but whlch has no interest when this 
work i s  done  may b e  d e c l a r e d  t o  b e  l o c a l  t o  t h e  b l o c k .  T h i s  i s  p a r t i c u l a r -
l y  useful ~hen different blocks of a pro6Fsm are wrltten b~ different pro- 
gramners. By using blocks the progreu~ers will only have to a6ree on the 
non-local identifiers of the blocks, while inside each block the progrsm- 
mer is free to choose the identifiers of working quantities. 

Procedures have three different important uses: 1. Generalization of 

the use of blocks. 2. Abbreviation of ~ ad-hoc run.ions. 3. Form of 

co~unication of closed processes between probers at d/fferent times 

end places. 


i. Any block may be converted into a procedure by adding a heading to 
it. The heading will attach an identifier to the block a n d  u s u a l l y  name 
some or all of the non-local identifiers as formal. Where the block in 
question is written specially for the pro~sm this conversion can be re- 
commended only if the mechanim of the block is used two or more times 
with different non-local quantities, corresponding to two or more calls 
of the procedure, since evidently a call of a procedure is a more elabo- 
rate process than a simple entrance into the correspondln6 block. 

2. Frequently the formulae of a program may be shortened through the 
use of suitable function designators. As in 1 above this will be econ~i- 
cal only if the corresponding ad-hoc procedure is used more than once du- 
ring the program. 

3. In a near future it is safe to expect that all important methods 

of numerical analysis will be expressed in the form of ALGOL procedures 

and published (cf. the Algorithms section of the Coma. ACM and the AL~0L 

Programzir~ section of BIT). Since these procedures presumably will be a- 

bove avers~e with respect to efficiency it is strongly reccmlended that 

they be used wherever possible. 



