
Reprinted from the~CoMMuNICATIONS OF THE ASSOCIATION FOR COMPUTING MACHINERY
Volume 4, N u m b e r 1, J anua ry 1961

Made in U.S.A.

Thunks
A Way of Compiling Procedure Statements with Some Comments

on Procedure Declarations*

P. Z. Ingerman
University of Pennsylvania, Philadelphia, Pa.

Introduction bility was more desirable than a brute-force solution. I t

This paper presents a technique for the implementat ion
is to be explicitly understood tha t this solution is one
acceptable solution to a problem soluble in m a n y ways.

of procedure statements, with some comments on the
implementat ion of procedure declarations. I t was felt Origin of T h u n k
tha t a solution which had both elegance and mechaniza-

The basic problem involved in the compilation of pro-

*This work was supported by the University of Pennsylvania, cedure s ta tements and declarations is one of transmission

Office of Computer Research and Education, and the U. S. Air of information. I f a procedure declaration is invoked
Force under Contract AF-49(638)-951. several times by several different procedure statements,

the actual parameters which are substituted for the formal
parameters may differ. Even if the several invocations are
from the same procedure statement, the value of the
actual parameterrs may change from call to call.

There are three basic types of information that need
to be transmitted: first, the value of a parameter; second,
the place where a value is to be stored; and third, the
location to which a transfer is to be made.

In each of the three cases above, the requirements can
be met by providing an address: first, the address in
which the desired value is located; second, the address
into which a value is to be stored; and third, the address
to which a transfer is to be made. (This is somewhat
simplified; more details are considered below.)

A thunk is a piece of coding which provides an address.
When executed, it leaves in some standard location
(memory, accumulator, or index register, for example)
the address of the variable with which it is associated.
There is precisely one thunk associated with each actual
parameter in each specific procedure statement. (The
handling of arrays requires a slightly extended definition
--see below.) If an actual parameter is an expression, the
associated thunk (each time it is used) evaluates the ex-
pression, stores the value in some temporary location,
and delivers the address of the temporary location. If an
actual parameter is a subscripted variable, the thunk
(each time it is used) delivers the address of the specified
element of the array. If an actual parameter is a condi-
tional expression, the thunk selects from the alternatives
and delivers the appropriate address.

In the most general case, the address transmitted by
the thunk may be desired information, the address of the
desired information, or the address where information is
stored enabling the calculation of the desired information.
The translator knows what kind of thunk to create by
considering the syntax of the formation of the actual
parameter and the previously scanned declarations. On
the other hand, when a procedure declaration is being
compiled, the translator, again by observing syntax,
knows what kind of address to expect from a thunk.

'1 h e S i m p l e C a s e

The simplest case, for explanatory purposes, involves
a procedure whose formal parameters are all either labels
or simple (non-subscripted) variables called by name. To
compile such a procedure, one must consider both the
procedure statement and the procedure declarations.

The procedure statement or function designator in its
ALGOL-60 form looks like:

glub (a, b, ... , m, n) (3.2.1, 4.7.1)

where "glub" is the procedure identifier. For simplicity's
sake, the comma has been used exclusively, rather than
the optional parameter delimiter ") (letter string) :(", as
mentioned in the above-cited paragraphs.

When this procedure statement is compiled, it produces
coding of the following description:

return-jump to glub
thunk a
thunk b

thunk m
thunk n

The procedure declaration heading corresponding to
the above procedure statement contains in part:

procedure glub (p, q, ... , y, z)

in which formal parameter p corresponds to actual param-
eter a, etc.

In the simple case under consideration, there are three
types of parameters; those on the right side of a :=, and
those on the left side of a :=, and those embedded in go t o
statements. Also, a formal parameter in the procedure
body is identifiable because of its appearance in the pro-
cedure heading.

When a formal parameter appears on the right side of
a :=, the generated coding may be described thus:
(1) Store any necessary registers
(2) Return-jump to the appropriate thunk
(3) Remove the desired quantity from the address pro-

vided by the thunk, and
(4) Restore the status quondam
When the formal parameter appears on the left side of
a :=, what is needed at run time is not a quantity, but
merely a location. In this case, step (3) above is replaced by
(3a) Store the calculated quantity at the address pro-

vided by the thunk
When the formal parameter is embedded in a go to, step
(3) is replaced by
(3b) Transfer control to the address provided by the

thunk
and step (4) is vacuous. Note that in each of the three
cases, the thunk provided only an address; the interpreta-
tion of that address is a function of point-of-call on the
thunk. This means that procedure declarations and pro-
cedure statements can be interpreted without cross-
reference at compile time.

MORE DETAIL:
A simple, non-subscripted, variable is a special case

of an expression; in addition to expressions, strings,
array identifiers, switch identifiers, and procedure identi-
fiers are also valid actual parameters (3.2.1, 4.7.1). In
this section, the thunks for expressions in general and for
strings will be discussed.

If an actual parameter is a string (2.6.1), the thunk
delivers the address of the string. Note that in some
machine implementations this might involve delivering
the address of the first character of the string, with the
expectation that the end of the string is marked by some
suitable delimiter.

If an actual parameter is a simple variable (3.1.1), the
associated thunk--each time it is used--delivers the
address of the quantity named by the simple variable.

Communica t ions of the ACM 56

If the actual parameter is a label (3.5.1) , the associated
thunk (each time it is used) delivers the address to which
transfer is to be made. This may require some additional
mechanisms, as described in the paper on Recursive Pro-
cedures and Blocks (see page 65).

If an actual parameter is a Boolean or arithmetic ex-
pression (3.3.1, 3 .4 .1) , the associated thunk (each time it is
used) evaluates the expression, stores the value in some
temporary storage location, and delivers the address of the
temporary location. For example, if an actual parameter
is a subscripted variable, the thunk delivers the address
of the specified element in the array.

If an actual parameter is a conditional expression (3.3.1,
3 .4 .1) , the associated thunk (each time it is used) evalu-
ates the conditions and if necessary, the expression se-
lected by them, and delivers the address as described in
the preceding paragraph.

If an actual parameter is a function designator (3.2.1) ,
the associated thunk (each time it is used) delivers the
address to which transfer should be made. Note that this
may involve several steps, if the desired element of the
switch declaration is itself a switch designator, etc. (3.5.3) .

If the actual parameter is a conditional designational
expression (3.5.1) , the associated thunk (each time it is
used) evaluates the conditions to select the alternative and
delivers the address to which transfer is to be made, using
one of the two techniques described above.

Array Identifiers

When an actual parameter is an array identifier, its
interpretation becomes somewhat more involved. At the
time the procedure declaration heading is being scanned,
there may be no way of telling that a formal parameter is
an array identifier. However, when the body of the declara-
tion is scanned, the sequence

(formal parameter}[

identifies the parameter as an array identifier. This se-
quence can occur on either side of a := . In this case the
return-jump to the thunk provides not the specific address,
but rather the address of a table in which the necessary
information for the subscription operation will be found.
(The necessary information is a residue from the cor-
responding array declaration, which may have been evalu-
ated dynamically when the block was entered.)

When the procedure statement is being compiled and the
array declaration is available, it is obvious that the actual
parameter is an array identifier, and the thunk which is
compiled will provide the address of the table.

Switch Identifiers

A switch declaration may be construed as a vector
whose elements are unconditional transfer instructions
rather than data. With this interpretation, a switch identi-
fier as a formal parameter may be interpreted in precisely
the same manner as the array identifier discussed supra.
In other words, a switch declaration may be treated in the

same manner as a static, non-own, one-dimensional
array.

Procedure Identifiers

If one makes the (not severely) restrictive assumption
that the address (in the final coding) of the exit line of a
procedure declaration can be determined if the address (in
the final coding) of the entrance line is known, procedure
identifiers cause no difficulty when used as formal pa-
rameters. In this case, the thunk provides the address of
the entrance line of the procedure. The coding which calls
on the thunk calculates the address of the exit line and
places the two addresses into a return-jump. (Note again
that this is a philosophical description; on, e.g., the IBM
704 the technique is actually simpler.)

However, there are some additional complications when
using procedure identifiers as actual parameters. The tech-
nique described above works in all cases except when the
formal parameter part is empty and the procedure is a
function designator. In this case, the associated thunk
(each time it is used) return-jumps to the procedure and
delivers the address of the location in which the value of
the procedure had been placed.

Procedure Declarations

When the formal parameter part of a procedure heading
is scanned by the compiler, a list is made of the formal
parameters. This list is used to distinguish those identifiers
for which return-jumps to thunks must be generated.
With the exception of the two cases to be discussed below,
this is the only non-conventional coding generated. (By
conventional is here meant the coding that would be turned
out if the same statements were to be written outside a
procedure declaration.)

Calls by Value

Normally, the procedure declaration introduces no cod-
ing as such. If the heading contains a value part, the cor-
responding formal parameters are understood to be re-
placed with generated local identifiers which must have
values assigned to them each time the body of the pro-
cedure is entered. This is equivalent to inserting a number
of ALGOL-60 statements of the form :

(generated local identifier} := (formal parameter}

immediately in front of the coding provided by the pro-
grammer, and then interpreting these statements as though
they had been there all along. If a formal parameter was
an array identifier, and the array was called by value, the
generator ALGOL-60 statements must have the effect of
(nested) for loops to move the array. The generated local
identifiers replace the corresponding formal parameters
wherever they appear in the body of the procedure
declaration.

MORE DETAILS.
If a formal parameter is called by value, it must have its

value bound before entering the body of the procedure,

Communications of the ACM 57

and must be considered as a local identifier inside the pro-
cedure body.

If a formal parameter called by value is not used as an
array identifier, coding of the following general description
is turned out:

Return-jump to appropriate thunk
Fetch quantity from address provided by the thunk and

assign it as the value of the associated generated local
parameter.

I t is worth noting that if a formal parameter called by
value is used as a procedure identifier in the procedure
body, the identifier identifies a procedure which has an
empty formal parameter par t and defines the value of a
function designator (4 .7 .5 .4) . Thus the same general
coding scheme applies to this case.

If a formal parameter called by value is used as an array
identifier, the generated coding is of the form:

Return-jump to the appropriate thunk to get the address of
the dope vector for the array.

Activate the FUSBUDGET mechanism and move the array
to the newly assigned storage.

The FUSBUDGET mechanism is described in the paper by
Satt ley on Allocation of Storage (see page 60).

N e s t e d P r o c e d u r e s

A formal parameter in a procedure declaration heading
might appear only as an actual parameter of a procedure
statement contained in the procedure declaration body.
This is illustrated:

procedure glub (a, b, -'" , m. n)

george (a, x, y)

The same technique applies here. The procedure state-
ment is replaced by

return-jump to george
thunk a
thunk x
thunk y

However, at the time the procedure s tatement for george
is being scanned, _a has already been noted as a formal pa-
rameter in the procedure declaration. Hence, the thunk
that is compiled for a under the return-jump to george is in
itself a return-jump to the thunk for the formal parameter
a associated with the return-jump to glub.

Thus, if a formal parameter called by name in a procedure
declaration appears as an actual parameter of some con-
tained procedure statement, the thunk for that parameter
(generated when the procedure statement is read) jumps
to the thunk for the formal parameter. The thunk for the
formal parameter may again jump (the chain may con-
tinue indefinitely) or may store the necessary information
in~t,he standard place.

In other words, if a formal parameter in a procedure
delcaration heading appears only as an actual parameter
in some contained procedure statement, the thunk gener-
ated by the procedure statement must go up one level, and
must pass down unchanged the information there ac-
quired. Hence it will call on the thunk corresponding to the
formal parameter involved. The chain so set up can con-
tinue to any depth; it is only at the two ends of the chain
that anything need be known about the type of address
that is being transmitted.

F u r t h e r C o m m e n t s

This paper, admittedly, gives no at tention to the ques-
tion of the correct matching of arithmetic types within the
procedure body when one operand is a formal parameter.
Hence, this paper assumes that a programmer composing
a call on a procedure must observe all the explicit and
implicit assumptions of the procedure. (In addition, it
assumes a doctrine like, for example, the following: "The
value of a formal parameter appearing in an arithmetic
expression in the body of the procedure will be assumed to
be of type real , unless the formal parameter has been
specified to be of type i n t e g e r in the procedure heading").

An alternative means of handling this question might be:
Have the thunk for the formal parameter return not only
the required address, but also a type code for the value of
the actual parameter. The correct data-matching would
then be done dynamically during the execution of the
procedure.

A C K N O W L E D G M E N T S

The Author wishes to acknowledge the valuable con-
tributions made to this paper by K. Sattley and W.
Feurzeig of the University of Chicago, Laboratory for
Applied Sciences; and E. T. Irons, Princeton University
and Insti tute for Defense Analyses. Others who con-
tributed were R. Floyd, Armour Research Foundation;
and Miss M. L. Lind, and H. Kanner, University of
Chicago, Inst i tute of Computer Research.

Communications of the ACM 58

Dynamic Declarations*

P. Z. Ingerman

University of Pennsylvania, Philadelphia, Pa.

A routine is described in this paper for mapping one
a r ray into another. This situation arises in the considera-
tion of o w n a r r a y ' s which are declared dynamically.
In this case, the subscript bounds m a y change each t ime
the declaration is invoked.

Table 1 gives the values of subscripted variables in
the old and new arrays.

TABLE 1

New Array
Old Array

Subscript undefined Subscript defined

Subscript undefined Value undefined Value undefined
Subscript d e f i n e d Value lost Value preserved

There are three constraints on the mapping function
First, if a set of subscripts is defined in both the old and
new arrays, the value of the corresponding subscripted
variable must remain unchanged by the mapping. Second,
if a set of subscripts defined in the old ar ray is undefined
in the new array, the value of the corresponding sub-
scripted variable is lost. Third, if a set of subscripts which
was undefined in the old ar ray becomes defined in the
new array, the value of the corresponding subscripted
variable is undefined, al though space must be left in the
new array so tha t a value m a y be assigned. These three
conditions are an expansion of ALGOL Repor t Paragraph
5 .2 .5 .

All non-own a r r a y ' s stored in memory consist of two
parts. The first par t of the physical storage is a dope
vector of the form:

0 number of subscripts declared for the array
1 (upper bound minus lower bound plus 1) of first subscript. This

is the number of allowable values that the first subscript may
take.

2 lower bound of first subscript
3 (upper bound minus lower bound plus 1) of second subscript
4 lower bound of second subscript

etc. for remaining subscripts.

After this dope vector, the elements of the array are
l is ted--in numerical order by subscript. This implies,
for example, tha t matrices are listed in order by rows.

With o w n a r r a y ' s , an additional two-word "packe t "
iollows the last element of the array. The first word of
the packet contains the address of word zero of the dope
vector. The contents of the second word of the packet is

* This work was supported by the University of Pennsylvania,
Office of Computer Research and Education, and the U. S. Air
Force under Contract AF-49(638)-951.

the address of the word in the body of the program which
keeps t rack of the location of the o w n a r r a y when it is
active.

Static o w n a v r a y ' s are handled as described in the
paper by Sattley. When the dynamic a r r a y declaration
for an o w n a r r a y is invoked a t run time, it causes the
generation of the dope vector at an appropriate place in
the memory.

I f an ar ray is stored as stated above, it can be repre-
sented by an equivalent vector. The mapping of the
elements of the a r ray into the elements of the vector is
given by the relation:

A [i , j , . . . , m] = V [(- . . ((i - i 0) J + j - j0) " ") M + m - m0]

where i0, j0, etc. are the lower bounds of the respective
subscripts, and J, M, etc. are the number of allowable
values that, the respective subscripts may take (as de-
fined above).

When considered in this manner, the mapping of the
"old" vector-representing-an-array into a "new" vector
is a fairly simple problem. There are three cases to be
considered, corresponding to the three constraints de-
scribed above. First, all elements tha t are defined for
both the old and new versions of the array, in the sense
tha t the subscripts are within bounds in both declarations,
must be moved to their appropriate places in the new
version of the array. Second, space must be left in the
new version of the a r ray for elements tha t are defined
for the new version but undefined for the old version.
Third, elements in the old version of the array tha t are
undefined in the new version must be ignored, in the
sense tha t they must be specifically excluded from trans-
mission to the new version of the array.

The procedure ARSHIFr described below performs this
mapping when necessary. I t is called upon by VUSBUDGET
when a previously declared o w n a r r a y is re-declared.
I f necessary, ARSHIFT moves the array to a location
specified by FUSBUDGET, mapping the old version into the
new version.

ARSHIFT is a Boolean function designator. On exiting
from the procedure, ARSHIFT will have the value f a l s e

if the new version of the a r ray is identical in size and shape
to the old version of the array. I f ARSHIFT exits with the
value t rue , the old version of the array has been mapped
into the new version as described above.

ARSHIFT is a function designator which may, in a sense,
change the values of global parameters. Tha t is, when
ARSHIFT exists with the value t rue , the memory has been
rearranged. ARSHIFT contains within its declaration the
recursive procedure MOVE which actually performs the
mapping.

C o m m u n i c a t i o n s o f t h e A C M 5 9

B is the address of word zero of the dope vector of the
old version of the array, and T is the address of word
zero of the dope vector of the new version of the array.
After the dope vector at the head of the new version
has been stored by FUSBUDGET according to the data within
the array declaration, FUSBUDGET calls on .A.RSHIFT (B , T) .

EXIMUS is a global procedure. I t is executed when FUS-
BUDGET requests that an array be mapped into an array
of a different dimensionality; it and the statement in
which it appears may be superfluous, if it is known that
this sort of error will never occur.

I t will be noted that ARSHIFT, as do several other
procedures, uses a pseudo-vector referred to as "Memory".
This vector is assumed to be declared in some high-level
block by a declaration of the form:

array M e m o r y [0 : ~ m a x i m u m m e m o r y a d d r e s s > [

The values of the elements of the vector are the con-
tents of the cells whose addresses are the subscipts.

This pseudo-vector is a device for making the contents
of memory cells available to a routine when the address
of the cell is known. Because of the lack of synonym
facilities in ALGOL 60 (but see ALGOL Maintenance Com-
mittee Proposal 9, Argonne National Laboratories), the
actual declaration of such a vector would leave no room
in the memory for program or storage. I t is, however, a
useful concept.

The Author wishes to acknowledge the valuable con-
tributions made to this paper by K. Sattley and W.
Feurzeig of the University of Chicago, Laboratory for
Applied Sciences; and E. T. Irons, Princeton University
and Institute for Defense Analyses. Others who con-
tributed were R. Floyd, Armour Research Foundation;
and Miss M. L. Lind, and H. Kanner, University of
Chicago, Institute of Computer Research.

B o o l e a n p r o c e d u r e A R S H I F T (B, T) ; v a l u e B, T ;
i n t e g e r B , T ; b e g i n i n t e g e r m , k , p , a , y ;

p r o c e d u r e M O V E ;
b e g i n i n t e g e r S, Q, BU, T U ;
m :ffi m - b 1 ; Q := M e m o r y [B -b 2 * m] ;

S := M e m o r y [T -b 2 * m] ;

B U := M e m o r y [B - b 2 * m - 1] - b Q - 1 ;

T U :ffi M e m o r y [T ~ 2 * m - 1] - b S - 1 ;

x~vz : i f Q ffi S t h e n

• b e g i n i f k ~ m t h e n M O V E
e l s e b e g i n c o m m e n t move va lues ;

M e m o r y [T -b n] := M e m o r y [B -b p] ;
n : = n - b l ; p : f p - b l c n d ;

Q := Q -b i f Q < B U t h e n 1 e l s e 0 ;

S := S 'b i f S ~ T U t h e n 1 e l se 0 e n d

e l s e i f (Q > S) V (S > BU) t h e n

b e g i n c o m m e n t make space in t h e " n e w " a r r a y ;

a : f f i l ;

i f k # m t h e n f o r y := m + 1 s t e p 1 u n t i l k do
a :ffi a * M e m o r y [T + 2 * y - - 1] ;

n : f f i n + a ; S : = S + i f S < T U t h e n l e l s e 0 e n d
e l s e b e g i n c o m m e n t sk ip e l emen t s because Q < S < B U ;

a : = l ;
i f k ~ m t h e n for y :ffi m -b 1 s t e p 1 u n t i l k d o

a :ffi a , M e m o r y [B q- 2 * y - 1] ;

P := p - h a ; Q : f Q - ~ i f Q ~ B U t h e n l e l s e 0 e n d ;
if (S ~ T U) V (Q ~ BU) t h e n go t o xyz ;
m :ffi m - 1 ; e n d of M O V E ;

k :ffi M e m o r y [B] ; i f k M e m o r y [T] t h e n E X I M U S ;
A R S H I F T := f a l s e ;
for m :ffi 1 s t e p 1 u n t i l 2 * k d o i f M e m o r y [B - b m] ~ M e m o r y

[T -b m] t h e n
b e g i n p :ffi n :ffi 2 * k - b 1 ; m : f f i 0 ; M O V E ;

M e m o r y [T q- n -b 2] := M e m o r y [B -b P -b 2] ;
M e m o r y [B q- p -b 2] := 0 ;
M e m o r y [Memory [T -b n ~ 2]] :ffi M e m o r y [T -b n -b 1]
: f f i t ;

A R S H I F T :ffi t r u e ; m :ffi 3 * k e n d
e n d of A R S H I F T ;

FIG. 1.

C o m m u n i c a t i o n s o f t h e ACM 6 0

