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Introduction bility was more desirable than  a brute-force solution. I t  

This paper  presents a technique for the implementat ion 
is to be explicitly understood tha t  this solution is one 
acceptable solution to a problem soluble in m a n y  ways. 

of procedure statements,  with some comments  on the 
implementat ion of procedure declarations. I t  was felt Origin of T h u n k  
tha t  a solution which had both elegance and mechaniza- 

The basic problem involved in the compilation of pro- 
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the actual parameters which are substituted for the formal 
parameters may differ. Even if the several invocations are 
from the same procedure statement, the value of the 
actual parameterrs may change from call to call. 

There are three basic types of information that need 
to be transmitted: first, the value of a parameter; second, 
the place where a value is to be stored; and third, the 
location to which a transfer is to be made. 

In each of the three cases above, the requirements can 
be met by providing an address: first, the address in 
which the desired value is located; second, the address 
into which a value is to be stored; and third, the address 
to which a transfer is to be made. (This is somewhat 
simplified; more details are considered below.) 

A thunk is a piece of coding which provides an address. 
When executed, it leaves in some standard location 
(memory, accumulator, or index register, for example) 
the address of the variable with which it is associated. 
There is precisely one thunk associated with each actual 
parameter in each specific procedure statement. (The 
handling of arrays requires a slightly extended definition 
--see below.) If an actual parameter is an expression, the 
associated thunk (each time it is used) evaluates the ex- 
pression, stores the value in some temporary location, 
and delivers the address of the temporary location. If an 
actual parameter is a subscripted variable, the thunk 
(each time it is used) delivers the address of the specified 
element of the array. If an actual parameter is a condi-
tional expression, the thunk selects from the alternatives 
and delivers the appropriate address. 

In the most general case, the address transmitted by 
the thunk may be desired information, the address of the 
desired information, or the address where information is 
stored enabling the calculation of the desired information. 
The translator knows what kind of thunk to create by 
considering the syntax of the formation of the actual 
parameter and the previously scanned declarations. On 
the other hand, when a procedure declaration is being 
compiled, the translator, again by observing syntax, 
knows what kind of address to expect from a thunk. 

'1 h e  S i m p l e  C a s e  

The simplest case, for explanatory purposes, involves 
a procedure whose formal parameters are all either labels 
or simple (non-subscripted) variables called by name. To 
compile such a procedure, one must consider both the 
procedure statement and the procedure declarations. 

The procedure statement or function designator in its 
ALGOL-60 form looks like: 

glub (a, b, ... , m, n) (3.2.1, 4.7.1) 

where "glub" is the procedure identifier. For simplicity's 
sake, the comma has been used exclusively, rather than 
the optional parameter delimiter ") (letter string) :(", as 
mentioned in the above-cited paragraphs. 

When this procedure statement is compiled, it produces 
coding of the following description: 

return-jump to glub 
thunk a 
thunk b 

thunk m 
thunk n 

The procedure declaration heading corresponding to 
the above procedure statement contains in part: 

procedure glub (p, q, ... , y, z) 

in which formal parameter p corresponds to actual param- 
eter a, etc. 

In the simple case under consideration, there are three 
types of parameters; those on the right side of a :=,  and 
those on the left side of a :=,  and those embedded in go t o  
statements. Also, a formal parameter in the procedure 
body is identifiable because of its appearance in the pro- 
cedure heading. 

When a formal parameter appears on the right side of 
a :=, the generated coding may be described thus: 
(1) Store any necessary registers 
(2) Return-jump to the appropriate thunk 
(3) Remove the desired quantity from the address pro- 

vided by the thunk, and 
(4) Restore the status quondam 
When the formal parameter appears on the left side of 
a :=,  what is needed at run time is not a quantity, but 
merely a location. In this case, step (3) above is replaced by 
(3a) Store the calculated quantity at the address pro- 

vided by the thunk 
When the formal parameter is embedded in a go to, step 
(3) is replaced by 
(3b) Transfer control to the address provided by the 

thunk 
and step (4) is vacuous. Note that in each of the three 
cases, the thunk provided only an address; the interpreta- 
tion of that address is a function of point-of-call on the 
thunk. This means that procedure declarations and pro- 
cedure statements can be interpreted without cross-
reference at compile time. 

MORE DETAIL: 
A simple, non-subscripted, variable is a special case 

of an expression; in addition to expressions, strings, 
array identifiers, switch identifiers, and procedure identi- 
fiers are also valid actual parameters (3.2.1, 4.7.1). In 
this section, the thunks for expressions in general and for 
strings will be discussed. 

If an actual parameter is a string (2.6.1), the thunk 
delivers the address of the string. Note that in some 
machine implementations this might involve delivering 
the address of the first character of the string, with the 
expectation that the end of the string is marked by some 
suitable delimiter. 

If an actual parameter is a simple variable (3.1.1), the 
associated thunk--each time it is used--delivers the 
address of the quantity named by the simple variable. 
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If the actual parameter is a label (3.5.1) ,  the associated 
thunk (each time it is used) delivers the address to which 
transfer is to be made. This may  require some additional 
mechanisms, as described in the paper on Recursive Pro- 
cedures and Blocks (see page 65). 

If an actual parameter  is a Boolean or arithmetic ex-
pression (3.3.1,  3 .4 .1) ,  the associated thunk (each time it is 
used) evaluates the expression, stores the value in some 
temporary  storage location, and delivers the address of the 
temporary location. For example, if an actual parameter  
is a subscripted variable, the thunk delivers the address 
of the specified element in the array. 

If an actual parameter is a conditional expression (3.3.1,  
3 .4 .1) ,  the associated thunk (each time it is used) evalu- 
ates the conditions and if necessary, the expression se-
lected by them, and delivers the address as described in 
the preceding paragraph. 

If an actual parameter  is a function designator (3.2.1) ,  
the associated thunk (each time it is used) delivers the 
address to which transfer should be made. Note that  this 
may  involve several steps, if the desired element of the 
switch declaration is itself a switch designator, etc. (3.5.3) .  

If the actual parameter  is a conditional designational 
expression (3.5.1) ,  the associated thunk (each time it is 
used) evaluates the conditions to select the alternative and 
delivers the address to which transfer is to be made, using 
one of the two techniques described above. 

Array Identifiers 

When an actual parameter  is an array identifier, its 
interpretation becomes somewhat more involved. At the 
time the procedure declaration heading is being scanned, 
there may  be no way of telling that  a formal parameter  is 
an array identifier. However, when the body of the declara- 
tion is scanned, the sequence 

(formal parameter}[ 

identifies the parameter  as an array identifier. This se-
quence can occur on either side of a := .  In this case the 
return-jump to the thunk provides not the specific address, 
but  rather the address of a table in which the necessary 
information for the subscription operation will be found. 
(The necessary information is a residue from the cor-
responding array declaration, which may have been evalu- 
ated dynamically when the block was entered.) 

When the procedure statement is being compiled and the 
array declaration is available, it is obvious that  the actual 
parameter is an array identifier, and the thunk which is 
compiled will provide the address of the table. 

Switch Identifiers 

A switch declaration may be construed as a vector 
whose elements are unconditional transfer instructions 
rather than data. With this interpretation, a switch identi- 
fier as a formal parameter  may  be interpreted in precisely 
the same manner as the array identifier discussed supra. 
In other words, a switch declaration may be treated in the 

same manner as a static, non-own,  one-dimensional 
array. 

Procedure Identifiers 

If one makes the (not severely) restrictive assumption 
that  the address (in the final coding) of the exit line of a 
procedure declaration can be determined if the address (in 
the final coding) of the entrance line is known, procedure 
identifiers cause no difficulty when used as formal pa- 
rameters. In this case, the thunk provides the address of 
the entrance line of the procedure. The coding which calls 
on the thunk calculates the address of the exit line and 
places the two addresses into a return-jump. (Note again 
that  this is a philosophical description; on, e.g., the IBM 
704 the technique is actually simpler.) 

However, there are some additional complications when 
using procedure identifiers as actual parameters. The tech- 
nique described above works in all cases except when the 
formal parameter  part  is empty and the procedure is a 
function designator. In this case, the associated thunk 
(each time it is used) return-jumps to the procedure and 
delivers the address of the location in which the value of 
the procedure had been placed. 

Procedure Declarations 

When the formal parameter  part  of a procedure heading 
is scanned by the compiler, a list is made of the formal 
parameters. This list is used to distinguish those identifiers 
for which return-jumps to thunks must be generated. 
With the exception of the two cases to be discussed below, 
this is the only non-conventional coding generated. (By 
conventional is here meant the coding that  would be turned 
out if the same statements were to be written outside a 
procedure declaration.) 

Calls by Value 

Normally, the procedure declaration introduces no cod- 
ing as such. If the heading contains a value part, the cor- 
responding formal parameters are understood to be re-
placed with generated local identifiers which must have 
values assigned to them each time the body of the pro- 
cedure is entered. This is equivalent to inserting a number 
of ALGOL-60 statements of the form : 

(generated local identifier} := (formal parameter} 

immediately in front of the coding provided by the pro- 
grammer, and then interpreting these statements as though 
they had been there all along. If a formal parameter was 
an array identifier, and the array was called by value, the 
generator ALGOL-60 statements must  have the effect of 
(nested) for  loops to move the array. The generated local 
identifiers replace the corresponding formal parameters 
wherever they appear in the body of the procedure 
declaration. 

MORE DETAILS. 
If a formal parameter is called by value, it must have its 

value bound before entering the body of the procedure, 
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and must be considered as a local identifier inside the pro- 
cedure body. 

If a formal parameter called by value is not used as an 
array identifier, coding of the following general description 
is turned out: 

Return-jump to appropriate thunk 
Fetch quantity from address provided by the thunk and 

assign it as the value of the associated generated local 
parameter. 

I t  is worth noting that  if a formal parameter called by 
value is used as a procedure identifier in the procedure 
body, the identifier identifies a procedure which has an 
empty formal parameter  par t  and defines the value of a 
function designator (4 .7 .5 .4) .  Thus the same general 
coding scheme applies to this case. 

If a formal parameter  called by value is used as an array 
identifier, the generated coding is of the form: 

Return-jump to the appropriate thunk to get the address of 
the dope vector for the array. 

Activate the FUSBUDGET mechanism and move the array 
to the newly assigned storage. 

The FUSBUDGET mechanism is described in the paper by 
Satt ley on Allocation of Storage (see page 60). 

N e s t e d  P r o c e d u r e s  

A formal parameter  in a procedure declaration heading 
might appear only as an actual parameter  of a procedure 
statement contained in the procedure declaration body. 
This is illustrated: 

procedure glub (a, b, -'" , m. n) 

george (a, x, y) 

The same technique applies here. The procedure state- 
ment is replaced by 

return-jump to george 
thunk a 
thunk x 
thunk y 

However, at the time the procedure s tatement  for george 
is being scanned, _a has already been noted as a formal pa- 
rameter in the procedure declaration. Hence, the thunk 
that  is compiled for a under the return-jump to george is in 
itself a return-jump to the thunk for the formal parameter  
a associated with the return-jump to glub. 

Thus, if a formal parameter called by name in a procedure 
declaration appears as an actual parameter of some con- 
tained procedure statement,  the thunk for that  parameter 
(generated when the procedure statement is read) jumps 
to the thunk for the formal parameter. The thunk for the 
formal parameter may  again jump (the chain may con-
tinue indefinitely) or may  store the necessary information 
in~t,he standard place. 

In other words, if a formal parameter in a procedure 
delcaration heading appears only as an actual parameter 
in some contained procedure statement, the thunk gener- 
ated by the procedure statement must go up one level, and 
must pass down unchanged the information there ac-
quired. Hence it will call on the thunk corresponding to the 
formal parameter involved. The chain so set up can con- 
tinue to any depth; it is only at the two ends of the chain 
that  anything need be known about the type of address 
that  is being transmitted. 

F u r t h e r  C o m m e n t s  

This paper, admittedly, gives no at tention to the ques- 
tion of the correct matching of arithmetic types within the 
procedure body when one operand is a formal parameter. 
Hence, this paper assumes that  a programmer composing 
a call on a procedure must observe all the explicit and 
implicit assumptions of the procedure. (In addition, it 
assumes a doctrine like, for example, the following: "The  
value of a formal parameter appearing in an arithmetic 
expression in the body of the procedure will be assumed to 
be of type real ,  unless the formal parameter has been 
specified to be of type i n t e g e r  in the procedure heading"). 

An alternative means of handling this question might be: 
Have the thunk for the formal parameter  return not only 
the required address, but  also a type code for the value of 
the actual parameter. The correct data-matching would 
then be done dynamically during the execution of the 
procedure. 
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Dynamic Declarations* 

P. Z. Ingerman 

University of Pennsylvania, Philadelphia, Pa. 

A routine is described in this paper  for mapping one 
a r ray  into another.  This situation arises in the considera- 
tion of o w n  a r r a y ' s  which are declared dynamically. 
In  this case, the subscript bounds m a y  change each t ime 
the declaration is invoked. 

Table 1 gives the values of subscripted variables in 
the old and new arrays.  

TABLE 1 

New Array 
Old Array 

Subscript undefined Subscript defined 

Subscript undefined Value undefined Value undefined 
Subscript d e f i n e d  Value lost Value preserved 

There are three constraints on the mapping function 
First, if a set of subscripts is defined in both the old and 
new arrays, the value of the corresponding subscripted 
variable must  remain unchanged by  the mapping. Second, 
if a set of subscripts defined in the old ar ray  is undefined 
in the new array,  the value of the corresponding sub-
scripted variable is lost. Third, if a set of subscripts which 
was undefined in the old ar ray  becomes defined in the 
new array,  the value of the corresponding subscripted 
variable is undefined, al though space must  be left in the 
new array so tha t  a value m a y  be assigned. These three 
conditions are an expansion of ALGOL Repor t  Paragraph 
5 .2 .5 .  

All non-own a r r a y ' s  stored in memory  consist of two 
parts.  The first par t  of the physical storage is a dope 
vector of the form: 

0 number of subscripts declared for the array 
1 (upper bound minus lower bound plus 1) of first subscript. This 

is the number of allowable values that the first subscript may 
take. 

2 lower bound of first subscript 
3 (upper bound minus lower bound plus 1) of second subscript 
4 lower bound of second subscript 

etc. for remaining subscripts. 

After this dope vector, the elements of the array are 
l is ted--in numerical order by  subscript. This implies, 
for example, tha t  matrices are listed in order by  rows. 

With o w n  a r r a y ' s ,  an additional two-word "packe t "  
iollows the last element of the array. The first word of 
the packet  contains the address of word zero of the dope 
vector. The contents of the second word of the packet is 

* This work was supported by the University of Pennsylvania, 
Office of Computer Research and Education, and the U. S. Air 
Force under Contract AF-49(638)-951. 

the address of the word in the body of the program which 
keeps t rack of the location of the o w n  a r r a y  when it is 
active. 

Static o w n  a v r a y ' s  are handled as described in the 
paper  by  Sattley. When the dynamic a r r a y  declaration 
for an o w n  a r r a y  is invoked a t  run time, it causes the 
generation of the dope vector  at  an appropriate place in 
the memory.  

I f  an ar ray  is stored as stated above, it can be repre- 
sented by  an equivalent vector. The mapping of the 
elements of the a r ray  into the elements of the vector is 
given by  the relation: 

A [ i ,  j ,  . . .  , m ]  = V [ (  - . .  ( ( i  - i 0 ) J  + j - j0) " "  ) M  + m - m0] 

where i0, j0, etc. are the lower bounds of the respective 
subscripts, and J, M, etc. are the number  of allowable 
values that, the respective subscripts may  take (as de- 
fined above). 

When considered in this manner,  the mapping of the 
"old" vector-representing-an-array into a "new" vector 
is a fairly simple problem. There are three cases to be 
considered, corresponding to the three constraints de-
scribed above. First, all elements tha t  are defined for 
both the old and new versions of the array, in the sense 
tha t  the subscripts are within bounds in both declarations, 
must  be moved to their appropriate  places in the new 
version of the array.  Second, space must  be left in the 
new version of the a r ray  for elements tha t  are defined 
for the new version but  undefined for the old version. 
Third, elements in the old version of the array tha t  are 
undefined in the new version must  be ignored, in the 
sense tha t  they must  be specifically excluded from trans- 
mission to the new version of the array.  

The procedure ARSHIFr described below performs this 
mapping when necessary. I t  is called upon by VUSBUDGET 
when a previously declared o w n  a r r a y  is re-declared. 
I f  necessary, ARSHIFT moves the array to a location 
specified by  FUSBUDGET, mapping  the old version into the 
new version. 

ARSHIFT is a Boolean function designator. On exiting 
from the procedure, ARSHIFT will have the value f a l s e  

if the new version of the a r ray  is identical in size and shape 
to the old version of the array.  I f  ARSHIFT exits with the 
value t rue ,  the old version of the array has been mapped 
into the new version as described above. 

ARSHIFT is a function designator which may,  in a sense, 
change the values of global parameters.  Tha t  is, when 
ARSHIFT exists with the value t rue ,  the memory  has been 
rearranged. ARSHIFT contains within its declaration the 
recursive procedure MOVE which actually performs the 
mapping. 
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B is the address of word zero of the dope vector of the 
old version of the array, and T is the address of word 
zero of the dope vector of the new version of the array. 
After the dope vector at the head of the new version 
has been stored by FUSBUDGET according to the data within 
the array declaration, FUSBUDGET calls on .A.RSHIFT (B ,  T ) .  

EXIMUS is a global procedure. I t  is executed when FUS- 
BUDGET requests that an array be mapped into an array 
of a different dimensionality; it and the statement in 
which it appears may be superfluous, if it is known that 
this sort of error will never occur. 

I t  will be noted that ARSHIFT, as do several other 
procedures, uses a pseudo-vector referred to as "Memory".  
This vector is assumed to be declared in some high-level 
block by a declaration of the form: 

array M e m o r y  [0 : ~ m a x i m u m  m e m o r y  a d d r e s s > [  

The values of the elements of the vector are the con- 
tents of the cells whose addresses are the subscipts. 

This pseudo-vector is a device for making the contents 
of memory cells available to a routine when the address 
of the cell is known. Because of the lack of synonym 
facilities in ALGOL 60 (but see ALGOL Maintenance Com- 
mittee Proposal 9, Argonne National Laboratories), the 
actual declaration of such a vector would leave no room 
in the memory for program or storage. I t  is, however, a 
useful concept. 

The Author wishes to acknowledge the valuable con-
tributions made to this paper by K. Sattley and W. 
Feurzeig of the University of Chicago, Laboratory for 
Applied Sciences; and E. T. Irons, Princeton University 
and Institute for Defense Analyses. Others who con-
tributed were R. Floyd, Armour Research Foundation; 
and Miss M. L. Lind, and H. Kanner, University of 
Chicago, Institute of Computer Research. 

B o o l e a n  p r o c e d u r e  A R S H I F T  (B, T)  ; v a l u e  B, T ; 
i n t e g e r  B , T  ; b e g i n  i n t e g e r  m , k , p , a , y  ; 

p r o c e d u r e  M O V E  ; 
b e g i n  i n t e g e r  S, Q, BU,  T U  ; 
m :ffi m - b 1  ; Q :=  M e m o r y  [B -b 2 * m] ; 

S :=  M e m o r y  [T -b 2 * m] ; 

B U  :=  M e m o r y [ B - b 2 * m - 1 ] - b Q - 1 ; 

T U  :ffi M e m o r y [ T  ~ 2 * m - 1 ] - b  S -  1 ; 

x~vz : i f  Q ffi S t h e n  


• b e g i n  i f  k ~ m t h e n  M O V E  
e l s e  b e g i n  c o m m e n t  move  va lues  ; 

M e m o r y  [T -b n] :=  M e m o r y  [B -b p] ; 
n : = n - b l  ; p : f p - b l c n d  ; 

Q :=  Q -b i f  Q < B U  t h e n  1 e l s e  0 ; 

S :=  S 'b  i f  S ~ T U  t h e n  1 e l se  0 e n d  


e l s e  i f  (Q > S) V (S > BU)  t h e n  

b e g i n  c o m m e n t  make  space  in  t h e  " n e w "  a r r a y  ; 

a : f f i l  ; 

i f  k # m t h e n  f o r  y :=  m + 1 s t e p  1 u n t i l  k do 
a :ffi a * M e m o r y [ T + 2 * y - -  1] ; 

n : f f i n + a  ; S : =  S + i f S < T U t h e n l e l s e 0 e n d  
e l s e  b e g i n  c o m m e n t  sk ip  e l emen t s  because  Q < S < B U  ; 

a : = l  ; 
i f  k ~ m t h e n  for y :ffi m -b 1 s t e p  1 u n t i l  k d o  

a :ffi a , M e m o r y  [B q- 2 * y -  1] ; 

P :=  p - h a  ; Q : f Q - ~ i f Q ~ B U t h e n l e l s e 0 e n d  ; 
if (S ~ T U )  V (Q ~ BU)  t h e n  go  t o  xyz ; 
m :ffi m -  1 ; e n d  of  M O V E  ; 

k :ffi M e m o r y  [B] ; i f  k M e m o r y  [T] t h e n  E X I M U S  ; 
A R S H I F T  :=  f a l s e  ; 
for m :ffi 1 s t e p  1 u n t i l  2 * k d o  i f  M e m o r y  [B - b m ]  ~ M e m o r y  

[T -b m] t h e n  
b e g i n p  :ffi n :ffi 2 * k - b 1  ; m : f f i  0 ; M O V E  ; 

M e m o r y  [T q- n -b 2] :=  M e m o r y  [B -b P -b 2] ; 
M e m o r y  [B q- p -b 2] :=  0 ; 
M e m o r y  [Memory  [T -b n ~ 2]] :ffi M e m o r y  [T -b n -b 1] 
: f f i t  ; 

A R S H I F T  :ffi t r u e  ; m :ffi 3 * k e n d  
e n d  of A R S H I F T  ; 

FIG. 1. 
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