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AB43.3.2 

A Modules and Separate Compilation Facility for ALGOL 68. 


By C. H. Lindsey (University of Manchester) 


and H. J. Boom (Mathematisch Centrum, Amsterdam) 


The following specification has been released by the IFIP Working 

Group 2.1 Standing Subcommittee on ALGOL 68 Support, with the 

authorization of the Working Group. 


This proposal has been scrutinized to ensure that 

a) it is strictly upwards-compatible with ALGOL 68, 

b) it is consistent with the philosophy and orthogonal framework 

of that language, and 

c) it fills a clearly discernible gap in the expressive power of 

that language. 


In releasing this extension, the intention is to encourage 

implementers experimenting with features similar to those 

described below to use the formulation here given, so as to avoid 

proliferation of dialects. 
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Informal description of Modules and Separate ComPilation. 


I Separate compilation and protection. 


These are two distinct concepts which must nevertheless be considered 

together in order to make a viable system. "Protection" implies a mechanism, 

better than classical block structure, for preventing indicators defined in 

one place from being applied in other places where they shouldn't. "Separate 

compilation" is a compile-time activity, designed to split large programs 

into manageable chunks and to provide a library mechanism. The features are 

independent in that the user should not be forced to use the one in order to 

gain the benefits of the other. On the other hand, the unit whose contents 

are to be protected will frequently be also a convenient unit for separate 

compilation, and therefore the use of the two features together should be as 

comfortable as possible. This proposal does not attempt to provide an 

"Abstract data type" facility. The proposed protection and separate 
compilation mechanisms are orthogonal to the existing ALGOL 68 "concrete" 
data types. 

2 Definition modules. 


A definition module can be declared anywhere (but typically in the outer 

reach, and often compiled separately): 


MODULE F : DEF LOC STRING s; read(s); 

PUB LOC FILE f; open(f, s, standin channel) 


POSTLUDE 

close(f); print(("file ", s, " closed")) 


FED; 


and it can be accessed anywhere within its reach 


LOC STRING message; 

ACCESS F (LOC STRING t; get(f, t); message := t[2: ]) 


( controlled clause ) 

( access-clause ) 


The effect is to elaborate the body of the definition module, inserting the 

controlled clause just before the POSTLUDE. From within the controlled 

clause (which is, in general, an ENCLOSED-clause), the identification 

mechanism first searches the declarations within itself, then those declared 

PUBlicly in the module (i.e. 'f', but not 's'), and then those in the reach 

outside the access-clause. An access-clause can return a value, coercions 

being passed inside it as with other ENCLOSED-clauses: 


LOC STRING message := 

ACCESS F 


(LOC STRING t; PROC prs = REF STRING: (get(f, t); t); prs) 


Observe the difference between 


ACCESS A,B ( ... ) and ACCESS A ACCESS B ( ... ) 


both of which are legal. Of course, the second creates one more scope level 

than the first, but there could also be a difference of meaning if A 

happened to PUBlicize another definition module B. Moreover, if both A and B 

happened to PUBlicize the same identifier, the compiler would report an 

error in the first case, but not in the second. The first form is therefore 
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to be preferred, especially when A and B are separately compiled modules 

which know nothing of each other's existence and whose complete list of 

PUBlications may be unknown to the user. 


Definition modules are particularly intended for providing packages whose 

inner workings can be concealed from their users. It is cutomary at this 

stage to exhibit a module for implementing a stack: 


MODULE STACK : 

DEF 


INT stacksize : 100; 

LOC [1:stacksize] INT st; 

LOC INT stptr := O; 

PUB PROC 


push = (INT n)INT: 

((stptr+::1)<=stacksize ~ st[stptr] := n 


I
, print("stack overflow"); stop) , 

pop = INT: 


(stptr>O ~ st[(stptr-:=1)+1] 

I' print("stack underflow"); stop) 


POSTLUDE 

(stptr/=O I print("stack not emptied"); stop) 


FED; 


Now this module may be accessed 

ACCESS STACK (push(1); push(2); print(push(pop)); pop; pop) 

Note that ACCESS is to be regarded primarily as a mechanism for permitting 

PUBlicized indicators to be made visible: 


ACCESS STACK 

(push(1); push(2); 


(PROC push = C something else C, pop = C something else C; 

push; pop; 

ACCESS STACK (print(push(pop)) # prints 2 # ) 

); pop; pop 


) 


When ACCESS STACK is encountered at the outer level, it is "invoked", i.e. 

its body is elaborated up to its POSTLUDE and side effects (in this case the 

allocation of space for 'st') may occur. The ACCESS STACK at the inner level 

can see the outer one, there is no fresh invocation and the same STACK is 

accessed. The postlude is not elaborated until the outer ACCESS is finally 

completed. 


Although it can be contrived that two invocations of a module coexist, 

this is to be regarded as a most unusual situation. Please do not confuse 

modules with SIMULA classes. If you want to have more than one stack 

available there is a proper way to go about it. 


MODULE STACKS = 

DEF 


INT stacksize = 100; 

MODE S = STRUCT ([1:stacksize] INT st, INT stptr); 

PUB MODE STACK = REF S; 

PUB PROC 


newstack = STACK: 

(HEAP S s; stptr OF s := O; s) , 


push = (STACK s, INT n)INT: 

(REF INT sp = stptr OF s; 

((sp+::1)<:stacksize I (st OF s)[sp] :: n 




AB 43p.22 


, I print("stack overflow"); stop) ) , 

pop = (STACK s)INT: 


(REF INT sp = stptr OF s; 

(sp>O ~ (st OF s)[(sp-::1)+1] 


I print("stack underflow"); stop) ) 

FED; 


Observe that the postlude is not appropriate in this version, and it has 

therefore been left out. The user may declare STACK variables for himself 

but, if he is honest, he will pretend he does not know about the STRUCT with 

which STACKs are implemented. However, there are no secret modes in ALGOL 

68, so a malicious user cannot be prevented from writing duplicate declarers 

and making his own STACKs. Observe that this particular STACKS module 

reserves no storage space - and indeed its invocation has no side effects 

whatsoever. 


Invocations are thus shared whenever it can be detected statically that 

this is possible. Modules may access other modules, but it is still possible 

to avoid all unnecessary invocations at compile time. 


MODULE A : DEF ... FED, 

B : DEF ... FED, 

C = ACCESS A,B DEF ... FED; 


# the PUBlicized declarations of A and B are visible inside C, 

but are not available to a user of C unless he specifically 

asks for them # 


ACCESS B,C ( ... ) 


Here (assuming nothing is invoked to start with) B is invoked first. The. 

attempt to access C finds that A and B are needed and it therefore invokes A 

(the first of them). It then finds that B is already invoked, so just makes 

the existing invocation accessible inside C. After that, C itself can be 

invoked and finally the invocations of B and C (but not A) are made 

available to the inside of the controlled clause. When this has been 

elaborated, the modules are revoked (i.e. their postludes, if any, are 

elaborated) in the inverse order of their invocation. 


Had it been required that the PUBlicized declarations of B should 

be visible to accessors of C, then C could have been declared 


MODULE C : ACCESS A, PUB B DEF ... FED 


whereupon the access-clause ACCESS C ( ... ) would have had the same effect 

as ACCESS B,C ( ... ) previously (except that the order of invocation would 

then have been A, B, C instead of B, A, C). 


Here is a carefully chosen confusing example to show exactly what 

happens: 


MODULE A = DEF PUB LOC INT i := 0 FED; 

MODULE B = ACCESS A DEF i+:=I; ACCESS A (i+:=I) FED; 

PROC c = VOID: ACCESS A (i+:=I; ACCESS B (print(i))); 

ACCESS A (i+:=I; c) 


We have, at various times, considered schemes which would have made this 

example print I, 2, 3 or 4, but in the version now defined it prints 3. To 

see why this is so, consider first those access-clauses which will not 

invoke A afresh because they can identify (as shown by the dotted lines) an 

existing invocation. This leaves two other access-clauses (one of them in 

the body of the procedure) which are bound to create new invocations of A 

whenever they are elaborated. Next consider the identification of the 

applications of 'i'. Clearly, they all identify the 'LOC INT i' in A, but 
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they do so indirectly via particular invocations of A, as shown by the thick 

lines. 


MODULE A : DEF PUB LOC INT i :: O FED; 

MODULE B : ACCESS A # whether this invokes a fresh A depends 


I upon where B is accessed # 

DEF i+:: I; ACCESS A (i+::I) FED; 


I 	 I t  ,I 

PROC c : VOID: ACCESS A # always a fresh A # 

T (i+::I;~ ACCESS iB # this B does not invoke 


l a fresh A # 
.......... 
t 

(prlnt(i)));
j 

ACCESS A # always a fresh A # 
(i+::I; c) 

By the time the call of 'c' is reached, A will have been invoked and the 

variable 'i' generated thereby will have been incremented to +I. However, 

the call of 'c' invokes another A and generates another variable 'i' which 

soon gets incremented to +I. The ACCESS B invokes B, but it does not invoke 

a fresh A, and therefore both the 'i's in B identify the same (i.e. the 

second) 'i', which therefore gets incremented twice more. Finally, the 'i' 

in 'print(i)' identifies the second 'i' (whose value is now +3) as shown (B 

is not involved, as it only accesses A privately). 


Here is a final example to show how a well known dangerous example can be 

made safe: 


BEGIN 

C same as Report 11.12 up to and including MODE PAGE C; 

MODULE BUFFERS = 

DEF [I : nmb magazine slots] REF PAGE mag; 


INT in := I, ex := I; 

SEMA full slots = LEVEL O, free slots = LEVEL nmb magazine slots, 


in buffer busy = LEVEL I, out buffer busy = LEVEL I; 

PUB MODULE 


CRITICALIN = 

DEF PUB REF [] REF PAGE magazine = mag, 


PUB REF INT index = in; 

DOWN free slots; DOWN in buffer busy 


POSTLUDE 

UP full slots; UP in buffer busy 


FED, 

CRITICALOUT = C similarly C 


FED; 

ACCESS BUFFERS 


BEGIN 

PROC par call = C as Report C; 

PROC producer = (INT i) VOID: 


DO 	 HEAP PAGE page; 

get (infile[i], page); 

ACCESS CRITICALIN 


(magazine[index] := page; 

index MODAB nmb magazine slots PLUSAB I) 


OD; 

PROC consumer = C similarly C; 

PAR ( C as in Report C ) 

END 


END 
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3 Libraries. 


Library procedures should be grouped together into sensible packages. 

Thus the library-prelude might contain: 


MODULE MATMODE : DEF PUB MODE MAT : 

C the standard mode for matrices C 


FED; 

MODULE MATRICES = ACCESS PUB MATMODE 


DEF 

C declares a collection of PUBlicly known 

procedures for matrix handling, which possibly use 

some secret inner procedures and secret global 

variables, hereby initialized C 


FED; 

MODULE VIBRATIONS = ACCESS MATRICES, PUB MATMODE 


DEF 

C declares a collection of PUBlicly known 

procedures for analysing the oscillations of 

structures, which use (but do not PUBlicize) the 

matrix handling procedures PUBlicized by MATRICES 

C 


FED; 

MODULE STRESSES : ACCESS MATRICES, PUB MATMODE 


DEF 

C declares a collection of procedures for 

analysing stresses C 


FED; 


These four module-declarations would be compiled into the library 

independently of one another except that, presumably, MATMODE had to be 

compiled first and MATRICES had to be compiled (or at least have its PUBlic 

interface compiled) before the remaining two. Observe that accessors of any 

of them automatically get to see the mode MAT, but users of VIBRATIONS and 

STRESSES do not thereby get to see MATRICES. 


A particular-program can now invoke one, any two or three, or all of 

them: 


ACCESS VIBRATIONS, STRESSES 

BEGIN 


• e. . . .  . . e  


ACCESS MATRICES 

IF ... THEN ... FI; 


. . .  e . .  . . .  


END 


The closed-clause here appears to be being elaborated inside two modules. 

Actually, it is being elaborated inside four. What happens is that the 

system first tries to invoke VIBRATIONS. It finds that, for VIBRATIONS, 

MATRICES is required and it can see (at compile time) that no invocation of 

MATRICES exists in the static environment. It therefore invokes MATRICES 

(which thereby invokes MATMODE by the same mechanism) and after that it 

invokes VIBRATIONS. It now tries to invoke STRESSES, which ~iso requires 

MATRICES (and MATMODE), but now it knows that invocations of these already 

exist, so it can invoke STRESSES immediately. Inside the BEGIN ... END, the 

PUBlicized declarations of MATMODE, VIBRATIONS and STRESSES (but not those 

of MATRICES) are available. 


When ACCESS MATRICES is encountered, it again knows at compile time that 

MATRICES is already invoked. The only action required, therefore, is to 

PUBlicize the declarations of MATRICES within the IF ... FI. Note that this 
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example also illustrates how a particular-program may begin with an ACCESS 

(an access-clause is an ENCLOSED-clause). 


Separate compilation using definition modules. 


The following example shows how a compiler, in which the first pass has 

.several phases, would be compiled in several packets. The last packet is a 

particular-program - the rest are module-declarations which are to be 

gathered into a "user-prelude", which is in effect a private library. Each 

packet contains an ACCESS, followed by a list of module-calls. It may be 

useful to regard the standard-prelude (including the particular-prelude) as 

another module, and to imagine that each of these lists implicitly commences 

"ACCESS STANDARDPRELUDE". 


MODULE COMMUNICATIONAREA : 

DEF ... FED 


MODULE PASSI = 

ACCESS COMMUNICATIONAREA 

DEF ... FED 


MODULE PHASEIA = 

ACCESS PASSI 

DEF 


PUB PROC phasela = ... ; 


FED 


MODULE PHASEIB : 

ACCESS PASSI 

DEF 


PUB PROC phaselb = ... ; 


FED 


MODULE PASS2 : 

ACCESS COMMUNICATIONAREA 

DEF 


PUB PROC pass2 = ... ; 

I o .  


FED 


ACCESS COMMUNICATIONAREA 

BEGIN 

ACCESS PASSI 


BEGIN 

ACCESS PHASEIA BEGIN ... phasela ... END; 

i o .  


ACCESS PHASEIB BEGIN ... phaselb ... END; 

o e .  


END; 

ACCESS PASS2 


BEGIN pass2 END 

END 
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5 Separate compilation using holes. 


The system described above essentially permits the building of programs 

in a bottom-up manner. However, strong opinions have been expressed that 

top-down building should also be provided. We found it necessary to propose 

a completely separate mechanism - the hole - for this, since all attempts to 

make the gap between the prelude and postlude of a definition module do this 

job proved fruitless. 


BEGIN 

C interesting declarations C; 

. c o  


IF ... 

THEN C more interesting declarations C; 


NEST "a" # this construct is a formal-hole # 

ELSE C yet more declarations C; 


NEST "b" 

FI; 


. B e  


END 


EGG "a" : 

( C some serial-clause. All the declarations preserved in the nest 

at "a" are available here C ) 

# this construct is an actual-hole # 


EGG "b" : 

( .................. ) 


The three packets shown would be compiled in the given order. Clearly, 

the semantics simply state that the meaning of the collection of packets is 

the same as that of the particular-program obtained by removing the 

formal-holes and stuffing the gaps with their matching actual-holes. The 

string- (or character-) denotations "a" and "b" are hole-lndications. Their 

syntax is quite different from other indications in the language because 

they do not obey the usual identification rules of other indicators. Indeed 

they must be unique within the program. Normally, they should be of the form 

letter followed by letters or digits, but the formal definition allows some 

flexibility to suit the local operating environment (I0.6.2.b) so that 

implementers can, for example, interpret them as the names of the files 

where the relevant interface information has been stored. 


Holes also provide a mechanism for introducing program segments written 

in other languages. Suppose, for example, that the implementer has provided 

means to access FORTRAN subroutines. Then users would be allowed to write 

declarations such as the following: 


PROC(REAL)REAL function : NEST FORTRAN "FUNCTION"; 


The compiler would then know to generate a FORTRAN-style calling sequence at 

calls of 'function', and the loader would be instructed to find the 

subroutine FUNCTION in some FORTRAN-style library. The Formal Definition 

contains an example (5.6.1.g) of what the syntax might permit for this 

facility. 


There are some problems, especially for implementations using the 

static/dynamic chain method of keeping track of their stack frames, 

concerning the scope of routlne-texts whose bodies contain formal-holes. The 

scope of such a routine is therefore made to be the smallest possible scope, 

as if its body had contained identifiers identifying defining occurrences 
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in 	 every range within which it was contained (just in case the actual-hole 

eventually stuffed were to contain such identifiers). Thus the elaboration 

of the following is always undefined: 


LOC 	PROC (REAL) REAL pp; 

BEGIN 

LOC REAL x; 

PROC p : (REAL a) REAL: NEST "p"; 

pp :: p 


END 


(because the actual-hole stuffed into "p" might contain an application of 

'x'). However, it is usually easy to avoid the problem entirely by writing, 

for example: 


PROC(REAL)REAL p = NEST "p"; 


rather than 


PROC p : (REAL a)REAL: NEST "p"; 


In addition to stuffing an actual-hole into a formal-hole, several 

definition-module-packets may be stuffed as well. Thus we can have 


EGG 	"a" : MODULE A : DEF ... FED 


EGG 	"a" : MODULE B = ACCESS A DEF ... FED 


and 	finally 

EGG "a" : BEGIN ... ACCESS A,B ( ... ) ... END 


Presumably, these (or at least their PUBlic interfaces) would have to be 

compiled in the order given, but to avoid all possibility of confusion there 

is a restriction that A and B must not be identifiable (neither as 

module-indications, nor as mode-indlcations, nor as operators) in the NEST 

"a" into which these EGGs are to fit. Indeed, it is reasonable to imagine 

that all the packets in the VIBRATIONS and STRESSES example above had been 

stuffed into a formal-hole representing the standard-prelude, as if they had 

been preceded by an implicit 'EGG "standard prelude" ='. (Thus, whether the 

standard-prelude is to be regarded as a definition module or as a 

formal-hole is purely a matter of taste - moreover actual implementers are 

likely in fact to treat it as a special case different from either.) 


6 Compilation systems. 


A "module-interface" is the document (written in some cryptic notation 

only understood by the compiler) which conveys information about PUBlicized 

declarations from a separately compiled definition module to its accessors. 

A "hole interface" does the same thing between a formal- and an actual-hole. 

Interfaces are output by the compilation of the packets which define them 

and may be re-input when compiling packets which require them. 

Alternatively, a module-interface (produced by a previous compilation of a 

definition-module-packet) may be "imposed" on a recompilation of that 

packet, ensuring if possible that the object-module produced is still 

consistent with that interface. In this way, re-compilation of other packets 

dependent upon that interface can be avoided. (However, we see no reasonable 

hope of imposing hole-interfaces.) 
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7 Order of compilation. 


Clearly, a hole must be compiled before its stuffing. Ordinarily, a 

particular-program or module must be compiled after any separately compiled 

module which it accesses. However, this order can be varied by using imposed 

interfaces. 


Suppose that a user wishes to have a module A which is to be used by a 

main program B, but that he wishes to compile (and even partially test) B 

before A. He therefore writes a skeletal module-declaration A' which 

contains just enough to fix the interface between A and B. A' is compiled to 

produce a module-interface A' (presumably this contains, inter alia, offsets 

for the indicators PUBlicized in A'). B is now written and compiled using A' 

(moreover the object-module produced for B is aware of the time stamp that 

was given to A' at its instant of creation). Next, the final version of A is 

written but, when it is compiled, the module-interface A' is imposed upon 

it. Clearly, the compiler will abort if A is not "consistent" with ~'. 

Compiler writers should be encouraged to make their definitions of 

"consistent" as liberal as possible. For example, there should be no 

difficulty in accepting the offsets fixed in A' even if the corresponding 

indicators in A turn out to have been declared in a different order. Note 

that no new interface ~ is produced. If now A is to be recompiled to mend 

some bug, and it is hoped to avoid re-compilation of B, then the inferface 

produced by or imposed upon the previous compilation of A (e.g. A') should 

be imposed and the compiler will try to produce an object module consistent 

with it if it possibly can. If it cannot, it will say so, signifying that 

recompilation of B cannot now be avoided. 


Of course, the user should be aware that he may gain in efficiency, or in 

improved optimizations, or in the reduction of wasted space, if he finally 

recompiles A to produce its best interface A, and then re-compiles B using 

A. 


8 Formal definition. 


The formal definition of these proposals which follows uses the existing 

formalism and conventions of the Revised Report. Note that, although it is 

expressed ~s modifications to the Report, no authority to alter the official 

Report text is implied. Moreover, these particular modifications have been 

chosen so as to minimize the number of places in the Report affected, and 

had these features been part of the language from the very beginning, their 

formal definition might have been simpler. 
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Formal Definition of Modules and Seoar@%@ ComDil%t~gn. 


Part I - Definition Modules. 


{{Module-declarations are new kinds of declarations. New kinds of entry in 

the nest are therefore needed.}} 


1.2.3. 

B) LAYER :: new DECSETY LABSETY INKSETY. 

E) DEC :: ... ; MOD. 

L) MODSETY :: MODS ; EMPTY. 

M) MODS :: MOD ; MODS MOD. 

N) MOD :: module REVS TAB. 

O) REVSETY :: REVS ; EMPTY. 

P) REVS :: REV ; REVS REV. 

Q) REV :: TAU reveals DECSETY INKS. 

R) TAU :: MU. 

S) INKSETY :: INKS ; EMPTY. 

T) INKS :: INK ; INKS INK. 

U) INK :: invoked TAU. 


4.8.1. 

E) PROP :: ... ; INK. 

F) QUALITY :: ... ; module REVS ; invoked. 


TAX :: ... ; TAU. 


{{'MOD's will be introduced into the nest by module-declarations. 'INK's 

will be introduced by module-calls.}} 


{{New kinds of indicator areneeded to identify these new properties.}} 


4.8.1. 

A) INDICATOR :: ... ; module indication. 


{{Modules are ascribed to module-indications by means of module- 

declarations.}} 


4.9. Module declarations 


4.9.1. Syntax 


a) NESTI module declaration of MODS{41a,e} : 

module{94d} token, 


NESTI module joined definition of MODS{41b,c}. 

b) NESTI module definition of module REVSETY REV TAB{41c} : 


where <REV> is <TAU reveals DECSETY invoked TAU> 

and <TAB> is <bold TAG>, 


where <NESTI> is <NOTIONI invoked TAU NOTETY2>, 

unless <NOTIONI NOTETY2> contains <invoked TAU>, 

module REVSETY REV NESTI defining module indication 


with TAB{48a}, 

is defined as{94d} token, 

NESTI module text publishing REVSETY REV defining LAYER{c,-}. 
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c) NESTI module text 

publishing REVSETY TAU reveals DECSETY INKSETY INK 

defining new DECSETYI DECSETY INK{b} : 


where <INKSETY> is <EMPTY> and <REVSETY> is <EMPTY>, 

def{94d} token, 

NESTI new new DECSETYI DECSETY INK module series 


with DECSETY without DECSETYI{d}, 

fed{94d} .token ; 


NESTI revelation publishing REVSETY defining LAYER{36b}, 

def{94d} token, 

NESTI LAYER new DECSETYI DECSETY INK module series 


with DECSETY without DECSETYI{d}, 

fed{94d} token, 

where <LAYER> is <new DECSETY2 INKSETY>. 


d) NEST3 module series with DESCETY without DECSETYI{c} : 

NEST3 module prelude with DECSETY without DECSETYI{e}, 


NEST3 module postlude{f} option. 

e) NEST3 module prelude with DECSETY1 without DECSETY2{d,e} : 


strong void NEST3 unit{32d}, go on{94f} token, 

NEST3 module prelude with DECSETYI without DECSETY2{e} ; 


where<DECSETYI without DECSETY2> is 

<DECSETY3 DECSETY4 without DECSETY5 DECSETY6>, 


NEST3 declaration with DECSETY3 without DECSETY5{41e}, 

go on{94f} token, 

NEST3 module prelude with DECSETY4 without DECSETY6{e} ; 


where <DECSETYI without DECSETY2> is <EMPTY without EMPTY>, 

strong void NEST3 unit{32d} ; 


NEST3 declaration with DECSETYI without DECSETY2{41e}. 

f) NEST3 module postlude{d} : 


postlude{94d} token, strong void NEST3 series with EMPTY{32b}. 

g)* module text : 


NEST module text publishing REVS defining LAYER{c}. 


{Examples: 

a) MODULE A : DEF STRING s; read(s); 


PUB STRING t = "file"+s, PUB REAL a FED, 

B : ACCESS A DEF PUB FILE f; 


open(f, t, standin channel) 

POSTLUDE close(f) FED 


b) A = DEF STRING s; read(s); 

PUB STRING t = "file"+s, PUB REAL a FED . 


B = ACCESS A DEF PUB FILE f; 

open(f, t, standin channel) 

POSTLUDE close(f) FED 


c) 	 DEF STRING s; read(s); 

PUB STRING t = "file"+s, PUB REAL a FED . 


ACCESS A DEF PUB FILE f; 

open(f, t, standin channel) POSTLUDE close(f) FED 


d) STRING s; read(s); PUB STRING t = "file"+s, PUB REAL a . 

PUB FILE f; open(f, t, standin channel) POSTLUDE close(f) 


e) STRING s; read(s); PUB STRING t : "file"+s, PUBLIC REAL a . 

PUB FILE f; open(f, t, standin channel) 


f) POSTLUDE close(f) } 


{Rule b ensures that a unique 'TAU' is associated with each module-text 

accessible from any given point in the program. This is used to ensure 

that an 'invoked TAU' can be identified (7.2.1.a) in the nest of all 

descendent constructs of any access-clause or module-text which invokes 

that module-text. 


In general, a module-text-pub!ising-REVS-defining-LAYER T makes 'LAYER' 
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visible within itself, and makes the properties revealed by 'REVS' visible 

wherever T is accessed• 'LAYER' includes both a 'DECSETY' corresponding to 

its public declarations (e.g. t and a in the first module-text of example 

c), a 'DECSETYI' corresponding to its hidden declarations (e.g. s in that 

example) and an 'INK' which links T to its unique associated 'TAU' and 

signifies in the nest that T is now known to be invoked. 'REVS' always 

reveals 'DECSETY INKSETY INK' (but not 'DECSETYI'), where 'INKSETY' 

signifies the invocation of any other modules accessed by T. 'REVS' may 

also reveal the publications of the other modules accessed by T if their 

module-calls within T contained a public-token.} 


4.9.2• Semantics 


a) A "module" is a scene {2.1.1.1.d} composed of a module-text together 

with an environ {2.1.1.1.c}. 


b) A module-declaration D is elaborated as follows: 

. the constituent module-texts of D are elaborated collaterally; 

For each constituent module-definition DI of D, 


. the yield {c} of the module-text of DI is ascribed {4.8.2.a} to the 

defining-module-indication of DI. 


c) The yield of a module-text T, in an environ E, is the module composed 

of 


(i) T, and 

(ii) the environ necessary for {7.2.2.c} T in E. 


d) A module-prelude C in an environ E is elaborated as follows: 

• its unit or declaration is elaborated in E; 

If another module-prelude D is directly descended from it, 

then D is elaborated in E 

{; otherwise, the elaboration of C is completed}. 


{{The declarations in a module-prelude must contain public-symbols if they 

are to be visible when the module is accessed.}} 


4.1.1. 

A) COMMON :: ... ; module. 


e) NEST declaration with DECSETY without DECSETYI{49e} : 

where <DECSETY without DECSETYI> is <EMPTY without DECSI>, 


NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,49a,-} ; 

where <DECSETY without DECSETYI> is <DECS without EMPTY>, 


public{94d} token, 

NEST COMMON declaration of DECS{42a,43a,44a,e,45a,49a,-} ; 


where <DECSETY without DECSETYI> is 

<DECSETY without DECSI DECSETY2>, 


NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,49a,-}, 

and also{94f} token, 

NEST declaration with DECSETY without DECSETY2{e} ; 


where <DECSETY without DECSETYI> is 

<DECS DECSETY3 without DECSETYI>, 


public{94d} token, 

NEST COMMON declaration of DECS{42a,43a,44a,e,45a,49a,-}, 

and also{94f} token, 

NEST declaration with DECSETY3 without DECSETYI{e}. 


{{Modules may be invoked by means of access-clauses.}} 
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A) ENCLOSED :: ... ; access. 


3.6. Access clauses 


3.6.1. Syntax 


a) SOID NEST access clause{5D,551a,A341h,A349a} : 

NEST revelation publishing EMPTY defining LAYER{b}, 


SOID NEST LAYER ENCLOSED clause{a,31a,33a,c,d,e,34a,35a,-}. 

b) NEST revelation publishing REVSETY 


defining new DECSETY INKSETY{a,49c} : 

access{94d} token, 


NEST joined module call publishing REVSETY revealing REVS{c}, 

where DECSETY INKS revealed by REVS{e,f} 


and NEST filters INKSETY out of INKS{h}. 

C} NEST joined module call publishing REVSETY revealing REVS{b,c} : 


NEST module call publishing REVSETY revealing REVS{d,-} ; 

where <REVSETY> is <REVSETYI REVSETY2> 


and <REVS> is <REVSI REVS2>, 

NEST module call publishing REVSETYI revealing REVSI{d,-}, 

and also{94f} token, 

NEST joined module call publishing REVSETY2 revealing REVS2{o}. 


d) NEST module call publishing REVSETY revealing REVS{c} : 

where <REVSETY> is <EMPTY>, 


module REVS NEST applied module indication with TAB{48b} ; 

where <REVSETY> is <REVS>, 

public{94d} token, 
module REVS NEST applied module indication with TAB{48b}. 

e) WHETHER DECSETYI DECSETY2 INKSI INKSET¥2 revealed by 

TAU reveals DECSETYI INKSI REVSETY3 

TAU reveals DECSETYI INKSI REVSETY4{b,e,f} : 


WHETHER DECSETYI DECSETY2 INKSI INKSETY2 revealed by 

TAU reveals DECSETYI INKSI REVSETY3 REVSETY4{e,f}. 


f) WHETHER DECSETYI DECSETY2 INKSI INKSETY2 revealed by 

TAU reveals DECSETYI INKSI REVSETY2{b,e,f} : 


WHETHER DECSETY2 INKSETY2 revealed by REVSETY2 

and DECSETYI independent DECSETY2{71a,b,c}. 


g) WHETHER EMPTY revealed by EMPTY{e,f} : WHETHER true. 

h) WHETHER NEST filters INKSETYI out of INKSETY INK{b} : 


unless INK identified in NEST{72a}, 

WHETHER <INKSETYI> is <INKSETY2 INK> 


and NEST INK filters INKSETY2 out of INKSETY{h,i} ; 

where INK identified in NEST{72a}, 


WHETHER NEST filters INKSETYI out of INKSETY{h,i}. 

i) WHETHER NEST filters EMPTY out of EMPTY{h} : WHETHER true. 


{Examples: 

a) ACCESS A, B (get(f, a); print(a)) 
b) ACCESS A, B 
C) A, B 
d) A • PUB B } 

{In rule b, the 'invoked TAU's enveloped by 'INKS' represent those 
modules wh ich  might need to be invoked at any modu!e-ca11 whose 
applied-module-indication identified a particular defining-

module-indication, whereas those enveloped by 'INKSETY' represent only 

those which need invocation in the particular c(hntext, the remainder 

having already been elaborated, as can be determinexi statically from the 

'NEST'. The presence of 'INKSETY' in the nest of all descendent constructs 
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of the access-clause ensures that all modules now invoked will never be 

invoked again within those descendents. 


Rule f ensures the independence of declarations revealed by one 

revelation; thus 


MODULE A = DEF PUB REAL x FED, B = DEF PUB REAL x FED; 

ACCESS A, B (x) 


is not pA'oduced. However, rule e allows a given declaration to be revealed 

by two public accesses of the same module, as in 


MODULE A = DEF PUB REAL x FED; 

MODULE B = ACCESS PUB A DEF REAL y FED, 


C = ACCESS PUB A DEF REAL z FED; 

ACCESS B, C (x+y+z) 

in which the module-deflnitions for both B and C reveal x, by virtue of 
the PUB A in their constituent revelations.} 

{{Note that a particular-program may now consist of a joined-label- 

definition followed by an access-clause. The defining-module- indications 

identified thereby would be in the library-prelude or the user-prelude.}} 


3.6.2• Semantics 


a) A SOID-NEST-access-clause N, in an environ E, is elaborated as 

follows: 

If there exists a "first uninvoked" {b} module M of the revelation R of N 

in E, with respect to 'NEST', 

then 


let M be composed from a module-text-defining-new-PROPSETY-INK T 

itogether with a necessary environ}; 

• M is invoked {c} in E, giving rise to a new environ E4 {inside whose 

locale 'INK' accesses the result of invoking M}; 


let Y be the yield {a} in E4 of a SOID-NEST-INK-access-clause akin to 

N {, in which M will be known to be already invoked}; 

• {M is revoked, i.e.} the series of the constituent postlude, if any, 

of T is elaborated in E4; 

• the yield of N in E is Y; 

• it is required that Y be not newer in scope than E; 


otherwise, 

• let E2 be the environ established around and beside E according to R 

{the locale of E2 corresponds to the publicized properties of the 

modules accessed by R}; 

. E2 is "furnished" {d} with {the values publicized by the constituent 

module-calls of} R in E; 

• the yield of N in E is the yield of the ENCLOSED-clause of N in E2; 


b) The "first uninvoked" module of a revelation R in an environ E is 

determined, with respect to some 'NEST', as follows: 

If there exists some constituent module-call-revealing-REVSETY-TAU- 

reveals-PROPSETY-INK C of R such that the predicate 'unless INK identified 

in NEST' holds, and which is the textually first such module-call, 

then 


. let the yield of the applied-module-indication of C in E be a {not 

yet invoked} module M composed of a module-text T and an environ El 

{necessary (7.2.2.c) for T}; 

If T has a revelation S, 


and if there exists a first uninvoked module MI of S in El with 

respect to 'NEST', 

then MI is the first uninvoked module of R; 

otherwise, M is the first uninvoked module of R; 


otherwise, there is no first uninvoked module of R. 
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{Observe that the choice of C from among the module-calls of R depends 

only on 'NEST' and not on E. It follows, therefore, that the choice can 

always be made at compile time. E is only required in order to obtain the 

correct necessary environ for M.} 


c) A module composed of a module-text-defining-new-PROPSETY-INK T and an 

environ El {necessary for T} is invoked in an environ E as follows: 

If T has a{n already invoked} revelation S, 

then 


• let E2 be the environ established around El, beside E, according to 

S; 

• the locale of E2 is "furnished" {d} with {the values publicized by 

the descendent module-calls of} S in E; 


otherwise, let E2 be El; 

• let E3 be the environ established around E2 and, if E is a "module 

locating environ" {see below}, then beside E and otherwise upon E, 

according to T {the locale of E3 corresponds to all the properties 

(publicized or not) declared in T}; 

• 'INK' is made to access the module composed of T and E3 inside ~he 

locale of E3 {so that, within T, T itself will be seen to be already 

invoked}; 

• the constituent module-prelude of T is elaborated in E3; 


let E4 be the environ, known as a "module locating environ", 

established around E, beside E3, according to some 

NOTION-defining-new-INK; 

• 'INK' is made to access the module composed of T and E3 inside the 

locale of E4; 

• the invoking of M is said to "give rise" to the environ E4. 


{Observe that all the environs created during the invocation of the 

uninvoked modules (b) of the revelation of an access-clause N have the 

same scope, which is newer than that of the environ in which N is being 

elaborated but older than that of any environ created during the 

elaboration of the ENCLOSED-clause of Ni} 


d) A locale L is "furnished" with a revelation R in an environ E as 

follows: 

For each descendent module-REVS-applied-module-indication of R, 


For each 'TAU reveals PROPS' enveloped {1.1.4.1.c} by 'REVS', 

• let the module "accessed" {e} by 'invoked TAU' inside E {it will be 

found in some module locating environ (c)} be a{n already invoked} 

module composed of a module-text T and an environ E3 {in which its 

module-prelude was formerly elaborated}; 

For each value or scene accessed inside the locale of E3 by some 

'PROP', 


If 'PROPS' envelops that 'PROP' ('PROP' is to be publicized}, 

then 'PROP' is made to access that value or scene (if it does not so 

access it already) inside L also• 


e) The value or scene "accessed" by a 'PROP' inside an environ E, 

composed of a locale L and an environ El, is the value or scene accessed 

by 'PROP' inside L {2.1.2.c}, if L corresponds to a 'FROPSETY' enveloping 

{1.1.4.1.c} that 'PROP', and, otherwise, the value or scene accessed by 

'PROP' inside El. 


{{Establishment "beside" an environ (as opposed to "upon" it) requires a 
change to 3.2.2.b. The first bullet of that rule becomes:}} 

. upon or beside an environ El, possibly not specified, (which determines 
its scope,} 

{{The two bullets commencing "if El is not specified ..." become:}} 

. if El is not specified, then let El be E2 and let "upon El" be 
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assumed; 

• E is newer in scope than El (is the same in scope as El) if the 

establlshment is upon El (is beside El) and is composed of E2 and a new 

locale corresponding to 'PROPSETY', if C is present, and to 'EMPTY' 

otherwise; 


{{Various new symbols have been invented:}} 


9.4.1.d 

module symbol{49a} MODULE 

access symbol{36b} ACCESS 

def symbol{49c} DEF 

fed symbol{49c} FED 

public symbol{36d,41e} PUB 

postlude symbol{49f} POSTLUDE 


{{Moreover, two more new symbols are yet to be invented for use in separate 

compilation:}} 


formal nest symbol{56b} NEST 

egg symbol{A6a,c} EGG 


{{Minor changes are required at other places in the Report.}} 


{{Identification}} 


7.2.1.c+2 # , :> 

or <QUALITYI> is <module REVS> or <QUALITYI> is <invoked>, # 


{{The proper identification o f  indicators declared via module-calls is 
ensured as follows:}} 

3.0.1. 

f)* NEST range : ... ; 


NEST module text publishing REVS defining LAYER{49c,-} ; 

NEST LAYER I LAYER2 module series 


with DECSETY without DECSETYI{49d} ; 

SOID NEST access clause{36a}. 


7.2.2. 

b) The defining NEST-range {a} of each QUALITY-applied-indicator-

with-TAX II contains {of necessity} either a QUALITY-NEST-LAYER-

defining-indicator-with-TAX I2, or else one or {possibly} more 

applied-module-indications I3 directly descended from 

NEST-module-calls-revealing-REVS where 'REVS' envelops 'QUALITY TAX'. II 

is then said to "identify" that I2 or each of those I3. 


{{This is sufficient to ensure, in conjunction with 7.2.2.c, the proper 

scope for routines containing access-clauses.}} 


{{1.1.4.2.c. The list of elidlble hypernotions must include:}} 

... "without DECSETY" . "publishing REVSETY" . "revealing REVSETY" 


{{The 'PROPSETY' to which a locale corresponds may now include an 


'INKSETY'.}} 


2.1.1.1.b+I,+2,+4 # LABSETY => LABSETY INKSETY # 


{{Revised pragmatic remark concerning scopes:}} 
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2.1.1.3. 

b) Each environ has one specific "scope". {The scope of each environ is 

never "older" (2.1.2.f) than that of the environ from which it is composed 

(2.1.1.1.c).} 


{{A module-text and a revelation must be establishing-clauses.}} 


3.2.1. 

i)* establishing clause 	: ... ; 


NEST module text publishing REVS defining LAYER{49c,-} ; 

NEST revelation publishing REVSETY defining LAYER { 36a,- }. 


Part II - Separate Compilation 


{{Separate compilation is performed by dividing a program into packets. Some 

packets contain formal-holes, indicated by the nest-symbol, into which 

actual-holes, contained in other packets and indicated by the egg-symbol, 

may be stuffed.}} 


5.1. 

A) UNIT :: ... ; formal hole ; virtual hole. 


5.6. Holes 


5.6.1. Syntax 


A) LANGUAGE :: algol sixty eight. 
Extra hypernotions {e.g. "fortran"} may be added to the above 
metaproduction rule. 

B) ALGOL68 :: algol sixty eight. 

a) strong MOID NEST virtual hole{5A} : 
virtual nest symbol, strong MOID NEST closed clause{31a}. 

b) strong MOID NEST formal hole{5A} : 
formal nest{94d} token, MOID LANGUAGE indication{e,f,-}, 

hole indication{d}. 
c) MOID NEST actual hole{A6a} : 

strong MOID NEST ENCLOSED clause{31a,33a,c,34a,35a,36a,-}. 
d) hole indication{b} : 

character denotation{814a} ; row of character denotation{83a}. 
e) MOID ALGOL68 indication{b} : EMPTY. 
f) Additional hyper-rules, for hypernotions of the form "MOID LANGUAGE 
indication" are to be added for each extra terminal metaproduction of 

"LANGUAGE", each containing just one alternative, which is to be a 

distinct 'bold TAG token'. 


{These MOID-LANGUAGE-indications may have severely restricted 'MOID's. 

For example, the following has been suggested: 


FORT fortran indication : 

bold letter f letter o letter r letter t 


letter r letter a letter n token. 

where 


LA~UAGE :: ... ; fortran. 

FORT :: procedure with PERFORMERS yielding FOID ; 


procedure yielding FOID. 

PERFORMERS :: PERFORMER ; PERFORMERS PERFORMER. 

PERFORMER :: FODE parameter. 
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FODE :: FAIN ; F~gT ; reference to FAIN ; ROWS of FAIN. 

FAIN :: real ; long real ; integral ; COMPLEX ; boolean• 

COMPLEX :: structured with real field letter r letter e 


real field letter i letter m mode. 

FOID :: FAIN ; void. 


Although FORTRAN is now a fortran-indication, it may still be used, if 

desired, as an operator or as a mode-indication.} 


{Examples: 

b) NEST "abc" 

c) ACCESS A,B (x:=1; y:=2; print(x+y)) 

d) "a" . "abc" } 


{Since no representation is provided for the virtual-nest-symbol, the 

user is unable to construct vlrtual-holes for himself, but a mechanism is 

provided (I0.6.2.a) for constructing them out of formal- and 

actual-holes.} 


{The yield of a virtual-hole is that if its closed-clause, by way of 

pre-elaboration (2.1.4.1.c). No semantics for formal- or actual-holes is 

provided since their elaboration is never called for.} 


{{There are some implementation difficulties in determining the scope of a 

routine whose routine-text contains a formal-hole, since there is no knowing 

what indicators may be applied in the actual-hole eventually supplied.}} 


7.2.2.c is modified as follows: 


If C contains any QUALITY-applied-indicator-with TAX 


• . . e  


or if C contains a virtual-hole, 

then E is El; 

e e e  


{{Thus a formal-hole F behaves for scope purposes as if the actual-hole 

stuffed in its place contained identifiers identifying defining occurrences 

in every range containing F.}} 


{{The packets to be submitted to the compiler for separate compilation may 

be module-declarations or actual-holes (or particular-programs) and, if they 

are to be stuffed into formal-holes (rather than into the standard 

environment), they are introduced by egg-symbols.}} 


10.6. Packets 


10•6•I. Syntax 


a) MOlD NEST new MODSETY ALGOL68 stuffing packet{ATa} : 

egg{94d} token, hole indication{56d}, is defined as{94d} token, 


MOID NEST new MODSETY actual hole{56c}. 

b) Additional hyper-rules, for hypernotions of the form "MOID NEST new 

MODSETY LANGUAGE stuffing packet" are to be added for each extra {5.6.1.A} 

terminal metaproduction of "LANGUAGE". A mechanism must be defined 

{presumably with the aid of the Report defining that other language} 

whereby all such LANGUAGE-stuffing-packets may be transformed into 

ALGOL68-stuffing-packets {with the same meaning}• 

c) NEST new MODSETYI MODS definition module packet of MODS{ATa} : 


egg{94d} token, hole indication{56d}, is defined as{94d} token, 
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NEST new MODSETYI MODS module declaration of MODS{49a}, 

where MObS absent from NEST{e}. 


d) new LAYERI new DECS MODSET¥1MODS STOP 

prelude packet of MODS{A7a} : 


new LAYERI new DECS MODSETYI MODS STOP 

module declaration of MODS{49a}, 


where MObS absent from new LAYERI{e}. 

e} WHETHER MODSETY MOD absent from NEST{c,d} : 


WHETHER MODSETY absent from NEST{e,f} 

and MOD independent PROPSETY{71a,b,c}, 


where PROPSETY collected properties from NEST{g,h}. 

f) WHETHER EMPTY absent from NEST{e} : WHETHER true. 

g) WHETHER PROPSETY! PROPSETY2 collected properties from 


NEST new PROPSETY2{e,g} : 

WHETHER PROPSETYI collected properties from NEST{g,h}. 


n) WHETHER EMPTY collected properties from new EMPTY{e,g} : 

WHETHER true. 


i)* NEST new PROPSETY packet : 

MOID NEST new PROPSETY LANGUAGE stuffing packet{a,b} ; 

NEST new PROPSETY definition module packet of MObS{c} ; 

NEST new PROPSETY particular program{A1g} ; 

NEST new PROPSETY prelude packet of MODS{d}. 


j)* letter symbol : LETTER symbol{94a}. 

k)* digit symbol : DIGIT symbol{94b}. 


{Examples: 

a) EGG "abc" : ACCESS A,B (x::1; y::2; print(x+y)) 

c) EGG "abc" = MODULE A = DEF PUB REAL x FED 

d) MODULE B = DEF PUB REAL y FED 

The three examples above would form a compatible collection of packets 


(I0.6.2.a) when taken in conjunction with the partlcular-program 

BEGIN NEST "abc" END } 


{In rule a above, 'MODSETY' envelops the 'MOD's defined by all the 

definition-module-packets that are being stuffed along with the 

stuffing-packet. In rules c and d, 'MODSETYI' need only envelop the 'MOD's 

for those modules actually accessed from within that packet. The semantics 

below are only defined if, for a collection of packets being stuffed 

together, all the 'MOD's enveloped by the various 'MODSETYI's are 

enveloped by 'MODSETY'.} 


10.6.2. Semantics 


{Packets are the units of separate compilation• It is necessary to 

define the meaning of a collection of packets• This is done by 

transforming the collection into an equivalent particular-program. It is, 

of course, necessary for the packets of the collection to be compatible 

with each other. Just one of the packets must be a particular-program.} 


a) The meaning of a particular-program P, in the context of a collection 

of other associated packets {not particular-programs} T, is determined as 

follows: 

• The user-prelude-with-MODSETY UP of the user-task UT from which P is 

descended {1.1.1.e and I0.I.1.f} must be composed as follows: 


For each new-LAYER1-new-DECS-MODSETYI-STOP-prelude-packet M, if any, in 

T, 


• UP contains a constituent new-LAYER1-new-DECS'MODSETY-STOP-
module-declaration akin to the module-declaration of M; {'MODSETY' 
must envelop all the 'MOD's enveloped by all such 'MODSETYI's, and no 
others, for the user-prelude of U to be syntactically correct;} 

• UP contains no other constituent COMMON- declarations, and its only 
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constituent unit is composed of a skip {5.5.2.1.a}; 

If T contains any LANGUAGE-stuffing-packets, where 'LANGUAGE' is not 

'ALGOL68', 

then those packets are transformed {I0.6.1.b} into ALGOL68-stuffing-

packets {with the same meanings}; 

While there remain any formal-holes in UT, 


• let H be one such MOID-NEST-formal-hole and let I be its 

hole-lndication; 

• if I is akin to any such I previously considered, then the meaning of 

P is not defined; 

• H is replaced {in UT} by a MOID-NEST-virtual-hole whose constituent 

NEST-serial-clause S is composed as follows: 


For each NEST-new-MODSETY1-definition-module-packet M, if any, in T 

whose hole-indication "matches" {b} I, 


• S contains a constituent NEST-new-MODSETY-module-declaration akin 

to the module-declaration of M; {'MODSETY' must envelop all the 

'MOD'S enveloped by all such 'MODSETYI's, and no ohers, for S to be 

syntactically correct;} 


• S contains no other constituent COMMON-declarations, and its only 

constituent unit is composed of the constituent ENCLOSED-clause of the 

{only} MOID-NEST-new-MODSETY-ALGOL68-stuffing-packet in T whose 

hole-indication matches I; 


If there remain any packets in T that have not been incorporated into U, 

then the meaning of P is not defined; 

otherwise, {UT does not contain any formal-holes, and therefore} the 

meaning of P is as defined elsewhere {1.1.1.e} by the semantics of the 

Report• 


b) If the {textually} first constituent string-item of a hole-indication 

I is composed of some letter-symbol and each other constituent 

string-item, if any, is composed of some letter-symbol or some 

diglt-symbol, the I "matches" any other hole-indication to which it is 

akin {; otherwise, its matching with other hole-indications (whethr akin 

or not) is not defined here, but may be defined by local conventions of 

the implementation to suit the peculiarities of the local operating 

environment}. 


{{The standard environment is enlarged by the inclusion of a user-prelude 

for each particular-program, into which the user may stuff his own 

prelude-packets•}} 


10.1.1. 


A) EXTERNAL :: ... ; user. 


f) NESTI user task{d} : 

NEST2 particular prelude with DECS{c}, 


NEST2 user prelude with MODSETY{c}, 

NEST2 particular program{g} PACK, gQ on{94f} token, 

NEST2 particular postlude{i}, 

where <NEST2> is <NESTI new DECS MODSETY STOP>• 


f) Except where explicitly stated otherwise {I0.6.2.a}, each constituent 

user-prelude of all program-texts is EMPTY. 


Part III- Compilation Systems 


{{Although the Report defines the meaning of a particular-program (and, with 


10.1.2 
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the addition of the new section 10.6, of a collection of compatible packets) 

without reference to the process of compilation (except pragmatically in 

2.2.2.c), a proposal for separate compilation will not be of practical use 

unless the majority of implementations observe at least some degree of 

consistency in their compilation systems.}} 


10.7. Compilation systems 


An implementation of ALGOL 68 {2.2.2.c} in which packets of a 

{compatible} collection {10.6.2} are compiled into a collection of 

object-modules should conform to the provisions of this section. 


10.7.1. Syntax 


A)* LAYERS :: LAYER ; LAYERS LAYER. 


a) compilation input : 

MOID NEST new MODSETY LANGUAGE stuffing packet{A6a,b}, 


MOID NEST hole interface{d}, 

joined module interface with MODSETY{b,c} ; 


NEST new MODSETYI MODS definition module packet of MODS{A6c}, 

MOID NEST hole interface{d}, 

Joined module interface with MODSETYI{b,c}, 

module interface with MODS{d} option ; 


new LAYERI new DECS MODSETY STOP particular program{AlE}, 

{void new LAYERI new DECS STOP hole interface,} 

unless <DECS> contains <module>, 

joined module interface with MODSETY{b,c} ; 


new LAYERI new DECS MODSETYI MODS STOP 

prelude packet of MODS{A6d}, 


{void new LAYERI new DECS STOP hole interface,} 

unless <DECS> contains <module>, 

Joined module interface with MODSETYI{b,c}, 

module interface with MODS{d} option. 


b) Joined module interface with MODS MODSETY{a,b} : 

module interface with MODS{d}, 


joined module interface with MODSETY{b,c}. 

c) Joined module interface with EMPTY{a,b} : EMPTY. 

d) Hyper-rules are to be added for the hypernotions "MOID NEST hole 

interface", "module interface with MODS" and "MOID NEST object module" 

{the first two to be} such that, from the terminal production of each 

MOID-NEST-hole-interface (each module-interface-with-MODS), a 'MOIDI 

NESTI' equivalent {2.1.1.2.a} to 'MOID NEST' (a 'MODSI' equivalent to 

'MODS') can be reconstructed. {The forms of these hyper-rules are 

otherwise undefined, and their terminal productions will most probably be 

in some cryptic notation understood only by the compiler.} 


{The inclusion of the hypernotions "void new LAYERI new DECS STOP hcle 

interface" within pragmatic remarks in rule a is intended to signify that 

this information (which describes the standard environment) must clearly 

be available to the compiler, but that it may well not be provided in Lhe 

form of an explicit hole-interface.} 


10.7.2. Semantics 


a) A compilation-input C may be compiled by a compiler. The output from 

the compiler is determined as follows: 

Case A: the packet of C is a MOID-NESTI-ALGOL68-stuffing-packet: 


. the compiler-output is a MOID-NEST1-obJect-module; 
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Case B: the packet of C is a NEST1-particular-program: 

. the comiler output is a void-NEST1-object-modu!e ; 


Case C: the packet of C is a NEST1-definition-module-packet-of-MODS or a 

NEST1-prelude-packet-of-MODS D: 


• the compiler output consists of 

(i) a void-NEST1-object-module, and 

(ii) if the module-interface-with-MODS-option of D is EMPTY, a 

module-interface-with-MODS {; otherwise, the constituent module-

interface-with-MODS of D is said to be an "imposed interface" 

(obtained from the previous compilation of a similar packet) and the 

compiler must fail if the imposed interface is no longer "consistent" 

with the packet}; 


{Case D: the packet of C is a LANGUAGE-stuffing-packet where 'LANGUAGE' is 

not 'ALGOL68': 


• the compilation process is not defined by this Report;} 

For each MOID-NEST-LAYERS-formal-hole contained in the NEST-packet of C, 


. the compiler output includes, additionally, a MOID-NEST-LAYERS-

hole-interface. 


b) The module-interfaces and hole-interfaces output by the compiler may 

subsequently be used, together with appropriate packets, as 

compiler-inputs. If a collection of packets, including a 

particular-program P whose meaning is defined {I0.6.2.a} in the context of 

that collection, is compiled so as to produce a corresponding set of 

object-modules, then the meaning of those object-modules is the same as 

the meaning of P. 


{A complete system may include a compiler, a loader, and a means to 

maintain a library of packets, hole-interfaces, module-interfaces and 

object-modules (the means might be an operating system, a utility program 

written for the purpose, or a filing cabinet plus a little girl). The 

assemblage of the various objects required for a compilation-input and the 

disposal of the various compiler outputs may involve the user in writing 

control cards, or pragmats, or other forms of command, and in providing 

libraries of such objects to be scanned. Neither the detailed contents of 

such a system nor the specific forms of such commands are defined in this 

Report• 


If a packet P is modified and re-compiled, the system should ensure that 

the revised collection of object-modules cannot be used until all packets 

dependent upon P have been re-compiled. It is suggested that all the 

outputs produced by a given compilation be given a unique serial number 

from a monotonically increasing set (the date and time, for example) and 

that object modules be aware of the serial numbers of other compilationa 

upon which their validity depends. However, where the compiler detects 

that a hole- or module-interface is unchanged from a previous compilation 

of the same packet, or if a module-interface is imposed on a compilation 

and the compiler is able to produce an object-module "consistent" with 

that module-interface, then the old serial number may be retained. The 

definition of "consistent" should be as liberal as possible• For example, 

it should be possible for the compiler to compile a packet consistent with 

the object-module produced by a previous compilation of that packet even 

if the indicators published by the packet are now declared in a different 

order or if declarations for additional indicators have been added.} 
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Implementation methods for Modules and Separate compilation. 


This implementation description does not contain language definition. It 

presents various ways in which the above features can be implemented. No 

implementer should feel committed to do things as described here, though he 

may well profit from the thought that has gone into these methods. The same 

language facilities may well be implementable in other ways. Two mechanisms 

are described. One is a mechanism for implementing separate compilation, and 

the other a mechanism for implementing definition modules. 


The notation "MR" will be used to refer to the Revised Report as extended 

by the Formal Definition above. 


I Separate compilation. 


The separate compilation methods for the features defined above hinge on 

the idea of a "compilation data base". This data base contains information 

about the various separately compiled parts of a program, and is used to 

enable static mode checking to be done across compilations and to enable 

efficient object code to be generated. The data base contains information 

grouped into "interfaces". Each interface contains the relevant information 

from a single separate compilation and is constructed by the compiler in 

addition to the usual object code. When a program is compiled whose meaning 

depends on other separately compiled parts, the compiler extracts the 

relevant interfaces from the data base. The data base itself may be 

implemented in different ways, depending on the implementation environment. 

It may, for example, be managed directly by the compiler, by an operating 

system which demands its own extra control cards, or even by a clerk with a 

drawer full of paper tapes. If the operating system's file system is divided 

into subsets for various users with varying access rights, it is probably 

wise to permit the data base to be spread out throughout the operating 

systems's files in the same way. Each user then has control of that part of 

the data base that relates to his own programs, without requiring 

installation management to set up separate administration procedures for 

ALGOL 68. 


The production rules which follow often contain ampersands ("&") instead 

of commas. This is to indicate that the various members must be available in 

some form, but that nothing is said about their textual order, or even 

whether a textual order exists. The data may legitimately reside in an 

arbitrarily inscrutable data base management system and be pieced together 

by the compiler. 


t . t  Compilation input. 

compilation input : 

definition module packet & 


imposed module interface option & 

joined module interface {for definition modules, if any, 


accessed by this one} & 

bole interface option {if we are inside a hole} ; 


particular program & 

joined module interface {for definition modules accessed 


by the particular program} ; 
stuffing packet & 


hole interface & 

joined module interface {for definition modules, if any, 


accessed by the stuffing}. 
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source packet : 

definition module packet ; 

particular program ; 

stuffing packet. 


The programmer writes source-packets. 


joined module interface : 

set of module interfaces. 


The phrase "set of" is used in its usual mathematical meaning. 


imposed module interface : 

module interface. 


interface: 

hole interface ; 

module interface. 


Interfaces are not written by the programmer, but are produced by a 

compiler when a definition-module-packet, or a source-packet containing a 

hole, is compiled. Interfaces may later be fed back into subsequent 

compilations or recompilations to ensure compatibility. A single interface 

may be used in many different compilation-inputs. The syntax and semantics 

of interfaces are Implementation-dependent, but each interface must contain 

the modes and indications published by the module or available to the 

stuffing, as well as the "access algorithms" which enable the compiler to 

generate correct code for applied-indicators in a separate compilation. 


If a definition module is altered and recompiled (perhaps to improve 

performance or to fix a bug), an interface from a previous compilation of 

that same definition module may be "imposed" in an attempt to ensure 

compatibility with the existing object code of other packets accessing that 

definition module. If the compiler is able to achieve compatibility, it does 

so; otherwise, it will complain and produce incompatible code and a new 

interface. Clearly, if less information resides in the interface, it will be 

easier to make program changes, but the resulting object code may be less 

efficient. 


Module-interfaces may be used in several different ways, depending on 

practical aspects of the implementation. 


(I) Bottom-up coding 

If a program is being coded bottom-up, with each module thoroughly 

debugged before the ones that access it, derived interfaces are 

convenient. When a definition module is compiled, the compiler 

will produce a module-interface as well as the usual object code. 

This module-interface must then be fed back into the compiler when 

the module's test procedures are compiled, and later, when a 

program accessing the definition module is compiled. This 

module-interface will be checked for compatibility with its usage 

in the accessing program, thus maintaining mode security. 


(2) Top-down coding 

This method is based on the principle that, when programming, the 

interface between program components should be defined logically 

before the components are constructed. The programmer (or perhaps 

his manager) will therefore start by defining an "interface 

definition" for a definition module. This interface definition is 

written as a definition-module-packet with skips or holes in the 

proper places (assuming the compiler does not propagate the 

skip-value or hole into the interface). It is compiled, the object 

code is discarded, and the compiler-produced interface is 

preserved. The interface is presented to the programmer when he 
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writes the definition module. The interface is imposed on the 

compiler when it compiles the definition module, and is also 

provided when it compiles the accessing program. In case of 

incompatibility, the compiler will complain. The access algorithms 

and other internal implementation information will be determined 

for the compiler by the interface. 


(3) Program libraries. 

Interfaces of definition modules in public libraries must also be 

provided as part of the library. It is up to the library 

maintainer whether he wishes to use imposed interfaces to make 

changes less painful. 


If a compiler accepts "multiple separate compilations", that is, if it 

accepts many compilation-inputs at one go, some mechanism (such as library 

search) should be provided so that a single copy of each module-interface 

will suffice for all compilations. The existence (yes, mere existence) of 

multiple (and therefore independent) copies involves the risk that 

interfaces may not match when separately-compiled packets are loaded and run 

together. 


I.2 Holes 


Holes are useful if a large existing program must be cut into pieces, 

perhaps because it has grown or because it is transported to an installation 

WhOSe compiler has less capacity. Unlike definition modules, holes permit a 

program to retain its original structure when it is cut up. 


Furthermore, the compile-time flow .of information through a hole is 

exclusively from the root to the leaves of the complete parse tree. Holes 

may thus be used to prevent a compiler from taking advantage of any 

knowledge about the contents of a construct. This may be important if parts 

of a program are to be changed independently. 


The hole mechanism has been called a "top-down" method for separate 

compilation; this is perhaps a misnomer in that in top-down programming the 

refinements usually consist of new procedures and modules, and not of 

further contents for holes in a parse tree. 


The object code of a hole contains a call to its stuffing, using 

operating-system external linkage conventions and using the hole-indicator 

as an external symbol. 


It is not necessary to start a new display level for each nested 

stuffing, but it may be convenient. If this is not done, some stack 

mechanisms may have difficulty determining the proper activation record size 

on procedure entry. If the constituent unit of a routine-text is a hole, it 

may be wise to compile calls to the procedure using the exterNal-indication 

directly instead of via a dummy routine. 


1.3 Module- and hole-interfaces. 


This section describes some possible contents for interfaces. Specific 

implementations may of course do things differently. 


module interface : 

unique code & external symbol & hole description option & 


mode table & definition summary. 


hQle interface : 

unique code & external symbol & hole description option & 
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mode table & set of definition extracts. 


The unique code may be a possibly compactified version of the 

module-interface, a hash code computed from it, a time stamp, or some other 

code unique to the interface. These unique codes can be compared at linkedit 

or run time to check that object codes run together were indeed compiled to 

a corresponding interface. Because hash codes computed from different 

interfaces might possibly be duplicates, some implementers might provide a 

formal interface-registration utility-program which could perform 

system-wide or library-wide synchronization to prevent inadvertent (but 
highly unlikely) duplication of codes. Such a registration utility might 
even be part of the compiler. 

The external-symbol must be sufficient to determine the entry-point at 

which execution of the stuffing or definition module is to begin. 


The hole-description-option specifies into which nested sequence of 

holes, if any, the packet producing the interface is to be nested. This is 

necessary to check at compile-time that the necessary environment is indeed 

available at the accession of a definition module, which may have been 

compiled in a different nested sequence of holes. 


The mode-table contains a full description of every mode required in the 

definition-summary or set-of-definition-extracts. It may have undergone mode 

equivalencing to reduce redundancy. 


The definition-summsry contains information about all definitions 

published by the definition module or hole. Its structure closely follows 

the metasyntax of REVS {MRI.2.3}. 


definition summary{REVS} : 

set of definition groups. 


definition group{REV} : 

module identity{TAU} & set of definition extracts{DECSETY INKS}. 


definition extract{DEC} : 

mode extract{DEC} ; 

operation extract{DEC} ; 

priority extract{DEC} ; 

identifier extract{DEC} ; 

definition module extract{DEC} ; 

invocation extract{INK}. 


mode extract : 

mode marker & mode indication & mode & mdextra. 


operation extract : 

operation marker & operator & mode & mdextra. 


priority extract : 

priority marker & operator & integer priority & mdextra. 


identifier extract : 

identifier marker & identifier & mode & mdextra. 


definition module extract{MOD} : 

definition module marker & definition module indication{TAB} & 


definition summary{REVS} & mdextra. 


invocation extract{INK} : 

module identity{TAU}. 
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mdextra : 

extra machine-dependent information. 


The extracts are sufficient to enable reasonable object code to be 

generated to access the publications of a definition module without any 

further information in the mdextra, since a compiler can use a canonical 

algorithm to determine the access algorithms for the published indicators. 

Hole-interfaces, however, will likely be far more complicated, and may 

require extra machine-dependent information to be recorded in the mdextras, 

such as display-nesting and displacements for the various indicators. 

Extracts should be kept as nonspecific as is compatible with efficiency, 

because every datum in the interface makes compatible compilation of a new 

version of a packet more difficult. The indicators published by definition 

modules can more easily be forced into a canonical format that depends only 

upon the DECs than can the indicators from a hole-interface. 


If optimization of object-time code is more important than program 

flexibility, the compiler can place further implementation-dependent 

information into the mdextras. It may, for example, include the values of 

known constant indicators, side effect information about procedures, or even 

a partially-compiled version of the source code for routines it may wish to 

compile in-line. 


2 Implementation of definition modules. 


2.1 Notation 


The text of a definition module M may begin with a Joined-module-call. 

Each module-call of the Joined-module-call will be called a "requirement" of 

M, and M is said to "require" the corresponding definition modules. 


2.2 General strategy. 


A definition module can be implemented like a procedure. When it is 

invoked, it accesses any definition modules it itself requires and allocates 

an activation record on the stack just as a procedure would, and then 

executes its prelude. It then returns to its invoker, passing the address of 

its activation record to the invoker without freeing its local storage. The 

invoker can find the published indicators within the activation record, and 

when the time comes to revoke the definition module, the postlude is 

elaborated. Only afterward is the stack frame for the definition module 

released. Slight variations on this scheme are possible. For example, if the 

invoker knows the necessary size, the definition module's activation record 

can be allocated within that of the invoker. (This optimization is possible 

with nonrecursive procedures as well.) 


Section 2.3 describes the run-time activity necessary for implementation 

in further detail. Section 2.4 describes how definition modules can be 

fitted into existing ALGOL 68 parsing techniques. 


2.3 Implementation of sharing 


There are several methods of implementing sharing, that is, of deciding 

whether a module-call actually requires a definition module to be executed, 

or whether it merely accesses a former invocation. It can be done completely 

at compile-time, it can be done completely at run time, and mixtures of 

these two methods are also possible. The compile-time methods are simpler, 
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but the run-tlme methods are more flexible. The run-time methods are 

recommended during program development, since otherwise, as we shall see, 

internal changes in a definition module may cause much accessing code to be 

recompiled even if it is not changed. 


Section 2.3.1 presents a possible strategy for implementing definition 

modules, on the assumption that all sharing decisions are made at compile 

time. After that, in section 2.3.2, the necessary modifications are 

described for doing this at run time. 


2.3.1 Compile-time sharing 


This method is possible if it is known at compile-time whether each 

module-call involves an actual invocation or merely accesses some previous 

invocation. This information is available if: 


(I) the 	 definition module in question is part of the same 

compilation-packet as its module-calls(s), and no possibility exists 

for any unknown accessions from separate compilations, or 


(2) the compiler always places all the INKS in the interface-packet of a 

definition module. 


Under these assumptions, when a compiler comes to compile a module-call of a 

definition module M, it first tests whether the NEST includes an INK from 

another module-call of the same module. If so, no actual invocation is done, 

and in the closed-clause or definition module which uses the accession, code 

is generated to refer to the activation record from the older invocation 

instead. 


If the accession involves an actual invocation, the compiler first checks 

whether M has any requirements. If so, each of these other definition 

modules is first accessed. This is a recursive process, involving the entire 

mechanism of NEST searches, accessing further requirements, etc. Afterward, 

M is called, with the pointers to the activation records of the requirements 

as parameters. 


The entry-point used for calling M is the beginning of its prelude. The 

return address is the beginning of the code that may use the publications of 

the invocation; in the case of a joined-module-call this will be the next 

module-call on the list, if any. 


Upon entry, M first establishes an activation record for its own use. If 

the size of this activation record is known by the invoker, the invoker can 

have allocated it as part of its own activation record and can have passed 

the address of the activation record to M as parameter. 


The prelude of M is then elaborated. Within M, and within any procedures 

within M, local and global variables are obtained via a normal display or 

static chain mechanism starting from the new activation record. 


At the end of the prelude, M returns, without freeing its activation 

record. If M allocated its own activation record, it passes the activation 

record pointer back to the invoker. The code which uses the publications of 

M is then executed. The publications of M can be reached by displacements 

from the activation record pointer. If the activation record was part of the 

invoker's activation record, different displacements from the start of the 

invoker's own activation record can be computed at compile time and used 

instead. 


When its time comes, M is revoked by calling its postlude, if any, 

providing it with the address of the activation record of M in some way. The 


postlude is elaborated, and returns, again without freeing the activation 

record of M. 
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Back at the invoker, the definition modules invoked as requirements of M 

are also revoked. When all the definition modules involved in the 

access-clause have been duly revoked, the activation records can all be 

freed by reducing the stack pointer. 


If labels were to be permitted in postludes (they are not, but an 

implementer might wish to implement the stop from the standard-postlude in 

this way), it might be possible for the prelude to go to the postlude 

directly instead of waiting for an honest revocation. To avoid trouble, an 

extra return address would have to be provided when the prelude is called to 

enable the postlude to return properly. This return address would be that 

norL~ally provided when the postlude is called. It is to prevent this and 

other worse obscurities that labels cannot be declared in postludes. 


A problem with the above method is that it makes the interfaces for 

separate compilation unduly restrictive. It becomes difficult, for example, 

to restructure a large library by organizing its internal procedures into 

different combinations of definition modules, without requiring massive 

recompilation of all user code. These problems can be obviated with a 

suitably clever dedicated linkage editor, but the implementer may not have 

this freedom. 


2.3.2 Run-time sharing 


If the above method is not suitable, run-time analysis can be performed 

for making sharing decisions. These methods do not have the execution 

efficiency of the compile-time methods, but may have other advantages. In 

the absence of a special ALGOL 68 linkage editor, the run-time mechanisms 

may indeed be necessary during program development to retain a modicum of 

flexibility. They are efficient if definition modules are only rarely 

accessed. This will hold if definition modules are used mainly for 

establishing the large-scale structure of the program, and procedure calling 

is used for normal traffic. 


Existing accessions are recorded in an in-core data base at run time. 

Each accession of some definition module M causes an "activator" to be 

constructed and placed into the data base. This activator is made to point 

to a linked list of the activators for the definition modules required by M. 

These other activators are placed on the list one at a time, as their 

definition modules are accessed. These activators point to further linked 

lists. The activators are thus linked together into a tree structure which 

mimics the INKS {MR3.6.1}. The roots of these activator trees are linked 

according to the syntactic nesting of activations within the program, from 

the inside outwards, parallel to the static link. We give the links the 

following names: the linked lists are linked by the 'next' link, and the 

sublists are pointed out by the 'sub' llnk. 


An "activator" is thus a structure with fields: 

-	 defmod: the definition module, as an entry-point-environment pair, 

-	 actrec: a pointer to an activation record containing the publications 

o f  the definition module, 
-	 revoker: the address of the postlude, 

-	 sub: the address of another activator (which starts a sublist), and 

-	 next: the address of another activator (in the same linked list). 


A 
 module-text FO0 is accessed as follows: 

-	 The accessor makes a new activator FO01. 

- The accessor fills in the entry point-environment pair of the definition 


module FO0 being accessed into 'defmod of FO01'. 
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-
 The accessor fills in the "next" link of FO01 to point 

-
 if the accessor is the first module-call of the requirements of a 


module-text, 

-
 to the activator X created by the accessor's own invoker, or 


-
 if the accessor is a second or subsequent module-call of a 

joined-module-call, 

-	 to the activator of the previous module-call of the 


joined-module-call, or 

-
 if the accessor is the first module-call of an access-clause C, 


-
 to the "principal" activator of the smallest access-clause or 

module-text containing C, or nil if there is none. 


-
 This other activator can be found by the same sort of addressing 

formula as is used for ordinary variables; it is as if each new 

module-call declared some special indicator and the statically 

most local definition of the special indicator were always used. 


-
 Then the accessor Jumps to a service routine. The service routine 

receives as parameters 


-
 a reference to the activator FO01, and 

-
 two labels: 


after prelude: 

pointing to the controlled-clause of the access-clause (or 

its analogue for the revelation of a definition module), 


after postlude: 

pointing to the code to be executed after the postlude has 

been executed. For the first module-call in the 

joined-module-call of the access-clause, this will be the 

address of the code to be executed after the access-clause 

or module-text. For a second or subsequent module-call of a 

joined-module-call, this will be the address of an indirect 

jump to the revoker (see below) of the previous module-call; 

this revoker is the postlude address of the previous 

module-call. 


- The 	 service routine searches the tree of activators rooted at FO01 with 

branches 'next' and 'sub' to determine whether there is already another 

activation of the definition module FO0 in the tree. 


-	 I f  
 so, 

-	 the 'revoker of FO01' (which contains the address of the postlude) 


is set to after postlude (since no actual invocation is done, no 

actual revocation will be done either). 


-	 the 'actrec of FO01' (the activation record pointer) is filled in 

with the activation record pointer of the (other) invocation, if 

any, and otherwise further elaboration is undefined (in this case 

the other activation record is not yet complete). 


-	 If not, the accession is actually an invocation, and 

-	 the object code for the module-prelude of FO0 is called, giving it 


the activator FO01 as parameter. 

- FO0 	receives control, sets up an activation record of its own, and 


accesses its requirements in order (this will have the effect that 

the activators of these requirements come to be a linked list 

linked by the 'next' link and pointed to by 'sub of FO01'). 


-
 When FOO's requirements have been met, FO0 makes a copy FO02 of 

the activator FO01, and sets the next-pointer of the copy FO02 to 

point to the principal activator of the smallest access-clause or 

module-text containing FO0 (or nil if there is none). This copied 

activator FO02 is termed the "principal" activator of FO0, and is 

used in its prelude's and postlude's own private module-calls. 

FO02 is necessary because the prelude and postlude are in a 

different NEST from the invoker. 


-	 When elaboration reaches the end of the prelude, FO0 

- fills the address of the postlude into 'revoker of FO01', 
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-	 fills the address of its activation record into FOOl and FOO2, 

and 


-	 goes back to the invoker using the after prelude address 

without freeing any activation records. 


-	 If the accessor was a requirement of a definition module, 

-	 the accessor sets 'next of FOOl' to point to the list of activators 


of previous requirements of FO01 (formerly pointed to by sub of X), 

and sub of X is updated to point to FOOl (this places FOOl on the 

sublist of activators of requirements of X), 


-	 Dut otherwise, if the accessor was the last module-call of the 

joined-module-call of an access-clause, FOOl is termed the "principal" 

activator of that access-clause. 


-	 When the definition module is revoked by the accessor, the accessor goes 

to the routine pointed to by the postlude address of the activator FOOl. 

This turns out to be the address of the postlude if the definition 

module was actually invoked; it is the after postlude address otherwise. 


Before it finally returns, the postlude revokes the definition 

modules that FOO accessed. 


-	 When the elaboration of an access-clause is complete, the run-time stack 

can be cut back to its size before the elaboration of the access-clause 

started (except that the yield of the clause must be preserved). This 

frees the activation records and activators of any newly-invoked 

definition modules without damaging the activation records found via 

sharing. 


Activation records are not freed when elaboration of a module-postlude is 

complete, even if that definition module invoked other definition modules. 

They are freed only when some access-clause is complete. In this way the 

scopes of all activation records created by a single joined-module-call can 

be the same. 


Notice that a jump which Jumps out of an invocation will free the 

activation record by simply popping the stack without executing the 

postlude. This is consistent with the behaviour of jumps elsewhere. 


A "redundant" activator is one which did not cause a new invocation, but 

simply found an old activation record. If the chain of activators becomes 

too long, it can be shortened by linking around redundant activators instead 

of through them. 


If any other active activator of a definition module is statically known 

at the point of activation, that activator can be used instead of repeating 

any accession overhead. 


2.4 Outline of parsing algorithm. 


2.4.1 Description 


The following processes must be present in some form in an ALGOL 63 

compiler. 


-I- Distinguishing mode, operation, and priority declarations and 

determining the ranges in which they hold sway, and building up a 

definition dictionary containing this information. 


-2- Determining whether each applied bold-TAG-symbol is an applied mode, 

operation, and/or priority indication. 


-3- Distinguishing all declarations. 

-4- Either from the information from -I- or -3-, constructing a mode 


table. 
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-5- Mode equivalencing 

-6- Identifyingthe defining occurrences for all applied indicators. 


These processes need not be distinct. Some can be combined easily; others 

can be combined only if one requires declaration before use. Processes -2- 

and -3- are often carried out concurrently with context-free parsing. It is 

at this time that the definitive definition dictionary can be built. It 

resembles the earlier definition dictionary, but identifier definitions are 

included as well. 


Definition modules are included in this process as follows: 

-I- Definition module definitions and accessions are distinguished and 


entered into the definition dictionary too during process -I-. To 

each definition module declaration entry, the compiler must attach 

the set of definitions the definition module itself publishes and the 

module-indications it publicly accesses. To save space at 

compile-time, this may be combined with the set of definitions 

available within the definition module's own range, but a bit must be 

added to indicate whether each definition or module-call is public. 

Identifier declarations are not collected, since it is necessary to 

distinguish mode indications from operators in order to distinguish 

their declarations. 


-2- In process -2-, the applied indications may now turn out to be module 

indications. Upon range entry, module-calls are identified. When an 

applied-module-indication has been identified, extra definition 

entries are added to the definition dictionary for the new range, one 

for each published definition in the accessed definition module. 

These extra definition dictionary entries refer to the module-call 

they arise from. The extra mode, operation, priority, and definition 

module definitions are thus made available for identification during 

processing of the range. This second phase is probably the proper 

moment to perform a library search through the compilation data base 

for modules which are accessed but not declared by the programmer. 


-4- The preliminary mode table can be built only when module-indications 

have been identified. It must therefore use information from process 

-3- instead of -I-. 


-5- Mode equivalencing occurs as usual. 

-6- Coercion and identification occur as usual, too, except that the 


extra NEST entries created by accessions must also be processed. 


2.4.2 Example 


Consider the following example: 

BEGIN #ci# LOC INT b; 


MODULE B = DEF #c2# PUB MODE A = REAL FED; 

BEGIN #c3# 


BEGIN #c4# 

b := 2; 

ACCESS #c5# B 


( #c6# b := 2; A b; SKIP) 

END; 

MODULE B = 


DEF #c7# 

PUB OP A = (#c8# INT i)VOID: SKIP 


FED; 

SKIP 


END 

END 


In phase -I-, the corrals are identified by the occurrence of BEGIN-END, 

DEF-FED, and (-) brackets and by ACCESS (a corral is a bracket-pair which 
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might turn out to be a range). Several declarations are detected: 

dl. MODULE B in corral ci 

d2. MODE A in corral c2 (published by dl) 

d3. ACCESS B in corral c5 

d4. MODULE B in corral c3 

d5. OP A in corral c7 (published by d4) 


The identifier declarations have not yet been detected because of 

uncertainty whether bold words are modes or operators. The next scan over 

the program now has enough information to ide~tlfy bold words. At each 

corral entry, it examines the above table to determine which bold words are 

defined there. 


corral ci: 

MODULE B (which will publishMODE A when accessed) 


corral c2 within oi: 

MODE A 


corral c3 within ci: 

MODULE B (redefining B)(which will publish OP A when accessed) 


corral c4 within c3: 

nothing new 


corral c5 within c4: 

OP A (from ACCESS B) 


corral c6 within c5: 

nothing new 


corral c7 within c3: 

OP A 


corral c8 within c7: 

nothing new 


Because it is now known which operators and modes are declared where, 

process -3- can now determine which identifiers are declared for later 

processes to use: 


corral ci declares LOC INT b. 

corral c6 does not declare A b, because A is an operator there. 

corral c7 declares INT i. 


Process -3- can still be performed concurrently with process -2-. 


The rest of identification and coercion can proceed as usual. 


2.5 Avoiding loading of procedures. 


If a definition module is used as a library, it may be necessary to avoid 

loading object code for routines that are not used by the user. Although 

mechanisms for doing this are inherently implementation-dependent, most 

loaders have library search facilities for loading only those 

separately-compiled object files that have been referred to (some loaders 

can even delete unreferenced fragments of code within a single object file). 

On such a linking loader, we can use the following mechanism. The body of 

the routine of a declaration can be a hole: 


PROC p = (REAL a, b) REAL: HOLE "foo" 

It is possible to record this external name "foo" in the interface. An 

external reference need be present in object code only 


-
 if the procedure is called, or 

-
 if a routine-value is actually required (perhaps to assign it to a 

procedure variable). 


The library search of the linking loader can then be used to ensure that the 

object code for the procedure, which is compiled separately, is loaded only 

if needed. It is possible to avoid uslnK holes for this if the compiler is 

willing to take over program library management completely instead of Just 

producing object code files to be placed into a library by an independent 
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utility. Of course, if the operating system has a half-decent linking loader 

(most do not), or if the ALGOL 68 implementer provides his own, the above 

techniques should be unnecessary. 


2.6 A use for the escape character. 


If it is desired to perform many separate compilations with many 

different compiler-lnputs in one input file using a single run of the 

compiler, control cards may be needed to separate packets in a way that is 

independent of syntax errors within the packets. It should be noticed that 

the standard hardware representation does not enable an ALGOL 68 program 

line to begin with a single apostrophe (except in comments or pragmats). 

This may be a natural choice as control-card indicator for some 

implementations. {Why do we still speak of control cards in the 

telecommunications age?} 


2.7 A new view of the standard prelude. 


The thought might be entertained to implement the particular-program as 

the stuffing of some hole in the standard-prelude. This would be unwise on 

some implementations, since it would mean that all ALGOL 68 programs would 

get the same external entry-point name. It may be better to implement the 

standard-prelude as a collection of definition modules implicitly accessed 

by all other source-packets. Of course, some kludge will then be necessary 

for the stop in the standard-prelude. If the standard-prelude should 

actually be written in ALGOL 68, some mechanism will also be necessary to 

suppress the implicit accession of the standard prelude when it itself is 

being compiled. 


2.8 A tricky implementation method for strict stack machines. 


A "strict stack machine" is a machine whose hardware strictly enforces a 

procedure-stack memory hierarchy of the style of ALGOL 60. Strict stack 

machines are difficult to use with unusual control structures because they 

impose the wrong structure on the program, but definition modules can still 

be squeezed in. 


A definition module can be viewed as a procedure M which accepts as 

arguments 


-	 an activator A, and 

- a procedure P. 


It checks whether to make a new invocation, and 

-	 if so, makes a copy of the activator, elaborates the prelude, and 


fills in appropriate activators, as usual, 

- and otherwise, digs up the old invocation. 


It then calls P, giving it as parameters 

-	 each published indicator, and 

- a procedure Q, which will elaborate the postlude when called. 


When P returns, M immediately returns. 


An access-clause sets up an activator, and then calls the definition 

module, giving it as parameters: 


-	 the activator A, 

-	 a procedure P whose body is the ENCLOSED-clause of the access-clause 


and which accepts the defined-indicators and the postlude procedure 0 

as parameters. 


For access-clauses with more than one module-call, all the postludes must 

be called before the ENCLOSED-clause returns. 



