
! 


AB33 p 54 


AB33.3.8 Comments on suggested improvements to ALGOL 68. 

S.R. BOURNE and M.JoTo GUY. 


I. Report of subcommittee on maintenance and improvements (AB32) 


Items (I) to (4) (which are really all parts of one item) 


represent a great improvement over the previous situation. We 


have already implemented these changes and find a substantial 


simplification of the syntax analysis, as a number of delicate 


situations (such as (proc ~ b; ...) which might either be a formula 


or a declaration until the definition of a has been found) have been 


removed. 


Two possible slight improvements to (4): 


a) 	 Use skip as the empty symbol. This saves adding yet another 


symbol to the language. It requires that R 8.2.7.2 a step 2 


be changed as follows: 


then some mode ÷ then, if it is united from void, void, else 


some mode ~ ° 


in order that union(int,void)uiv := ski p have the right effect. 


b) 	 Update collaterals (and all that implies) to permit structures 


with zero fields. One can then define mode void = struct() 


and the empty symbol is automatically (). There is then no need 


for void-denotations and void can be relegated to the standard 


prelude. 


(5) also represents a clear rationalisation, although we have not yet 


considered the problems of implementation; things of shape 


(...)(...) (...)..o 

tend to be a bit delicate syntactically. The change to vacuums is 


very welcome indeed; we have not yet implemented them, but were 


proposing to implement () as a vacuum. 


(6) is also a relief from a messy problem. We had deferred 


implementing both formal declarers (we require them to be virtual as 


RRE do) and go-on symbols in both calls and formal parameters because 


of the problems in this region. 


We would also like to endorse (7) and (9). In place of (8), it 


would seem preferable to admit that (/ and /) were a mistake (we 


implement almost the full syntax without insisting on a distinction 




AB33 p 55 


between round and square brackets). 


2. Report of subcommittee on data processin$ and transput (AB32) 


Since this report covers a more contentious and less well 


understood area than the previous one, we have more reservations 


about the proposals it contains. Additionally, we have as yet no 


experience of implementing 'proper' transput for ALGOL68. 


(A) seems to fill a definite gap. It is a pity that 


decomposed-coercends have the same disagreeable properties as 


components of flexible arrays and hence must be subject to the 


same restrictions. 


For (D) see suggestion (i) which seems to cover most cases 


wanted in practice. 


We would strongly endorse (F), (G), (H) (see also our suggestion 


(m)), (I), (J), (strongly supported; the remarks are certainly true 


of our operating system, and probably of most others), (K), (L) 


(what happens to boolean patterns in view of (7) of committee on 


improvements? Are booleans represented as Ol or 01?), (M) and (0). 


While supporting'(N), we feel this ought to go much further. The 


I/0 in general seems (in effect) much too concerned with card readers 


and punches, and other devices belonging to the dark ages. When one 


deals with terminals, it becomes clear that lines filled out with spaces 


or not are very different objects. Similarly, when preparing output 


for sending to another machine, whose input conventions do not attain 


the standards one might wish (e.g. where tabs or suitable numbers of 


spaces are not equivalent, or where the ordering of overprinted 


characters is significant). 


We would therefore recommend that: 


i) a book should be [I:0 flex] [I:0 flex] [i:0 flex]int , 




AB33 p 56 


2) that operations should be available in the standard prelude to 

perform th~ operations "define end of line", "define end of page", 

3) that string denotations should contain representations of 

'backspace','newline','newpage','tab! (see suggestion (I) on string 

denotations), 

4) alternative input conversion codes should be available to provide 

'line reconstruction', where this is appropriate. Default settings 

should include line reconstruction. 

We do not like (E); it seems to be shoring up a fundamentally 


unsatisfactory situation but we do not have any more constructive a 


suggestion. 


We are strongly opposed to item (C). Its implementation would 


involve complications in many parts of the language. The definition 


of MODE would need to be complicated considerably and those parts of 


a compiler that perform mode-identification (at present not very pretty) 


would become considerably more complicated. 


We feel that the need implied by the examples is somewhat bogus. 


On the assumption that x takes only one value in a particular program 


(the most common case), the first problem would be better solved by 


inserting the text of the procedure very-slow-sort in a range where 


is defined. 


There is a more fundamental objection to this proposal. It 


essentially assumes that objects ref a and ref b are interchangeable, 


i.e. that the store of the underlying machine is addressed in a uniform 


way for all modes. While this is true of many present machines and 


implementations, we note that modern developments in segmentation 


and in storage hierarchies make such assumptions dangerous. The 


assumption is also firmly contrary to the spirit of the report. 




AB33 p 57 


3. Other items 


We wish to support C.H.Lindsey's suggestions(AB32.3.2). In 


connection with the second, it would seem desirable to define the 


extensions so as to insist that expressiOns which are written once 


are only elaborated once. (Lindsey points out that this is one of 


the possible elaborations, except in his pathological examples.) 


Continuing in this theme, it would seem desirable that any side effects 


of a mode-declaration should occur at the time of the declaration, rather 


than when the actual declarer is used as a generator. 


Specifically, replace R 7.2.2 by 


"A mode-declaration is elaborated in the following steps: 


Step I: Its constituent actual-declarer D is developed. 


Step 2: All constituent boundscripts of D are elaborated collaterally. 


Step 3: The "expansion" of the mode declaration is that actual-declarer 


obtained by replacing each constituent boundscript of D by 


the corresponding value obtained in step 2." 


and alter 7.1.2 c, step 2: 


the protected actual Neclarer of that mode declaration ÷ the 


expansion of that mode declaration 


or identity declaration ~, mode declaration or identity declaration ~ . 


We can now alter R9.2 c so that, for example, 


amode T ,T 

i 2 


is regarded as an abbreviation of 


mode another = amode; another T , another T 

I 2 


avoiding the repeated elaboration of boundscripts. (Note that care 


is needed in defining the ordering, or lack of ordering, if the declaration 


is part of a collateral declaration.) 



