
AB33 p 26 


AB33.3.4 	 REPORT of the Subcommittee on Data Processing and Transput 


of IFIP Working Group 2.1, held at the Mathemtical Centre, 


Amsterdam, from August 9th - 11th 1971. 


PRESENT: 	 C. H. Lindsey - Convener; 

C.H.A.Koster, ~,~thematical Centre, Amsterdam 

A.J.Fox, Royal Radar Establishment, Malvern 


Apologies for Absence from: 


R.J.Gilinsky, who has now returned to CSI in Los Angeles, but who 

wishes to be kept in touch with future developments. 


A letter had also been received from Phil Fites, now working for the 

Gas Co. in Edmonton, who wished to be kept up to date with the work of 

the Subcommittee. 


PREVIOUS REPORT: 


Items in the previous Report of the Subcommittee were considered. 

Items (a), (b), (c) and (d) have been passed over to the Improvements 

Subcommittee. 


Item (e) was considered not entirely satisfactory in its present 

form, and a new proposal for conversion procedures to replace the present 

int string, dec string and real string is therefore substituted in its 

place, - see LQI95A. 


A question of abbreviated formats more on the lines of the FORTRAN 

formats was discussed, but it was considered that proposal (h) could be 

used to include within a format another format identifier which the user 

had declared to possess the picture which he wished to be abbreviated, 

therefore no change was recon~ended. 


The wording of proposal (n) was considered and it was decided that 

the initial contents of a book created by 'establish' should remain undefined~ 

the implementor being trus~d to fill it with spaces where appropriate. 

The last two lines of the proposal were therefore deleted. 


Proposal (o I is still unsatisfactory in its present form, but it was 

not discussed further at this meeting. 


The remaining proposals, therefore, still stand as recommendations 

to the~Working Group. 


A letter from Professor P.W.Abrahams of the Courant Institute, New York 

was considered. This pointed out several errors in chapter 10 of the Report. 

These have been noted by C.H.A.K. as errata for the next edition. ~ 




AB33 p 27 


-2-


The remainder of the meeting was devoted to a discussion of record 

transfer, particularly with regard to random access devices and data bases. 

Most of the discussion centred round a proposal for a new kind of assignation 

with a new becomes-symbol (<<) the use of which would imply a transfer to 

some backing medium. The proposal is intended to provide compile time 

mode checking as is usual in the rest of ALGOL 68. 


The proposal as it stands at the moment is described in LQ200, but 

it should be emphasised that further work remains to be done particularly 

in specifying how the user-preludes are to be written. 


The Report of the Codasyl Data Base Task Group was considered briefly. 

The concept of data base key in that Report seems to be defined in a way 

which makes implementation very difficult. Apart from this, there seems 

no reason why a library prelude could not be written to access such data 

bases from ALGOL 68. 


It is to be noted that the sub-schema of the Codasyl proposal would 

correspond to a user-prelude of an ALGOL 68 program. A language more akin 

to ALGOL 68 for describing such sub-schemata would be designed and used to 

generate such user-preludes. 




AB33 p 28 

LQ 195A Style of printing in formatless transput. 


Proposal E in the first Report of the Data-Processing sub-committee 


(WG2.1 (Manchester 11) 151 - also in AB32) met with a somewhat lukewarm response 


from the Working Group, and we were not over pleased with it ourselves. Here is 


an alternative proposal for a group of procedures whole, fixed and float. The 


intention is that the six procedures int string, dec string, real string, 


string int, string dec and string real, together with their long versions 


should be removed from the Standard -prelude (they were not over-convenient to 


use, and had some funny propoerties (see Habay 15)~.(By "remove", I of course mean 


"render in-accessible"). The three procedures proposed here are an adequate 


replacement for three of them, and proposal 0 should provide for the other three, 


which were not likely to be so useful anyway. 


Of the three procedures given here, it is expected that fixed will be the most 


used, being adequate for most int as well as real transput. The other two are, 


however, provided for the sake of completeness. 


pr,oc float -- (union( ~ L real ~, ~ Lint ~) value, int before, after, exp)string: 


begin string s, hool neg, int p := O, shift := O; 


( (_L r,,eal,, y; 

if y ::= value 


the n i_~ exp ~ 0 


then L real g = L 10 ~ ab__s before; L real h -- g * L .I; 


x :~ ab__~ y; 


while x > g d__o (x times L.I; shift plus I); 


if x>LO then while x < h d_.o (x times LIO; shift minus I) f~; 


if (x plus L.5 *L.I ~abs after) >_ g the_n x := h; shift plus I f_! 


else x := ab__s y +_L.5 ~L.1~abs after 


i%; 

neg := y<O; 


while x>1 02 . (p=O apd before ~ O) o2 . (exp~O an_~ p<abs before) 


d_2 (x times L.I; p plus I); 


t_o p d_2 s plus dig char ~ (in__~ c = S entier (x times LIO); x minus c;c 


for dig char see 10.5.2.1 


if abe after ~ 0 then s plus "." f~; 


to abe after d_o s plus dig char ( (in__ ! c = S entie r (x times LIO); 


x minus c; c)) 




LQ 195A (contd) 


AB33 p 29 

(_L in_A i, j; 

if j : := value 


then if exp ~ 0 


then Lint g = LIO ~ (abs before +abs after); _L real_ h = g * I~.I; 


i := abe j; 


shift := a.bs after; 


i_~ i>_g 

then real x := i; 


while x> g d_~ (x times L.I; shift plus I); 


i := round x 


f~; 


p.:= - abe after; 


if i > LO then while i < h d._o. (i times LIO; shift minus I) 


elsf i = 0 then shift := 0 fi 


else i := abe j; 


p := - abe after; 


to abe after do 


("0" prus s; p p lus  S; (p=O I " ' "  2.F.9.~. s ) )  

£!; 
neg := j < O; 


while i > I o_2 . (p=O and before~O) o_/. (exp~O and p<abs before) d~ 


(dig char(i mod LIO) prus s; i overb LIO; 


p p l u s  I; (p:o  I ': " ~z_~  s ) )  

f_! ) }); 

if neg the.___n "-" els_~ before<O o_E after<O then "+" else "" f~ ~ s; 


to abe before - p d oq ".L" prus s; 


if exp ~ 0 the.n s plus "10" plus float(shift, exp, O, O) f~; 


s 


end; 


r~ 	 fixed = (union(~ L real ~, ~ _Lint ~)value, int before, after)string: 


float(value, before, after, 0); 


proc whole -- (union(~ L real ~, .~ Lint ~) value, .in t before)string: 


, fixed(value, before, 0); 




LQ 195A (oontd 2) 
AB33 p 30 


Examples: 


f loat( 2.718281828, 1, 4, 2); ~ yields "2.718~0" 

float(-2.718281828, I, 4, 2); # "-2.7183ic~0" 


float(-2.718281828,-1, 4 ,  1 ) ;  ~ "-2.7183~0" 

float( 2.718281828, -1, 4, 1); ~ "+2.7183~0" 

float( 2.718281828, O, -4, -1); ~ "+.2718~+I" 

float( 2.718281828, 2, 6, 0); ~ "~2.718282" 

f loat( 99, 3, 2, -1); ~ "990.00~-I" 

float( 9999999, 1, 5, 1); ~ "1.00000.~" 

fixed( 2.718281828, 2, 6); ~ "~2.718282" 

fixed( 2.718281828, 1, 7); ~ "2.7182818" 

fixed( 2.718281828, O, 8); ~ "2.71828183" 

fixed( 99, 3, 5); ~ "~.99.0o000" 

fixed( 9999999, 6, 2); ~ "9999999.00" 

whole( 2.718281828, 9); # " . . . . . . . .  3" 


whole( 99, 9); ~ " . . . . . . .  99" 


whole( -99, 9); ¢ " . . . . . . .  -99" 


whole( -99, -8); ~ " . . . . . .  -99" 

whole( 99, -8);  ~ " . . . . . .  +99/' 

whole( 1, 1); ¢ "1" 

.hole( 12, 1); ~ "12" 

whole( 123, 1); ~ "123" 

whole( 1234, 1); ~ "1234" 


whole( O, 0); ¢ "" 

Thus it will be seen that the question of error procedures does not arise, 


since the procedures produce sensible string for all possible values of their 


parameters. If the user is worried that the str~ is longer than he expected, 


he can always inspect its u~. 




LQ 200 Record transfer. 


This paper comprises CHL1s interpretation of what the Data-processing and 


Transput sub-committee was discussing between Aug 9th and Aug 11th 1971. 


Reference is made to item P of the first Report of the sub-committee 

(mancheater 11 ). The present proposal is intended to establish a firmer syntactic 
and semantic framework for the concept of "record transferw established there. 

Ehvironment. 


First, it is necessary to establish as environment in which values sent to 


a mass storage device by one program may be retrieved by another program. 


super program : open symbol, super prelude, parallel symbol, 


program list pack, close symbol. 


super prelude : declaration prelude sequence. 


2.2.4.2.b) The scope of a plain value is the super-program, 


f~he scopes of routines and names (except those generated by local 


generators in the super-prelude) are still, however, at most the program. 


The scope of mass pointers (to be introduced presently) will be the super- 


program.j 


2.3 .a) The elaboration. of a supercprogram is . . . . 
The super-prelude is intended to contain declarations of internal objects 


that are accessible to all programs (the date, for example). Perhaps 


chainbf ile (10.5. I. I .c) and the bf iles accessible from it shmld be kept there rathe 


than in the standard--prelude as at present. It may well contain semas to control 


simultaneous access of bfiles by different programs, and routines to represent 


those facilities of the operating system which programs are allowed to see. 


Note that each program still has its own private copy of the standard-prelude 

(inclucling its own last randon, for example). In any case, some of the programs 

may not even be written in ALGOL~~. 

The programs in the program-list-pack include all the programs that ever have 


been, or ever will be, run on the particular installation. Although they are all 


elaborated collaterally, one may envisage that some little gremlins called 


operators can influence the order of their elaboration by inserting new programs 


in the list from time to time (whereupon their elaboration may commence) and by 


removing programs whose elaboration has been completed, or permanently interrupted. 


Note that there is no super-pos.tlude, because it is not envisaged that the 




LQ 200 (contd) 

Transf erabl  o modes. 

F i r s t ,  a new c l a s s  of modes w i l l  be defined: 

TYPE : PLAIN ; format ; PROCEDURE ; reference t o  MODE ; pointer  t o  RECORD. 

where 'RECORD' is the  subset of 'MODE1 which includes t he  modes of t ho~eva lues  

which it i s  t o  be allowable t o  t rans fe r ,  and which is defined thus: 

RECORD :MOODRM: ; UNITEDRm . 
MOODREC : TYPEZEC ; STOWEDREC. 

TYPIBZ : PLAIN ; pointer  t o  RECORD. 

' S!POWEDREZ : s t ruc tured  with REZFIELDS ; row of RECORD. 

.pROWS of RECORD, f ollovirig AB 32.2.3. (5)3 
REFIELDS : RECFIELD ; RECFIELDS and RECPIl%D. 

FBCFIELD : RECORD f i e l d  TAG. 

UNITEDRE : union of LMOODREXS MOODRM: mode. 

MOODmS : LHOODREX: ; LMOODREXS LIflOODREC. 
LMOODREX: :MOODREC and. 

Note t h a t  'RIEORD1 includes a l l  t h e  modes from which outtype (10.5.0.l.b) is 

united,  p lus  the  modes beginning with 'pointer  t o 1 .  

Mass pointers.  

2.2.2.1) Any "name" o r  "mass pointer", except "nil", r e f e r s  t o  one instance of 

another value. . . . . 
2.2.3.5. Names and maas pointers  

throughout 2.2.3.5. Z name -> name (mass p o i n t e r p  

2.2.4.Ieg) The mode of a name 	 (mass pointer)  is  ' reference t o '  ( lpo in te r  t o 1 )  

followed by another mode; if  t he  name (mass pointer)  is  not n i l ,  then . . . . 
2.2.4.2.b add: 


t ha t  1i.e. t h e  scope) of a mass pointer  is the  super-program. 


8.5.1 	 .I .a) MODE generator : MODE l oca l  generator ; MODE global generator ; 

MODE mass generator. 

8.5.1 .I.d) pointer  t o  NODE mass generator :mass symbol, ac tua l  MODE generat or. 

4.4.?. Context condit ion 

No proper program contains a particular-program which contains a rrass-generator 

iThus mass-generators a r e  only t o  be found i n  the  s u p e r ,  standard-, l ibrary- o r  

user-preludes (see LQ 188A f o r  user-preludes) where they a r e  t o  be regarded, a t  
l e a s t  f o r  t he  time being, as a de f in i t i ona l  tr ick.3 



LQ 200 (contd 2) AB33 p33 


Discussion. 


An "area" encompasses those parts of the available mass storage media whose 


mass pointers can be yielded by the mass-generators contained within one user- 


prelude. It is envisaged that to each area there corresponds a user-prelude, the 


inclusion of which within the user's program makes available to that program 


the area plus, possibly, a set of routines etc to facilitate access to it. The 


modes of the values that may be stored in a given area are thus limited to those 


provided for by the mass-generators contained in the corresponding user-prelude, 


and there is no way provided of transferring values of any other mode into that 


area. 


The intended implementation of mass pointers can now be discussed. 


A mass pointer has, three fields: 


I area I~ logical address displacement 1 


The area field is necessary because a given mass pointer variable may be made 


to refer to a value stored in any area known to the program. 


The ~ogical addresS'field is to be used to retrieve the record referred to 


from wherever on the part of the mass storage device encompassed by the area it 


has been put. The correspondence between this logical address and the "physical 


address" on the mass storage device is a matter for the implementor. In general, 


some conversion al~gorithm must be invoked. A given implementor may have a 


repertoire of severalsuch conversion algorithms up his sleeve. 


The "displacement" field is to be used to address the start of a component 


(2.2.2.k) within the record (see modified 2.2.3.5.b,c). 


The implementor can choose an algorithm for logical address conversion from 


a knowledge of the modes permitted for the area (each area, in general, has a 


different algorithm). The only constraint on his algorithms is that they do 


not pre-suppose a logical address field longer than the one he proposes to put 


in his mass pointers. Here are some examples of possible algorithms. In these 


examples, I use the term "bucket" to mean the unit of data (whose size may either 


be variable or constrained by the hardware) which is transferred to or from the 


mass storage device by one hardware instruction. This term is used by ICL and RCA. 


The corresponding term in other hardwares might be "block" or "trackful" or 


"I/nth of a trackful". 




LQ 200 (contd 3) 

ESramples of conversion algorithms. 

1) The only mode of t he  a r ea  i s  s t r u c t ([ 1 :lo]= name, [1 :50]char address) 

Here a l l  t he  records a r e  shor t  (compared with t h e  l i k e l y  bucket s i z e )  and 

of t he  same f ixed length. Therefore the  log ica l  address could be a simple in teger  

which, when divided by t he  known number of records i n  a bucket, would give the  

bucket address. 

2) The only mode of t he  a rea  is [1 :50000]compl 

ere the  record is long, but i t  (and more importantly i ts  elements) a r e  of 

t h e  same f ixed  length. Presumably, t h e  user  is not going t o  c a l l  a l l  of it i n t o  

core  at once but, given a mass pointer  t o  a sensible  s l i c e  of it, the  implementor 

can again do a simple ar i thmet ic  transformation on t h e  log ica l  address t o  obtain 

t h e  physical address of t h e  required bucket (s). 

3) The modes of t he  a r ea  a r e  s t r u c t ([ 1:l0 lchar  name, [1 :50]char address) 

and s t r u c t ( x  number, [1:20]char t e x t )  

o r  a l t e rna t i ve ly  the mode i s  s t r u c t ( s t r i n g  name, [ l : ~ f l e x ] i n t  payments) 

Here t he  record is  presumably shor te r  than a bucket ( the  odd one which i s  not 

might have t o  be processed by a specia l  exception rout ine) ,  but its length is 

not fixed.Any simple ar i thmet ic  transformation w i l l  r e s u l t  i n  wasted space i n  t he  

f i r s t  case and be qu i t e  impossible i n  t h e  second. A good algorithm must be capable 

of packing as many records as poss ible  i n t o  t he  ava i lab le  a rea  space on t he  

mass storage device, having regard t o  t he  ac tua l  s h e s  of t he  ac tua l  records 

being s tored at t ha t  moment. 

Packing of var iab le  length records i n t o  s f ixed  a rea  s i z e  is therefore  not 

a t r i v i a l  problem - but i t s  solut ion is of the  uCmost importance t o  t he  date- 

processing community and, hopefully, ALGOL68 can provide a b e t t e r  environment 

f o r  it than some other  programming languages,-Clearly,  i f  t he  worst comes t o  the  

worst, t he  log ica l  address can be transformed i n t o  t he  physical one by means of an 

index look-up. However, t h i s  w i l l  require  an ex t r a  t r a n s f e r  from t h e  mass device 

each time a record is accessed (since,  i n  general,  such an index would be too 

la rge  t o  hold a l l  of it i n  core).  Something b e t t e r  i s  hoped f o r  and t he  following 

algorithm, based on a piece of ICL software, is suggested. 

It is assumed t h a t  a bucket w i l l  hold several  records of average s i z e  ( i f  the  

occasional record extends over 1 bucket, a spec ia l  exception rout ine  would have 

t o  be ca l l ed  in ) .  It is  assumed a l s o  t h a t  t he  records contained i n  t he  a rea  a r e  more 



LQ 200 (contd ~) AB33 p 35 


or less uniformly distributed amongst the available buckets, and that the total spac 


occupied by records still leaves a little free space in the area (10% say). All 


the records contained in one bucket are compacted towards one end. 


The logical address is divided into two fields - the bucket address and the 


record number within the bucket. The logical address therefore immediately gives 


the hardware address where the record referred to is expected to be found and, 


by counting through the records of the bucket (or looking up an index at the 


start of the bucket), the record can be retrieved. Note that this search can be done 


rapidly in core after the whole buhket has been transferred. 


Now suppose that one of the records in the bucket is rewritten with increased 


size, or a new record is to be added. If the free space at the end of the bucket 


is adequate for the extra information, no problem arises. The records are 


recompacted within the bucket (and the bucket index, if any, is updated). Otherwise, 


the lastrecord of the bucket is removed to some other bucket, where free space is 


available, and a pointer to its new position is left in its original place (thus 


the removed record can still be accessed from its original mass pointer, albeit 


with am extra mass device transfer). 


,i!, Hopefully, while reasonable amounts of free space remain, the vast majority 


of records will actually be contained within the buckets specified directly by 


their mass pointers. Eventually, however, as new records are added and old ones 


altered, the area will become full of overflow pointers and the efficiency will 


drop below an acceptable level. At this point, an off-line program must be called 


in to re-organise the area, possibly copying it to a larger area and redistributing 


the records uniformly. Now, of course, the mass pointer values referring to each 


record have changed but, since the system knows the mod~of this area, and of 


other areas which contain mass pointers pointing into this one, it knows where all 


the existing instances of mass pointer values that need changing are to be found. 


Note that mass pointer values themselves are not included in outtype, so that 


the user is unable to keep secret copies of mass pointers beyond the life of his 


program. 


This particular algorithm is, of course, only a suggestion, designed to 


estab[ishe~at least the existence of algorithms suited to this purpose. 


4) The mode~of the area is .struct([1:50000]co~ a, [l:50OOOflex]real b) 


Here the record is both long and variable. The implementor has got problems. 




LQ 200 (contd 5 )  

Databases. 

A s e t  of areas,none of which contains  mass poin te rs  r e f e r r i ng  t o  values 

contained i n  a reas  outside t h a t  s e t , i s  known as a "database". 

A proper program must not contain two user-preludes specifying a reas  tha t  

may contain mass pointers  unless  those two a reas  a r e  known by the  system t o  

belong t o  t he  same database (or  unless  one of them i s  a "scratchf* a rea  t o  be 

discarded a f t e r  elaboration of t he  program). 

Ordering of mass pointers.  

It is t h e  case with present ly  ava i lab le  random access devices t ha t  two 

consecutive t r ans f e r s  t o  physical addresses t ha t  a r e  c lose  together  in some 

sense (e.g. within t h e  same t rack,  o r  within t he  same cyl inder)  take much l e s s  

time (by a f ac to r  of 10, possibly) than two consecutive t r ans f e r s  t o  widely 

spaced physical addresses, where head movement w i l l  be involved. It is v i t a l ,  

therefore,  t h a t  t he  user  should be given t h e  opportunity of organising h i s  

access requests so  as t o  take a d v a n t e e  of t h i s  s i tua t ion .  

Therefore, an ordering of mass pointers  must be defined, t h e  in tent ion 

being t ha t  the  ordering of l og i ca l  addresses should correspond t o  t he  ordering 

of t he  physical addresses, so  f a r  as is  possible ( t h i s  i s  t rue ,  f o r  example, 

of t h e  algorithm suggested above, provided t ha t  t he  a r ea  does not get  too  

d i ~ o r ~ a n i s e d ) .Thus t he  user,  with a list of t he  records t h a t  he needs t o  access, 

can f i r s t  s o r t  h i s  requests  on t he  bas i s  of t h e i r  mass pointer  values. Then he 

can r e t r i eve  them all  i n  one clean sweep across  h i s  d isc .  If several  records a r e  

s tored t o  a bucket, he w i l l  even ge t  away with fewer mass device t r ans f e r s  than 

he  has records t o  re t r i eve .  

2.2.3.5.e) For each p a i r  of mass pointers  fof not necessar i ly  the  same mode3 t he  

re la t ionsh ip  "to be smaller than" i s  defined. j~owever,  it had perhaps ba t t e r  not 

be defined that two d i f f e r en t  programs, when faced with the  same two mass 

pointers ,  should be obliged t o  take t he  same view of t h i s  re la t ionship .  This is  

because t he  a rea  f i e l d  of a mass pointer  is l i k e l y  t o  contain  a coded o r  compressed 

version of t he  i den t i f i c a t i on  of t he  area ,  and d i f f e r en t  programs, faced with 

a d i f f e r en t  subset of t h e  a r ea s  from t h e  database, might l i k e  t o  use a d i f f e r en t  

coding f o r  t h e  a reas  .j 

10.2.12.a) mode $IEL~S= -c a31 actual-declarer specifying a mode uni ted from a l l  

modes beginning with 'pointer  t o '  2 ; 
b) OJ < = (B a, b ) ~ :t r u e  ( f a l s e )  i f  t he  mass pointer  which i s  

value of t a t  $8 ( i s  not)  smallor than t ha t  of ' b '  2 ;t he  - ) . .  
I r. 



LQ 200 (contd 6) 	 AB33 p 3F 


c) 22 _<-- (maps a, b)bool: not(b<a); 


d) 22 > = (maps a, b)bool: b<a; 


e) 22 > = (maps a ,  b )bool :  b < a ;  

~The fact that, of two mass pointers, neither is found to be less than the 


othen does not mean to say that they are the same mass pointer. It merely implies 


that your implementor considers them to be so close together that it is not worth 


while trying to order them further (for example, they might refer to different 


records but within the same bucket). As an extreme case, an implementor who did 


not care to have his mass pointers ordered at all could define the relationship 


"to be smaller than" to be false for all possible pairs of mass pointers. 


map declarers. 


REFPOINT : reference to ; pointer to. 


7.I. 1.1,m,n (throughout) 	 [reference to MODE declarators} 


reference to --> REFPOINT 


3.1.I.d) pointer to symbol 


9.c.~) add : or transfer symbol [allowing extension of ref m m = loc m << skips 
J 

Transfers. 


8.3.0.I.a) MODE confrontation : NODE assignation ; MODE conformity relation ; 


MODE identity relation ; MODE cast ; MODE transfer. 


8.3.5. I. Syntax 


a) reference to RECORD transfer : reference to RECORD destination, 


transfer symbol, pointer to RECORD source. 


b) pointer to RECORD transfer : pointer to RECORD destination, 


transfer symbol, RECORD source. 


c) pointer to RECORD destination : firm pointer to RECORD tertiary. 


3.1.1.c) transfer symbol << 


~In which case, < must not be allowed as a monadic operator.~ 


8.3.5.2. Sem~nt ics 


A transfer is elaborated in the following steps: 


Step I : Its destination and source are elaborated collaterally; 


Step 2: If the mode enveloped by the original of the transfer begins with 


'reference to' ~inward transfer) then the value referred to by (~the ~ss 


pointer which is} the value of its destination is assigned to ~the name 


which is~the value of its source; otherwise, ~outward transfer} the value 




-- 

LQ 200 (contd 7) 	 AB33 p 38 

Throughout 8 . 3 . 1 . 2 . ~ ~  replace a l l  relevant occurrences of "name" by 

"name (mass pointer  ) " . 
Discussion. 

Clearly, t he  basic t r ans f e r  operation could have been specif ied i n  other 

ways. For example: 

1) Invent a demapping coercion, and use an ordinary assignation.  This would 

ce r t a in ly  be possible syn tac t ica l ly  but, s ince  t r a n s f e r s  t o  backing s to r e  a r e  

l i k e l y  t o  be 10000 times as slow as ass ignat ions  within core,  it was thought 

b e t t e r  t o  force  t he  user  t o  wr i te  an exp l i c i t  transfer-symbol, so  t ha t  he could 

be under no i l l u s i o n s  as t o  what he was asking fo r .  

2) Use a d i f f e r en t  symbol f o r  inwards and outwards t r ans f e r s  ( e .g. << and >>) . 
However, t h i s  would mean t h a t  f o r  one d i rec t ion  of t r a n s f e r  t he  source would be on 

t he  l e f t  and t h e  des t ina t ion  on t h e  r i gh t ,  and t h e  analogy with ass ignat ions  

would be l o s t .  What, moreover, would be the  value yielded by t h e  t r a n s f e r  as 

a whole when its source was on t he  l e f t ?  

3) Define << (and/or >>) as an operator. 

In  t he  reach of r e f  r e a l  r x  = skip,  9r e a l  px = skip; 

then as proposed rx  << px << 2.0 

means r x  << (px << 2.0) 

o r  px << 2.0; rx << px 

whereas, with << defined as an operator 

it would mean ( r x  << px) << 2.0 

o r  r x  << px; ?? << 2.0 

which is obviously why the  becomes-symbol i s  co t  an operator i n  t he  present language 

An operator >> with t h e  des t ina t ion  always on t h e  r i g h t  could sensibly be 

defined, but again t he  analogy with ass ignat ions  i s  lo s t .  

Iden t i ty  r e l a t i o n s  and n i l .  

8.3.3.1 	 .a (throughout) fident i ty - re la t  ions3 

2 reference t o  -> REPPOINT 2 

8.3.3.2.Step21-1 2 names ->names o r  mass pointers  2 

8.2.7.1 	 .d i n i h i l s j  

2 reference t o  -> Rl3X1POINT 2 

@ h u ~mass pointers  may be compared using ident i ty-re la t ions ,  and a good mass 

pointer  value i s  nil.? 



AB33 p 39 


LQ 200 (contd 8) 


adopted (Manchester 11.C), then the program should be able to handle pointers to 


modals as well as references to them. 


Mass pointers to components. 


REFPOINTRTY 	: REFPOINT ; EMPTY. 


8.5.2. l.a (throughout), ~selections 3 


8.6. I. 1.a (throughout), {slices 


LQ 181.8.2.9. I .a,b, c, d, e 	 {decompositions} 


REFETY -> REFPOINTETY 


Obvious changes in the associated semantics. 


[I resisted the temptation to do the same trick in 8.6.2.1 (rowed coercends).V) 


Thus mass pointers to components of values already on backing store may be 


obtained. Whether such mass pointers should be unassignable in the sense of LQ 181 


is open to debate. Implementation would be simpler if they were (and indeed, if they 


refer to components of flex values on the disc, or if they arise via LQ 181 , 


(decomposition), then they will be unassignable anyway). 


Example. 


A user wants to construct an area containing records which can be retrieved 


on the basis of a strin~ key. The area must also therefore contain anindex. 


First he must write a user-prelude which will achieve the s~me effects as the 


following: 


mode data = string; ~ say 


mode %indexline = struct (string key, map indexline more, less, 9_~data item ) 


map indexline %firstindex = mass indexline << ("", nil, nil, nil); 


this line should perhaps really have been in the super-prelude, since 


the intention is that it should be elaborated only once when the area 


is first created 


prqc seek = (string key) m~ data: 


begin 


indexline indexptr := firstindex; indexline copyindex; 


m~ data dataptr; 


int moreless := +I; 




LQ 200 (contd 9) AB33 p 40 


repeat: i_f (map indexline ex indexptr) i snt nil 


then copyindex << indexptr; 


moreless := (key <key of copyindex I-I l:key =key of copyindexlO]+1); 


indexptr := (moreless+2 l less of copyindex, 


o~ found, 


more o fcopyindex); 


o~ repeat; 


found: item o_f copyindex 


else (moreless+2 I less of indexptr,.skip, more of indexptr) 


<<mass indexline 


<< (key, nil, nil, dataptr := mass data); 


dataptr 


fi 

I 


eng; 


file f; open(f, "identification", dischannel); 


this is intended to associate the area with a file for administrative 


purposes; in particular, it makes available a set of error procedures 


for use when exception conditions arise (such as no more mass pointers 


available within the area)~ 


Note that this user-prelude contains mass-generators for the modes data and 


indexline, and these are therefore the modes of the area. 


Within the context of this user-prelude, the user may now write a particular- 


program such as the following: 


begin 


seek("LINDSET") << "UNIVERSITY_. OF.MANCHESTER"; 


seek("KOSTER") << "MATHF~iATICAL_.CENTRE"; 


proc address = (s trinE name)string: 


(string s << seek(name); s); 


print (address ("KOSTF2")); 


seek("KOSTER") << I~ATHZ~IATISCH.C~TRUM , 


print (addre s s ("KOSTER")) 


end 




LQ 200 (contd 10) 

Discussion of example. 

It w i l l  be observed t h a t  t he  particular-program cannot generate mass pointers  

f o r  i t s e l f .  It must employ t h e  procedure seek f o r  t h i s  purpose. Since seek 

cannot y i e ld  mass pointers  of mode ma_p indexline, it a l s o  follows t h a t  t he  

particular-program cannot on i ts  own overwrite t he  index, o r  attempt t o  generate 

new index en t r i e s ,  It cannot even inspect  t he  ex i s t i ng  index f o r  i t s e l f  because 

t he  i d e n t i f i e r  f i r s t i n d e x  is secre t .  Therefore t he  a r ea  must always be i n  t he  

s t a t e  t h a t  every index entry  leads  t o  a da ta  record, and there  exist^ no -data  

record t ha t  is not properly l inked i n  t o  t he  index; t h e  particular-program 

can never cause t he  a rea  t o  cease t o  be i n  t h i s  des i rab le  s t a t e .  

It w i l l  be observed, however, t h a t  t h i u  user-prelude gives no guarantee t ha t  

any pa r t i cu l a r  record w i l l  be at any pa r t i cu l a r  physical locat ion i n  t he  f i l e  

( the  eff ic iency would, f o r  example, have been much improved i f  it could have been 

arranged t h a t  a l l  t h e  indexline records were s tored c lose  t o  one another). Also, 

the re  is  no means provided f o r  removing a da ta  record and its corresponding 

index entry from the  area. What t h i s  ind ica tes  is t h a t  a mass-generator is r ea l l y  

too  crude a t o o l  f o r  generating mass pointers  i n  r e a l  l i f e  s i t ua t i ons ,  although a s  

a def in i t iona l  t oo l  it 4s sa t i s fac tory .  

What a pa r t i cu l a r  user  would l i k e  t o  see would be rout ines  i n  h i s  user-prelude 

f o r  y ie ld ing  a generated mass pointer  c lose  t o  some other mass pointer ,  o r  at 

a given percentage of the  way through t h e  area ,  o r  calcula ted by a hash-coding 

technique from some key, o r  immediately adjacent t o  t h e  last mass pointer  t ha t  

was generated, Likewise he might l i k e  rou t ines  f o r  giving him a l l  the  mass pointers 

(of some given mode) within t h e  a rea  i n  turn ,  o r  f o r  re turning some no-longer- 

required mass pointer  t o  t h e  pool ( i t  i s  t o  be noted than conventional garbage 

co l lec t ion  is  a gross ly  i ne f f i c i en t  way of recovering no-longer-required mass 

pointers  on random access devices - f a r  b e t t e r  f o r  t h e  user  t o  say when a record 

is no longer required, and l e t  him wr i te  h i s  own garbage co l l ec to r  i f  he r ea l l y  

cannot think of a b e t t e r  method). 

A s  th ings  stand, it is up t o  t he  impl.ementor t o  provide t he  means t o  include 

such rout ines  within a user-prelude. Probably he can provide some helpful  

rou t ines  i n  h i s  library-prelude and even, i f  it can be agreed what f a c i l i t i e s  

should be generally avai lable ,  i n  t h e  standard-prelude. This is an a rea  of the  

present proposals which has been de l ibera te ly  l e f t  vague at t he  moment and i n  

which considerable fu r the r  thought is needed. 

It should be noted. t h a t  rout ines  such as those mentioned can ea s i l y  be defined 

at present, but not i n  a way i n  which one would l i k e  t o  implement them.  For example, 

one si8,Iply generates a vas t  stock of mass pointers  i n  +he super-prelwte and 



LQ 200 (contd 11) AB33 p 42. 


as required. 


It will be pbserved that the user-prelude in the example contained one line 


that ought really to have been in the super-prelude, except that one feels the 


definition of the identifier which was to possess the initial mass pointer 


of the index was a matter for the user and not for the super-prelude writer. 


This matter also will have to be considered further, as will the relationship 


between files and areas and the treatment of exception conditions. 

u 


Please do not therefore take the user-prelude in this example too literally. 


Its purpose is to illustrate the facilities that are required, rather than to sugge~ 


a secf~ence of symbols that an actual user might actually write down. 



