
AB23 po5

AB23.3.2. Further Thoughts on_ Record Handling AB2!~3_~6~

C~AeRo Hoare

Io Int.roduct.io ~

The concepts of record handling are comparatively novel and un-

familiar in the field of general purpose programming languages, and it

is desirable that they should be discussed~ refined, and extended before

they reach their fullest usefulness. This paper is intended to initiate

and contribute to such discussion, rather than to present final solutions

to the problems involved.

The numbering of the sections is not continuous, but reflects the

numbering of sections of AB21.3.6. In some cases, the sections are new~

2.3~ References

The concept of a reference as a unique representative of a record

is, in fact, superfluous; everything which is said of the reference

could equally well have been said of the record itself~ For example,

instead of saying "the value of the variable is a reference to a record

which..." one could have said "the value of the variable is a record

which...". A reference-valued expression" or field can now be described

as a "record-valued expression" or a "record-valued field", etc~

3. Ex~~

A less trivial example of record handling has been kindly sent me

by E.W. Dijkstra, and deserves wider publicity~

The problem is to find the shortest route on a map between two

towns, referenced by "start" and "finish". It is assumed that the map

is given in terms of direct town to town connections (roads), each of

which has a known length and destination. Note that two-way roads must

feature twice. Each town (In general) has a first road leading out of

it, which is referenced by the field "first out"~ Since the town may

have more than one road leading out, each road has a field "next out"

which references the next road leading out of the same town, if any,

and is otherwise null. All the variables and fields mentioned above

are assumed to have had their values assigned before the start of the

algorithm.

During the execution of the program, the "distance" field of a

town indicates its least known distance from the start, and the

"previous" field refers to the town that would be visited first on the

shortest known route to the start. The field "fol" is used to build up

a simple chain of towns, which falls into two halves: the first half

starts with the town "start", and contains in order of least distance,

the nearest towns. These towns are said to have been la~, and the

last member of this half of the chain is referenced by "last placed"°

AB23 p~6

The second half of the chain consists of unplaced towns, and the last

town of this half is referenced by "end"~ The second half contains, in

arbitrary sequence, all towns which have a direct connection with any

of the placed towns. Furthermore, for each unplaced town, every placed

town will have been previously considered as a possible town of first

visit on the route back to the start~ Now it is readily seen that the

first town visited on the route back from the true (n+1)th nearest town

must be one of the n nearer towns already placed, so that it must now

be valid to place that one of the unplaced towns which has the shortest

known distance from start. The algorithm repeats this process until the

last placed = finish, in which case the solution can readily be traced

through the "previous" fields of the towns; but if there is no route

leading from finish to start, the algorithm sets last placed = nul !

and terminates°

record class town;

begin reference first out (road), fol, previous (town);

II I

.integer distance end;

record class road;

begin refe.renc $ destination (town), next out (road);

inte~lengthend;

reference start, finish, scanned, prescanned, last placed, goal, premin,

end (town), trial (road);

end := last placed := start; fol (start) ~= previous (start) ~-- null;

distance (start) ~= O;

while last placed # finish and last placed # null do

be~ trial := first out (last placed);

while trial # null do

IIII] i i

begin comment examine every road leading from last placed;

I II I III

goal := destination (trial); scanned ~= start;

while scanned ~ goal do.

be~ comment make sure goal is on chain;

if scanned -- end then

be~ comment if not, put it at end of unplaced towns ;

fol(end) ~= goal; end := goal; fol(goal) ~= null;

II I I tl I

distance (goal) := + infinity

nd;

scanned ~= fol (scanned)

AB23 P.7

if distance (last placed) + length (trial) < distance

"-- (goal) then

begin comment the last placed town gives a better route than

before; distance (goal) := distance (last placed)

+ length (trial) ;

previous (goal) := last placed

na;

trial ~= next out (trial)

end;

if last placed = end then

comment there are no further towns accessible from any of the placed

towns ;

last placed := null

I IIIIIII

else

I II I I

be~ premin := last placed; prescanned := fol (last placed);

while prescanned ~ end do

begin comment find town with best distance ;

if distance (fol (prescanned)) < distance (fol (premin))

e ~

,t,,h,e,n

premin := prescanned;

prescanned := fol (prescanned)

if premin # last placed then

be~ commen,t change its position to the end of the first half of

the chain ;

scanned ~= fol(premin) ;

fol (premin) ~= fol (scanned);

fol (scanned) ~= fol (last placed);

fol (last placed) ~= scanned

Iz

na;

last placed ~= fol (last placed)

end

end

AB23 po8

5.5 o ~e AED Project

D.T. Ross has kindly pointed out that the defects attributed to

AED-O were fully recognised in the description of that language; they

were accepted only as an interim measure, and have been removed in the

subsequent development of AED-1o In particular, AED-I contains the concept

of a record class, and can check the validity of field designators at

compile time. It also uses the record class identifier as a record-

creating function. In fact, AED-I seems to have forestalled all the

major features of the record handling proposal.

5.7. SIMULA (O.J. Dahl and Ki Nygaard).

The concepts of record handling also feature in the SIMULA

language, which is an extension of ALGOL 60 oriented towards simulation

studies. A record class corresponds to a SIMULA "activity", a record

corresponds to a "process", and a field to a local variable of the

process. References as such do not feature directly in SIMULA; instead

there is a general facility for linking records into sets. The

element/set mechanism is a useful one, especially in simulation studies,

but it can readily be constructed from the more fundamental reference

mechanism; and it is probably better in a general purpose language to

provide the fundamental building blocks than to incorporate a built-in

mechanism which is essentially more complex.

5o8o PL/I (IBM)

The list processing facility recently introduced into PL/I is

quite similar to record handling. A reference corresponds to a "pointer"

in PL/I, and a record to a "major structure" of controlled storage class0

The field designator "father (B)" would be written in PL/I as "B-~FATHER",

and the record creating assignment "B := person" would be written

"ALLOCATE (PERSON) SET(B)".

The PL/I pointer suffers from the same difficulties as the EULER

reference (see 503). In addition, PL/I provides a further potential

source of error and confusion, in that a field name may be used as if

it were an ordinary variable without specifying explicitly which record

is being referred to; the translator then makes an implicit assumption

about what record is intended.

The troubleis that the programmer can change the identity of

this implicit record, with results which are sometimes unpredicted,

and always difficult to trace.

AB23 p~9

6 o Implementation

Fully dynamic random storage allocation for groups of consecutive

locations of any size is provided both in the implementation of SIMULA

and in that of AED-0o The proven success of the methods used in these

languages is a strong recommendation for their adoption in the

implementation of record handling. Neither method involves or requires

"Store collapsing", but (in SIMULA at least) automatic garbage collection

is possible°

6o60 Random Access Backing ~Store

The use of a random access backing store to simulate large single-

level stores will, on most computers, involve very much greater

inefficiencies than if all records were confined to main core storages

In view of this, it seems essential to give the programmer some control

over whether a record is to reside on backing store, and be called into

main store only when required, or whether it is to remain permanently

in main store° Furthermore, for records residing on backing store, the

programmer should be given some control over the grouping of the records,

so that he can ensure, for example, that records which are likely to

be referred to in quick succession of each other shall be situated on

the same track of the drum or disc.

This information should be given at the time when the record is

first created by means of a record constructoro It is suggested that

the record constructor should be preceded by:

bs or bs (<integer expression>)

in cases where the record is to be allocated on the backing store. In

the second option, the integer expression specifies the number of track

required°

7~4. Initial. Values

The proposal for initial values given here seems to be over-

elaborate and mistaken. It would be much better to adopt the following

approach:

A record constructor is a function designator which yields as

value a reference to a newly created record° It consists of a record

class identifier which specifies the class of the new record, optionally

followed by an actual parameter list. Each actual parameter is an ex-

pression which defines the initial value of one of the fields in the

new record°

The correspondence between the expressions and the fields is given

by matching the sequence of the expressions to the sequence of declaration

of the fields in the record class declaration. The length of the two

sequences must obviously be the same. (Thus, in effect, all fields are

identified with parameters called by value; and the examples in section 8

can be much simplified)°

AB23 put0

This leaves the problem of specifying the subscript bounds and

initial values of array fields. This problem may be solved by intro-

ducing the concept of an array constructor, which can feature in a

record constructor as an actual parameter corresponding to an array

field® An array constructor consists of E

Io an expression defining the lower subscript bound0

2. an expression defining the upper subscript bound.

3. an identifier which acts as a formal counting variable taking

values between the lower and upper subscript bounds°

~o an expression (usually containing, and dependent on, the formal

counting variable), which for any value in the range of the

counting variable, yields an itial value for the array element

which has that value as its subscript°

The notation of an array constructor might bee

(for<formal counting variable> ~= <lower subscript bound>

~ <upper subscript bound> tak._.~ <expression>)

(for i == 1:10 take 0) (1)
(for j := I=m+I take (i+j)12) (2)

(for i := 1:n take (for 3 := I~m+I take (i+j)12)) C3)
(for i ~= tin take (for j == I:i take if i=j then I else 0))

I m u m - III ,II|

(for i := 186 tak__.~ case i of (true, false, true, AvB, false, true)) (5)

In example (I) the array field has subscript bounds from I to 10,

and all elements are initially set to zeros

In example (2), if A is the array field, then A~j~ takes as value

the result of evaluating (i+j)/2 for j = I, 2,... m + Io

In example (3) a two-dimensional array is defined, in which

A~,j~ takes the initial value (i+j)/2 for I=I, 2, oo. n and for

j=1, 2, .o. m+1.

Example (4) illustrates the possibility of defining non-rectangular

arrays as array fields. It defines a lower triangular array, with ones

on the major diagonal and zeroes elsewhere.

Example (5) whows how an array can be defined by simple

enumeration of the values of its elements°

AB23 pol l

7.5. Ambiguous References

The record union declaration can be abandoned in favour of a

facility for permitting a reference variable or field to be declared

without specifying at all which record class it is going to refer to.

Such references~areknown as universal; universal references may

feature as parameters and in assignments, but not normally in field

designators.

Atechnique for determining the class of record actually

referenced by universal reference variables is proposed in 7°5.

Essentially the sametechniqueis used in the SIMULA "connection

block"; it is the only safe and elegant way of using universal or

ambiguous references in field designators°

7.7. Input and Output of Records

In order to justify the claim made in 4.1, that record

handling would be able to deal with conventional data processing

applications, it is essential to introduce some form of output

and reinput of records on a serial input/output medium (for example,

magnetic tape)°

A convenient way of doing this is to introduce two new statement

forms, the output statement and the input statement°

The output statement selects a channel number, and then gives

a list of record constructors, which construct new records on the

output medium, and specify the (initial) values of their fields~

One restriction would have to be imposed: that the values of any reference

fields in the records to be output must be null. This precludes the

i

possibility that an address which has been output from the store should

become invalid because the record which it originally pointed to has

been moved or deleted.

The input statement also selects a channel number, and then

gives a list of reference variables. This statement causes the

appropriate number of records to be input from the medium, and

references to them are assigned to the variables in sequence° The

class of each record must, of course, be appropriate to the class

of the variable, and an implementation would be recommended to insert

a check to verify this°

This proposal for input/output corresponds to the PL/I option

for buffered input/outputo It enables output records to be con-

structed, and input records to be processed, actually whithin buffer

areas associated with the appropriate channel° The advantages of

such a scheme of buffering are:

(I) 	 "logicalrecords can be grouped together into physical records

of a size contributing to efficient use of the medium.

(2) 	 multiple buffering techniques can be used to minimise delays

associated with peropheral transfers.

(3) 	 these advantages can be obtained without unnecessary

copying of information in and out of the buffers°

h8 Sebright Road,

Barnet, Herts.

March 1966o

