-3 -

During the Symposium in Rome from March 26th to 31st prof. van der
Poel ssked the present editor to accept the responsibility of the secre-
tary of the Working Group. To this I answered that this I would accept
provided that I might expect the basic support of some of the more influ-
ential workers in the field, particularly professors F.L. Bauer #nd K.
Samelson (both members of the origihal ALGOL committee initiators of the
ALCOR Group, prof. Bauer i1s the DARA representative to IFIP Tech. Comm.
2.). Prof. van der Poel consented ih this condition and kindly accepted
to put the question forwerd to professors Bauer and Samelson. The result
of this mission was a flat refusal on thelr part to support me on the
grounds that in their view the questionaire of AB 1k is biased.

In view of these developments it is clear that the responsible bo-
dies of IFIP, in establishing the Working Group, deliberately have chosen
to ignore the existence of the ALGOL Bulletin and the information and o-
pinions expressed in it. It is further clear that the attempt on the part
of prof. van der Poel at establishing a working collaboration between the
Working Group and the AB in an informal manner meets with an oppodsition
which would meke this collaboration ineffective in practise. Now, in en-
couraging the ALGOL commnity to meke use of the ALGOL Bulletin for ex-
pressing their views the editor must feel convinced that the views con-
tained therein will indeed be teken properly into account when official
action is teken. The developments mentioned above and the meeting in Rome
have ennihilated this conviction. Consequently the ALGOL Bulletin must
cease 1o exist.

THE REPLIES TO THE AB 14 QUESTIONAIRE.
BRIEF NAMES, GROUP MEMBERS, TRANSLATORS.

NPL England
M. Woodger Mathematics D1v1510n National Physical LaboratoryJ Tedding-
ton, Middlesex England.

Zeiss Germany
J. O. Kerner VEB Carl Zelss Jena Germany.

SM[L Sweden -

Torgll Ekman Leif Robertsson Avd. for Numerisk Analys Lunds Universi-
tet, Lund, Sweden.

Translator for SMIL: March 1962- 1.5 man yearss; true subset; not recur-
sive procedur=s, not arrays of variable length.

Syst.Dev.Corp. USA

Harold Isbitz, J. Schvartz H. Bratman System Development Corporation
JOVIAL Compiler Staff.

JOVIAL trenslators for Q7, Q32-V, IEM 7090, Philco 2000, CDC 160k4: Dec.
1961; 80 man years; dlalectv extended varlable dpfinition variable modi-
fiers, no recursive procedures, no own variables, I-0 operators, string
manipulation.

Royal MbBee USA
Arthur C. Housman Royal McBee Corp. Research and Development.

Meyoh, USA
B.H. Mayoh, Univ. of Illinois.

IDArPrinceton - USA

Fdgar T. Irons Institute for Defense Analyses Princeton

New Jersey, Vbn Neumann Hall.

Trenslator for CDC 1604: Nov. 1961; 2 man yeers; true subsets; no nume-
ric labels, Fortran-like input-output.

Fecit Group Sweden

I. Dahlstrand S. Laryd Facit Electronics AB ALGOL Group Box 13072
Gothenburg 15

Translator for Facit EDB 2: Nov. 19613 3.5 man years; true subset; not
recursive procedures, not owng restrictions on variable index bounds,
expressions called by name, and length of identifiers and strings.

Rehn Finland.
Rafael E. Rehn, Maenmitteushallitus (General Survey Office) Helsinki
Finland.

Eng.El. Atomlc , Eng.

B. Randell L. J Russell F. Ford A. P Relph B. M. P. AllsOp The Atomic
Power Division The English Electric Co. Ltd. Whetstone, Leicestershire

Englend.

Translator for Fnglish Electric DEUCE Mk 2A: Nov. 1961; 0.5 man years;

true subset; no conditional expressions, no dynamic errays, no switches,
no booleans, no recursive use of procedures, single letter identifiers.

Elliott ALGOL Bng.

C.4.R. Hoare, 'R.L. Cook , J. Hoare J. Hillmore, Elliott Brothers (London)
Ltd.

Translator for National Elliott 803: Mar. 1962; 3 men years; true subset
restrictions on switches and procedure parameters. Only simple uses of
recursion and own arrays.

ALPHA USSR

A. P. Ekshov Institute of Mathematics Ciberian Division of the USSR A-
cademy of Sciences Novosibirsk 72.

Translator under way. expected Nov. 19625 10 man years; ALGOL 60 + (vec-
tors_ matrices, ete. as simple varisbles, complex, chains of inequali-
ties, superscrlpts iInitial values, fUnctions yielded by expressions).

Buchholz Germany
G. Buchholz Funkwerk Dresden Rechenburo.

Oak Ridge USA

Manuel Fe11c1ano and A.A. Grau C.Jd. Atta L.L. Bumgarner Dakx Ridge Natio-
nal Laboratory, Programming research group of Mathematics Panel.

This reply is also supported by the Programming Research Dept., Lockhead
Missiles and Space Co., California.

Translator for ORACLE: Jan. 1961~ 4 men years; true subset; no sw1tches
no procedures, no blocks. Added feature. tape files, input output facili—
ties.

-5 -

SSW—ZEF Germany
Dr. E. Nuding mr. Nees mr. H.P. Wolf miss Warmbold miss Hecht Sie-
mens-Schuckertwerke AG. Erlangen.

Dupont UsA o R
Robert Hunn E.I. DuPont de Nemours and Co.' Inc., Wng. Dept., Wilmington
98 Delaware.

Rutlshauser Switzerlend
H. Rutishauser Zurich (private opinion).

Kldsgrove Englend

F.G. Duncan D.H.R. Huxtable E.N. Hawkins J.S. Green A.G. Price The English
Electric Co., Ltd., Data Processing end 'Control Systems Division, Kids-
grove, Stoke-on-Trent, Englend.

The group uses the translator for DEUCE written by the Eng.El. Atomic

(see above).

MNA~group Sweden

G. Ehrling A. Brlng, Swedish Board for Computing Machinery.

The group uses the translator for FACIT ®DB 2 written by the Facit Group
(see above).

1AM Bonn Germany
C.A. Petri W.D. Melsel G. Schroder K.H. Bohling, Institut fur Angewand-
te Mathematik Uhiversitat Bonn.

Math.Cent. Holland

BE. W. Dljkstra A. van Wijngaarden J. A. Zonneveld (the two latter not
responsible for the answers given), Stichting Mathematisch Centrum, 2de
Boerhaavestraat 49, Amsterdam, Netherlands.

Translator for Electrologica NV Xi: Aug. 19603 2 man years; true subset;
own implemented as sugsested in Reformulation 23, but own arrays only
with constent bounds; order of declarations at the beginning of a block
somevwhat restricted.

Dutch PTT Hollaend

Prof. Dr. 'Ww. L. van der Poel Dr. G. van der Mey' Dr. Neher Laboratory of
the Netherlands Postal and Telecommunlcatlons Services, Leidschendem,
Holland.

San Dlego USA

c.L. Pcrry E. Ferguson R. Mitchell Univ. of California San Diego La
Jolla, Callfornla

The group has the NELIAC trenslator for the CDC 1604 availeble. NELIAC
is a dlalect described in book by M. Halstead.

Leeds Univ. England)
Dr. G.B. Cook . M. Wells Electronic Computing Laboratory, University of

Leeds, Leeds 2, United Kingdom.

-6 -

ALCOR PERM Germany

G. Seegmuller F. Peischl, W. Urich, H. R. Wiehle, Rechenzentrum der Tech-
nischen Hochschule Munchen.

Trenslator for PERM: Sept. 19613 1.5 man years; true subsets ALCOR con-
ventions (see ALCOR Z22 below).

ALCOR Z22 Germany.

F. L. Bauer, Paul, Baumann WitZgall Musstopf Institut fur Angewandte
Mathematik der Unlversitat Me.inz.

Translators for a) Zuse Z22: July 1961- 0.75 man years; b) Zuse 222 R:

5§Ecedures— restrictions on type procedures to treVent side effects.

ALCOR 2002, Germany | |

X. Samelson Hill, Langmaac‘{ Mathematisches Institut der Universitat
Meinz.

Transletor for Siemens 2002: Dec. 19613 1.5 men years; true subset; AL~
COR conventions (see ALCOR Z22 sbove).

RCA-EDP, USA) g |)
R. Hux, R. Dash, K. Brons, A. Grace, Radio Corporation of America, Elec-
tronic Data Processing.

Bjork Swedsn
Harry Bjork, Inst. of Mathematics Uppsala University.
Uses the translator for Facit EDB 2 (see Facit group sabove).

Moore School USA

Peter Zilshy Ingerman Harry A. F‘reedman Mrs. Irene Cotton Dr. Saul
Gorn, Mechenical Languages Projects, Room 302 Moore

Univer51ty of Pennsylvania Philadelphia h Pennsylva.nia.

IPM Darmstadt Germeny

Dr. W. Borsch—Supan W. Barth D.. Stephan J. v. Peschke Institut fur
Prektische Mathematllr, Technische Hochschule Darmstadt.

Translator for DERA: Jan. 19613 0.5 man years- true subset; FORTRANSIT-
like rest:r-ict:i.onsl read and write are delimiters, not procedures.

Computer Ass. USA B

Kirk Sattley, "Thomas E.. Cheatham Jr., Gene F. Leonard, Robert M. Shapi-
ro, Computer Associates Inc., 4l Winn St. Woburn, Mass.

The group has contracted for del:wery of an Algol translator during the
summer of 1962.

Regnecentralen Dermark

P. Naur, J. Jensen P. Mondrup Regnecentralen Copenhegen.

Translator for DAS{ Oct. 1961‘ 4 man years; true subsets; no recursive
procedures, no own arrays, no value arrays, no integer dlvismn no im-
plication.

Univ.N. Carollna ,USA
John W. Carr, III Miriam G. Shoffner Robert B. DesJardins Peter J.
Brown Computation Center, Universny of North Carolina.

- T -

RRE ¥ngland
J. M. Foster, D.P. Jenkins S.N. Higoins Royal Radar Establishment Mal-
vern, Ehgland.

Stanford UsA

Harold R. Van Zoeren George E. F'orsythe John G. Herriot Jemes Ortega,
Beresford Parlett Computer Science Division Stenford University, Stan-
ford, California.

‘The group ‘uses the dialect BALGOL for Burroughs 220: no arrays of vari-
gble size, no own, no recursive procedures, no conditional expressions
no nested block structures.

RCA-LAB USA
Allen H Simon, Radio Corporation of America Leboratories.
Has trenslator for CDC 160l availsble: no own arreys, no integer labels.

ARF USA

R. W. Floyd, B. Mittmsn R.R. Steck Armour Research Foundation 10 West
35th Street, Chicago 16 Illinois.

Translator for UNIVAC 1105: Mar. 1962; 2 men years; true subset; no pro--
cedures, 1 and 2 dimensional arrays, read and print added to basic words
produces USE assembly language.

NDRE' Norway

Jan V. Garwick, 0.-J. Dahl Norwegian Defense Research Establishment and
Institute for Atomic Energy

Translator for Mercury for the dialect MAC.

XTRAN—project USA

Rainer Kogon, Martln Weltzman Im 112 E. Post Ros.d White Plalns New
York.

Trenslator for IBM 7090: Mar. 1962; 2-3 man yearss dislect; ALGOL 60 ex-
cept where implementation in the XTRAN source language indicated reasons
for dsviation.

Hockney England : E

R. Hockney English Electric Co. , Ltd., Atomic Power Department Systems
Office. :

Has translator for DEUCE (see Eng.El.Atomic ebove) available.

NBS USA
J. H. Wegstein W.W. Youden National Bureau of Standerds

Tubingen Germeny

K. Zeller F. Schwenkel Mathemetisches Institut (4bteilung Rechenzentrum)
Tubingen. v

Have trenslator for Siemens 2002 available.

Siemens -Germeny -
W. Heise Froehr, Walter Siemens und Halske AG Munich.

Have the trenslator for Siemens 2002 availsble (see ALCOR 2002 above).

-8 -

Standard El. Germany

Dr. A. Wilhelmv Dipl.*Mhth W. Heydenreich Standard Electric Lorenz AG
Stuttgart- ZuffanhauSen Germeny .

Transletor for ER 56: Level 1 (excluding procedures): Febr. 1962 Level 2
(procedure version): under tedtings; true subset; based on ALCOR conven-
tions, supplied by studies oh recursive procedures.

AFCAL'I’I France
F. Gvnuys Messrs. Nolin I..entin Nivat Picard Pitrat Broise.

Burroughs USA

J.N. Merner Don Knuth L.D. 'I‘urner F. Gerbstadt R.B. Waychoff ALGOL
Group of Automatic Programming BurrOughs CorporatiOn.

Translator for Burroughs 220: éept. 1960 5 men years; diaslect; ALGOL 58
with I/0, without DO, dynemic arrays, but allowed arrays with partially
filled subscripts.

Saarland Germany

Dr. W. Handler HiJ. Schneider D. Jurksch Rechenzentrum der Universitat
des Saarla.ndes

llave the translatbr for Zuse 222 available (see ALCOR 222 above).

Remington Rand USA o
C.W. Dobbs, P. A. Smethurst, Systems Programming Dept., UNIVAC Division,
Sperry Ra.nd Inc., and A. E. Roberts, General Kinetics, Inc.,
Translator for UNIVAC 1107 expected in June 1962.

Cjabrldge England

D. F. Hartley, J.H. Matthewman University Mathematical LaboratOry, Cam-
bridge.

These notes and replies on the questionaire are expressions of opinion
and under no circumstances mey they be used in any form of voting. We re-
serve the right to change our opinions or to be influenced by future e-
vents.

Wegner Englend
Peter Wegner London School of Economics Houghton Street London W. C. 2.

Brief name of group

TARLE OF ACTIVITY REPORTS AND THANSLATOR SPEEDS.

NPL, England

Zeiss, Germany
SMIL, Sweden _
Syst.Dev.Corp., USA

Royal McBee, USA

Mayoh, USA

IDA-Princ et_on', USA

Facit Group, Sweden
Rehn, Finland

Eng.El.Atomic, Eng.
Elliott ALGOL, ENG.

ALPHA, USSR

Buchholz, Germany

Oak Ridge, USA

SSW~ZEF, Germany

Dupont, USA :
Rutishauser, Switzer.

Kidsgrove, England
MNA-group , Sweden
IAM Bonn, Germeny

Math.Cent.,6 Holland

Dutch PTT, Holland

San Diego, USA
Leeds Univ.,K England
ALCOR PERM, Germany

ALCOR Z22, Germany

ALCOR 2002, Germany
RCA EDP, USA
Bjork, Sweden

Moore School, -USA

IPM Darmstadt, Germ.

Computer Ass. USA

_ Regnecentralen, Denm.
Univ.N.Carolina,6 USA
RRE, England
Stanford, USA
RCA-LAB, USA

ARF, USA

NDRE , Norway -

XTRAN ProjJect, USA
Hockney, England

NBS, USA

Tubingen, Germany
Siemens, Germany

Standard El.

1

Germ.

AFCALTI | France
Burroughs, USA

Saarland_, Germany

Remington Rand, USA

Cembridge, England
Wegner, England

No.
of

-9 -

Man

mem- years

bers

OANNNWPROROEFRENDNOWRFROIOWEFWEEFER, PN EEFEOWOWENDUIE PP USRS EFURNDRRERUWRN P -

[SRS RS]

52 Teaching
Progr.
Iml .

- percent -

0.1 100
3 70
0.2 85
10
0
5
5
50
20
5
10
30
10
50
25
10
0
90
20
5
25

17

~~
-3
w
g

SO I G2 B |

~~
Nt

L VWO NV VOY OOUVOVDIETOWNDOO
N

N

- .

wn

60
10
0
12
0
10
10
70
2
0
25

U

A2

50

10

UV P EDONNNDMNORFOR EFNREWO I

2 50
6 0
Note 9

0 100

0
20

10

60
10

p)

5
50
20

5
10
70
10
50
75

5
0
10
Lo
0
75
33
30
Lo
20
10
0
20
90
30
2

- 100 -~

25

Note 8

50

0
10
5
30
90
90
90
0
60
90
80
0
80
0
0
85
100
0
Lo
95
0

50
10
50
80
78
100
70
0

1
96

50

12:
Frac-

13-, 1b:
Pages

Neme of machine or
system, with times

tion written for 100, 1000, and

per—
cent
0 0
- 10
Note 1
0 0
100 25
5 30
Note 2
90 Lo
15 0
55 -
30 30
80 200
10 100
1 100
5 50
5 100
Note 3
Note L
5 -
2 20
95 750
95 Note
90 Note
- 25
50 5
50 30
Note 6
50 50
80 100
75 25
50 50
Note 7
1 10
0 0
70 150
100 250
0 0
80 10
10 50
0 30
100 100
15 100
5 1

o

7
1
0
0
3
0

0
0
3

I OO0 &1

0
0

L
0

0 PERM

2

3

0.

2
10
0
0
25

1

0.

)

2
0

0
2

0

publ. 10 000 instructions

in minutes

SMIL
JOVIAL

ee

N
=
}

CDC 160k 0
FACIT EDB 2 6

DEUCE Mk 2A
Elliott 803

(oo

ORACLE -

DEUCE -
FACIT ®DB 2

Electr. X1

CDC 160k

1 3
Zuse 222 0.8 6.
Siemens 2002 O 3

FACIT EDB
5 DERA - 12 - -

DASK 1.5 5 -

CDC 1604
UNIVAC 1105 O.
5 Mercury 0.
IBM 7090 1
DEUCE

2
1

Siemens 2002
Siemens 2002
ER 56 1 10

Burroughs 220

0.3 2 20
Zuse 222
UNIVAC 1107

- 10 -
Notes to table of activity and translator speeds.

Note 1. Qu. 12: 99 percent. Qu 13: 1000 pagesl does not include operatio-
nal prograems, these approximate 10000 pages. The JOVIAL compilers were
written in JOVIAL.

Note 2. The ALGOL Group as such seldom writes ALGOL programs. About 50
percent of the programs in our company ere written in ALGOL.

Note 3. Qu. 12: Too vegue to be answered. Practically all service compu-
tations and all numerical experiments in ALGOL 60. Machine coding for
non-numerical activities (linguistic investigations, algebraic transla-
tors) and the construction of machine coded procedures (a_library for the
benefit of the ALGOL user). Qu. 13: hundreds and hundreds, if not thou-
sands. '

Note 4. Qu. 12: 5 percent. Qu 13: 200 pages. The fraction of programs
written in ALGOL is growing fast. The translator being developed is de-
scribed in ALGOL.

Note 5. No count of the number of pages written in ALGOL is possible.

Note 6. Qu. 12: 20 percent. Qu. 13: 150 pages. This does not mean that we
do not like ALGOL. Most programs are written for the IBM 650. Since there
is no ALGOL compiler for that machine most programs are written in FOR-
TRANSIT.

Note 7. The have been 1000 pages of BALGOL written by people who are also
writing ALGOL 60. Other people at Stanford have written something like
50 000 pages of BALGOL.

Note 8. The absense of work reflects only the absense of a reasonebly
fast translator. We avait ALGOL on KDF 9. Deuce ALGOL is too slow except
for very small problems.

’Note 9. Statistics relating to teaching} programming and implementation
of ALGOL 60 in this leboratory would be misleading. A translator for AL-
GOL is at present under construction.

- 11 -

TARLE OF REPLIES ON SIDE EFFECTS AND REFORMULATIONS.

QUESTIONS ,
19 | REFORMULATION (blank meens reply = a)
20 ' 10,10+ 2020+ 30
21 12345| 6789 [123L45| 6789 |123L5] 6789
NPL, Englend abc bbl b b c b |b
Zeiss, Germsny acg b
SMIL, Sweden _ aac bbb b | b b
Syst.Dev.Corp., USA b-g c c
Royal McBee, USA cagl b b b
Meyoh, USA a8 a c P b
IDA-Princeton, USA ; b b
Facit Group, Swedeh baal be b e'c cf ecciebe
Rehn, Finland 88
Eng.El.Atomic, England aac c b
Elliott ALGOL, Eng. cbel b bb b ¢
ALPHA, USSR bac c bb jcc c| be
Buchholz , Germany ab-| ¢ cecich cf ¢ b |ebbd
Oak Ridge, USA baai cbc |(becb! be bec|c beb
SSW-ZEF, Germany aad| b bb |a c 4a
Dupont, USA g8b| «—m-—1r - o
Rutisheuser, Switzerland b-bl ¢ cclh bhe| be (¢ c¢| beetb cc
Kidsgrove, England aac b IDb ac |¢
MNA-group, Sweden agg) c
IAM Bonn, Germany aga.
Math.Cent. K Holland hff h h h h h
Dutch PTT, Holland b-f] ¢ db b ¢
Sen Diego, USA aa- bl - h -|b hi--
Leeds Univ. K BEngland abb
ALCOR PERM, Germeny beej cbecje ¢ b| bee (e ccelc bee
ALCOR 222, Germany bee| cbecje ¢ b} becbje ¢ cecfe bee
. ALCOR 2002, Germeny bee| cebecjc ¢ b} beebje e cecle bee
RCA EDP, USA baa c
Bjork, Sweden aaa
Moore School, USA abec|b b b |c
IPM Darmstadt, Germany beeibebee|d ¢ b| beebic c cecic beb
Computer Ass., USA asb c| c
Regnecentralen, Denmark =aaa
Univ.N.Carolina, USA aag
RRE, England badb
Stenford, USA baa
RCA LAB, UsA asab ¢ b bd dd |d d
ARF - USA bbe| b cefe cb ce |c beid ¢
NDRE, Norway . aac b
XTRAN project, USA abc| bb 4 bb b bbb
Hockney, England bbb
. NBS, USA abc |be cb deed] b |b cb
Tubingen, Germany caa bb
Siemens, Germany bee cjdcb c |c beid ¢
Standard El., Germany aac| C c bee c{ bctb ¢
AFCALTI, France a8
Burroughs, USA bgg| ¢ b b bbb b| b b ¢
Saarland, Germany aga! C c
Remington Rand, USA feccicc e jb ¢ | ccb| D beef cc
Cambridge, England ab c o]
Wegner, Englend ebcib b bl Dbfbibb ‘e bb jc ¢

f means a/b, g means (b+c)/2, h means reoference to additional remarks
(below).

- 12 -
Note to table of replies on side effecte and reformulations.

H0ckney} Englend: As to the reformulations I am indifferent to the exact
menner of removing ambiguities. Far too much attention has been paid to

o

with changes and extensions.

COMMENTS ON SIDE EFFECTS.

QUESTION 20 QUESTION 21
Solution by Solution by
definition restriction
aorb c aorb ¢ d
Accept Uppose Accept Oppose Do not
. underst.
Totals: Lo 6 25 19 1
QUESTION 19:
a: Prefer definition
Total 29 28 1 13 11 1
b: Prefer restriction
Total 17 9 5 10 7
¢: Indifferent
Total 3 3 2 i

Alternative proposal for solution by restriction from Eng.El.Atomic} Eng-
land:

Procedures celled by function designators must not change the values
of non-local variables, or contain go to statements leading out of the pro-
cedure body.

Alternative proposal for solution by restriction from ALPHA} USSR:

If a function designator calls & procedure declaration the body of
which dynamically contains an assignment of a value to a global variable
then the value of the variable is undefined outside the body.

If a funection designator calls a procedure declaration the body of
which dynamically contains a go to state.ent leading out of the procedure
body then the transfer involved is undefined only 1f it does not lead to
the program exit.

Comment from Rutishauser, Switzerland:

It cannot be denied that side effects of function designators are
something that was not originally intended by the ALGOL-committees; indeed,
gsection 3.3.5 clearly excludes them at least as formal parameters are con-
cerned. Accordingly any attempt to meke side effects legal by & change of
3.3.3 and defining the order of evaluation of primaries is a deep-carving
change of ALGOL 60.

- 13 -

Comment from ALCOR Z22, ALCOR 2002, Germenyt - 4

The real problem touched by questions 19:20.21 is the following:
Shall (A) the definition of the fundamental concept of expression be made
to conform to the procedure concept introduced in ALGOL 60, or (B) should
not this be the other way round.

The discussion in 2.1. assumes alternative (A) t6 be accepted: eof.
last sentence on page 2 of questionaire 'these effects will meke a more
strict description necessary’'. - -

Page 5, first paregraph after list of 'troubles't !0f these 3
troubles those of nos. 1, 2, 5 6, 7, and 8 may be cured in & fairly ob-
vious way'. oo

The QUESTION (2.1) is formulated with considerable bias, since two
proposals
(a) additional specification of the meening
(b) restrictions on the use of the language -
are presented on an equal footing. In fact, however, even (b) is less re-
strictive than the present status according to the ALGOL 60 report.

Section 3.3.3 says:

An arithmetic expression is & rule for computing e numerical velue. .
For variables it the actual numerical value is the current value (assigned
last in the dynamic sense),..

The first sentence implicitly excludes any assignment of values to ac-
tual or global parameters of procedures called by function designator in
expressions. Furthermore it excludes jumps out of procedures called by
function designators since in this case no value is defined: The second
sentence excludes change of values of varisbles in the expression by func-
tion designators in the same expression since in this case tagsigned last
in the dynamic sense' is undefined. -

Therefore '2.1.2. Proposal for solution by restriction' means a change
of the report, since it would e.g. permit use of one function designator
leading to a jum out of the expression.

Proposal from RCA LAB, USA:
I propose the following compromise: A procedure mey be decldred to

e e s e e e e e - o s o e s o - - o

tion designator, and is not declared to be libertine then it must not
change the value of any nonlocal identifiers or go to any nonlocal la-
bels. Nonlibertine procedures have the important property that all their
effects are explicitly indicated by their actual varameter list. Adding
this definition to the defining report requires the following changes
Section 5.4.1 CHANGE TC READ -

Tt e e e e e e P
s e e e e e g s e e e o o e

- 1 -

ADD to TEXT

5.4.7 libertine procedures.

A procedure must be declared to be libertine if it is to be used as a
function designator in an expression which should not be rearrangesble (cf.
gsection 3.3.3) because the procedure contains nonlocal identifiers or le-~
bels. If this rule is violated the expression is undefined. A procedure
should be declared to be libertine if it can be used as a function designa-
tor and either changes the values of identifiers nonlocal to the procedure
or can go to labels nonlocal to the procedure. With this restriction it be~
comes possible to detect the conditions under vhich an expression is rear-
rengeeble, ‘and hence to have more efficlent compiled programs. STOP
an no;—55§5§-%o make my counter prOposal

I would change the proposal for solution by definition by adding the
following
ADD TO TEXT

An arithmetic expre551on or & primary is said to rearrangesble if the
order of evaluastion of its primaries mekes no differerce other than that
due to the finite accuracy of computer arithmetic. Equivalently an arith-
metic expression or primary is rehrrangesble if (a) it contains no liber-
tine procedures (cf. Section 5.4.7) and (b) it contains no identifiers
which are also used in a function designator as an actual parameter called
by name and (c) it does not contain tvo function designators each of which
has & parameter position specified to be a label or switch identifier.

The actual order of evaluation of a rearrangeable arithmetic expres-
gsion or primary is undefined. Individual compilers mey teke advantage of
this to improve the efficiency of compiled programs. As &n exemple the a-
rithmetic expression

(A + Y)A2 + A + Y)«P(Y)
is rearrangeable if the argument of procedure P is called by value and P is
not a libertine procedure. In either case it contains the rearrangesble
primary

(A+Y)jJ2+A+Y) STOP
Reason for rereformulation. As I see 1t the major arguments expressed in
section 2.1 of the questionaire are:

a) Side effects are good in some circumstances. It may be true that
they were not originally envisaged, but tnsy seem useful, and will probably
grow more useful as experience w1th them increases.

b) Because of side effects the order of evaluation of expressions cen
maeke an important difference. Because of this the compiler cannot choose
the order of evaluation so as to make the object programs more efficient.
The price we must pay for the ability to have side effects namely ieffi-
cient progrems, is simply too high.

The above compromise still allows one to use side effects with the
full generality desired by the proponents-of side effects. In addition it
is made easier to detect conditions which are sufficient to allow rear-
rangemsnt of expressions (by implication of section 3.4.3 similar rules
hold for Boolean expressions). In almost all cases -of interest it becomes
possible to do what ever rearrangement is possible, even if it is only
possible for part of an expression. -

Webster defines libertine as 'one who is without restraint'. If any
one can think of & better word I would be hap»nier.

I am afraid it mey be desirable to insist on specifications. If a is a
formal parsmeter called by name then AAS is not rearrangesble to A24242,
since A may be e function designator with no arguments.

- 15 -

Comment from Burroughs, USA!

Question 19.

In many cases it is wise to teke restrictions out of a 1anguage 80
the user needn't have to spend much time learning what he can't do. In
this case, though it secems the adventage of allowing expressions which
can have different meanings beceuse of the order of evaluation is slight
indeed. If someone wants to use this feature, it will not be clear to o-
thers what he is doing. It seems the rules for the order of evaluation
are more difficult to learn than the restrictions. And it is difficult to
explain to someone what good he will be getting after taking the trouble
to learn all the rules. Furthermore, this will slow down the machine lan-
guage programs in all expressions, while the actual number of times when
this vill be used to advantage is very very small. The choice here seems
to be clear: if we allow expressions which are ambiguous unless order is
snec1fied we must specify an order; if we don't allow such expressions,
we needn't specify an order. The ordﬂr mentioned in this proposal is the
order we-haed interpreted already from the original ALGOL 60 report. But,
we think, people who would like to see these fency rules of order put in
the language tend to think of ALGOL as a language to play arround with
and theorize about but not as a tool. Let's not say, 'Well, suppose the
man writes such-and-suchy how nice. We haven't ruled this ouf‘ Now what
is the most general definition we can give to this construct.' Rather let
us8 stick to useful things.

Question 20-21. -

Although vwe much prefer the solutiom by restriction we have answer—
ed '(b+c)/2' because we are shocked that 'tind 2° function designetors
are allowed.

To quote your-report 'Fﬁnction designators define single numerical
or logical values.' If a function designator contains a 'go to' leading
out of the procedure, it has defined no valus at all. This is not then
a function designator. Allowing such seems also to be out of the spirit
of the report, for in an expression the 'if-then' always must be follow-
ed by 'else! 80 thet a single value is alwsys d=fined.

Thus, the solution by restriction we favor is simply restriction (1)
heres function designators of kind 2 are patently illegal.

Comment from Remington Rand USA:

Although we have answered Q19 as a) and b) we really feel that some
edditional comment is nceded here.

After initial difficulty in reeding the ALGOL report, we found the
Backus normal form to be an excellent means for defining syntactical
rules, but that K in general, the semantic explanations were too concise
t0 be really helpful in difficult situations. For example: sentence 1 in
section 5.2.5.

Qur feeling is that ambiguities and obscurities in the language-
only when thls is found to be 1mp0551ble should additional definitions or
restrictions be employed.

We are aware that many groups interested in ALGOL are opposed to
this view and regerd the ALGOL syntax as a sort of holy writ which should
be altered only as a last resort. We consider that this view ignores the
fact that the ALGOL syntax is not perfect and allows, by default, many
festures in the language vhich were not intended. We hooe to prove this
point in some counter proposals to the reformulations suggested in the
questionaire.

http:Furthermo.re

- 16 -

Comment from Cembridge, England:

We are strongly opposed to any langusge that allows side effects in
the evaluation of expressions. However, in order to achieve these prin-
ciples we feel that drastic revisions to ALGOL 60 would be end are neces-
sary. Our replies to further questions must therefore be taken as opini-
ons on ALGOL 60 itself and not as proposals for & future language.

Comment from Wegner England:

_The note facility (Strachey end Wilkes) should probebly have been
mentioned in connection with side effects. The note facility mey be used
either as indicated by Strachey and Wilkes to indicate greater generelity
vhere necessary, or as indicated by Dijkstra to indicate lesser generali~
ty. Strachey and Wilkes regerd-the most common ussge as 'normal' and
therefore not requiring & note, whereas Dijkstré prefers to regard the
most general usage as 'normal'. As pointed out by Dijkstra, the former
approach is subjective &nd leads to floating sementics as common usage
changes. I would therefor~ agree with Dijkstra in supporting & poliey of
treating the most general case as the normel one, and in indiceting by
means of notes, restrictions that permit graater efficiency of implemen-
tation.

COMMENTS ON REFORMULATIONS 1 - 30.

Reformulation 1: Verbal definition of block and program.

ar b2, b: 8, c: 1, d: 0.

Alternativs proposal frém the Facit Group, Sveden, regarding
REFORMULATION 1, PART 1

. . . Fach declaration i8 attached to and valid for one block. A progrem
is & self-contained block, i.e. a block which is not contained within an-
other statement and mekel no use of other statements not ¢onteined with-
in it. STOP

Reason: See reformulation 9.

Alternative proposal from IPM'Darmﬂtadt Germeny:-

The sentence proposed in part 1 statos that 'sequences of statecments
may be combined into .. blocks by insertion of statement brackets'. This
is not true since more than inscrting statement brackets is necessary to
create a block. We therefore propose the following reformuletion:

Part 1: section 1 end of 3rd naragranh
ADD:
(i.c. the basic symbols begin and end) STOP
Part 2: section 2, end of 4th varagraph.
CHANGE TO READ
.. defining a function. Declaraticns arc combined with sequences
of statements to form a block by using statement brackets. Fach
declaration is valid for the block it is attached to only.
A program . . STOP
We agree to your reformulation of the 5th paragraph.

Comment from RCA LAB, USA:

I would add to the text of the reformulation

ADD TO TEXT Such a compound statement or block is syntactically equiva-
lent to a statement. STOP

Reagon for change. The definition of a program is unclear unless one knows
this.

- 17 -

Comment from Remington Rend, USA:
Part 1: Obviously the original wording in the ALGOL report is correct as
it stands although it is not complete. However, the reformula-

B e LT

Part 2: Why not: — 'A program is a self-contained block ete.!. or is

this too restrictive for some. Sce also Refsfﬁulation'9

Comment from Wegner England: -

Reformulate dnflnition of 'program' as a single sentence at the end
of the fourth paragraph:

1A statement vhich is not contained in another statement is called
a progrem'.

Reason: The definition suggested in the questionaire is inecurate in
that it does not takz global symbols (31n cosg) into esccount. It is also
muddling since it contains both essential ‘end inessential information.

Reformuletion 2: The comment conventions.
a: 3k, b: b, c: 13, d: 0.

Comment from Rutishauser. Switzerland:

This would be a change of the AR, but still fails to cover cases
1ike ({ and } stand for string quotes)

printext ({ comment nonsensel}) end;
On the other hand the change is quite unneeded gince it is of course un-
derstood that a program is rcad from left to right- therefore if in doing
s0 one comes to one of the symbols comment or end or 4, then the reeder
has to disregard {or to take svecial action in casc of a string) what
follows until the corresponding terminating symbol. Thus the examples gi-

ven by P. Neur (end M. Woodger) are all unambiguous.

Alternative suggestion by W.W. Youden NBS USA:

I can't help feeling that the follow1ng is what was intended for the
‘comment ' convention and that it is preferable to the syntax change re-
commended by M. Woodger.

Reformulation 2 S=zction 2. 3 last paragraph.
ADD TO TEXT:

and conversely, that any of the three sequences of symbols shown in
the left-hand columm may, in any occurrence outside of strings or outside
of <any scquence not containing . >, be replaced by the symbol shown in
‘the right-hand column without any effoct on the action of the program.

STOP

In other vords vhen in the course of - scanning ‘en ALGOL progrem from
left to right, and either 's comment' or lbegm comnent' is scanned,

e St o e — e D iy G s e e o o

thereafter'evnrything including comment - bégin, end and else is 1gnored

—— i ————

until & ';' is rrached. Similarly, “hen 'end' is scamed, thercafter eve-
rything is ignored until cither _ng' or 's' or 'else' is reached.

- 18 -

If one uses the above reformulation, the three embiguous examples
can only be interpreted as follows:

Example - ' Interprectation
begin comment begin comment A; P; Q end begin P; Q end
; comment begin comment A; Pj i P
end begin comment A; Py end; P;

Suggestion from Zeiss, Germeny:
Chenge to read:

The scquence of basic symbols: o is equivalent to
; comment <any sequence not containing begin or > $

' <begin or 3> -

begin comment < - - - begin or ;> begin

<begin or
STOP.

with these conventions the examples supplied by Woodger arc in each case

reduced to

begin P; Q end

’ ’With the third convention given in reformuletion 2 the examwle sup-

plied by DijJkstra is reduced to the sequsnce end begin Klaus; and this is

wrong becausc the next symbol after an end must be an else or an end or

a 3 I don't know how to correct this.

Alternative proposals from the Facit Group, Sweden regarding

Section 2.3, last varagraph, CHANGE TO READ:

By esquivalence is here meant that the action of & progrem is un-
changed if the following transformetion is made: Read the program from
beginning to end and replace any occurence outside of strings of any of
the three structures of the left hand columm by the symbol shown in the
same line of the right hand columm. STOP
Reason: The comment convantions are qulte good as thaoy stand and only a
clarification is necsssary.

Section 2. 3 line begiming +ith end CHANGE TO READ:

end <letter string> end STOP S
Reason: It is a frequent error to forget the semicolon () after an end
thus destroying the following statement by mistake. In fact we have been
forced to let our compiler give error printouts on ell other end—comments
than letter strings.

Counter proposal from the Dutch PPT, Holland:
Section 2.3, last paragraph

After .. . action of the program _ .
ADD TO TEXT: The 'comment' situetion encountered first in the text when
reeding from left to right is having precedence over later 'comment' si-
tuations contained in the scquence to be disregarded. STOP
Reason for reformuletion 2: This dces not change the original text. It
ly supplies the missing precedence rule.

- 19 ~

Comment from Burroughs USA: -

This does not seem like & reasohsble solution. First people are
writing comments using other than 'basic symbols.' For example look at
example 2 at the close of the ALGOL report, where Yﬁ is used. (Several
algorithms have even let semicolons slip into the cOmment.)

Onhe needn't prohibit the word 'beg1n', merely sey each comment runs
to its next delimiter. In syntax,

<gemicolon>::="3 |4 comment {string of symbols except 3> 3

3
<{Begin>::= beginlbegln comment {string of symbols except 3”2 3
Then use <semicolon> and <begfn> as constructs in the rem31nder of the
report. This part of the report has been incompatible with the rest any-
way, and we think should have been put into syntax form- originally.

There doesn't appear to be any reason to keep 'begin' from the words
following 'end'. However we don't see the need for such general comment
conventions following 'end' anyway, since it seems to hurt syntax che-
cking. A man leaves out a semicolon after the word end and he's lost a
whole statement with no way of knowing it. We strongly would prefer

<end®::= end|end <letter string>

or at most end<{identifier>.

Comment from Remington Rand USA:
We see no reason for these changes especially the third sequence.
We sugrest that the original comment conventions are entirely adequete.

Reformulation 3: Verbal definition of scope.
a: h2 b: 7, c: 1, d:1.
Comment from Wegner, England:

8. The temm 'quantlty' is usually associated with a numerical magni-
tude and seems t0 be thc wrong word for denoting objects which may be
non-numerlcal The term 'object' or 'value' would seem to be more appro-
priate. Whichever term is used, its meaning should be explicitly defined
e.g. in section 2.4.3.

Suggested Reformulation: Add at end of first paragraph of section 2.k4.3.

Identifiers are symbolie names which may-designate either numerical
quantities (simple varisbles,K array elements) or non-numerical program
rzonstituents (1abels sv1tches procedures, formal parameters). The term
'quantity' is used to denote any object designated by an identifier.

b. Scope should be associated with identifiers rather than with the
gquentities designated by identifiers.

Suggested Reformulation:

2.7. Idantifiers, Declarations and Scopes.

An identifier is 1ntroduced into a program by means of & declara-
tion. Declarations d=fine the 'scope'’ of the identifier associated with a
given quantity.

The scope of an identifier is the set of statements over which the
identifier associated with a given declaration can be used. An identifier
is sald to be defined in statements within the scope of the identifier
and undefined elsewhere.

Reformulation 4: Bvaluate subscripts from left to right.
a: 39, b: 0, c:r 12, d: 0.

- 20 -

Comment from ALPHA K USSR:

This reformulation is implied only by side effeets. If they will be
deleted from the language in the spirit of AB 1L.2.2.2. then this stipula-
tion will become unnecessary.

Comment from Remington Rand, USA:

We object to this on the following grounds. An expression is & rule
for computing & value. A formal language fails in its purpose if an ex-
pression can conceal a statement: We do not feel that the sugrestions in
20 or 21 are satisfactory solutions to the problem. We realize thet alte-
rations to the syntax and semantics of function designators procedure
statements and procedure declarations which could resolve the problem;
would require considerable time and effort. We feel strongly, however,
that this approach should be teken.

Reformulation 5: Parameters called by neme in function designators.
a: b2, b: 2, c: 6, d: 1.
Comment from ALCOR, Germany:

The original reading of the report shows clearly the intention.

Comment from Wegner K England:

Reformuleate as follows:
... when applied to the actual parameter part of the function designator
given in the expression.

Reformulation 6: Definition of the integer divide.
a: 37, b: 5, c: 5, a: 2.

Comment from SMIL Sweden:

8+ b = sign (a/b)xentier (abs(a/v))
If b is a factor of a, the above arithmetics could give an unwanted re-
sult. As /b is an expression of type real, this implies that a/b only
approximates an integer (cf. 3.3.6). Consequently the result could be
wrong by one unit.

Comment from Rutishauser} Switzerland:
That division by O is undefined is trivial and need not be mentioned
in the AR.

Comment from Dijkstra Math. Cent. Holland'
I should like to have added a warnlng that in this particuler defi-
nition the 'a/b' represents the exact, mathemetical quotient.

Comment from Remington Rand USA:

We @0 not object to thls change but don't really see the reason for
it. Bjork's comment secems trivial - why is it important that a and b are
called by value? Surely the standard functions won't by ‘sneeky'.

Reformulation 7: Definition of relation.
a: L8 b: 1 e: 1 a: o.

- 21 -

Corment from RCA LAB, USA:

I favor insteed the suggestion of AB 12.5. With so much fuss ebout
removing minor restrictions I seec no reason for adding another one. I
propose instead the following amplification of section 3.4.3 of the defi-
ning report. It is more in the Bpirit of section 3.3.3 and reformulation
12.

CHANGE TO READ ... given for aritimetic expressions in section 3.3.3. In
particular in the more gerieral Boolean expressions which include if clau-
ses, one out of several simple Booleen expressions is selected on the ba-
sis of the ectuel values of the Boolean expressions of the if clauses.
This selection is made as follows! The Boolean expressions of the if
clauses are evaluated one by one in sequence from left to right until one
having the value true is found:. The value of the original Boolean oxpres-
sion is then the value of the first Boolean expression following the Boo-
lean vhich was found to be true. (The largest Boolesh exprassion found in
this position is understood). The construction

else <simple Boolean expression

is equivalent with the construction

Comment from Remington Rand USA:
- We entirely sgree. This kind of change greatly improves ALGOL end is

not 'restrictive' K see Reformulation 12.

Reformulation 8: Switch designator with subscript outside renge.

a: 39, b: ¥ e: 8, a: 0.

Comment from Rutishauser, Switzerland: ;)

- The wording -

' .. have no other effect than the evaluation of expressions ..!' is cer-
tainly sufficient and understandable for both the general user and those
who like side effects.

Comment - from SMIL Sweden:

As, owing to 'reformulation h section 3.1.4.2 has changed section
3.5.4 should not refer to 3.1.4. 2. Section 3.5.4. ought to be formulated
go that it does not refer to section 3.1.L4.2.

Alternative proposal from Ogk Ridge USA.
Chenge 4.3.5 to read

A go to statement is undefined if the designational expression is
undefined.

Comment from Wegner, England:

Change to recad:

4.3.5. Go to an undefined switch d»signator.

If the value of the designational expression is not an integer in
the range 1 to n, where n is the number of entries in the switch list,
then the only effect of the go to statement will be that which might have
been induced by the evaluation of expressions.

Reformulation 9: -Syntactic definition of program.
a: 38 1/2 b: 7.5, e b a: o.

- 22 -

Comment from Rutishauser:

I am strongly opposed to the proposed reformulation on grounds of
the policy that vested interests in ALGOL 60 should be protected. We have
always understood that in the introduction of the AR 'compound state-
ment' includes also blocks end therefore built our compiler on the basis
that a program begins with begin possibly preceded by e lebel. I propose
{program>::= <compound statement> |<block>
Incidentally solving a problem vhich can be described by a single state-
ment needs no computer at all and therefore I do not see why such'an ef-
fort should be underteken to make programs not beginning with begin pos-
sible.

Alternative proposal from the Facit Group Sweden:

{progrem>::= <block>

Reason: The proposed change <{program::= {statement>; STOP would make all
present ALGOL programs illegal, since they do not contain a finel semico-
lon (). Moreover, it seems unnecessary in practice to have programs that
do not contein declaratlons

Alternative proposal from ALPHA} USSR
{progrem>::= <unlaebelled block>
Reason: more precise formulation.

Alternative from SSW—ZE?' Germeny:
{program’:: <statement> STOP

Comment frmnl(idsgrove England:

Surely this should read!
ADD TO TEXT: <programme>::= <unlabelled statement>; STOP
in order to conform to Reformulation 10.
Comment from Dijkstra, Math. Cent., Holland:

I prefer . B
<program>..~ <unlabelled block)l(unlabelled compound> -

to end wvith the correspondlng 'end' we have a uniform rule to “establish
the lexicographical: -extent of the program. Otherw1se 1t is difficult to
distinguish between, say,

1if 3<4 then cos(S)' and 'if 3<4k then cos(5) else cos(6)'
This becomes a little bit more marked if - we replace Tcog! by the proce-
dure idesntifier of the kind ‘'print'. The last sentence of Reformulation
10 can then be omitted (viz. 'The statement of a program must be unlabel-
led since it has no embracing block.!').

Remark from San Diego, USA:

The definition 9 does not appear to be consistent with reformulation
1 in that it does not specify that the statement is self contained. Both
reformulation 1 and reformulation 9 restrict the expansion of a program
at execution time.

Comment from Remington Rend, USA:
We propose:
<{program>::= <block> STOP

Counter proposal from Cambridge} lend:
<{program>:= <unlabelled block> {<unlabelled compound>
Reason: Avoids contradiction with Reformulation 10.

- 25 -

Comment from Wegner' England: -

Note: I would much pr5555_555'50551b11ity of & program being labelled,
go that it can be referred to by another progrem. waever this is a-
gainst current ALGOL ‘scope! philosophy.

Reformulation 10:r Locel behaviour of labels.
a: 35, b 13 c: 3, da: 0

Comment from SMIL -Sweden: '

As ve can sec the gaggg_gggggggg to the reformulation (Labels be-
have as though they were declared in the head of the innermost embracing
block in which they occur attached to a statement)still leaves obscure
the question about the scope of a label.

Exemple: begin real rls ...; L1:L2: begin real r2; ... end .. end
According to the reformulatlon L2 should behave as though it were declar-
ed in the block L1:1L2: begin rzal r2; ... end.
We suggest that the definitions in 4.1.1. should be changed in such a
way that a labelled block is a compound statemecht:
<compound statement>::= <unlebelled compound |

<label>:<compound statement> |<label>:<block>

<{block>::= <unlabelled block>

Alternative from ALPHA USSR:

(1) 844 to text ... innermost embracing block of compound statement ...
(2) delete the last sentence.

Reason: We think it would be more logical.

Remark from Ogk Rldge USA:

There is no reason for not permlttlng programs to be labeled. This
mey be desirable for programmer's informetion.
Remark: Define 'attachzd to a statement.'

Alternative from SSW-ZEF Germeny:

2) ADD INSTEAD:

... Labels behave as though they were declared on the head of the inner-
most embracing block in which they occur attached to e statement. In this
context the body of a procedure declaration as well as the statement fol-
lowing a for-clause vill act as a block, whether it has the form of a
block or not. Labels of a program are without consequences for the run
of the program. STOP

Remark from H. Rutishause r Switzerland.

I am opposed to reformulatlon 10 but would support it if the last
sentence were deleted. The reasoning that a label cennot be in front of &
program (this incidencially would also touch vested interests) has a dan-
gerous paralleclism in the case of procedurss which are not declared in
the outermost block of a program, vhich might be forbidden with the same
reasoning. But Just such procedures vhich are declared outside a program
play a very important and useful role in ALGOL.

- 24 .

Remarks from Computer Ass. 6 USA:

Our only objection is to the last sentence of the addendum concer-
ning labelling the entire program. For the publication of algorlthms
this point has little relevance. From the point of view of including "AL-
GOL within & larger structure of prdgramming languages there are advente-
ges to naming a program by attaching a label to its entire statement
(vhich presumebly is e block). Operationally, this serves to assign &
name to the program, which ensbles the larger system to refer to it. Con-
ceptually the lsbelled program appears as a fub-block within (rather
than sone kind of- appendage to) some 'unlversa.l' block. At the time of
translation the 'universael' block is the one in which the library proce-
dures are 'declared' at the time of executlon the 'universal' block is
the scope of the computer's control program. Sema.ntlcally e go_to the
progrem name from within the program must for: consistency, represent a
nev (recursiva) initial entry into the program with whatever (re-)initi-
alization activities are required.

Comment from Wegner Englend: -

The current reformulatlon is an improvement. Hovever section 4.1.3
as & whole is still rather obscure and could be improved. The lest para-
greph is particulerly cryptic. The following paragraph would be clearer:

When a statement within a block is itself a block the rules which
determine scope are quite subtle. Ccmsider for imstance = block A embed-
ded in a block B. An identifier vhich is dzclared in block A is local to
block A end non-locel to the enclosing block B. If an identifier of the
seme name 1s declared in block B, the two identifiers are completely dis-
Joint in their scope. The 1dentif1er declared in B has & scope that is
lexicographically non-compact, since the block A creates a ‘hole' in the
scope.

Reformulation 1l: Go to into compound statements are allowed.
a: Lb b: 2, c: 3, a: 2.
Remark from Engl.El. Atomlc BEng.:

Unnecessary.

Comment from AIPHA’, USSR:
We object to this reformulation because of the correction to reform.
10.

Remark from Tubingen, Germany:
For the sake of clarity one might add
within a block

following
statements.

Comment from Wegner Englend: -

This addition is welcome. However the distinction between blocks
and compound statements in this respect should be noted also in a less
specialised section, e.g. as part of Reformulation 10 or as part of the
introductory discussion at the beginning of section 4.

Reformulation 12: Precedence of conditions and for clauses.
a: 31, b: 17, c: 3, d: O.

- 25 -

Comment and alternative proposal from ALPHA, USSR:

We object this reformulation because we think it is not in the spi-
rit of ALGOL. The matter is that we obtain a rule of syntactic analysis
which is not implied by metalinguistic formulae only as we have in all
other syntactical constructions. We now more incline to the Woodger's
proposal.

Remark from Osk Ridge, USA:
We oppose only the wording.

Comment from Kidsgtrove Englend:

No doubt this is correct and expressed conciSely but it is not at
all elegant. Why not adopt the so-called restrictive solution. This impo-
ses only a rule of notation, destroys none of the pwer of the languege,
and has the great advantages of simplicity and clarity.

Comment from Computer Ass. usa:

So far &s ve know' this is the only place where the syntex of ALGOL
is ambiguous, in the sense that a single well-formed statement of the
source program might be decomposed, according to the syntactic rules, in
two essentially different ways (v1th correspondingly differ-nt semantic
effect). Esthetiqally e wvould like to sec the syntax amended tc remove
this ambiguity, rather than edding & patch to the prose. If this consti-
tutes too 'major' a rewriting, the ad hoc rule will do, and the present

formulation is acceptable.

Alternative from RCA LAB, USA:

I would change the reformulatlon as follows:
CHANGE TO READ . :
logous to parentheses. A then is like an open parenthe51s _Eﬁd cither an
else or a semicolon is the associated closed parenthesis. In determining
the else or semicolon associated with a given then one follows the usual
rules for hierarchies of parentheses with one difference: ‘One ignores any
else or semicolon contained between matching begins and ends. STOP
Reason for reformulation. Improved clarity, and closer enalogy to other
rules of the language.

Remark from Tublngen Germany (translated from German):
It seems to me that reformulation 12 mekes the counting process 4if-
ficult; I would therefore prefer that brackets (begln end) were required.

- 26 -

Suggestion from Prof. Harry, B. Goheen, in collsboration with G.A. Bache-
lor, D.W. Digby, P.H. Hartmen, end S.P. Ogard, Oregor State University,
Corvellis Oregon:
We suggest the following changes in syntax:
1. In sections 4.1.1 and 4.5.1, change the definition of
{unconditional statement> to readt
<unconditional statementd::= <besic statement) |
<unconditional for -statement> |<compound statement>!<block>
2. In section 4.5. 1 also chenge the definition of
{conditional statement) to read:
{conditional statement>i:= <if statement> |
<if statementd>else<statement> |<conditional for statement>
3. In section 4.8.1, omit the definition of <{for statement> and replace
it with the followlng two definitionst
<unconditional for statementd::= <for claused<unconditicnal statement |
{label>:<unconditional for statement>
{conditional for statementr>:: = <fotr clause)(conditlonal statement>|
<lebel>:<{conditional for statement>
In the semantics, it is understood that the term 'for statement' refers
to botH conditional and unconditional for statements.

Comment from Burroughs USA: -
This rule is clumsy as stated and it would be better to mske the
syntax agree with this rule. One way to do this 1is:
{unconditional statement>::= <basic statecment>
{for statement 1>
<ecompound statement> |<block |
{if statement> else
<unconditional statement)
{conditional statement>i:= <{if statement) |<for statement 2>|
{if statement> e¢lse
{conditional statcmentd
{for statement 1>::= <for clause><unconditional statchient>
{for statement 2>::= <{for clause><{conditional statement>
This seems to give all the generality you are looking for while also gi-
ving all the speed we are looking for.

Comment from Remington Rand USA:

We strongly object to this proposal (see initial comments) and re-
commend the adoption of the proposal in 10.1.3.2. Morcover we do not e~
gree that the proposal in the questionaire ‘'has the adventages of analo-
gy with other rules of the langusge and a minimum of changes to the wor-
ding and examples of the report.' The proposal in 10:1.3.2 inserts the
word 'unconditional' and the delimiters begin and end ~ three minor
changes. (begin and end must also be inserted in the first for statement
following the label BB in example 2 of the report).

Our main reason for supporting the proposal in 10.1.3.2 is this: the
report insists that a statement following a then should be unconditiomal
for obvious reasons. However,K the report defines a for statement to be
unconditional. Unfortunately the for stetement as d»fined is either con-
ditional or unconditional depending on the statement following the do. We
feel that the proposal of 10.1.3.2 is not ‘restrictive!, is sensible and
is in the spirit of sections 4.5.1 and L.1.1. Morecover, we feel that "this
change is much more important than that proposed in Reformulation T.

- 27 -

Comment from Wegner, Englandt

It is not-at all clear from the report why the substitution of sta-
tements for Si 82 S3 or Sk should give rise to embiguity. Please illu-
strate with an example.

Reformulation 13: Side effect of empty conditionels.

a: L2, b: 1, c: 8, a: o.

Alternative from SMIL Swedn: .
The second form of & conditional statement is <if statementd else

the reformulation should be' In the case of the second form of conditio-

nal statement if none of the Boolean expressions Bi, B2 or B} of the if

clauses is true, the whole conditional statement will have no effect o-

ther than that which might be induced by the evaluation of the Bocleen

expressions.

Alternative from Rutishauser, Switzerland:

I would support 'In the case of the second form of the conditional -
statement, if none of the Booleen expressions of the if-clauses is true,
the whole 'conditional statement will have no other effect then the evalu-
ation of Boolean expess1ons.

Remark from Computer Ass. USA: -

A quibble sbout phraseology° The wording 1second form of conditional
statement' could be taken to refer not to the second illustrated form
at the beginning of the paragraph but rather to the second alternative
definiens: <if statement> else <statement> in which case the ‘'clarifica-

tion' suggested is false. Suggest rewvording cquivalent to: 'In the case -
of a conditional statement in the form of the second illustrastion ebove.'!

Reformulation 1l: The definition of the step-until element.
a8 35 b: 5 e: 10 da: 0.

Alternative from Eng.El. Atomlc Fngland:

As in Questionnaire, with 1ast sentence
CHANGE TO READ

.. same type as V and S2 of the same type as B. STOP
Reason for re-Reformation.

Saves umnecessary type transfers.

Alternative proposal from Osk Ridge: UBA:
Change to read:

; X
L1: if (v-s2)xsign(s1) < O then
begin
vf* v + slj
© go_to 11

—— g

cnds

vhere v is8 .. in the program. The evaluation of A} E} end C has no ef-
fect on v.

http:Eng.E1.

- 28 -

Counterproposal from the MNA-group, Sweden:

CHANGE TO READ:

a) If V is a simple variable or s formal parsmeter corresponding to a
simple variable as actual paremeter (a formal paremeter called by value
being regarded as & simple varisble):

Sl:= Vi= As
S2:= B;
S3:=Cjy

L1: 1f'sign (52)x(51-S3) > 0 then
go_to Element exhausted;
Statement Ss
Vi= Sl:= 81 + 8523

goto Li;
b) if V is a subscripted variable
=D[11, ...In

or formal parameter called by neme corresponding to a subscripted veri-
able:

Zl:= I1g

Zn:= In;

S1:= D[Z1 | Zn]:= A;
S2:= B; \
83:= Cy

Li: if'sign(52)«(81-83) > O then
go_to Element exhausteds

Statement S

D[zt ... Zn]:= Si:= S1 + S2;

50 tO Ll‘ i o

Here S1 S2 53 and Z1, ...Zn ere auxiliary variables. The type of Si,
52 and 3 is = type of V'in both cases and 21, . - Zn are of type inte-
ger. V is the controlled varisble .. in the program.

Reason for chenge: A feeling that in many cases changes in the values of
B,C,V and the subscripts of V induced by the execution of statement S are
unwanted and should be suppressed. If chenges are wented the more general

more easily be given a fast implementation.

Comment from RCA LAB, USA:
Rather than S1 and 32 I prefer identifiers with mmemonic value say
VITEMPORARY and BTEMPORARY.

Comment from Burroughs, USA:

It seems a shame that S2 is of type real. This is very inefficient
on & machine, if the transfer functions heve‘'to be applied. For exemple
consider the 'most common case 'for i:= 1 step 1 until n' K where i, n are
integer, it necessitates 3 transfer functions each time through. Was this
decision reached because the type of a call-by-neme ﬁxpression or of
11§71, are not defined at compilation time. It doesn't seem to solve

those problems anyway. We suggest S2 has the same type as B.

..29..

It would also be lots more efficient if the sign of B hed to be eve-
lusted only once. Therefore, we would replace this code with the effect
of the following code:

switch SW:= if S1 < C then Element exhausted else L L ifs1>¢C

then Element exheusted else L;
Sl:= V: = As
82:= sign (B)
go_to SW[s2 + 2],
L: Statement Ss
Sl:= V'— V + B;
go_to SW[S2 + 2];

Comment from Remington Rand USA:

We oppose this only on the grounds that it is pointless. We would
like to see an ALGOL in which

sign (B)x(V - ¢) = (V - C)«sign (B)

(see comments on Reformulation k).

Also Bring's comments seem t0 be needlessly pedantic. I think most
readers interpret the ALGOL statements in section 4.6.4.2 as descriptive
in the same way as the copy process for procedures. As such, the original
statements are more concise.

Reformulation 15: The equivalent effect of a procedure statement.
a: U5, b: 4 c: 1, d: 1.
Comment from Remington Rand USA:

The new description is hardly different from the old and does not
answer Bottenbruch's question. BEither leave the original sentence un-
changed or describe in detail the workings of a recursive procedure.

Reformulation 16: The order of value assignment.
a: 42, b1, . e: 8 d: 0.
Comment from Burroughs USA:

You se=m to have an implicit rule which ought to be made explicit;
everything in the value part must be specified in the specification rart.
(We like this rule.) It would be clearer if one wrote eg.,

- 'real value X; integer array value Y3 label value L,' ete.

- —— o —— - prosietiaphdiont == Pt ooputtu i PEprgamp-apui ——

don't you think.

m

Reformulation 17: Types of value parameters
a: L6, b: 4 c: 0, d: 1.

Comment from SMIL Sweden:
The last sentence of section 4.7.3.1 is somewhat unclear when consi-
dering formal parameters being labels called by value.

Comment from Burroughs USA:
Here that implicit rule we just mentioned seems to be implicit e-
gein, so we hope you add that rule to section 5.4.5.

Comment from Remington Rand USA:

You might make an 1mpllclt rule explicit here and/or in section
5.4.5 by adding.

"A1l formal paresmeters called by value must be included in the spe-
cification part.'

.ajo_

Reformulation 18: Strings as actual parameters.
a: 46, - b: 1, e: 3, a: o.
Counterproposael from NPL, England:
CHANGE TO READ:

4.7.5.1. Strings supplied as actual parameters in procedure state-
ments cen only be used by procedure bodies expressed in non~ALGOL code
(cf. section 4.7.8). STOP
Reason for counterproposal: Section 4.7.5.1. wes false (see AB 13.2 Wood-
ger). Reformulation 18 stated that the string paresmeters must be used and
end was unnecessarily lengthy.

Alternative from Dijkstra Math. Cent. Holland: -

'.. in further procedure statements or function designators because e-
ventually they can only be used.. '

Motivation: The following procedure is crazy, but it should be legiti-
mete:-

Comment from Burroughs USA: I.

e by e e et T g i e e WD i S W

- o - e i e

for this.

Reformulation 19. Strings can only be called by neme.
a: L9, b: 1, c: 1 a: o.

]
Reformulation 20: Call of designational expression by value.
a: b1, b: 2, c: T, a: 1.

Suggestion from SMILZ Sweden:
Expressions cannot be called by value.

Comment from ALPHA USSR' '''''

value of a designational expression to any identifier.

Fxample:
begin '
procedure GO TO (1); gg;gg 1z begin go_to 1 end;
G0 0 (R); R:

end of example
How can you explain the work of the program after the replacement of
the procedure statement by the procedure body in terms of besic state-~
ments.
Incidently, there is a contradiction with the text of reformulation
17 because formal parameters which are designational expressions and cal-
led by value are not given any type.

Comment from Rutlshauser_'Sw1tzerland'

slgnment which would be impossible for lebels. Thus formal paiaiéiers
corresponding to labels cannot be called by value. Anything else would be
a change of ALGOL 60.

- 31 -

Comment from Burroughs} USA:
Add a statement that if a designational expression called by value
reduces to a switch whose subscript is out of bounds it is undefined.

Reformulation 21: Verbal characterization of declarations.
a: 50, b: 0, c: 1, d: 0.

Comment from Wegner, England:

Quantities are normally associated with numerical megnitude. Some o-
ther term such as 'obJects' should be used if a mbdification is intro-
duced.

However, the originel formulation seems preferable. Declarations
serve to associate properties with identifiers rather then with the ob-
jects named by identifiers.

Reformulation 22: .. identifiers lose their local significance.

a: 50, b: 1, c: O, d: 0.

Comment from Burroughs, USA:

: This doesn't seem to explain it any better than before. How about
... all identifiers which are declared for the block lose the signifi-
cance they had in that block.?

Reformulation 23: The meaning of own.
a: 32, b: 11, c: 6, d: 1.
Comment and question from ALPHA} USSR: -

We support the idea but we do not understand one point: 'Whether
they remain accessible depends on whether the exit 1s made to & place
within the scope of the identifiers'.

Example:

begin integer n s
n.= 3;
begin own ir.l‘sge@z ng

n:=5

end;
m:= n

end of exemple -

Ism equal “to 5. If so it is bad if not we don't understand the sentence

mentioned.

Remark from Rutishauser, Switzerland:

The main problem namely whether different calls of the same proce-
dure (having own—declared variables in its body) define the same or dif-
ferent sets of own variebles, is still not quite gettled by the present
lengthy wording (I would prefer the same set of own—varlables)

Comment from Kldsgrove Fngland:

Although we have, for the purposes of compilers accepted the defi-
nitions given here &s they stand (except for dynamic own arrays), we are
very unhappy about the whole thing. The new proposal is “something which
is not in the original intention of the report, seems to-be justified by
no practical applications (I refer to own in recur51ons) but is merely a
system which can be implemented. We think thet the idesa of own needs
much more close examination; we would not like to see it abandoned alto-
gether.

- 32 -

Comment from Computer Ass., USA:

We thoroughly apnrove of-the doctrine as stated concerning own vari-
ebles. However, the sentence: 'Thus every entry into a block .. will-
make the same set of values of own variables of this block accessible'
still ellows the absurd interpretation facetiously proposed by Ingerman.
It should perhaps be amended to make clear that 'every' means 'every
time, within a single execution of a single instance of the progrem'.

Comment from Remington Rand,K USA:

We do not see how an exit from a block can be made to & place which
is within the scope of the identifiers of the block. We feel that this
section should be re-writtem in a more positive fashion with the sort of
‘exemple found in Bottenmbruch's primer. Much of the sementic difficulty in
this pessage and in the ALGOL report can be traced to the use of phrases
such as 'with regard to' and ‘with respect to'.

Comment from Wegner, England:

Section 5, fourth paragraph. Change to read:

Declarations for simple variables and arrays may be marked with the
additional declarator own. Variables marked with own have their values
preserved between successive activations of the block in which the decla-
ration occurs, whereas values of non-own variables are lost between suc~—
cessive entries to the block. Local non-own variables must be recomputed
from non-local variables during each entry to the block, whereas own ve-
riables have their values carried over from previous activations of the
block. When a block is called recursively the values of own variables are
transmitted between successive levels of activation.

See also note to QUESTION 37: DELETION OF OWN FROM LANGUAGE.

Reformulation 24: Admit non-constant arrey bounds in outermost block of
program i .
a: 36, b: 3, c: 11, d: 1.

Comment from Burroughs, USA:

You haven't mentioned explicitly in the report thet standard proce-
dures other than analytic and transfer functions may exist, have you.
This should be mentioned.

Proposal from Saarland} Germany:
Delete:
'Consequently!

Comment from Remington Rand, USA:

Although & programmer may wish to use parameters from an input medi-
um to specify subscript bounds, we do not see the practicality of using
function designators to read these values. We would prefer to see the o-
riginal sentence left in the revort, cven though it does ‘'restrict' the
language. We cannot honestly sce the point of Woodger's device. Surely a
programmer would require the subscript bounds elsewhere in his program
and would normally employ a procedure statement to assign the input va-
lues to variables. The array could then be declared in an inner block.

Comment from Wegner, England:

Section 5.2.4.2 is unsatisfactory when the deletion has been mede.
The following sentence could be added:

However, subscript expressions may be made varisble even in the ou-
termost block by the use of globel identifiers of code procedures (e.g.
procedures associated with input and output).

- 33 -

Refornulation 25: Evaluate bound expressions in order.
a: Lo, b: 0, c: 10, d: 0.

Suggestion from San Diego, USA.
We suggest adding:
. in the order in which they appear (left to right).

Comment from Remington Rand USA:
Opposed on the same grounds as Reformulation k.

Reformulation 26: Own arrays.
a: 26, b: 10, c: 12, a: 1.

Remark from Oak Ridge USA:
We would prefer a reformulation which makes the values of components
undefined whenever the bounds are changed.

Remark from Kids grove England:
This is bound up with 23, above. In our versions we do not allow
dynamic own arrays.

Comment from Burroughs, USA:

Wo do not see any justification for treating own arrsys with varying
size. It is true that this facility is difficult to obtain using only the
other features of ALGOL, but we think the process is so inefficient, a men
who wizhes to use this should think up a better algorithm so he doesn't
need to waste the computer time doing this. We went to see this paragraph
cut down to the following:

iThe program is only defined if the values of the subscript bounds
evcluated at the second and following entries are the same as those eva-
luated at the first entry.' STOP

Comment from Cambrldge’ England:
He see no jus tlflcatlon for the restriction imposed by the last two
sentences of Reformulation 26 and would have them removed.

Commnent from Weﬁner England:

Delete the sacond half of the suggested additlon i.e. the section:
In the case of ... entries into a block.

It seems perfectly feasible that a recursive block might require ar-
rays whose dimensions differ between successive activations. Complete
syumetry should be preserved between non-recursive calling of & block and
recursive calling of a block. I do not see any difficulties in extending
this principle to own arrays.

See also note to QUESTION 37: DELETION OF OWN FROM LANGUAGE.

Reformulation 27: Meaning of switch declaration
a: 48, b: 2 c: O d: 0.

1 !

Reformulation 28: Procedure body as block.
a: b3, b T, c: 1 a: o.

- Bl -

Alternative proposal from the Facit group, Sweden:
The procedure body (together with the specifications of the formal
parameters) always acts like a block, whether it has the form of one or
not. Consequently the scope of any label attached to & statement within
the body or to the body itself can never extend beyond the procedure bo-
-dy. In addition, the identifier of a formal paremeter must not be declar-
ed anew or attached as label to a statement within the procedure body.

It may well be declared or used as a lsbel within a subblock of the pro-
cedure body. STOP

Reason: There is no sense in declaring a formal paremeter in such & way
a8 to make it altogether inaccessible.

Comment from Remington Rand,K USA:

We object to the concept of formal parameters being attached as la-~
bels to statements as this can serve nc useful purpose. We also object to
the concept of declaring formal parameters within a procedure body. This
concept is completely opposed to the purpose of formal parsmeters. Also,
what happens to the value of a formal parameter which corresponds to an
actual parameter called by value.

Reformulation 29: Type procedure called by procedure statement.
a: 38, b: 1, e: 12, d: o.

Remark from Rutishauser: N

The effect of placing a function designator as procedure statement
is not defined by the AR. Thus 'making an implicit rule explicit' can on-
ly mean that we state : 'procedures which are declared with an additional
type-declarator in front, cannot be called through a procedure state-
ment'.

Comment from Burroughs USA:

We think it 1llog1cal to allow this case. Consequentlyl 'a. type pro-
cedure may not be called as a procedure statement' is the rule we accept.
This is only common sense, isn't it.

Comment from Wegner, England:

Is this rule really intended. It would seem that the use of a proce-
dure statement to define the value of a procedure identifier is & natural
one, although it cannot be easily implemented within the framework of an
anonymous stack. Perhaps procedure statements should be abolished alto-
gether, since they tempt the user into erroneous usage.

Reformulation 30: Types for name parameters.
a: 34, b: 5, c: 8, d: 2.
Remerk from Dijkstra, Math. Cent. K Hollend

I should prefer a transfer function to be invoked.

Alternative from Dutch, PIT, Holland:

ADD TO TEXT: However, if specifications for parameters called by
name are included, the values of the actual parameters will be transform-
ed into the types as given in the specification by means of the transfer
functions. STOP
Reason for reformulation 50: An actual parameter called by name does not
need to have the same type as the specified type (cf. AB 14.2 Nagao).

- 35 -
ADDITIONAL AMBIGUITIES.

Reformulation 31. THE FATE OF THE CONTROLLED VARIABLE IN THE FOR STATE-
MENT.

Proposal from Eng.El.Atomic, Eng.:

Section 4.6.5. Second Paragraph.
DELETE:

If the exit undefined after the exit. STOP
Reason for reformation.]
Ambiguous in the case where V is a subscripted variable, whose subscripts
might be altered by evaluation of B, C, the controlled statement, or even
V itself.

Comment from Kidsgrove, England:

Am I right in thinking that section 4.6.4.2 (subject to Reformula-
tion 1l4) and section 4.6.4.3 are intended to provide rules for the inter-
pretation of for statements? In other words, that a for statement is in
general an abbreviation for other ALGOL statements of the form indicated.

If this is so, then I do not see the need for section 4.6.5. The
first sentence in any case needs rewriting because of possible side ef-
fects in the evaluation of the designational expression in the go to sta-
tement. The second sentence would seem to allow an inaccurate implementa-
tion which did not agree with that defined by 4.6.4.2 and 4.6.4.3,; if
this sentence were suppressed, what harm could come.

And what is meant by 'controlled variable'? If we have something like

for Af1]:= do

begin . .5 i:= 5 ... end;
what is it that is undefined on exhaustion of the for 1list?
The whole array A ? The elements A[i] corresponding to the values taken by
i during the execution? The A[i] corresponding to the original value of
i?
I am in favour of stating explicitly that 4.6.4.2 (revised) and

altogether.

Comment from IPM Darmstadt, Germany: - -

In section 4.6.3., the meaning of ‘'advance' is not quite clear in
case of a for list after the last assignment and the corresponding execu-
tion of S have been done. In case of & step-until- or while-element the
assignment after the last (intended) assignment is clearly defined, but
not in case of a for list. Of course this is irrelevant according to
L.6.5 since, after that, 'test' finds that the for list is exhausted. Ne-
vertheless we feel that this point should be clarified. -

In the following sentence the term 'last assignment' apparently
means the assignment after the last intended assigmment and the corre-
sponding execution of S. But we feel that the unbiased reader will mis-
understand this point.

We therefore propose the following reformulation:

DELETE: Test .. done. STOP
ADD INSTEAD: - -

However, if the for list has been exhausted, 'advence' merely trans-
mits this fact to 'test'. 'Test' determines if the for list 1s exhausted.
STOP

- 36 -
Reformulation 32: ACTUAL FORMAL CORRESPONDENCE OF TYPE.

Proposal from the Facit Group, Sweden.

4.7.5.2 ADD TO TEXT: Often integer and real parameters cen be used
interchangeably. However, if there in the procedure body occurs an as-
signment to a formal parameter, specified to be of type real, the corre-

— - ——

[royrpedped, — Putpes)

Reason: It is not clear to what extent real and integer parameters may be
used interchangeably. From 4.7.5.5 and AB. 14 reformulation 30, one
might get the impression that they may not be used interchangeably at
all; on the other hand it is expressly stated in 3.2.4 that the standard
functions operate indifferently on actual parameters of both types. The
other extreme would be to permit interchangeasble use freely, even in the
cases forbidden above; in that case the running program must be able to
invoke transfers from real to integer dynamically. The above proposal is
to be teken as a compromise. It would, for instence, rule out the pro-
grem in AB. 14.2. -

Reformuletion 33: SCOPBS AND PROCEDURE STATEMENTS.

Proposal from NPL, England:

Section 4.7.6, second sentence.
CHANGE TO READ:

A procedure statement written outside the scope of any quantity
which is non-locel to the procedure body, or to the bodies of proce-
dures called directly or indirectly from within the procedure body, is
undefined. STOP
Reason for reformulation: Improved accuracy (cf. AB 13.5 Woodger).

Note from Burroughs,K USA:

Section 4.7.3.2. -
ADD SENTENCE. These 'systematic changes' do not aepply to identifiers
which are non-local to the procedure body. They do, however, apply to all
local switches and labels which conflict with switches or labels which
can be associated with an actual-paremeter switch. .
Reason: Improved accuracy, makes switches more worthwhile parameters (8ee
Knuth and Merner ACM Comm. June 61, footnote 3)

Reformulation 34: FORMAL PARAMRTERS AS INDEX BOUNDS.

Proposal from the Facit Group, Sweden:
5.2.4.2 ADD TO TEXT:)

The formal parameter of & procedure declaration may not enter into
bounds of array declarations in its procedure body (but well into arrsy
declarations of subblocks within the procedure body). STOP
Reason: At present it seems that formal parasmeters caelled by value are
local to the procedure body, and hence must not be used in bounds, where-
as parameters called by name may be used; we question whether this diffe-
rence is really intended and propose that it is removed.

_57..

Reformulation 35: ADMIT own array:
Proposal from RCA LAB USA:
Section 5.2.1 of defining report.
CHANGE TO READ
<arrey declaration>:i= arrayarrey listd |
Reason for reformulation. Corrects an aparent “oversight of the original
report.

Reformulation 36: NON-LOCALS IN PROCEDURE BODIES.

Proposal from IPM Darmstadt Germany?
Section 5.4.3. end of paragraph'
ADD TO READ:

. appears. Procedure declarations which contain global parameters
in its body and appear outside the scope of any of these globals, are un-
defined, even if it is used only in procedure statements inside the scope
of those globals. STOP
Reason: Why troubling the compiler at the time when & procedure declara-
tion is processed.

Reformulation 37: SPECIFICATIONS OF NAME PARAMETERS.

Proposal from the Dutch PTT Holland:

Reformulation of 5.L. 5 last sentence
CHANGE TO READ: In this part no formal parameter may occur more than
once. STOP
Reason for reformulation 35: When specifications may be included this
means that they need not be included. Then the sentence that formal para-
meters called by name may be omitted is Jjust seying agein what has alrea-
dy been said.

Proposal from RCA LAB USA:

Section 5.4.5 of deflnlng report.
CHANG®E TC READ

.+ may be omitted together. In particular if and only if all for-

mal parameters are called by name the entire specifications part may be
omitted. STOP
Reason for reformulation. It is not clear under what conditions the spe~
cification part may be dropped. I get the impression that meny people
feel the specifications part may be dropped at will. If this were so then
every general ALGOL compiler would have to be eble to operate in the &b-
sence of gpecifications. But then what would we need specificetions for.
Even if the latter interpretation is intended the defining report scems
to be consistent with the sbove reformulation, so some clarification is
necessary.

- 38 -
Reformulation 38: THE ASSIGNMENT TO THE IDENTIFIFR OF TYPE PROCEDURES.

Proposal from the Facit Group! ‘ .

5.4.4. there must, within the procedure body, occur an assignment of
a value to the procedure identifier
CHANGE TO READ: .]

there must, within the procedure body, occur one (or more) assign-
ments of a value to the procedure identifier STOP
Reason: From the original wording ohe may get the impression thet only
one assignment were permitted.

Proposal from Eng.El.Atomic, England:

Part 1 Section 5.4.4.

CHANGE TO READ: .

For a procedure declaration to defide the value of a function desig-
nator, there must, within the procedure body, occur one or more assign-
ment statements, at least one of which must be obeyed, which assign a va-
lue to the procedure identifier BTOP

Part 2 Section 4.2.1
CHANGE TO READ: <left partd>::= <variabled:= |<procedured:=
STOP :

Reason for reformation.

"Clarifies the phrase 'assignment of a value to the procedure identi-
fier',”and the sentence 'Any other occurence . . #&ctivation of the pro-
cedure'.

Proposals from Elliott ALGOL, England:

Section 5.4.4 end of first paragreph.
ADD TO TEXT:

However K this assignment may not be made by writing the procedure i-
dentifier as an actual parameter called by name. STOP
Reason for addition. To prevent the situation in which certain replaced
occurrences of the parameter inside the procedure body should activate a
recursive call, while others merely cause en assignment of a value to the
function designator.

Section 5.4.4
‘occur an assignment!
CHANGE TO READ -
'occur at least one assignment' STOP
Reason for reformulation: The ravised text explicitly permits more then
one assignment.

Comment from Kidsgrove, England:

The syntax of 4.2.1 and 3.1.1 should be extended to allow assignment
to & function designator. (And the semantics amended accordingly.) The
wording of 5.4.l is not explicit enough. Is it intended that (dynamical-
ly) only one assignment to the procedure identifier should take place.
Can alternative assignments be written. What is the meaning if the as-
signment is in a repeated loop.

The second sentence surely apolies only t0 occurrences within ex-
pressions - that is, not on the left hand sides of assignments.

.._39_.
Reformulation 39: NEW METALINGUISTIC OPERATOR.

Proposal from Zeiss, Germany:
w1 _suggest to add a new metalinguistic opermtor:
{eny string> means that there is not standing <any string>. Then I sug-
gest to write
3.3 Arithmetic expressions

)

{factor>::= 1<primary>l(factor)T(primary)

— e Ot e e

s e gt e e e

<arith.exp>::= <simple arith.exp.><add.op.>| ...

and similar for 3.4 Boolean expressions.

This mode of expression makes clear the rules of precedence and does not
allow the wrong E

syntactic units b + ¢, b + c/d

of the expression axb + c/d.

Reformulation LO: EXPRESSIONS WHOSE TYPES CAN ONLY BE KNOWN AT RUNNING
TIME.

Question from Facit Group, Sweden:

- In the program example: :
f1:="1if b then il else r; i3:= 11Ti2;
the type of the conditional expression can only be decided at running
time. The seme holds for the expression with exponentiation (integer or
real, according as i2 is positive or negative).

In this a correct interpretation of the ALGOL 60 report.
If so, what is your reaction to defining expressions of these kinds

as type real.

Reformulation 41: MEANING OF else IN EXPRESSION.

Proposal from Burroughs} USA:
Section 3.3.3:
CHANGE LAST LINE TO READ :
______________ {arithmetic expression> STOP
Reason: The example given was not well-formed according to the syntax.

mailto:strin@~
http:<tern~><mult.op.>
http:<termb'<mult.op.>

- Lo -
Reformulation 42: THE EXAMPLE OF A FOR STATEMENT.

Proposal from Burroughs, USA
Section 4.6.2:

CHANGE TO READ ‘ R
.- for yi= I+ 6, 1 step 1 until N, C+ D do

Vi:= Alk, j]:= B[k, J] STOP
Reason: The example given was confusing because it gets into an unending
loop, unless V1 > N originally, or 1f N, I, G L C, D or V1 is a func-
tion designetor vhich changes the value of V1.

Reformulation 43: THE EXAMPLE OF A DUMMY STATEMENT.

Proposal from Burroughs, USA:
Section 4.4.2:
CHANGE LAST LINE TO
begin I:= 1; JOHN: end
Reason: Previous exemple using three dots was not in keeping with the o-
ther examples which were valid ALGOL constructs.

Reformulation 4h: LEXTCOGRAPHICAL ORDER.

Suggestion from Wegner} England:
Section 4.3.3 second line: -
Replace 'write-up' by 'lexicographical order!’.

- 41 -

TABLE OF REPLIES ON SUBSETS, CHANGES AND EXTENSIONS, AND OFFICIAL ADOPTION.

NPL, England

Zelss, Germany
SMIL, Sweden _
Syst.Dev.Corp., USA
Royal McBee. USA
Mayoh USA
IDA-Princeton, USA
Facit Group, Sweden
Rehn, Finlend
Eng.El.Atomic, Eng.
Elliott Algol, Eng.
ATPHA, USSR
Buchholz, Germeny
Oak Ridge, USA
SSW-ZEF , Germany
Dupont, USA
Rutishauser, Switzerl.
Kidsgrove, FEngland
MiA-group, Swed~sn
IAM Bonn, Germany
Math.Cent, Holland
Dutch PTT, Hollend
San Diego, USA
Leeds Univ., Eng.
AICOR PERM, Germany
ALCOR 222 - Germany
ALCOR 2002, Germany
RCA-EDP, USA

Bjork, Sweden
Moore School, USA
IPM Darmstadt, Germeny
Computor Ass. K USA

Regnecentralen, Denmark

Univ.N.Carolina, USA
RRE, Englend
Stenford, USA

RCA LAB, UsA

ARF -USA

NDRE, Norway _

XTRAN project, USA
Hockney, Englend
NBS, USA

Tubingen, Germany
Siemens, Germany
Standard El. 6 Germany
AFCALTI, France
Burroughs, USA
Ssarland, Germany
Remington Rand, USA
Cambridge, England
Wegner, England

Special codes: f = a/b,

yes

yes
yes
no
no
no
no

yes
no
yes
no
no
no
no
yes
yes
yes
no
no
no
yes
no
yes
no

Il PO POOOODd I OOPOTOPPEPOCPOPPEPIODPC D

OO POCPDT OO OOPHDOODDP DO

CHANGES AND EXTENSIONS
31 3% 35 37 39
32 34 36 38
no »vbbyesabg

no bbhba ab
no --ccno bee
n -a-8 - - - -
N0 = =~ = = = - - =
- ~acadb bbb
no cbacno bbb -
n bbbbyesaba
n bbbdbdb - bec -
yesccccecno bbe
yes® beno bee
yes -~ b ccyesabe
n b»-bbn b -
no bbebyesace
n bbbbno babd
- -baayesbbdb -
-~ -bbe - -cec
no aacfyesbbe
no pbbbbno bbb
no bbbeyssac-
nc cgececno b e
no baacn bac
no aabcyesbbdb -~
no ababyesbcbd
no cbeceno abb
Yyescbccecno abe
yescbcecno aba
n -ba-yesbbh
no - - = = - - - -
no bbabyesbbdbbd
no bbechno adba
vyvesba fano bpbba
yeSccbcyesacece
yes bbb ~-yes-cc
no bbcayesbececece
no babbyesbecd
nc abba ¢ bbe
no ccbcyesabdbe
no beacyesabec
no baasayesaba
no asaadd - -4-
yesbbececno bee
no bbecbn adba
no bbecenoc abhbd
- -=-bcno ab -~
no eaaca a 8&a- -
no -bcbyesbcech
no cccce¢c - -be
no ccccyesabe
no bbcec-yesdbc -
no bpbbba a asatf
h=a/c

OFFICIAL ADOPTION
Lo b1 43

[B R Iy

ST AN
M E L EEN W,

LS |

VINNN R =N
o AN N D
oo PP

t L.\t

[AN I | i
PO I PO POOPHLTOPOEP

NDWF NP ENNDOVIWE WD
[I

HEEFEEEFONDSESFAEFOUOWLL
!

AN X AOWPDWOLIMBMEOWOND FUOINDE EFON
= NN EFRP NP NWE SR NDE RN W

- 4o -

COMMENTS ON SUBSETS.

Question 25, MEMBERSHIP OF SUBSET-GROUP:
Yes: 1l No: 3k,
5 groups exist:

Group 1: members: Facit Group} Sweden; Regnecentralen} Denmark.

Group 2: mambers: Kidsgrovel Englend; Eng.El.Atomicl Englend. Name of
subset: KDF9 ALGOL. Full ALGOL 60 except 1. Dynamic Own Arrays. 2. Inte-
ger laebels. 3. Optional specifications.

Group 3: members: ECMA TC 5 (inecl. Eiliott ALGOL, England).

Group 4: ALCOR, members: IAM Bonn, Germsny; ALCOR PERM, Germeny; ALCOR
222, Germany; ALCOR 2002; IPM Darmstadt, Germeny; Siemens, Germeny; Stan-
derd El., Germeny; Saarland, Germeny. Described in Elektronische Rechen-
anlagen 3 (1961) 206-212 and following articles.

Group 5: members: C.W. Dobbs, UNIVAC, Philadelphia; R. Belscemper, UNIVAC,
St. Paul. Name UNIVAC Standard ALGOL. Characteristics as yet undefined,
tentatively 1107 ALGOL.

QUESTION 29; THE IDEA F RECOMMENDED SUBSETS
a: 37, b: 8, et L

Comment from Burroughs,K USA:

As it stands now, we wager nobody will implement ALGOL 60 complete-
ly. This is because of two major cases:

1) Recursive procedures which use non-locel varisblss which are lo-
cal to other recursive procedures. -

2) Implementing 'procedure a(b); procedure by 2: b(2).' In this
example 2 can be used as a label, number, or both by the procedure b.
These secem to be obstacles nobody has overcome.

So everybody will pick some subset or other, leading to a somevhat
chaotic state. This is unfortunate; it would be much better to have as
ALGOL a language which every fairly large computer cen implement (and ef-
ficiently too). Then a single recommended subset for the small computers
which are incapeble of handling too extensive a languasge should be given
as & guide to reduce the chaos somewhat.

Comment from Remington Rand, USA:

In our opinion, the definition of subsets provides partial solutions
to some of the problems of inter ALGOL processor compatibility. We hope
in UNIVAC to establish hardware representation compsatibility by this me-~
thod.

Comment from Wegner, England:

Surely the principal strength of ALGOL lies in its being & stendar-
dised languege. Subsets seem to be due principally to a lack of under-
standing of the principles of ALGOL implementation. It has been shown by
Dijkstra that the implementation of virtually complete ALGOL is straight-
forward even on a small machine. The question of subsets should therefore
be reconsiderecd.

- 43 -

QUESTION 30. THE REACTION TO THE TWO SPHCIFIC SUBSEHS} BASIC ALGOL 60 and
SMALGOL.
a: 36, b: 8, c:

Comment from Remington Rand, USA:

We suggest that once the ambiguities and obscurities have been
cleared up in ALGOL 60 the question of subsets may be left to the indi-
vidual user. Provided these were all subsets and not dialects we See no
reason why the number of subsets should be réstricted to two.

—— -

SMALGOL in the light of programming and implementation experience.

Comment from Cembridge, Fngland:
We do not wish to commit ourselves on this point.

Comment from Wegner, FEngland:

Basic ALGOL 60 and SMALGOL were motivated by an incomplete under-
standing of ALGOL implementation. If any given subscet is developed it
should be based on the greater understanding of ALGOL implementation that
has recently become available through the publications of Dijkstra. How-
ever subsets are probably not necessery at all.

COMMENTS ON CHANGES AND EXTENSIONS.

QUESTION 31: Familiarity with ABS 1l (the report by Ershov Kozhukhin
and Voloshin).

Yes: 9, no: 38.

Comment from ALPHA USSR:

We believe thet some of the Input Language constructions are very
desirable in ALGOL -specially: complex, internal dimensions; forming and
composing operators, initial values, chains of inequalities, functions
yielded by expressions asnd time superscripts.

Comment from ALCOR 222 and ALCOR 2002:

The axiomatic system is overextended. It should be nossible to givs
definitions of new elements of the language in terms of simpler ones
within the language (like procedure declarations) insteed of adding new
definitions to the basic system

Comment from Computer Ass. , USA:

We have transleted the introduction of this report and followed
some of the more puzzling proposals some distance into the body of the
report; we have not studied it sufficiently to give & responsible detall-
ed criticism of the proposals. None of them seen impossible to implement
some arc quite interecsting; most of them seem, in the light of the pre-
sent feelings on 'freezing' ALGOL, to be in the nature of serious exten-
sions. We will be pleased to comment upon them in the next questionaire.
We have doubts, though, that the oromlSed compatiblllty with ALGOL 60
Wlll hold if- the oroposals for allowing 'output' parameters to be speci-

L

Comment from Regnecentralen, Denmark, to QUESTIONS 31, 32, 33, 38:

We cannot support the inclusion of additional snecial facilities in
ALGOL. We want the lenguage to include such general features which permit
the user to add arbitrary special mechanisms to it at will. For this rea-
son we feel that the procedure conceot is the most importent one in ALGOL
60. It has not yet been fully exolored. Further developments should gene-
ralize this concept, e.g. by permitting the user to specify, not only the
meaning, but also the form, of procedure calls. In this manner most of
the above special extensions would become unnecessary we feel.

Question from Remington Rand USA: -
When will FEnglish transletion be available (see APIC Bulletin no. 8,
p. 38, 84.005.)

QUESTION 32: THE HOCKNEY PROPOSAL.
a: 6, b: 24 c: 8.

Comment from ALPHA USSR:
The Hockney Uroposal is good in 1dea but has not been developed ve-
ry well. Our pronosals cover the Hockney ones

Comment from Rutlshauser Switzoerlend:

The Hockney Dronosal contains actually 4 different provosals and
therefore cannot be dismissed simply by one three-branch question. First,
it proposes a complex-declaration which I would welcome since several
prospective users of ALGOL complain its nonexistence. Second, it intro-
duces & new notation for arrays of errays which certeinly has its merits
but should be discussed carefully before it is voted uoon. Third, a note-
tion for the value of an array that allows to give the components of an
array numerically, and fourth, the introduction of matrix calculus in AL-
GOL, which I strongly oppose.

Comment from IPM Darmstadt,K Germany:

Array arithmetic seems doubtful to us. But comwlex arithmetic is ve-
ry desirable. We vould like to see double precision arithmetic included
too. Eventually| one should introduce facilities for defining arbitrary
(not stendardized) types, which are chosen by the programmer.

Comment from Computer Ass. USA

The Hockney oroposeal reached us only after the middle of February.
The proposals seem mostly to overlap a part of the proposals of Ershov et
al. We could not say at this time which we vrefer. The inclusion of faci-
lities like these seems an obvious way to extend ALGOL when the time for
extensions arrives.

QUESTION 33: STRING MANIPULATION.
a: 11, b: 28 1/2, e: 5 1/2

Remerk from Oak Ridge , USA:

But not necessariiy as exactly formulated.

Comment from SSW—ZEF Germany:

According to the proposal by Wegstein and Youden in a string decle-
ration the length of the string must be declared by the programmer. This
is quite uncomfortable, and, in our opinion, not nccessary, as the
strings are represented by threaded lists.

- 45 -

QUESTION: 34: THE NOTATION FOR CONDITIONAL EXPR®SSIONS AND STATEMENTS.
a: 9 1/2, b: 17 1/2, c: 20.

Comment from Computer Ass. USA:

The restrictions are unnecessary for Exoressions at present (end we
shall not reoquire them in our implementetion). and would become unneces-
sary for Statements upon a proper refomulajclon of the syntax. This is

should be among them.

QUESTION-35: SYNONYM ASSIGNMENT.
ar 9 1/2, b: 13 1/2, c: 21, d: 1.

Remark from Computer Ass. , USA:
But not the way Thacher proposes.

Remark from AFCALTI K6 France:

In particular, Mr Nolin would wish that it be possible to change
the names of variables in the course of execution (for instance for
flip-flop works).

Remark from Burroughs, USA:

We favor a synonym assignment of the type <identifierd
:: <string”> meaning substitute string for every future occurrence of this
identifier.

Comment from Cambridge', England:
We are indifferent.

QUESTION 36: LACK OF INITIALIZATION OF OWNS IS A SERIOUS DEFECT
Yes: 21, no: 18.

QUESTION 37: DELETION OF OWN FROM LANGUAGE.
a: 20, b: 23, c: O.

Comment from Dl,jkstra Math. Cpnt. Holland: - -

At present the definition of the concent ‘own' is mnsatlsfactory'
everybody knows that. But to favor the sugcestion to delete it from the
language means that we have given up hopes to imorove the definition. In
this connection we should not close our eyes for the fact that the 'dyna-
mic own array' is something which is not expressible by any other means
alreedy provided by the language. On the whole I think it should be re-
tained in the sense of Reformulation 23. With regard to Reformulation 26
I think that I fail to see the reason to restrict 'adjustment of the
bounds' to the entry of an ‘'outermost! activation and I therefore suggest
this restriction to be removed from the Reformulation 26.

QUESTION 38 COMBINATION WITH COBOL.
a: 3, b: 29, c.1h d:

Remark from AFC'AI_.TI France:
We should like & certain unity of style between ALGOL end Cobol
(punctuation rules priority, etc.

- 4E -

Comment from Burroughs USA:

We believe anyone who reelly understands both ALGOL and COBOL would
realize that they are quite incompatible and that an idea to combine them
is absurd.

Comment from Wegner, England:

Data descrivtion and input-output form an importent part of eny len-
guage for computation and I feel that there is an urgent need for the in-
troduction of such facilities, although not necessarily along the lines
suggested by Sammat.

QUESTION 39: THE PROPOSALS F STRACHEY AND WILKES.
a: 8, b: 10, c: 19.

Remark from Computer Ass. USA

Our feeling is that an ALGOL translator should in princiule accept
the language in its full generality, and when efficiency becomes impor-
tent, 1t should be able to detect when 'snec1al features' (which might
prevent the free use of efficiency technlques) are not present,-to take
adventage of their ebsence. This is perhaps somewhat idealistic and so
rather than restrict the specification of the language to match compi—
ling techniques, we prefer the approach of providing in the source pro-
grem, some hints and promises to the translator.-The Strachey-Wilkes pro-
posals are mostly in this vein, and we find most, but not all, of their
proposals acceptable.

Remark from Regnecentralen, Denmark:

The influence of present machine designs should be confined to the
design of processors for them. Since the demands of »owerful languages
are the most important incentives towerds better machine designs it would
be disastrous if the limitations of present day machines were allowed to
limit the power of expression of the langusges.

Comment from Burroughs} USA:
We did not care for the nroposals of Strachay end Wilkes regarding

[rrophnipuiptgmap i)

Comment from Cambridge, England:

We agree with these proposals in »nrinciple and would bring ebout a
corresponding mejor change in ALGOL rather than inclusion in the existing
language.

ADDITIONAL CHANGE OR EXTENSION: INPUT-OUTPUT.

Comment from San Diego, USA:

We consider it highly desireble that input-output definitions be in-~
corporated in ALGOL at an early date. The datae division of COBOL would be
a good starting point. Input-output capability is an essential part of
working programming systems.

- 47 -
ADDITIONAL CHANGE OR EXTENSION: THE POWER OPERATOR.

Suggestion from Burroughs USA:
Define aﬁb where & and b are type integer to be always of type inte-
ger with the value to be (b negative)
(axax N a)
This 1s conventional with most other compilers and it means a good sa-
vings in object program efficiency. Otherwise the typs of aTb varies at
running time.

Proposal from Remington Rand USA:

-~ (®iitor's notet this proposal is a complete revision of section
3.3.4.3 of the ALGOL 60 Revort, doing essentially the same thing as the
above suggestion from Burroughs The end of the proposal follows).

Reason for nroposal: Makes sure that the type of an expression does
not depend upon the value of a variable. (See Comm. ACM June 1961 Knuth
and Merner). This is, however, only & partial solution to the nroblem
Consider the following example: -

real a,b; integer i,j; Boolean Aj

j 5 zlf A then i else b)

type if A is truc end of real type otherw1se

ADDITIONAL CHANGE OR EXTENSION: SWITCHES.

Suggestion from Burroughs, USA:

Restrict the components of switches to be merely lebels. The state-
ment go to S[n] would be a dummy statement only if n—O would be unde-
fined if n < -1 or if n is too large. This change is motlvated by the
fact that the more complicated designational expressions have not proved
to be efficient or particularly useful, and when they are used the algo-
rithm becomes difficult to follow.

A facility which actually seems to be wanted most often is a 'proce—
dure switch! or a 'return-jump switch' which would be something like

~return switch S:= A B ,C

v 2 e b o e

where A B ,C are procedure names and the statement

S[n] (x) -
would cause A (X) to be called if n = 1, ctc. This apoears to be a more

frequent occurrence than the need for a switch »f the present tyve.

ADDITIONAL CHANGE OR EXTENSION: THE MODULUS OPERATOR.

Sug estion from Burroughs USA: -

Introduce a new <mu1tinly1ng ooerator) mod dnflned for at least in-
teger arguments. We wvould have

a mod b equivalent to a-(a + b)xb

- 48 -
ADDITIONAL CHANGE OR EXTENSION: ONLY SIMPLE FOR-VARTARLE.

Proposal from Remington Rand, USA:

In section 4.6.1 change third definition to read:

{for clause>::= for <simple variable>:= <{for list> do

Reason for reformulation: We feel that subscripted variables were
not intended to be used as the controlled variable in for statements, o-
therwise the discussion in 4.6.5 would have surely have given them parti-
cular mention. If they were intended to be used in this manner, we que-
stion the usefulness of the feature.

ADDITIONAL CHANGE OR EXTENSION: ABANDON CONCEPT OF LOCAL.

Proposal from Remington Rand, USA:

In section 2.&.3,_second paragraph. Change to reed:

'The same identifier cannot be used to denote two different quanti
ties.' :

Reason for reformulation: To relieve the utter boredom of reading a-
ny more nonsense about this feature. More seriously, I think this feature
can be interpreted in two separate ways depending on what the introduc-
tion to Section 5 actually means - the use of such words as 'signifi-
cance' and 'meaning' help to confuse the issue. Most writers on ALGOL use
the interpretation given by Bottenbruch (p. 23-24 - Structure and Use of
ALGOL 60), but this interpretation could not be proved to be true from
the ALGOL report. Another and more useful interpretation could be given
by rewriting the last two sentences of the second paresgraph in section 5.
to read.

'I1f these identifiers had already been defined by other declarations
outside, they are for the time being given a new significence. On exit"
from the block these identifiers will resume 'their old significance but

e S e s e e s Gt e s s s ot v e e T v 7 S e o e e e A e S e s e D it e S e Pore e O P P et S S e e P e i et e P e e Y Y S S T S S e

v e e

This has the effect of saving storage, whereas the other interpreta-
tion produces nothing but confusion.

Naturally the question of values only applies to variables and to
take care of procedure identifiers, etc. .iore explanation is needed.
Therefore, we propose that identifiers should be unique.

ADDITIONAL CHANGE AND EXTENSION: BLOCK STRUCTURE.

Comment from Wegner, England:

In my opinion, the principal shortcoming of ALGOL 60 is the lack of
facilities for expressing a large problem in terms of a number of lexico-
graphically independent subroutines. These cbjections are elaborated in
an apvended note entitled 'Blocks in FORTRAN and ALGOL'. (Bditor's note:
These 5 pages have been omitted as being cutside the scope of the AB).

- Lo -
COMMENTS ON OFFICIAL ADOPTION.

QUESTION 4O: AUTHORITATIVE BODY.

Number of replies with preference no: 1 2 3 b E
ai ad-hoc committee (authors) 10 15 9 5

b. AB + U.S.Maintenance 18 17 6 2 0
c. IFIP 10 5 18 7 1
d. IS0 3 3 5 23 5
e. Other 2 2 1 i 17

Remark from Rutishauser, Switzerland:

The correction of the AR is of course up te those who are responsi-
ble for the defects. It would therefore be welcomed if the ALGOL-committee
could assemble again in order to remove the ambiguities of the AR. How-
ever, this body should not have power tc change ALGOL where the AR is
clear.

Comment from The Facit Group, Sweden:

We strongly sugrest that clarifications and changes in ALGOL are
worked out and adopted by a committee, composed of the authors of the AL-
GOL 60 report and such persons as they wish to add to it. The votes cast
by the U.S.Maintenance Group end the ALGOL Bulletin readers will serve as
proposals to this committee and no more.

Two resasons are:

1. Obviously nobody but the authors of a report has the right to change
that report, uniess the authors delegate that right to another body.

2. The method above - a committee guided by the discussions of the ALGOL
Bulletin and the Comn.ACM - was used to produce the ALGOL 60 revort,
and it worked remarkably well. By contrast the method of mailed que-
stionaires and voting among the readers has not produced convincing
results.

Remark from Kidsgrove, FEngland:

We feel that excellent as the ALGOL Language is it has not received
the universal support it deserves. The prime reason for this apvears to
be that the ALGOL laiguage maintenance and revision is in the hands of a
team of competent amateur enthusiests wi.hout official status. The main
requirement is to preserve the team with its enthusiasm and competence,
but to give it more of an official stature. The situation might well -
change for the better if the ALGOL effort were to receive the supnort,
encouragement, and blessing K from IFIP.

Remark from San Diego, USA:

We consider that the various ALGOL groups have done excellent work.
The ALGOL work should have the official sanction of an international com-
putation organization if that is possible. This is the reason we recom-
mend that the adoption be by an ad-hoc committee or by the U.S. Mainte-
nance Group and ALGOL Bulletin as part of IFIP.

Remark from ALCOR Z22 ALCOR 2002: -
Clarifications and subsets IS0, extensions IFIP. Final aporoval by

IS0.

- 50 -

Comment from Cambridge, England:

ALGOL 60 is the property of the comimittee that formulated the len-
guage. Chenges can only be made by them or by some body appointed by them.
This, of course, does not apply to any future, different languege and in
view of this we leave the answer to question 43 open.

QUESTION L1: TIME FOR ADOPTION OF CLARIFICATIONS OF ALGOL 60.
a. Jan. - June 1962: 26 1/2

b. July - Dec. 1962: 15 1/2

c. Jan. - June 1963: 2

Comment from ALCOR Z22 & ALCOR 2002:
Removal of ambiguities and inconsistencies only: as scon as possible.

Comment from Computer Ass., USA:
As soon as feasible, without recklessness.

Comment from Burroughs] USA:
We should like to see the clarifications come out as soon as possi-
ble.

QUESTION L2: TIME FOR ADOPTION OF SUBSETS.
a. Jan. - June 1962: 13 1/2

b. July - Dec. 1962: 20
c. Jan. - June 1963: 8 1/2
d. July - Dec. 1963: 0
e. Later: 1

Comment from Burroughs, USA:

is gained trying present subsets.

QUESTION L43: TIME FOR ADOPTION OF CHANGES AND/OR EXTENSIONS.
a. During 1962: 5

b. - 1963: 20
c. - 1964: 10
d. Later: 10

Remark from ALPHA K6 USSR:
A partial alternative.

We propose to discuss the Question about variables in the period of
July - Dec. 1962. If the deletion of own variables from the language were
generally adopted it would be possible to do it immediately.

QUESTION LL: REACTION TO THE QUESTIONAIRE.

a. Useful, adequate for final decisions 21

b. Useful, but not adequate for final decisions 28

c. Unwented or harmful 1 (1/2 + 1/2)

- 51 -

Remark from Remington Rand USA:

Surely many of these amblgulties were known 1mmediately after publi-
cation of the ALGOL report and could have been promptly corrected. It is
amazing that two years after publication we are still debating whether to
define & program or not.

In essence, the questionsire is useful but we doubt its efficacy.
One objection we have is that the phrasing of certain questions shows a
less than impartial ettitude, e.g:, Reformulation 12.

Comment from Burroughs, USA:
We are sure this questionaire was a very good idea and that it will
certainly serve a very useful purpose.

Comment from Wegner England:

This questlonalre serves & very useful purpose since by enswering
it consclentiously one. is forced to make decisions on a number of con-
troversial points that have arisen in the last two years. I have found it
particularly useful from an educational point of view and it has given me
a better understanding of the ALGOL language.

However, I do not feel that it is the only method of reaching deci-
sions about ALGOL. Open discussions, committee meetings and private en-
terprise all have thelr place. In this connection, the principal criteri-
on is the quality of the end result rather than the means by which it is
reached.

Regarding further stages in the evolution of international algebraic
languages, I feel that there could be two separate parallel stages of de-
velopment.

1. An agreed set of reformulations and revisions based on replies to
section 2 of the questionaire could be circulated and further debated
for a period of about six months. A set of resulting modified revisions
should then be incorvorated into the revort, and a second edition of the
report, possibly entitled 'ALGOL 63" could then be nublished early-in 1963.

2. At the seme time, the accumulated experience with ALGOL 60 Cco-
BOL LISP and other languages should be used in the formulation of a new
international language, without unduly worrying about compatibility. AL-
GOL 60 has contributed a tremendous amourt to an understanding of the re-
quirements of international langueges for computers. However, if ALGOL 60
is regarded as sacred, and is accorded the hallowed status of an elder
statesman, it might well stand in the way of progress.

