
-3-

During the Symposium in Rome from March 26th to 31st prof. van der

Poel asked the present editor to accept the responsibility of the secre-

tary of the Working Group. To this I answered that this I would accept

provided that I might expect the basic support of some of the more influ-

ential workers in the field, particularly professors F.L. Bauer and K.

Samelson (both members of the original ALGOL comnittee, initiators of the

ALCOR Grouo, prof. Bauer is the DARA representative to IFIP Tech. Comm.

2.). Prof. van der Poel consented in this condition and kindly accepted

to put the question forward to professors Bauer and Samelson. The result

of this mission was a flat refusal on their part to support me on the

grounds that in their view the questionaire of AB 14 is biased.

In view of these developments it is clear that the responsible bo-

dies of IFIP, in establishing the Working Group, deliberately have chosen

to ignore the existence of the ALGOL Bulletin and the information and o-

pinions expressed in it. It is further clear that the attempt on the part

of prof. van der Poelat establishing a working collaboration between the

Working Group and the AB in an informal manner meets with an opposition

which would make this collaboration ineffective in practise. Now, in en-

couraging the ALGOL community to mske use of the ALGOL Bulletin for ex-

pressing their views the editor must feel convinced that the views con-

tained therein will indeed be taken properly into account when official

action is taken. The developments mentioned above and the meeting in Rome

have annihilated this conviction. Consequently the ALGOL Bulletin must

cease to exist.

THE RE?LIES TO THE AB 14 QU~TIONAIRE.

BRIEF NAMES" GROUP MW34BERS TRANSLATORS.
! !

NPL, ~hgl~nd

M. Woodger, Mathematics Division, National Physical Laboratory, Tedding-

ton, Middlesex, England.

Zeiss, Germany

J. O. Kerner, VEB Carl Zeiss, Jena Germany.

SMIL ! S~.,eden

Torgil ~kman, Lelf Robertsson, Avd. for Numerisk Analys, Lunds Universi-

tet, Lund, S~Teden.

Translator for SMIL: March 1962; 1.5 man years; true subset; not recur-

sire procedures, not arrays of variable length.

Syst.Dev.Corp. ,USA

Harold Isbitz, J. Sch~.rartz, H. Bratman, System Development Corporation',

JOVIAL Compiler Staff.

JOVIAL translators for Q7, Q52-V, IBM 7090, Philco 2000, .CDC 160A~: Dec.

1961; 80 man years; dialect; extended variable definition, variable modl-

flers, no recurslve procedures, no own varlables, I-0 operators, string

manipulation.

Royal McBee, USA

Arthur C. Housm~, Royal McBee Corp., Research and Development.

-4-

l~s.vol'i, USA
B.H. Mayoh, Univ. of Illinois.

IDA-Princ eton,_ USA ..

Edgar T. Irons, Institute for Defense Analyses-, Princeto{,

New Jersey, Von Neumaxm Hall.

Translator for CDC 1604: Nov. 1961; 2 man years; true subsets; no nume-

ric labels, Fortran-like input-output.

Facit Group-, Sweden

I. Dahlstrand, S. Laryd, Facit Electronics AB, ALGOL Group Box 13072",

Gothenburg 13.

Translator for Facit EDB 2: Nov. 1961; 3.5 man years; true subset; not

recursive procedures, not p~n; restrictions on variable index bounds,

expressions called by name, and length of identifiers and strings.

Rehn Finland. .-
Rafael E. Rehn, Ma~nmittaushallitus (General Survey Office)-, Helsinki',
Finland.

Eng. El. Atomic, Eng.

B. Randell, L.J. Russell', F. Ford, A.P.Relph, E. M. P. Allsop-, The Atomic

Power Division, The ~uglish Electric Co. Ltd., Whetstone, Leicestershire,

~hgland.

Translator for English Electric DI~JCE ~ 2A: Nov. 1961! 0.5 man years!

true subset; no conditional expressions, no dynamic arrays, no switches',

no booleans, no recursive use of procedureS, single letter identifiers.

Elliott ALGOL, ~hg.

C.A.R. Hoare, R.L.Cook ~, J . Hoare', J . HilLmore' , E l l i o t t B r o t h e r s (London)

Ltd.

Translator for National Elliott 803: Mar. 1962! 3 man years; true subsety

restrictions on switches and procedure parameters. 0nly simple uses of

recursion and own arrays.

ALPHA, USSR

A. P. Ershov, Institute of Mathematics', Siberian Division of the USSR A-

cademy of Sciences, Novosiblrsk 72.

Translator under way: expected Nov. 1962~ 10 man years; ALGOL 60 + (vec-

tors, matrices, etc. as simple variables, complex, chains of inequali-

ties, suoerscripts, initial values, functions yielded by expressions).

Buchholz, Germany

G. Buchholz, Fur~kwerk Dresden Rechenburo.

Oak Ridge, USA

Manuel Feliciano and A.A.Grau, C.J.Atta, L.L.Bumgarner-, Oak Ridge Natio-

nal Laboratory, Progrsrmning research group of Mathematics Panel.

This reply is also supported by the Programming Research Dent., Lockhead

Missiles and Soace Co., California.

Translator for ORACLE: Jan. 1961; ~ man years; true subset; no switches,

no procedures, no blocks. Added feature: tape files, input output facili-

ties.

-5-

SSW-ZEF, Germany

Dr. E. Nuding, mr. Nees., mr. H.P.WOif, miss Warmbold', miss Hecht', Sie-

mens-Schuckertwerke AG. Erlangen.

Dupont', USA

Robert Hunn ! E.I. DuPont de Nemours and Co., Inc., ~ng. Dept. , Wilmington

98, Delaware.

Rutishauser, Switzerland

H. Rutishauser, Zurich (nrivate opinion).

K idsgrove ,_ England

F.G.Duncan, D.H.R.Huxtable ~, E.N.Hawkins-, J.S.Green, A.G. Price-, ~ne ~hglish

Electric Co., Ltd., Data Processing and Control Systems Division, Kids-

grove, Stoke-on-Trent, England.

The group uses the translator for D~JCE written by the ~hg.El. Atomic

(see above).

MNA-group ,. Sweden

G. Ehrling, A. Bring, Swedish Board for Computing Machinery.

The group uses the translator for FACIT EDB 2 written by the Facit Group

(see above).

IAM Bonn, Germany

C.A. Petri, W.D. Meisel ~, G. Schroder-, K.H. Bohling, Institut fur Angewand-

te Mathematik, Universitat, Bonn.

Math. Cent., Holland

E. W. DiJkstra, A. van WiJngaarde~, J. A. Zonneveld (the two latter not

responsible for the answers given), Stichting Mathematisch Centrum, 2de

Boerhaavestraat ~9, Amsterdam, Netherlands.

Translator for Electrologica NV Xi: Aug. 1960; 2 man years; true subset;

own implemented as suggested in Reformulation 23, but own arrays only

with constant bounds; order of declarations at the beginning of a block

somewhat restricted.

Dutch PTT, Holland

Prof. Dr. W.L. van der Poel, Dr. G. van der Mey-, Dr. Neher Laboratory of

the Netherlands Postal and Telecommunications Services, Leidschendam,

Holland.

San Diego, USA

C.L. Perry, E. Ferguson ~, R. Mitchell ~, Univ. of California, San Diego', La

Jolla California.

The group has the N~LIAC translator for the CDC 1604 available. N~IAC

is a dialect, described in book by M. Halstead.

Leeds Univ. , ~hgland

Dr. G,B. Cook, M. Wells, Electronic Computing Laboratory, University of

Leeds, Leeds 2, United Kingdom.

-6-

ALC0R oerma
G. Seegmuller, F. Peischl-, W. Urich, H. R. Wiehle, Rechenzentrum der Tech-

nischen Hochschule, Munchen.

Translator for PERM: Sept. 1961; 1.5 men years; true subset; ALCOR con-

ventions (see ALCOR Z22 below).

ALCOR Z22 Germany.
F. L. Bauer, Paul, Bauma~, Witzgall, Musstopf, I n s t i t u t fur Ange~andte
Mathen~tik der Universitat Mainz~

Translators for a) Zuse Z22: July 1961; 0.75 man years; b) Zuse Z22R:

0ct. 1961; o.25 man years; true subset; ALCOR conventions: not wh~l~, not

~, no conditional Boolean or designational expressions, no recursive

procedures, restrictions on type procedures to prevent side effects.

ALCOR 2002-,.Germa~ny

K. Samelson, Hill, Langmaack', Mathematisches Institu~ der Unlversitat

Mainz.

Translator for Siemens 2002: Dec. 1961; 1.5 man years; true subset; AL-

C0R conventions (see ALCOR Z22 above).

RCA-EDP- USA
R. Hux,'R. Dash, K. Brons °, A. Grace, Radio Corporation of America, Elec-

tronic Data Processing.

BJork, Sweden

Harry Bjork, Inst. of Mathematics', Uppsala University.

Uses the translator for Facit ~B 2 (see Facit group above).

Moore School" USA

Peter Zilahy'Ingerman, Harry A. Freedman, Mrs. Irene Cotton-, Dr. Saul

Gorn, Mechanical Languages~Projects, Room 302 Moore,

University of Pennsylvania, Philadelphia 4, Pennsylvania.

IPM Darmstadt', Germany

Dr. W. Borsch-Supan, W. Barth, D. Stephs~, J. v. Peschke, Institut fur

Praktische Mathematik, Technische Hochschule, Darmstadt.

Translator for DERA: Jan. 1961; 0.5 man years; true subset; FORTRANSIT-

like restrictions, read and write are delimiters, not procedures.

Computer Ass.', USA _

Kirk Sattley, Thomas E. Cheatham, Jr.-, Gene F. Leonard, Robert M. Shapi-

ro, Computer Associates, Inc.-, ~ Winn St.-, Woburn, Mass.

The group has contracted for delivery of an Algol translator during the

summer of 1962.

Regnecentralen, Depmark

P. Naur, J. Jensen, P. Mondrup-, Regnecentralen, Copenhagen.

Translator for DAH(: 0ct._1961; ~man years; true subset; no recurslve

procedures, no own arrays, no value arrays, no integer division, no im-

plication.

Univ. N. Carolina', USA

John W. Cart, III, Mirlam G. Shoffner', Robert B. DesJardins ~, Peter J.

Brown, Computation Center, University of North Carolina.

-7-

m g l a n a

J, M. Foster, D.P.Jenkins, S.N.Higclns-, Royal Radar Establishment-, M~I-

vern, ~hgland,

Stanford, USA

Harold R. Van Zoeren, George E. Forsythe-, John G. Herriot-, James 0rtega,

Beresford Parlett, Computer Science Division, Stanford University, Stan-

ford, California.

The group uses the dialect BALGOL for Burroughs 220: no arrays of vari-

able size, no own, no recursive procedures, no conditional expressions,

no nested block structures.

RCA-LAB,USA

Allen H. Simon, Radio Corporation of America Laboratories.

Has translator for CDC 1604 available: no own arrays, no integer labels.

AR/{, USA

R. W. Floy<, B. Mittman, R.R. Steck-, ;~mour Research Foundation, I0 West

35th Street, Chicago 16, Illinois.

Translator for UNIVAC 1105: Mar. 1962; 2 man years; true subset; no pro-~-

cedures, i and 2 dimensional arrays, read and print added to basic words,

produces USE assembly language.

NDRE, Norway

Jan V. Garwick-, 0.-J. Dahl, Norwegian Defense Research Establishment and

Institute for Atomic ~hergy.

Translator for Mercury for the dialect MAC.

XTRAN-proJ ect,_ USA

Rainer Kogon, Martin Weitzman, IN, 112 E. Post Road, White Plains, New

York.

Translator for IBM7090: Mar. 1962; 2-3 man years; dialect; ALGOL 60 ex-

cept where implementation in the XTRAN source language indicated reasons

for d~viation.

Hockney', ~qgland

R. Hockney, English Electric Co., Ltd., Atomic Power Department Systems

Office.

Has translator for D~JCE (see ~hg.Ei.Atomic above) available.

NBS, USA

J.H. Wegstein, W.W. Youden, National Bureau of Standards

Tubingen,. Germany

K. Zeller, F. Schwenkel', Mathematisches Institut (Abteilung Rechenzentrum)-,

Tubingen.

Have translator for Siemens 2002 available.

Siemens-,_ Germany_

W. Heise, Froehr, Walter, Siemens und H~iske AG. Munich.

Have the translator for Siemens 2002 available Isee ALCOR 2002 above).

-8-

Standard E1 .', Germany

Dr. A. Wilhelmy, Dipl._-Math. W. Heydenreich-, Standard Electric Lorenz AG,

Stuttgart-Zuffenhausen, Germany.

Translator for ER 56: Level 1 (excluding procedures): Febr. 1965, Level 2

(procedure version): under testing| true subset; based on ALCOR conven-

tions, supplied by studies ~n recursive procedures.

AFUALTI, France

F. Genuys, Messrs. Nolln, Lentin, Nivat', Picard, Pitrat', Broise.

BurroughS, USA

J,N, Merner, Don Knuth i L.D, Tprner-, F. Gerbstadt-, R.B. Waychof{, ALGOL

Group of Automatic Progrs~ming, Burroughs Corporation.

Translat_or for Burroughs 220: Sept~ 1960:5 man years; dialect; ALGOL 58

with I/0, without DO, dynamic arrayS, buc allowed arrays with partially

filled subscripts.

Saarland, Germ4my

Dr. W. Handler, H~J. Schneider', D, Jui~ksch, Rechenzentrum der Universitat

des Saarlandes.

Have the translator for Zuse Z22 available (see ALCOR Z22 above).

Remington Rand, USA

C.W. Dobbs ,. P.A. Smethurst-, Systans~Prograwm~ng Deot.'f; UNIVAC Division-,

Soerry Rand, Inc., and A.E. Roberts, General KineticS, Inc.,

Translator for UNIVAC 1107 expected in June 1962.

C~3~bridge, England

D. F. Hartley, J.H. Matthewman, University Mathematical Laboratory', Cam-

bridge.

~nese notes and re~lies on the questionaire are expressions of opinion

and under no circumstances may they be used in any form of voting. We re-

serve the right to change our opinions or to be influenced by future e-

vents •

Wegner, ~hglgnd

Peter Wegner, London School of Economics, Houghton Street-, London W. C. 2.

" 9-

TABLE OF ACTIVITY REPORTS AND T~'SLATOR SPE~DS.

Brief nsme of group No. 5: Teaching 12: 13,14: Name of machine or

of Man Progr. Frac- Pages system ,l with times
mere- years Impl. tlon written for 100, 1000, and
bers - percent - per- publ. 10 000 instructions

cent in minutes
NPL ~, _England 1 0.1 100 0 0 o o 7
Zeis 9 , GermAny i 3 70 20 10 - 10 -

SMIL, Sweden _ 2 O. 2 85 10 5 - - 1 SMIL O.4 4 -
Syst.Dev.Co/p., USA 3 (75) 10 60 30 Note i 0 JOVIAL 0.2 2 20
Royal McBee, USA 1 ~ J 0 0 0

Mayoh, USA 1 0.7 o lO 90 100 25 3
IDA-Princ eton, USA 1 2 5 5 90 5 30 0 coc 16@ 0.5 1 2
Facit Group, Sweden 2 3.5 5 5 90 Note 2 - FACIT ~DB 2 6 7 -
Rehn, Finland 1 O. 2 50 50 0 90 40 0
Eng. El. Atomic, Eng. 5 4 20 20 60 15 0 0Di~..~C~Mk 2A 0.1 1.5-
~lllott ALGOL, ~NG. 4 2 5 5 90 55 - 3 Elllott 803 0.2 2.0
ALPHA, USSR 1 (5) 10 10 80
Buchholz, Germany 1 o. 2 30 70 o 3o 30 -
Oak Ridge, USA 4 5 10 lO 80 80 200 4 0PaCL~ - 4.5 -
SSW-ZEF, Germany 5 0,5 50 50 o 10 100 0
Dupont, USA 1 0~ 2 25 75 0 1 100 0
Rutlshauser Swltzer. 1

I

Kidsgrove, ~gland 5 3 lO 5 85 - - - D~UC~ - I. 5 -
MNA-group, Sweden 2 3 0 0 100 5 5o o FACIT ~DB 2
IAM Bonn, Germany 4 1,5 90 10 0 5 i0o -
Math.Cent. , Holland 3 5 20 40 40 NOte 3 0 Electr. Xl 0'5 3 -
Dutch PTT, Holland 2 2 5 o 95 Note 4
San Diego, USA 3 1 25 75 0 5 - 4 CDC 1604

~ ~
Leeds Univ. , ~hgland 2 2 20 0
ALCOR P~, Germany 4 3 17 33 50 95 750 o PI~RM 1 3 -
ALCOR Z22 ,_ Germany 4 95 Note 5 - Zuse Z22 0.8 6.2 -
ALCOR 2002, Germany 3 90 Note 5 Siemens 2002 0.33 3.2 -

RCA ~DP USA 4 - 25 2
BJork, Sweden I 0 m m 50 5 - FACIT EDB

Moore School ,~ USA 4 3 60 50 10 5o 3o 3

IPM Darmstadt Germ. 4 1 10 40 50 Note 6 0.5 DERA 12 - -

Computer Ass. USA 4 2 0 20 8o 50 50 2
Regnecentralen ,. Denm. 3 4 12 i0 78 80 100 10 DASK .1.5 5 -
Unlv. N. Carolina, USA 4 1 0 0 100 75 25 o
~ , England 3 0.5 10 20 70 5o 5o o
Stanford, USA 5 1 lO 9o o Note 7 25
RCA-LAB, USA 1 O.1 70 30 1 1 lO - CDC 1604
ARF,. USA 3 2.5 2 2 96 0 0 1 UNIVAC 1105 0.2 1.3 -
NDRE, Norway .- 2 2 0 - 100 - 70 150 0.5 Mercury 0.1 1 10
XTRAN Project, USA 2 2 25 25 50 i00 250 - IBM 7090 1 2 20
Hockney, ~hgland 1 0 Note 8 - 0 0 0 D~JCE
NBS, USA 2 2 5o 5o o 80 10 2
Tublngen, Germany 2 1 10 50 0 Siemens 2002
Siemens, Germany 3 - - - Siemens 2002
Standard El. Germ. 2 I - - 100 0 30 0 ~ 56 1 I0
AFCALTI, France 7

Burroughs, USA 6 5 lO 2 88 100 100 2 Burroughs 220

0.3 2 20
Saarlaud, Gernmny 3 2 5o o 50 15 100 - Zuse Z22
Remington Rand, VSA 3 6 o 17 83 - - - UNIVAC 1107
Cambri~e, England 2 Note 9
Wegner, England 1 0 iO0 0 0 5 1 0

- 10-

Notes to table of activity and translator speeds~

Note 1. Qu. 12:99 percent. Qu 13:1000 pages ~, does not include operatio-

nal programs, these approximate 10000pages. The JOVIAL compilers were

written in JOVIAL.

Note 2. The ALGOL Group as such seldom writes ALGOL programs. About 50

percent of the programs in our company are written in ALGOL.

Note 3. Qu. 12: Too vague to be answered. Practically all service compu-

tations and all numerical experiments in ALGOL 60. Machine coding for

non-numerical activities (linguistic investigations, algebraic transla-

tors) and the construction of machine coded procedures (a library for the

benefit of the ALGOL user). Qu. 13: hundreds and hundreds, if not thou-

sands.

Note 4. Qu. 12:5 percent. Qu 13:200 pages. The fraction of programs

written in ALGOL is growing fast. The translator being developed is de-

scribed in ALGOL.

Note 5. No count of the number of pages written in ALGOL is possible.

Note 6. Qu. 12:20 percent. Qu. 13:150 pages. This does not mean that we

do not like ALGOL. Most programs are written for the IBM 650. Since there

is no ALGOL compiler for that machine most programs are written in FOR-

TRANSIT.

Note 7. The have been 1000 pages of BALGOL written by people who are also

writing ALGOL 60. Other people at Stanford have written something like

50 000 pages of BALGOL.

Note 8. The absense of work reflects only the absense of a reasonably

fast translator. We avait ALGOL on EDF 9. Deuce ALGOL is too slow except

for very small problems.

Note 9- Statistics relating to teaching, programming and implementation

of ALGOL 60 in this laboratory would be 1~isleadlng. A translator for AL-

G0L is at present under construction.

- 11 -

TABLE OF REPLIES ON SIDE EFFECTS AND REFORMULATIONS.

QUESTIONS

NPL-, _England
Zeiss, Germany
SMIL, Sweden _
Syst.Dev.Corp., USA
Royal McBee, USA
Mayoh, USA
IDA-Princeton USA

!

Facit Group, Sweden

Rehn, Finland

~g. El. Atomlc_, England

Elliott ALGOL, Eng.

ALPHA USSR

!

Buchholz ,. Germany

Oak Ridge, USA

SSW-ZEF, Germany

Dupont ~ USA

Rntishauser, Switzerland

Kidsgrove, England

MNA-group, Sweden

IAM Bonn, Germany

Math. Cent. , Holland

Dutch PTT, Holland

San Diego, USA

Leeds Unlv: , ~qgland

ALCOR PER~, Germany

ALCOR Z22, Ger~uy

ALCOR 2002, Germany

RCA EDP, USA

BJork, Sweden

Moore School USA

S~

IPM Darmstadt, Germany

Computer Ass. ,_ USA

Regnec entralen ,_ Denmark

Univ.N.Carolina, USA

RRE, ~hgland

Stanford, USA

RCA LAB, USA

ARF ,~ USA

NDRE, Norway

XTRAN project, USA

Hockney, England

NBS USA

!

Tubingen, Germany

Siemens, Germany

Standard El., Germany

AFCALTf France

! -

Burroughs, USA

Saarland, Gern~ny

Remington Rand, USA

Cambridge, England

Wegner, },lqgland

19 REFORMULATION (blank means reply = a)
20 ̧ 10 i l o + 2O 2O+ 3O

6789 112345 6789 12345 6789
i

abe bb t b b C b b

ace

aac~ b b

b-e c
 C

caS b

aac d b b

aas b

bas bc cc cbc

aa~

aac

cbc b b c

bac C C bc

ab- C C b cbb

baa cbc bcc c bcb

aad c d

aab

b-b C CC C bcc b cc

aac ac c

aaa

aaa

hff h h h

b-: C h b c

aa- b b

abb

bcc cbcc cccl~-bc c

bcc cbcc

bcc cbcc

baa c

aaa

i

abcl b n b c

bcc bcc dcb bccb C C ccc c bcb

aab C C

aaa
aaa
bab
baa
aaa b bd dd Id dP

bbb

bbc bc ccb CC b clb c

aac b

abc bb bb

m l ,~,
. m i n d

i

abc ~c cb dc d b [b cb

caa bb c

bcc c dcb bcb! c

aac C C bcc C bc b c

aa

bgg C bb bbb ib c

aaa C C

fcc cc C b C c cb b bcc c c

ab C c

abc bbb bfb bb ~c bb c
 c

f means a/b, g means (b+c)/2-, h means reference to additional remarks

(below).

- 12 -

Note to table of replies on side effects and reformulations.

Hockney, ~hgland: As to the reformulations I am indifferent to the exact

manner of removing ambiguities. Far too much attention has been paid to

these questions, which I consider to be of little importance compared

with changes and extensions.

COMMHNTS ON SIDE EFFECTS,

QUE~TION 20 QUESTION 21
Solution by Solution by
definition restriction

a or b c a or b c d
Accept Oppose Accept Oppose Do not

underst.
Totals: 40 6 25 19 1

QUESTION 19:
a: Prefer definition

Total 29 28 i 13 11
b: Prefer restriction

Total 17 9 5 10 7
c: Indifferent

Total 3 3 2 1

Alternative proposal for solution by restriction from Eng. E1.Atomic, ~g-

land:

Procedures called by function designators must not change the values

of non-local variables, or contain go to statements leading out of the pro-

cedure body.

Alternative proposal for solution by restriction from ALPHA, USSR:

If a function designator calls a procedure declaration the body of

which dynamically contains an assignment of a value to a global variable

then the value of the variable is undefined outside the body.

If a function designator calls a procedure declaration the body of

which dynamically contains a go to state~ent leading out of the procedure

body then the transfer involved is undefined only if it does not lead to

the program exit.

Comment from Rutishauser ! Switzerland:

It cannot be denied that side effects of function designators are

something that was not originally intended by the ALGOL-co~mmittee; indeed,

section 3.3.3 clearly excludes them at least as formal parameters are con-

cerned. Accordingly any attempt to make side effects legal by a change of

3.3-3 and defining the order of evaluation of primaries is a deep-carving

change of ALGOL 60.

- 13 -

Comment from ALCOR Z22", ALCOR 2002, Ger~any~

The real problem touched by ~uestions ~!2~.2_1 " is the following:

Shall (A) the definition of the fundamental concept of eXpFesslon be made

to conform to the procedure concept introduced in ALGOL 60, or (B) should

not this be the other way round.

The discussion in 2.1. assumes alternative (A)tO b~ accepted: of,

last sentence on page 2 of questionaire 'these effects will make a more

strict description necessary'

Page 3, first paragraph after list of 'troubles,! i0f these 3

troubles those of nos. i, 2, 5, 6, 7, and 8 may be cured in a fairly ob-

vious way '.

The QUESTION (2.1) is formulated with considerable blas ~, since two

proposals

(a) additional specification of the meaning

(b) restrictions on the use of the language

are presented on an equal footing. In fact, however ~, even (b) is less re-

strictive than the present status according to the ALGOL 60 report.

Section 3~3.3 says:

An arithmetic expression is a rule for computing a numerical value.. .

For variables it the actual numerical value is the current value (assigned

last in the dynamic sense)°..

The first sentence implicitly excludes any assignment of valUes to ac-

tual or global parameters of procedures called by function designator in

expressions. Furthermore it excludes jumps out of procedures called by

function designators since in this case no value is defined~ The second

sentence excludes change of values of variables in the expression by func-

tion designators in the same expression since in this case 'assigned last

in the dynamic sense' is undefined.

Therefore '2.1.2. Proposal for solution by restriction, means a change

of the report, since it would e.g. permit use of one function designator

leading to a jumo out of the expression.

Proposal from RCA LAB, USA:

I propose the following compromise: A procedure maybe declared ~to

have nonexplicit side effects by replacing orocedure by libertine ~roc~u_-

re in the procedure declaration. If a procedure is to be used as a func-

tion designator, and is not declared to be libertine then it must not

change the value of any nonlocal identifiers or go to any nonlocal la-

bels. Nonlibertine procedures have the important prooerty that all their

effects are explicitly indicated by their actual parameter list. Adding

this definition to the defining report requires the follow.ring changes

Section 5.4.1 CHANGE TO READ

(procedure declaration~b: := procedure(procedure heading)(procedure body) 1

(type)orocedure~procedure heading~procedure body) I

libertine procedure~procedure heading~procedure body) I

(type~libertine procedure (procedure heading~(orocedure body)STOP

ADD to TEKT

5.4.7 libertine procedures.

A procedure must be declared to be libertine if it is to be used as a

function designator in an eXpression which should not be rearrangeable (cf.

section 3.3.3) because the procedure contains nonlocal identifiers or la-

bels. If this rule is violated the expression is undefined. A procedure

should be declared to be libertine if it can be used as a function designa-

tor and either changes the values of identifiers nonlocal to the procedure

or can go to labels nonlocal to the procedure. With this restriction it be-

comes pos.sible to detect the conditions under ~rhich an expression is rear-

rangeable, and hence to have more efficient compiled programs. STOP

Also l ibertlne must be added to the index. With this definition in m/nd, I

am no~, ready to m~e mot counter proposal.

I ~rould change the proposal for solution by definition by adding the

following

ADD TO TEXT

An arithmetic expression or a primary is said to rearrangeable if the

order of evaluetion of its primaries makes no difference other than that

due to the finite accuracy of computer arithmetic. Equivalently an arith-

metic exoression or primary is rearrangeable if (a) it Contains no llber-

ti~ie procedures (cf. Section 5.4.7) and (b) it contains no identifiers

N~,hich are also used in a function designator as an actual parameter called

by name and (c) it does not contain t~o function designators each of which

has a parameter position specified to be a label or ~itch identifier.

The actual order of evaluation of a rearrangeable arithmetic expres-

sion or primary is undefined. Individual compilers may take advantage of

this to improve the efficiency of compiled programs. As an example the a-

rithmetic expression

(A + Y)~,2 + A + Y)~P(Y)
is rearrangeable if the argument of procedure P is called by value and P is
not a libertine procedure. In either case it contains the rearrangeable
primary

(A+Y)%2+A+Y) STOP

Reason for rereformulation. As I see it the major arguments expressed in

section 2.1 of the questionaire are:

a) Side effects are good in some circumstances. It may be true that

they were not originally envisaged, but they seem useful w and will probably

grow more useful as experience with them increases.

b) Because of side effects the order of evaluation of expressions can

make an important difference. Because of this the compiler cannot choose

the order of evaluation so as to make the object programs more efficient.

The price we must pay for the ability to have side effects namely ieffi-

cient programs, is simply too high.

The above compromise still allows one to use side effects with the

full generality desired by the proponents of side effects. In addition it

is made easier to detect conditions ,,hich are sufficient to allow rear-

rangement of expressions (by implication of section 3.4.3 similar rules

hold for Boolean expressions). In almost all cases of interest it becomes

possible to do what ever rearrangement is possible, even if it !s only

possible for part of an expression-.

Webster defines libertine as 'one ~zho is ~.rithout restraint'. If any

one can think of a better srord I would be hapoier.

I am afraid it may be desirable to insist on specifications. If a is a

formal parameter called by name then A~8 is not rearrangeable to A~2~2~2",

since A may be a function designator srith no arguments.

- 15 -

Cormnent from Burroughs-, USA:

Question 19.

In many cases it is wise to take restrictions out of a language~, so

the user needn't have to spend much time learning what he can't do. In

this case, though, it seems the advantage of allowing expressions which

can have different meanings because of the order of evaluation is slight

indeed. If someone wants to use this feature, it will not be clear to o-

thers what he is doing, It seems the rules for the order of evaluation

are more difficult to learn than the restrictions. And it is difficult to

explain to someone what good he wil:l be getting after taking the trouble

to learn all the rules. Furthermo.re, this will slow down the machine lan-

guage programs in all expressions, while the actual number of times when

this trill be used to advantage is very very small. The choice here seems

to be clear: if we allo~,~ expressions which are ambiguous unless order is

specified, We must specify an order i if we don't allo~T such expressions,

we needn't specify an order The order mentioned in this proposal is the

order we had interpreted already from the original ALGOL 60 report. But,

we think, people who would like to see these fancy rules of order put in

the language tend to think of ALGOL as a -language to play arround with

and theorize about but not as a tool. Let's not say, ,Well, suppose the

man writes such-and-such; how nice. We haven't ruled this outs Now what

is the most general definition we can give to this construct.' Rather let

us stick to useful things.

Question 20-21.

Although ~re much prefer the solutiorr by restriction, we have answer-

ed '(b+c)/2' because N.re are shocked that ,kind 2' function designators

are allot, red,

To quote your ~ report-, 'Function designators define ~ingl~ numerical

or logical values.' If a function designator contains a ,go to' leading

out of the procedure, it has defined n_o value at all. This is not then

a function designator. Allowing such seems also %o be out of the spirit

of the-report, for in an expression the 'if-then' always must be follow-

ed by 'else' so that a single value is alweys defined.

Thus, the solution by restriction ~.ze favor is simply restriction (1)

here; function designators of kind 2 are patently illegal,

Con~nent from Remington Rand, USA:

Although we have answered Q19 as a) and b) we really feel that some

additional conmment is needed here.

After initial difficulty in reading the ALGOL report, we found the

Backus normal form to be an excellent means for defining syntactical

rules, but that, in general, the semantic explanations were too concise

to be really helpful in difficult situations. For example: sentence 1 in

section 5.2.5.

Our feeling is that ambiguities and obscurities in the language_. ~

should be resolved, as far as possible, by alterations to the s~t_ax, and

only when this is found to be imoossible should additional definitions or

restrictions be employed.

We are aware that many groups interested in ALGOL are opposed to

this view and regard the ALGOL syntax as a sort of holy writ which should

be altered only as a last resort. We consider that this view igrleres the

fact that the ALGOL syntax is not perfect and allows, by default, many

features in the language which were not intended. We hope to prove this

point in some counter proposals to the reformulations suggested in the

questionaire.

http:Furthermo.re

- 16 -

Co~nent from Cambridge, ~gland:

We are strongly opposed to any language that allows side effects in

the evaluation of expressions. However, in order to achieve these prin-

ciples we feel that drastic revisions to ALGOL 60 ~ould be and are neceS-

sary. Our replies to further questions must therefore be taken as opini-

ons on ALGOL 60 itself and B£~ as proposals for a future language.

Comment from Wegner, ~gland:

The note facility (Strachey and Wilkes) should probably have been

mentioned-i-n-connection with side effects. The note facility may be Used

either as indicated by Strachey and Wilkes to indicate greater Qenerality

where necessary, or as indicated byDi~kstra to indicate lesser generali-

ty. Strachey and Wilkes regardj*the most cormmon usage as 'normal' and

therefore not requiring a not~, whereas Dijkstra prefers to regard the

most general usage as ,normal,. As pointed out by Dijkstra, the former

approach is subjective and leads to floating semantics as common usage

changes. I ~Tould therefor~ agree with DiJkstra in suoporting a policy of

treating the most general case as the normal one, and in indicating by

means of notes, restrictions that permit greater efficiency of implemen-

tation.

COMM~TS ON REFORMULATIONS 1 - 30.

ReforMulation I: Verbal definition of block and program.

a: ~2, b: 8-, c: i, d: 0.

Alternativ~ proposal ffr6~ the FFacit Group', S~,~eden ~, regarding

REFORMULATION i, PART 1

• . . Each declaration i~ attached to and valid for One block• A program

is a self-contained block, i.e. a block ~,~hich is not dontained within an-

other statement and make~ no use of other statements not Contained with-

in it. STOP

Reason: See reformulation 9.

Alternative proposal from IPM l~ar~tadt ~, Germany: ~

The sentence proposed in part i states that 'sequences of staCements

may be combined into .. blocks by insertion of statement brackets'. This

is not true since more than inserting statement brackets is necessary to

create a block. We therefore propose the following reformulation:

Part 1: section 1, end of 3rd paragraph

ADD:

(i.e. the basic symbols begin and end). STOP

Part 2: s~ction~ 2, end of 4th pa~aph. ---

CHANGE TO READ:

... defining a function. Declarations are combined with sequences

of statements to form a block by using statement brackets• Each

declaration is valid for the block it is attached to only.

A program . • STOP

We agree to your reformulation of the 5th paragraph.

Comment from RCA LAB, USA:

I would add to the text of the reformulation

ADD TO TEXT Such a compound statement or block is syntactically equiva-

lent to a statement. STOP

Reason for change. The definition of a program is unclear unless one knows

this.

- 17 -

Comment from Remington Rand, USA:

Part 1: 0bvlously..the original wording in the ALGOL report is correct as

it stands, although it is not completeJ However, the reformula-
tion is incorrect as no sequence of statements can be combined
into a block by insertion of statement brackets.

Part 2: Why not: - ,A program is a self-contained block etc. ", or is
this too restrictive for some. See also Reformulation 9.

Coamaent from Wegner-, ~agland:

Reformulate definition of 'program' as a single sentence at the end

of the fourth paragraph:

,A statement ~rhich is not contained in another Statement Is called

a program' •

Reason: The definition suggested in the questionaire is Inacurate in

that it does not t~-.b global symbols (sin, cos) into account. It is also

muddling since it contains both essential and inessential information.

Reformulation 2: The comment conventions.

a: 34-, b: 4, c: 13, d: O.

Co~nent from Rutlshauser. S~,Itzerland:-

This would be a change of the AR. but still fails to cover cases

llke (~ and ~ stand for string quotes)

prlntext (~ conmaent nonsense~) end;

On the other hand the change is quite unneedecl since it is of course un-

derstood that a program is read from left to right; therefore if in doing

so one comes to one of the symbols comment or end or ~', then the reader

has to disregard (or to take soecial action in-~ase of a string) what

follo~rs until the corresponding terminating symbol. Thus the examples gi-

ven by P. Naur (and M. Woodger) are all unambiguous.

Alternative suggestion by W.W. Youden~ NBS, USA:

I can't help feeling that the following is what was intended for the

'comment, convention and that it is preferable to the syntax change re-

commended by M. Woodger.

Reformulation 2 Section 2"3, last paragraph.

ADD TO TEXT:

and conversely, that any of the three sequences of symbols shown in

the left-hand column may, in any occurrence outside of strings or outside

of <any sequence not containing >, be replaced by the symbol shown in

the right-hand column without any effect on the action of the program.

STOP

In other ~.;ords-, ~rhen in the'course oT scannlng an ~LGOL program from

left to right, and either ' ; comment,, or 'begin comment, is'scanned,

thereaft-er everything including comment,-be~n, end and else is ignored

until a ';' is reached. Similarly, when 'and' is-scanned, thereafter eve-

rything is ignored until either 'end' or ';, or 'else' is reached.

- 18 -

If one uses the above reformulation-, the three ambiguous examples

can only be interpreted as follows:

Examp i e Int eror otat i on

b_e6in comment be.gin comment A; P; Q end begin_ P; q end

; co~nent begin comment A; P! ; P;

end begin - c_o_~en_t_ A; P! end; P!

Suggestion from Zeiss-, Germany:

Change to read:

The sequence of basic symbols: ' is equivalent to

! comment <any sequence not containing begin_ or ;>

...... <b2~i_n- or ;> '

b_e~in comment < - - - b_2~!n- or ;> begin-

<begin_ or ;>

STOP.

~ith these conventions the examples supplied by Woodger are in each case

reduced to

b__e~i_n P; Q end

;P;

With the third convention given in reformulation '2 the examole sup-

plied by D iJkstra is reduced to the sequence on_d- b e~in'Klaus; and'this is

wrong because the next symbol after an end- must be an else or an end- or

a ; I don't know how to correct this.

Alternative proposals from the Facit Group, Sweden regarding

Section 2.3, last paragraph, CHANGE TO READ:

By equivalence is here meant that the action of a program is un-
changed if the follo~.ring transformation is made: Read the program from
beginning to end and replace any occurence outside of strings of any of
the three structures of the left hand column by the symbol sho~m in the
same line of the right hand column. STOP
Reason: The comment conventions are quite good as they stand and only a
clarification is necessary. ' . -

S e c t i o n 2.3, line beginning ~rith _end, CHANGE TO READ:

end <letter string> end STOP '-

Reason: It is a frequent error to forget ~h~ semicolon (;) after an 2nd,

thus destroying the following statement by mistake. In fact, we have been

forced to let. our compiler give error printouts on all other end-comments

than letter strings.

Counter proposal from the Dutch PPT, Holland:

Section 2.3, last paragra!~h

After .. . action oT the program

ADD TO TEXT: The ,comment' situation encountered first in the text when

reading from loft to right is having precedence over later ,comment, si-

tuations contained in the sequence to be disregarded. STOP

Reason for reformulation 2: This does not change the original text. It

ly supplies the missing precedence rule.

- 19 -

Comment from Burroughs, USA:

This does not seem like a reasonable solution. First, people are

writing comments using other than 'basic symbols., ~or example look at

example 2 at the close of the ALGOL report, where Y~ is used. (Several

algorithms have even let semicolons slip into the c~mment.)

One needn't prohibit the word 'begin', merely say each comment runs

to its next delimiter. Insyntax,

<semicolon>::~ ~J~ co~,t <string of symbols except ~> ;.

<Begin>::= be~inlbe~in comment (string of symbols except .>

Then use <semicolo-~-and ~beg~-as constructs in the remainder of the

report. This part of the report has been incompatible with the rest any-

way, and we thi~ should have been put into syntax Tormoriginally.

There doesn't appear t O b~any reason to keep '~B' from the words

following '~nd'. Howev~r~ don't see the need for such general comment

conventions following '2B~' anyway, since it seems to hurt syntax che-

cking. A man leaves out a semicolon after the word ~B~, and he's lost a

whole statement with no way of knowing it. We strongly would prefer

<end> : := ~B~J ~ <letter string>

or at most end<identifler>.

Comment from Remington Rmnd, USA:

We see no reason for these changes, especially the third sequence.

We sug~est that the original comment conventions are entirely adequate.

Reformulation 3; Verbal definition of scope.

a: 42, b: 7, c: 1, d:l.

Cormnent from Wegn~r, ~gland:

a. The term 'quantity' is usually associated with a numerical magni-

tude, and seems to be the ~rongwor@ for d~noting objects which may be

non-numerical. The term 'object' or 'value' ~rould seem to be more appro-

priate. Whichever term is used, its meaning should be explicitly defined

e.g. in section 2.~.3.

Suggested Reformulation: Add at end of first paragraph of section 2.4.3.

Identifiers are symbolic names which ma~designate either numerical

quantities (simple variables, array elemcnts), or non-numerical program

~onstltuents (labels, s~Titches, procedures, formal parameters). The term

'quantity' is used to denote any object designated by an identifier.

b. Scope should be associated with identifiers rather than with the

quantities designated by identifiers.

Suggested Reformulation:

2.7. Identifiers, Declarations and Scopes.

An identifier is introduced into a program by means of a declara-

tion. Declarations define the 'scope' of the identifier associated with a

given quantity.

The scope of an identifier is the set of statements over which the

identifier associated with a given declaration can be used. An identifier

is said to be defined in statements within the scope of the identifier

and undefined elsewhere.

Reformulation 4: Evaluate subscripts from left to right.

a: 39, b: O, c: 12, d: O.

- 20 -

Comment from ALPHA, USSR:

This reformulation is implied only by side effects. If they will be

deleted from the language in the spirit of AB 14.2.2.2, then this stipula-

tion will become unnecessary,

Comment from Remington Rand, USA:

We object to this on the following grounds. An expression is a rule

for computing a value. A formal language fails in its purpose if an ex-

pression can conceal a statement, We do not feel that the sugcestions in

20 or 21 are satisfactory solutions to the problem, We realize that alte-

rations to the syntax and semantics of function designators, procedure

statements and procedure declarations which could resolve the problems-

~.rould require considerable time and effort. We feel strongly, however,

that this approach should be taken,

Refor~nulation 5~ ParameteFs called by name in functi6n designators.

a: 42, b: 2, c: 6, d: 1.

Comment from ALCOR, Germany:

The original reading of the report shows clearly the intention.

Comment from Wegner, England:

Reformulate as follows:

... when applied to the actual parameter part of the function designator

given in the expression.

Reformulation 6: Definition of the integer divide.

a: 37, b: 5, c: 5, d: 2.

Comment from SMIL ~ Sweden:

a ÷ b = sign (a/b)~entier (abs(a/b))

If b is a factor of a, the above arithmetics could give an unwanted re-

sult. As a/b is an expression of type real, this implies that a/b only

approximates an integer (cf. 3.3.6). C~ns~uently the result could be

wrong by one unit.

Comment from Rutishauser, Switzerland:

That division by 0 is undefined is trivial and need not be mentioned

in the AR.

Comment from DiJkstra, Math. Cent.-, Holland:

I should llke to have added a ~ayning that in this particular defi-

nition the 'a/b' represents the exact, mathemetical quotient.

Comment from R~m~ngton Rand, USA:

We do not object to this change but don't really see the reason for

it. Bjork's comment seems trivial - why is it important that a and b are

called by value? Surely the standard functions ~on 't by 'sneaky'.

Reformulation 7: Definition of relation.

a: 48, b: 1, c: 1, d: O.

- 21 -

Comment from BCALAB, USA:

I favor instead the suggestion of AB 12.5. With so much fuss about

removing minor restrictions I see no reason for adding another one. I

propose instead the follo~ing amplification of section 3.4.3 of the defi-

ning report. It is more in the Spirit of section 3.3-3 and reformulation

12.

CHANGE TO READ ... given for arithmetic expressions in section 3.3.3. In

particular in the more general Boolean expressions which include if clau-

ses, one out of several simple Boolean expreSsionS is selected on the ba-

sis of the actual values of the Boolean expressions of the if clauses.

This selection is made as follows~ The Boolean expressions of the if

clauses are evaluated one by one in sequence from left to right until one

having the value ~_~_2 is found~Thevalue of the original Boolean expres-

sion is then the value of the first Boolean expression follo~ing the Boo-

lean~ich N.~s found %o be true' (The largest Boolean expression found in

this position is understood). The ConStruction

else <simple Boolean expression~

is equivalent ~ith the construction

else if true then <simple Boolean expression> STOP

Comment from Remington Rand, USA:

-We entirel~ggree. This kind of change greatly improves ALGOL and is

not 'restrictive' see Reformulation 12.

Reformulation 8: Switch designator with Subscript outside range.

a: 39, b: ~, e: 6, d: O.

Comment from Rutishauser, Switzerland:

The wording

' .. have no other effect than the evaluation of expressions .., is cer-

tainly sufficient and understandable for both the general user and those

vho like side effects.

Comment:fromSMIL, Swed,~n:

As, owing to reformulation 4 section 3.1.4.2 has changed, section

3.5.4 should not refer to 3.1.4.2~ Section 3.5.4. ought to be formulated

so that it does not refer to section 3.1.4.2.

Alternative proposal from 0ek Ridge USA.

Change 4.3.5 to read

A go to statement is undefined if the designational expression is

undefined.

Comment from Wegner, ~hgland:

Change to read:

4.3.5. Go to an undefined svitch d~signator.

If the value of the designational expression is not an integer in

the range 1 to n, where n is the number of entries in the switch list,

then the only effect of the go to statement will be that which might have

been induced by the evaluation of expressions.

Reformulation 9:_Syntactic dgfinition of program.

a: 38 I/2, b: 7.5, c: 4-, d: 0.

- 22 -

Comment from Rutishauser:

I am strongly opposed to the proposed reformulation ~, on grounds of

the !~olicy that vested interests in ALGOL 60 should b~ protected. We have

always understood that in the introduction of the AR 'compound state-

ment' includes also blocks and therefore built our compiler on the basis

that a program begins with begin, possibly preceded by a label. I propose

(program> : : = ~compound stat~en~ l~block>

Incidentally solving a problem ~rhich can be described by a single state-

ment needs no computer at all and therefore I do not see why such an ef-

fort should be undertaken to make programs not beginning ~ith begin pos-

sible.

Alternative proposal from the Facit Group ~, Sweden:

(program>: :-- (blocky

Reason: The proposed change ~program> : := (statament> ; STOP ~ould make all

present ALGOL programs illegal, since they do not contain a final semico-

lon (;). Moreover, it seems unnecessary in practice to have programs that

do not contain declarations.

Alternative proposal from ALPHIC, USSR

(program~ : : = ~unlabelled block>

Reason: more precise formulation.

Alternative from SSW-ZEF, Germany:

~program> : : =(statement> STOP

Comment from Kidsgrove, England:

Surely this should read~

ADD TO TEXT: ~programme) : := ~unlabelled statement> ; STOP

in order to conform to Reformulation 10.

Comment from Dijkstra r Math, Cent/, Holland:

I prefer

~program~ : := ~unlabelled blocky l~unlabelled compound~ ~

Motivation: By forcing the proEram to start with the symbol 'b_e~In, and

to end ~,Tith the corresponding 'end' we have a uniform rule to establish

the lexicographical; extc~nt of the program. 0therwise it is difficult to

distinguish between, say ~,

'~f 3~4 t he~ cos(5)' and ,if 3~4 then cos(5) els_e cos(g)'

This becomes a little bit more marked if ~e replace ,cos, by the proce-

dure identifier of the kind 'print'. The last sentence of Reformulation

10 can then be omitted (viz. 'The statement of a program must be unlabel-

led since it has no embracing block. ').

. °

Remark from San Diego-, USA:

The definition 9 does not appear to be consistent ~ith reformulation

1 in that it does not specify that the statement is self contained. Both

reformulation 1 and reformulation R restrict the expansion of a pro~m

at execution time.

Cormnent from Remington Rand, USA:

We propose:

(program~ : : = ~block) STOP

Counter proposal from Cambridge-, ~land:

~program~ : = ~unlabelled block) l~unlabelled compound~

Reason: Avoids contradiction ~.rith Reformulation 10.

- 23 -

Comnent from Wegner-, ~hgland:''

A program is an unlabelled statement - see Reformulation 10. .-

Note: I would much prefer the possibility of a program being labelled,

so that it can be referred to by another program. However, this is a-

gainst current ALGOL 'scope ' philosophy.

Refornmlation 107- Local be haviour of labels.

a: 35, b: 13, c: 3, d: 0

Comment from SMIL',/S~,reden:

As ~e can see, the first sentence to the reformulation (Labels be-

have as though they were declared in the head of the innermost embracing

block in ~hich they occur attached to a statement)still leaves obscure

the question aboutthe" scope of a label;

Example: begin real rl; ...; Li:L2: begin real r2; ... end .. end

According to the reformulation L2 should behave as though it were declar-

ed in the block LI:L2: besin r~al r2~ end.

We suggest that the def{nitions in 4.11 i [s-h~uld be changed in such a

way that a labelled block is a compound statemeht:

<compound statement> : := <unlabelled compound> I

<label> : <compound statement> l<la%el> : <block>

<block> : := <unlabelled block>

Alternative from ALPHA, USSR:

(1) add to text ... innermost embracing block oP compound statement ...

(2) delete the last sentence.

Reason: We think it would be more logical.

Remark from Oak Ridge-, L~A:

There is no reason for not:permitting programs to be labeled. This

may be desirable for programmer 's infori-~&tion.

Remark: Define 'attached to a statement.'

Alternative from SSW-ZEF, Germany:

2) ADD INSTEAD:

... Labels behave as though they ~rere declared on the head of the inner-

most embracing block in which they occur attached to a statement. In this

context the body of a procedure declaration as ~Tell as the statement fol-

lowing a for-clause ~,.ill act as a block, vhether it has the form of a

block or not. Labels of a program are ~rithout consequences for the run

of the program. STOP

Remark from H. Rutishauser ~ ! S~.Titzerland.

I am opposed to reformulation 10 but N,~ould support it if the last

sentence N,'ere deleted. The reasoning that a label cannot be in front of a

program (this incidencially ~Tould also touch vested interests) has a dan-

gerous parallelism in the case of procedures ~,~hich are not declared in

the outermost block of a program, ~,hich might be forbidden with the same

reasoning. But Just such procedures ~hich are declared outside a program

play a very important and useful role in ALGOL.

24 -

Remarks from Computer Ass., USA: .-

O u r only objection is to the last sentence of the addendum, concer-
ning labelling the entire program, For the publication of algorithms ~,
this point has little relevance. From the point of view of including AL-
GOL ~.Tithln a larger structure of prOgramlng languages ~, there are advanta-
ges to naming a program by attaching a label -to its entire statement
(which presumably is a block). 0perationally, this serves to assign a
name to the program, which enables the larger system to refer to it. Con-
ceptually , the labelled program appeaTs as a ~ub_-block within (rather
than some k~tld of-appendagm to) some 'universal, block. At the time of
translation, the 'universal, block is the oneln which the library proce-
dures are 'declared'; at the time of execution, the 'universal' block is
the scope of the computer's control program. Semantically,:-a ~oto the
program name from ~rithin the program must, for-consistency, represent a
new (recursiv~) initial entry into the program, with whatever (re-)initi-
alization activities are required.

Comment from Wegner', England:

The current reformulation is an improvement. However, section 4.1.3

as a N.rhole is still rather obscure and could be improved. The last para-

graph is particularly cryptic. The follovlng paragraph would be clearer:

When a statement ~rithin a block is itself a block the rules which

determine scope are quite subtle. Ccmmider for Imstance ~ block A embed-

ded in a block B. An identifier ~rhich is declared in block A is local to

block A and non-local to the enc l-osing block B. If an identifier of the

same name is declared in block B, the t~o identifiers are completely dis-

Joint in their scope. The identifier declared in B has a scope that is

lexicographically non-compact, since the block A creates a 'hole' in the

scope.

Reformulation 11-: Go to into compound statements are allowed.

a: 44, b: 2, c: 3, d: 2.

Remark from ~hgl. El.Atomic', ~qg. :

Unnecessary.

Comment from ALPHA USSR:

We object to this reformulation because of the correction to reform.

10.

Remark from Tubingen ~, Germany:

For the sake of clarity one might add

~rithin a block

following

statements.

Comment from Wegner, }~gland: .

This addition is ,.elcome. Hoe,ever, the distinction bet~.reen blocks

and compound statements in this respect should be noted also in a less

specialised section, e.g. as part of Reformulation 10 or as part of the

introductory discussion at the beginning of section 4.

Refor~lation 12: Precedence of conditions and for clauses.

a: 31, b: 17, c: 3, d: 0.

- 25 -

Comment and alternative proposal from ALPHA, U~SR:

We object this reformulation because we think it is not in the spi-

rit of ALGOL. The matter is that we obtain a rule of syntactic analysls

which is not implied by metalinguistic formulae only as we have in all

other syntactical constructions. We now more incline to the Woodger's

proposal.

Remark from Oak Ridge, USA:

We oppose only the wording.

Comment from Kidsgrove-, England:

No doubt this is correct and expressed conclsely, but it is not at

all elegant. Why not adopt ~he so-called restrictive solution. This impo-

ses only a rule of notation, destroys none of the pwer of the language,

and has the great advs/qtages of simplicity and clarity.

Comment from Computer Ass., USA:

So far as ~e knot.T, this is the only place where the s~_t_~_ of ALGOL

is ambiguous, in the sense that a single well-formed statement of the

source program might be decomposed, according to the syntactic rules, in

two essentially different ~.~ays (vith correspondingly dlffergnt semantic

effect). Esth~tiqally, .~e ~rould like to see the syntax amended to remove

this ambiguity, Tather than adding a patch to the pros 9. If this consti-

tutes too 'major' a rewriting, the ad hoe rule ~.Till do, and the present

formulation is acceptable.

Alternative from RCA LAB, USA:

I would change the reformulation as follows:

CHANGE TO READ

...matching b e~i_ns and en_d_s. In other words th_e_n_ and/ e_l__s e_ are ana-

logous to parentheses. A t_h_en is llke an open parenthesis, and either an

else or a semicolon is the associated closed parenthesis. In determining

the else or semicolon associated with a given then one follows the usual

rules for hierarchies of parentheses with one difference~ "One ignores any

else or semicolon contained between matching begins and en_ds. STOP

Reason for reformulation. Improved clarity, and closer analogy to other

rules of the language.

Remark from Tubingen, Germany (translated from German):

It seems to me that reformulation 12 makes the counting process dif-

ficult~ I ~Tould therefore prefer that brackets (begin end) were required.

- 26 -

Suggestion from Prof. Harry; E. Goheen, ~n collaboration ~ith G.A. Bac_he-

lor, D.W. Digby, P.H, Hartman, and S.P. 0gard, 0rego~ State University,

Corvallis Oregon:

We suggest the following changes in syntax:

i. In sections 4.1.1 arld 4,5.1, change the definition of

<unconditional statement> to readt

<unconditional statement>: :~ (basic statement> l

<unconditional for statement> I<compou~d state~lent> l<block~ ~,

2. In 	 section 4.5.1, also change the definition of

<conditional statement> to read:

<conditional statement~ : : = <if statement> I

<if statemen©else<statement> l<condltional for statement>

3. In section 4.~i~, omit the definition of <for statement> and replace

it ~ith the follo~rin~ tire definitions:

<unconditional for statement> : := (for clause><unconditlonal statement~ I

<lab~l~: <unconditional for statement>

<conditional for statement>: := <for clause><conditional state~ent>l

<label~ : <conditional for statement>

In the semantics, it iS understood that the term 'for statement' refers

to both conditional and unconditional for statements.

, °

Co~nent from BurroughS', USA:

This rule is clumsy as stat~, and it ~Tould be better to make the

syntax agree ~rith this rule. One way to do thls is:

<unconditional statement>:" (basic statement> I

<for statement 1>

(compound stat ament> 1 <block> 1

<if statement> else

<unconditional statement>

<conditional statement>: := <if statement> l<f0r statement 2~i

<if Statement> else

<conditional statement>

<for statement 1>: := <for clause><unconditional state~ient>

<for statement 2>: := <for clause><conditional statement>

This seems to give all the generality you are looking for while also gi-

ving all the speed ~e are looking for.

Con~nent from Remington Rand, USA:

We strongly object to this proposal (see initial comments) and re-

co,end the adoption of the proposal in 10.1.3.2. Moreover we de not a-

gree that the proposal in the questlonaire ,has the advantages of analo-

gy with other rules of the language and a minimum of changes to the wor-

dlng and examples oT the report. ' The proposal in 10.1.3.2 inserts the

~,rord ,unconditional' and the delimiters begin and end - three minor

changes. (begin and end must also be inserted in the first for statement

follo~Ting the label BB-in example 2 of the report).

Our main reason for supporting the proposal in 10.1.3.2 is this: the

report insists that a statement following a then should be unconditional

for obvious reasons. However, the report defines a for statement to be

unconditional. Unfortunately the for statement as d?fined is either con-

ditional or unconditional depending on the statement follo~ing the do. We

feel that the proposal of 10.1.3.2 is not 'restrictive .~, is sensible, and

is in the spirit of sections 4.5.1 and 4.1.1. Moreover, we feel that this

change is much more important than that proposed in Reformulation 7.

- 27 -

Comment from Wegner', England:

It is not-at all clear from the report why the substitution of sta-

tements for $1", $2-, $3 or S~ should give rise to ambiguity. Please illu-

strate with an example.

Refor~lation 13: Side effect of empty conditionals.

a: ~2, b: 1, c: 8, d: 0.

Alternativ~ from SMIL, SwedEn:

The second form of a conditional statement is <if statement> else

<statement> according to 4.,5.1, To avoid mis~mderstanding we suggest'that

the reformulation should be: In the case of the second form of condltle-

hal statement if none of the Boolean ex0ressions B1, B2 or B3 of the if

clauses is true, the ~hole conditional statement will have no effect o-

ther than that which might be induced by the evaluation of the Boolean

expressions.

Alternative from Rutishauser', Switzerland:

I would support 'In the case of the second form of the conditlonal-

statement, if none of the Boolean expressions of the If-clauses is true,

the whole conditional state,rent will have no other effect than the evalu-

ation of Boolean expessions.'

Remark from Computer Ass., USA:

A quibble about phraseology: The wording 'second form of conditional

statement' could be taken to refep, not to the second illustrated form

at the beginning of the paragraph, but rather to the second alternative

definiens: <if statement> else <statement>, in which case the 'clariflca T

tion' suggested is false• Suggest rewording equivalent to: ,In the case -

of a conditional statement in the form of the second illustration above.'

Reformulation 14.: The definition of the step-until element.

a: 35 ~, b: 5, e: 10, d: 0.

Alternative from Eng.E1..Atomic ~, England:

As in Questionnaire, with last sentence

CHANGE TO READ

•. same type as V and $2 of the same type as B. STOP

Reason for re-Reformation.

Saves unnecessary type transfers.

Alternative proposal from 0sk Ridge ~, USA:

Change to read:

v: = A!

sl:= B;

s2:= C; '"

Li: i '(v-s2) sign(sl) < 0 then

b26 n

S;

v:= v + sl;

 o__to_ Li

2nat

~,here v is .. in the program. The evaluation of i, B, and C has no el-

fect on v.

http:Eng.E1.

- 28 -

Counterproposal from the MNA-group ~, Sweden:

CHANGE TO READ:

a) If V is a simple variable or a formal parameter corresponding to a

simple variable as actual parameter (a formal parameter called by value

being regarded as a simple variable):

$1:= V:= A!

$2:= B;

$3:=C;

LI: !f'slgn (S2)x(SI-S3) > 0 ~2B

~_t~ Element exhausted;

Statement S;

V:= SI:= S1 + $2;

b) if V is a subscripted variable

V = D[Ii-, ...InJ

or formal parameter 2alled by name corresponding to a subscrlptedvarl-

able:

ZI:= If;

$1: D 1 , . . Z n] : = A;

$2:= B;

S3:= C;

u: if si n(S2) (sl-s3) > o t_hen

~o_to Element exhausted!

Statement S;

D[ZI'; ... Zn]:= Sl:= Sl + S2;

Here Si ,82,$3 and Zl, ...Zn are auxillary/varlables, The type of $1",

$2 and $3 is = type of V in both cases and Zl, • Zn are of type inte-

ger. V is the controlled variable .. in the program.

Reason for change: A feeling that in many cases changes in the values of

B,C,V and the subscripts of V induced by the execution of statement S are

un~nted and should be suppressed. If changes are wanted the more general

while-element can be used. In this way the s te~-until-element can also

more easily be given a fast implementation.

Con~ent from RCA LAB USA:

Rather than $1 and $2 I prefer identifiers with mnemonic value, say

VT~4PORARY and BTEMPORARY.

Con~nent from Burroughs-, USA:

It seems a shame that $2 is of type real. This is very inefficient

on a machine, if the transfer Tunctions have 'to be appligd. For e~mple

consider the most cohort case 'for i:= 1 step 1 until n' where i n are

. ------. . ,

integer, it necessitates 3 transfer functions each time through. Was thls

decision reached because the type of a call-by-name ~xpression, or of

i~J -, are not d.~fined at compilation time. It doesnt seem to solve

those problems any~.ray. We suggest $2 has the same type as B.

- 29 -

It would also be lots more efficient if the sign of B had to be eva-
luated only once. Therefore, we would replace this code with the effect
of the following code: -

switch SW:= if $1 (C ~2B Element exhausted elae L, L, If $1) C

~2~ Element exhausted ~2 L;

$1:= V: = A;

s2:= sign (B);

sw[s2 + 2]

L: Statement S;

$1:= V:= V + B;

sw[s2 + 2];

Comment from Remington Rand, USA:

We oppose this only on the grounds that it is pointless. We would

like to see an ALGOL in which
s i g n (B) ~ (V - C) = (V - C) ~ s l g n (B)

(s e e comments on R e f o r m u l a t i o n 4) .
Also B r i n g ' s comments seem t o be n e e d l e s s l y p e d a n t i c . I t h i n k moat

r e a d e r s i n t e r p r e t t h e ALGOL s t a t e m e n t s i n s e c t i o n 4 . 6 . 4 . 2 a s d e s c r i p t i v e
i n t h e same way a s t h e copy p r o c e s s f o r p r o c e d u r e s . As s u c h , t h e o r i g i n a l
s t a t e m e n t s a r e more c o n c i s e .

Refor~lation 15: The equivalent effect of a procedure statement.

a: 45, b: 4, c: i, d: i.

Comment from Remington Rand, USA:

The new description is hardly different from the old and does not

answer Bottenbruch's question. Either leave the original sentence un-

changed or describe in detail the workings of a recursive procedure.

Reformulation 16: The order of value assignment.

a: 42, b: 1, c: 8, d: O.

Comment from Burroughs-, USA:

You seem to have an implicit rule which ought to be made explicit;

everything in the value part must be specified In the specification part.

(We like this rule.)It would be clearer If one wrote; e_.~.,

'real value X; integer arraz value Y! label value L,' etc. ~,

don 't you think.

Reformulation 17: Types of value parameters

a: 46, b: 4, c: O, d: 1.

Comment from SMIL, Sweden:

The last sentence of section 4.7.3.1 is somewhat unclear when consi-

dering formal parameters being labels called by value.

Comment from Burroughs, USA:

Here that implicit rule we Just mentioned seems to be implicit a-

gain, so we hope you add that rule to section 5.4.5.

Comment from Remington Rand, USA:

You might make an implicit rule explicit here, and/or in section

5.4.5- by adding.

,All formal parameters called by value must be included in the spe-

cification part. '

" 30 -

Refor~mlation 18: Strings. as actual parameters.

a: 46, b: I, c: 3, d: O.

Counterproposal from NPL, ~land:

CHANGE TO READ:

4.7.5.1. Strings supplied as actual parameters in procedure state-

ments can only be used by procedure bodies expressed in non-ALGOL code

(cf. section 4.7.8). STOP

Reason for counterproposal: Section 4.7.5.1. was false (see AB 13.2 Weod-

ger). Reformulation 18 stated that the string parameters must be use~, and

and was unnecessarily lengthy.

Alternative from DiJkstra, Math,Cent., Holland:

'.. in further procedure statements or function designators', because e-

ventually they can only be used.. '

Motivation: The follp~ring procedure is crazy, but it should be legiti-

mate :~ " •

'~rocedure FUNNY(a-,b); s t_ri~ b; real a; a:= a + I '

Comment from Burroughs', USA:

Change to 'in further procedure statements or _~ction d2si~3ators",

etc.

There seems to be no way for the translatorto tellJwhen the proce~

dure body is written in code. We suggest the declarator 'code procedure'

for this.

Reformulation 19. Strings can only be called by name.

a: 49, b: i~ c: 1, d: O.

Refor~lation 20: Call of:designational expression by value.

a: 41, b: 2, c: 7, d: i.

Suggestion from SMIL ~, Sweden:

Expressions cannot be called by value.

Comment from ALPHA, USSR:

We strongly object this proposal. ALGOL has no mechanism to assi~_ a

value of a designational expression to any identifier.

Example:

~rocedure GO TO (i); value i; ~ B ~_~ 1 2~;

end of example

How c~-you explain the work of the program after the replacement of

the procedure statement by the procedure body in terms of basic state-

ments.

Incidently, there is a contradiction with the text of reformulation

17 because formal parameters which are designational expressions and cal-

led by value are not given any type.

Con~nent from Rutishauser, JSwitzerland:

Section 4.7.3.1 is cristalclear since it requires an e~licit as-

signment which would be impossible for labels. Thus for~ parameters

corresponding to labels cannot be called by value. Anything else would be

a change of ALGOL 60.

- 31 -

Comment from Burroughs, USA:

Add a statement that if a designations/ expression called by value

reduces to a switch whose subscript is out of bounds it is undefined.

Reforgmlation 21: Verbal characterization of declarations.

a: 50, b: 0, c: i, d: 0.

Com~lent from Wegner, ~hgland:

Quantities ar~ normally associated with numerical magnitude. Some o-

ther term such as 'objects' should be used if a m0dification is intro-

duced.

H~ever, the original formulation seems preferable. Declarations

serve to associate properties with identifiers rather than with the ob-

Jects named by identifiers.

Reformulation 22: .. identifiers lose their local significance.

a: 50, b: i, c: 0, d: 0.

Co~nent from Burroughs-, USA:

This doesn't seem to exPlain it any better than before. How about

'... all identifiers which are declared for the block lose the signifi-

cance they had in that block.,

Reformulation 23: The meaning of own.
a: 32, b: 11, c: 6, d: 1.

Co~nent and question from ALPHA, USSR:

We support the idea but we do not understand one point: ,Whether

they remain accessible depends on whether the exit is made to a place

within the scope of the identifiers,.

Example:

b2~in integer n,m;

n:= 3;

begin own inte~2r - n;

n:= 5

en_a_;

m:= n

end of example

Is m equa[-{o 5. If so it is bad, if not we don't understand the sentence

mentioned.

Remark from Rutishauser-, S~ritzerland:

The main problem, namely whether different calls of the same proce-

dure (having own-declared variables in its body) define the same or dif-

ferent sets of oN~n variables, is still not quite settled by the present

lengthy wording (I would prefer the s~e set of own-variables).

Colmnent from Kidsgrovg-, ~hgland:

Although we have, for the purposes of compilers-, accepted the defi-

nitions given here as they stand (except for dynamic o h/n arrays)-, we are

very unhappy about the whole thing. The new proposal is something which

is not in the original intention of the report, seems to be Justified by

no practical applications (I refer to o!n / in recursions)-, but is merely a

system which can be implemented. We think that the idea of own needs

much more close examination; NJe would not like to see it abandoned alto-

gether.

- 32 -

Co~nent from Computer Ass., USA:

We thoroughly ap0rove of the doctrine as stated concerning own vari-

ables. However, the sentence: 'Thus every entry into a block .. -wily

make the same set of values of own variables of this block accessible,

still allows the absurd interpretation facetlou~iy proposed by Ingerman.

It should perhaps be amended to make clear that 'every' means 'every

time, within a single execution of a single instance of the program'.

Comment from Remington Rand, USA:

We do not see how an exit from a block can be made to a place which

is within the scope of the identifiers of the block. We feel that this

section should be re-written-in a more positive fashion with the sort of

example found in Bottenbruch's primer. Much of the semantic difficulty in

this passage and in th~ALG0~ report can be traced to the use of phrases

such as 'with regard to, and 'with respect to,.

Comment from Wegner, England:

Section 5, fourth paragraph. Change to read:

Declarations for simple variables and arraysmay be marked with the

additional declarator Dim. Variables marked with o~ have their values

preserved between successive activations of the block in which the decla-

ration occurs, whereas values of non-own variables are lost between suc-

cessive entries to the block. Local non-own variables must be recomputed

from non-local variables during each entry to the block, whereas own va-

riables have their values carried over from previous activations of the

block. When a block is called recursively the values of own variables are

transmitted between successive levels of activation.

See also note to QUESTION 37: D~ETION OF OWN FROMLANGUAGE.

Reformulation 24: Admit non-constant array bounds in outermost block of

program

a: 36, b: 3 ~, c: 11, d: 1.

Co~nent from Burroughs-, USA:

You haven't mentioned explicitly in the report that s~andard proce-

dures other than analytic and transfer functions may exist, have you.

This should be mentioned.

Proposal from Saarland, Germany:

Delete:

'Consequently,

Colmnent from Remington Rand, USA:

Although a programmer may. wish to use parameters from an input medi-

um to specify subscript bounds, we do not see the practicality of using

function designators to read these values. We would Prefer to see the o-

riginal sentence left in the report, even though it does 'restrict' the

language. We cannot honestly see the point of Woodger's device. Surely a

programmer would require the subscript bounds elsewhere in his program

and would normally employ a procedure statement to assign the input va-

lues to variables. The array could then be declared in an inner block.

Comment from Wegner, ~hgland:

Section 5.2.4.2 is unsatisfactory when the deletion has been made.

The following sentence could be added:

However, subscript expressions may be made variable even in the ou-

termost block by the use of global identifiers of code procedures (e.g.

procedures associated with input and output).

- 33 -

Reformulation 25: Evaluate bound expressions in order.

a: 40, b: O, c: 10, d: 0.

Suggestion from San Diego-, USA.

We suggest adding:

... in the order in which they appear (left to right).

Comment from Remington Rand, USA:

Opposed on the same grounds as Reformulation 4.

Reformulation 26: 0~m arrays.

a: 26 ! b: i0 , c: 12 , d: 1.

Remark from Oak Ridge ~, USA:

We would prefer a reformulation which makes the values of components

undefined whenever the bounds are changed.

Rel~rk from Kidsgrove, England:
This is bound up with 23, above. In our versions we do not allow

dynamic o~,,m arrays.

Comment from Burroughs, USA:

Ws do not see any justification for treating own arrays with varying

size. It is true that this facility is difficult to obtain using only the

other features of ALGOL, but we think the process is so inefficient, amen

who wishes to use this should think up a better algorithm sohe doesn't

need to waste the computer time doing this. We w~nt to see this paragraph

cut down to the following:

'The program is only defined if the values of the subscript bounds

evaluated at the second and following entries are the same as those eva-

luated at the first entry.' STOP

Comment from Cambridge, ~hgland:

We see no justification for the restriction Imposed by the last two

sentences of 2eforT~ulation 26 and would have them removed.

Co~nent from Wegner, England:

Delete the second half of the suggested addition, i.e. the section:

In the case of ... entries into a block.

It seems perfectly feasible that a recursive block might require ar-

rays whose dimensions differ between successive activations. Complete

symmetry should be preserved between non-recursive calling of a block and

recursive calling of a block. I do not see any difficulties in extending

this principle to o~m arrays.

See al~o note to QUESTION 37: DELETION OF OWN FROMLANGUAGE.

Reformulation 27: Mes~uing. of switch declaration

a: 48, b: 2, c: O, d: O.

Reformulation 28: Procedure body as block.

a: 43, b: 7, c: i, d: O.

- 34 -

Alternative proposal from the Faclt group, Sweden:

The procedure body (together with the specifications of the form1

parameters) always acts llke a block, whether it has the form of one or

not. Consequently the scope of any label attached to a statement within

the body or to the body itself can never eXtend beyond the procedure bo-

dy. In addition, the identifier of a formal parameter must not be declar-

ed anew or attached as label to a statement within the procedure body.

It may well be declared or used as a label within a subblock of the pro-

cedure body. STOP

Reason: There is no sense in declaring a formal parameter in such away

as to make it altogether inaccessible.

Comment from Remington Rand, USA:

We object to the concept of for~l parameters being attached as la-

bels to statements as this can serve no useful purpose. We also object to

the concept of declaring formal parameters within a procedure body. This

concept is completely opposed to the purpose of formal parameters. Also,

what happens to the value of a formal parameter which corresponds to an

actual parameter called by value.

Refor~lation 29: Type procedure called by procedure statement.

a: 38, b: I, c: 12 d: O.

Remark from Rmtishauser:

The effect of placing a function designator as procedure statement

is not defined by the AR. Thus 'making an implicit rule explicit' can on-

ly mean that we state :'procedures which are declared withanaddltional

typ~-declarator in front, cannot be called through a procedure state-

ment'.

Comment from Burroughs, USA:

We think it illogical to allow this case. Consequently, 'a type pro-

cedure may not be called as a procedure statement' is the rule we accept.

This is only common sense, isn't it.

Conmlent from Wegner, England:

Is this rule really intended. It would seem that the use of a proce-

dure statement to define the value of a procedure identifier is a natural

one, although it cannot be easily implemented within the framework of an

anonymous stack. Perhaps procedure statements should be abolished alto-

gether, since they tempt the user into erroneous usage.

Reformulation 30: Types for name parameters.

a: 34, b: 5, c: 8, d: 2.

Remark from Dijkstra, Math. Cent., Holland

I should prefer a transfer function to be invoked.

Alternative from Dutch, P~, Holland:

ADD TO TEXT: However, if specifications for parameters called by

name are included, the values of the actual parameters will be transform-

ed into the types as given in the specification by means of the transfer

functions. STOP

Reason for reformulation 30: An actual parameter called by name does not

need to have the same type as the specified type (cf. AB 14.2 Nagao).

- 35 -

ADDITIONAL AMBIGUITI~.

Reformulation 31. THE ~ OF THE CONTR0~ VARI~E IN THE ~R S~TE-

MEET.

Proposal from ~ng. E1.Atomic-, ~hg.:

Section 4.6.5. Second Paragraph.

DELETE:

If the exit undefined after the exit. STOP

Reason for reformation.

Ambiguous in the case where V is a 9ubscripted variable, whose subscripts

might be altered by evaluation of B, C, the controlled statement, or even

V itself.

Comment from Kidsgrove ~, ~hgland:

Am I right in thinking that section 4.6.4.2 (subject to RefoxY~ala-

tion 14) and section W. 6.4.3 are intended to provide rules for the inter-

pretation of for statements2 In other N.Tords, that a for statement is in

general an abbreviation for other ALGOL statements of the form indicated.

If this is so, then I do not see the need for section 4.6.5. The

first sentence in any case needs rewriting because of possible side ef-

fects in the evaluation of the designational expression in the go to sta-

tement. The second sentence would seem to allow an inaccurate implementa-

tion which did not agree with that defined by 4.6.4.2 and 4.6.4.3; if

this sentence were suppressed, what harm coul@ come.

And what is meant by 'controlled variable'? If we have something li~e

begin . .; i:= ; ... end~

-- 7

what is it that is undefined on exhaustion of the for list?

The whole array A ?The elements A[i] corresponding to the values taken by

i during the execution? The A[i] corresponding to the original value of

i?

I am in favour of stating explicitly that 4.6.4.2 (revised) and

4.6.4.3 define the action of a for statement, and of suppressing ~.6.5

altogether.

Comment from IPM Darmstadt, Germany:

In section 4.6.3., the meaning of 'advance, is not quite clear in

case of a for list after the last assignment and the corresponding execu-

tion of S have been done. In case of a step-until- or while-element the

assignment after the last (intended) assignment is clearly defined, but

not in case of a for list. Of course this is irrelevant according to

4.6.5 since, after that, 'test' finds that the for list is exhausted. Ne-

vertheless we feel that this point should be clarified.

In the following sentence the term 'last assignment, apparently

means the assignment after the last intended assignment and the corre-

sponding execution of S. But we feel that the unbiased reader will mls-

understand this point.

We therefore propose the following reformulation:

DELETE: Test .. done. STOP

ADD INSTEAD:

However, if the for ldst has been exhausted, 'advance' merely trans-

mits this fact to 'test'. 'Test' determines if the for list is exhausted.

STOP

- 36 -

Reformulation 32: ACTUAL FOCAL C0RRESPOND~NCE OF TYPE.

Proposal from the Facit Group , Sweden.

4.7.5.2 ADD TO TEXT: Often integer and real parameters can be used

interchangeably. However, if there in the procedure body occurs an as-

signment to a formal parameter, specified to be of type r~l, the corre-

sponding actual parameter must be of type rea_l, not I n_te~er. If a formal

parameter, specified to be of type integer, is used in the procedure body

in other ways than left part variable, then the corresponding actual pa-

rameter must be of type i nt_e~er.

Reason: It is not clear to what extent real and integer parameters may be

used interchangeably. From 4.7.5.5 and AB. 14, reformulation 30, one

might get the impression that they may not be used interchangeably at

all; on the other hand it is expressly stated in 3.2.4 that the standard

functions operate indifferently on actual parameters of both types. The

other extreme would be .to permit interchangeable use freely, even in the

cases forbidden above; in that case the running program must be able to

invoke transfers from real to integer dynamically. The above proposal is

to be taken as a compromise. It ~rould, for instance, rule out the 9to-

gram in AB. 14.2.

Reformulation 33: SCOP~ AND PROCEDUR~ STAT~4ENTS.

Proposal from NPL, ~hgland:

Section 4.7.6, second sentence.

CHANGE TO READ:

A procedure statement ~ritten outside the scope of any quantity

which is non-local to the procedure body, or to the bodles of proce ~

dures called directly or indirectly from within the procedure body, is

undefined. STOP

Reason for reformulation: Improved accuracy (cf. ~B 13.5 Woodger).

Note from Burroughs, USA:

Section 4.7.3.2-.

ADD S~TE~ICE. These ,systematic changes' do not apply to identlflers

which are non-local to the procedure body. They do, however, apply to all

local switches and labels which conflict with switches or labels which

can be associated ~rith an actual-parameter switch.

Reason: Improved accuracy, makes switches more worthwhile parameters (See

Knuth and Merner ACM Conml. June 61", footnote 3)

Reformulation 34: FORMAL PARAMETERS AS INDEX BOUNDS.

Proposal from the Facit Group, Sweden:

5.2.4.2 ADD TO TEXT:

The formal parameter of a procedure declaration may not enter into

bounds of array declarations in its procedure body (but well into array

declarations of subblocks ~rithin the procedure body). STOP

Reason: At present it seems that formal parameters called by value are

local to the procedure body, and hence must not be used in bounds, where-

as parameters called by name may be used; ~Je question whether this diffe-

rence is really intended and propose that it is removed.

- 37 -

Reformulation 35: ADMIT own arra~

Proposal from RCA LAB, USA:

Section 5.2.1 of defining report.

CHANGE TO READ

<array declaration> : != a rr_a~<array list> I

a Era~<array list><local or own type>ar~<array llst> STOP

Reason for reformulation. Corrects an aparent oversight of the original

report.

Reformulation 36: NON-LOCALS IN PROC~DUREBODIES.

Proposal from IPM Darmstadt, Germany:

Section 5.4.3., end of paragraph:

ADD TO READ:

. .
 appears. Procedure declarations which contain global parameters

in its body and appear outside the scope of any of these globals, are un-

defined, even if it is used only in procedure statements inside the scope

of those globals. STOP

Reason: Why troubling the compiler at the time when a procedure declara-

tion is processed.

Reformulation 37 : SPECIFICATIONS OF NAME PARAMETERS.

Proposal from the Dutch PT~, Holland:

Reformulation of 5.4.5, last sentence

CHANGE TO READ: In this part no formal parameter may occur more than

once. STOP

Reason for reformulation 35: When specifications may be included this

means that they need not be included. Then the sentence that formal para-

meters called by name may be omitted is Just saying again what has alrea-

dy been said.

Proposal from RCA LAB, USA:

Section 5.4.5 of defining report.

CHANGE TO READ

... may be omitted together. In particular if and only if all for-

real parameters are called by name the entire specifications part may be

omitted. STOP

Reason for reformulation. It is not clear under what conditions the spe-

cification part may be dropped. I get the impression that many oeople

feel the specifications part may be dropped at will. If this were so then

every general ALGOL compiler would have to be able to operate in the ab-

sence of specifications. But then what would we need specifications for.

Even if the latter interpretation is intended the defining report seems

to be consistent with the above reformulation, so some clarification is

nec essary.

- 38 -

Reformulation 38: THE ASSIGNM~T TO THE IDeNTIFIeR OF TYPE PROCEDUR~S.

Proposal from the Facit Group:

5.4.4. there must, within the procedure body', occur an assignment of

a value to the procedure identifier

CHANGE TO READ:

there must, within the procedure body-, occur one (or more) assign-

ments of a value to the procedure identifier STOP

Reason: From the original wording one may get the impression that only

one assignment were permitted.

Proposal from Eng. E1.Atomlc, Kugland:

Part I Section 5.4.4.

CHANGE TO READ:

For a procedure declaration to define the value of a function desig-

nator, there must, within the procedure body, occur one or more assign-

ment statements, at least one of which must be obeyed, which assign a va-

lue to the procedure identifier STOP

Part 2 Section 4.2.1

CHANGE TO READ: (left part>::= <variable>:~ l<procedure>:=

STOP

Reason for reformation.

Clarifies the phras~ 'assignment of a value to the procedure identi-

fier' ,-and the sentence ,Any other occurence • activation of the pro-

c edur e ' •

Proposals from Elliott ALGOL-, England:

Section 5.4.4 end of first paragraph.

ADD TO TEXT:

Hot.fever, this assignment may not be made by writing the procedure i-

dentifier as an actual parameter called by name. STOP

Reason for addition. To prevent the situation in which certain replaced

occurrences of the parameter inside the procedure body should activate a

recursive call, ~rhile others merely cause an assignment of a value to the

function designator.

Section 5.4.4

'occur an assignment,

CHANGE TO READ

'occur at least one assignment' STOP

Reason for reformulation: The revised text explicitly permits more than

one assignment.

Comment from Kidsgrove-, England:

The syntax of 4.2.1 and 3.1.1 should be extended to allow assignment

to a function designator. (And the semantics amended accordingly.) The

wording of 5.4.4 is not explicit enough. Is it intended that (dynamical-

ly) only one assignment to the procedure identifier should take place.

Can alternative assignments be written. What is the meaning if the as-

signment is in a repeated loop.

The second sentence surely apolies only to occurrences within ex-

pressions - that is, not on the left hand sides of assignments.

- 39 -

Reformulation 39: NEW METALINGUISTIC OPERATOR.

Proposal from Zeiss, Germany:

I _s~est to add a ne~ metallnguistic operator:

<any string> means that there is not standing <any strin@~. Then I sug-

gest to write

3.3 Arithmetic expressions

o oo

<factor> : : = $<primary> J<factor>T<primary>

<term> : : = <mult. op><factor>$<ter~<mult, op><factor>T

<simple arith, exp. > : := <add. opl><term>~ult, op .> J<empty><add. op>

<tern~><mult.op.> j<simple arlth, exp.><add.op>

< t e r m b ' < m u l t . o p . >

<arith. exp> : := <simple arith, exp.><add, op.> J ...

and similar for 5.4 Boolean expressions.

This mode of expression makes clear the rules of precedence and does not

allow the vrong

syntactic units b + c-, b + c/d

of the expression a~b + c/d.

Reformulation ~0: EXPRESSIONS WHOSE TYPES CAN ONLY BE KNOWN AT RUNNING

TIME.

Question from Facit Group -, Sweden:
" In the program e_xample:

Boolean b; integer il~ i2, i3; real r;--~-

~{~_l ~ b t_h_en il else r; i3:= 11"I~2;

the type of the conditional expression can only be decided at running

time.. The same holds for the expression with exponentiation (integer or

real, according as 12 is positive or negative).

In this a correct interpretation of the ALGOL 60 report.

If so, what is your reaction to defining expressions of these kinds

as type real.

Reformulation 41: MEANING OF else IN EXPRESSION.

Proposal from Burroughs-, USA:

Section 3.3.3:

CHANGE LAST LINETO READ

else if true then <simple arithmetic expression> else

<arithmetic expression> STOP

Reason: The example given ~as not ~rell-formed according to the syntax.

mailto:strin@~
http:<tern~><mult.op.>
http:<termb'<mult.op.>

- 40 -

Reformulation 42: THE EXAMPLE OF A FOR STAT~NT.

Proposal from Burroughs I USA

Section 4.6.2:

CHANGE TO READ

.. for J:= I + 6, i st e~ 1 until N-, C + D do

A[k , J] : =
Reason: The example given was confusing because it ~ets into an unending

loop, unless V1 > N originally, or if N, I, G, L, C, D or V1 is a func-

tion designator ,Thich changes the value of V1.

Reformulation 43: THE ~XAMPLE OF A DU~4YSTAT~4ENT.

Proposal from Burroughs, USA:

Section 4.4.2:

CHANGE LAST LINE TO

2~!~ I: = i; JOHN: 2~

Reason: Previous example using three dots was not in keeping with the o-

ther examples which were valid ALGOL constructs.

Reformulation 44: LEXICOGRAPHICAL ORDER.

Suggestion from Wegner-, ~hgland:

Section 4.3.5, second llne:

Replace 'write-up' by ,lexicographical order'.

- 41 -

TABLE OF REPLIES ON SUBSETS-, CHANGES AND ~D(TE~SIONS, AND OFFICIAL ADOPTION.

SUBSETS CHANGES AND EXTENSIONS

25 30 31 33 35 37 39

29 32 34 36 58

Npf, ~41ana no a a no b b b b yes a b g

Zelss, Germany no a a no bb a ab

SMIL Sweden no b b no - - c c no b c c

Syst, Dev. Corp. , USA no b a no - a- a

Royal McBee, USA no a a no

Mayoh, USA no a a - -acab bbb

IDA-Princ eton, USA no b a no c b a c no b b -

Facit Group, Sweden yes a a no b b b b yes a b a

Rehn, Finland no a a no b b b b - b c -

Eng. El.Atomic, ~hg. yes a c yes c c c c no b b c

Elliott Algol, Eng. yes a a yes b b c no b c c

ALPHA USSR no a a yes - b c c yes a b c

Buchholz ,. Germany no a a no b - b b no b b -

Oak Ridge, USA no a b no b b c b yes a c c

SSW-ZEF, Germany no a a no b b b b no b a b

Dupont, USA - am - - b a a yes b b -

Rutishausgr, Switzerl. - -bbc cc

Kidsgrove, ~qgland yes a a no a a c f yes b b c

M~,TA-group, S~Ted~n no a a no b b b b no b b b

IAM Bonn ,. Germany yes b a no b b b c yes a c -

Math. Cent, Holland no c c no c g c c no b c

Dutch PTT, Holland no a a no b a a c no b a c

San Diego, USA no a a no a a b c yes b b -

Leeds Univ: , Eng. no a a no a b a b yes b c b

;/LCOR PEW4, Germany yes a a no c b c c no a b b

ALCOR Z22 ,: Ger.~ny yes a - yes c b c c no a b a

ALCOR 2_002, Germany yes a - yes c b c c no a b a

RCA- EDP USA no a a no - b a - yes b b b

Bjork, Sweden no a a no

Moore School USA no a a no b b a b yes b b b

IPM Darmstadt, Germany yes a a no b b c b no a b a

Computor Ass. ,. USA no a a yes b a f a no b b a

Regnecentralen, Denmark yes a a yes c c b c yes a c c

Univ.N. Carolina USA no a a yes b b b - yes - c c

RRE, ~hgland no a a no b b c a yes b c c

Stanford USA no a a no b a b b yes b c b

RCA LAB USA no a a no ab b a c b b c

ARF, USA no b a no c c b c yes a b c

NDRE, Norway _ no b a no b a a c yes a b c

XTRAN project, USA no a a no b a a a yes a b a

Hockney, ~hgland no a a no a a d d - - d-

NBS, USA no c b yes b b c c no b c c

Tubingen, Germany no a a no b b c b no a b a

Siemens, Germany yes a b no b b c c no a b b

Standard El., Germany yes c a - - - b c no ab -

AFCALTI France no a - no am c a a a- -

Burroughs, USA b no - b c b yes b c h

Saarland, Gern~mny yes b b no c c c c - - b c

Remington Rand, USA yes a b no c c c c yes a b c

Cambridge, England no b- no b b c - yes b c -

Wegner, England no c b no b b b a a a a f

Special cedes: f = a/b, g = b/c-, h=a/c

OFFICIAL ADOPTION

40 41 43

abcde 42 44

2 1 3 4 5 a a b a

2 1 3 4 5 a b c a

x cccb
21 abb-

a

1 2 3 5 4 b a b a

1 2 3 4 5 a a c a

1 2 3 4 5 a a a b

1 2 5 4 - a a b a

2 3 1 4 - a a d a

1 2 3 4 5 a b c b

3 1 2 4 5 b b b a

3 2 1 4 - b b c b

42153---b

2 1 3 4 5 b c c a

5 2 4 1 5 b b a b

db

2 3 4 5 1 a a c b

1 2 3 4 5 a a b b

4 1 3 2 - a a d a

1 2 3 4 5 a - - b

2 3 1 4 - a c b b

2 3 1 - - b g b b

2 1 5 4 - b c b b

51555bbdb

bdg

bdg

2 3 1 - - a b b b

2 1 3 4 5 a a - a

4 2 3 1 5 a b b a

1 2 - - - a b d b

2 1 4 3 - b b b a

3 1 4 5 2 b c d a

4 2 1 3 - f f b b

2 1 3 4 - a a b a

2 1 3 4 - a b a a

3 1 2 4 - b b b b

5 1 4 2 - a b d a

4 3 1 2 5 a - b a

3 2 1 4 - b c a b

3 1 2 4 - a a b a

5 2 1 4 - a c b a

2 1 3 4 5 b b c b

3 4 2 1 - b b c b

x aacb

14235---b

5 2 4 3 1 a e b a

1 2 3 4 5 b c d b

5 1 4 5 2 a b a b

b

c -bb

- 42 -

C0~ENTS ON SUBSETS.

Question 25, MEMBERSHIP OF SUBSET-GROUP:

Yes: 14, No: 3&.

5 groups exist:

Group 1: members: ~acit Group, Sweden; Regnecentralen', Denmark.

Group 2: members: Kidsgrove-, England; ~qg.E1.Atomic', ~qgland. Name of

subset: KDF9 ALGOL. Full ALGOL 60 except 1. Dynamic Own Arrays. 2. Inte-

ger labels. 3. Optional specifications.

Group 3: members: ECMA TC 5 (incl. Elliott ALGOL, ~ugland).

, .

Group 4: ALCOR, members: IAMBonn, Germany~ ALCOR PEEM, Germany; ALCOR

Z22, GerFmny; ALCOR 2002; IPM Darmstadt, Germany, Siemens, Germany; Stan-

dard El., Germany; Saarland, Germany. Described in Elektronlsche Rechen-

anlagen 3 (1961) 206-212 and following articles.

Group 5: members: C.W. Dobbs, UNIVAC- Philadelphia; R. Belscamper, UNIVAC,

St. Paul. Name UNIVAC Standard ALGOL. Characteristics as yet undefined,

tentatively 1107 ALGOL.

QUESTION 29_-, THE IDEA F RECOMM~DED SUBSETS
a: 37, b: 8, c: 4.

Comment from Burroughs', USA:
As it stands now, we ~rager Bo_b_~d_zwill implement ALGOL 60 complete-

ly. This is because of two major cases:
I) Recursive procedures N.~ich use non-local variables ~hich are lo-

cal to other recursiv~ procedures.
2) Implementing 'procedure a(b); procedure b; 2: b(2).' In this

example 2 can be used as a label, number, or both by the procedure b.

These seem to be obstacles nobody has overcome.

So everybody will pick some subset or other, leading to a somewhat

chaotic state. This is unfortunate; it would be much better to have as

ALGOL a language N~hich every fairly large computer can implement (and ef-

ficiently too). Then a single recommended subset for the small computers

which are incapable of handling too extensive a language should be given

as a guide to reduce the chaos somewhat.

Comment from Remington Rand, USA:

In our opinion, the definition of subsets provides partial solutions

to some of the problems of inter ALGOL processor compatibility. We hope

in UNIVAC to establish hardware representation compatibility by this me-

thod.

Conmlent from Wegner, ~hgland:

Surely the principal strength of ALGOL lies in its being a standar-

dised language. Subsets seem to be due principally to a lack of under-

standing of the principles of ALGOL implementation. It has been shown by

DiJkstra that the implementation of virtually complete ALGOL is straight-

forward even on a small machine. The question of subsets should therefore

be reconsidered.

- 43 -

QUESTION 30. THE REACTION TO THE TWO SPECIFIC SUBSETS, BASIC ALGOL 60 and

SMALGOL.

a: 36-, b: 8-, C: 2.

Comment from Remington Rand, USA:

We suggest that once the ambiguities and obscurities have been

cleared up in ALGOL 60, the question of subsets may be left, to the indi-

vidual user. Provided these ~ere all subsets and not dialects, we see no

reason why the number of subsets should be restricted'to t~,To.

It seems likely that some features mlght be added to Basic ALGOL aud

SMALGOL in the light of programming and implementation experience.

Comment from Cambridge-, ~hgland:

We do not wish to commit ourselves on this point.

Comment from Wegner,.~hgland:

Basic ALGOL 60 and SMALGOL were motivated by an incomplete under-

standing of ALGOL implementation. If any given subset is developed it

should be based on the greater understanding of ALGOL implementation that

has recently become available through the publications of DiJkstra. How-

ever subsets are probably not necessary at all.

C0MM~S ON CHANGES AND EXT~SIONS.

QUESTION 31: Pamiliarity with ABS 14 (the report by Ershov-, Kozhukhin-,

and Voloshin).

Yes: 9, no: 38.

Corsnent from ALPHA $ USSR:

We believe that some of the Inout Language constructions are very

desirable in ALGOL, specially: complex, internal dimensions; forming and

composing operators, initial values, chains of inequalities, functions

yielded by expressions and time superscriots.

Corsnent from ALCOR Z22 and ALCOR 2002:

The axiomatic system is overextended. It should be oossible to give

definitions of n~ elements of the language in terms of simpler ones

within the language (like procedure declarations) instead of adding new

definitions to the basic system.

Co~mnent from Computer Ass., USA:

We have translated the introduction of this report-, and follo~ed

some of the more puzzling proposals some distance into the body of the

report; we have not studied it sufficiently to give a responsible detail-

ed criticism of the proposals. None of them seen impossible to implement;

some are quite interesting; most of them seem, in the light of the pre-

sent feelings on 'freezing, ALGOL, to be in the nature of serious exten-

sions. We will be pleased to conznent uoon them in the next questionaire.

We have doubts, though, that the promised compa%ibility with ALGOL 60

will hold if the proposals for allowing 'output' parameters to be sgeci-

died by value is included.

- 44 -

Corment from Regnecentralen, Denmark, to QUESTIONS 31, 32 ~, 33",38:

We cannot suoport the inclusion of additional soecial facilities in

ALGOL. We ~Tant the language to include such general features ~rhich permit

the user to add arbitrary special mechanisms to it at will. For this rea-

son we feel that the procedure concept is the most important one in ALGOL

60. It has not yet been fully exolored. Further developments should gene-

ralize this concept, e.g. by permitting the user to specify, not only the

meaning, but also the form, of procedure calls. In this manner most of

the above special extensions would become unnecessary we feel.

Question from Remington Rand, USA:

When will ~glish translation be available (see APIC Bulletin no. 8,

p. 38, 8A.005.)

QUESTION 32_: THE HOCENEY PROPOSAL.

a: 6, b: 24, c: 8.

Comment from ALPH/~ USSR:

The Hockney proposal is good in idea, but has not been developed ve-

rywell. Our proposals cover the Hockney ones.

Comment from Rutishauser, Switzerland:

The Hockney proposal contains actually 4 different proposals and

therefore cannot be dismissed simply by one three-branch question. Flrst,

it proposes a complex-declaratlon which I would welcome since several

prospective users of ALGOL complain its nonexistence. Second, it intro-

duces a new notation for arrays of arrays which certainly has its merits

but should be discussed carefully before it is voted uoon. Third, a nota-

tion for the value of an array that allows to give the comoonents of an

array numerically, and fourth, the introduction of matrix calculus in AL-

GOL, which I strongly oppose.

Comment from IPM Darmstadt, Germany:

Array arithmetic seems doubtful to us. But comolex arithmetic is ve-

ry desirable. We ~..ould llke to see double precision arithmetic included

too. Eventually~ one should introduce facilities for defining arbitrary

(not standardized) types, ~hlch are chosen by the orograrmuer.

Comment from Computer Ass., USA:

The Hockney oroposal reached us only after the middle of February.

The proposals seem mostly to overla~ a part of the proposals of Ershov et

al. We could not say at this time which we orefer. The inclusion of faci-

lities like these seems an obvious way to extend ALGOL when the time for

extensions arrives.

QUESTION 33: STRING MANIPULATION.

a: 11, b: 28 i/2, e: 5 i/2.

Remark from Oak Ridge , USA:

But not necessarily as exactly formulated.

Comment from SSW-ZEF, Germany:

According to the proposal by Wegstein and Youden, in a string decla-

ration the length of the stying must be declared by the programmer. This

is quite uncomfortable, and, in our opinion, not necessary, as the

strings are represented by threaded lists.

- 45 -

QUESTION34: THE NOTATION FOR CONDITIONAL ~XPR~SSIONS AND STATEMENTS.

a: 9 i/2, b: 17 I/2, c: 20.

Comment from Computer Ass., USA:

The restrictions are unnecessary for Exoressions at oresent (and we

shall not require them in our implementa~iom)', and would become unneces-

sary for Statements upon a proper refOrmula£1on of the syntax)- This is

not ~E~B~, but ~Then the first 'changes' to ALGOL 60 are made, these

should be among them.

QUESTION35: SYNONYMASSIGNM~T.

a: 9 i/2-, b: 13 1/2-, c: 21, d: i.

Remark from Computer Ass., USA:

But not the way Thacher proposes.

Remark from AFCALTI" France:
- !

In particular, Mr. Nolin would wish that it be possible to;change

the names of variables in the course of execution (for instance, for

flip-flop works).

Remark from Burroughs, USA:

We favor a synor~massignment of the type <identifier>

:: <string> meaning substitute string for every future occurrence of this

identifier.

Corsnent from Cambridge', ~hgland:

We are indifferent.

QUESTION 36: LACK OF INITIALIZATION OF OWNS IS A SERIOUS DEFECT

Yes: 21 no: 18.

I

QUESTION 37 :; DELETION OF OWN FROM L~d~GUAGE.

a: 20, b: 23, c: O.

Comment from DiJkstra, Math. Cent., Holland:

At present the definition of the conceot ,own, is unsatisfactory,

everybody knows that. But to favor the sug~estlon to delete it fromthe

language means that ~e have given up hopes to Im0rove the definition. In

this connection ~e should not close our eyes for the fact that the 'dyna-

mic own array' is something which is not expressible by any other means

already provided by the language. On the whole I think it should be re-

tained in the sense of Reformulation 23. With regard to Reformulation 26

I think that I fail to see the reasorr to restrict 'adjustment of the

bounds' to the entry of an ,outermost, activation and I therefore suggest

this restriction to be removed from the Reformnlatlon 26.

QUESTION 38." COMBINATION WITH COBOL.

a: 3, b: 29, c: 14, d: I.

Remark from AFUALTI- France:

I

We should llke a certain unity of style between ALGOL and Cobol

(punctuation rules prlorlty, etc.. •).

- 46

Comment from Burroughs, USA:

We believe anyone who really understands both ALGOL and COBOL would

realize that they are quite incompatible and that an idea to combine them

is absurd.

Con~nent from Wegner, England:

Data descriotion and input-output form an imoortant part of any lan-

guage for computation and I feel that there is an urgent need for the in-

troduction of such facilities, although not necessarily along the lines

suggested by Sanmlet.

QUESTION 39: THE PROPOSALS F STRACHEY AND WILKES.

a: 8-, b: I0, c: 19.

Remark from Computer Ass., USA: -

Our feeling is that an ALGOL translator should-, in principle-, accept

the language in its full generality, arrd, when efficiency becomes impor-

tant, it should be able to detect when 'special features' (whigh might

prevent the free use of efficiency techniques) are not oresent ,; to take

advantage of their absence. This is perhaos somewhat idealistic, and, so,

rather than restrict the specification of the language to match compi-

ling techniques, ~re prefer the approach of providing in the source pro-

gram, some hints and oromises ~o the translator.-The StracheyrWilkes pro-

posals are mostly in this vein, and ~e find most, but not all, of their

proposals acceptable.

Remark from Regnecentralen ~, Denmark:

The influence of present machine designs should be confined to the

design of processors for them. Since the demands of oowerful languages
are the most important incentives towards better machine designs it would
be disastrous if the limitations of present day machines were allo,~ed to
limit the power of expression of the languages.

Comment from Burroughs-, USA:

We did not care for the oroposals of Strachey and Wilkes regarding

functions, and result_of , but their other sug~ estions are fine.

Comment from Cambridge, England:

We agree ,,rith these proposals in orinciple and would bring about a

corresponding major change in ALGOL rather than inclusion in the existing

language.

ADDITIONAL CHANGE OR EXTENSION: INPUT-0UTPUT.

Con~nent from San Diego- USA:

We consider it highly desirabl~ that inout-output definitions be in-

corporated in ALGOL at an early date. The data division of COBOL would be

a good starting point. Input-output caoability is an essential part of

working programming systems.

- 47 -

ADDITIONAL CHANGE OR EXTENSION: THE POWER OPERATOR.

Suggestion from Burroughs, USA: •

Define a~b where a and b are t2pe integer to be always of type inte-

ger with the value to be (b negative)

1 ÷ (a~a~ . a)

This is conventional with most other compilers and it means a good sa-

vings in object program efficiency. Otherwise the type of a~b varies at

running time.

Proposal from Remington Rand ~, USA:

(1~ditor's note: this proposal is a complete revision of section

3.3.4.3 of the ALGOL 60 Report, doing essentially the same thing as the

above suggestion from Burroughs. The end of the prooosal follo~.rs).

Reason for proposal: Makes sure that the type of an expression does

not depend upon the value of a variable. (See Comm. ACM, June 1961, Knuth

and Merner). This is, ho~rever, only a partial solution to the problem.

Consider the follo~.Ting e~mple:

real a,b: integer i,j; Boolean A;

~.U_--j + (!~-~-t~n i else' b)

Is the arithmetic expression 'in 9arenthesis to be considered of i_n_t_e~er_

tyge if A is true and of real type otherwise.

ADDITIONAL CHANGE OR EXTI~SION: SWITCHES.

Suggestion from Burroughs-, USA:

Restrict the components of switches to be merely labels. The state-

ment go to Sin] would be a dummy statement only if n=O, would be unde-

fined if n < -1 or if n is too large. This change is motivated by the

fact that the more complicated designational expressions have not proved

to be efficient or particularly useful, and when they are used the algo-

rithm becomes difficult to follow.

A faci-lity which actually seems to be wanted most often is a ,proce-

dure switch' or a 'return-Jump ~titch' which would be something like

....return switch S:= A,B~;C

where A,B,S[aresn] procedure(x) names, and the~ statement

~rould cause A (X) to be called if n = 1, etc. This appears to be a more

frequent occurrence than the need for a switch of the present type.

ADDITIONAL CHANGE OR EXT~NSION: THE MODULUS OPERATOR.

Sug estion from Burroughs ~, USA:

Introduce a new <multiplying operator>-, mod___, defined for at least in-

teger arguments. We ~ould have

a mod b equivalent to a-(a ÷ b)×b

- 48 -

ADDITIONAL CHANGE OR EXTENSION: ONLY SIMPLE FOR-VARIABLE.

Proposal from Remington Rand ~, USA:

In section 4.6.1 change third definition to read:

<for clause>::= for <simple variable>:= <for list> do

Reason for reformulation: We feel that subscripted variables were

not intended to be used as the controlled variable in for statements o-

therwlse the discussion in 4.6.5 would have surely have given them parti-

cular mention. If they were intended to be used in this manner, we que-

stion the usefulness of the feature.

ADDITIONAL CHANGE OR EXT~SION: ABANDON CONC~PT OF LOCAL.

Proposal from Remingtpn Rang, USA:

In section 2.4.3, second paragraph. Change to read:

-'The same identifier cannot be used to denote two different quanti-

ties.'

Reason for reformulation: To relieve the utter boredom of reading a-

ny more nonsense about this feature. More seriously, I think this feature

can be interpreted in two separate ways depending on what th~ introduc-

tion to Section 5 amtually means - the use of such words as 'signifl-

cance' and 'meaning' help to confuse the issue. Most writers on ALGOL use

the interpretation given by Bottenbruch (p. 23-24 - Structure and Use of

ALGOL 60), but this interpretation could not be proved to be true from

the ALGOL report. Another and more useful interpretation could be given

by rewriting the last two sentences of the second paragraph in section 5

to read.

'If these identifiers had already been defined by other declarations

outside, they are for the time being given a new significance. On exit

from the block these identifiers will resume their old significance but

values the~_~ht have had before ent~_ into the sub-block will be

lost. Identifiers which are meaning.'

This has the effect of saving storage, whereas the other interpreta-

tion produces nothing but confusion.

Naturally the question of values onlv applies to variables and to

take care of procedure identifiers, etc. 2ore explanation is needed.

Therefore, we propose that identifiers should be unique.

ADDITIONAL CHANGE AND EXT~SION: BLOCK STRUCTURE.

Co~mnent from Wegner, ~hgland:

In my opinion, the principal shortcoming of ALGOL 60 is the lack of

facilities for expressing a large problem in terms of a number of lexico-

graphically independent subroutines. These objections are elaborated in

an apoended note entitled 'Blocks in FORTRAN and ALGOL'. (Editor's note:

These 5 pages have been omitted as being outside the scope of the AB).

- 49 -

C0~@[ENTS 0N OFFICIAL ADOPTION,

QUESTION 40: AUTHORITATIVE BODY.
Number of replies with preference no: 1 2 3 4 5
a~ ad-hoc committee (authors) I0 15 9 5 4
b. AB + U.S.Maintenance 18 17 6 2 0
c. IFIP 10 5 18 7 1
d. IS0 3 3 5 23 5
e. Other 2 2 1 1 17

Remark from Rutishauser, Switzerland:

The correction of the AR is of course up to those who are responsi-

ble for the defects. It would therefore be welcomed if the ALGOL-co~w~ttee

could assemble again in order to remove the ambiguities of the AR. How-

ever, this body should not have power tc change ALGOL where the AR is

clear.

Comment from The Facit Group, Sweden:

We strongly suggest that clarifigatlons and changes in ALGOL are

worked out and adopted by a committee, composed of the authors of the AL-

GOL 60 report and such persons as they wish to add to it. The votes cast

by the U.S.~intenance Group and the ALGOL Bulletin readers will serve as

proposals to this committee and no more.

Two reasons are:

1. Obviously nobody but the authors of a report has the right to change

that report, unless the authors delegate that right to another body.

2. The method above 	- a cormmittee guided by the discussions of the ALGOL

Bulletin and the Co~n.ACM - was used to produce the ALGOL 60 report,

and it worked remarkably well. By contrast the method of mailed que-

stionaires and voting among the readers has not produced convincing

results.

Remark from Kidsgrove, England:

We feel that excellent as the ALGOL Language is it has not received

the universal support it deserves. The prime reason for this apoears to

be that the ALGOL language maintenance and revision is in the hands of a

team of competent m~ateur enthusiasts without official status. The main

requirement is to preserve the team with its enthusiasm and competence,

but to give it more of an official stature. The situatlonmlght well

change for the better if the ALGOL effort were to receive the supoort,

encouragement, and blessing, from IFIP.

Remark from San Diego, USA:

We consider that the various ALGOL groups have done excellent work.

The ALGOL work should have the official sanction of an international com-

putation organization if that is possible. This is the reason we recom-

mend that the adoption be by an ad-hoc committee or by the U.S. Mainte-

nance Group and ALGOL Bulletin as part of IFIP.

Remark from ALCOR Z22-, ALCOR 2002:

Clarifications and subsets ISO- ! extensions IFIP. Final a~oroval by

IS0.

- 50-

Comment from Cambridge, ~hgland:

ALGOL 60 is the property of the conmtittee that formulated the lan-

guage. Changes can only be made by them or b~ some body appointedby them.

This, of course, does not apnly to any future, different language and in

view of this we leave the answer to question 43 open.

QUESTION 41: TIME FORADOPTION 0FCLARIFICATIONS 0FALGOL 60.

a. Jan. - June 1962: 26 1/2

b. July - Dec. 1962: 15 1/2

c. Jan. - June 1963: 2

Comment from ALCOR Z22, ALCOR 2002:

Removal of ambiguities and inconsistencies only: as soon as possible.

Comment from Computer Ass., USA:

As soon as feasible, without recklessness.

Comment from Burroughs-, USA:

We should like to see the clarifications come out as soon as possi-

ble.

QUESTION 42: TIME FORADOPTION OF SUBSETS.

a. Jan. - June 1962: 13 1/2

b. July - Dec. 1962: 20

c. Jan. - June 1963: 8 1/2

d. July- Dec. 1963: 0

e. Later: 1

Cormnent from Burroughs-, USA: '

The subsets should not be decided officlall~ until some experience

is gained trying present subsets.

QUESTION 43: TIME FORADOPTION OF CHANGES AND/0R EXT~NSIONS.

a. During 1962: 5

b. - 1963:20

c. - 1964:10

d. Later: 10

Remark from ALPHA ! USSR:

A partial alternative.

We propose to discuss the question about variables in the period of

July - Dec. 1962. If the deletion of own variables from the language were

generally adopted it would be possible to do it immediately.

QUESTION 44: REACTION TO THE QUESTIONAIRE.

a. Useful, adequate for final decisions 21

b. Useful, but not adequate for final decisions 28

c. Unwanted or harmful 1 (112 + 112)

- 51 -

Remark from Remington Rand, USA:

Surely many of these ambiguities were knovn immediately after publi-

cation of the ALGOL report and could have been promptly corrected. It is

amazing that two years after publication we are still debating whether to

define a program or not.

In essence, the questionaire is useful but we doubt its efficacy.

One objection we have is that the phrasing of certain questions shows a

less than impartial attitude, e.g~, Reformulation 12.

Comment from Burroughs ~, USA:

We are sure this questionaire was a very good idea and that it will

certainly serve a very usefUl purpose.

Comment from Wegner, ~hgland:

This questionaire serves a very use!~l purpose since, by answering

it conscientiously one is forced to make decisions on a number of con-

troversial points that have arisen in the last two years. I have found it

particularly useful from an educational point of view and it has given me

a better understanding of the ALGOL language,

However, I do not feel that itis the only method of reaching deci-

sions about ALGOL. Open discussions, con~nittee m%etings and private en-

terprise all have their place. In this connection, the principal criteri-

on is the quality of the end result rather than the means by which it is

reached.

Regalrding further stages in the evolution of international algebraic

languages, I feel that there could be two separate parallel stages of de-

velopment.

i. An agreed set of reformulations and revisions based on replies to

section 2 of the questionaire could be circulated and further debated

for a period of about six months. A set of resulting modified revisions

should then be incoroorated into thee report, and a second edition of the

report, possibly entitled 'ALGOL 63' could then be oublished early~in 1963.

2. At the same time, the accumulated exoerience ~ithALGOL 60, CO-

BoL, LISP and other languages, should be used in the formulation of a n~¢

international language, without unduly worrying about compatibility. AL-

GOL 60 has contributed a tremendous amount to an understanding of the re-

quirements of international languages for computers. However, if ALGOL 60

is regarded as sacred, and is accorded the hallowed status of an elder

statesman, it might well stand in the way of progress.

