CLo
2-17'7¢'

0

This auhile }«m Doita. martion ,dwéy Shumt
R L N A L (27 cson

w et) ,‘Q &WM,‘ /’LJW ACCIM). #

ot é pegle whe lewss v dhawght T umde

1T, wish £ had/ |
1 7«7"‘:Eu/w/7 /:‘e ln's Je/l‘u.ﬁin 6/ a ,{aJ /vo swmml/,

(M~1 fawsoup yeenvd in bout /2 740.4-:)

The Forum is offered for readers who want to express their opinion on any aspect
of information processing. Your confributions are invited.

WHAT A

PROGRAMMER DOES

It has been believed that a program-
mer occasionally writes code and gets
it running on a computer, and that this
is what he is paid for. In spite of his
obvious inefficiency, no one else seems
to do this work more effectively. How-
ever, his activity is still observed prin-
cinally as loafing—a kind of ritual
(’ke the British and teatime) which
must be put up with.

Another view of what a program-
mer does addresses more construc-
tively all that “wasted” time and
ritual. To understand this view, we
must see what it is the programmer is
trying to build. We all have some
idea of what a program is, but not
very often do we see a program from
its author’s point of view. Whatever a
program is, it exists as an organiza-
tion of many pieces with a high de-
gree of structural integrity, and it is
stable in its environment. That en-
vironment includes the mechanisms of
the program itself, as well as the in-
put data. To establish this integrity
is the usual debugging task.

However, there is more to the en-
vironment of our program. It must be
stable with respect to the threat of
operator misunderstandings, with re-
spect to invalid data, and to changes
in specifications, up to a point. Ob-
viously, to develop a code structure
that is stable in the face of all these
unknowns is a very difficult task. As a

matter of fact, we programmers all -

cheat. The structure we develop in-

April 1967

cludes more than the running code,
more than the symbolic code, or even
the operator’s guide, the maintenance
guide, or the design guide. For in
fact, in response to any serious
breach of the program’s integrity, a
programmer will become involved, as
part of the integral organization built
by the original programmer. If one
now looks closely, he can begin to
recognize the intent of those steps in
the ritual of programming.

program dybbuk

In this ritual, the programmer must
clearly anticipate the sources of
threats to his program. He must imag-
ine techniques to deal with those
threats, and anticipate the instabili-
ties of those techniques. Of course,
as the programmer has a mind trained
in objectivity, he will realize that in
fact he cannot scare off the dybbuk
who already is making its home in his
structure by the time debugging be-

gins. It is at this point that the agony

of programming begins. The structure
is now nearly mortal, and its vitality
may well be stolen by a form of the
“enemy” which could and ought to
have been anticipated by its creator.
The enemy, the dybbuk, of course is
entropy; it appears in many forms,
and sometimes m many places simul-
taneously.

The program must not only have a
static stability, in withstanding such
things as invalid data, but must also

S

further respond to dynamic changes
in environment. Of these two types of
stability the first can generally be prc-
vided by careful programming, pro-
vided the ultimate operating environ-
ment is reasonably orgdnized. A pro-
gram is rarely killed by a failure of
static stability. The death usually
occurs because of a failure in the pro-
gram’s mechanisms for maintaining
stability, in its abilities to respond to
environmental change.

One mechanism for maintaining
stability is the maintenance program-
mer. The longevity of the program is
therefore dependent on the capability,
comprehension and intelligence of this
person. But humans are not omniscient
in comprehending programs. As a
matter of fact one of the most difficult
intellectual endeavors is the analysis
and comprehension of an existing pro-
gram structure. Thus the resistance of
a program to unsetiling forces is criti-
cally dependent on its structural clari-
ty, as measured by the effort required
to analyze and comprehend it.

We see, then, that the structure
called a program consists of more
than we first thought, and includes
stabilizing mechanisms which are far
broader than the code itself.

the traumatic periods

We should consider the traumatic
periods of the life of a program. The
terminal trauma of a program otcurs
when it is challenged by entropy be-
yond its capacity to adjust. Obviously
every program will have, or has had,
this trauma, after which it is of no
use. Most programs go through at least
two additional traumatic periods. The
first is when the static stability is first
being developed—that is, during de-
bugging. The second is when the pro-
gram is first placed into a real, instead
of artificial, environment—during sys-
tem testing.

In both of these periods a major
problem is the exercise and further
development of the stabilizing mech-
anisms which allow the program fto
run under extreme, unsettling en-
tropic forces. In both of these periods
the primary instrument of stability is
the original programmer, who reacts
toward an indication of disorganiza-
tion (a “bug”). He may well have
built into the program checks which
aid him in identifying the dISOI’dPr and
its cause. i

The ritual of progromming is of
great consequence because it deals
with the communication between the

177

e s Lo DIAL 312 - 383-5214

<TeLEPHONE DIALER CARD)

In a Dialer Card Program
you need someone with the
capability to first produce cards
and then simultaneously emboss and

punch them—accurately and quickly—

© We have that capability...
) We are systems oriented...

€) We understand what is required... '

_ CENTRALLY LOCATED—minutes from O'Hare Field
at the heart of America—Card making facility and

Service Bureau is ready to give you instant service.

?am nées will be weleame -
MWW@%MM@ |
competent people!

*A WESTERN ELECTRIC LICENSEE.

151
OA

< raaw. ewiors oso: LHRAOLL GRAPHILS, 1AL @

CIRCLE 95 ON READER CARD

THE AEROSPACE CORPORATION
NEEDS PROGRAMMERS /ANALYSTS

We have upgraded our computing facilities to an IBM 360 tape
and disc system. We need business systems Programmer/Analysts
at the senior and intermediate levels. These are excellent opportu-
nities for men who have two to six years experience with IBM
computers in the business applications area. We prefer college
graduates but will carefully consider all applicants.

Aerospace offers attractive fringe benefits and residence in South-
ern California (minutes aWay from the ocean). We'll pay moving
costs and re-location expenses. If interested, please send all perti-
nent information regarding background, experience and salary re-
quirements to: D. A. Herrmann

THE AEROSPACE CORPORATION

2350 East El Segundo Boulevard
" El Segundo, California 90245

All replies held in confidence.

An equal opportunity employer.

178

CIRCLE 351 ON READER CARD

"‘_tb‘e forum

original program author and the pro-’
grammer responsible for maintaining
the structural integrity of the program.
When these two are the same man,
there is still a significant amount of
communication between them; in a
large program one cannot remember
the whole program. The author must
organize the program into concept
units, and leave a clear trace of the
organization, as well as the content,
of each unit. Thus that part of the
ritval which attempts to provide the
basis for comprehending a program
structure is, in fact, the part of the
programming activity which most
directly supports the vitality of the
program, from debugging on.

In fact, experience generally shows
that an intense concentration by the
programmer in optimizing the com-
prehensibility of a program’s structure
pays off, not only in debugging, but
also in ease of coding and program
layout. If a program is structured so
that it consists of a set of functions’
that can be understood separately,
then the layout of the program should
be obvious, or at least explainable.
Furthermore, the coding effort should
be uncluttered by considerations be-
yond the algomhms for the “current”
function.

the primary role

Thus, a programmer develops his
program so that a human can com-
prehend it. Initially this is merely self-
protective, as he must understand the
program enough to get into produc-
tion. It would appear that all good
programmers attempt to do this,
whether they recognize it or not. Fur-
thermore, no one has seen a program
which the machine could not com-
prehend but which a human did. Not
even bad programmers (those whose
programs die young), write compre-
hensible code; if they did, their pro-

~ grams would survive and they would

be better programmers. Both the value
and quality of a programmer's work
improve directly with the importance
he places on communicating his pro-
gram to a human, rather than merely
to the machine.

A programmer does not primarily
write code; rather, he primarily writes
to another programmer about his
problem solution. The understanding
of this fact is a final step in his matu-
ration as a technician.

i

DATAMATION

	f 0001.tif
	f 0002.tif
	f 0003.tif

