u711

The Evolution of Software

John von Neumann

INTRODUCTION

s than three decades, software technology has left its imprint upon mankind. A whole new field of learning has been opened. Data
sing has unalterably changed government, banking, industry, public utilities, fransportation, commerce, etc. There has even been a
ution in language as new words and phrases become part of everyday speech and old words — such as hardware and language —
on new meanings.

vare development has been largely based on expedience and demand. Throughout this evolution there have been time lags — hard-
r which there was no software or, sometimes, software concepts that were beyond the capability of the machine. Neither, hotw-
successful without the other.

Corputer software received a great stimulus when one of the world's leading mathematicians, Dr. John von Neumann, came up with
the concept of a permanent all-purpose memory in his draft report on a new computer . . . the epvac or Electronic Discrete Variable Com-
er. .. introducing computer instructions, or subroutine series, for the performance of specific operations. Subroutines could be used over
and over again by any other program that required the same type of operation. Thus, tie tentative and limited start of programs —

softicare as opposed to the hardware or machines on which they operated.

Comuter Sciences Corporiation/CSC REPORT

FEWTY AL PR iThA, BT STWE VOIS, (REISTRT. 1N
e~ Anw tm_:ﬂ.-r.:ah- tEae AT

The 1890 census was compiled by means of Herman Hollerith’s elec-
trical tabulating machine.

In May 1949 at Cambridge University in England, the epsac —
Electronic Delay Storage Automatic Calculator — performed
its first computations, the first performed by a stored program
anywhere. This was soon followed by an American stored-
program computer, the National Bureau of Standards Eastern
Automatic Computer — or seac — placed in operation in 1950.

The seac computer was designed to be an experimental computer
to test different types of input/output and computer memory.
It started life with 512 words of mercury delay line memory and
an input/output teletype. A floating point interpreter for the seac
— eventually to account for over 50 percent of its production
time — was developed by Dr. Charles Swift, a senior scientist
on CSC’s staff. seac is credited with being the first machine
designed to operate on its own instructions that was able to
sustain full steady operation.

Up to now, the computer was taking form in obscure academic
laboratories encouraged by funding from government, military,
and research organizations. In 1951, the U.S. Bureau of Census
selected the Univac I — the first large-scale electronic computer
available for business use — to help process its massive burden
of data. As an interesting sidelight, the U.S. Bureau of Census
was the same agency that had started Hollerith on his punch-
card equipment in the 1880s. Many new features were intro-
duced by the Univac I: the use of magnetic tape for external
data storage, a programmed system to sort and merge records
without first having to read them all into the computer’s mem-
ory, and an editing system that was the forerunner of many
modern report generators.

Although by the early fifties the computer concept was firmly
established, programming was still at a primitive stage. Pro-
grams had to be written in machine language, a painstaking
linking of lists of numbers, letters, and special characters iden-
tifying the location of each instruction and item of data in
the computer’s memory. The software problem was still to be
attacked.

The software problem involved more than a search for people
to perform routine procedures. The technology was new. There
were no established pathways or precedents. There was a need
for a singular kind of talent: people with the technical back-
ground to understand computer architecture, and the strategic
and innovative abilities of the creative. With the exception of
government agencies and the very large manufacturers, virtually
no organizations existed that were capable of generating com-
puter instructions — software — well enough or fast enough to
meet the demands of the new large-scale machine.

It was estimated that if the exponential growth of computers,
software, and programmers continued at today’s rate, it would
require more than one-half million people by the end of the
1970s. This adds up to ten percent of Americans between 25 to
45 who are able to learn to program. This is not unlike the tele-
phone growth analogy. If the telephone company had not gone
to dial telephones to keep pace with demands, today every
woman between the ages of 20 to 50 would have had to be a
telephone operator.

Obviously as more and more machines became available, the
pressure increased to find ways to simplify instructions to the
computer and improve the productivity of people. A new type
of resource emerged, the software house that could economically
maintain a staff of computer scientists on a continuous basis.
Stimulated by the cross-fertilization of human talents and
machine concepts, computer scientists are playing a significant
and vital role in the growth of information technologies.

sharing

One of the most significant characteristics of early software
development was the nationwide sharing of ideas, developments,
and completed program products. Against the backdrop of World
War 11, there was a sense of sharing that might perhaps not
have happened in peacetime.

One of the earliest attempts to organize and standardize soft-
ware practices resulted from the friendly interchange of infor-
mation among scientific users of the IBM 7o1. Eventually, this
interchange was formalized into the pacr Committee with the
declared aim of developing an operating compiler. Unfortu-
nately, the computer was obsolete before the pact compiler was
perfected. PACT was most significant for its effect on later devel-
opments, such as suare, and the concepts carried on by its
members.

The siare committee was formed shortly after the announce-
ment of the IBM 704 with the primary aim of sharing informa-
tion, experiences, and new discoveries to avoid duplication of
efforts.

For the most part, sponsored by defense industry companies,
sHARE initiated a tradition of free and timely communication
between cooperating user groups. Since its primary aim was to
coordinate software development for all users of IBM machines,
it served to attract some of the key people in the growing data
processing industry.

Accounts of the early proceedings of sHARE were covered by an
informal newsletter, which was assembled by Fletcher Jones,
the organization’s first secretary and, later a co-founder of Com-
puter Sciences Corporation. Membership was by institutions,
with key defense companies and government agencies repre-
sented. Of the attendees at this first meeting, six of them were
to become members of Computer Sciences Corporation.

Fletcher Jones, co-founder of CSC

" ompnter Sciences Corporation/CSC REPORT

Computer Languages

One of the most important products of disciplined habits of
inquiry and analysis was the software that converted human
ideas to machine language. These language processors include
such systems as assemblers, compilers, and interpreters, each
with its own set of advantages and disadvantages.

Computer languages, like human languages, run the whole
gamut of sophistication, from machine-level coding systems
using strings of numbers (which can be compared to primitive
sign language), to high-level interactive language, using gram-
matical syntax, and English words and statements.

assemblers — the first step

If for no other reason than the fact that they are the earliest
and by far the largest class of language processors, assemblers
deserve first coverage. Assembly language is closest to the lan-
guage of the machine. Basically, the assembler converts the pro-
grammer’s symbolic form instructions into the machine language
that the computer understands. As a general rule, each line of
code in an assembly language program is associated with a
single machine operation. Thus, an assembler is generally de-
signed for use on one type of computer only and the language
used is meaningless with reference to any other machine. Often,
machines within the same family cannot interchange assemblers.
Such specialization, on the other hand, makes an assembler an
effective way to access all the features of the machine, and con-
sequently, the principal tool of software architects — the sys-
tems programmers. Good assembly code executes faster and is
more compact than code written in any other language.

Early assemblers did very little beyond “relative” or “regional”
addressing. They contained no subroutine libraries, no notions
of “location counter,” no symbols, and no listing control. Mod-
ern day assemblers are much more sophisticated, but each step
toward sophistication takes the program writer one move farther
from the machine.

From the halting step-by-step procedures performed by assem-
blers, programmers began to search for methods that would
reduce, or optimize, machine time in accessing instructions or
data. Some early examples of optimization by an assembly pro-
gram were developed for Univac 1 in 1951 and, subsequently,
for the IBM 650 in 1952.

Up to this point, systems programmers had been busily engaged
in developing individual assembler systems not only for each
different machine but often for each different user installation
— all of which made language processor standardization an
essential goal for increased computer usage.

In 1956 the race for a standard assembly language to be used
by the 704 became a five-entry affair with two sections of IBM
hotly contesting each other. Elaine Boehm's “regional assem-
bler” (IBM Engineering) had mnemonic operation codes and a
Dewey-decimal type of addressing system. John Greenstadt’s
Nysap entry (IBM Marketing) program was a fixed-field sym-
bolic assembler. Lou Gatt at Los Alamos Scientific Laboratories

Roy Nutt,
co-founder and vice president of CSC

came up with a variable field, symbolic assembler with non-IBM
mnemonics. The cace entry from Donald Shell at General Elec-
tric featured a free-field symbolic assembler with addresses and
special symbol definitions. The standard chosen was vasap — a
symbolic assembly program with extensive symbol arithmetic
— developed by Roy Nutt, vice president and co-founder of CSC,
then at the United Aircraft Research Computation Laboratory.

vasap later became known as sap for Share Assembly Program.
It did little more than one-to-one translation and library inclu-
sion, and the programmer had to control the parameters of the
program. However, as basic as sap was, it did offer more than its
predecessors. Its principal contribution to the software main-
stream was the capability of programming addresses as a com-
bination of symbols and decimal integers.

Autocoder, which was a sort of assembler with convenient
macro-instruction libraries, was produced in 1955 for the IBM
702/705 series. It was able to hold the variation from one ma-
chine to another to a minimum, which evidenced some achieve-
ment for the organizations laboring for software standardization.

The prevailing theme in software is man's service to the machine
— with an obvious slant toward man. The machine itself, of
course, is actually the result of human efforts, but several steps
removed from the final product; thus, the individual’s contribu-
tion is less evident in terms of singular achicvements. Software,
on the other hand, is the direct result of an individual, or at
times, small groups of people.

Man's service to the machine sometimes is Herculean. Typically,
there’s the story of software for the Univac III. I¥'s only one of
several that could be told about the achievements and strategies
of highly skilled professionals in producing software systems.
In this case, the prodding need was software for the new com-
puter, which was ready for delivery but lacked satisfactory
software. Due to unusual circumstances only two days could be
spared — over a weekend — on the prototype machine. Three
CSC programmers — Roy Nutt, Owen Mock, and Dave Ferguson
— condensed months of preparation into three to four weeks of
intensive work prior to taking off for Philadelphia where the
computer was still being tested.

After a crammed weekend of debugging, the team emerged
with an interim assembly program, an octal loader, a relocating
loader, a dump program and a rudimentary executive program.
Enough to get Univac IT off the ground.

interpreters

The interpreter does not produce a program for later execution,
but instead translates and executes “on the fly,” that is, it trans-
lates programmer’s code as the computation progresses and
performs required operations through subroutines.

Interpretive systems appeared to be the way to go in 1952 when
IBM introduced its large-scale 701 binary computer, and Speed-
code— a mathematically oriented language —demonstrated how
far overburdened programmers were willing to go in sacrificing
computer speed for the sake of programming convenience.

Larger memories, such as that of the IBM 704 in 1956, with
4096 words of magnetic core storage, made interpretive sys-
tems like Speedcode with lengthy program running times less
attractive.

m/CSC REPORT

compilers

Users with a particular application needed a relatively simple
and easy-to-learn language that would give them direct access
to the computer without a lot of detailed instructions that cost
time and increased the possibility of errors.

By 1957, there was a hopeful new approach to more powerful
software — the compiler. Where an assembler translates item
for item into machine code, the compiler translates problem-
oriented language directly to machine code.

ForTRAN — FORmula TRANslation — was the first successful
algebraic compiler. It was the first compiler to effectively opti-
mize the use of index registers to produce code without unaccept-
able degradation of performance.

The guiding light in FORTRAN’S development was John Backus.
Starting in 1954, Backus,with the strong support of IBM Vice
President John McPherson, spent some 25 man-years in develop-
ing the first workable compiler.

Several corporations and research organizations pooled their
brainpower to support the IBM project. For example, United Air-
craft dropped its own algebraic compiler and lent Roy Nutt to
IBM “half-time”” for more than two years. Sheldon Best left MIT
to participate in the project.

Working conditions did not match the talents of the assembled
team. The project was carried out in a “grundgy” building near
the IBM World Trade Center in New York City. Machine time
was so scarce and unreliable that the development team main-
tained a 24-hour watch on the computer, usually by sleeping in
the computer room!

Early rorTrAN compilations were slow, but the compiler intro-
duced a number of ingenious features to produce computer rou-
tines comparable to those produced by an average programmer
writing directly in machine code. Many FORTRAN concepts of
optimization and code generation overshadowed the field for the
next decade.

The first FORTRAN was a manager’s nightmare. It was written in
a variety of languages, partly in UAsAP, partly in nNysap, and
partly in a special machine language for a loader that could
accept octal (base eight numbering system) addresses and
mnemonic operation codes. Most of the Nysap code was never
reassembled but patched and repatched until the compiler was
running properly.

When IBM introduced the 705, the commercially-oriented users
formed their own group similar to sHaRE — cuipe — which
planned to expand rorTRAN for the new machine. IBM didn’t
agree, so GUIDE, chaired by James Matheny (subsequently, a
senior member of Computer Sciences Corporation’s original
technical staff) went off on its own and wrote a second FORTRAN
compiler — however with heavy assistance from IBM. The re-
sult was FOoRTRAN 11 with subroutines, a major breakthrough for
building large programs without excessive compiling time.
While it didn't represent a big change, user subroutines could be
compiled and debugged separately and then plugged into a
main-line program. By 1960 others were ready to join the
rorTRAN club: Univac, Philco, Honeywell, Control Data, and
Bendix soon qualified with units that accepted FORTRAN source
programs.

As computer equipment advanced, each new version of FORTRAN
was able to take advantage of its hardware. Common agreement
held that one of the best rorTrRAN compilers ever produced was
designed by Dr. Gordon Rice and Sheldon Sidrane, both senior
scientists on the CSC staff in 1964 for the Philco 2000. Its ad-
vantage was a capability to use some unusual instructions and
produce object code an order of magnitude better than the com-
piler it replaced, demonstrating at the same time the feasibility
of fast compilation and exceptional efficiency. FortrAN 1v for
the Univac 1107 extended the language to include bit and char-
acter manipulations, use of remote terminals, added Boolean
operations, and expression substitutions similar to assembly lan-
guage macro-instructions.

After delivery of rorTrAN 1v to Univac in 1964, CSC developed
added extensions to this compiler for in-house use, and the
compiler, renamed ForTRAN v, later became part of Univac’s
EXEC 8 operating system as well as CSC’s own timesharing
system.

the computer learns english

While rorTrAN simplified programming tasks for scientific users,
it didn’t fulfill the needs of businessmen, who use their com-
puters primarily to process data, rather than perform mathemat-
ical computations. The object of business users is to acquire out-
put reports by either sorting, converting, or editing quantities
of input data.

Early in the history of software, a special programming research
group was formed under Dr. Grace Hopper, often referred to as
“the mother of software,” by the Eckert-Mauchly Computer
Corporation to pursue her concepts of a “problem-oriented”
language that would allow problems to be stated in simple,
English-like terms without having to specify each detail of
machine operation.

Dr. Grace Hopper

Dr. Hopper and her staff made a significant contribution and
one that was to have considerable influence on later business-
oriented languages when they developed FlowMatic, the first
major processor to use English language words and natural
grammar.

In 1959, the Datamatic Division of Minneapolis-Honeywell
Regulator Company contracted with the newly-formed Com-
puter Sciences Corporation for a business compiler for their
Honeywell 800 machine. Named racr, for Fully Automatic Com-
piling Technique, it was a fully integrated, problem-oriented,
commercial language.

Facr went to great lengths to permit the use of “natural” lan-
guage. For instance, the programmer could write “2 TIMES A,”
or 2 MULTIPLIED BY A,” or “2 * A” and the computer would
accept any variation. Several features of ract, which were novel
at that time, have since reappeared — character conversion and
automatic explosion/implosion of file data.

FacT was also one of the first systems that dynamically allocated
storage and allowed portions of a record to be stored in nonresi-
dent form. It contained a report-writer that was years ahead of
its time, an integral SORT verb and an UPDATE verb that
preceded functions later to be supplied by data management
systems.

At the same time that Fact was in development, representatives
of the major manufacturers and users of data processing equip-
ment were meeting in Washington at the urging of the Depart-
ment of Defense to determine the feasibility of a standard
data processing language that would be hardware independent.
Responsibility for the study was given to the newly formed
Committee of Data Systems Languages (CODASYL).

For a number of reasons, the searchers turned their backs on
sact and IBM’s Commercial Translator despite their availability.
They wanted a language that was not controlled by a single

mnter Seiences Corporation/CSC REPORT

manufacturer. However, ract, FlowMatic, and the Commercial
Translator system were all part of the mainstream that emerged
as coBoL — COmmon Business Oriented Language.

Any tendency for a go-it-alone Tower of Babel approach was
thwarted when the U.S. Government announced it would neither
lease nor buy equipment unless it came equipped with cosor —
or the manufacturer could prove the machine didn’t need it.
Specification vagaries plagued early cosor development. The
first full version, designed by CSC for the Philco 2000, was
delayed until specification questions could be ironed out.

Continuing work by copasyL in response to operating experi-
ences of users and software houses gradually refined specifica-
tions and today cosot comes closer than any other language to
true hardware independence.

CosoL is not a concise language — in fact, many programmers
dislike the amount of writing it requires — yet, in spite of its
faults, it is still the only successful commercial and universally
compatible language ever developed by a cooperative of users
and manufacturers.

competing languages

In 1955, a group of Europeans met to plan a project similar to
FORTRAN — ALGOL, or ALGOrithmic Language. Fortunately,
neither effort prevented the other from making its own signifi-
cant contribution to computer linguistics.

Two factors were critical to its continued development. First, it
was adopted as the “common algebraic language” by an ad hoc
committee of the Association for Computing Machinery in 1958.
Their enthusiasm for the language was shared with a large group
of European users. Second, the very formal and precise definition
of the language not only produced a consistent syntax but also
provided the impetus for serious theoretical studies of the
language.

In Europe, arcoL became the “darling of the universities,” but
because rorTrRAN had already established itself as the primary
US. scientific programming language, it was not widely used
here.

Also, atcot has two serious deficiencies: a complete lack of
input-output specification capabilities, and a confusing prolifera-
tion of dialects. For instance, at Burroughs a bright young pro-
grammer, Joel Erdwinn, a senior member of CSC’s technical staff,
WrOte BALGOL, 2 very fast, one-pass compiler for the 220; Bendix
came up with aLoL for the G15; and the University of Michigan
contributed Map (Michigan Algorithm Decoder).

N T T

) A ’r;..f..,___ 1.‘.‘)..,_‘ g ,,..,-,__
5 A, iM--.....,-u A fgpgun ‘r“"l
)N “U“'?:m—q,).._-f =

rmr ot s MM- --”_“..fb-’.

ek) et L, """'w-' - SRk,

: R......z“m.-..z..{;e..,a.... E',......f:.,rm
:-' %ﬁ"-‘c&l‘ W"“‘m i -‘.‘
Gn) -n-u{ﬂ;-r ergg ,...--gr_, b

Facsimilz of John von Neumann's original software program

In February 1959, programming work began for a large-scale
command and control system for the AN/FSQ-32 military com-
puter, using a dialect of arcor. The resulting algebraic compiler
was known as joviar, or Jules’ Own Version of the International
Algebraic Language, after its originator, Jules Schwartz, a prin-
cipal scientist on the CSC staff.

Joviar was the first language to effectively handle both scientific
computations and general data manipulations. Impressed, the
Air Force adopted a version of joviaL as a standard for command
and control applications. Since then, it has been adopted by the
Navy and the Army for other significant programs. CSC, repre-
sented by Terry Dunbar, is a member of the Air Force ad hoc
committee charged with resolving changes to joviat.

Third-generation computers combine the capabilities required
by scientists and businessmen within a single machine. To match
the capability of the IBM-360 series, an Advanced Language
Development Committee, under the auspices of sHarg,was
formed to plan a more all-encompassing version of rorTRAN,
which would still be a useful tool for engineers and scientists.
Their specific goals were improved character and alphanumeric
data handling, and better interaction with newer equipment and
operating systems.

By the time the committee issued its report in March 1964, it
became quite clear this would now become a much more power-
ful and complex language than rorTrRAN — it was a new lan-
guage, Programming Language 1. pi/t has features more in
common with cosor and arcot than with rorTrAN. Its wordiness
resembles cosot, and its block structure program organization
is borrowed from arcor.

Principally because of its ability to define and manipulate more
general data structures than are available in rorTrRAN, PL/1
significantly eases the job of code writing for the programmer.
But, pL/1 requires a great deal of optimization to produce accept-
able code, and this task is so difficult that no really “good”
compiler has yet appeared.

dartmouth vs harvard

The power of third-generation machines with their on-line ter-
minals and timesharing capabilities broadened the base of
computer users. Nonprogrammers — including research scien-
tists and business executives and their staffs — were becoming
more than nodding acquaintances of the computer, and they
were sorely in need of a simple language with which to voice
their problems.

At Dartmouth College in 1965, a small group of undergraduate
students (including Michael Busch, a senior computer scientist
on the CSC professional staff) under the direction of Professors
John Kemeny and Thomas Kurtz, developed Basic — Beginner's
All Purpose Symbolic Instruction Code. First implemented for
the GE 2235, the original Basic contained only 15 statements
which could be learned and used in a matter of hours. Since
1965, many larger variations have appeared. However, it’s still
easy for the nonprogrammer to master, and it’s a stepping stone
to other languages. Today, almost every supplier of timesharing
services offers a version of Basic.

At Harvard, Kenneth Iverson’s apL — quite simply A Program-
ming Language — was the result of a search for a clear and
concise way to describe algorithms. Although originally pre-
sented in 1962, arL achieved wide acceptance only recently. It
has been adopted by a number of timesharing companies and
universities, and in 1970 a user’s group was formed. It has
proven to be far more powerful and concise than either FORTRAN
OT BASIC.

-

Operating Systems

Ffmat

general

Wwith larger and faster computers on hand, efficient operation
became increasingly important. To overcome the loss of valuable
processing time while operators manually loaded tapes and
logged in files and programs, systems programmers at North
American Aviation — with Owen Mock as principal architect
— developed the first operating system for the 704. Using stan-
dard subroutines and symbolic device addressing techniques, the
elementary operating system became an essential factor in
‘teaching”’ the computer to manage its own operating functions.

Mock’s operating system, then, became the philosophical basis
for the 709 operating system, a joint development by Mock and
Donald Shell of General Electric. As a play on the names of the
developers, it became known as the “MockDonald” system.
With the system’s EIO (Execution, Input, Output) capabilities,
the pun on “Old MacDonald’s Farm” happened quite naturally.

The stare Operating System — $05 — is significant in that it
was the first system to subordinate operating functions to a
““supervisor” — and, according to one of its developers, it had
‘he distinction of being one of the first major software systems
+0 be out of control. A batch system developed by the sHaRE
~09 committee, it used a small monitor to determine the best
order of execution, using system components as needed, until
‘he entire load was processed. Another sos contribution was

Data base concept

macro-instruction debugging and an incremental assembler. To
circumvent the relatively slow speed of the on-line card reader
and printer, a multijob stream could be written off-line onto tape.

hardware influence on operating systems

Hardware has played a reciprocal role with respect to software
in the development of program control. In terms of input-output
development, machines up through the IBM 704 required that
all high-output instructions be programmed word-for-word with
the computer acting effectively as a slave of the 1/0O device. As
a result, all programming was a linear, single-thread sequence
of instructions with heavy use of subroutines.

With the arrival of the IBM 705, 709, and comparable machines,
the concept of the hardware 1/O channel was introduced. The
computer was now able to simultaneously compute and perform
1/0. Software was soon developed to exploit this in its full
generality. The buffering system developed by Owen Mock
and Charles Swift and used in the sos was a highly sophisti-
cated example.

The first machines with simultaneous 1/O did not have any
automatic interruption of processing on completion of 1/O re-
quests, and as a result, operating systems were required to
periodically poll for completion. When, with the advent of sec-
ond generation machines, I/O interrupts became available, appli-
cable software followed. For example, sos was designed in
anticipation of interrupts.

Similarly, a combination of three hardware developments led
to spooling: sufficient on-line storage, high speed on-line card
readers and printers, and rudimentary protection. The first high-
speed printers and card readers were built to operate directly to
or from magnetic tape. On-line equipment was almost an order

of magnitude slower. As a result, most operating systems of this
era (1955-1962) accepted magnetic tapes as program input
which was written off-line from cards, and then prepared tapes
to be printed. The North American/General Motors 704 System
and sos are good examples of this type of operation.

With these hardware developments it became feasible to print
and read on-line. The computer still outpaced the 1/0, so that
data for printing usually was collected on files to be printed
later by symbionts. In 1962, program protection was rudimen-
tary, and it was considered not feasible by many to operate
more than one main program simultaneously, although the
main user program operated simultaneously with several sym-
biont processes. The Univac 1107 Exec 11 system characterizes
this class of systems.

Continuing the trend, software need was followed by hardware
development and better hardware protection, facilitating full
multiprogramming in the IBM 360 and Univac exec v sys-
tems. With communication lines and conversational terminals
added, the ingredients for timesharing were assembled.

Virtual storage is one of the “new” hardware concepts affect-
ing software designs today. From a programmer’s viewpoint,
virtual memory allows him to write a much larger program
without concern for storage constraints. Typically, murtics,
cooperatively developed by Massachusetts Institute of Tech-
nology, Bell Telephone Laboratories, and General Electric Com-
pany, is based on virtual storage.

the management of data...

Data management, in common with the control structure of
operating systems, has been strongly influenced by hardware
development. With small drums and inadequate tape drives as
on the IBM yo1, true data management was almost non-existent.
Subsequent tape drives permitted the handling of large files. The
management of reels of tape containing these files was neces-
sarily manual. One of the earlier data management develop-
ments was tape labeling.

At the same time, the contents of these files began to develop
structure. gpac on the 709 developed by the snare Committee,
sos in its input and output files, and racr all operated on struc-
tured files. gpac and racr files were both highly structured.

One of the problems introduced by extensive use of files was
that of organizing and managing the increasing amounts of
data in an efficient, easy-to-learn, consistent way. SURGE —
Sorting, Updating, Report Generating — was one of the early at-
tempts by a group of 704 users to devise a method of speeding
the preparation of complete reports from brief descriptions of
data content and format.

Two members of the original surGe committee, Robert Paul,
director of CSC’s Software Sciences Operation, and Kerry White,
a senior member of the CSC professional staff, applied the same
basic concepts in developing the Fact report writer and subse-
quent systems.

Mass storage was required for further data management devel-
opment. From 1960, with mass storage came the concept of a
random access file, partially random access file (indexed sequen-
tial), and a catalog of files. It now became feasible for the com-
puter to have permanent file memory independent of manual
intervention. Finally, the concepts of file sharing and the pro-
tection concerns that ensue resulted in comprehensive data man-
agement systems, such as IBM’s 1vs and the specifications
proposed by cobasyr’s Data Base Task Group.

Timesharing systems with shared data bases have paced the
development of more automatic schemes for data management.
oyt, a facility of the INFONET timesharing service, is typical
of this new type of language processor. It incorporates file
management commands with arithmetical, logical, relational,
and input/output statements, and allows the user to create, re-
trieve, and manipulate data without concern for the physical
sl:ructure of the files or the mechanics involved in processing
them.

A data management system enables a user to take a single
transaction or entry — without regard for any application pro-
grams — and radiate it throughout the data base. Large econo-
mies of data entry are effected by capturing the data once and
triggering it to all other related records. Also, major efficien-
cies and reliabilities are attained on processing and retrieving
data-base stored information.

...and of programs

At first glance command language appears to be a compara-
tively new development. In fact, however, only the rigorization
and generalization in some current timesharing systems are new.
Command languages were born as soon as it was necessary to
separate data decks or program decks by control cards and still
run them in subsequently. Command language, therefore, prob-
ably dates back at least as far as the card programmed calculator,
if not farther.

Rudimentary command language existed in sos and was further
developed in the 1107 EXEC 11 System. The IBM 360 Operating
System has a well-developed command language from a facility
viewpoint if not human factors. Traditionally, batch program-
ming language designers assumed the control cards would be
prepared infrequently and paid little attention to their syntax.
Conversational usage dictated that more attention be paid to
ease of input of commands and a consequent new interest in
command language.

One of the most interesting developments of IBM’s 360/67 Tss
was the macro instruction capability of its command language
based on a concept of Dr. Gordon Rice of CSC. INFONET's csts
carried this a step further, injecting much of the macro capa-
bility of a sophisticated assembler into its command language.

CSTS

The groundwork for today’s large-scale, nationwide computer
utility networks was laid in 1964 with the development of CSC’s
REMOTRAN — a batch operating processor that allowed users to
communicate with a central computer from remote terminals.

This shared computer concept preceded similar manufacturer-
supported systems such as the General Electric 625/35 series of
computers by two years. Through successive generations the
original REMOTRAN concept was enlarged and broadened into
CSC’s remote teleprocessing system, INFONET.

In 1967, CSC initiated a study to assess the nature of potential
users’ requirements for a comprehensive remote-computing ser-
vice. Their findings showed that no true conversationally
oriented operating system existed. Some systems offered large
batch capabilities with no interactive service or vice versa; some
provided an initial offering of either batch or interactive service,
with patchwork-type add-on capabilities; and others were so
complex that only experienced programmers could use them
effectively.

In 1969, CSC started the design of a general-purpose tele-
processing system for the Univac 1108 — csts, or Computer
Sciences Teleprocessing System®. csts was completed within six
months of its target date, within its anticipated budget, and met
all of the original study’s design criteria — something of a
unique landmark in the experience of developing major sys-
tems and a tribute to its project leader, Carroll Reed, and his
team. The csts “subsystem’ concept is particularly interesting,
as it allows several software systems — each with its own user
interface language, software library, accounting system, secur-
ity, and failure recovery provisions — to coexist within the one
operating system. Thus, it appears to its users as if it were
several different timesharing systems at once. csTs permits tele-
processing subscribers free choice of batch and conversational
processing.

Users can select the most cost-effective mode of operation for
their programs, use identical input for conversational and batch
jobs, and address all files in either mode.

By allowing the free intermingling of data management lan-
guages, an environment is provided which enables data base
managers to choose either pmL — INFONET’s Data Manage-
ment Language — an elegant but easy to learn system, or the
two highly advanced systems, the INFONET/TRW Generalized
Information System — 161 — and MRI’s System 2000.

*Operating System for CSC’s Information Network (INFONET) Di-
vision

toms and remote tele-
ems and remote teig
fion

com~

> it m

e convenient e, and second,

Ve

vare installations.

L A i
aneaqa ofren entglis

Rin

he past. Consider
the impact of the printing press on the mass transfer of infor-
mation and ideas over the last four centuries. The computer in
3 has already outperformed the printing

15k press in quantity if not in quality. Now the alliance of com-
o =5 i S
1e computer also munications and data processing systems has opened a whole

evelop its own hig

1 e .
new field of opportunit
access to Ti

s. Remote users can have unlimited
illy unlimited common data bases.

Computer Sciences Corg

1tion/CSC REPORT

b o o o op b e e

R P ——

bibliography =

Eames, Charies ancl Ray s S R T P A - ...”A Computer Perspective.” l:{arvard'University Press, 1973.
Higman, Bryan o .-..,-. ~...."”A Comparative Study of Programming Languages.”” American Mer Publishing, Inc., 1967..
Katzan, Harry, hr- “Introduction to Programming Languages.” Auerbach Publishers, Inc., 1973.
Knuth, Donald E.* Fundamental Algonthms The Art of Computer Programming.” Addison-Wesley Publishing Company, 1973-
North American A\nanon, et L e o Sireseecenas A Data Processing Compller for the IBM 70.:;." Columbus, Oh:o, 1959. -
Rosen, Saul 2, e e i TSRS "Programmmg Systems and Languages.” McGraw-H:ll Inc. 1967 S

Sammet,]ean.E..",.. e e e S ;._. : Program:mng Languages Hlstory and Fundamentals.” Prennce-Hall, Inc., 1969.

Wooldndge_,. Susan BT 2. SRt s e R Zieeens..."Software Selection.” Auerbach Pubhshers, Inc., 1973-

e “Sofrwar:—*!-hstoncal Perspecn es. and Currens Trends.””
4 Fa]] Imnt Compum Conference, 1971_

Frampton,. Lcns:___ s Dy e

Knuth, DonaIdE.“.. , o ’l‘heHxsmryofSomng."Datamauon,Demmberigy
Lipp, Michael F_ NS “The Ianguage BASIC a.nd us Role m Tlmsharmg > Computers and Aumnon, Ocmbet 1959~
McCracken, Damal D. : ;L;z.'.,. : AR AT ..-.Z'-..:-. -.--.."Whll:her APLYY Datamanon,September 15,.1970._

Rosen,. Sauditlire . . | v betp ot "Elecu'omc Compurers A Hxstoncal Survey.”” Computer Surveys, Vol. 1, No. z, March 1969.
Rosin, Rober_t—_E;'_ SEa - T ". bl o ‘"Supems-ory and Momtor Systems.” = Co:npuung Surveys Vol. 1, No. 1, Mau:h 1969. &
Tropp, Henry-:-,-‘i'-',. T e T he EEerv:sc:m Years: A Rermspecuv:" IEEE Spectrum, Computer Report VII, Pebmary 1974.‘;

Wells, Mark Boioo. ... oo ; A) "Evoluuorrof Computer Software Talk presemedat the Los Alamos Saennﬁc*
';'" 2 : o : Laboratory Col.loqmum,]anuary 1972
Wilkes, Maurice V.vooeennmiosoes Hnstonc:l Pe:specuvcl Cumpuner A.rch\tecmre." Fall Iomt Computcr Confem, 197

- —-i;:x"_\‘_-

It goes without saying that an e{forf of rhxs type::sa ased on a great deal of pmstakmg research coﬂemon of persorm! reminiscences,
and technical verification. While a wide cross-section of CSC’s systems programming staff made a valuable contribution, special thanks-
are due to Roy Nutt and Owen Mock for their asststfmce in checking historical details and participating in many informative discussions.

Robert Paul, CSC's first staff member, supplied tﬁeﬂecessary “enthusiasm, encouragement, advice, and direction as the pubhmhou 311::&:—
ally took shape. And Business Promotion Group editors, Morton Bernheim, Susan Thorne, and John Boland, deserve acknowledgement -
for prepanng and coordinating masses of coilectei material, cross-checking, and editing the contributions of marxy technical contnbutors

and reviewers.

Last — but by no means least — thanks are due to Terry Vincelette, who patiently typed version after version under rhreals that she
woould not be permitted to produce her first (pending) offspring until the document was in print!

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif

