Appl. sci. Res. ’ Section B, Vol. 2
—————————

A SIMPLE ELECTRON IC DIGITAL COMPUTER
by W. L. VAN.DER POEL

Central Laboratory of the Netherlands Postal and Telecommunications Services,
. . 's-Gravenhage

In this article will be described the logical principles .of an electronic
digital computer which has been simplified to the utmost practical limit at
the sacrifice of speed. Essential in this computer is that.the control registers

registers and an adding unit for adding three digits together at a time. There

" seven possible instructions of this machine have four digits, which are used
functionally. Thus no decoderis required. Multiplication and division must
be programmed. Examples are given. A small number of short registers
containing one number each is supplied to serve as working positions.
TLe long registers are so constructed that when the short registers are used,
the next instruction just comes out when the former instruction has been
executed. Advantages and drawbacks of this machine are mentioned. A
machine based on these principles has been built out of the elements of a
larger machine which is in course of construction at the Mathematical
Department of the Central Laboratory of the Netherlands Postal and
Telecommunications Services. This ‘machine has run ery satisfactorily
for two months. : ’ S -

" § 1. Imtroduction. Lately the logical principles of various machi-
nes have been described by several authors. They are all devised on
the same basic principles but differ in features and nature of
~elements for the technical realisation of the machine 1)-9), All
~ these machines have in common the following basic parts:

- @) A memory. Here will be stored the numbers which must
- “be processed as well as the instructions which indicate what these
. processes will be. ,

b) An arithmetic unit. In the arithmetic unit the elemen-

‘tary arithmetical operations take place. In this machine these
operations will only be addition and subtraction.

— 367 —

form part of the arithmetic unit, which results in a very simple method for .
using sub-programmes. The arithmetic unit consists of two non-calculating

is only one instruction register that consists of a numbes .of flip-flops. The

368 W. L. VAN DER POEL

¢) A control. The control knows at a certain moment where
the next instruction that must be executed is to be f(_)un'd. Aftc.er
extracting that instruction it controls the actiop of the arithmetic
unit, i.e. it directs the execution of that instruction. '

d) The input device. At the beginning of a cal.culatlon
the necessary numbers and instructions must b_e fed mt9 the
memory. As the speed will be too great for manual input, the infor-
mation must be recorded in code on a medium; a .teletype tape,.ior
example. From this medium it can be transferred into the macl}lne_.

¢) The output device. To produce 'the. results in a
legible form the machine must have a device by which it can commu-
nicate with the outside. In most cases this will be accomp.hshed by
an electrically controlled typewriter that can be fed, directly or
indirectly, from the machine. o o o

During the construction of an electronic computer at the Mathe-
matical Department of the Central Laboratory of the Nether!ands
Postal and Telecommunications Services out of the alrea.dy avalla!)le
parts a small machine has been built. This small machme'con-tams
all the afore-mentioned five units, but in one respect it differs
appreciably from most other machines: the arithmetic um? g}xd tpg
control have so many parts in common that they are no.td;lstu'lgun-
able. Although this small machine has no bqilt-in multxpher,}t has
most of its logical principles in common with the large mac{nng, 0
it offers an excellent opportunity to describe these principles

without undesirable complication. It must be kept in mind, however, .

that this machine is not meant as a practical computer, but only
serves the purpose of gaining experience with the large computer.

§ 2. Memory. The construction of a computer will; be greatly
dependent upon the financial funds, the technical possibilities, the

desired speed and the available time and space, so it is ?ot possib!e
to discuss the logical principles in general withou.t makmg a choi(:f: i
for certain types of components or certain basic properties. The

system which we shall describe applies only to fh‘ose types of memo-
ries which operate in a serial form, i.e. the digits of a number go
into, or come out of the memory as a time sequence. Not only.the
digits of a number, but also the different numbers come out .(')f’ thg
memory consecutively. We shall confine ourselves to tho partxcpl;:
examples of these memories: the mercury delay-line and 't

J: ‘ ‘. Me 10) ll) ll).

A SIMPLE ELECTRONIC DIGITAL COMPUTER 369

magnetic drum. Both types have been described in literature, so I
shall only summarise their basic properties,

The mercury delay-line consists of a tube which contains mercury,
Both ends are terminated by a quartz crystal. One of these crystals
transmits a pulse-modulated carrier into the mercury in the form of
an acoustical vibration, the other crystal receives the signal after a
certain delay. The electrical pulse-train can then be amplified,
detected, reshaped and recirculated. It is possible to have delay-
lines of 30 or 1000 pulses length, with a pulse frequency of 1

The magnetic drum consists of a drum of non-magnetic material,
coated with a layer of a ferromagnetic material. By a magnetic

system, a so called “head”, it is possible to write upon the drum

short pulses which remain on that drum by virtue of the remanence.,
The same head can detect the pulses again and thus read the drum.

The pulse-frequency can be 50 kc and one revolution of the drum can .

take 20 ms, so about 1000 pulses can be allocated on a circum-

ference, a “track”. It is possible to have a large number of tracks on
the same drum 13),

§ 3. Arithmetic unit. Also for the arithmetic unit a choise must be
made in advance. Inside the machine we shall use the binary system
throughout, Numbers will consist of 30 digits and a sign digit each
(see appendix I). There is a fixed binary point, the position of which

- Temains to be chosen. We shall work here only with two particular

positions of the binary point: on the extreme right of a number and
between sign digit and first digit. Thus we get integers or numbers
between 1 (not incl.) and —1 (incl.), respectively. Negative numbers
will be represented by complements. The instructions which indicate
the elementary steps in a calculation will only consist of two parts:

@) an address, i.e. a number which refers to the location in the

- memory where the operand is standing or to where the operand must

be transferred.

b) an operation which tells the arithmetic unit what to do with
the operand. :

Such a system is called a one-address-code. This is the simplest
possible ‘code, because it always performs one basic operation at a

_ time. We try to make the machine as simple as possible, so we decide

that no built-in multiplier or divider will be incorporated. The only
Appl, sci. Res. B 2 24

370 W. L. VAN DER POEL

arithmetic operations that the machine must be able to perform are
addition and subtraction. Multiplication consists of addition and
shifting, and shifting can be done by doubling the partial result or
adding this to itself in the binary system. So multiplication can al-
ways be broken down into addition only. In a programmed computer
the storing of the results of an addition or subtraction is an operation
which must be explicitly stated in the programme, so we also get
storing as an essential operation. Let us now analyse the function of
the control. The basic cycle of operations consists of two parts:

a) Take in an instruction from register n of the store and add | to
so that the next instruction can be taken in from the next register.

b) Exccute the just extracted instruction.

Sowehave in addition to the operations “‘add” (or ‘subtract”) and

“store” the operation: take in an instruction from register #.

Now we observe that

a) during the extraction of an mstructxon we do not perform
arithmetic operations on numbers, but we have to add a “‘one” to
the address of the extraction instruction.

b) During the execution of an instruction we need three regxsters,
1°) one for the instruction which must be obeyed, 2°) one for the
extraction instruction for the next instruction, 3°) one for the
number to which we must add the number to which the current
instruction refers, or the number which must be stored.

So we see that we only need three registers in arithmetic unit and
control together. We can then use the same adding mechanism for

adding two numbers and for adding 1 to the extraction-instruction.

4. Action of the instructions. Let us now follow ir detail how this
is : ccomplished. We shall denote a register for a number by a
rectangle and the adding mechanism by a circle. This circle is so
constructed that out of every two incoming pulses, representing the
digits of the two numbers, it constructs an outgoing pulse, repre-
senting a digit of the sum. (It also produces a carry-over which must
be delayed one pulse time and must then be fed in again at the input
of this box together with the next digits of the numbers which must
be added. See appendix II),

We shall give names to these registers and call them

A SIMPLE ELECTRONIC DIGITAL COMPUTER 371

INSTRUCTION AUXILIARY
REGISTER ACCUHULATOR REGISTER
. SELECTION|
HE"ORY i’ -.bmls"

We need the following types of instructions:

Take in an instruction from register n, abbreviated X n
Adding is also a basic operation. For convenience we have ‘
included four variants. - :

Add the contents of register n into the cleared accumulator P n

Subtract the contents of register » from the cleared accu-

mulator Q n
Add the contents of register # to the number already in the
accumulator O n

Subtract the contents of register » from the number al-

“ready in the accumulator 4 n

All these instructions leave the contents of the memory
undisturbed.
The third basic operation is storing. We have two variants.
Store the number from the accumulator in register # and

clear the accumulator S n
Store ‘the number from the accumulator in register » and
"do not clear the accumulator R n

Here the contents of register » are written over by a new
number.

The logical system of coding these instructions will be discussed
in§ 5.

Let us follow in detaxl what happens when we execute a simple pro-
gramme for adding a to b when a is stored in 20, b in 21 and the result
must be stored in 22. Let the programme begin at 100. The pro-
gramme then looks as follows:

— 100|P 20 20|a
101{0 21. 21|b
©102(S 22 ’ 22| (sum)

In front of the vertical line are the numbers of the registers, behind
this line the contents of these registers.

372 ' W. L. VAN DER POEL

The contents of the instruction register at the beginning of the

programme are
=] O

]
Y

MEMORY

The address of X 100 goes to the selection mechanism of the memory,
whereupon this issues the contents of register 100.

P20 | X0t

+

HEMORY

At the same time the adder is used for adding a one to the address
of X 100, so it becomes X 101, meaning: the next instruction is in
register 101. Now in the instruction register stands P 20. The
address goes again to the selection mechanism and P alters the inter-
connecting paths between the reglsters of the arithmetic unit, so

there follows
P20 O Xoi |

¥
Y

MEMORY

[X 2 —]- Xio1

Peo a

MEMORY |

Because of the change in interconnection X 101 is pushed to the -

instruction register by 4. X 101 pushes out the previous contents
of the instruction register. ‘

A SIMPLE ELECTRONIC DIGITAL COMPUTER 373

The next operation is X 101: take in an instruction from register
101.

021

X102 .a

+

HIRE

MEMORY l
I
a is pushed into the auxiliary register. The adder is again used for

‘adding one to X 101.
The next operation is O 21: add contents of 21 to the accumulator.

[

MEMORY

wllipe
—

i

X 102 takes in the last instruction of the example -

S22 Xwos |~ a+b

+

%9

MEMORY

S 22 means: store the sum in 22 and clear the accumulator.

[i

MEMORY

| a+b
The machine proceeds with X 103.

- § 5. Functional use of the instructions. Before entering into détails
about programming we first discuss the effects of the different

~operations upon the routing of numbers through the reglsters of the
: anthmetlc unit. : :

374 W. L. VAN DER POEL

We can divide the operations into two classes:

a) Theinstruction X. Upon thisinstruction noarithmetic operation
takes place, i.c. : no transfers or calculations with numbers are effected.

b) All other instructions. They all indicate a transfer or an addi-
tion (subtraction).

So we can reserve one binary digit for the denomination X — non-
X. 0 means X, 1 means non-X. Herefore we use the first digit.

The next classification of the instructions is:

a) Reading instructions. Here a number ‘is extracted from the
memory. They are X, P, Q, O and 4.

b) Writing instructions. Here a number is transferred to the
memory. The instructiong are S and R.

The second digit can be used for denotmg this. O means read;
1 means write.

Then we have mstruchons upon which the accumulator is cleared
-or not. In clearing, a path for leading the number back to the accu-
mulator is simply interrupted. The third digit of the operation is
denoting “clear” or “not clear”. 0 means clear, 1 means not clear

The fourth digit remains for the indication “positive” or “‘nega-
tive”. This only applics for adding instructions P, Q, O and 4.
0 means add, 1 means subtract.

We now get the following table of instructions and their actual -

coding in the machine.

d
15| ¢

i

X —non X

CLEMR -
poS.

TABLET tatEnn [X o o oo
X non- X Plilo]olo
POS. | NEG. | POS. | NEG. Q] ool
cear| X p O+ o} |o
READ
NOT
CLEAR 0 A Al Joft |t
CLEAR S S|t t 1ol o
WRITE -
NT
CLEAR IR, Rl+ {1t]1]o

: A SIMPLE ELECTRONIC DIGITAL COMPUTER 375

There are 9 other possible instructions with 4 digits. The negative

_ version of storing would not be possible because making a number

negative is an arithmetical operation which can only be done in the
adder. The operations 1101 and 1111 act just the same as S = 1100
and R = 1110. On an X-instruction the third and fourth digit have
no influence. Only when the second digit is 1, it causcs the X-in-

" struction to read no new instruction, but to write a number. At the

same time it reads 0, so the next instruction becomes X O, the latter
stopping the machine (see § 6 and § 10). ’

Considerations of a practical nature led to the positioning of the
four operation digits at the extreme left of a register, so the X—non-X
digit occupies the same place as the sign digit. The address is
written in the extreme right of a register, so the address can also
serve as a natural number. Futhermore a one must be added to the
address. This can be the least significant one which simplifies the
construction of the one-generator. The one-gencrator always emits’
a one on the first pulse time and can then be shut off to zero. If it had
to emit a one on another place, a counter would be needed.

[= SIGN
X "'57:22'““ + ACCUMULATOR AULRES. |
T X | -
worm s |
T0 , +1
SWITCHES X . '
N
XSRI I |
- ‘s < . ’

MEMORY f==->{ SELECTOR [~

" Fig. 1. Schematic diagram of the arithmetic unit and the control unit.

We can now draw a schematic diagram of the arithmetic unit and
the control unit (fig. 1), The address part of the instruction goes to
the selection mechanism of the memory. The operation part controls

376] W. L. VAN DER POEL

the routing of numbers through the various parts of the machine.
The switching in these paths is symbolically designated by ordinary
contacts which are drawn in the quiescent state. The four digits of
the operation control the following switches:

The first digit X—non-X by contact X,
The second digit read—write - by contact S,
The third digit . clear—not clear - by contact R.

The fourth digit positive—negative by contact I.

The box in which has been written inv. is an inversion box making
a number negative, i.e. replacing zeros by ones and vice versa (see
appendix I). As can be verified, the interconnections in the small
diagrams just result, in each case, from the setting of the switches
belonging to the particular instruction. The box “sign” will be
‘explained in the next paragraph. '

Of the seven instructions that are possible only three are strictly
necessary. These are X, 4 and S. We can clear the register by means
of S. Addition can be effected by two subtractions because —(—a)=
= +a. Of course many more instructions, even for quite simple
programmes, are then required. The operation of the instruction
contains in this case only the X—non-X digit and the read—write
digit. The contact I is always on the other side, the contact R must

be operated together with S. Actually the machine worked in this ‘

fashion during the first experiments. We note here that it is also
possible to build up subtraction from addition only. ‘ "

§ 6. Unconditional and conditional transfers. Sub-programmes. We
must first discuss some additional facilities of the arithmetic unit
without which a calculating machine is not a universal machine in

the Turing sense 14). Perhaps this can best be shown by a few .

examples,

When we want to perform a programme, we cannot execute all

instructions in one unbroken sequence, but such a programme can
contain repetition cycles or sub-programmes which can be called
into action at different points of the main programme. So we must

sequentially. This can be done by the instruction X,

have means for breaking the normal course of obeying instructions

A SIMPLE ELECTRONIC DIGITAL COMPUTER 377

Suppose the last example continued with

o 103X 120
v 103 120|P m
' 121 |etc.

In register 103 now stands the instruction: take in an instruction

“from 120. The following happens:

X0 —{ Xns

+

HEMORY

Pn X1 = X104

HEMORY

Instead of the normal alternation of X-instructions with non-X
instructions, here two X-instructions are executed one immediately -
after another. In the accumulator now stands X 121, so the next
instruction will be taken in from 121: the machine continues to
proceed at 120 etc. In the auxiliary register X 104 is‘retainefd., giving
an indication of the place where we came from. Now repetitive pro-

_ . cesses are possible in the programme, for example

120 - 100] ...
101
102
.
120| X 100

When coming to the instruction in 120, the programme goes back

to 100. : :
A second application of the X-instruction is the use of sub-pro-

-grammes. Suppose we have to perform as a part of a larger calcula-

tion an often recurring process, for example in this machine a multi-

~ plication."-We do not want to programme it explicitly each time a

multiplication is needed, but we make once for all a multiplication

378 - W. L. VAN DER POEL

programme which we can use each time. At different places in the
main programme the multiplication programme is called into action

and at the end of this sub-programme it must proceed in the place -

where it came from (fig. 2).

100
120 (Xzoo ,

7] 9220
130 (thn) :
13 ' etc. I

Tig. 2. Use of a sub-programme. Co

At 120 the sub-programme is called in. It must go back to 121.
At 130 the sub-programme is called in again. Then it must go
“back to 131. This can be accomplished by simply makmg the sub-
programme begin with 200 | S 220.

The subsequent stages are

X120 >
+
HEMORY
-] Goto200
X200 Xea X 121 is held
] : ~y in. the accu-
mulator,l, b
MEMORY ‘ R

A SIMPLE ELECTRONIC DIGITAL COMPUTER 379

‘ ' S220 Xaot = Xiat Store return in-
‘ struction at the
, end of the sub-

MEMORY : programme.

L X 201 O___ X201 Proceed with
‘ 201.

MERORY

by |
B

Afterwards

L X220 O._ J -, Take in the
- | return

i instruction.
L D ——

Proceed with
121.

X X221 |
+

MEMORY

The second time the sub- programme is called in X 131 is stored as
return instruction. :

One of the most important functnons of an automatic computer is
its ability to make decisions. When we are doing a repetitive calcula-
tion, for example counting, wg want the machine to be able to detect
when it has reached a certain count and then alter the course of the
programme. This machine also has means to make a discrimination
on thie sign of a number, put in the accumulator for this purpose.
For doing a so-called conditional instruction we have a few additional
components, so constructed that no special instruction is needed,

380 W. L. VAN DER POEL

but only a special arrangement of the already existing instructions.
This is done as follows. We want to go to the instruction in register
200 when the contents of register 30 are positive, but we want to
proceed normally, i.c. sequentially, if this number is negative. The
programming is B

100/ P 30

101X 102 . 30|a

102|P_ n

103|X 200 -

102 — 104 | etc.
After P 30 we have taken in the number in 30, so the contents

of the registers are

Xio1 O a | X @

SIGN 0F &

X102 | X102 a

+

MEMORY

Now the dummy X-instruction directs the programme to the next
instruction. The extra apparatus consists of a single flip-flop,
receiving the same input as the auxiliary register. After it has gone
through all digits of @ which is pushed in, it contains at the end of
the number cycle the last digit of a. This is just the sign digit.
Suppose this sign to be 1. Now the next step is again an X -in§t1:ugtion.

-t

Pn X104 X102

+

MEMORY

This causes the contents of the sign- flip-flop to be added into X

102, together with the 1 which is always added during an X-instruc-

A SIMPLE ELECTRONIC DIGITAL COMPUTER 381

tion. Thus X 102 becomes X 104 and the instruction in 103 is

skipped. (For adding the sign digit the already mentioned third

input of the adder is used. See appendix II). :

When a4 is positive, the sign flip-flop contains a zero. Then during
instruction X 102 only 1 is added to X 102, the latter becoming
X 103. After executing P #, it jumps to 200.

Of course, this part of the machine is always in action, but in the
normal course of events every X-instruction is followed by a non-X
instruction. During a non-X instruction an X-instruction is pushed
into the auxiliary register and the sign flip-flop is filled with the

SyoRT

HEMORY

sign of X. As the most significant digit of an X-instruction is always
zero (X = 0000), the following X-instruction always adds thé nor-

mal one and a zero.

SUM

HEMORY

The same reasoning holds for the use of an X-instruction as un-
conditional transfer after clearing of the accumulator. In this case

the accumulator contains only zeros which are pushed into the

auxiliary register and the sign flip-flop. So this also receives a zero.
Recapitulation: An X-instruction in the programme operates as
an unconditional transfer when the accumulator has been cleared

- by aninstruction S or by PO or when it is certain that the accumula-
~ tor contains a positive number. An X-instruction inserted after not

clearing the accumulator operates equally as an unconditional trans-
fer, but then the next instruction is conditional, i.e. the instruction

3482 W. Lo VAN DIR POKL
atter this conditionnl instruction is skipped when the number taken
in belore the extra N-instruction was negative,

These facilities of the X-instruction can be'combined, of course,
For example with the aid of an X-instruction we cun go to a sub-
progranuue storing the return instruction, The same X-instruction
can make this storing instruction conditional (fig. 3).

' o

200 | 5230
00| Pn 202 201 | X300

101 | X200 '

—
—

300
102 | etc. i)
2295 350 | X230
N
: 230 |(Xw2)
R —

Fig. 3. Sub-programme with conditional entrance point.

In the following paragraphs we shall denote every unconditional
transfer by an underlined X-instruction and every conditional trans-
fer by a broken underlining. Entrance points are indicated in the
programmes by an arrow together with the number of the register
where we come from. C ' '

§ 7. A simple multiplication programme. We shall now give a programme

for multiplication of two unsigned numbers of which the product does not. "
exceed a single length register. The programme will be written in the form .

of a sub-programme,
The working positions will be allocated as follows:

0] X 0 = zero

11X 1| = | ==one-generator

4, Multiplier

5 | Multiplicand

6 | Product. At the start: multiplicand

9| Count for testing completion of operation”

A SIMPLE KLECTRONIC DIGITAL COMPUTICR 303

Bofore wo wro golog Lo use the multiplication programme, weo plice
multiplier and multiplicand in registers 4 und 6, respectively, The product
will bo formed in 6. The muin programme can be for exnmpls

- gg? f zg}l’ﬁw winto 4 g? ;:
.)
§8§ i S(l))l’u(biuto6 72| (ab)

204| X _100 Go to multiplication programme

-~ 5]
2t gg? t 7;}1’ut rosult into 72

The multiplication sub-programme now becomes;

~—-> 100|S 121 Store return instruction Contents of 121 thus be-

at end of programme coming X 205,

10t | P 6}I’ut multiplicand into § Itisan advantage to have

1028 §J)- the product again in 6 so
Co as to be able to form easi-

lya x b x c.

After S 5 the accumulator

is empty.

A one is put into reg. 9 as

a count. This count is

shifted at each digit of the

multiplier till it reaches

the sign digit.

103[S 6 Cleérbfor product

104 P l} : o
105|S 9 JPut count into 9

120 > 106 | P 4,Shift the multiplier by By doubling the multi-
10710 4}doubling it plier the next digit is
108 r 47 Store without clearing taken into account each

‘time. The sign digit is
neglected by doubling the
- multiplier at the begin-
ning already.
109{ X" 110 Prepare conditional When the most signifi-
' transfer cant digit is O, nothing
1O P _ 5 Add multiplicand must be added to the
. ' . product, but when this
digit is 1 the multiplicand
must be added.

114 5 If multiplier positive sub-
" tract multiplicand
110 -+ 112]0 6}Add double the previous
'+ H3|0 6Jpartial product
114{ S 6 Store partial product in 6
"115| P 9y Shift count to the left
1160 '9}by doubling it
7R 97 Store without clearing

384

W. L. VAN DER POEL

118

Prepare conditional trans-
fer

When the count becomes
negative it indicates that

all digits are used.

1191 P _ O Dummy instruction tak- ’

ing in 0

1201 X 106 If count is positive repeat

calculation.

119 > 121} (X 7} If count is negative go In this register the return

back to main programme instruction has been pla-
ced by 100 S 121.

§ 8. Arrangement of the registers. When we would use a serial type
of a memory, as proposed, with about 30 numbers per revolution, all
programmes would be exceedingly slow because every instruction
would require a waiting time of half a revolution for the necessary
number. Together with the selection of this instruction this would
become just one revolution per instruction. For a machine which

“must do a multiplication by a fairly long programme this would be
too slow. The sequence 106—120 consits of a 15 instructions. This
sequence is executed 30 times for one multiplication requiring & 450
revolutions. There is a method, however, enabling to perform normal
consecutive instructions in only two number cycles. The normal
sequence of events is that always an X-instruction alternates with a
non-X instruction. If the number which must be operated upon
could be taken from the memory without a waiting time and if

instructions were not placed in consecutive registers but in every

second register, we could obey one instruction in two number times.
Now there is in general only a small quantity of numbers in a calcula-
tion which must be always immediately available. Therefore we
install a small quantity of short registers containing only one
number. Then there is no searching time for these short registers.
The instructions are interspersed in the memory. The positions in

one delay-line of 32 positions are then numbered for example

fe o f e | e e f e e f e f o} e o e e | e]) el e ol o)l e b e b 1|

| .
32 48 33 49 34 50 35 51 36 52 37 53 38 54 39 55 40 56 41 57 42 58 43 59 44 60 45 61 46 62 4763 A

The selection is done by counting each second register until this
count coincides with the address in the instruction register. On the
first revolution the first, third, fifth, etc. registers are selected. On
the second revolution the second, fourth, sixth-etc. registers are
selected. An X-instruction for unconditional transfer just waits till

A SIMPLE ELECTRONIC DIGITAL COMPUTER 385

the contents of the desired register come out. Note that jumping
from 40 to 56 requires no waiting time, as 56 follows immediately
after 40. A programme - C ‘
‘ ' ‘60| P 45
61| etc.

also requires no waiting time, because 45 lies between 60 and 61 , but

60| P 46
etc.

61

would require a whole revolution. In general # lies between # and
n + 1 when p = n 4 16k where £k is an integer. Of course we also
want to reach 32 from 63 with one number time between them. That
is why we insert an extra space (numbered A) which allows for this

~ time. During this space the counter is reset and prepared for count-

ing the other 16 number times of the next revolution. This results in
a waiting time of three number times instead of one between 47 and
48. (It would have been practical to have 31 registers in one revolu-
tion. Then we should not need the extra position 4 and there would
be no waiting time between 47 and 48. However, difficulties would
then arise with the use of the five least significant digits of the
address for selecting only 31 registers. See appendix III. The best
remedy would be to omit register 63, 95 etc. altogether, but then an

- unconditional transfer would always be needed in 62, 94 etc. to

preserve the continuity of the programmes).

The idea of using the instructions at the moment when they come
out of the memory has been used already in several other machines,
for example in England for the ACE, (National Physical Laborato-

* ties, Teddington) ?) 8) and in America for the EDVAC (Moore School

of Electrical Engineering, Univ. of Pennsylvania 15), Both machines

. have three address codes while a fourth address indicates the loca-

tion of the next instruction. In the ACE this is done by a relative
timing number, in the EDVAC by an absolute register number,

- We shall postulate the following arrangement of registers: reg.
0—31 inclusive are short registers, which are always immediately

. ‘available, reg. 32—63, 64—95 etc. are delay-lines of 32 numbers

each (or tracks on a drum). Of the registers 0—31 we shall give a
special purpose to 0—3 and to'30'and 31, ' '

Appl. sci, Res. B 2. ‘ 25

386 W. L. VAN DER POEL -

0lX 0 ‘zero” 0, 1 and 3 contain constants.
1IN 1 “one” in the least signi- These registers do not consist of
ficant place a delay-line but are wired in in
2 <. auxiliary register the control. It is not possible to
3| 0 “onc” in the most sig- write in them.

nificant place

30| Output register

31 | Input register

Register 2 deserves a little explanation. Only the instruction re(?ri:\ster
needs to consist of a series of flip-flops, the accumulator and the auxiliary
register consist of short delay-lines. Of these registers the auxiliary register
has received an ordinary locatlon number. Now a few special instructions
are possible. B

X 2 Take in as a new instruction the number just calculated in the accu-
mulator. This calculated instruction must always be an X-instruction,
otherwise the programme proceeds with X 3, which makes no sense.

LExample:

32| P 20 20 contains 1, 2 or 3 dependent upon the calculation.
33|0 35 Add the constant X 35. The result thus becomes X 36,
X 37 or X 38.
341X _ 2 Constant.
35{X 35
34->36|X a
34> 371X b}’]‘he programme is transferred to a, b or c.
34->38{X ¢

Observe that this process makes the conditional transfer theoretically

superfluous,

.

2 No uscful instruction. Equivalent to O O or R 0.

2 ‘T'his changes the sign of the contents of the accumulator.
2 ‘This doubles the contents of the accumulator,

2 No useful instruction. Equivalent to P O or S 0.

;7'(1).’::010"6

g}Not possible. Reg 2 has no writing entrance,

The functioning of 30 and 31 will be described in a separate paragraph.

§9. Example of a complete multiplication programme. In general
the programmer does not need to worry ahout timing of programmes.
Only in standard sub-programmes it is worth-while to make them

most economic in time. We must try to take advantage of the short -

registers and of free registers which are just in such positions that it
takes no waiting time to reach them.
As an example we shall give a programme for signed multlpllca-

A SIMPLE E LLCTRONIC bIGI TAL COMPUTER 387

tion which gives the complete double-length product. A short supple-
mentary programme serves for roundmg off the most significant part
of the product. Also the already given short multiplication program-
me will be brought into the new form. For the arithmetical process
used, see appendix I.

The allocation of the working positions is:’

4ia multiplier

S|h ,head’ of result

6|b, ¢t first: multiplicand, afterwards: ““tail”” of result
710, “head’’ of long form of multiplicand

81b, ‘tail” of long form of multiplicand

91c count

10| (—) return instruction

When using the programme for signed, long multiplication, multiplier
and multiplicand must be put into registers 4 and 6. Result appears in 5
and 6. Programme begins at 32,

When using the same long multiplication programme but rounded off,
the rounded-off head of result appears in 6. The programme begins at 45.
For short multiplication, multiplier and multiplicand must be put into 4
and 6, result appears in 6. This part begins at 128.

We now give the complete programmes:

—=> 32|S 112 Putreturn instruction in- There is no waiting time
: to 112 ‘ for 112 as
. 12 =324 5x 16

33| P 49} Put 4 1in carry-over sub- A special carry-over pro-
34|S 104) programme gramme serves normally

' for bringing digits from
tail to head. However, for
producing long form of b
and for complementing
long form of b, carry-over
) must be negative which is
36|X__83 Goto sub-programme to done by 4 1. P 49 takes

3518 5 Clearreg. 5

produce long form of b no waiting time as 49 =
= 33 - 1é.
10> 37|P 5} . Sub-programme can

ag|s g Futhyinto? always be back within
one revolution.

9P 6} . ’

40!s 8 Put b; into 8

411S 2}

a2|s Clgar Sand 6

388

W. L. VAN DER POEL -

10 —

97 —

50 —

126 —

44 —»

61 -»

43

44

45
46
47
48
49
50
51
52
53

54
55

56

57
88
59

60
61

62

63

64
65

P Test sngn digit of multi-
}phex .
X __617and go to 61
S 59y Begin of rounded-off mul-
}tiplication progr.
X 32 store return instruction
~and go to 32
P 6y Test sign of tail and pre-
}pare conditional transfer’
X 116’ and go to 116
A 1 Constant.
P __ 0 Dummy instr. Condi-
tional transfer
X 71 When last digit is not
treated, go to 71
P 112 When last digit is treated,
take in return instruction
S 10 Store this in 10
Q 5} Take in tail and prepare
A 1) test for sign of tail -
X 106 Goto 106
P 5} Put rounded-off product
S 6J into 6
(— —) Return instruction
Q 7 Take in b, negatively ’
X 67 1f multiplier pos.: goto67
S 5 Otherwise: store —by into
5
Q 8} Take in —b; and store
S 6J into 6 :

The dummy X-instruct-

ion preparing the condi-

tional . transfer is at the

same time an uncondi-
tional transfer to 61 (one
waiting time).

Storing takes one rcvolu-
tion. Lo

Because zero would still

- be positive when taken in
~ negatively, a one is sub-

tracted, thus forming
pseudo-complement.
Here a part of the normal
carry-over programme
serves for providing the
tail with the sign of the
head.

Product is placed into 6,
so repeated products can
be formed easily (e.g.
axbxe. .

The long form of b is

"made negative here.
- 1f sign of multiplier is po-

sitive the negative long
form needs not be formed
so programme goes to 67
The carry-over programme

. serves here to make long

form ot —b out of b by

S carry:,ng over the sign

digit negatxvely.

A SIMPLE ELECTRONIC DIGITAL COMPUTER 389

Lywn

Y OMN .

X 8

104
l} Store shifting count in 9

K‘UJO"u

o-”

ey

83 Go to- carry-ov'er sub-
programme °

P 115} Alter the carry-over sub-'

programme for . carrying
over +1 instead of —1.

9 .

S¢result
8- .

- S}Double- head -of partial

6y Double tail of partial re-
6} sult

83 Go to carry-over sub-
programme '

4) Double multiplier, so next

4] digit occupies place of

"| sign digit '

Store without clearing

multiplier and go to 86
10 Begin of carry-over-sub-

grogramme, Store return-
6 instruction, take in tail

for testing carry-over.

102 Prepare conditional trans-

fer and go to 102

. 8 Take in b,

X 94 If multlpher pos go to

94

-“~6}If multnpher neg.: add

multiplicand to partial
‘result. First tail

5} Then head
5 .

X__83 Go to carry-over progr.

v

4
86 Prepare test of sign of

. No waiting time fbr 115

as 115 = 67 + 3 X 16. -

Counting is again effected
by shifting (doubling) 1
until at last it occupies
sign digit.

In doubling the long form
of the partial result, a car-
ry-over from tail to head
can arise.

This digit occupies the

place of the sign digit and
is carried to the head by
carry-over sub-program-

. me which takes one revo-

lution,

Return instruction is
stored in short register to

“make possible return

within one revolution.

Tail of long form has no
sign digit, thus X-in-

struction in 87 cannot’

work conditionally.

Carry-over programme
returns within one revol~

. ution.

390

10+
HYas

a

146 -

85 -»

102 —

56 ->

106 -»

48 —»

116 -»

117 »

9
90
97
93
99

100

101

102
103

104
105

106
107
108

109
110
i1
112
113
114
115
116

117
118

119

120
121
122
123
124
125

I
0
N

AY

)
X

t

9
9
N80 Propure test for sign of

N 7 Otherwise go to return

W. Lo VAN DR POILCY,

il store aguin in 9
without clonring

J} Shift count by doubling

count

L2 0 Dummy instruction

Conditional instruction

144 1 count pos.: go back to

134

instruction

_ 5 Take in head of 1'esﬁlt

10 If tail is pos.: no carry-

over .

(— -=)} If neg.: Add (or subtract)

In any case a posilive
number is in the accu-
mulator, So X 134 can
never work as o con-
ditional instr. This purt
belongs to short multipli-
cation programme,

Sub-programme immedia-
tely goes back to normal
progr.

This instruction can be
O 1lord.l.

Same -instruction can be
used conditionally at the
end of multiplication pro-
gramme to provide tail
with sign digit of head.

78, 94 and 126 can be
reached within one revol-

- ution.

S Sfcarry-over to tail and
store in §

P _ 6y Dispose of sign digit of

0 3} tail by adding PO =

S 6” most significant one

X__ 10 Return instruction

(— =) Temporary location of
return instruction of mul- -
tiplication programme

0] 1 Constant :

P _ O Dummy instruction. Take -
in zero .

X122 If sign of tail is pos.: go
to 122

P 49y 4 1 is putagain in carry-

}ovcr sub-programme

S 104

Q 6} Make tail positive

S 6

P 6

0 6} Double tail

S 6

X __ 83 Go to carry-over sub-pro-

gramme

To round off a number,
the digit following the
sign digit of the tail,
which has been
positive, must be added
to or subtracted from the

head as round-off digit, -

if the head is positive or
negative, respectively,

~ The same carry-over sub-

programme -is used now.

made

A BIMPLIE BLECTRONIC DIGITAL COMPUTER 391

When hend iy poritive,
Lhe instraction O 1 iy left
in 104, but whon head s
nogutive, 4 1 I8 substi-
tuted.

10 » 126 X b7 Golo b7
127 :

‘I'he total time for one multiplication depends on the (quantity of ones in
the number, On the average the time for one mulliplication, not rounded-
off, i3 113 revolutions and for multiplication, rounded-off, is 116 revolutions,

No explanation will be given of the following short multiplication pro-
gramme ag the action is the same as in § 7. Also the same working positions
are used. The time needed is 31 revolutions.

138 - 140

— 128|S 7 100 —» 134|P 4 0 6
: 129|P 6 135{0 4 14110 6
130{S 5 136 4 14218 6
131|{S 6 137X 138 143|P 9
132|pP 1 138lP_ 5 1440 9
1338 9 139{4 5 145|R 9
. 146 | X 99

§ 10. Input and output. Input and output is provided for by two
special registers 30 and 31. We assume having a teletype tape as
input medium. Each line of the tape consists of five binary digits, a
symbol. Register 31 is a flip-flop register of only five flip-flops. When
the programme encounters an instruction P31, @ 31, O 31 or 4 31,
the contents of this register of five positions are pushed into the
accumulator of 31 digit positions. This causes the five digits of
register 31 to be put into the least significant five places of the accu-
mulator. Immediately after being read off, register 31 makes the
tape step one line and takes in the new line of five digits. When
reading a new symbol before the tape has completed a step after
reading the previous symbol, the machinc waits. It is not possible to
write into register 31.

Output is arranged in the same manner as the input. Register 30
also consists of five digits only. When an instruction R 30 or S 30
writes the contents of the auxiliary register of 31 digits into register
30, only the five most significant digits remain in 30 after shifting
through all other digits. Each time a number is written in 30, the
five digits are typed on an automatic typewriter or are punched on
a teletype punch. Register 30 cannot be read off by a read-instruc-
tion. (It would be possible to use the same location number for input
and output and make the read-write digit choose between the actual

input and output register).

§92 * W. L. VAN DER POEL

As a last example we shall give an input programme for putting
in instructions from the tape. This programme is by no means the
best possible (this always depends on the situation), but only serves
as an example. :

Normally instructions are put in consecutive registers. Each in-
struction consists of 6 lines of coding on the tape. The first tape
symbol is normally 1. The second symbol denotes the operation. The
coding for this digit is: : ’

X=0 P=1 Q=2 0=3 A=4 S=5 R=6
The third to sixth symbol give the address in decimal form. During
input conversion to binary code takes place. ‘

The first symbol can assume other values than 1. In general this
symbol indicates the number which must be added to the address in
which the last instruction has been put in. So we can skip a number
of registers before putting in the next instruction. The number 0
serves for the purpose of replacing the store instruction which every
time stores the instruction just put in. By virtue of this we can begin
to put in instructions from a pre-determined memory location. We
can also leave the input programme by replacing the store instruc-
tion by an X-instruction. . - e . R

We shall give a small example. Suppose we want to putin the programme

300 P 15} Put a into reg. 6 15| a, later —ab
301|S 6 166)
3020 16} Put —b into reg. 4 ‘ g

303(S 4

304X 45 Go to multiplication programme
59 - 305X 310 Goto310 .
305 -~ 310| P 6} Put —ab into reg. 15
311(S 15 '
312| X

0 Stop (go to 0)

(X 0 serves as a stop instruction, because the machine then always

takes in X O for the rest of the time. A simple integrator network detects -

the permanent absence of pulses in the accumulator and rings a bell.)
We want to put in this programme and begin at 300. So on the tape comes

0 5 0300 Begin to putin at 300
- 3001 1 0015 P 15 ,
3011 5 0006 S 6
302(1 2 0016 Q 16 '
303|1 '5.0004 S 4 ' .
304{1 0 0045 X 45 e
305]1 0 0310 X 310 :

A SIMPLE ELECTRONIC DIGITAL COMPUTER - 393

310({5 1 0006 P 6 Skip 306—309
3it{1 5 0015 S 15
312{1 0 0000 X : O ,
0 0 0299 = Replace the store instruction by X 299.
1 0 0000 Add 1 to the store instruction, placing 300 there. Then

the programme begins to be executed in 300.

Now we can give the actual coding of the input programme,
The working positions are

185+ 7

8

9

10

" The prog

— 160
161
179 - 162

163
164

165
166

165 - 167
168

169 |

S 170
STt
172
173

174

" 178

P 148} Put P 6 into reg. 7

S 7

Q ., 31 Take in a symbol from
N the tape negatively

R 5 Storesymbolin§

X 165 Test sign of symbol

P 166 Bring S 9 in accumulator

suicide instr,

P 9y If positive: add symbol to

A 5}store instruction

s 9 :

P 31) Take in next symbol (ope-
ration of instruction)

O 187f Add O 180 to this

S 8) Store in 8

P - 31y Take in first digit of

}address »

S 67 Store in 6

'X_ 147 Go to sub-progr. forming
L the tenfold of contents of

6 and add next symbol

S 9 Ii symbol was neg.: store

P 6 ~ Thisis placed here at the beginning of the input

programme. Take in address of instruction.
(0180 4+ x) Instruction which adds.the operation digits to
. address. Takes one revolution. :
(S m) Store instruction. Takes also one revolution in
general. .
(X _m) “Return instruction. The instructions between
i braces are substituted by the machine itself.
ramme begins at 160

Reaching 148 takes one
revolution. For reg. 148
see page 394, :

Only when symbol is 0O, it
proves to be positive.
This instruction takes one
revolution,

S 9 stored in 9 causes sui-
cide of this instruction,
thus putting in new store
instruction.

Properly speaking: sub-
tract negative symbol.

As 187 = 171 4 16 there
is no waiting time. Out of
the operation symbol the
machine calculates its

own instruction for. find-

_ ing the proper operation
" beadded. =

Sub-programme requires

" one revolution.

394 : " W. L. VAN DER POEL

10 -> 176 | X_147 Ditto
10 » 1771 X _ 147 Ditto
10 > 178 X_188 Go to sub-progr. to store Requires 3 revolutions in
formed instruction general.
10 > 1791 X 162 Go back to 162 and take
in next instruction
180 | X 0
18| P 0
182 Q 0
1830 O¢ Pre-fabricated
184 4 0] operation digits
18515 0
186 | R 0
1870 180 Constant for add. instr.
in 8 v .
178 - 188|S 10 Store return instruction
189 X 7 Goto?7

‘'he sub-programme for forming the tenfold just fits in after short multi-
plication programme.

175y~ 147|S 10 Store return instruction
7]

Take in part of address already formed

177 1481 P 6
1490 2 Double this number
150 1¢ 5 Storein 5 without clearing
15110 2 Make fourfold
15210 2 Make eightfold
1530 5 Add twofold resulting into tenfold-
154| 0 31 Add next symbol
155)S 6 Storciné6
156 | X 10 Go to return instruction in 7.

The time taken by this programme is 9 revolutions per instruction.

The machine cannot start work with a completely cleared memory. We
shall not give details, but we mention that a manual input is provided. With
this manual input it is possible to fill a prescribed register with a number
or instruction. An extremely simple input programme can then be put in to
take in a larger and more perfect programme in its turn. Of course a machine
with a magnetic drum retains its information in the memory indefinitely.

§ 1. Advantages and drawbacks. There are several advantages
worth mentioning.
a) The machine is logically sxmple.
b) It has a flexible system of programming that can easily be
learnt, Straight-forward programming is simple because there are
only seven instructions. More intricate programmes can be built up

A SIMPLE ELE CTRONIC DI(;ITAL COMPUTER 395

of standard sub-programmes, which can be made once and for all. So
only these programmes need special care with respect to their timing
to make them most economical. As the user can make the programmes
just as he wants them, use of the machine is very flexible.

¢) There are only a few parts. The memory including accumulator
and auxiliary register, and the instruction register consist of a large
number of identical clements. This makes fault location very easy.

d) As the memory constitutes the bulk of the machine, the price
is mainly determined by this part. :

Drawbacks are: '

a) The loss of speed, especially for multiplication, is very serious.
In this respect a machine with a magnetic drum is worse than one
with mercury delay-lines. Although the largest part of the calcula-
tions in an automatic computer are concerned with addition,
counting, altering programmes, conditional transfers etc. which are
executed very quickly, its overall speed is mainly determined by the |
multiplication time.

b) A considerable number of registers is needed for multiplication
programmes. Complexity of the circuits has been exchanged for
capacity of the memory.

¢) In one register only one instruction can be stored. Although
there would have been room for two instructions in one register, no
simple arrangement can be made for that purpose without upsetting
the logical structure of the machine.

§ 12. Results. The machine as it has been built at the laboratory
successfully solved a number of problems. Its storage capacity was
rather limited (64 registers), but we can mention the following pro-
grammes: :

Simple multiplication programmes of various types.

Unsigned multiplication of double-length product.

Summing of a few simple power series.

Division programmes.

Square rooting.

Conversion and deconversion.

An iterative process for the calculation of e*.

Evaluation of some algebraic forms,

A programme for playing NIM 7).

This last programme could play NIM with three heaps of articles

396 W. L. YAN DER POEL

of any number, not exceeding capacity. When the machine was given
the initial position, it could calculate the right move. This right move
was indicated: a) by the number of the heap from which objects
ought to be removed, b) by the number of objects this heap should
have to contain. When the machine was offered a winning position,
it lost the game by dictating the impossible move: “remove from
heap number 4.

Acknowledgement. 1 wish to express my thanks to Dr. L. 'K 0 s-

ten for his constant interest and his many helpful suggestions.

The ideas for programming NIM were due to him. For the realisation
of the machine the technical skill of Mr. G. J. de Zwart was
indispensable. . o '

APPENDIX I

Subtraction is based upon the complement system of represénting

negative numbers. For example —0.1011 is written as 1.0101. We
can also say that all numbers are reduced modulo 2. The digit left
of the binary point serves as sign digit (0 = +, 1 = —). The
numbers which can be represented lie always in the range -

1 > x> —1. The process for obtaining a complement in -the
machine is to replace all zeros by ones and vice versa and then to
add the complement one. : ' _

- The process used for multiplication is straight-forward as to posi-

tive numbers. When the multiplicand is negative, all partial pro-

ducts become negative (all numbers must be filled out on the left
with the sign digit). The only complication arises when the multi-
plier is negative. The sign digit cannot be treated as the other digits of
the multiplier, for then we would assign the value + 1 to the sign digit.
We can solve this difficulty by interpreting the sign digit negatively,

thus O reading as —O0 (= + 0) and 1 reading as — 1. So we read -

1.0101 = 1.0000 4 0.0101. = "~
—f=—143
Example 1.1001
1.0101
0.0111
1.111001
1.11111001

0.01001101 Carries on the left are lost.

A SIMPLE ELECTRONIC DIGITAL COMPUTER 539~7

Another difficulty arises with the multiplication of two numbers

.of single length, giving a product of double length. As we have only

registers of single length'in the memory and in the aritl.xmetic unit,
we are compelled to handle the result in two parts whxch. we .shall
call “head” and ““tail”” (for most significant part and least significant
part, respectively). In multiplication two elementary processes
occur: doubling the partial result and adding the next partial pro-

- duct. In both processes a carry-over from tail to head can originate.
- For this carry-over the sign digit of the tail is used.

For example:' 0.0011 0.1101
shifted: 0.0110 1.1010 -
A 1 Add carry and remove sign
0.0t11 . 0.1010 . of tail

Wilen‘thé multiplic’andy is negative, also a double length yersion
of this number must be made in advance, before multiplication can
start. For example

short form - 1.0101
long form 1.1111 0.0101
Aswe can see, this long form can be inade by nearly the same process
as for Carrying over at shifting, with the difference that the carry-
over must be subtracted from the head (which is zero in this ca.Lsg).
The first ‘digit in the multiplier we encounter is the sign digit.

This digit must be interpreted negatively, so when it is 1, we have

to subtract the long version of the multiplicand. We can form that
by cbmplementing both parts separately and we must carry-over

negatively then. For example
LI 0.0101 -

" both parts made negative ~ 0.0001 1.1011

i 1 Subtract carry and
T 0.0000_0.1011 remove sign of tail

In the multiplication programme of § 9 the same sub-programme
is used for carrying over at shifting or adding double-length numbers,
but also for manufacturing the long form of the multiplicand and for
complementing this. = - . S

We have adopted the convention of always providing

1

the tail of

| ‘the product with the sign of head. Part of the same carry-over pro-

gramme'is now used for adding this sign digit instead of removing it.

Jug \Wa b VAN DER POKE

Rounding ofl takes place when the modulus of the tail is greater
thana half, which can be seen from the digit following the sign digit.
When this digit differs from the sign digit, the number is greater
than a hall. This round-off digit is added to the head when the
number is positive, or subtracted when the number is negative,
Again the same carry-over programme is used for adding or sub-
tracting this round-off digit, which has been put in the pldcc of the
sign digit of the tail by doubling this tail,

Avrennix I1

The circle on the drawings which denotes the adder has some
functions to be effected which could only be bricfly mentioned in the
article. As we have scen already, the adder must be capable of adding
three digits at a time: @) the digit of the first number, b) the digit of
the sccond number, ¢) the carry-over from the previous addition of
two (three) digits. This carry-over must be delayed one digit time.

1DIGIT SIGN FLIP - FLOP

CARRY-IN DELAY
INSTRUCTION CARRY-QUT
REG. + = S] ACCUMULATOR

| S
]\}R l FROM AU, REG.
} X 1\ FROM ONE-GENERATOR

I

I'ig. 4. Adder.

When an addition begins, the first carry-in requires a. special
treatment. For a non-X instruction this carry-in must be a 0 for
addition.and a 1 for subtraction to comply with the rules of the
complement system for subtraction. For an X-instruction the first

A SIMPLE B BCTRONIC DEGETAL COMPU TR 3

carry-in must he the contents of (the sign fip-flop. The complete
schematic diagram of this part is shown in lig. 4. The switches are
again meant symbolically. The unhatched gale only passcs a pulse
when both inputs receive pulses. The hatched gate is normally open
and passes the carry-over pulse when the one-generator does not
emit a pulse. The one-generator serves also for supplying the comple-
ment one for subtraction.

| Aprrenpix 11T

The selection mechanism also deserves a more detailed discussion.
Before the address has reached 32, one of the short registers must be
selected, and as these registers are in parallel, they require a selection
tree. The five least significant digits of the address go to this trec.
When the address is a number greater than 32, the lcast significant
five digits must indicate the position of a number in a delay-line (or
track) and the next digits must go to a selection tree for switching
the inputs and outputs of the different delay-lines (tracks) (fig. 5).

INSTR. REG. ADDRESS
g SDIGITS
T
|
|
(
(o]
|
g o i
| SELECTION-
? @ i TREE 1
g |
kE M |
[’l -
)] R T S
[: [| - —
|
E::]f"—i SELECTION- COINCIDENCE
ﬁ::}—“ TREE 2 COUNTER
13—
\ N :

Fig. 5. Selection mechanism,

F
4

- 14) Turing, A. M., Proc. Lond. math. Soc. 42 (1936) 230.

400 A SIMPLE ELECTRONIC DIGITAL COMPUTER

A counter detects the coincidence between the least significant
digits of the address and the number of the register just coming outs
When this coincidence takes place, it opens the register for ona
number time. When tree 2 selects 0, the coincidence counteri
switched off as the contents of a short register are always immed
tely available. This is indicated by a broken line in the figure. -t .
We can observe another fact from the figure. When selection. of
certain register takes place, the contents of the instruction registes
remain the same until coincidence takes place. Then the choseng
register must be opened during one number time. During that tis
the selection tree must still select the same register, although
instruction in the instruction register is being replaced by anoth
instruction. So it is clear that the selection tree must remember.
selected register during extraction. In this way it serves a mem
function. The same can be said of the switches X, S, Rand I.
switches also memorize the operation which is just being exe

Recgived 17th December 1951, .

REFERENCES

‘1) Xeumann, J. v, H. H. Goldstine and A. W.-Burks, Preli
discussion of the logical design of an electronic computing instrument. Ord. D
U.S.A. (1947). T -

2) Hartree, D. R, Calculating instruments and machines; Univ. Il Press (19

3) Proceedings of a symposium on large scale digital célculating machinery.
Harv. Comp. Lab. 18 (1948). -

4 Huskey, H.D,, Report on the ENIAC Univ. of Pennsylvania (1946).

5) Report of a conference on high-speed automatic calculating machines. Univ.
Lab. Cambridge (1950). '

é) West, C.F.,and J.E. De Tur k, Proc. Inst. Radio. Engrs 36 (1948) 1452,

7) Wilkes, M. V., J. sci. Instr. 28 (1949) 38s5. -

8) Wilkinson, J. H.; Proc. Roy. Soc. 195 (1948) 265.

9) Automatic eomputing equipment at the N.P.L. Engineering 171 (1951) 6.

»

10) Sharpless, T. K., Electronics 28 (1947) Nov. 134.)
1) Wilkes, M. V., and W. Ren wick, Electronic Engns 20 (1948) 208.

12) Auerbach, I. L, J. P. Eckert, R.F..Shaw and C. B. Sheppard,
Proc. Inst. Radio Engrs 37 (1949) 855.

13) Booth, A. D., Electronic Engng 21 (1949) 234.

15) Koons, F.,,andS. Lubki n, Math. Tables Aids Compt;t. 3 (1949) 427,
16) Booth, A. D., Electronic Engng 22 (1950) 492.
17) Stuart William s, R., Electronic Engng 23 (1951) 344.

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif

