Why is machine-readable text not as accessible as
man-readable text? What can we do to make computer
text more available? Does computable machine
representation of graphic characters contribute anything

" o knowledge?

These questions open a fertile field for reflection and for
further research. It is concluded that a combination

of new systems programming disciplines, user procedures,
and standards arve needed to reach the same level of

text accessibility that a library book offers. A major
assertion is that a standard code for graphic characters

is a scientific resource which must be guarded, if need
be, by enforcement.

CHARACTER CODES: who needs them?

E.H. Clamons

HONEYWELL COMPUTER JOURNAL 143

This paper was presented at the inaugural meeting of
the Gesellschaft Fiir Informatik, Munich, Germany, 1971
Oct 12-14.

INTRODUCTION

In Pittsburgh in 1918, the proud owner of “one of those
new-fangled” telephones discovered that he could not
call a friend who lived only a mile away, who had also
installed one. Two different telephone companies were
involved, and they were not interested in providing
service to customers of the competition! Their acts
temporarily stifled the growth of an industry. Consumer
pressure changed their attitudes. Standards provided
the means of interconnecting the literally thousands of
independent companies, and the phenomenal growth
of the telephone industry is history.

The 1960s were marked by similar chaos in the com-
puter industry. For example, variants of magnetic tape
abounded. An entire industry sprang up to provide tape
converters, and consultants determined the best mix of
computers and converters to optimize performance.
Tapes varied by raw material (metal, acetate, Mylar,
etc.), by thickness (from 0.5 to 3 mils), by method of
recording (e.g., RZ, NRZ, NRZI, etc.), and density (from
50 to 250 bits per inch).

The tape reels themselves varied in size, weight, and
mounting requirements. But the disparity lay not only
between different manufacturers; often reels of tape
with nearly identical physical and recording charac-
teristics could not be interchanged. Two units using
identical tapes had to be ““tuned” to each other before
the tapes they produced could be interchanged. Stand-
ards were established to remedy this situation.

Incompatibility is still prevalent in data communica-
tions, but a new look is now being taken.

PRIVATE MESSAGES

A code-independent data transmission method is being
proposed which will permit the user to communicate
anything his heart desires from one device to another.
Briefly, the method provides for synchronous data trans-
mission. The first 8 bits of a transmission (message) are
a flag (synchronization pattern}, the next 8 an address,
and the next 8 some control information; these 24 bits
comprise the envelope. What follows then is the text;
it is completely independent of format and code, being
an arbitrary string of bits of equally arbitrary informa-
tion content. A transmission is terminated by a 16-bit
polynomial check character and a repetition of the flag
character. Provision is made to modify data at the
sender and restore it at the receiver whenever the flag
character occurs adventitiously in the message. The
method is not new in concept; it is possible now be-
cause of economic and technological breakthroughs.
It will provide for data communications what standards

144 HONEYWELL COMPUTER JOURNAL

provided for magnetic tape: a physical means of data
transfer without regard to content. The interpretation
of the information content of the transmitted text data
is the receiver’s problem, and it may be that he must be
provided with some additional information, not con-
tained in the message, in order to interpret it correctly.
The system itself is concerned only with the orderly
handling of message traffic on the basis of information
contained in the envelope.

PUBLIC MESSAGES

Another tool for enhancing interchange of data was de-
veloped in 1963: The American Standard Code for In-
formation Interchange (ASCll). (Note: the acronym
ASCII is used here colloquially to mean a structure
based upon 1SO Recommendation 646, for lack of a
better name, and not in deprecation of R646 or the
other national codes based upon it).

The graphics of ASCIl were chosen to fulfill the ele-
mentary needs of data and text processing, and were
arranged in a logical and contiguous manner not evi-
dent in most other codes. ASCll is a dynamic code; it
permits additions to satisfy our ever-increasing needs.
Thus we see the introduction of “pages” of graphic and
control characters, where each page assigns new mean-
ings to the bit-patterns which normally represent ASCII
characters. There will be pages of control characters,
each tailored to the characteristics of the device or de-
vices they control, and there will be pages of graphic
characters to enrich the graphic repertoire of the code.

A standard (common to the public) code is much
needed for peripheral devices and terminals. Theoreti-
cally these devices could be made code-insensitive by

-providing them with the ability to change the code they

will recognize and the graphics they will display But,
with few exceptions, economics do not yet justify even
partial code independence as a realistic design goal.
Some devices offer some freedom in the initial selection
of a code, but, once selected, the code is fixed. As a
rule, the simpler and less expensive a device is, the
less modularity and flexibility one can expect. However,
economics of these devices cannot and should not be
the sole factor in the determination of the code which
they use. If every device sported its own code, the
processor would be swamped with conversions, leav-
ing little time for productive work. Devices which can-
not use ASCII because of design limitations will have
to seek their place in the market place against the com-
bined competitive forces of ASCli-coded devices.

EFFECT UPON PROGRAMS AND DATA

Programming languages have become more amenable
to human communication. FORTRAN, COBOL, and
ALGOL are now standardized and in common usage.
But alas, they are not as machine-independent as they
were once envisioned. Peripheral devices with varying
capabilities prevented commonality of input-output op-
erations, and the painfully slow econo-technological
progress of mass storage prevented successful standardi-
zation of data management. The end of further improve-

US FIPS
ISO ECMA ANSI PUB JIS USSR

Binary code for
characters (plus R646 ECMA-6 X3.4 — 1968 1 C6220 — GOST
control meanings) (67 Dec) (67 Jun) 1969 13052-67
Hollerith R2021 ECMA-25 | X3.26 — 1969 14
card code (71 May) (70 Aug)
Graphics for DR2047 ECMA-17 X3L2/987
the controls (68 Nov) (70 Jul 29)
National Usage 97/2/525
Additional
controls
Serial R1177 X3.15 — 1966
transmission (70 Jan)
Track assignment R1113 ECMA-10 X3.6 — 1955 2
on 1” paper tape (69 Sep) (65 Nov)
Track assignment R962
on 0.5” magnetic (69 Feb) ECMA-12 | X3.22 — 1967 3
tape R1863 (67 Nov)

(71 May)

SOURCE DOCUMENTS — STANDARDS AND DRAFT STANDARDS

ments in these devices is not in sight; indeed, it repre-
sents the greatest potential and challenge in cost reduc-
tion and performance improvement. However, the pros-
pect of new hardware developments should no longer
be a deterrent in the progress of programming lan-
guages. One cannot be emphatic enough in urging
further efforts toward machine independent program-
ming. Unless progress is made in the areas of data
description and data management, data processing will
be mired in the chaos it has created.

Standardization of data systems was born from neces-
sity. It is an undertaking unlike any other in the history
of formal standardization. It is forward-looking, it is
highly intellectual, and it is characterized by a high de-
gree of cooperation among scientists, users, and manu-
facturers. Because it has been going on at a feverish
pace, it will be useful to reflect what it is we have ac-
complished and where we are going. We have seen that
in media and communications standardization we have
succeeded in interchanging “’bits” between systems; in
language standardization, we have almost succeeded up
to the point of data management. Rather than tackle the
whole spectrum of machine independent programming,
let us examine only one aspect: code independence.

DILUTION OF THE STANDARD

ASCII is not used as universally as its developers once
hoped it woud be. This is due to the IBM EBCDIC, which
is technically inferior to ASC!l because the graphics are
scattered through the tableau of bit-patterns to carry
on the tradition of punch cards, and because it caters to
a typewriter which was never intended nor designed for
computer applications. But all is not wasted. Both
ASCII and EBCDIC are related through the punch card
code, which establishes a one-to-one correspondence
between the three possible code pairs.

The need for coexistence of the two codes, and the
need to provide a transition to the ASCII standard, call
for a re-examination of the philosophy of written com-
munication as it was known before the advent of the
computer, for an examination of the analogous build-
ing blocks in data processing systems, and for a deter-
mination from the analogies as to whether it is reason-
able to expect that the written word (once so readily
accessible in written, typed, or printed form) will ever
be equally accessible when recorded in machine read-
able form. An associated examination is to determine
whether the factors which led to the differences be-
tween the availability from the two storage media
might not be useful in furthering the state of the art.

The beginnings of writing and electronic computing
are surprisingly similar. The analog between a chiseled
(or scribed) line and a bit is all too obvious: both were
used initially to count. Here the analogy diverges. Man
discovered curved lines, and drew pictures to separate
the items he could count — three cows, four sheep.
Curved bits are not now available in computers, how-

ever; instead, we group bits into bytes of n bits each,
and use the property that there are 2" different bit pat-
terns for any chosen byte size. Now we can represent
“three” "‘cows’”, “four’” “sheep’, etc., by assigning a
particular bit pattern to each of these four words.

A further divergence occurred when the value repre-
sentation of a number (the Roman numeral) was re-
placed by the graphic representation (the Arabic nu-
meral). The computer ascribes an implied numeric value
to the graphics when representing them by bit-patterns
(the value that was previously Used in counting opera-
tions). Here is where the chaos started. Man had thou-
sands of years to develop the numerals, the alphabet,
the abstract symbols, the Chinese symbols, and at most
35 years to find electronic equivalents. The fever and
the excitement of the computer age preoccupied us
with the immediate use of the new tool and blinded us
to the future. We were too busy solving the problems
that hung over our heads to worry about the conse-
quences of arbitrary assignment of bit-patterns to char-
acters. Instead, we used a binary representation of the
existing punch card code; thus the BCD code was born.

As soon as the computer had proven itself as a viable
tool for solving the problems of science and technology,
it was applied to business, and a new element was
added: sorting, merging, and collating. The concept of
an ordered number set was equated to a collating se-
quence, and the bit-patterns of the alphabet were
chosen so that their values would rank in the same
order as the collating sequence. But not everyone had
the same idea; no two value assignments were the same,
and idiosyncrasies crept in. For instance, anybody mak-
ing assignments without prior knowledge of the com-
puter industry would assume that the value of I + 1
represents). But many of us know that it is not always
so; in the BCD code | + 7 equals J! Here is a simple
example of the grave consequences harbored in the
assignment of a value to a graphic character. The arbi-
trariness of assignment of bit-patterns (codes), com-
bined with the property that in a computer a graphic
representation also has an implied value, allows opera-
tions upon data which could not be practiced when
only visual representation was available.

AVOIDING CODE DEPENDENCE

Code sets containing different graphics cannot be
used in code independent systems. A graphic character
which is not a member of the set in use cannot be
represented by one of its bit-patterns. If the sets are of
equal size, graphic equivalences may be assigned, but
such homomorphism is dangerous because of what may
result when operating upon the implied value of
graphic representations. It must be evident that graphic
substitutions are not a sound basis for ensuring the
accessibility of arbitrary data.

When forced to work with more than two codes of
dissimilar set content, one soon finds out that graphic
substitution results in contradictions: two different bit-

HONEYWELL COMPUTER JOURNAL 145

patterns representing the same graphic character. The
practical effect of this phenomenon is that the most
popular character set still in use today consists of 26 let-
ters of the alphabet, 10 numerals, 6 symbols and space.
Contradictions are avoided, and syntax description
facilitated, by confining oneself to the most universally
available characters. One might try transliteration, the
analog of romanizing cyrillic text. Unfortunately, trans-
literation is not necessarily a reversible process; further,
it is far beyond the capability of existing business and
scientific practice. A minimum requirement for code-
independence is a common character set; a wisdom
our forebears developed over thousands of years.

A standard set of bit-patterns for the graphics is not
as important as set content (the analog is a comparison
between Gothic and Roman cursive script). There exists
a one-to-one correspondence between the two. Human
beings can easily learn to transpose one into the other.
There seems to be no evidence that code sets which
are related in one-to-one correspondence cannot be
used in code-independent programming. A thorough
study is needed to verify this statement.

Avoiding code dependence is relatively simple, but
somewhat difficult to implement. “We must learn to
resist the temptation to use the binary value of a code,
which represents a graphic character, for anything else’’!

= All permissible arithmetic or comparison opera-
tions must be defined explicitly.

® Nothing is permissible which is not defined.

® The internal representations must not be visible.

For example, the collating sequence must be
defined explicitly, and binary values must be de-
fined by 0’s and 1’s or by “binary value of a deci-
mal number”, but never by a literal (which is what
programmers call a graphic representation).

This simple rule is difficult to implement because the
burden of compliance is now enforced only in part by
the system. Some of it may have to be enforced ad-
ministratively. This paper solicits a study to determine
the feasibility of total enforcement of code independ-
ence in systems using code sets which are in one-to-one
correspondence.

It is not clear that operation on the values of charac-
ters might be useful in advancing knowledge, even
though some generalized arguments have been made
for it. Here, too, is an area worthy of study. One con-
clusion stands out: code-independence is difficult to
implement if one operates on the values of characters.
Should it turn out that knowledge would be advanced
by such operations, it might be necessary to standardize
the graphic repertoire more rigidly than it now is, and
to enforce the standard as a scientific resource.

146 HONEYWELL COMPUTER JOURNAL

THE CASE FOR DATA DESCRIPTION

It was probably more instinct than insight that prompted
the ISO and its member bodies to adopt the same punch
card code for ASCIl as was adopted for EBCDIC. That
one standard defines one-to-one correspondence for
the most used codes; the use of other codes is fading
gradually. Unfortunately, the ruse of using the punch
card code to establish the correspondence between the
other two codes backfired, for one-to-one correspond-
ence is violated. Certain bit-patterns in the punch card
code have two interpretations, for instance, the bit-pat-
tern for) also represents the numeric value of —1. This
punch card tradition necessitates the introduction of
data description to handle the heteromorphic data
representations. If computer text is to become as easy
to use as visible text, then the specific representation
ascribed to a bit-pattern must be evident from the data,
not from an associated program or from an implied field
definition (i.e., one defined on paper but not part of the
machine record). Of course, a need for data description
would have arisen even without the dual meaning of the
punch card codes. Most computers use binary, fixed
point, floating point data forms, etc., and they too need
to be described properly.

Data description as introduced by Dr. Grace M.
Hopper in FLOW-MATIC survives today in COBOL. It
is essentially code-independent. However, the tech-
nique does not lend itself to nonformatted data; these
must be studied further. Here, in addition to recognizing
mixed data forms, we must learn to distinguish between
the format of text and the meaning which is ascribed to
it by the format. Thus, if the same text is typed and
printed, it may have different formats but the meaning
of the text would remain the same. This is a complex
aspect of code-independence, the preservation of con-
tent without relying on a specific method of converting
from computer storage to the printed page. This subject
deserves much attention because it, too, has a heavy
bearing on the ability to read computer-stored data as
readily as a book from a library.

CONCLUSION

During the coming decade we must dedicate ourselves
to the task of creating code-independent software and
to support it in hardware. We should do this not only
because it will make data and programs transferable,
but because it will return to human beings the things
they can handle: graphic characters, words, paragraphs,
pages, books, and libraries. We will thus return to our-
selves the control of the processes which the program-
ming community has usurped by confusing them with
machine-dependent binary representations and their
manipulation. The last decade has seen a preoccupation
with the encoding of data. Top corporate officers and
even the United States Government were called upon
to resolve the choice of a code. And rightly so; the
choice of a character set is not one to be left unguarded.
It is a resource of mankind, one of the elements which,
properly nurtured, will enable us to further explore the
unknown.

STANDARD ABBREVIATIONS for THE UNITED STATES

Some standards seem to be more fun than others, es-
pecially if they make our jobs easier. This one provides
names and abbreviations of the 50 states, and the Dis-
trict of Columbia. Now we need no longer decide
whether to abbreviate Pennsylvania as ‘“Penna.” or
“Pa.”; they are both wrong. The correct form is PA
(both capital letters, no period). The correct abbrevia-
tion for the U.S.A. is US.

Following are the standard abbreviations for the 50
states of the US and the District of Columbia recog-
nized both for information exchange and by the US
Postal Service.

The full standard (which also gives a 2-digit numeric
code for machine use) is the Federal Information Proces-
sing Standards Publication 5-1, dated June 15, 1970, SD
Catalog No. C 13.52:5-1. It is available from the Super-
intendent of Documents, US Government Printing Of-
fice, Washington, DC 20402.

Name Abbrev Name Abbrev
ALABAMA AL MISSOURI MO
ALASKA AK MONTANA MT
ARIZONA AZ NEBRASKA NE
ARKANSAS AR NEVADA NV
CALIFORNIA CA NEW HAMPSHIRE NH
COLORADO CO NEW JERSEY NJ
CONNECTICUT CT NEW MEXICO NM
DELAWARE DE NEW YORK NY
DISTRICT OF NORTH CAROLINA NC

COLUMBIA DC NORTH DAKOTA ND
FLORIDA FL OHIO OH
GEORGIA GA OKLAHOMA OK
HAWAII H! OREGON OR
IDAHO ID PENNSYLVANIA PA
ILLINOIS IL RHODE ISLAND RI
INDIANA IN SOUTH CAROLINA SC
IOWA IA SOUTH DAKOTA SD
KANSAS KS TENNESSEE N
KENTUCKY KY TEXAS TX
LOUISIANA LA UTAH Ut
MAINE ME VERMONT VT
MARYLAND MD VIRGINIA VA
MASSACHUSETTS MA WASHINGTON WA
MICHIGAN Ml WEST VIRGINIA WV
MINNESOTA MN WISCONSIN Wi
MISSISSIPPI MS WYOMING WY

duthor$

ANDREW A. AINES
Office of Science Information Service, National Science
Foundation, Washington, DC, US

= After seven years as a mem-
ber, Office of Science and
Technology, Executive Office
of the President, and Chair-
man of the Committee on
Scientific and Technical In-
formation (COSATI) for the
past five years, Andrew A.
Aines is now a Senior Staff
Associate, Office of Science

3 Information Service, National
Science Foundation. Most of his military career was

devoted to research and development and high-level
logistics work. Prior to retirement as a colonel in the
United States Army, he was in the Office of the Direc-
tor of Defense Research and Engineering of the De-
partment of Defense. Earlier, Mr. Aines was Director
of Army Technical Information, located in the Office
of the Chief of Research and Development, Depart-
ment of the Army. His military honors include the
Legion of Merit, Bronze Star, and Army Commenda-
tion Medal with Oak Leaf Cluster. Mr. Aines holds
degrees in experimental psychology, business admin-
istration, and international affairs. He is the author of
a number of technical papers, and is a member of
the American Psychological Association, the American
Society for Information Science, the Association for
Computing Machinery, the American Society for Cyber-
netics, and other professional societies. He has been
awarded several patents. Mr. Aines was appointed by
the President of the United States as a member of the
recently formed National Commission on Libraries and
Information Sciences.

HONEYWELL COMPUTER JOURNAL 147

	p 0001.tif
	p 0002.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif

