FORTRUNCIBLE

by

G. E. Haynam

April, 1960

CMPUTING CENTER

ABSTRACT

TABLE OF

ACKNOWLEDGEMENTS

I. INTRODUCTION

II., FORTRUNCIBLE LANGUAGE
X, WORDS

1.

Re

.3.

OPERANDS
a) VARIABLES

b) SUBSCRIPTED VARIABLES
¢) CONSTANTS

OPERATORS

a) STANDARD MATHEMATICAL
b) ARITHMETIC

¢) EXTENSIONS

CALLS

B. STATEMENTS

1.
Re
3.
4.
5.
6.
7o
8.
9.

10.

SUBSTITUTION

JUMP

INPUT

OUTPUT

HAIT

BYPASS
EXTENSION
CONDITIONAL
ITERATION

ARRAY OPERATION

11, PROCEDURES
12, PROCEDURE DECLARATION

CONTENTS

Page

O O g9 O o un

10
10
14
15
17
19
20
20
Rl
’1
R3
R4
R4
24
RS
27
30
31

TABIE OF CONTENTS (Contimued)

13. END

14, EXECUTE

15, INTEGER DEFINITION

16, ARRAY DEFINITION
C. EXAMPIE PROBIEMS

III. CODING DETAILS
A. BASIC PACKAGES
B, CARD FORMATS
1, HEADER CARD
2. COMMENTS CARD
3. STATEMENT CARDS
C. CORRESPONDENCE TABLE
D. DATA CARDS

IV, OPERATING PROCEDURES
K. MODES OF OPERATION
B, FORTRUNCIBIE PROGRAM
C. RUNCIBIE PROGRAM
D. OPERATOR INSTRUCTIONS

V. STOPS
A, NORMAL STOPS
B. ERROR STOPS

BIBLIOGRAPHY
APPENDIX I - SUMMARY OF STATEMENTS
APPENDIX IT - PASSING “RUNCIBLE I" STATEMENTS

APPENDIX III - RELOADING A CORRESPONDENCE TABLE

Page

S S

36

41
42

43

43

46
47

48
48
49

50

53
53
53

55

58

APPENDIX IV =

APPENDIX V

APPENDIX VI

TABIE OF CONTENTS (2nd Contimed)

Page
SAMPIE PROBIEMS 60
WFARW 66

ADDITIONS TO ®SQAP III®* - “RUNCIBLE I*
533 PLUGBOARD 74

ABSTRACT

The Fortruncible compiler extends the basic Runcible I

~compiler in the following ways:

1) Alphabetic names for simple variables and arrays,

2) Special characters, group II, (Fortran style) for
designating the mathematic operations,

3) Matrix operations,

4) Convenient method for writing subroutines in the

compiler language (Procedures).

In addition to the above extensioﬁs any number of Runcible statements
may be intermixed with the Fortruncible statements to give complete
flexibility and generality to the compiler.

This compiler uses the standard Runcible control panel .
with suitable additions to the wiring as described in this report.
Since special characters, group II, have been used to designate the
mathematical operations, the 533 read-punch unit must be equipped
with the special characters device along with the alphabetic attachment.
No attempt has been made to avoid the use of the special character

device by compiicated control panel wiring.

There are five forms of the compiler program available,
each of which requires a differenmt amount of additional 650 hardware
as followsse

1) Basic 650,

2) Basi¢ 650 with Table Look-up on Equal (TLE) operation
code. . L

3) Augmented 650 (Indexing Registers and I.A.S.).

4) Augmented 650 with Table Look-up on Equal (TLE)
operation code,

5) Augmented 650 with 355 RAMAC and &ll of the above

additions.

ABSTRACT (continued)

The output of the Fortruncible compiler is standard
Runcible statements that have been translated from the Fortruncible
statements along with those reproduced from an§ input Runcible

statements,

ACKNOWLEDGMENTS

No program the size of Fortruncible can be attributed to
the efforts of any one individual, but it is the natural outgrowth of
many other programs which themselves have been’influenced by many
individuals too mumerous to mention. However, credit should be extented
to Dr. Perlis for his basic effort in writing the first compiler for
the IBM 650 (IT) [1]. Also the efforts of the entire Case Computing
Center should not go unnoticed as this program is only a natural
extension of the Runcible I compiler [2][3][5] as developed by the
staff at the Center.

o I should like to express my appreciatien to Professor
R.J. Nelson and Mr., F. Way III, the directors of the Computing Center,
for their support of this project. I am dlso indebted to Donald Krmuth
for the many sections in this report that were extracted from the
Runcible I manual and to Y.H. Rutenberg for his many corrections and
additions to this report. Finally, this program could not have been
put into final running form without the help of everyone connected
with the Center who debugged the program by uéing it to solve problems.

FORTRUNCIBLE

I. INTRODUCTION

In order to solve a complicated prob}em on a high-speed digital
computer, a large amount of time is required by a programmer and/or coder
to translate the specifications of the problem, which may be in the form
of a flow chart, into the rather restricted language of the computer.
Also if at a later time it is desired to solve the previously coded
problem on a different computer, then it will again be necessary to spend
an appreciable amount of time reprogramming and recoding the problem for
the new machine. In order to simplify the coding procedure and to reduce
the coding time substantially, several problem languages have been for-
mulated., These closely resemble the common mathematical language used in
constructing the flow chart that expresses the solution of a problem.
Then, programming the solution of.a problem in terms of any one of these
languages becomes a simple matter. Even persons unfamiliar with digital
computers can write programs without the help of a trained programmer.,

Since the translation from one of these problem languages to
a given machine language is well-defined, a translator or compiler program
" can be written to effect this translation automatically on the computer,
thereby reducing the coding‘time from days to minutes. This saving in
time reduces the cost of programming a giﬁen problem even though the cost
of computer time required for the translation is relatively high when
compared to personnel time,

The first problem=-oriented 1anguag§,for use on an IBM 650 |
computer was developed by Dr. A.J. Perlis, Mr. J.W. Smith, and Mr. H.R.
Van Zoeren of Carnegie Institute of Technology and was called WIT-language®
[1]. This basic "IT-language™ has been extended by the Staff at Case .
Institute of Technology in their "Runcible I" compiler [R] to yield still
greater ease in programming. However, two serious shortcommings of "IT-
language" are still retained in the "Runcible I" compiler, namely: 1) A11
problem variables must be expressed as one of the three simply subscripted

variables I, Y, or C rather than by problem related names, 2) A rather

cumbersome form of matrix notation which bears little resemblance to

| that normally encountered in problems. In order to eliminate these de-

II.

ficiencies and to add further flexibilities in-the problem language, a
new problem—orien‘bed language, called “Fortruncible®, was developed.
This language retains many of the basic ideas contained in "IT-language™
along with these added flexibilities.

The basic philosophy of the Fortruncible compiler is to trans-
late "Fortruncible® language into standard "Runcible I language which
may then ‘pe' treated as any other Runcible program with all of the various
options as described in the "Runcible I" programmer's manual. As can be
inferred from what was said above, the use of “Fortruncible® language
will necessitate an additional pass through the 650 to perform the
Fortruncible to Runcible translation. However, the added flexibility
of the "Fortruncible"® language is well »{orth the additional computer
time as considerably fewer programming mistakes will be encountered.

"FORTRUNCIBLE® LANGUAGE

If one wishes to formulate a language, the first thing to be
done is to choose the list of symbols that will be used to construct the
language, This list of symbols is referred to as the "élphabet* of the
1anguagé. In the case of WFortruncible® language the foilowing list of
symbols will be chosen as its alphabets

‘FORTRUNCIBIE ALPHABET

S
T
U
\
W
X
Y
Z
A

HIDoHBUODOWE
MHOYOERER G

0
1
2
3
4
5
6
7
8.

SNk 1 e W ©
/

(épace)

Then, from this alphabet the words.of the language will be constructed
as strings of these symbols. The number of symbols in a word or string

" must be greater than or equal to. one, and the rules for word formation
will be described in section IIa. From the words of the language, one
can form sentences or statements which convey a complete idea in the
solution of a problem. The rules for constructing statements in W"Fort-
runcible® language are cesecribed in section IIB.:Finally, a Eroperly
Vprdered sequence of statements in the language will constitute a program,
which =~ if it adequately describes the flow chart for a problem -
will yield a program for solving the problem.

A, WORDS

The set of words in the language is divided into three
categories: operands, operators, and calls., The set of operands consist
of those words which represent numerical quantities such as constants
and variasbles. The set of operators constitute all mathematical operations
that are defined in the 1ahguage, and the calls consist of all other
acceptable words which are neither operators nor operands, such as IF,

TO, ARRAY, and INTEGER. '

1, QOperands: The operands which represent mumbers are of two caﬁegories:
fixed point and floating point. |

Fixedpoint numbers are integers with a numeric value of less
than one billion. They are either positive or negative, but may never take
on fractional values. Their primary use is as indices or subscripts and they

should be only rarely used for arithmetic calculations.

Floating point numbers are normally used for arithmetical
operations because of their much greater range of values. Floating point
numbers can be zero or range from 10-50 to lO49

are always rounded to eight significant figures. It should be noted that

Jin numerical value,1 and

51 48

Lihen using 653 instructions they range from 10~ to 10 .

large losses in accuracy may result from the operations of addition and

subtraction with floating point numbers.

a) VARIABIES. Simple variables are:-designated by their alpha=-
betic names such as X, Y, Z, W, ALPHA, TAU, MU, etc., and may represent
either fixed or floating point numbers. However, all simple named variables
will be assumed to represent floating point numbers, unless otherwise
designated (see INTEGER statements). Any names which satisfy the following
rules of name formation will be considered to represent simple variables.

Rule 1: The first character or symbol in a name must be
alphabetic, ie. a symbol from A thru Z.

Rule 2: The remaining symbols must be alphanumerie, ie.
consisting of the, symbols from A thru Z and the

mumerics O thru 9.

Rule 3: Spaces and special characters may not occur within

a given name.

Rule 4: The number of symbols in a name is éi‘b-i_trary, but
only the first five will be retained.

Rule 5: The first five symbols in a name must be uniqﬁe to
the name and should not occur as the first five
characters in any other words in the program. This

rule is a consequence of rule 4,

For example: BETA, X, X1, YBAR, YRS are all formed properly according to
rules 1 thru 5, However, 1ST, X-Y, #XF, VAR 1, 234 are nof simple named
variables since each one violates some of the above rules. The names
RUMPIESTILTSKIN and AUFWIEDERSEHEN satisfy the rules but will be truncated
to five characters and thus will be considered in the program to be RUMPL
and AUFWI, But, the names ARCHYPERBOLICTANGENT and ARCHYPERBOLICSINE will.
be considered identically as the name ARCHY, and thus they violate rule 5.

" It should also be noted that care should be exercised to spell
the problem names consistently throughout the program; otherwise confusion

may result,

The Fortruncible compiler program translates all floating

point simple named variables into Runcible C-variables and all fixed

point (integer) variables into Runcible I-variables. Due to a limitation

of space in the translestor, the following rule must be adhered to:

Rule 6:

The maximum number of floating point simple named
variables. permitted in a single program is 48.
Similarly, the upper bound on fixed point named

variables is also 48.

b) SUBSCRIPTED VARIABLES. Subscripted variasbles are designated

by their alphabetic names followed by their subscripts enclosed by paren=—
theses, such as X(8), Y(2,3), RHO(N), THETA(I,J), etc., and may represent
only floating point numbers. The variables which represent the subscripts

must be fixed point (integer) variables as described in section IIA/a.

The following rules must be satisfied by all subscripted varisbles:

Rule 8:

Rule 9:

Rule 10:

Rule 1l:

Bule 1%:

The names of all subscripted variables must satisfy

rules 1 thru § as described above.

All subscripted variables must be defined as ARRAYS
before they are used in a program. (See ARRAY -
definitions.)

All subscripts in a subscripted variable must represent
fixed point mumbers (integers).

The maximum mumber of subscripts on a subscripted

variable is two (R).

All subscripted variables will be considered to
represent floating point numbers and will be defined
by the translator to be Runcible Y-variables.

The maximum number of different subscripted variables
is thirty (30).

Tt will be assumed that each of the following examples has been preceded

by its proper ARRAY definition.

Mathematical Notation Fortruncible Notation
BESSE‘.I.LJ BESSEL(I,J)
Az;l : A(2,1)
Ve v(6)
sz +1 T(1 + 2%I)

Tt should be noted that BESSEL(I,J) is considered as BESSE(I,J) as a
consequence of rule 5. Also the subscript of an array may be computed
but no parentheses may be included in the subscript expression. If it
is necessary to use parentheses in the computation of a subscript value,
then the computation should be done outside of the subscript notation.

c) CONSTANTS. Constants like variables may be either floating
point or fixed point, with their form being determined by the manner in
which they are written, Constants which are to be considered as floating
point numbers muist be written with decimal points or in “Power-of Ten®
notation, and all other numbers will be considered as fixed point numbers
(integers). The "Power-of-Ten®™ notation is indicated by enclosing the
desired exponent of ten in parentheses immediately after the numerical

constant., Some examples of the various constant forms are:

Mathematical Form Fortruncible Form Arithmetic
1R3 123 fixed point

1. 1.0 floating point

12.6 x 10%4 12.6(14) floating point

69 x 1070 69(=6) | floating point

. «00072 0.0007R floating point

7.2 X 10-4 7.2(=4) floating point

72 x 107 72(=5) floating point

- 10 =

The last three numbers in the. above examples are the same and yield the
same result in Fortruncible language even though they are written in a
 different form. Several rules must be adhered té when writing constants

in Fortruncible language.

Rule 13: All floating poirnt numbers written in the “Power-

Rule 15:

of-Ten® notation must represent acceptable floating

point numbers. (i.e. must be in the range 10™°0

to 1049).

The exponent in the "Power-of-Ten® notation must
be an integral constant (i.e.should not contain
any decimal points).

Under no circumstances should a constant end with
a decimal point, but an additional zero (0) should.
be supplied if necessary.

Any number of constants may be used in a program.l

%. Operators: The set of mathematical operations that can be performed
in Fortruncible language are divided into twa.categories; namely,,l) The

‘ standard operations of addition, subtraction, multiplication, etc., and
2) Special functions such as SIN, EXP, LN, etc. which will be classified

as extensions,

a) STANDARD MATHEMATICAL OPERATIONS. The mathematical operators

which are directly acceptable to Fortruncible language are listed in the

following table along with examples in mathematical notation and Fortrunecible

notation,

N

lActually 700 is the maximum allowable mumber, but this may safely be
considered Minfinite® for programs processed by Fortruncible.

Symbol Operation Math. Notation Fortruncible Notation

+ Addition X+Y . X+Y

- Subtraction X-7T ’ X-X

* Multiplication XY X*Y

/ Division X/Y X/ Y

$ Absolute value lx+Y | $X+Y$
- Substitution Y=X+2 Y=X+2
% Power x? X ¢ Y

> Greater thanl X>%Y I>1Y

>= Greater or equall XY X>=7%Y

= Logical equalityl X=Y X=X

Note the close resemblance of Fortruncible language to standard mathematical
notation, and how it enables the writing of a formula as a string of symbols
all on-one line. The operations can be put together with a few constants

to yield:

Mathematical Notation Fortruncible Notation

((10.4x10%8) + ¥)Y :
Z= Z = ((10.4(28) + (X ¢ 4)) * Y)/(X - Y)
X-7Y

Notice the use of parentheses in this last example.

When more than two operands are involved, paremntheses are
needed to avoid ambiguity., Parentheses are very important in Fortruncible
language because there is no difference in priority or scope between any

of the binary operations as usually understood in common mathematical

1These operations asre valid only inside a conditional clause (see
conditional statements). '

notation. For example, the expression X # Y + Z would mean (X *Y) +2
to most people but Fortruncible would interpret it as X # (Y + Z). 4As
another instance, in order to write X%Y it is necessary to write

(X #% 4) # Y since X #* 4 % Y would mean X4x. There is a very simple
MORAL to be learned from this: always place parentheses around the
operands in a Fortruncible language expression until it can mean only

one thing., This cannot be stressed too heavily, for the vast majority

of programming errors in Fortruncible language are caused by neglecting
to place parentheses in the proper way.l It should be noted at this point
that Fbrtruncible;treats operators in a manner very similar to Runcible

and "IT-language™.

As a reference, these are the rules by which Fortruncible

determines to which operands each binary operation applies:

Rule 16: On the left-hand side of the operator symbol, the
binanyydperation.applies to the variasble or constant
immediately at its left, unless the character next to
the operator is a right parenthesis, In the latter
case, the entire quantity between the right paren-
thesis and its matching left parenthesis is used.

Rule 17: On the right-hand side of the operator symbol,
everything up to the end of the &pression or to
the first unmatched right parenthesis is used.
One exception is that the mimus (-) operator is
treated first as a unary operator (see .below)
and then as a plus (+) binary operator.

The following examples illustrate the application of these rules.

lParentheses may be nested within each other not more than nine (9)
deep, but this limit is rarely met in practice,

- 13 -

Fortruncible Language Mathematical Language
X /Y + 2 means ——

Y+ 2

’ X

(x / Y1) + 2 means 3+
XY +3 %% means xt + 52
(X ¢ Y) + 3 * Z means XY + 32
(X Y+ 3) % 2 means Y * 3) Z
(X # Y) +3) % 2 nmeans (xY +3)Z
JRHO(T +) :
4/RHO(I + J) - K means

Remember, it is always better to add parentheses to make your intentions
unquestionable than to gamble that the compiler will interpret your
expressions the same way you do. The additional parentheses although
perhaps,redundént will in no way harm the resultant machine language

progranm,

As was noted above, the mimus (-) operator is treated as a
Wnary® operator where the operator applies only to the variable or consgtant
at the immediate right of the operator symbol, unless the character to its
right is a left paremthesis, In the latter event, it operates on the entire
quantity inside the left parenthesis and the matching right parenthesis.

Examples:
Fortruncible Language Mathematical Lanéuage
-X -X
X-Y-~2 X-Y~-2
X-(Y+2) X=-(Y + 2)
Xt - (Y - 2) 5 (¥ - 2)

- 14 -

b) ARITHMETIC. Fortruncible always analyzes expressions by
doing the innermost pg:rentheses first, following the rule of ordinary
‘algebra. Once Fortruncible is into the innermost paremthesis it drops
the Wordinary® rules of algebra and performs the opei'ations starting
from the ;_i__g_).:c._ and working toward the left! The following examples
which assume that X is a floating point variasble, will illustrate these

ideas:

EXPRESSION : " RESULT
X=3x4 +86 X is given the wvalue 30,0
X=6+3x4 X is given the value 18,0
X=6+ (3 x4) X is given the value 18,0
X=(3x4) +6 X is given the value 18.0
X=6-3x4+2 X is given the value -12.0
X=6-(3x4)+2 X is given the value ~4.0
X=6/4/2 X is given the value 3,0
X=(6./4)/2 , X is given the value 0,0
X=(6,0/4,0) /2.0 X is given the value 0,75
X = (6,0 /4.0)./ 2 X is given the value 0,75
X=1(6/4) /2.0 X is given the value 0.5

From the above examples we can see that FORTRUNCIBLE attempts
to use the arithmetic (fixed or floating) of the innermost parentheses
and then tries to kéep on using that kind of arithmetic until it must do
floating point - at this stage, and from this stage on, it does every-
thing floating point at this parenthesis level. The final substitution
into the left hand side is always forced to agree with the arithmetic of
~ the left hand side. Consider that the variables named I, and J are fixed

point and X is floating point in the following exampless

- 15 =

EXPRESSION RESULT
I=6,0+3=~7xR2,0 Iis given the value =5
I=6,0+3=7xR I is given the 'value =5
X=6,0+#3~-7x2 X is given the value =5,0
X=6,0+3,0-(1/4) X is given the value 9.0
J=6,0+3,0=(1/4) J is given the value 9
X=3,0=-(1/4) +6.0 X is given the value 9,0
X=(9 /1) +1,0 - (7 /186) X is given the value 1.0
J=(9/10) +1.0 - (7 /18) J is given the value 1

In summary then, if you ™mix® arithmetic by mixing fixed and
floating constants or variables, the rule is that FORTRUNCIBLE always
initializes its arithmetic to FIXED at EACH parenthesis level and continues
that way until it encounters a floating variable or constant at the same
level in which case the arithmetic stays floating at that parenthesis level,
The search takes place from the RIGHT. The final substitution is done in
the arithmetic of the left hand side variable. Floating point answers are

always rounded to eight significant figures, but fixed point numbers are
never rounded =-- all figures to the right of the decimal point are
‘dropped. (Thus, 8/9 = O in fixed point division})

¢) EXTENSIONS., In addition to these basic operations, a wide
variety of special functions or “extensions" can be added to the compiler,
making it extremely versatile. Rules for their use are given in the write-
up supplied with each individual extension which might be in the subroutine
library at your installation. If the needed routine is not available, then
you can add your own coding in SOAP III form [/] following the rules
described in the RUNCIBIE I - EXTENSIONS mamual [3].

An extension is referred to in Fortruncible language as though
it were a subscripted named variable, but without being defined as an

array. (ie. no ARRAY declaration statement). As a consequence of this fact, -
gver;y subscripted varisble which has not been defined as an ARRAY will be

considered to be an

Rule 18:

Rule 19
Rule 20:

Rule 21:

Several examples of

EXTENSION.
The input érguments to an extension maylbe either
floating point or fixed point as defined internally

in the extension,

The rules for forming the name of the extension are
the same as those for subscripted variables.

The maximum number of input arguments to an extension
is ten. (‘10).1

The resulting oﬁtput from an extension will be assumed
to be floating point unless the name is preceded by a
decimal point to indicate that the output is in fixed

point form.

extensions are given below to indicate the manner in

which the names are formed,
Mathematical Notation Fortruncible Notation
\J X RT2(X)
sin X SIN(X)
X EXP(X)
Jn(X) (Bessel function) BESSEL(N, X)
random number <RNFX(1)

- ——

lA” more complete rule for determining the maximum number of input .
arguments to an extension when several extensions are nested is
described in the RUNCIBLE I - EXTENSIONS manual [3]

-17 -

Tt should be noted that the fourth example above very closely resembles
standard matrix notation and that g_A_ﬁE_ should be exercised in making
vcertain that all subscripted varisbles are defined as ARRAYs. The last
example shown above indicates how an extension Wwhose output is in fixed
point form should be written. The output in this example is a fixed point

random number,

As a final example, consider the Fortruncible representation of
the ™folontis function™:

sin x

y = f(x) =
3
l*e.x

which when written in Fortruncible language becomes:

Y = SIN(X)/RT2(1.0 + EXP(- X 3% 3,0))

5; Calls., All words in the Fortrurcible language which are neither
operands nor mathemstical operators are defined as call words. There is
a fixed set of these words that have been defined in the language, and
a list of these words is included below for reference purposes.,

Rule 22: Under _ng circumstances should any problem variables
or extensions be named the same as these call words
in order to avoid confusing the translator. This
also applies to the first five symbols in a name
since they are the only ones retained by the
compiler,

~ 18 =

Call Word

Use

ARTTHMETIC
ARRAY
BYPASS
CVECTOR
DECIMAL
EDIT

END
EXECUTE
FIXED
FLOATING
GO

HALT

IF
INTEGER
JUMP
PROCEDURE

PROGRAM
PUNCH

READ

SET
STATISTICAL
THRU

TO

Part of an arithmetic switch statement. .

Defines a name as. a subscripted variable,

4 no-operation statement.

Defines a column vector (See Appendix. V)

Part of an arithmetic switch statement,

Special data edit subroutine.

Designates the end of a PROCEDURE declaration..

Sets the link to a PROCEDURE section of coding.

Defines a name as a fixed point variable,

Part of an arithmetic switch statement,

Sefs up a transfer of control to another
section. }

Sets up a computer stop instruction.

Defines a conditional clause,

Defines a name as a fixed point variable.

Same as GO.

Designates the beginning of a PROCEDURE
declaratione .

Part of a program overlay statement.

Defines an output statement.

Defines an input statement, A

Signifies a set error correction statement.

Designates a statistical read statement,

Varies,

Varies.

-19 -

B, STATEMENTS.

In section IIA the rules of word formation were described; in
this section the rules for gombining these words into statements or
sentences will be described, A set of these gtatements will then constitute

the program for solving the desired problem.f

Rule 23: Each statement is given a mumber which is some integer
less than 1000.

The order in which the statements are executed has no relstion at all to
the numbers on the statements =-- they are eventually carried out.in
essentially the same order in which the original deck was compiled. It
is sometimes helpful, however, to make the numbers consecutive in case

the cards should get mixed.up.—

Rule 24: The statement number zero (0O) is special, and is
reserved for statements which are not going to be

referred to in the program.

Since each non-zero statement essentially wastes one additional memory
location as comparéd to zero statements, it is desirable for long programs
to use as many zero statement numbers as possible in order to minimize
memory space, It should also be emphasized that the largest statement
mumber should be as small as possible consistent with rules 24 and 25

to further minimize space requirements,

Rule 25: Fach non-zero statement rumber must be unique and
muist never appear on more than one statement in

a program.

There are many types of statements in Fortruncible language, and the
forms of those most frequently used are described below in detail,
while less frequently used statements are described in the appendices.

- 20 =

1. Substitution statements. Perhaps the most frequently used statement
in Fortruncible language is the substitution or replacement statement.
In this statement, a variable has its current value replaced by the

value of any mathematical expression; a new valué is substituted for
its former one. This substitution operation as in standard mathematical
notation is denoted by an %equality®™ symbol (=). For examples

Y = 0.0
Z2=Y/(X*X)
I=I+1
RHO(J) = N =3 (N assumed to be fixed point)

In the first case Y is set to zero., The second example sets Z equal to
Y divided by X squared. In the third illustration, I becomes equal to
one greater than its former value., The last case computes the value of

N mimis 3 and assignes it to the RHO variable which has a subscript
equal to the current value of J. Note that in this last example, Fort-
runcible will convert the fixed point right-hand side aﬁtomatically

into a floating point number before inserting it into RHO(J). Also

RHO is assumed to have been defined as an ARRAY, Variables always retain
their values until being changed by a substitution statement or a READ
statement (see below) or perhaps an extension statement (see below).

R, Jump statements. Fbrtruncible normally executes statements in the

order it receives them, but this sequence can be broken by a JUMP
statement which tells the compiler to jump to a certain statement and
continue from there, A JUMP statement is written simply as

JUMP TO k
where k is the number of the statement which should be executed next,

A variable or a parenthesized arithmetic expression may also be used
instead of k as long as the result is fixed point; e.g., if I and J

are fixed point variables, then JUMP TQ J or JUMP TO (J + 3 % I) are
valid statements,

Rule 26: k must be a positive fixed point constant.

.

3. Input statements, There are three different types of read statements
is Fortruncible language. The most cormon form of read statement is

written
READ

This statement will cause the computer to read in one or more data cards
for the problem. 411 data for a program other than constants which are
written directly in Fort.runéible language enter the 650 via a READ
statement, The form of the data cards is described later in the section

on card formats.
A second form of read statement is
READ PRQGRAM

This statement is used to overlay a portion of the program in memory
when segmention is used for large programs. This routine is not standard
and the extensions manual should be consulted on the use of this
statement.

The third form of read statement is
STATISTICAL READ N, k

This statement is a special one for statistical problems and the
Statistical Extensions for Runcible I mamual should be consulted for
the use of this statement.[5]. '

4, Output statements, The output statements are used to punch answers
onto cards., There are three different kinds of PUNCH statements:

a) The first form of PUNCH statement is used to punch the
current values of up to four (4) variables onto one card. The statement

- Q2 -

PUNCH TAU

will cause the current value of the variable TAU to be punched on a

.

card;
PUNCH RHO PUNCH J PUNCH OMEGA

will put the values of RHO, J, and OMEGA all on the same card. Up to

four (4) variables can be punched at a time in this manner,
PUNCH BETA(I, J + 1)

where BETA has been defined as an array and I, J have been defined as
integers is also allowable =~ it will punch the element of the array
BETA which is specified by I and J + 1. It is not legal, however, to
give a statement like PUNCH (I + J) or PUNCH - RHO,.

b) If a large number of consecutive variables, which are a
portion of an array, are to be punched, then a statement such as

PUNCH BETA(2,1) THRU BETA(6,4)

may be given, When the word WPHRU™ is used like this, up to seven (7)
answers will be put onto each card, and successive cards will be punched
until the number of variasbles designated by the PUNCH statement have
been exhausted.

¢) If the entire set of variasbles in an array are to be punched

out, then a statement such as
PUNCH BETA

where BETA has been defined as an array, may be given, This statement
will cause the entire array BETA to be punched out in the seven-per-card

- 23 -

form as described in part b. ONLY one (1) array may be punched out on
a single statement, and separate statements must be written for each

array to be punched.

Formats of the output cards from a PUNbH statement are described
in a later section. They are identical to the formats required by the

READ statement, so answers from one program may be used as data for another.

An output statement with a zero (0) statement mumber has a special

meaning:

Rule 27: An output statememt whose statement number is zero
4 (0) will be considered as a conditional output
statement, If the console switch of the 650 is set
plus during the running phase, the statement will
be skipped (omitted), but if it is minus, the
statement will be executed normally.

This type of statement is very handy for obtaiming intermediate answers
when checking a program out in its first few trial runs.

5, Hilt statement. & halt statement will stop the 650 if the programmed
switch on the console is set to stog.l It is simply written as

HALT
A number may be written after the word HALT like this:
HALT 12
in this case the machine will stop displaying the number 12, This

technique may be used to differentiate between several HALTs in the
same program.

J'Corrtrol will proceed to the next statement (if any) if the program
start switch is depressed after a halt. A programmed halt can be
identified by its data address of 8003,

-24 -

8. Bypass statement, The BYPASS statement, written (as might be guessed)

BYPASS

performs no arithmetic operation, but is extremely useful as a common
ending point for several of the other statements (see iteration
statements).

7. Extension statements., Some extensions which may be used with the
compiler have no specific output. The form taken on by such statements

is specialized and varied; rules are given in the writeup for each

individual subroutine. However the general form is

unmz(vl, Vo eee s Vn)

where Vl through Vn are the input expressions to the extension.

8. Conditionsl clauses, Any of the above stateﬁents may be made conditional
by adding a conditional clause to the end of the statement., A conditional

clause is formed in the following manner:

Rule 28: A conditional clause must begin with the word IF
and must contain one and only one of the three
allowable relations: =, >, >= (equals, greater
than, and greater than or equal). Any number of
arithmetic operations may be included within a

conditional clause,

For example, consider:

IFX=Y
IF J >=2
IF$2Z-W$>1(-8)

- 25 =

In the last example, the relation is satisfied if the magnitude of
Z - W is greater than 10-8. Several examples of conditional clauses

added to statements arecs

1., JUMP TO 1 IF TEST = 0.0

2, READ IF 1 >= KEY

3, HALT IF RHO(J + 2) = RHO(J + 1)

4, PUNCH XO IF =(J / 5) >=4 * J

5, Y=X/10,0 IF Z # 2 > X #¢ 8.4

6, JIMPTOKIFN=X

7. X = 3.1415927 IF SIN(X) = 0.0 IF X > 1.571

The left-hand portion of the statement is executed only if the relation
is satisfied; when the condition is not fulfilled, the statement is
treated like a BYPASS. If N is assumed to be fixed point while X is
floating point in example 6, then the example is still valid indicating
that mixed arithmetic in conditional clauses is valid. The seventh
case is interesting because the substitution will be done only if both
conditions hold. Any mumber of conditional clauses may be used in one

statement, -

9, Iteration statement, An "iteration statement®™ is a convenience which

frees the programmer from programming loops. It precedes the portion of
the program to be iterated on and has the following form:l

n, vl, vR, v3, v4,

where vl is the variable which is to be changed; vR is its starting
value and v4 is its finishing value; and v3 is the amount (increment)
'by which the variable vl is to be changed before repeating the sequence

of statements egain.?'

lThis process can glso be programmed without using an iteration statement.

zlf v4 - vR is not exactly divisable by v3, the iteration procedure will

be discontinued just before the value of v4 is passed.

The n in this statement refers to a statement number: All statements

after the iteration statement up to and including the statement n will
be repeated for every value of the variable vl as defined by the iteration

statement, :

Rule 29: The statement number represented by n must not be

zero (0).

Rule 30: The statement number of the statement immediately
following the iteration statement must not be zero (0).

Rule 31: The variable vl must be a simple named variable,

Rule 32: The quantities vR, v3, and v4 must be either simple
named varisbles or short constants (ie. constants
which contain no more than five (5) symbols including

punctuation).

Rule 33: To avoid difficulties, the statement whose number is
n should be a BYPASS statement.l

Rule 34: All commas (,) must occur in an iteration statement
exactly as indicated in the form, especially the one
at the end of the statement,

For example, the statement
5 X, 1, 2, 13,

means: execute all statements from the next one through the statement
numbered 5 for X taking on the values 1, 3, 5, 7, 9, 11, and 13, It is
possible to include an iteration statement within the scope of another
iteration statement -~ all of the details will be handled automatically

lAn iteration statement may end on any statement which is not related

to a procedure or matrix operation statement,

-27 =

by Fbrtruncible.l

Rule 35: Iteration statements may be nested no deeper than
four (4)0

-

Rule 36: n must be a positive fixed point constant.

Rule 37: If v3 is to be a negative increment then it must
be preceded by a minus (=); if it is to be positive
then it must not start with a minus.

For example:

2, COUNT, MAXIMUM, - DELTA, MINIMUM,

is an iteration statement with a negative increment. The variable COUNT
starts out at its MAXIMUM value and is decremented by the amount DELTA
until it reaches its MINIMUM value which closes off the iteration statement.

An iteration statement of the form:
2, COUNT, MAXIMUM, DELTA, MINIMUM,

would be incorrect even though DELTA itself is negative, since the

translator would not be able to recognize that a negative increment
was being used., Hence, it would compile the wrong testing procedure
for the end of the iteration statement.

10. Array operation statements. For the convenience of the programmer

who is using vectors and matrices, a statement has been defined in
Fortruncible languape which permits the operations of plus (+), minus
(=), and product (%*) to be interpreted as the corresponding array

1‘I‘he scope of every iteration statement must be contained in the scope

of any other iteration which uses it; that is, if a certain statement
jterates on statements 1 through 5, say, no meaningful iteration statement
within these bounds will terminate at any statement after five,

- 28 -

operations in a special form of replacement statement, The general

form of this type of statement is:

A=BoC :

where A, B, and C have been defined as ARRAYs and o is any of the

operations +, =, or %,

Rule 38:

Rule 39:

Rule 41:

Only one (1) operation is permissible per
statement.

The form of the statement must have a definite
meaning in the mstrix sense (i.e., the operation
must be defined mathematically).

Under certain circumstances the variables 4, B,
or C may be interpreted as scalars or scalar

matrices (see examples below).

No consistency check on the size of the arrays
is made by the compiler during translation. It
will be assumed during compilation that the

programmer has defined the sizes of the arrays

properly.

In order to illustrate the above ideas and to summarize the types of
forms which can be written, consider the following examples: in which
A, B, and C are considered as n x n matrices, I, J, and K considered

as vectors of size n, and X, Y, and Z are considered as scalar variables:

1. Simple replacement:

a) Matrix by matrix: A =B
b) Matrix by scalar matrix: A = X or A = 2, where 2
is considered as 2 times the identity matrix,

¢) Vector by vector: I =4Jd

2. Products:

a) Matrix product: A =B *C, A=4 %X, A=B*42,
A=X#%C, or A=B*7Y,

b) Matrix vector product: A=I%J

¢) Vector matrix product: I =B %#J

d) Scalar product: 2 =J #K
3, Sums:
a) Matrix sum: A =B +C, A =239 +C, or
A =3B+ 121
b) Vector sum: I =J +K
4, Differences:

a) Matrix difference: A
A =3B~21
b) Vector difference: I =J -K

B-c, A’l-c’ or

It can be noted from the above examples that constants may be used as

scalar matrices,

Rule 42: If a constant is to be considered as a scalar matrix,
then it must be written as an integer of no more than
four (4) digits.

During the translation of these statements, the compiler requires additional
non-zero statement numbers which it will generate as it needs them starting
with the maximum statement rumber as the programmer has defined it. The
purpose of these statement numbers is to provide re-entry points in the
program for the iteration statements which are generated internally for

the matrix operations.

Rule 43: Array operation statements should not be nested any
deeper than one (1) in external iteration statements
since under some corditions three internal iteration

statements are generated,

Rule 44: No external iteration statement should terminate on

an array operation statement.

11, Procedures. As a further convenience to the programmer, a special

set of statements have been included in Fortruncible language which permit
the programmer to write subroutines directly in Fortruncible language.
These subroutines called procedures can then be linked up with the main
program as often as desired. The rules governing the formation of these

subroutines or procedures are listed below.

Rule 45: Every set of statements that are to be considered
as a procedure must represent a subroutine which is

complete in itself,

Rule 46: The first statement in a procedure must be a PROCEDURE

declaration statement as defined below.

Rule 47: The last statement in a procedure must be an END of
procedure statement.

Rule 48: All named variables used within a procedure will not
be bound to the procedure but will carry the same
meaning outside of the procedure. Consequently, care
must be exercised when writing a procedure to prevent
destroying any results needed outside the procedure.

Rule 49: All procedures are exited by transferring control to
the END statement either by the natural sequence of
statements or by means of a JUMP statement.

Rule 50:¢ The set of statements which represent a procedure
must occur in a program before any statement which
links the procedure.

The special statements in Fortruncible language relating to procedures
will be considered next along with their rules of formation.

- 3] =

12. Procedure declaration statement, The first statement in a procedure

as mentioned above must be a procedure declaration statement which defines

the procedure, The form of this statement is:

PROCEDURE NAME(I]-, 12’ eeoy I.j) = (01, 02, coey Ok)

where a) NAME is a name for the procedure.
b) Il through Ij are the internal names of the input variables

to the procedure.
c) 01 through 0k are the internal names of the output variables

of the procedure.

Rule 51:

Rule 52:

Rule 53:

Rule 55:

Rule 56:

Rule 57:

The name of a procedure may be any length but it
will be truncated to four (4) characters that must
be unique to the progranm.

The input variables must not contain parentheses or
commas, Hence the only admissible variables are simple
named variables or entire arrays written without

parentheses or commas.

The output variables also must not contain parentheses

oI’ commas,.

The maximm mumber of inmput and output wvariables
combined is five (5). (i.e. the relation j +k ¢ §
must be satisfied.)

There must be at least one input and one output
variable in every procedure. (i.e. j > 1 and k > 1.)

The statement mumber of every procedure declaration

must be unique and hence different from zero,

Procedure declarations must not be nested, but
other procedures may be executed from within a

given procedure.

- 32 =

Rule 58: The maximum number of different procedures in a

given program is four (4).

Rule 59: Each procedure declaration defines one fixed point

named variable,

13, End statements., These statements are used to end each procedure

and have the form
END NAME

where NAME is the name of the procedure that is being ended.

Rule 60: The name associated with each END statement should
agree with the name of the corresponding PROCEDURE

declaration.

Rule 61: Each END statement must have a unique statement

number .

14, Execute statements. Whenever it is desired to link a procedure, an
EXECUTE statement is used. This type of statement has the following form:

EXECUTE NAME(EI, Epsy eees Ej) = (vl, Vos eoes vk)

where a) NAME is the name of a previously defined procedure.

b) E, through Ej are the current input expressions for the

procedure,
c) Vl through Vk'are the external variable names for the results

/

of the procedure after it is executed.

Rule 62: The number of input expressions (j) must agree with
the rumber of imput variables in the defined procedure,

Rule 63

Rule 64:

Rule 65:

Rule 66¢

Rule 672

Rule 68:

Rule 69:

Rule 70:

Rule 71:

- 33 =

The input expressions may contain any number of
arithmetic operations but must not contain any

parentheses or commase.

The number of output variables (k) must agree with
the number of output variasbles in the defined

procedure,

The names of output varisbles rmust be simple named
variables or entire arrays and must not contain

parentheses or commas.

Every EXECUTE for a procedure must follow physically

the procedure declaration statement.

EXECUTE statements may be used within other procedure
declarations but they must refer to previously defined

procedures,

The statement number of an EXECUTE statement must be

unique.

Any number of EXECUTE statements may be used in a
program consistent with the memory space.

Array operations may be used as input 9xpressions in
an EXECUTE statement, but the corresponding variable
in the procedure must also be an array.

No iteration statement should terminate on an EXECUTE
statement, but EXECUTE statements may be contained
within iteration statements consistent with the other
rules governing the nesting of iteration statements,

This statement will first substitute the values of the input expressions
into the input variables of the procedure before transferring to the

procedure, After completing the procedure, the corresponding results are
substituted back into the defined problem variables before.returning to

the main program sequence. The third example in section II.C will
illustrate the use of the above ideas, and further examples of this
type can be found in Appendix IV,

15, Integer definition statements, An INTEGER definition statement is
used to define a list of simple named variables as fixed point variables

(integers). The form of this statement is:

INTEGER V1 V2 oo Vn

where Vl through Vn is a list of simple named variables,

Rule 72: Each name in the list must be separated by a space

or comma,

16, Array definition statements, All variables which are to be considered

as subscripted variables must be defined as such by an ARRAY definition
statement. There are several forms of the statement depending on whether

the array is a matrix or wvector.

a) If the subscripted variable is a vector then the definition
statement has one of the forms

1. ARRAY NAME(n)
2. ARRAY NAME(N) k

where in the first form NAME is the name of the vector and

- n is an integer reépresenting the size of the vector., In the
second form, NAME is the name of the vector, N is a fixed
point variable (integer) that represents the current size
of the vector, and k is an integer that designates the amount
of space in memory to allocate for the vector.

- 35 -

b) If the subscripted variable is a matrix then the definition
statement has one of the forms

1, ARRAY NAME(m, n) °
2., ARRAY NAME(M, N) k

where in the first form NAME is the name of the matrix and
m, n are integers representing the size of the matrix (i.e.
NAME is an m by n matrix, m is the row size and n is the
column size)., In the second form, NAME is the name of the
matrix, M, N are fixed point variables (integers) which
represent respectively the row size and column size of the
matrix, and k is an integer which designates the amount

of space in memory to allocate for storing the matrix.

Consider the following examples:

ARRAY RHO(19)

This defines the vector RHO to be of size 19,
ARRAY TAU(I) 100

This defines the vector TAU to be of current size I, but to allow a
maximum size of 100 for TAU and 100 locations in memory will reserved

for this vector.
ARRAY BETA(6, 9)

This s\tatement defines the matrix BETA to be 6 by 9, Bub
ARRAY BETA(I, J) 225

defines the matrix to be currently of size I by J but reserving 225

- 36 -

locations in memory to store the matrix. In the sbove examples it has

been assumed that the named variasbles I and J have been defined as fixed
point variables (integers).
Rulé-’ 72¢ Every ARRAY definition must “contain an integer or

integers which designate the amount of spece to be

reserved in memory at the time of translation.

Rule 73: Every variable which has the form of an array but
’ has not been defined as such will be considered to

be an extension.

Rule 74: If the size of an ARRAY is defined in terms of a
fixed point named variable, then this variable must
have an assigned value at running time when this

array definition is encountered.

Rule 75: Every ARRAY definition generates coding in the
machine language program.

Rule 76: Every ARRAY definition generates a named fixed point
variable which corresponds to the origin of the

array.

C. EXAMPIE PROBLEMS.

Three sample problems will be given here to demonstrate some
portions of Fortruncible language as it has been described; more examples
may be found in Appendix IV,

Example 1, Calculate FACTORIAL N where N is a non-negative integer,
Solution - 1let N be a fixed point variable which will be the
input data to this problemj FACTORIAL (the answer) will be floating point;
and the computation will proceed by successive multiplications of the
result by a variable I which will run through the integers up to N, &
flow chart to solve the problem would look something like thiss: V

1 2
Halt
START READ IN N | Is N negative? —@ on
Error
9 4 ; 3
r PUNCH FACTORIAL e IS N O or 12 }| FACTORIAL = 1.0
5
Is I greater -
than N? I &
7 8
I=T1+1 FACTORIAL = FACTCRIAL x I

The translation of the flow chart into a series of statements is

almost automatics
Number Statement

INTEGER N I

READ

HALT IF 0 > N
FACTORIAL = 1,0

JUIMPTO 9 IF 1 >= N
I=2

FACTORIAL = FACTORIAL # I
I=I+1

JUMP TO 6 IF N >= I
PUNCH N PUNCH FACTORIAL
JUMP TO 1

W O g9 0 0 WD - O

[
o

- 38 -

Observe that the program parallels almost exactly the instructions
you would give to a person telling him what you wish to be done. The

'following is the same program using an iteration statement:

INTEGER N I

READ

HALT IF O > N

FACTORIAL = 1,0

JUIMPTO 7 IF 1 >=N

6, I, 8, 1, N,

FACTORIAL = FACTORIAL # I
PUNCH N PUNCH FACTORTAL
JUMP TO 1

® N O vV H O

Example 2, Suppose we want to ‘evaluate the error function

X 2
am = @/Vm e

for arbitrary values of X using the approximation

©

UX) =1 - (Z/ﬁ)(aln +* azn"2 + asns + a4n4 + a;sns) e

where n = 1/(1 + pX) (p and the a's are numerical coefficients which
we will omit here). We will let a, = A(K); X=X; n = N; Q(X) = ERF

(the answer): and p = P, 2/Vn = 1.1283791, We could simply evaluate

the equations directly with the following program:

Number Statement Comments
0 ARRAY A(5) (define array A&)
1 READ (read in & Ps x)

2 N =1.0/(1.0 + (P %* X)) (calculate n)

ERF = 1.0 - (1.1283791 * ((A(1) * N)+(&(2) * (NsxR))*
(A(3) * (N#xB))+(&(4) * (Mg))+(A(5) * (N#x5))) *

EXP(=X % X) (calculate Q(X))
PUNCH X PUNCH ERF " (punch answer)
JUMP TO 1 (read in another X

and continue)

But the evaluation of the polynomial will be quite a bit more rapid

if we rewrite the expression

'S

QX) = 1 - @A) (N(a; + Na, + N(ag + Na, + Nag))))) e™X

Now we could evaluate this new expression directly or set up a ™loop"

type of routine which calculates the polynomial from the inside out,

Careful study of the program below will be very instructive,

® N9 O 0 dh D - O O

INTEGER K

ARRAY A(S5)

READ

N =1.0/(1.0 + (P * X))

TEMP = A(5)

55 K, 4, -1, 1,

TEMP = A(K) + (N * TEMP)

ERF = 1,0 ~ (1.1283791 # N # TEMP # EXP(-X % X))
PUNCH X PUNCH ERF

JUMP TO 1

Of course an even shorter program would be

[B - B

READ
NORMAL = ERF(X) (error function extension)
PUNCH X PUNCH NORMAL

JUMP TO 1
cooco but this is Cheatin.go

- 40 -

Example 3., Suppose that we wish to compute the area under the Normal
. probability curve between the limits C and D. This area is given by

. D :
2
Q(C,D) = (2/\/})f v at
c

One method of evaluating the integral would be to perform a direct
numerical integration, but in this case a much simplier method is to
use the results of Example 2 as a subroutine. This latter method is
the one we will use in this example,

Number Statement Comments
0] INTEGER K
0 ARRAY A(5)
1 READ (read in a's and p)
2 PROCEDURE NORMAL(X) = (ERF) (define subroutine
NORMAL)
3 N=1.0/(1.0+ (P*X))
4 TEMP = A(5)
5 6, K, 4, =1, 1,
6 TEMP = A(K) + (N % TEMP)
7 ERF = 1,0-(1.1283791 # N % TEMP % EXP(-X #* X))
8 ERF = 0,5 + ((X/$ X $) * ERF)
9 END NORMAL
10 READ (read in C and D)
11 EXECUTE NORMAL(D) = (UPPER)
1R EXECUTE NORMAL(C) = (LOWER)
13 AREA = UPPER - LOWER
14 PUNCH C PUNCH D PUNCH AREA
15 JUMP TO 10

For a more extensive example which uses both procedures and matrix

operations see Appendix IV,

- 41 -

ITI. CODING DETAILS,

A. BASIC PACKAGES.

-

Standard subroutines such as floating-point arithmetic and
input-output operations have been incorporated into "basic packages™
which augment the finished program in its running stage. There are
many of these packages, each of which has its own special purpose or
goal, and the requirements of each individual program will determine

Jjust which one to use.

If you are going to run your program on an "ordinary" 650,
then you must use one of the "AM™ packages; P1A, P2A, or P3A., If your
program is to be run on an augmented 650 (floating point, index
registers, etc.) then you use one of the ®Y" packages; PlY, PRY, or
P3Y. All of the packages mentioned so far include the necessary
routines for READ, PUNCH, and other various and sundry necessities
of 1life for FORTRUNCIBLE programs. The Pl packages contain a bare
minimum of things and are used in most cases., The extra things in-

cluded in the other two flavors are listed below:

P2 s P3 :

P operator P operator
Logarithm (base e) LN Log (base e) IN
Exponential (base e) EXP ‘Expon (base e) EXP

Sine (radian) SIN
Cosine (radian) COS
Arctangent (rad) ATAN
Square root R$2

The decision as to which one of the packages to use is now
’ simplyimade by examining the above lists. If your program does not

use any of the things in either list -~ then use Pl, If your program
uses only things listed above the dashed line I~ then use PR, if your

program uses features below the line, then use P3,

The sizes of the commonly availsble basic packages are
listed below

Basic 650 Augmented 650
Pl1A = 325 locations P1Y - 190 locations
P2A -~ 525 locations PRY = 365 locations
P3A « 751 locations P3Y -~ 480 locations

B. CARD FORMATS,

Since the Fortruncible compiler translates the Fortruncible
program into a standard Runcible program, only those card formats
specifically related to the Fortruncible part of the program will be
described and the programmer should refer to the RUNCIBLE manual for
details concerning the other card formats. There are three types of
cards used directly in the Fortruncible program: the HEADER card,
the COMMENTS card, and the FORTRUNCIBIE STATEMENT cards,

1. Header card, The header card for Fortruncible has the same format

as that used in Runcible. The format is as follows:

Columns 1 - 30: all zero (0) filled,

Columns 31 - 4OE the highest statement number used,

Columns 41 - 50: all zero (0) filled.

Columns 51 - 60: the number of locations used by the basic
package (see above),

Columns 61 - 80: all zero (0) filled,

In addition Columns 10, 20, 30, 40, 41, 50, 60, 70, 803 have 12 (¥)
_overpunches, The punch in column 41 is necessary to identify the
header card.

Any of these numbers may be made a little bit larger than
the actual value (for safety) but it is extremely important that
none of them are smaller than the true values, for this is an unchecked

error which can lead to mysterious and unfortunate results.

2. Comments card, The comments card is generally easier to prepare

than the header card. Its format is:

Columns 1 - 40: all blank (no punches)

Column 41: a one (1) punch

Column 4R: blank

Columns 43 =~ 72: may be filled with a title or anything
else the programmer's heart may desire
(as long as it is acceptable to the
alphabetic attachment). If he is lazy
he may leave it blank,

3. Fortruncible statement cards, The Fortruncible program can be
compiled only on a 650 with a special character attachment, group II:

as a consequence, only those characters recognizable by the

attachment can be used in punching the statements onto cards. IBM
has defined two sets of characters for the same set of card punches,
called FORTRAN and COMMERCIAL 407 characters., For convenience, the
Fortruncible programs are written with FORTRAN symbols with suitable
modificationsol A list of the Fortruncible characters along with

1 To further add to the convenience of the user, IBM, when defining the

FORTRAN set of characters; decided to include two minus symbols,each
with a differemnt card definition, due to the great abundance of
available symbols, However, Fortruncible uses the "minus" symbol
corresponding to the commercial @ symbol as the greater than (>) symbol.

their FORTRAN and COMMERCIAL equivalents is given below, and all

programé described in this manual will be written in the Fortruncible

notation.
Fortruncible Fortran Commercial Meaning
((% Left parenthesis
) u Right parenthesis
. . . Decimal point
= . # Substitution
= = # Equals
> - @ Greater
>= -= ef Greater than or equal
’) > Comma
+ + & Plus
- - - Minus
* * * Times
/ / / Divided by
$ $ $ Absolute value
e it 3 Power

Each statement must be punctuated by a period (.), which is
added at the end of the statement. The very last statement must end
with a double period (..). The rules for punching the statements on

cards are:

Rule 77: The statement number, n, is punched as (0000 + n)

in columns 1 - 4,

Rule 78: Column 5 rmust have a letter "R™ punched in it to

identify the card as a Fortruncible card.

Rule 79:¢ The statement itself is punched in columns 43

through 71, and column 72 must contain the period

Rule 80:

Rule 81:

.Rule 82¢

which terminates it., (If a statement is so long it

does not fit on one card, up to five (5) cards may
be used. In this case the period should appear only
on the last card of the statement, and columns 43
through 72 may be used for characters of the
statement on all other cards., A statement may thus
contain up to 150 characters, including the final
period (.) or double period (..) as the case may
be, Each of the cards in a multiple card statement
rmust have the same statement number punched in

columns 1-4.)

Columns 6 ~ 42 and 73 - 80 are ignored by Fortruncible
except that columns 7 and 41 must not contain a 12

(M) punch and column 10 must be blank. For the
convenience of the programmer, columns 17 ~ 20 may
contain a serial card number =-- helpful for reordering
the cards if 52 pick=-up has been played. This serial
number may be listed on the 407 along with the
statements to facilitate inserting corrections.

Blank columns will be ignored in the middle of a
statement as long as they do not occur in the middle
of a name or constant. (Care must be exercised on
multiple card statements to insure that no additional
blanks are inserted in the middle of a name or that
two names are spaced properly.)

The very last statement in the program is ended with
a double period (..) which must occur on the last
card of the statement in columns 71 and 7R,

- 46 -

C. CORRESPONDENCE TABLE.

As previously mentioned, the Fortruncible program is translated
into a Runcible program by the Fortruncible coméiler.'Since Runcible
accepts only three types of singly subscripted variables, (I, Y, or C),
it is necessary that the Fortruncible compiler translate all of the
named variables into the above three types of variables. This translation
is accomplished by setting up a correspondence between the fixed poimt
named variables and Runcible "I" variables, the floating point subscripted
named variables and Runcible “YM variables, and the simple named variables
with the Runcible “C® variables. This correspondence is stored in memory
during the translation, and at the end of the translation it can be
punched out for checking purposes. The card format o} the correspondence
table can be best described by considering the following sample
correspondence table which has been printed in standard Runcible form,

Card no. Statement no. Statement

0001 18001 N 10001

000R 1801I I "IO00R

0003 18021 J 10003

0004 18031 Al ~ 10004

0005 18041 A2 TI0005

0006 18051 D1 10006

0007 18061 D2 I0007

0008 18071 D3 10008

0009 1808I E 1 T0009

0010 18501 TAU Yooo1 I4 10 10
0011 18511 RHO YOO0R IS 10
0012 19001 X 00001

0013 19011 MAX 00002

The first three entries in the correspondence table define the
equivalents of three simple named fixed point "IM" variables. The next

two entries define the origins for two arrays, the first one is a matrix,
and the second one is a vector. The next three fixed point names are
Mjummy" variables used by the array operations. Card 9 defines an exit
location for a procedure. Cards 10 and 11 definé arrays, the array TAU
starts at YOOOl and uses 10 x 10 or 100 locations, with its origin defined
by I 4. Thus, array RHO starts at YOOOl + 100 or Y010l (the YOOOR is

there only for indication purposes and OO0 means the second array, not
the starting "Y® variable) and is a vector of size 10 with its origin
defined by I 5., Cards 12 and 13 define the equivalents of the floating
point variables X and MAX.

Another very important use for the correspondence table is in
preparing the data cards for use in the final Machine language program.
8ince the intermediate program is in "Runcible® language, all data must
be entered - in standard Runcible format as described in the Runcible I
manual. This means that the Runcible equivalents for each of the named

variableé has to be known in order to punch the data cards.

The correspondence table can also be used in rerun procedures
(see Appendix IIT) gz

D, DATA CARD FORMAT,

As mentioned above, all data used by the final running program
must be entered in standard Runcible format.

Rule 83: All data is punched in the standard Runcible format
where the equivalent Runcible variables are determined

from the correspondence table,

Rule 84: All output results from a Fortruncible program are

1The same variable definitions can be retained between two programs
by following the rules outlined in Appendix III for rerun procedures.

punched out on caerds in the standard Runcible format
using the equivalent Runcible variables as identifica-
tion. This output can be ﬁsgd as imput to another
program, provided the variaﬂle definitions or cor-

respondences have remained consistent,

IV,OPERATING PROCEDURES,

A, MODES OF OPERATION,.

There are four (4) normal and one special modes of operation
available for the Fortruncible to Runcible translation which depend upon
the special equipment that is available on the 650, However, all the
modes require that the 650 has the complete special character device,
group II, on the 533 alphabetic sttachment. The special mode of operation
is called FAR (Fortruncible Automatic Runcible) and is described in
detail in Appendix V. The four normal modes of operation are described

below,.

1, Basic 650, This mode uses only the basic 650 with the full alphabetic
attachment as mentioned sbove. This mode is obtained by loading the
Fortruncible deck with the storage entry switches set plus. As might

be guessed, this form of operation is the slowest and should be used

only when none of the other modes is applicable,

R, TIE 650, This mode is a modification of mode 1 in which the special
operation code of Table Look-up on Equal is used to greatly increase

the speed of compilation. Only those 650's which have this added special
order code can use this version, which is obtained by loading the
Fortruncible deck with the storage entry switches set mims. A test is
made at the start of this program to see if the TLE 63 operation code is
operative,

3. Augmented 650, This mode of operation is available for use on a 650

with the following added equipment:

1) Immediate Access Storage (Core Storage)
2) Indexing Registers

and is obtained by loading the Fortruncible S deck with the storage
entry switches set plus. All rules of operation are the same as those
for the other modes and the only difference is that the above equipment
is used internally by the compiler.

4, Augmented 650 with TLE, This version is similiar to mode 3 except
that the Table Look-up on Equal operation code has been used, This
mode is obtained by loading the Fortruncible S deck with the storage
entry switches set minus. The additional equipment required by this

mode of operation is:

1) Immediate Access Storage (Core Storage)
2) Indexing Registers
3) Table Look-up on Equal (63)

B, FORTRUNCIBLE PROGRAM,

Your Fortruncible program consists of three partse

1) Header Card

2) Comments Card

3) Portruncible Statement Cards (last card has a double
period (..) in columns 71 and 72.

which are assembled together in the above order (i.e. first the header
card, second the comments card, and last the Fortruncible statements).
The above collection of cards in the‘proper order constitutes a

Fortruncible program,

C. RUNCIBIE PROGRAM.

The Fortruncible compiler translates your Fortruncible program
into a standard Runcible program which uses none: of the special alphabetic
characters. The card order in the resulting Runcible program is:

1) Comments Card

2) Runcible Statement Cards

3) New Header Card (modified by the Fortruncible compiler)
4) Correspondence Table Cards

This order is not proper for the Runcible compiler which requires that
the cards have the following order:

1) Header Card
2) Comments Card
3) Runcible Statement Cards

Consequently, the cards have to be rearranged to agree with the above
order. To facilitate finding the new Header card in the output cards,

a programmed stop is encountered immediately after punching the new
Header card, and before punching the correspondence table. If the
output cards are cleared out of the 533 punch unit at this point,

the last card, which is the new Header card, can be placed first to
form a properly ordered Runcible program, and then the correspondence
table can be punched. This Runcible program can now be processed by

the Runcible compiler in the usual manner following the rules described
in the RUNCIBLE I mamual,

D. OPERATOR INSTRUCTIONS.

Step 1. Insert FORTRUNCIBIE - RUNCIBIE I plugboard into 533
unit. This board will be used during the entire

operation.

Step 2. Clear any cards out of the read feed and punch feed

- 5] =

and ready the punch feed with ample blank cards.

Step 3. Place either the FORTRUNCIBLE or FORTRUNCIBIE S deck
in the read hopper, 12 edge in, face down. Which

deck you use depends upon thé extra hardware that

is available on the 650 being used. (See above
discussion.) Place your Fortruncible program on

top of the FORTRUNCIBLE deck in the read feed,

where your program consist of 1) Header Card

2) Comments Card and 3) Statements (in that order).

Step 4. Set the 650 console to the following:

SWITCH SETTING
STORAGE. ENTRY 70 1951 klmn + (see Modes of

Operation as described in
the Runcible I marmual)

PROGRAMMED STOP

HALF CYCIE RUN
ADDRESS SELECTION 1888
CONTROL RUN
DISPIAY LOWER ACCUM
OVERFLOW SENSE
ERROR STOP

Step 5. Depress the following buttons in order:

1) COMPUTER RESET
2) PROGRAM START

Step 6. Press both START buttons on the 533 umit.

Step 7. When the last card in the read hopper is halfwsy into
the machine, depress END OF FIIE, Do not push the START
button again until the ™End of File® light goes out,

Step 8.

Step 9.

When the computer stops with the MAddress' Lights®
displaying 0999, run the cards out of the punch
feed and throw away the top and bottom cards.

These cards are "garbage cards™ and should have
been punched identically,

Now move the bottom card to the top of the set of
output cards. This card is the new Header card and
the resulting set of cards constitutes the Runcible

- program which should be saved for the next part of

Step 10.

Sbep 11,

Step 12.

the operation.

If the correspondence table is not desired skip

down to step 12. Otherwise, depress the START button
on the punch side of the 533 unit (adding blank
cards if necessary) and depress PROGRAM START,

This part of the translation is completed when

the "Address Lights" display 9876. Run the cards
out of the punch feed and again throw away the

top and bottom cards. The remaining cards are the
correspondence table and should be saved for future

reference,

Now perform the Runcible to machine language translstion
by following the rules set forth in the RUNCIBLE I

mamual.

- 53 -

V. STOPS,
(indicated in the "Address Lights")

A, NORMAL STOPS.

1) 0999 End of compiling phase. Remove cards before
depressing program start and punching out the

correspondence table.

2) 9876 This is the end-of-Fortruncible indication after
the correspondence table has been punched out.

‘B, ERROR STOPS,

1) 9999 The Header card has been omitted from the program.
2) 9901 There are more than five (5) cards to a statement.

3) 1234 This is the normal error indication for all errors
(correctable) detected during compilation, The
statement number of the current statement being
processed (may be a newly generated statement number)
is displayed in the Upper Accumulator. The cards
should be run out of the read feed on the 533 and
the offending card/or cards may be corrected and
reinserted in the read feed. Depressing the
PROGRAM START button will initiate a card read and

continue the translation process.

Sorry to say, most errors in statement formation will not be
detected by the Fortruncible compiler but will be passed on to the
Runcible I phase in erroneous form to be detected by Runcible I.

One word of caution: Array operations and Execute statements can not

be corrected but must be recompiled.

BIBLIOGRAPHY

1.

3.

4,

A.J, Perlis, J.W. Smith, H,R. Van Zoeren, ™Internal Translator
(IT) A Compiler for the IBM 650", Computation Center,
Carnegie Institute of Technology, January 1957,

Computing Center Staff, "Runcible I, Vol 1 Series V Revised
Edition, Computing Center, Case Institute of Technology,
March 1959.

Computing Center Staff, “Runcible I Extensions = Part I,
Computing Center, Case Institute of Technology, March
1959.

D.E. Knuth, "SOAP III%, Vol 1 Series IV, Computing Center,
Case Institute of Technology, February 1958,

Computing Center Staff, "Statistical Extensions for Runcible IV,
Computing Center, Case Institute of Technology, September
1959, '

3.

5.

6.

7

8.

Substitutions:

Halt:

BZE&SS H

Extension:

Conditional:

- 55 =

APPENDIX T,

SUMMARY OF STATEMENTS.,:

NAME = E1 s where NAME is any named variable and

E1 is any expression.

JUMP TO k , where k is the number of the statement

to be executed next. k may be a parenthesized fixed

point expression,

READ , normal data read.
READ PROGRAM , for program overlay.
STATISTICAL READ n, k , statistical data read.

PUNCH NAMEl PUNCH NAME2 PUNCH NAMES PUNCH NA'ME4 ’

punches four per card form for any four named

variables.

PUNCH ARRAYi(I,J) THRU ARRAYi(K,L) s punches any
portion of an array in seven per card form.

PUNCH ARRAYi s punches the entire array in seven
per card form,

HALT k¥ , stops the computer with the number k
displayed.

BYPASS , does absolutely nothing,.
NAME(El, ces En) , where NAME is the name of the

extension and El through En are input expressions,

IF El r E2 s Where E1 and E2 are expressions and

r is one of the relstions >, >=, or =.

9.

10,

12 ')

13,

14,

15.

Iterations .

Array operation:

Procedure declaration:

Ends

Execute:

Integer:

Array:

- 56 =

n, V., V,, V., V,, , where Vl is the variable

1’ 2?2 '3 4
to be changed, V2 its initial value, V5 its

increment, and V; its final value. n is the

statement number of the last statement to be
included in the iteration.

ARRAY, = ARRAY, o ARRAY, , where ARRAY.,

1 3 1
ARRAIé and ARRAYé are names of arrays without

subscripts and o is one of the operations + -
or #, The statement must make sense.

PROCEDURE NAME(II, PN Ij) = (Ol, eoey Ok)
defines the subroutine named NAME with I1 thru
Ij as imput variables and 01 thru Ok as output

variables.

END NAME , defines the end of a procedure or

subroutine.

EXECUTE NAME(EI, ceey Ej) = (Vl, coey Vk) ’

‘performs the procedure named NAME with E, thru

Ej as input expressions and V1 thru Vk as output
veriables,

INTEGER NAMEI coe NAMEn s defines the names
NAMEl thru NAMEn as fixed point variables
(integers).

ARRAY NNMEl(m,n) s defines the name NAMEl to

be an array of size m by n.

16.

§Eecia1:

- 57 =

ARITHMETIC DECIMAL , changes arithmetic to decimal

mode.
ARTTHMETIC FLOATING , changes arithmetic to floating

.

point mode.
SET ERROR CORRECTION TO n , defines an error correcting
routine to start at statement n.

EDIT NAME, THRU NAME, , used by a special editing

1 R

routine.

- 58 =

APPENDIX IT.

PASSING "RUNCIBLE I™STATEMENTS.,

Any mumber of Runcible statements in standard Runcible format
can be intermixed with the Fortruncible statements in a Fortruncible
program provided that they are not the first and last statements in the
program. The first and last statements must be Fortruncible Statements.
These Runcible statements will be ignored by the Fortruncible compiler
and passed on directly to the Runcible output program in unaltered form.
However, there is a strong possibility that these Runcible statements
will use standard I, Y, and C Runcible varisbles, so in order to avoid
confusion with those defined by the Fortruncible compiler as it translates
the Fortruncible named variables into Runcible I, Y, and C variables, the
Header Card for the Fortruncible program must be modified in the following

manner:?:

Columns 1 - 10 maximum subscript of the passed I variables.

Columns 11 - 20 maximum subscript of the passed Y variables.
Columns 21 - 30 maximum subscript of the passed C variables.
Columns 31 - 40 maximum statement number in program including

both Fortruncible and Runcible statements.
Note: The Runcible and Fortruncible statements
should have unique statement numbers if they
are non-zero.

Columns 41 - 80 same as before,

For efficiency, all of the variables used by the Runcible portion of
the program should be clustered together and should have as small a
subscript as possible. The number of variables used by the Runcible
portion of the program does not affect the restrictions on those used
by the Fortruncible portion except that the total number of resulting
Runcible "I® variables must be less than 99. (i.e. I 99 is the largest

subscripted I variable that is permissible.)

= 50 =

APPENDIZX IITI.

RELOADING A CORRESPONDENCE TABIE,

-

Occasionally the situation arises where it is desirable to

use the correspondences for one program with another for compatibility.

This is especially true when segmenting a program. Under these circum-

stances it is desirable to be able to reload the correspondence table

from one program to define the correspondences for another. This

operation is possible provided certain rules are followed.

Rule 852

Rule 86:

Rule 87:

Rule 88:

The old correspondence table if it is to be
reloaded must follow immediately the Comments
Card of the new program but before any of the

statements,

The correspondence table if reloaded will take
precedence over any information on the Header
Card.

The card order of the correspondence table

should be retained for proper reloading.

A1l array definitions will be retained, but

these arrays will not be initialized in this

program since the initialization steps are
generated from an ARRAY statement. This rule is
very important., If it is necessary to reinitialize
an array then the definition should be removed
from the correspondence table and an ARRAY
definition statement inserted in the program

to define and initialize the array,

APPENDIX IV,

SAMPLE PROBLEMS,

Example Sub=Program 1. Separate the ihtegral and fractional

parts of a floating point variable X.

0 INTEGER N .
1 N=2X .
R INTGR = N .
3 FRACT = X - INTGR .

N is the integral part of X in fixed point form; INTGR is the same in
floating point form; and FRACT is the fractional (decimal) part of X
in floating point form.

Example Sub-Program 2, Represent the eight significant

digits of a floating point variable X as a fixed point integer N.

0 INTEGER N .
1 JUMP TO 5 IF X >= 1(8) .
2 JUMP TO 7 IF 1(7) > X .
3 N=2X .
4 HALT .
5 X = X/10.0 .
6 JUMP TO 1 .
7 X = X # 10,0 .
8 JUMP TO 2 .o

A shorter and probably slower program would be:

0 INTEGER N .
1 JUMP TO 5 IF 1(8)>X IF X>=1(7) .
2 X =X /10.0 IF X >= 1(8) .
3 X = X 10,0 IF 1(7) > X .
4 JUMP TO 1 .
5 N =X .
6 HALT .o

-6l =

Example Sub-Program 3, Find the maximum of a set of N numbers;
the mumbers are stored as elements of the array BETA; and BETA(J) is the
first variable of the group., Assume N > 1, N + J;<‘100.

0 INTEGER N J I K EXIT .
0 ARRAY BETA(100) .
1 MAX = BETA(J) .
2 I=J .
3 N=Jd+N=-1 .
4 8, K, J +1, 1, N, .
5 JUMP TO 8 IF MAX >= BETA (K) .
6 MAX = BETA(K) .
7 I=K .
8 BYPASS .
9 JUMP TO EXIT .

MAX is the desired maximum and I is the subscript of the maximum BETA
of the set, Statement 8 was necessary to end the iteration statement

properly. Note statement 9 at the end = a variable JUMP statement=

enabling the main program to use this subprogram several times and to
' exit to different statements for continuation,

Example Program 4, Generalized matrix multiplication of up to
a 20 x 20 matrix, The I x J matrix ALPHA will multiply the J x K matrix
RHO and the result will be placed in the I x K matrix GAMMA, Then the
resulting matrix GAMMA will be punched all at once.

0 READ .

ARRAY ALPHA(I,J) 400 .
0 ARRAY RHO(J,K) 400 .
0 ARRAY GAMMA(I,K) 400 .
1 GAMMA = ALPHA # RHO .
2 PUNCH GAMMA .
3 HALT .o

‘ The way this program would actually look when punched on cards
and with the Header Card and Comments Card inserted is as follows:

-

O o (@]
= & & = R 3 2 3

- + + + + + + + +
0000000000000000000000000000000000000C030000000000000000036500000000000000000000

1 EXAMPIE4 MATRIX MULTIPLICATION

0000R READ | .
000OR | ARRAY ALPHA(I,J) 400 .
0000R | ARRAY RHO(J,K) 400 .
OOOOR ARRAY GAMMA(I,K) 400 .
0001R . GAMMA = ALPHA * RHO .
0002R PUNCH GAMMA .
0003R HALT .o

The resulting Runcible program after proper order has been restored
by moving the new Header card imto the first position is listed below

along with the five per card machine language turned out by Runcible.,
Note that package PRY is employed.,

-63-

E - dLTVH
I | m«.me: Xt I8
9 TTANUHINTSYTXT ITS9 IIXHONAd
d Y6 Isug IXN ITSSITAXY

@ ISML IXT ITSETTASUS ISUL IXN
TIS9 TIXZ6 IS4l IXN ITS9 IR
d MM INTITHG I
LOZ¥6 ISUL IXT TIS9 ITX

MM ININTY6 I

K

d

L ¥ INTATIL NN
d N DWET IXT IIsh 185179 I
4 N DWZ TXT TIST ISE€IZS I
d T INOSZE I
i avay

NOILVOI'TATLTIAN XTYIVA MITdWYXH

I£000
12000
12000
I1000
1000
11000
T0000
19000
15000
11000
I0000
10000
T0000

0000

T

1700
€100
2100
TT00
0TO00
6000
8000
L000
9000
S000
11000
€000
2000

TO00

0000

0000000000+ 0000000000+ S9E0000000+ 0000000000+ 9000000000+ 0000000000+ 00ZTO00000+ 6000000000+

* TTINYXH 404 WYH¥DOud TIEIONNY DNILINSHY

NI 2I 91 €000k
I TI SI 2000%
TI 2I €I TOO0X
60001
80001
L0O00T
90001
50001
0001
£0001
¢000T

TT000T

 TIdNVXE 404 ATIYL HONIANOJSTYUOD

VYD
Ol
VHITY
€
cda
Tda
€Y

¢V

TV

12581
ITS8T
I048T
Ig808T
1,081
1908T
1508T
I708T
I€0QT
12081
17081
T008T

2100
TT00
0100
6000
8000
000
9000
5000
1000
£000
2000

T000

- 68 =

0000000000+
2000000000+
681TTS8TOCH
HENILNE 109+
6LTTEC006T+
961920099+
T6HTEC00ST+
SE2TIBNIT+
TQNTL200599+
9.LNT8200ST+
TLNT620209+
9911920009+
TOT2200ST+
091620269+
609TL20009+
2TSTONCT69+
LTST920009+
9€2T9200Me+

. TeaTE200aT+

924122004 T+
TEST220002+
Q€2 TO00000+

9feT
et
LT
€L
gott
agmt
o8t
SLYT
oLMT
oL
091t
ssft
00ST
Q08T
et
€TIST
et
6TST
2eat
1281
2€ST
5000

0000000000+
8LL8E00QTO+
BLMIQNCTaT+
€LNT0SgTO*
91TIE 20009+
SQNT920002+
081820099+
GLNTEC00S T+
0LNT620C e+
SONTEC006T+
091200808+
GSNTLLQTTC+
004TL200ST+
051200808+
T68TSECTOR+
£T4T200808+
T6QTLETTOR+
6TSTLNCTE9+
225TE2009T+
L2STO200ST+
CESTINCTSTH
TE€2TO00000+

oNet

Lott
2ot
offeT
LT
69MT
ont
64TT
naent
66T
nent
TOST
90ST
geet
qTST
LEeT
6€2T
€25t
82sT
€EST
1000

0000000000+
T6QTNECTOg+
LONTG200ST+
SONTBNCTaT+
T6QTEECTOQ+
MLNTLNSTST+
6911820002+
HONTL20099+
6SMTLLYTE9+
NSHT920009+
661TS200ST+
NENTLLYTEE+
TOSTOZ006T+
90STH200ST+
GE2TL200Me+
TTSTS2004T+
LE2TQ200 2+
T68TCECTOQ+
£2STE2006T+
828 TEZ009 T+
€€ST020099+
0£2T000000+

9fMet
eet
9sMT
ot
g€eet
E9NT
gafiT
£ant
86Nt
E6hT
88T
€81t
20ST
LOST
0TST
STST
gTaT
2cet
28T
6251
et
£000

*a3eyoed fzd U3TM pesn .mp oJ,

TO00000000+
ONTNETTE9+
OSHTILNCTST
TSHTS200ST+
9EeTECTTN+
€91T9200499+
gSMTLNCTaT+
€611.20002+
8611200808+
E6NTLLRTTCH
881TQ2004T+
£QMT620209+
2091920009+
LOSTQ2005T+
OTSTLNZT69+
STSTQ2004 T+
BTSTLNCT69+
2£214920002+
129 T020009+
62S9TOZ006T+
06LTNESTEG+
6200000000+

N TIINYXE Y04 WYYDOUd HOVNONVI INIHOVI

(%)

AIA
0sfT
S6MT
061t
LStT
2aft
L6HT
2601
LeNT
28Nt
LT
FARIN
€0ST
g0ST
TTsT
91T
RN
028T
qest
0€ST
6661
2000

(%)
0000200000+ Q2T 2200
0STI6NETS9+ 68HT T200
S6NTE2006T+ HQNT 0200
06NTT200ST+ 6LTT 6T00
LGTTT200ST+ 960T §TOO0
LE2TeSon+ T6NMT LTO0
L6TTR20099+ 98T 9100
2EMILNRTST+ TONT STOO
LGMTS200ST+ 9LNT NTOO
2ONTLLETCE+ TLNT €TO00
LLTIE2006T+ 99T 2T00
2LNTeoogog+ TONT TTOO
€OSTLLQTHR* 1OST OTOO
gOSTEZ006T+ 60ST 6000
TIST6202Me+ 2TIST 9000
9TSTE2006T+ LTIST LOGO
T68T9E2TOR+ 92T 9000
02STH200ST+ T2ST S000
G2STN20002+ 92ST 1000
0€STT20009+ TEST €000
912TO00000+ 0000 2000
6TO0000000+ TOO0 TOOO

- 66 =

APPENDIZX V.

-

FAR

—o—
.

This program is a modification of the Fortruncible and Runcible
programs to automatically compile from the Fortruncible imput to the
machine language running program without card output, All intermediate
results,as well as the compiler programs themselves, are stored in the
RAM 355 file. As a consequence of this automatic operation, the following

equipment is necessary in order to use this program:

1) Alphabetic Device with Special Characters, group II
2) Table Look-up on Equal (Code 63)

3) Indexing Registers

4) Immediate Access Storage (Core Storage)

5) Floating Decimal Hardware

6) 355 RAMAC File

These programs are stored in RAM addresses 4000 to 4200 and use RAM
addresses 0000 to 1100 for temporary storage., In addition, parts of
this program are designed to operate with the CASE Omnibus - Librarian
program which uses RAM addresses 9950 through 9999 and the special
KLIK card, and the PIP program which occupies RAM addresses 4200 to
4400, A card image of these programs is available for loading the RAM
file., A1l the rules for writing programs in Fortruncible and Runcible
will be assumed to be known and the following information is a brief
summary of the changes in the rules for operating and coding with FAR.
A special card (FAR) is used to start the program.

This program is an automatic Fortruncible to machine language
translator in one pess via a special Runcible program and PIP, The form
of the program is the same as the regular Fortruncible but no intermediate
cards are punched except for errors detected during compilation. The

program starts out in standard compiling mode until an error is detected.

- 67 =

At this point tﬁe program shifts into error sense mode until the end

of the phase is reached. This terminstes the program. Some special
features have been added to Fortruncible to fac;}itate the operation,
This program also requires a 650 with indexing registers, cores, ram
file, and special characters with a table look-up on equal. The automatic

floating point attachment is required only if compiling in Y mode.

I. HEADER CARD.

The use of a header card is optional., If a header card is
supplied then the number of I, Y, and C variables specified will be
assumed to be used by passed Runcible statements and any variables
assigned by Fortruncible will have larger subscripts than those
specified by the header card. Actually Fortruncible will start assigning
new variebles in the order in which they occur in the program starting

with the next larger subscript.

The maximum statement number designsted by the header card
will be checked against the zctual program and if it is too small it
will be corrected; however if the number specified is too large it will

be permitted to remain.

If the number of locations in the P package is specified then
it will be assumed to be correct; otherwise, if the number of locations
is zero, then the translator will assign the correct number depending
upon the operations used by the program. If any named extension is
spelled incorrectly or the function is not contained in any of the P

packages then an error will be indicated.

If no header card is supplied, then the transletor will supply
all of the sbove information automatically; however all ARRAY statements

must specify the number of locations required in storage.

- 68 -

II. SPECIAL STATEMENTS.

In order to facilitate the punching of the data cards before
compiling the program and to reduce the need for a correspondence table,
the following ststement type has besn added to Fortruncible language:

FLOATING NAME, NAME N_AME5 NAME, ... NAME .

1 4 4 n

where NAMEl through NAMEn are unscripted floating point name variables

which ere presemtly undefined. Then this statement will define these
variables in the order named assigning them to sequential Runcible C
variables starting with the next subscript in ascending order. This
ststement will not produce any output coding in machine language.
Another use for this statememt is to arrange certain variables in
sequential order for use by a PUNCH NAMEl THRU NAMEn statement. Any

name beginning with the lettérs FLOAT can not be used as the name of

a variable,

As an exsmple consider:
OOOOR FLOATING HOUSE DOG CAT

If no header card has been used or the number of C variables specified
by the header card is zero and if this is the first statement in the
program, then HOUSE will be assigned to Cl, DOG to CR, and CAT to c3,

A second type of statement that has been added to the language
is a matrix partition or redefinition statement. This statement has the

forms
ARRAY B(I,J) = A(K,L)

where array A has already been defined. Then array B of size I x J

will be defined to start with B(1,1) equal to the element A(K,L) in
array A. The array B should not have been previously defined. Also
the partition should make sense, but the arrays may be vectors as
well as matrices. A column vector may be defined; as part of a matrix

by the statement:
CVECTOR C(I) = A(K,L)

which defines the column vector C of length I to be equivalent to
the column L of matrix A with C(1) equal to A(K,L), i.e. starting

with element K in column L.

Consider the examples:

0006R ARRAY CAR(10,10) = HOUSE (6,6) .
0023R CVECTOR COLUMN(10) = HOUSE (1,3) .

In the first example,matrix CAR is defined to be of size 10 by 10
with CAR(1,1) equal to the element HOUSE(6,6) in the arrsay HOUSE,
In ihe second example, the column vector COLUMN is defined to be the
third column in the array HOUSE with COLUMN(1l) equal to the element
HOUSE(1,3) in the array HOUSE.

All integers should be defined by means of the INTEGER

statement ¢

INTEGER NAME, NAME

2 see NAmn

where NAMEl through NAI{En will be defiried as fixed point integers,

ITI, PASSING RUNCIBLE STATEMENTS.

Any number of Runcible statements may be passed through
Fortruncible by punching them in the standard Runcible format EXCEPT

- 70 =

that each statement should be ended with a period (.) in column 72
of the card instead of an F in column 70, Also a header card should
be included to allow space for the Runcible variables used by the

passed Runcible statements, if any,

IV, ENDING THE FPORTRUNCIBLE PROGRAM.

The Fortruncible program MUST be ended by a double period on
the last card. These periods should be punched in columns 71 and 72
in the last card of the last statement of the program.

V. ERRCR CARDS.

Any errors in the formation of the statements detected during
the running of the Fortruncible part of the translator will be punched
on cards which will display an error mumber slong with a portion of the
stat ement being translated. However, the operator should be cautioned
that only a few types of errors can be detected in the Fortruncible
pass, and all other errors will be indicated by the standard Runcible

error cards, The following errors will be detected in Fortruncible:

Type Meaning
1 Too many named extensions.
2 Operator symbol is not defined.
3 An improperly formed power of ten notation,
4 The first character in the statement is

a special character.

S Ummatched parentheses,
Too many floating point named variables
(> 48).
7 Too many fixed point named variables

(> 48).

10

1R
13
14
15
16
17
18
19

20

Rl

VI, STOPS.
9901
9991

9902
XX

-7] =

Too many named arrays (>30).

The array statement not properly formed.

The array redefiniyion statement not
properly formed.

Too many redefined arrays (> 10).

Improperly formed statement.

Too many different procedures (>'4).

Too many varisbles in a procedure declaration

(> 5).

An end of procedure without a procedure
declaration.

The execuﬁe statement does not sgree with
the procedure d efinition,

An improper matrix equation.

The I subscript exceeds two digits.

The space required by the arrays has not
been defined.

The translation has resulted in too long
a Runcible statement,

A named extension has been requested that

is not in any of the basic packages.

The Fortruncible statement is too long
(> five cards).

No comments card or improper correspondence
table.

Console set for multipass operation.

Console not set properly,

- 72 -

VII. OPERATING PROCEDURES,

The console should be set for B-mode (One pass mode) as
described in the Runcible mamual., The translator is loaded from the
RAM file by means of a FAR card. If the data address of 8000 is
1951, then arms O and 1 will be used by the translator., If it is
set to 1952, arms 1 and R will be used, and a setting of 1953 will
cause arms & and O to be used. Thus if one of the arms in the RAM
is inoperative, the console can be set so that the program will

still operate.

The ordering of the cards in the Fortruncible program is as
follows:
. FAR card
o HEADER card (If present)
» CORRESPONDENCE TABLE cards (If present)
« COMMENTS card (Must be present)
5. FORTRUNCIBLE or RUNCIBLE STATEMENTS
6. IAST STATEMENT (periods in cols. 71 and 72)
7. RUNCIBLE DATA cards (If needed)

[l ¥ B oS B

A. Machine language punchout,

Set the console to +70 1951 7777 read in the KLIK card.

B. Runcible statement punchout.

Set the console to +70 1951 6666 and read in the KLIK card,

C. Correspondence table punchout.

Set the console to +70 1951 5555 and read in the KLIK card.
A stop of 0999 indicates that the correspondence table is ready to be
punched out,

D. Rerunning the machine language program.

1. PIP card

- 73 -

2, Machine language program from A above
3. BLANK card
4, DATA cards (If necessary) :

- 74 -

APPENDIX VI,

ADDITIONS TO SOAP III —-- RUNCIBLE 533 PLUGBOARD to USE

FORTRUNCIBLE .

N.B. All numbering is from LEFT to RIGHT (except control information)

Read Side

Pch Side

Remove: Wire from Co Sel 3 pos 4 to Rd Cd C Col 4

Add
Add
Add

..

-
*

.
.

Remove:

Remove

Add

>
»

Wire from Co Sel 3 pos 4 to Rd Col Split # 3 common
Wire from Rd Col Split (0 - 9) to Rd €d C Col 4
Wire from Rd Col Split (11 - 12) to Rd Cd C Col 5.

All wires to Cols 1——10 of Pch Card A.

Wire from Punch Delay # 1 out to Punch Delay # 2 in.

A1l the following wires:

From Wd 7 Pos 7 Storage Exit A to Cosel 1 Pos 1 Normal

From Wd 7 Pos 8 Storage Exit A to Cosel 1 Pos 2 Normal

From Wd 7 Pos 9 Storage Exit A to Cosel 1 Pos 3 Normal

From Wd 7 Pos 10 Storage Exit A to Cosel 1 Pos 4 Normal

From Punch Col Split # 9 Common to Cosel 1 Pos 5 Normal

From Punch Col Split #9 (0 - 9) to Emitted 9 timed to
punch

From Punch Col Split # 9 (11 - 12) to Emitted 1R timed
to punch

From Cosel 1 Pos 1 Common to Cosel & Pos 1 Transfer

From Cosel 1 Pos 2 Common to Cosel 2 Pos 2 Transfer

From Cosel 1 Pos 3 Common to Cosel 2 Pos 3 Transfer

From Cosel 1 Pos 4 Common to Cosel 2 Pos 4 Transfer

From Cosel 1 Pos 5 Common to Cosel 2 Pos 5 Transfer

- 75 =

From Cosel 2 Pos 1 Common to Pch Card A Col 1l

From Cosel 2 Pos 2 Common to Pch Card A Col 2

From Cosel 2 Pos 3 Common to Pch Card A Col 3

From Cosel 2 Pos 4 Common to Pch Card A Col 4

From Cosel 2 Pos 5 Common to Pch Card A Col &

From Cosel 2 Pos 1 Normal to Pch Col Split #1

From Cosel 2 Pos 2 Normal to Emitted Zero Timed to Pch
From Cosel 2 Pos 3 Normal to Emitted Zero Timed to Pch
From Cosel 2 Pos 4 Normal to Emitted Zero Timed to Pch
From Cosel 2 Pos 5 Normal to Emitted Zero Timed to Pch
From Cosel 9 Pos 1 Common to Pch Card A Col 6 and 8 and 9
From Cosel 9 Pos 2 Common to Pch Card A Col 7

"From Cosel 9 Pos 3 Common to Pch Card A Col 10

From Cosel 9 Pos 1 Normal to Emitted Zero Timed to Pch
From Cosel 9 Pos 2 Normal to Emitted 8 Timed to Pch
From Cosel 9 Pos 3 Normal to Pch Col. Split # 1 Common

From Control Information* to Cosel Pick 2 and 9
From Control Information® 9 to Cosel Pick 1
From Cosel Hold 1 and 2 and 9 to Pch Hold

3*

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif
	p 0039.tif
	p 0040.tif
	p 0041.tif
	p 0042.tif
	p 0043.tif
	p 0044.tif
	p 0045.tif
	p 0046.tif
	p 0047.tif
	p 0048.tif
	p 0049.tif
	p 0050.tif
	p 0051.tif
	p 0052.tif
	p 0053.tif
	p 0054.tif
	p 0055.tif
	p 0056.tif
	p 0057.tif
	p 0058.tif
	p 0059.tif
	p 0060.tif
	p 0061.tif
	p 0062.tif
	p 0063.tif
	p 0064.tif
	p 0065.tif
	p 0066.tif
	p 0067.tif
	p 0068.tif
	p 0069.tif
	p 0070.tif
	p 0071.tif
	p 0072.tif
	p 0073.tif
	p 0074.tif
	p 0075.tif
	p 0076.tif
	p 0077.tif
	p 0078.tif
	p 0079.tif

