Table of Contents

Tntroduction « « « o ¢ o« o o o o o o « « o o

1. Description of a program-directed computer .

1.1
1.2
1.5
1.4
1.5
1.6
1.7

2. The
2.1
2.2
2.3
2.k
2.5

Number system, number storage . . .

Instructions . ¢ « ¢ ¢ ¢ o o o o o @

The organization of the arithmetic unit

Input and output; the number Q . . .
The conditional instructions
The arithmetic of instructions . . .

Constants in the program

Calculation of machine code

Representation of a parenthesized expression

The principle of code generation . .
Development of a reduction step . . .
Operations with only one operand . .

Application to differential equations

3. Application to iterative problems

.

.

.

.

.

3.1 The extension of iterative programs e .

5.2 Representation of running indices e e e . .

3.3 Calculation of machine code for an iterative problem

3.4 Piecewise extension of iterative programs . . .

3.5 An application of a special nature e .

3.6 Variable index 1imits . « « ¢ ¢ « v ¢ ¢« v o 0 0 o . .
4. Compilation of an iterative program . . . e

Appendix: Structure diagrams 1-3

Bibliography « o « o o o o o o o o & o s 0 e .

O o ~N &= = N W

=
|

12
12
16
17
25
25

27
27
28
3k
36
59
Lo

)

k9
53

Introduction

For the numerical treatment of a mathematical problem on program-
directed digital computers, the machine code, that is, the collection of
commands for the execution of the individual calculation steps, must
either be fed to the machine through a punched tape, or else already be
available in core memory.

It is known that machine code generation, that is, the determination
of such machine code for a particular problem, is often a considerable
task, and in extreme cases a significant part of the whole expenditure
can fall to the preparation task. Thus tools have been constructed for
the simplification of code generation, such as the "Coding Machine" for
the Mark IIT (See [1] l‘/). K. Zuse made far-reaching beginnings in the
automation of code generation in his "Allgemeinen Plankalkiil" (General
code-calculator) [7], which, however, also required the construction of
special hardware.

On the other hand, the author of this work acquired the conviction
long ago that it must be possible, owing to their versatility, to
utilize program-directed computers themselves as code generators. This
would therefore mean that one would not only solve numerical problems
with these calculating machines, but also 'talculate" machine code.

Although the methods to be described could also be implemented on
already existing machines, it is advantageous for the formalization of
the procedure to use as a basis for our discussion the following account
of a particular, although only projected machine, whose mathematical

characteristics, as required in the following, are given in 81.

l/ Square brackets refer to the Bibliography.

1

The concepts and conventions used in this work will not particularly
be explained further; rather, reference should be made to previously
published literature, in particular [4] and [5].

Finally, it should be mentioned that the author presented certain
parts of this work at the GaMM Conference in Freiburg in Breisgau (see

also [9]).

1. Brief Description of a Program-directed Computer 2/

1.1 Number system, number storage

The representation of numbers in the decimal system in scientific
notation is provided for: x = a><lOb . The exponent b can vary
between -31 and +31. The factor a , which satisfies the additional
condition |a| <10 , has 9 decimal places after the decimal point; the
single digits are dual encoded (after Aiken é/). Thus a number requires
L8 bits altogether for its representation, namely one for the sign, 4o for
the factor a , 6 for the exponent b and one more for a special sign
(see §l.h)f

Tt should be stressed here that |a| can also be smaller than 1,
for in this work, as in BARK [8], no normalizationE/ follows subtraction;
instead, normalization occurs immediately before multiplication and
division. This fact makes it possible among other things to determine
the nearest integer to a given number x through the addition of
0.000 000 000 x 107 .

To receive intermediate results, a memory with 1000 memory cells
(numbered from O to 999) is provided. In reference to this memory,

several abbreviations will be used, namely:

g75[‘his description is drawn from a project which is currently being
completed at the Institute for Applied Mathematics of the ETH under
the direction of Dr. E. Stiefel.

3/ The digit =z is represented by the dual-number 3+z+3 x sgn(z-%.5)
(see also [1], [4]).

By normalization, as in most other machines of this type, we mean the
customary decimal point alignment of a and a corresponding reduction
of b sothat 1< |a] <10 .

(n) for the number in memory cell n
<x> for the address of the number x , that is, for the
number of the cell in which x is stored

X -n for: '"Store the number x in the cell n ."

1.2 Instructions

The planned machine is a one-address machine; every command is

represented by a 6-place number, whose digits have the following

meaning:
23168
L—N—BJK——N\Z
‘ lThe address of the number upon which the operation
should be performed.
| Index digit (see §1.6).
K¥ | Operation code; these determine the operation to

| be executed (see §1.3).

The instructions are stored in the machine in a special instruction
memory with 1000 memory cells which can store 2000 one-address instructions
(2 instructions per cell). The instructions are executed in the order
in which they are stored; only through the so-called jump instruction

(see §1.5) is the normal execution sequence interrupted.

1.5 The organization of the arithmetic unit

When the machine is stopped or between 2 arithmetic operations

a number is always in the so-called operand register Op which can later

be used, according to circumstances, as an augend, minuend, multiplicand,
or dividend.é/

For the execution of an arithmetic operation, the second operand
is transferred from the memory to the arithmetic unit by the corresponding
command and the designated operation immediately executed. The result
itself goes again to Op, from where it can be stored into memory anytime;
it so doing however, Op is not obliterated. A special command An serves
to insert a new first operand in Op and destroy the old contents (see the
table on the following page). Through this organization we especially
avoid the necessity of making one of the two factors of a multiplication

available through a special command.

Storage Unit

1lst operand Result 2nd operand
lst
v
operandf™ Arithmetic
Op Unit
Result

Figure 1: Schematic representation of the arithmetic unit

é/ This kind of organization can be found essentially in calculating
machine ZIt by K. Zuse, but otherwise does not appear to be too common.

List of the arithmetic and memory commands

Notation

of the Effect of the Time
operation Opcode Address operation in ms
'void op' 00 irrelevant iTo)
A o1 n (n) - Op L0

+ 02 n (Op)+(n) - Op Lo

- 03 n (Op)-(n) - Op 4o

X 06 n (0p)x(n) - Op 160

/ o7 n (0p)/ () 560
Maj 08 n Max[(0p), (n)] - Op 40
Min 09 n Min[(0Op), (n)] - Op Lo
Segn 10 irrelevant Sgn(Op) - Op 4o
|| 11 irrelevant |(0p)| - Op Lo

-1 12 irrelevamt -(0p) — Op 40

N 19 irrelevant (Op) is normalized 4o

S 20 n (Op) - n 4o

1.4 Input and output; the number @

The insertion of the initial values of a problem in the machine
results from a punched tape, which is hand-punched beforehand. On this
punched tape the numbers to be inserted are connected together according
to mathematical principles by grouping (so-called blocks). The individual
blocks can be of arbitrary and mixed lengths. The end of such a block,
and with it the automatic beginning of the next, is characterized by a
special symbol Q , which is also considered a number and is stored with
the data in the machine. One such Q stands at the beginning of the
punched tape; furthermore one denotes the end itself appropriately by
two or more successive Q's . Thus, a number tape appears somewhat

like the following:

Qeveeeeeeee@erennnQnn. N QQ

1st block 2nd block last block

This number Q can be stored and one can also calculate with it:
The result of any operation is exactly @Q when at least one of the
operands is Q . One distinguishes Q <from the other numbers by the
48-th bit, which in all normal numbers is zero and in § is 1 .

If a computer tape is placed in one of the read stations of the
computer, the tape runs automatically up to the next @ , so that the
following number is ready to be read; the first Q does not go into the
machine. The actual reading of the number and transmission itself into
the arithmetic unit results from an appropriate command, which we won't need

in the following.

One also inserts the machine language program on a punched tape
into the machine (so-called instruction tape) before beginning execution;
in this case the machine always reads 2 instructions together to fill
one program memory cell.

Tt is the goal of this work, as already mentioned, to use the machine
to calculate machine code; for this it is useful to punch the calculated

instructions at once. To do this is a special command:

IB : Punch from the number a)(lob in Op, without regard to the

exponent, the last 6 digits in a .

For further instructions for input and output of numbers, instructions
to punch all L8 bits of a number, to accept numbers from a keyboard, and
to print results with a printer connected to the computer are naturally

provided.

1.5 The conditional instructions

Because a one-address instruction requires only 6 digits, one can
store 2 instructions in every memory cell. TFor the address of an instruction,
we simply designate its cell number in the instruction memory and then
distinguish the two instructions in the same cell n as instruction =n,0
and n,5 (left and right instruction).

As previously mentioned, the instructions are normally taken for
execution in the order in which they are stored, e.g. 105,0 - 105,5 -

106,0 - 106,5 - etc. Certain instructions -- the so-called jump instructions --

cause a disruption of the normal sequence:

Notation
of the
operation

C

Ce

ca

Co

Operation=-
code

55

56

37

38

Address

Effect of the instruction

Unconditional jump: Perform
for the next instruction the
instruction n,0 , without

destroying Op.

Conditional jump: Handle as
for C if (Op) is positive,
otherwise proceed as usual to

the next instruction.

Handle as for C if
(0Op) = Q , otherwise proceed

as usual to the next instruction.

Handle as for C if
(0p) = O , otherwise proceed

as usual to the next instruction.

The instruction n,0 which is first executed after a jump is called

the target instruction of the jump; after jumping the instructions should

be executed in the normal sequence again until the next jump instruction.

1.6 The arithmetic of instructions

Besides the 1000 memory cells for numbers and instructions, the

machine possesses another 9 registers for storing three-digit unsigned

integers, namely the so-called index registers IR, (k.= Lyeoas9)

These index registers have the following function: When the index digit

in an instruction equals

k,

k # 0 , the contents of index register k

are added to the address of the instruction, modulo 1000, before the
instruction is executed.é/ For example, if IRM contains the number
993, then the instruction 01 4 586 does not load Op from cell 586 ,
but from cell 579 (= 586+ 993 mod 1000) .

To load an index register a special instruction is used:

ST, (= 21 0 00k) (k = 1,2,...,9) »

causing the last 3 digits of a in the number a><lOb stored in Op

to be transferred into index register k . Through a preceding addition
of 109 one can cause the storage of just the ones-, tens-, and
hundreds-digits from (Op) into IRk ; moreover, negative numbers appear
in so-called tens-complement representation.

The index registers therefore make it possible to summon a cell
from memory whose address was previously calculated by the machine
itself. One can also insert the index digit in a jump instruction,
i.e., 35 L 586 . The target instruction of this jump is then not
586,0 but 586,04-(IRA) .

Tn addition, the following instruction is used in conjunction with

the index registers:
BZ k (=22 0 00k) (k = 1,2,...,9) .

With this instruction the current setting of the so-called sequence

counter -- i.e., the address of the current instruction +1 -- is stored

§7VSuch an arrangement was previously proposed by T. Kilburn [2]
(so-called "B-Tube"). In comparison, in other projects, in particular
the Mark TII, the contents of an index register is not added to the
address of an instruction, but only inserted in its place. The
additive effect of the index registers produces important advantages.

10

in index register k , without chainging Op. One uses this instruction
when one wants to jump at a place in a program (which is not a priori
known) to a subroutine and later wants to return to the same place to

continue execution.

1.7 Constants in the program

Tt is often convenient to introduce integers into the computation
(especially addresses) with the hlep of the following instruction,

instead of storing them before the beginning of execution:

7 n : Clear the register Op and insert the three-digit

number n .

TIf the index digit in this instruction is different from O , and equals k ,
then the number n*—(IRk) will be transferred to Op accordingly.

In particular, this can serve to load a number from an index register.

11

2. The Calculation of Machine Code

We are dealing with calculating the machine code corresponding to

a given formula (parenthesized expression) such as

(A, (A2+A)] - (AlXAngB)#B 17/ (2.1)

1 5

2.1 Representation of a parenthesized expression

It is clear that one must make a few statements about the nature
of parenthesized expressions so that the machine can calculate the
desired machine code. For this purpose one expresses the parenthesized
expression in numerical form:

To illustrate, we examine the above-mentioned example (2.1); this
expression contains as "elements'" parentheses, operators, operands,
and a result; the latter will henceforth likewise be classified as an
operand. We denote these elements, without regard to the special nature
of the sequence, by El’EE""’EN , and precede the entire formula with

a blank element Eo . Specifically in our example:

=], B, =A E B

5= Ay s veus E

We must, of course, make several assumptions about the parenthesized
expression: First, it must be mathematically meaningful, in that, for

example, two operators may not immediately be adjacent to each other. 1In

i The sumbol == (so-called "replacement'"-symbol) should signify, as in
the proposal by K. Zuse, not that a conditional equation exists, but
that the result calculated from the quantities on the left should be
characterized by B . Accordingly, in x = p , the replacement symbol
means that p should take on the value x .

12

addition, expressions like abtc always should be written as (axb)+c .§/
Tt is permissible however to combine more than 2 operands in one set of
parentheses when the connecting operators are either entirely multiplication
or then exclusively addition and subtraction. The machine naturally
executes such complex phrases in single steps, e.g. (atb-ct+d) as
([(a+b)-c]+d) .

In converting ("arithmetizing") a parenthesized expression, each
of its elements E,_ has two numbers a,_ and b associated with it.

k k k

To start, the a 's are defined as follows:

k
a, = 0 \W
a) = ak_l+-l , if Ek is a left parenthesis or an operand
(2.2)
a, = ak_l-l , Aif Ek is a right parenthesis or an operator
aN+l is the Q~-symbol and denotes the end of a parenthesized
expression /)

The bk's are determined as follows:

For k = 0 or for a left parenthesis, bk = 010000 , which is the

machine code for the instruction to "Read from the cell O M

For the replacement symbol or for a right parenthesis, bk = 200000

which is the instruction S O .

It Ek is an operator, bk is the instruction for the execution

of this operation upon the number which is in cell O, e.g.:

bk = 020000 for addition, = 030000 for subtraction,

= 060000 for multiplication, and = 070000 for division.

Finally, if E,_ 1s an operand, D is its address.

k k

§7 This prerequisite can be eliminated, as C. Bohm shows (Diss. ETH,
sti1l unpublished) .

15

For the given example (2.1), the following diagram shows the sequence

of the numbers a and. bk , with a graphic representation of a,

-

- e @ - . — 4

S S SUR EERTERSE

<

N

Ql

l

3

-

]

o

--f--- 00T

--= 000002
000002
--- ¢ol
--- 000090
--= 20.L
-== 000090
--- TOL
=== 0000TO
0000£0
000002
000002
¢ol
--- 000020
--- 20L
-=-=- 0000TO
0000.L0
--- TOL
0000TO
--- 0000TO

- o 4 O - @

o 1 N 4 MmN Ao A A

Figure 2

...,100 ,

TO00+k,

A.,...,B are stored in cells

1

Tt is assumed that the numbers

From the graphic representation, one recognizes immediately

respectively.

that the peaks correspond to the operands of the expression, and the

valleys to the operators, while the parentheses are on the "slopes".

But it also shows that it suffices to introduce only the series of

since from these the machine can calculate the

into the machine,

1
bk s

itself, according to

a, 's
k

=0

a

(o]

(2.3)

kd+%mBmme (k:L”qm_}

= a

Gy

1k

In the process of course b, < 15000 for an operand (addresses are always

k
less than 1000), as for a left parenthesis while for right parentheses
and operators bk > 15000 .

With help from the two number sequences ay and bk , which
completely characterize a parenthesized expression, the machine can

automatically solve the following problems:

(a) Numerical interpretation of a formula, by which the numbers to
be inserted as operands are determined by their addresses. To
this end, the expression is transformed step by step from the
inside out to a single number by execution of the respective
operations commanded at any given time.

(b) The formula should not be numerically interpreted; instead the
machine code for the numerical evluation itself should be

calculated.

Although these two problems are fundamentally different, the
solutions to them utilize nearly the same methods. But we want to
direct our attention toward problem (b), for this has great implications
for the planned machine. The necessary calculation for the interpretation
of a parenthesized expression or the respective generation of its
machine-code program is very extensive, in many cases much longer than
the evaluation of the solution itself with help from the finished machine
code. It is therefore unsuitable to interpret the same parenthetical
gxpression with the help of the sequences ay and bk , for example
100 times, instead of first generating the machine code which would then
be used 100 times. Only in wvery fast electronic calculating machines

could the calculating expense for problem (a) be tolerable.

15

o

2.2 The principle of code generation

For a given parenthesized expression K , one must first manually
punch the bk values in the correct sequence into a punched tape,
for which a preparation device would be useful. For our purpose it
would have a keyboard which, besides operators and addresses, also has
parentheses and replacement operators. If several such expressions are
present, one separates them with Q symbols. In the terminology of
§1.h, every parenthesized expression represents one block on the tape.

The actual calculation of the machine code begins with the
insertion of the b, values successively in the machine, which can

k

easily calculate the associated a, values by (2.5) and, with the b, 's ,

k

store them in the following order:

aoboalbl,...,aNbNQ .

These values are called the image of the expression. Then the altitude
H of the expression, that is, the maximum of the ak’s , calculated by

the following recursion formula:

h
o]

1t
(@]

(for k =1,...,N) (2.4)

[
=
]
=3

hk =

Then H = hN .

o/ In further developments of this work, references are often made to
single boxes of the structure diagrams 1-3 to be found at the end
of the work, and one may find:

Box 101 - 122 in structure diagram 1
Box 201 - 214 in structure diagram 2
Box 301 - 315 in structure diagram 3 .

16

Next the expression, described by the values ay > bk , is finally
decomposed by many reduction steps to be described shortly, while at
the same time the desired instruction sequence is built and immediately
punched. The generated punched tape is directly usable as an
instruction tape.

We denote the original input expression by Kl , and its state
after p-1 reduction steps by K? . Accordingly, one denotes the
elements of K? by Eﬁ , its image by aﬁ) bi (k = O,l,...,NP) and

its altitude by Hp .

2.3 Development of a reduction step

We start out with the parenthesized expression KP , generated from
the original XK by p-1 reduction steps. Because the reduction must
begin with the innermost parentheses, the p-th reduction step consists

of geeking out these parentheses with the use of the aﬁ values and

then manipulating them. Namely, one recognizes the operands most deeply

Y

nested in parentheses because for them ay reaches the maximum value Hp

Because as a rule aﬁ = Hp for several operands, one first searches
left to right among them for the one with the smallest k :

In the preceding reduction step, ?p-l should be a specific index

value with the condition that a£ <Hp for k < ip-l . Then beginning
with k = ip-l one determines the smallest number k such that

ai = HP (see box 107 in structure diagram 1); this index we call ip

Therefore:

7

o <in for k < ip
ak (2‘5)
=H for k =1
i p

Tt can occur that there exists no such index value ip ; that is, for

all k Dbetween i and Np 5 aﬁ <Hp . In this case, one

p-1
decrements Hb by 1 and searches further for ip beginning with
k = 0 (box 105, 106).

EE then is necessarily an operand, as a glance at formula (2.2)

b
and Figure 2 immediately shows. Furthermore, as a rule EE is also
pte
and operand and EE the operator between. In general, m operandsgg/
ptl
E? (b = 0y...,m-1) and m-1 operators Eg (b = 1,2,...,m=1)
prep prep-1

are in the same set of parentheses, and the task is to determine the
sequence of these operations, including the associated storage of
intermediate results denoted by Rp . The instruction sequence for a

one-address machine of the form described in §1 reads:

Operation Operand
1st instruction A E?
b
2nd instruction E? E?
ptl pte
m-th instruction E? EP
p+Hom-3 ptom-2
m+1lst instruction S Rp .

According to the conventions of §2.1, the address of the operand for

the k-th instruction (k = 2,...,m) is b? , and the operation
p+2k-2

£9/ m can easily be determined by the machine as the smallest positive

number such that & <H, (see box 110).
1p+2m

18

code (followed by 4 zeros) for the operation EE is bg
p+2k-3 ptek-3

Therefore one receives the numerical form of this instruction simply

through the addition of the two numbers b, and b, .
Tp+ok-3 Tptok-2

This rule also holds for k = 1 , since the element EE must be
p-1

either a left parenthesis or the empty element EO , and thus the

number b? just represents the instruction to read from the cell O .
p-1

For the address of an intermediate result Rp which will appear
again as an operand in further processing of the reduction, one can set
up an index (we choose 1000-p), assuming that the cell in question is
indeed free during the calculation. Accordingly, one obtains the
desired instruction sequence for combining the m operands in the same

set of parentheses as follows:

1st instruction: o + bP
i i
p-1 P
2nd instruction: b? + b?
ptl pt2
m-th instruction: bg + b?
ptem-5 ptlm-2
m+lst instruction: 201000 - p .

A1l that remains is to punch this number in the instruction tape
(box 111), for which the instruction IB is used (see §1.4).
Furthermore, the p-th reduction step consists of the replacement

of these m operands, the two parentheses, and the m-1 operators,

19

altogether ©2mt+l elements Eﬁ (namely k = ip—l through k = ip+2m-l) ,
by the result Rp (see Figure 3). Moreover, 2m places become free in

this manner; the succeeding elements are moved up 2m places into them

Before l H

After

(box 116-119). Thus, the new parenthesized expression K§+l is defined
as follows:
oy for k <i -1
k b
A for k =i -1 1/
k b b
D PR
Ek%Em for k lp’lp l,...,Np
N =N _-2m
prl P
fper = p

l—:I:/The machine determines the index N not through numbering, but
always as the smallest positive number such that aN =Q .

The instruction CQ serves this purpose. prl

20

Appropriate changes yield the image . and bk . Only for the new
operand RP , thus for k = ip-l , must one define ap+l and b£+l :

k
EP was a left parenthesis, ai

Because R_ 1s an operand while
P i
p-1 p-1

(using 2.2) remains unchanged, as Figure 5 also shows. On the other
hand, the new b-values for this position must be hhe same as the address

of R, 1000-p . Finally, one sets §§+l =Q , that is, the Q at
b prl

the end must also be moved up 2m places.
Figure 4 illustrates the stepwise analysis of the parenthesized
expression (2.1) given as an example, and to the right the simultaneous

construction of the instruction sequence.

21

Decomposition of the parenthesized expression

NN

K, : [Al (A2+A5)]-(A1><A2><A5)=>:B
—
By
lst reduction: Hl =3, i, = 5, m=2 ; Rl = AlfAQ
K: [A__L:Rl] -(Aleng5)=>cB
Ry
2nd reduction: H2 =2, i, = 2, m=2 ; R2 = A1:Rl
K5: R, - (Al xAzxA3)=> B
J
i
R
3
3rd reduction: H5 =2, 15 =Lk ,m=3; R5 = lengB
. - ==
Kh' R2 R5 B

4th reduction: Hy=1,1 =1,mn-= 33 B = RQ—R5 (Halt)

22

Composition
of the
instruction
sequence

A 702
+ 703
S 999

A 701
999
S 998

A 701
x 702
x 702
S 997

A 998

S 100
End

2.4 Operations with only one operand

The calculation of the machine code with the help of the image
essentially depends upon the fact that every arithmetic operation always
joins its two surrounding operands. But when operations with only one
operand appear, such as |x| or /X , but also sin x or " , special

provisions must be made. We make the following case distinctions:
(a) Operations with one operand which are executed by the machine
through a single command (e.g. |x|) :

As seen by the machine, these operators follow after the operands,

and a typical example reads:

A a

+ b
For |a+b—cl = d - c

=]

s d

(v) Operations which are not built into the machine and therefore must

be execubted with the help of a subroutine::

The instruction sequence for a simple example, namely sin(atbx) = y ,

consists of the following:

A X

X b Calculation of the argument

+ a

BZ L Storage of l+program counter in IR
C sin Jump to the sin subroutine

“m } Fmpty instructions

S Yy Storage of the result.

25

With this arrangement, care must be taken in the sin subroutine
because the argument from the main routine still remains in Op
(BZ does not change Op). In the same manner, the function value
calculated in the subroutine must be placed in Op prior to returning
to the main routine, because further calculations require this result.
For this purpose, it is assumed that Op is not changed by the jump
instruction.

Because the instruction <BZ>+2 should be executed after the
subroutine and the number <BZ>1 1is in IRA on account of the
BZ-instruction, the correct return to the main routine is produced
through the instruction C L4 001 placed at the end of the subroutine
(both of the empty instructions are connected with the fact that only
a left instruction in a memory cell can be a target instruction) .

In both cases (a) and (b) we have, immediately before the store
command (which corresponds to a right parenthesis or an equals sign),
another operator which is succeeded by no other operands. This obviously
upsets the arrangement of the number sequence ay and bk . To remedy
the situation, one constructs a false operand with the address O
immediately after this operation, as if the operation would be carried
out on this operand. Moreover in case (b), when the operation is executed
through a subroutine, one must still insert the BZ instruction and both
empty instructions. The machine recognizes case (b) by the bk value,
which is > 350000 for such an operator (see box 121). In summary,
the following rules apply to the determination of the image for operations

with only one operand:

oL

The operand, that is, the expression to which the operation
is to be applied, is enclosed with the operator in a set of
parentheses; the operator and the empty operand come at the end.

For the operator, bk is initialized as an image value
with: the operation code with four zeros for case (a), or with

the instruction calling the subroutine under consideration for

case (b).

Through the application of these rules, the meaning of the ak's and
the calculation of the machine code according to §2.2 and § 2.3 is

unchanged.

2.5 Application to differential equations

The machine code for numerical integration of ordinary differential
equations fal%s in two parts, namely a permanent routine, which is >(
determined by the integration method applied, and an individual routine
which depends only upon the differential equation involved. One is
accustomed to producing the latter from case to case and inserting it
into the permanent routine.;g/

But now one can also consider a differential equation as a
parenthesized expression and let the machine canpile the machine code
belonging to it and insert it into the permanent routine. As was shown

in §2.4, this means that the occurrence of elementary transcendental

functions in a differential equation also gives no difficulty. Even

;2/ How one inserts such subroutines into a main routine is described
in detail in [3] (Part II, Vol. III) and in [6].

25

though no great saving of time occurs with simply-constructed
differential equations, one nevertheless eliminates a source of error
through the exclusion of manual code generation. With respect to
the considerable loss of time which errors in the machine code cause,

automatic code generation has considerable significance.

26

3. Application to Iterative Problems

3.1 The extension of iterative programs

The methods in §2 apply themselves only to problems of a linear
nature which play only a subordinate role in applied mathematics. The
methods should therefore be modified so that they may also be applied
to iterative problems.

Therein occur two different problem situations, in so far as for
an iterative calculation one can set up either a cyclic program or
through the explicit enumeration of all the operations a correspondingly
longer linear program. (This transition to the linear machine code
we call 'the extension of an iteration program".) The linear (extended)
program is of course much longer than the iterative and is fixed with
regard to the running indices, but it solves the given problem
significantly faster, because in the iterative routine extra operations
are added to the essential arithmetic operations for the control of the
loop termination. Of course, the disadvantages of the iterative program
are of all the less importance the greater the calculating expenditure
per value of the running index.

For complex iterative problems, one may expand at least the inner-
most loops with profit while leaving the iterative nature of the
superposed loops unchanged. Using the machine described in §1, this
speed-up technique would reduce the calculation time for a matrix
multiplication by MO% from the original amount. In summary, we shall

therefore stipulate:

27

When, owing to the flexibility of the machine, it is possible to
produce such compressed programs as in the given example of matrix
multiplication in [4], §4.7, this compression is always made at the
cost of execution speed, and even a doubling of the execution time does
not appear to be unusual. It is therefore recommended -- particularly
with a machine which is not very fast -- not to carry the flexibility
of the machine to extremes, but rather to take longer programs into the
bargain and to simplify the structure. But in order not to have to
manually punch the extended programs, which can become very long, one

can, as should be clear in the following, let the machine calculate them.

3.2 Representation of running indices

When running indices occur with a single operand in a parenthesized
expression, it means that the numerical evaluation is carried out
repeatedly (namely once for each value combination of the indices) such
that the addresses of the operands in question are to change in a
definite pattern with every iteration.

If we want to automatically compile such a program, we must
communicate to the machine in which way the address of an operand
u3132‘°'5n depends upon the indices Lyslorerealy - The following
suggestion of course restricts itself to such cases where this dependency

is linear:

n
u >=Db+) I . (3.1)
Lytplze sy o=1 PP

28

Then one not only attaches 2 image values a and b to the operand u ,

31,1071 .,107°001

T s L

but also the so-called index image values 10° 12

which determine the dependency of the address upon the indices. When,

3

for example, the four image values 3(=a) , 59(=b) , 2x10 ~ and
-50;(10-9 belong to an element E , this means that the address of E

depends upon 2 indices and 3 :

¢1

<E> = 52+ 22,1 - 502,5

The image values belonging to an element E are stored one after
another in the sequence a,b,lO_BIl,lO_612,... etc., but for which
; ; 13/
one generally omits an unused index value to conserve memory.
The last index value is followed by the a-value of the next element
in the expression.
Finally it must be specified through which values the indices

must run. In a problem which is composed of several formulas, this

appears somewhat as follows (dealing with matrix multiplication):

lé/ One can do this, because the clear relation of the index image values

to the different indices is already guaranteed through the factor lO_Bp.

29

1(1)n: 14/ \\

For i =
For k = 1(1)n:
0 =h
o

For j = 1(1)n:

By y+(agsxby) 3= > (3.2)

End index J

=
by Cix

End index k

Fnd index 1

Halt

J

Besides the actual parenthesized expression, one must clearly also
numerically encode the directions "For i = ..." and "End index i".
But first we want to clarify the meaning of these directions on the

basis of the structure of the probleméi/: With the statement

"For i = 1(1)n" a new index 1 begins to run; consequently this

statement corresponds to the point B in Figure 5, and the statement

1/ In the text in §3 and §4, as well as in structure diagram Figure 7,
the convenient 1i,j,k replace the indices Lyrtprty for simpli-

fication of notation. But one must avoid confusion with the

index i employed for the numeration of the elements of an
expression in the text §2, as well as in structure diagram 1, 2, 3,
Figure 6 and Figure 8.

}2/ See Figure 5; a detailed structure diagram follows in Figure 7.

30

¢

squtod STY1 9B $9OTPUT SUTUUNI JO ISQUNU SUJ SOUTWISISP UYOTUM § JoqUMU ®B

(weaBeTp oINFONIYS dUF JO qutod A1oa® ‘ST 9BYJ) UOTEBINOTBO 9U3 JO jutod

Arons 07 USTSS®B OM * S TOAST XOPUT UBR SULJSOD oM SUTMOTTOF 9U3 JO4
- L pue
3 squtod sya xoJ pITeA oJe sordoTeuy - [Xopul puy, UdweR3BIS UL
0q spuodsaxzoo 3 aqurtod ayq 3BYJ ‘oI0I9IdYZ ‘995 oM ° 93 quouBes 09

sguoTeq UoTUM ¢ Aty == uq BTAWIOF 973 01 spesdoad UOTGBTNOTBO oYl PuB
soatdxs [xopul oya ‘s0k JT ¢ T £g [JO UOTHBIUSWOIOUT SNOSUBYTNWILS
e yatm Q aqutod o3 yoeq sduml suo ‘qou FI SnTBA PUS S3T POYIESI

sey [XOpul oylq JI9UldUYM Po93893 ST 4T 3 qutod qe ¢ 3Q UT S9OTput
SUTUUNI ¢ DABY USYJ 9M ° Q4 JUaUESs 03 SBUOTS(SI0J2I9U3 PUB ¥ PuUB T
YoBe JOJ POUBNTRAS 90 0% ST SSOTOURISAOU ¢S9OTPUT SUTUUNI OU SUTBFUOD
2ans oqg 09 UYOTUM ¢ oq == 0 ®BTNWIOZ 9y ang - olb JI0 do TRAJISQUL 9U3
uT poutolpr oq prnom -- ordwexs JNO UL SUOU dJ® 8J9UY3 -- 29uo ATuo

poqgenTBAS 8q 04 oJ® UYoTum sernmrog - 4 qurtod ayz o3 LU(T)T = 3 J0d,

G 2anITq

N

3 > Q
e
P > L

This same s we also assign to the index just initialized and call s

its level. 1In our example, i has level 1, J level 3 , and

k level 2 .

The matrix multiplication is completely described by the formula

3.2, in that this formula uniquely determines the structure diagram,

as indicated to the left of (3.2). It is enough, therefore, to

numerically encode the description (3.2) of the problem, taking into

consideration the following rules:

(1)

(2)

(%)

After every parenthesized expression (the encoding itself has
already been explained) is a Q-symbol.

A statement "For vy = u(v)w" is encoded with 5 numbers, after
which follows a Q-symbol to separate the exression from succeeding
expressions or other statements. "For" is represented by a very
large number, for example, 1012 ;5 then the index Lp by the number
of the cell which is provided for the storage of the numerical value
of the index; for this we reserve the cell 45+ 50 . Then the
numbers u,v,w follow.

The statement "End index p" 1is represented independently of o
through 2 successive Q's, exactly like the end of the entire

problem.

To clarify, the image values are shown to the right for the section taken

from the matrix multiplication, }é/

16 .
——/ The image value a is omitted (see footnote 18, on page).

32

1012

55
"For J = 1(1)10" (o) a J 1

10

by gt(a; xbg) == n, (B) (9

"End index j" (7) » 89
for which the following memory cells are 10:%0
reserved: 10

189

99 for h. (independent of j, 1010~
for one no longer
needs the old h-values)

89+10i+j (cells 100-199) for a3 5 =

189+10+j (cells 200-299) for bjk

&

<
7
O O

55

17

3.3 (Calculation of machine code for an iterative probleme—/

The series of image values which characterizes a problem according
to §3.2 would first be punched into a tapelg/ and then inserted in an
unchanged sequence together with the Q-symbols into the memory of the
machine. The machine should then calculate the extended machine code
from these image values.

This calculation proceeds, similar to in §2, in that the machine
searches the series of image values thoroughly and builds the sequence
of instructions; but in doing so the dependence of the addresses of
the indices must be taken into account: If a non-integral number

follows the image values a,,b of an element Ek , this is not

%’ °x Byev1 7

but an index image value for the element Ek which is to be multiplied

5p

and the index value and to be added to b, , according to

by 10 Kk
(3.1). This naturally necessitates several changes in structure
diagram 1 between box 110 and box 121 (see Figure 0).

But as soon as one finds the number 1012 in the sequence of
image values, this announces a new statement "For ..."; a new index
begins to run and one finds in the following U4 cells the specification
of the index in any case its beginning value, step width, and end value.

This instruction is now executed, in so far as the index level s

established in §3.2 is incremented by 1 and at the same time the

17/ See footnote 9, page 16.

l@/ One can also leave out the value a , because the machine can
calculate this from b according to (2.3).

3k

121

yes

123 12kh

D
Is (<oi,, >+1) No gs) D
Ttep ’ {b:HEp.) Te = Pirpy |

a whole number?

T

110

Figure 6

beginning value of the new index Lp is transferred to the cell

45+ 50 provided for it, the step width in L6+ 5p and the end value
in L47+5p respectively (box 204 in structure diagram 2). Moreover,
the address of the new index Lp must be stored somewhere, and to be
sure in such a way that the addresses of indices of lower levels are
st#ill remembered and immediately available when s is decremented.
This can be done best by immediately storing the address of every newly

initialized index in the cell s . We have, therefore:

the address of the running index (= h54-59)

i

(s)
((s))

the value of the running index (= ap) .

Accordingly, the processing of the parenthesized expressions
following the statement can be initiated (box 206) until a double
Q-symbol indicates the end of the effect of the "for-"statement (box 207).
Then the running index is to be incremented by the prescribed amount

(box 212) and all parenthesized expressions from that point on where the

35

index has reached its end value (box 209); it is discarded with the
next double Q-symbol, and s 1s decremented by 1 (box 210). The
calculation of the machine code is complete when s has again reached

the value O and then another double Q appears.

3.4 Piecewise extension of iterative programs

In complex iterative problems it is usually wasteful to produce
a completely extended program for the following reason: The extension
of the innermost loops (which belong to the indices of the highest
level) can result in a considerable shortening of calculation time, while
the corresponding exftension of the remaining loops produces only a
nominal gain, but enormously lengthens the program. But because the
process just described allows only the complete extension of all loops,
it must be supplemented for piecewise extension. We want to illustrate

n

this with the example of matrix multiplication a,.b., ==c. (see
7T 1J jk ik

structure diagram Figure T7): Of the three loops, the j-loop is the
innermost and therefore should be extended; this process conforms to
the explicit description of the above-mentioned sum:

b The resulting program is then

..t a == C,
i

831P1% " B30k " in®nk K
only twice iterative, namely over i and Kk .

Figure 7 shows the structure diagram for the matrix multiplication.
Tt is convenient to partition the diagram along the dotted line because
the index Jj which is to be eliminated occurs only in the right-hand

side; therefore the extension of the program takes place exclusively

36

in the right half. For the left half one produces the machine code
separately; it must only be connected to the calculated machine code

at points A and B .

Al
— |
@—1} > 3 i}
l
|
o] 1 !
1
2] OJ1 ! ESj
l
no no | | no
(@) 11 o H 8 6
yes yes ! yes
1 B
Legend.:
1l1: 11 T : Jjrtle»]
2 : lenk 8 : Z, 3= Cyy
3. 1t j 9: Is k=n?
b 0 ==z 10 ¢ ktledk
: z. .t (a..xb, =x Z, 11 Is i = n?
2 J-1 (13 Jk) J
6 Is j=n? 12 itle i
Figure 7

For the calculation of the sequence of instructions, one must
analyze the dependency of the addresses upon indices with respect to
j on the one hand and i,k on the other: If E is an operand, its
address can be represented as follows: <E> = b+ jxJ+ f£(i,k) . Then

one stores f(i,k) in one of the index registers, for example IR5 s

o7

and calls up the operand E with an instruction which contains 5 for
its index digit and b+jxJ for its address. Because, however,
f(i,k) is constant in the right part of the structure diagram, one
can generate the code for this part according to previous methods
(with a single running index J), in which one shifts the processing
of the quantity f£(i,k) to the left-hand side.

In our example, only 3 elements with variable addresses occur,

namely ai. , b.. , and c., . They should be stored:

J jk ik

. + 54 i
aij in cell o+ j+[ni]

bjk in cell B+nj+ [k]

i In cell y+ [ni+k] .

The bracketed terms correspond to the f(i,k) ; we assign them to
index registers 1, 2, and 3 respectively, but then must observe in the
f ormation of the machine code for the left half that a change of the
values stored in index registers 1, 2, 5 is connected with each change
of the indices i,k (box 1, 2, 10, and 12 in Figure 7).

The problem contained in the right side of the structure diagram
for which we have to complete the machine code can be formulated as
follows:

0 == Z,

For j = 1(1)n
FRRACTERS RS \ (3.1)
End index j
Zn == cik

Halt.

58

The formation of the image and the generation of the machine code
follows from §3.2 and §3.3, but it must be borne in mind that the
quantities aij P bjk and Ciy are called up with the help of the
index registers and therefore the index-digits should be added to their

addresses in the machine code. The image value b and the index

image values for these 3 quantities read:

1000 + & 2000+ B
for a.., for b.
-6 1J J

10 n~10-6

300+y for c., .

k ’ ik

3.5 An application of a special nature

We shall calculate the extended machine code for the multiplication
of a matrix with a vector, whereby certain elements of the matrix can
be assumed to be zero. This situation, occurring quite frequently
especially in work with systems of linear differential equations,
permits a condensation of the machine code by complete extension, which

can be very important. The problem is as follows:

For i = 1(1)n)
0 == yi
For k = 1(1)n
Yy tag xx) =y, > (3.5)
End Index k
End Index i
Halt J

39

The calculation of the machine code essentially follows the process
already explained. But because the formula yi4-(aik><xk) ==y, should
only be evaluated for such value pairs i,k for which aik % 0 , the
calculation of the corresponding instructions should be suppressed,

which can be achieved through a small change in structure diagram 2.

3.6 Variable index limits

The methods presented in §3.3 for code generation suffer somewhat
from the restriction that fixed numbers must be inserted for index
limits, while in practice it is very often the case that an index runs
between limits which are dependent upon other indices. A classic
example in this direction is the solution of a system of linear equations
E:aikxk = bi using the elimination method of Gauss-Banachiewicz (see

[3.6]):

40

For k = 1(1)n
For i = 1{1)k-1
8y > By

For j = 1(1)i-1

h ..xtjk) = h,

.+ (t
J-1 (1] J

End index J

-(h :tii) ==t

i-1
End index 1
For i = k(1)n
aik > ho

For j = 1(1)i-1

h +(tijxtjk)=>:h.

-1 J (3.6)

End index jJ

hi g = bix
End index i
End index k
For i = n(-1)1
b. =h
i 0
For j = i+1(1)n
h, .+ (t..xx.) ==h,
j=1 (iJ J) J
End index j
h ==x.
n i

End index i

Halt.

L1

It is not hard to extend the theory once more to variable index
limits. If one of the index limits in "For Lp = u(v)w" is linearly
dependent upon the indices of lower level, for example, W = wO+ z:w r s

p P
then one representes the wp exactly as the Ip in §3.2, namely

through wp><lo_59

, and stores these amounts associated with LA

In this case, one should check every time during code generation
whether the index limits are variable, which is expressed by the
occurrence of non-integral numbers in the values succeeding "For".

This causes several changes in structure diagram 2 (similar to the
changes in structure diagram 1 given in Figure 6 for the index-dependency
of addresses).

Furthermore, one must check in every statement '"For Lp = u(v)w"
put into operation, whether E%E*—l (the number of values which Lp
should run through) is positive; otherwise the succeeding parenthesized
expressions should remain inoperative until the next double Q of the
same index level. Tn particular, this case occurs several times in (5.6);
e.g. for k = 1 the statement "For i = 1(1)k-1" (second line in (3.6)),
which then takes the form "For i = 1(1)0™ , is not executable, so that

the succeeding lines up to the statement "End index i" (8 lines) are

Jumped over.

Lo

4. Compilation of an Tterative Programlg/

For a fast electronic computer, the reason asserted in §3.1 for
the extension of programs may be of little significance. For this
reason, foregoing a detailed explanation, several paragraphs are devoted
to the generation of unextended machine code for an iterative problem.
In conjunction with §3.4, we mention that one can carry out the code
generation through a combination of the methods presented in §3 and Sl
in such a way that by exercising an option single loops of the problem
can be extended, while, using the same plan, the remaining loops retain
their iterative nature.

The compilation of an iterative program is harder with this
condition, because the addresses of the operands occurring in the formulas
can depend upon the indices in completely different ways, as the example
of matrix multiplication dealt with in 83.4 straightforwardly shows.

But one can simply proceed in such a way that one calculates every
index-dependent address prior to the operation concerned, stores it in
an index register, and then calls on the operands with the help of the
index-digit.

For the actual implementation of the compilation of an iterative

program, it should first be noticed that the encoding of a problem follows

exactly as in §3. Furthermore, the code generation is the same as before

in principle, that is, the machine analyzes the image and with it builds

19/ See footnote 9, page 16.

43

the sequence of instructions, as is described in §2.3. But in regards
to 83, it undergoes substantial changes in reference to the running
indices: The instruction sequence is set up only once for each
expression; in return, the instructions of the succeeding numerical
evaluation must be worked out once for every value combination of the
indices. To this end naturally, the ncessary provisions should be built

into the calculated machine code. This implies:

(a) TFor the operands: Before every set of parentheses the operands
occurring within must be examined for variable addresses, and for each
such operand the instruction sequence for the calculation of the address
and its storage in an index register must be set up. Only after this
may one calculate the instruction sequence for the actvwal numerical

evaluation of the expression. For example, for the operand eij with

<Eij>-= 100 +301i+23 from the index image values 100, ﬂijD-B B

2><10-6 , one sets up the following series of instructions:

100
099
030 .
050 (x 1)
099
099
002
055 (x J)
099
001

+ X N ® + X N » N
O O O O O O O O O ©o

[€2]
H

which causes <eij>~ to be stored in IRl . To this end, the address O ,

Ly

107

12T l 128 No

O&»
| B -ab, =07
1y P s

Figure 8

131

Yes

o P
1000X == bi+2u

129 4 /
+ [e]
v

D
Is (<bi+2 >+ 1)

a whole number?

132

Punching of the
instructions for
the calculation by
and storage of

P .
bi+2u+ ZIpr in IR

X

Yes
130 155
ptl ey p xtled X l"__*'
Z (r+2)
s (s)
z (r+3)
s (s)+1
Z (r+h)
S (s)+2
BZ O 009
A O 000
SI 0 008
Z 9 002
S 8 080

empty instruction

L6

(3.7)

The last 6 instructions in (3.7) have the objective of storing the
address of the instruction following these 12 instructions in the
cell 80+s . This instruction is the target instruction of the jump
which leads back from the end of theloop to its beginning (corresponding
to one of the connecting lines n -8B, ¢ -7 , € =& in Figure 5).
Its address must be stored so that at the end of the loop one can
correctly formulate the above-mentioned jump instruction. The empty
instruction insures that this jump instruction has the desired effect
whenever the targe tinstruction is sotred in the right half of a memory
cell.
Then the processing of the succeeding paren??%;zed expression ,><
continues (box 306) until the next double Q, where again several
special instructions are inserted into the machine code, which, for the
running index Lp read as follows:
Z 0 080 N
+ 0 000
ST O 009
A 9 000
ST O 009
A O 0Oh5+5p > (5.8)
- 0 Ok7+5p
Co 9 000
A O Oh5+5p
+ 0 0hk6+5p
S 0 Ok5+5p .)

These instructions test whether the running index has reached its
end value, and return to the beginning of the loop in question with

the simultaneous increase of the index itself by the increment when

7

this is not yet the case (box 309). The first 5 of these instructions
prepare for the jump instruction 9 000 , by fetching the address of
the target instruction out of the cell 80+ s and storing it in IR9 .
The machine can easily insert the addresses U5+5p0 , LG+5p0 , UT+5p
occurring in (3.8) into the calculated code itself because of the
assumption that 45+5p is stored in cell s .

Furthermore, the index level s 1is decremented by 1 at the
double Q (box 310); thereupon the search for image values can be
continued. When the index s has sunk to O and then a double Q
follows once more, the end of the problem has been reached; one inserts
the halt instruction into the code (box 308 and 315).

The occurrence of variable index limits creates no new difficulties
except those already mentioned in §3.6; one must insert into the
sequence of instructions for the storage of the index limits (3.7)

the calculation itself of the limits from the image values.

L3

Appendix: Structure diagrams 1 -3

Explanation: It is assumed that the image values of an interpreted

parenthesized expression are already stored in the cells 500ff; the

index r always means the address of an image value in the following.
In other respects, the explanation of the symbols (), <> -

have been alluded to in §1.1. The meaning of the sumbol ¢ should

be explained:

a @z , in which a number or an index already set up stands on the
left, means: A new index : with initial value a is to
be introduced.

410 The index z 1is to be incremented by 1 at this point; more

precisely: the earlier value z+1 1is henceforth to be
associated with z . This causes the automatic updating of

all quantities which depend upon the index ¢ , for example,

thereby associati bid to X .
y lating z -1

k9

but also the index digit 1 , should be placed in the instruction which
should call the operand <eij> out of the memory. Figure 8 shows

the important changes up to now in structure diagram 1 which are to be
placed between boxes 107 and 109.

(b) For the indices: When one comes across & new statement "For ..."
in the search for image values, this indicates the beginning of a new
subloop. As in §3, the index level is incremented by 1 (box 303), then
the address of the new index (namely L5+ 5p) is transferred to the
cell s , and the sequence of instructions consisting of the first 6
instructions in (3.7) is to be calculated, which serves to store the
beginning value, the increment, and the end value of the new index in

the cells u5+5p , 46+5p , 47+ 50 allotted to them:

45

Typical code gen

da

T+ N=Tg4t

b e+
T+dt T dt e
Ny o TR, © VT g
LIT oN
H &=~ T+
6T
* o1t
N
b == T-b
-T
M g% == d-000T
¥ w= 1
¢TT -
”
g1« b om 1% ©
f1TT
a ; 0000gc < TR
89X © d
12T
28 oN
09 SUTpPIOOOE
SUOTJONIYSUT T-reg+T T+t
t young g1« mp+ Q@
22T TTT

T =~ T+T

- - — . — -

QA.I'H.+Q“
0cT

Lqduwe

ST uoTssaxdxs

. pezTsayjuased
L eu

T &= 0
wOT

d
H==H

b == 666002
de> T

T o

(7°2) o3
JurpIooO®

H 998TNoTe)

cOT
ON

Structure diagram 1

50

301
o
500 e 1

302

12 Yes

(r) =107 °
No

206

503

stl & s

31k

Compilation of the
parenthesized expression
beginning with (r)
according to structure
diagram 1 with the
additions in Figure 8,
when the end of the

30k +

(r+1) - s
Punch the
instructions

of (3.8)

505 o
r+5 <o

r+l1 &<>r . .
parenthesized expression
3 : ‘ L
is determined by a
Q-symbol, <Q> &yr .
307 -
No
le (r+tl) =Q 2
Yes
515
208 ¢ Yes Punch the end
s =092 "% instruction
No
s
0
309 v
Punch the
instructions
of (3.7)
311 310
—] r+1 ‘#rk—— s-1 s
¢

Structure diagram 3

52

201 202 203
Vea
Oeps > (r) = 1072 ¢ M stl<>s
500 &ep T '
No
206
Compilation of the
parenthesized expression
o1l beginning with (r)
according to structure
r+l edr diagram 1 with the
7 Y additions in Figure 6,
when its end is
determined by a Q-symbol,
<Q>Sr .
207 20k
- Mo F(r+1) =q 2 (rt1) - s
(r+2) - (s)
res (r+3) = (s)+1
(r+l) - (s)+2
G r+5 - (8)+3
s =0 9 LI
205
209 -
> Yes TS >
s ((8)) = ((s)+2) ? b=
No
212 - 210
(())*+((s)*1) = (s) s-l¢os
215 ¢ 211§
((8)+3) «>r rtl<>r
<+ » —d& L

Structure diagram 2

51

Bibliography

[1] Aiken, H. H. Description of a Magnetic Drum Calculator,

Harvard University Press, Cambridge, Mass. 1952.

[2] Kilburn, T. "The University of Manchester Universal High Speed
Digital Computing Machine," Nature, Vol. 164, pp. 18L.

[3] Neumann, J. von and Goldstine, H. H. "Planning and Coding of
Problems for an FElectronic Computing Instrument," Institute

for Advanced Study, Princeton, New Jersey, 1947.

[4] Rutishauser, H., Speiser A., and Stiefel, E. "Programmgesteuerte
Rechenmaschinen," Mitteilungen R. 2 aus dem Institut fUr

angewandte Mathematik der ETH. Zlrich, 1951.
[5] Speiser, A. "Entwurf eines elektronischen Rechengerites.
Mitteilung Nr. 1 aus dem Institut flir angewandte Mathematik

der ETH. Zlirich 1950.

[6] Wilkes, M. W., Wheeler, D. G., Gill, St. The Preparation of Programs

for an Electronic Digital Computer, Addison Wesley Press,

Cambridge, Mass. 1951.

[7] Zuse, K. "Ueber den allgemeinen Plankalklil als Mittel zur
Formulierung schematisch kombinativer Aufgaben. Archiv der

Mathematik, Vol. 1, (1948/49), pp. 4hl-LLg.

[8] Kjellberg, G., Neovius, G. "The BARK, a Swedish General Purpose
Relay Computer,” MTAC, Vol. 5, 1951, pp. 29-3k.

[9] Rutishauser, H., "Automatische Rechenplanfertigung bei programm-

gesteuerten Rechenmaschinen. (Kurze Mitteilung)." ZAMP,

Vol. 3, 1952, pp. 512-3135.

55

	translation 0001.tif
	translation 0002.tif
	translation 0003.tif
	translation 0004.tif
	translation 0005.tif
	translation 0006.tif
	translation 0007.tif
	translation 0008.tif
	translation 0009.tif
	translation 0010.tif
	translation 0011.tif
	translation 0012.tif
	translation 0013.tif
	translation 0014.tif
	translation 0015.tif
	translation 0016.tif
	translation 0017.tif
	translation 0018.tif
	translation 0019.tif
	translation 0020.tif
	translation 0021.tif
	translation 0022.tif
	translation 0023.tif
	translation 0024.tif
	translation 0025.tif
	translation 0026.tif
	translation 0027.tif
	translation 0028.tif
	translation 0029.tif
	translation 0030.tif
	translation 0031.tif
	translation 0032.tif
	translation 0033.tif
	translation 0034.tif
	translation 0035.tif
	translation 0036.tif
	translation 0037.tif
	translation 0038.tif
	translation 0039.tif
	translation 0040.tif
	translation 0041.tif
	translation 0042.tif
	translation 0043.tif
	translation 0044.tif
	translation 0045.tif
	translation 0046.tif
	translation 0047.tif
	translation 0048.tif
	translation 0049.tif
	translation 0050.tif
	translation 0051.tif
	translation 0052.tif
	translation 0053.tif
	translation 0054.tif

