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MAINTENANCE MANUAL FOR PSYCO

The Princeton Syntax Compiler

Part 1

It was originally intended that this manual should be issued for
the ‘first time complete in its final form. However, due to
heavy demands on the author's time, it has become evident that
the complete manual cannot be finished for at least several
months. Since there is need at the present time for a detailed
description of the Princeton Compiler, it was decided that as
much as has been written on the compiler should be made
available immediately as Part 1 of the final manual, and that
the remaining material should be issued at a later time as

Part 2.

This decision results 1n some references in the following docu-
ment to sections which are not in Part 1, but for the most part,
the material presented here 1is a self contained section of the
final document. The material covered in Part 1 and the attached
appendices 1is at least the most important to the thorough under-

standing of the compiler itself.



MAINTENANCE MANUAL

For
PSYCO - The Princeton Syntax Compiller

Psyco 1s a syntax directed compiler which operates on strings of
symbols in some object language (currently ALGOL 60) and translates it
into a string of symbols in some target language (currently the
assembly language AR ‘for the CDC 160%4) according to tables of syntax
and semantics constructed automatically from a meta-symbolic descrip-
tion of the translation. The maintenance manual for PSYCO 1s written
in two parts.

The first part describes the translating mechanism itself: The
metalanguage used to describe the translation, the routines which carry
out the translation, and input output routines used by the compiler.

The second part describes the implementation of the translation
of ALGOL 60 to CDC 1604 assembly language: The particulars of the
algorithms used to carry out various ALGOL statements, the philosophy
of storage of data and operation of the run-time program.

All the routines in the compiler and also the running programs
compiled by the compiler assume the existence of a set of input-output
translations which translate groups of characters received from input
equipment into a set of internal symbols (0-360 BASE 8) upon which the
compiler operates. One such set of routines is described in detail in
section 1.3, but local equipmental restrictions may suggest some others
as preferable. The compiller itself demands no particular numerical
representation for any of the internal characters associated with any

translation except for the following:
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"space"
"sarriage return" 155
"tab" 115
157
160
161
162
163
164
165
166
167
170
The first group of these symbols is the set of octal digits O through
7; the second group is the set of formatting characters for
; tyﬁeﬁrifer kﬁhiéh suffiéé'ﬁndérﬁéimﬁlé ébnﬁéﬁtiaﬁé fof‘mbst:‘::
printing equipment); the third group is the set of metagymbols used

to describe the translation. (See gection 1.1). The complete list of



internal symbol representations for the translatlons 9f ALGOL 60 is

given in Appendix 1.

|

Part 1. The Translating Mechanism
1.1 The Meta Language
1.1.1 Philosophy of the metalingulstic description

The translation specifications consist of a series of sentences, .
each one consisting of a syntax formula followed by a string of sym-
bols designating the semantics of that syntax formula. The sentences
have the following form:

Iet S be a syntax unit: either a metalinguistic variable or a
symbol of the input language.

Iet P denote a semantic unit: elther a symbol of the output
language or a designator of a string of such symbols.

Each sentence of the specifications then has thé'form:

S S88 .....88=:1:8 == (PPPPPPPP ... P)

Compgients Subject Definition

The syntax unit S following the metasymbol =:: in any sentence 1s the
"subject" of the sentence, and the syntax units to the left of =::
are the "components" of the sentence. The string PPPP..PP Dbetween
the metasymbols f{and} i1s the "definition" of the sentence.
Specifically, P may have one of the following three forms:

1. Any (p) symbol of an output language. The output

language alphabet may contain any symbols, but when
that alphabet does contalin the symbols

(e 21017

special conventiens will hold in the cases described
below.

2. An output string designator of the form
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may be empty
“indyibe empty

where P gnd p are defined as above, and n 1s an
integer des natlng a particularvstring.

If a string designator (2) is of the simple form 6;3 n 1t denotes

the string which is the definition of the sentence whose subject is

the nth component to the left of =:: in the sentence containing
the designator (;D n.

If the string designator is of the form
@n “p <—PPooP; oo-ﬂ

1t denotes the same string but with substitutions madé‘as indicated;
namely, with the symbél p replaced at every occurance by the symbols
PPPPP;.PP, these substitutlons being made one after the’other frbm
left to right. Examples are given below,

3. An output string function designator of the form

0,“0' .
e n ([PPP..P PP..P ... PP..P]
e UL ~ _J
may be empty ' may be empty

where @gP 1s defined as above, and n 1is an integer desig-
nating a particular string functilon.

The output functilon designator 'EP of 3 is used to specify a function
of the strings FPPPPP..PP enclosed between the brackets following the
function designator. The'integer n serves to identify a particular
functlon which is relevant to some particular set of syntactic sen-
tences. They serve to enhance the descriptive ability Qf-the output
1énguage, and constitute part of the description of an iﬁput language.
Conslder as an example of the use of string designators the'
foilowing five sentences specifying a translation of an }nput striﬁg
consisting of some series contailning the letters a and§ b to an

output string composed of the letters A, B, x and y, t, m.



a =:1: letter —> {A x}
b =:: Jletter ==> (B t}
letpg;d‘#:: iden =—=> [631}

iden letter =:: iden ==> {@2@1 ‘[t’ — m]]}

\

iden =:: simvar ===> [qu E>X <——-yH }

The unique diagram of the input string

babaa
1s
b a b a a
I [ [ [ l
letter letter letter letter letter
l iden l
I iden l
l ‘ iden l
l iden ’ l
l iden l
simvar

and the meaning of the final syntactic unit "simvar" is
BtAyBmAyAy

An example of function E; might be one whose value is a string
of the characters 0 1 2 3 4 56 7 89, concatonated to represent the
number of symbols 1n the parameter string of the function on any use.
If we identify this function by the inteﬂerl and change the last

syntactic statement on page 5 to

iden =:: simvar = %:;r 1 \[6) 1 ]}

the meaning of the string of our example would now be merely the characters

10
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The metasymbol ' serves as a left metaparenthesis counter to
allow the output language to contain the metasymbols of the descrip-
tion, so .that an. input language may be deseribed in terms of — and
hence translated inQp — the meta language. This convention enables a
translator to modify\the Set of translation specifications it is
dﬁrrently using according to the particular input string it 1s
examining. This enabling convention depends on the use of the sym-
bols f{and]} as metaparentheses. If in any definition of a
syntactic sentence the number of ;S following any occurrence of QD

or :} is not equal to . L
(‘H\e nomber of 23 to the |c$t> -1
then the symbol 6;) or :}' and 1ts assoclated symbols
3 .
)
[ v < B
wlll be treated as symbols of type 1 rather than in the way described

above. The metasymbols {and] are always treated as symbols of

type 1, when they occur in the string of a definition.

If the last sentence of the descriptlons of the example were changed
to

R W@ [xey] e

the translation of the string babaa would be:
BtAxBmAxAx =:: realtype [BtAmeAyAy;;'l}

1.1.2 The Particulars of notation for this implementation of the
metalingulstic description.

1.1.2.1 The format of the metalanguage.

The format used in the actual implementation of the metalinguistic
description differs 1n detail from that used in the section 1.1.1.
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The external characters used as metasymbols in all the examples and ,
descriptions in this manual are those characters on the CXCO type-

writer-punch at the Princeton installation. The characters and their

internal representation (after input translation) are
N .
CXCO character Translated representation recognized
by the compiler

160
161
162
163
164
165
166
167
170

AR N LA

We must, of course, point out that these CXCO characters are tied to
the translator in no way whatsoever. Any external representation for
the metasymbols is acceptable, and can be used with the translation by
redefining the external character set to the input routines (section
1.3). It is only the internal representation which is fixed for the
compiler. However, for convenience, we shall use the CXCO character

representation for the purposes of description.

The format for the actual implementation is given below in terms of
the notation used in section 1.1.1. A rough correspondence between

the symbols of the description in section 1.1.1 and those of the

implementation is:

e e
K ow



The symbols

PRQm el = oe P @ gl

are exactly equivalent, that is the implementatidn characters are used

exactly as the corresponding characters were used in 1.1.1.

For the other symbols, slightly different format ruies are used.

In particular
/

1. ZE serves the same function as s but the L g
preceed rather than follow the & or & (i.e. @ or
Z ) with which they are assoclated. :

- 2. The metacomma ¢: is used as a left bracket ( E_) as

well as a comma.

3. The closing bracket L (1) must always follow the
simple string or function designator 1o or 5 .

The following examples point out the format differences.

1. @l‘l---l m "'_Pe.PP...P;pe-pppg ...,P@pp,,p]

——— - ~ -
MAy bz  EmpTy MRy BE

EMP‘I’){

is equivalent to

FE-EZTn & P#‘ pptp¢P<—PPP¢ ¢.p<-—PPFi yil

——

Aay BE EMPTY MAY BE EmPTY
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5. Iy
; m [PP"-P.’, PP.P}) ..oPP.. P
N\ —— C . — J

MAY (S Empr)/ MAY  Be Emp-,—)/

is equivalent to

¥E-EX n ¢PP..P¢PP.P4...¢ PR.P.Z
e L ~ ~
mhy RE Empry MAy BE EMPTy

Note that the z is always required. Hence

@,ﬂ is equivalent to Iny

and
} n 1s equivalent to fnz
As mentioned in section 1.1.1, the metasymbol ! (= :) is
always ignored, and the meta symbol ==> is not used in the

implementation at all. For examples of the metasymbolic description,

see the ALGOL description in Appendix 2.

1.1.2.2 The form of machine language programs for the compiling
runctions EFmg (F m.)i

These programs are string translation or string generation programs

which aid in the specification of the definition part of the meta-

linguistic sentences. In general they are small programs to generate

unique numbers which would be used as inﬁernal labels in a transla- f

tion, or perform some translation of a highly speclalized nature.

The programs would generally be written in Assembly language, and would

have to be in the machine during any compilation. The starting address

of each fuhctioﬁ must be listed in a table of functions which the com- |

piler references when it needs one of them during a translation. The

specifications for such a program are:
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1. Entry: - The entrance address for the function must be. entered
in the table FNBASE, so that the contents of the lower

address position of FNBASE%n is the address of the en-

trance for function n. (See the description of

/
TRANSYM, Section 1.2.3.2)

2. Exit: Each function shall transfer to PI (in TRANSYM) when
it has complied.its actlon.
3. Storage: If any of the funection brograms use any index regis-

ters, they must save the contents of those registers.

The Accumulator and Q are open to use (however, A
is used for information transfer).

4, Transmission of input parameters: The input strings, if any, to
the function will be in a portion of the output string

(OTPX). The index of OTPX which marks the character

preceeding the. beginning of the first point string is

in the lower address position of the accumulator upon
entry. B6 ‘contains the index of OTPX which marks the

.chamecter following ‘the end of the 1dat inpuat

string.  If there are several strings as parameters to
the function they are separated by the 8 bit character
(base 8) 377. If there are no input parameters
(Allower]) = (B6) wupon entry.

5e Transmission of output: The functions must put their output
strings in OTPX beginning where the first symbol of the
input string was located and must mark the end of the
output string by putting the ineex of the last symbol .
of the output string in B6. If r 1is the contents of

A [lower] upon entry to the function, then upon exit:



v]-1 *
(B6) = r + (the number of symbols put out).

If there 1s no output string then upon exit:

1.2 The subroutines JQmprising'the compiler:

For the translation of ALGOL 60, PSYCHO is wfitten as a two pass

compiler. The firstvpass scans the input string according to

syntax according to syntax tables for pass I and outputs
syntactic sentences concerning the particular variables of the
program being-compiled. These syntactic sentences are added to
the permanent 'Pass II symtax tables, and then the original in-
put program string is scanned again according to the modified

Pass II syntax tables, to output the final translation. This

process 1s carried out by a group of subroutines each of which

performs a well defined part of the total process. The operation
of the subroutines is correlated by a "main program" which
initlates the calls on the other routines.

In this section we first list the routines which comprise the
compller and outline generally fheir functioning. Secondiy, we
describe in detail the composition of the tables and storage areas
uged by these routines. Lastly, we give the detailed description of
the routines and correlate these with the "1listing diagram" which is

found with the listing in Appendix 3.

l1.2.1 The subroutines - general

1. ROUST (DIAGRAM). This subroutine is the heart of the com-
piler. It is programmed as a recursive subroutine (i.e. one which
calls 1tself directly), and essentially its function is to construct

a syntactic diagram of the object program, while simultaneously forming



120

an output string (OTP) which indicates to TRANSYM which of the defi-
nitions of the mefasentences are to be present in the target language

‘program, and how these definitlons are to be put together.

¥

2. TRAﬁSYM. This subroutine 1s also programmed as a recursive
procedure. Its functlon 1s to form the-final output string (OTPX)
which is the target language program from tﬁe linked list (OTP) pro-
vided by ROUST.

3. SYNTAB., This subroutine is a relativelj“éimple program to
build the internal tables (STAB -~ see’ 1.2.2) from the metalingulstic

descriptions which are used by RQUST in its operation.

4, COSYN. This subroutine might in a sense be called the main
program of PSYCO, Its function is to set initial values of con-
stants, and execute the several calls of ROUST, TRANSYM, and SYNTAB
which occur durlng a compllation. It 1is essentially an overseeing
routine to correlate the action of the others.

The following 1s a simple flow diagram of COSYN, showing the

overall operation of the compiling system:

Call ROUST for pass 1

Call TRANSYM

Call SYNTAB to add
pass 1 output to pass 2
syntax tables

Call ROUST for pass II

Call TRANSYM
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5»  Service routiness NEWSYN gnd GSCR.

a. NEWSYN is a service routine which calls SYNTAB

directly to build new syntax tables STAB either
from an in-memory (i.e. already input translated)
stéing of symbols comprilsing a metalinguistic
description, or from such a string available
through the input translator (INTRAN). Its use

. 1ls primarily to aild 1n making available to the
compliler new metaiinguistic descriptions, or
corrected ones. The oberatingvinstructiong for
NEWSYN are found in Appéndix 4,

b. GSCR. This 1s a Generalized String Correction
Routine which allows completely general correction
of any string of words (presumably though not
necessarily internal.symbols, one per Word) from .
a correcvion list available from input equipment |
through INTRAN., The particular formats for this -
correction 1list, and the operating instructions

for GSCR are found in Appendix 4.

i,2.2 Storage Allocation and Table Composition

This section describes in detall the tables and storage areas used
by the subroutine outlined in the last section. For each table, the

basic construction, and the methods of reference are gliven.

1.2,2.1 STAB (referenced MMEmowicAlly in the 1listing with Bl, base
address O or L (note that L 1is defined to be equivalent to 0)).

STAB contains the internal representation of the metalinguilstic des-
cription and 1s called the Syntax TABﬁ!. It contains the metalin-

gulstic description for both passes of the system and, since it is



1k,

constructed as a semi~linked l1list, it makes no difference whether

. the sentences of the two passes are intermixed or noﬁ. (HoweverL_by
convention,Qphg,syntactic sentences for the first pass occur at the
end of STAB, ehile tho?e for the second pass are in the end.) STAB
18 constructed in the ﬁémory from any metalinguistic description of
the form outlined in section 1.1 by the subroutine SYNTAB and is used

in the scanning process by ROUST,

The construction of STAB is dictated by the requirement8wofvthe
scanning routine ROUST, ROUST is designed to examine groups of sym~
bols 1in the Input string and determine from STAB whaf syntactic cata=-
gories the symbols fall into. . Hencé, having found that the first n
symbols fall into some syntactlc category, A,'RQUST‘must»be'able to
find conveniently from STAB the names of all the syntac constructions
(e.g. B, C, D) which can follow the construction A (concatonated
on the right). Given these, ROUST examines the symbols of the input
string following the nth to determine whether any group of them
fall into the syntactic categories B or € or D ... Then find~
ing, for example, that the input symbols fall into category B,

ROUST must further be able to find from STAB the names of all syn-~
tactic categorles which may follow the categories AB, and so on.

(The exact process ig explained 1.2.3,1)

These requirements make it desirable to store the syntactic informa-
tion in STAB in a tree like structure which is illustrated diagramat-

ically by the followlng examples: The five sentences:



SVAR

S

SVAR
SVAR

SVAR

would be linked as follows:

SVAR

-+

TERM

SVAR

" TERM

TRIM

SVAR

l

TERM
SVAR
TERM

TRIM

[ 1]

(4]

TSUM

TSUM

TSUM

TSUM

TSUM

TSUM

TSUM

TSUM

TSUM

TSUM

PLL L

{LDA .

L
]
¢

{

¥
f
{

§

Notice in the gpove dlagram that at every point where it is possi-v

ble for a given syntactic construction to be followed by more than

one syntactic element on different occasions, the alternatives are

easily found by following the downward arrows.

The progression

through the tree by ROUST as 1t diagrams the input string is from

left to right across the tree, following the topmost possible path.

If 1t is discovered at any point that it 1s not legitimate to pro-

ceed horizontally across any path, (we will leave the discussion of

how thils decislon 1s made to the discussion of the operation of

ROUST -- section 1.2.3.1) then ROUST proceeds down the path

beginning at the last junction passed (the nearest to the left).

Proceeding in this manner, ROUST eventually must either decide that

the whole branch of the tree will not select a diagram for the pro-

gram, or it must eventually reach the right side of the tree. If ,
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1t reaches the right side of the tree, 1t then has available the
output string (which is the definition of the syntactilc sentence)
for the section of the input string it has dlagrammed in proceeding
across the tree. Furthermore, it has available the name of the syn-
tactic category which it will then assign to the construction discov-
ered, and hence can continue the diagramming process starting at a

new branch of the tree..

To realize a storage mapping of theysyntaqtic sentences which
allows ROUST to operate in this way, the convention is adopted that
elements listed horizontally across the tree (as above) from left to
right, will be stored consecutilively in memory from smaller address
to larger address in STAB. Where a junction in the tree is indi-
cated by a downward arrow, a link address will be stored in the same
word with the symbol from which the.arrow departs, This link address
1s, of course, the address of the first symbol of the string toward
which the arrow points. Hence, each word of STAB contalns:
1. The internal code of a syntactic name or output sjmbol, and
2. A link address - the address 00000 indicating no link.

dpecifically the format is:

000 (1link address) 000 00 (symbol)

Note that the link address is the machine address of the symbol be-
ginning the branch toward which the 1link points. (specifically NOT
relative, but ABSOLUTE address)

For the example given above, the pertinent section of STAB would have

the structure:
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LINK SyMBoL

11 | 1 ( 1+
I2 I3 SVAR
0 TSUM

0 {

0 }
I3 0 TERM
0 TSUM

: (

0] .

0 }

I4 0 —
Is5 I6 SVAR
0 TSUM

0 {

0 }
I16 I7 TERM
0 TSUM

o {

0 }
I7 0 TRIM
0 TSUM

: {

0 }
where In 1is the relavant machine address. Notice in

this example

that the first syntactic name (SVAR) is not stored explicitly in

STAB. Thus the first syntactic name of the branch is taken effect-

lvely as the name of that branch. In other words, there is one and

only one branch of the tree for each syntactic category possible in
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any set of metalinguistic éenteﬁces. If ROUST is ever interested in
examining any syntactic sentence beginning with SVAR, for example,
it always comes to the branch of the tree which bears the "name"
SVAR (I 1 in the example given), no matter which of the sentences
beginning with SVAR it wishes to consider.

The‘only remaining question about the structure of the tree %s
how ROUST knows where the branch for any syntactic element is lo-\\
cated. This information is provided by the table TRAN, which is
essentlally an index to STAB. (TRAN 1s described in detail in
Section 1.2.2.2).

Having outlined the general structure and use of STAB, we now
describe the conventions for determining which,symbols are stored

in STAB,

1. In the tabling of the components and subject of any syn~-
tactic sentence (i.e., all symbols to the left of ¢ ) the

following symbols are deleted:

Symbol Internal Code

"space" 156
"carriage return" 155
"tap" 115

! 160

2, In the tabling of the definition of the sentence, all sym-
bols are entered into the table (consecutively) including both paren-

theses $ and I .

3. For the purposes of tabling, it is considered that a
gsentence ends with the last closing parenthesis ]{ of its defil-
nition, and that the next sentence begins with the symbol immediately
following that J .
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Note that under these conventions the opening parenthesis $; serves
two functions: 1. to implicate the Immedlately preceding synfactic
name as the subject of the sentence, and 2. to act as the opening

parenthesls of the palr enclosing the definition.

1.2.2.2 TRAN f(referenced memonically by use of TRANLOC, ONETRAN,
and TWOTRAN)

As mentioned in the last section, TRAN 1s the table which is
an index for STAB. Since PSYCO is programmed as a two pass compi-
ler, and thus expects to reference two sets of syntax tables, there
are in fact two such indices. One of them [{ONETRAN) is the index
for the Pass I Tables, and the other (TWOTRAN) i1s the index for the
Pass II Tables. Sihce STAB contains the syntactic sentences for
both passes, both ONETRAN and TWOTRAN refer to those branches per-

tinent to the pass with which 1t is associated.

TRANLOC is a single memory cell whose lower address position
contains the address either of ONETRAN or TWOTRAN, whichever is
currently in use. Since the use of either one of these tables 1s
exactly the same, we shall henceforth speak of them both as TRAN
unless we wish to specify one of them.

Since there are 3608 (maximum) Internal symbols possible in
any specification, TRAN (i.e. each one) is 3608 words long. If
the code for any internal symbol is n then the contents of

TRAN + n 1is:
15 Bits

—

g N\
000 (the address of the 000 Q0000
tree branch for - .= . -

symseL m )
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The "1ink addresses" in TRAN, like the link addresses in STAB,
are absolute addresses. If there 1s no tree branch in STAB for sym-
bol n, then the link address in TRAN + n 00000.

For the implementation of ALGOL 60, there 1s a special group
of internal symbols (343 to 3578) which are used to qualify syn-
tactic statements as being valid for only certain parts of the
particular input string under consideration. These symbéls are
used only 1In the syntactic sentences added to the Pass II tables
from the pass I scan. They appear in STAB as syntactic categories
(1.e. 1ike SVAR, TSUM) but the entry in TRAN for these symbols has
a special form: If n (3358 <n g_3608) is the internal code fork

one of these symbols, then the contents of TRAN + n is:

400 ( UPPER BOUND ) 000 ( LOWER BOUND )

where UPPER BOUND is the highest index of the input string for

which any syntactic sentence containing this qualifier 1is valid

and LOWER BOUND is the lowest index of the input string for which

any sentence containing this qualifier is valid.

The sign bit indicates that this entry of TRAN is for a.qualifier
rather than for a normal syntactic element.

It is a general policy in PSYCO that all tables may be re-
located by reassembling the system having first changed the
Equivalence psuedocommands which locate the tables. This policy
also holds with the TRAN tables, but with the following
restriction: The address of TWOTRAN must be

(the address of ONETRAN>+-4OO8 .
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Furthermore, at the end of TWOTRAN 50008 words of storage must be
reserved for the Boolean precedence matrices ONEPREC and TWOPREC.
A detailed memory map for the total 60008 storage afea which
holds these four matrices is given at the end of the next section

(wherein ONEPREC and TWOPREC are explained.

1.2.2.3 PREC (referenced nemonically by referring to TRAN + k
where 1000g < k < 5777g and by the tags TRAN1, TRAN2, TRAN3, |
TRAN4, and TRANS.)

PREC is a Boolean precedence matrix of dimensilons 3608 X 3608.

As for TRAN, there are two such matrices, specifically ONEPREC
(used for Pass I) and TWOPREC (used for Pass II), and again since
the use of either for its pass is the same, we shall refer to them
as PREC for the following discussion unless we wish to speak

specifically of one of the other.

The use of PREC in the scanning process 1is to determine when the
scan is examining paths which are known in advance to be invalid
for the symbols under consideration. Specifically, if p 1s one
syntactic category and q 1s another (possible equal ‘to p) then
PREC [p,q] is true if
1. q 1is the subject of any sentence béginning with (i.e.,
whose first component is equal to) p. OR
2. q 1is the subject of any sentence beginning with any syn-
tactic element which is the subject of any sentence

beginning with q OR
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3. 4q 1is the subject of

cesev e

and so on.

Stated mathematically: Let A and B be any syntactic sentences
(A $B). ILet a; be the first component of sentence A, ‘and

ap be the subject of sentence A, and
define b1 and bJ similarly.
Define the operator => as follows:

1. For any sentence A, a; = an

2. If, for any other sentence B, ap = bi then a; => bf

Now we may define the precedence matrix PREC as

PREC [p,q] = true if and only if p => q.

Since PREC 1is a Boolean matrix, its elements may be bits of words
in memory, and indeed PREC is so stored. _However, since PREC has
dimensions 3608 X 3608 the number of words necessary to store
each PREC is

3608 .

In other words there are five sections of each PREC each section
being 3608 words long. For convenience in referencing, each of
the sections is stored 10008 words above the last, and the first
sectlion is stored 10008 words above TRAN. (See diagram at the

end of this section.)
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Furthermore the first element of PREC i1s the rightmost bit of the
first word of PREC, the second element is the next bit to the left,
and so on. (Note that the bit numbers on the console face corre-
spond to the element numbers in the words of PREC). Specifically,
the expression for calculating the address of any element of

ONEPREC or TWOPREC is given by:

<ONEPREC [p,ql,> = (ONETRAN) + p + ((greatest intgr in §5)+1)1ooo

BIT = q (mod 60)
where all numbers are base 8, and

<ONEPREC [p,q]w> is the address of the word containing the element
ONEPREC [p,ql], and

BIT i1s the octal bit number (with the rightmost bit: being defined
as the O bit) of the bit in that word which 1s the

element.

Elements of TWOPREC are obtained by the same formula, with
ONETRAN replaced by TWOTRAN.

Note that the formulas given define the address arithmetic used to
obtain elements of PREC in ROUST and SYNTAB.

The following diagram shows the'storage map for TRAN and PREC:




TRAN

TRAN + 10008

TRAN + 20008

TRAN + 30008

TRAN + 4000g

TRAN + 50008

ONETRAN

TWOTRAN

ONETRAN [p, O] to
ONEPREC [p, 57]

TWOPREC [p, 0] to
TWOPREC [p, 57]

ONEPREC [p, 60] to
ONEPREC [p, 137]

TWOPREC [p,, 60] to
TWOPREC [p, 137]

ONEPREC [p, 300] to

ONEPREC [p, 3571

TWOPREC [p, 300] to
TWOPREC [p, 357]

24 .
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1.2.2.4 INPUT (denoted mnemonically as S, indexed with BY4)

INPUT is the storage area which holds the input symbol string.
While ROUST is scanning during Pass I, it reads the input symbols
into INPUT (by using INTRAN). The complete input string is re-
tained in INPUT after it has been completely read in, so that it
may be used by ROUST in the second pass scan. The input symbols

are stored one per word in INPUT in the following format:

® QITS

000 00000 000 00 (internal representation of input symbol)

1.2.2.5 OTP (mnemonically OTP, indexed with B3 in ROUST.)

OTP is the intermediate 1list which is the output of ROUST and

the input for TRANSYM. There are two basic formats for words

stored in OTP: . '

|‘f_ﬂ TS ’__li.‘NTS ’E_E ITS
Format 1: 4 (X) (Y) (z)

where Z 1is the address in STAB of the first symbol of
a definition of some sentence (i.e., the first symbol
after the first $§ in that sentence). X 1is the index
of the first symbol in the part of the input string
which is being translated into the string which is the
definition Z and Y 1is the index of the last symbol
in the part of the input string which is belng trans-

lated into definition 2.
15 BITS

Format 2: 000 00000 000 (W)

where W is n the address in OTP (not the index,

but the absolute address) of an entry of Format 1.
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The entries in OTP form essentially a set of "macro" orders indi-
cating how TRANSYM should put together the definitions from STAB

to form the translated output string from a pass of the compiler.
You will recall that the definitions of sentences may contailn string
designators of the form @ n (6 n 9) which specify that they
should be replaced by the string which is the definition of a
sentence whose subject 1s the nth component (to the left of =>)
in the first sentence. (Section 1.1.1). It is TRANSYM which

causes this substitution to be made, and the form of OTP is dicta-
ted by the requirements of TRANSYM for making these substitutions
(and by ROUST in generating the contents of OTP). At the time
TRANSYM begins to untangle this list, 1t is supplied with the
address in OTP of the word of Format 1 whose Z part is the address
of the definition of the sentence whose subject was PROGRAM. In
other words, TRANSYM is initially given an address in OTP which
directs it to the definition of STAB which comprises the entire
translated program (after appropriate substitutlons have been made).
For the pruposes of explanation let this address of OTP be OTP [j].
TRANSYM begins examining the symbols of this definition one by one,
and if they are of the simple type, 1t puts them in the final out-
put string (OTPX, section 1.2.2.6). However, if it comes across a
string designator @ n (6 n 9) TRANSYM must then begin outputing
symbols from another definition. Which definition? This it deter-
mines by going back to OTP [j]. In OTP [j + n] it will find a 1link
to the definition which will replace the string designator €§>rf
This 1link may be either of Format 1 or Format 2. If the 1link 1is
Format 1, the Z term is the address of the definition TRANSYM
wants. If the 1link is of Format 2, the W term 1is the address of
OTP [x] (where k < j)3 OTP [k] will be of format 1, and the 2
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term of OTP [k] will be the address of the definition TRANSYM
must use. Whether OTP [j + n] is of Format 1 br Format 2 is de-

termined by the value of n in any particular case. If

n = (the number of components of the
sentence to which the definition of
OTP [j] belongs),
then OTP [j + n] will be of Format 1;(i.e., a direct link). If
k is less than , . then OTP [j + k] will be of Format 2,
(i.e., an indirect 1ink). |
The structure of OTP may be explained somewhat more brecisely

by adopting the following notation:
Let Mi be the symbolic name of the definition of sentence 1i.

We may then regard the definition as it stands as a symbolic
"function" (as a MACRO in an assembler), and the string designators

in a "call" of the macro are to be plugged in.
Assume that a macro call has the form:

M, (P, P P

Then we would agree that the string P1 should replace the indica-
tor ﬁ;h, P2 should replace 6;)2 and so on in the final copy
of the macro. In the complling system, however, observe that all
the "parameters" of the macro call would be the names of other
macros. (Not all macros, however, have parameters, so the process
of untangling the macros is not an endless one). Then an actual

nacro call for the system might be:

My (Mg (wy M), Mo (MM (M), M)
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In this case, M; is the "main" macro, and its parameters are

M and

Mj, Mn’ and Mr’ some of which have parameters. Mk, Ml’ o’

Mr are macros.with no parameters.

This example could be the 1ist generated by ROUST indicating
the definitions comprising the translated program. However, if we
specified that the 1list be given in the form of the example,»it
would not only be difficult to generatefthé list, but difficult to
use it. In fact, this notation conveys exactly the same informa-
tion as the elements of OTP do, but OTP is merely arranged 1n a
more conveniént form (a variation of the Polish form) which is
parenthesis free. Symbolically,. the above example could be rewlitten

to fit in the form used for OTP as follows:

.Address - Contents
1 Mk
2 - M,
J
3
4 1
5 M,
6 M
n
i 5
8
Mp
M
9 a
10 Mi
11 2
12 6
13 M
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In OTP, items 3, 7, 11, and 12 would be entered in Format 2 and the
rest in Format 1. (Lines have been drawn in the diagram fbr
expositional clarity, but notice that they are not necessary to
specify the macro call structure 1if, as is in fact the case, the

number of "parameters" of every "macro" is known).

With the macro calls in this form it is a simple matter to find the
macro-parameters of any macro call. In order to find the nth
parameter of a macro, we need only consult the nth word of the
list after the word which mentions the original macro. For example
to find the second parameter of Mi: we consult entry 12 (since Mi

i1s mentloned in 10) and find the reference to entry 6, which con-

tains the name of the macro we are looking for, namely Mn'

In fact, not only is it easy to determine the parameters of the
"macro" - definitions from this type of 1list, but the nature of the
scanning method used in ROUST is such that this form of list is the

easiest possible form to generate.

The details of how the list is generated, and used are explained in

the sections on ROUST and TRANSYM (1.2.3.1 and 1.2.3.2). .,
1.2.2.6 OTPX (mnemonically OTPX, and indexed by B6)

OTPX 1is the output string from a pass through the compiler. The
format for OTPX is identical to that for INPUT. At the end of the
first pass, OTPX will contain a set of syntactic sentences which
gspeclfy definitions pertinent to this compilation only (i.e., this

particular input string). These sentences are added to the syntax
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tables STAB for Pass II (by invoking SYNTAB) before pass II is begun.

During Pass II, the symbols placed in OTPX comprise the final out-
put string of the compiler, and hence may be written on output

equipment (using OUTRAN, section 1.3) as they are put into OTPX.

"6 OTPX" in the b §'m terms of a command refers to the last

symbol stored on OTPX rather than the next available cell of OTPX

for storage as for most other tables.

1.2.2.7 SUBL (mnemonically SUBL, index N)

SUBL is .a Substitution List used by TRANSYM to store the lists of

substitutions to be made in strings called for by String designators

@n [[p « PPP...]]'

in definitdons of sentences. There is one entry in SUBL for each

of the form

substitution currently in force during the untangling operation of

TRANSYM. Each of these words has the format:
15 Birs ¥ 8ITs
o

000 (V) 000 00 (U)

U is the symbol for which the string named by V 1s to be
substituted
V 1is the absolute address of the first symbol in the string

to be substituted for the symbol U

The string named by V is stored in the table ISUBIX (section
102'218) .
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Entries are made in SUBL (and ISUBIX) immediately before TRANSYM

begins to output the string designated by the

f;)rl [peceeer -]

and these entries are cancelled when this string has beeﬂ output.
Every symbol which is output by TRANSYMris checked against the 1list
in SUBL and, if that symbol appears anywhere in SUBL, the string

V for the last occurance of the symbol U in SUBL replaces the
symbol in the output list. In addition every symbol which is
entered into ISUBIX is checked against the 1list in SUBL before it
is entered in ISUBIX and, i1f the symbol appears in SUBL, the
substitution is made as for symbols being put in the output list.
This guarantees that all the strings in ISUBIX will have had all
substitutions already made on them,;and hence may be putout (either

into ISUBIX or the output 1list OTPX) as they stand.

1.2.2.8 ISUBIX (mnemonically ISUBIX, indexed by using SUBIX)

ISUBIX holds the (fully substituted) strings to be substituted for

the variables U 1listed in SUBL. SUBIX [lower] contains the abso-
lute address of the cell in ISUBIX in which the last symbol of such
a string was stored. The format of each such string is the same as
the format for INPUT and OTPX; symbols are stored one per word with
the symbol code in the rightmost eight bits of the word.  The last

symbol of each of these strings is followed by the symbol 3778,

this symbol indicating the end of the string.
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l1.2.2.9 BIN (mnemonically BIN, indexed with B5, and referenced
as outlined below)
BIN is the storage area used to hold the quantities ynique to any
call of ROUST or TRANSYM. Since both of these subroutines are re-
cursive (i.e., call themselves), each call of either of them must
have a space to store'its parameters and temporary quantities
which is separate from the space used for the last call. In other
words, when ROUST, for example, calls ROUST directly, the two
operations of ROUST must use different storage areas, leat the
second operation destroy data pertinent to the first operation.
This separation of data storage is aceomplished by using BIN as a
"pushdown" 1ist. The nemes of data unique to an individual call
of ROUST or TRANSYM are given in the following table, along with
thelr relative positions in BIN. (Note that equivalence state-

ments in the listing make these assignments)

Name of datum _Relative location in BIN
For ROUST

IVAR BIN + O

GOAL BIN + 1

MAC BIN + 2

REXIT BIN + 3

QUAL BIN + 4

COUNTS BIN + 5

SW BIN + 6
~PAR | BIN + 7
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For TRANSYM
EXIT BIN + O
RR BIN + 1
VKEEP BIN + 2
TE BIN + 3
NKEEP BIN + 4
SUBXKEEP BIN + 5
SUBLKEEP BIN 4 6
P BIN + 7
Q ~ BIN + 10g

Whenever any of these/quantities is referenced by ROUST or TRANSYM,
B5 1s used for the reference. The contents of B5 1is incremented
108 each time ROUST calls 1tself, and decremented 108 éach time
ROUST exits to itself. (For TRANSYM (B5) is incremented and
decremented 118). This insures that the data calls referenced on
each level of operation of ROUST (or TRANSYM) will be unique to

that level.

1.2.2.10 Overflow of Tables

|

Alliof the tables and storage areas listed above except TRAN and
PREC must be capable of containing a number of symbols which is de-
pendent on the size of the input string for any compilation. Hence,
every time an entry is made into any of them, a check is made to
insure that they have not grown to be larger than the space alloted
to them. For each of the tables, there is a quantity which 1ndi-

cates the upper bound of the storage area alloted. The actual value
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of this checking parameter depends on how the parameter is used to
make the overflow check., The parameters are listed in the follow-
ing table for each of the storage areas, and a formula is given
for each which specifies its value in terms of the octal number

(n) of words allotted to eaeh parficular table.

Table Overflow Variable Formula for value
STAB | NEGMAXTB - = =STAB - n

INPUT INSTOP =n

OTP. 'NEGMAXOT = -n

OTPX NEGOTPX = -n

SUBL ~ (NsTOP) =n

ISUBIX (SUBXSTOP) = ISUBIX + n

BIN NEGBIN = -n

Parentheses 1ndicate that the value of the formula should
be the quantity in the lower address position of the vari-
able enclosed 1n parentheses, whereas variables not enclosed

in parentheses should be equated to the value of the formula.

In the event that any of the tables should overflow during a compi-
lation, a return jump is executed to OUTBOUND, which is a subroutine

to handle the overflow (section 1.2.3.6).
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1.2.3 The Subroutines of the Compller -~ Detall

This section gives a detailed explanation of the theory of opera-
tion of the subroutines of the compiler. The routines will be ex~
plained individually, and each explanation willl be followed by a
non-detailed flow chart of the routine. The policy followed 1n
this manual will be to present several explanétions of each rou~
tine, each one covering the same basic ideas, but on a different |
level of detail. The first and most general explanation of the
routines has already been given in section 1.2.1. This section
will present the material again with enough detail to give a
thorough understanding of the ideas behind the programs, but will
not deal in detail with the methods used to implement these ideas.
The flow charts presented in this section uphold that philosophy,
but provide the connecting link to the next level of exposition.
The detailed explanation of the method is presented in the form of
word descriptions of the individual algorithms which compose each
routine. Both these word descriptions and the flow éharts to be
presented below follow the listing in format. That is, the boxes
on the flow charts will correspond in position to the paragraphs
of the detailed listing descriptions, and the paragraphs of the
listing description will in turn correspond in position to the
commands on the listing. Hence the exposition will "cascade" from

the first brief description to the listing itself in an orderly,

but ever expanding fashion. In essence, we exposit 1. The entire

system, then 2. The routines of the system (this section), then 3.

the parts of the routines, and finally 4., The commands which com-

prise these parts (the listing). The word descriptions of the
of the 1listing, and the listing are found in Appendix
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ROUST is a recursive subroutine which in effect diagrams the
input string for a compillation according to the syntactic informa-
tion about the system which is given by the metalinguistic descrip-
jeseription of the system. The two guiding input parameters of
ROUST are IVAR and GOAL. IVAR is the address of a spot in the
syntax tables STAB indicating the part of STAB from which ROUST
should continue the dlagramming process. GOAL is the name of a
syntactic construction which ROUST is to try to build by dia-
gramming the input symbols. When ROUST is called, it will begin
»t the spot specified by IVAR, and continue through the syntax
tables, consulting the input string for guldance as 1t goes, until
either (1) it has diagrammed the input string to the point where
it has found the longest group of input symbols following the
starting point which will form the syntactic construction specified
as the GOAL, or (2) it has determined that there 1s no group of
symbols after the starting point which will form the requested syn-
tactic construction GOAL. During the process, a marker (in fact
in B#) indicates which element of the input string must be the first
of the requested syntactic construction. If ROUST finds the GOAL,
it will move this marker to the next symbol after the last one
included in the construction GOAL. If ROUST cannot find the GOAL,
it will leave the marker where it was. Hence, at any given time in
the diagramming of the input string, all the symbols to the left of
the marker (i.e., at the first part of the string) will have been
discovered to be in some syntactic category, and all the symbols
to the right of (and the one "under") the marker will be

un-diagrammed.
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Each step through the syntax tables taken by ROUST causes another
recursion of ROUST. That 1s, there 1s one level of recursion for
every step ROUST has taken in the tables. Hence, 1if at any point
ROUST discovers that it has mistakenly taken the wrong path, it
may "back-up" and try other paths which might lead to a vaild
diagram of the input string. Not until ROUST has examined all
possible paths and found that none of them lead to a correct
diagramming of the pertinent symbols of the input string will it

indicate that the GOAL cannot be found.

The decision whether or not a path is a valid one is made by con-
sulting the Boolean matrix PREC. Recall that PREC gives
information whether the beginning syntactic component of any sen-
tence can ever lead to another given syntactic element by
progressing through the sentences from left to right. In the
progression through the sentences, ROUST checks PREC every time it
comes to the beglinning of a new sentence to see whether or not it
can get to the GOAL by following the path beginning at the new
sentence. If PREC says yes, 1t continues through the sentence.

If PREC says no, ROUST backs up to look for another path.

The progression through the syntax tables is as follows: Beginning
at some sentence (welwill explain how the process begins 1in a
mement) ROUST proceeds left to right across the sentence checking
to see whether the symbols in the input string will form (in order)
the syntactic components specified by the sentence. As long as

the input string meets the requirements of the components of the

sentence, ROUST continues to the right until finally it reaches



38.

]

the subject of the sentence. It then procéeds to the sentence
whose first component is the subjdct it has in hand and continues

through that new sentence.

Which sentence 1s used as the first one in any sequence is deter-
mined by the elements of the input string. In order to find the
starting sentence, ROUST picks up the element of the input string
Just after the marker, and takes the sentence which has this
symbol as its first component as the starting sentence of the

sequence.

The tree form of STAB, of course,makes clear the alternative paths
that may be taken in progressing through the sentences. Every time
PREC indicates that 1t will not pay to continue through a sentence
or the input string will not form a syntactic component in a sen-
tence, ROUST backs up to the last Jjunction in STAB that it passed,
and tries the alternative path. If it has examined all the alter-
natives and 1s forced to back up to the beginning of the first
sentence it started with, then it indicates that the input string

cannot be dlagrammed as requested.

The checking of syntactic components of a sentence to determine
vhether or not 1t is valid to continue through the sentence requires,
f course, another call of ROUST, since, in fact, it is precisely

the function of ROUST to perform such a check.
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The progression through the syntax tables and the decision process
involved are best illustrated by an example. Conslder a system

described by the following seven syntactic sentences.

=31: SVAR => {0 A}
=:: SVAR => (0 B}

A
B
C =:: SVAR ==> {0 C}

SVAR =:: TERM => (LDA @l]

TERM @ SVAR =:: TERM => { 3

TERM =:: TSUM => {@l]

TSUM + TERM =:: TSUM ==> [@3
STA O t

'@l[ t & ti-_“

FAD O t}

These sentences would be written using the notation of the actual
implementation as follows:

A! SVAR $g A3

B! SVAR $g B3

C! SVAR $g C3

svAR! TERM $LDA 513 3.

TERM X o SVAR! TERM $6 3 §
FMU B 1 9 3 T

TERM! TSUM $6 1 39 3

TSUM + TERM! TSUM
$6.3°9
sTa g €
BLEEH#EL T
FAD €3
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(Note: These sentences prescrlbe a very simple arithmetic scan
similar to the one used in the implementation of ALGOL 60. Need-
less to say, ‘the ALGOL specifications are more complicated, partly
0 gain increased efficiency in the output program, but the elemen-

bal ideas are the same.)

‘or the prupose of explaining the action of ROUST, we shall draw
-he tree storage map of these specifications in the form of a
natrix in which the rows form the sentences of the description
ind the linkages are indicated by arrows. This form of map will

11low us to speak more easily of areas and elements of the tree:

TRAN STAB
1 2 3 4% 5 6 7 8 9 10
A 1 |svar| ¢ | & |'se"| a | 3
B 2 lsvar| ¢ | & |'se"| B | 3
c 3 lsvar| $ | ¢ |'se"| ¢ | 3
SVAR || 4 lterM| $ | T | D afser| 6] 2|33

oerM || 5 ) x fsvarfrErM| $ | 6 | 3 | 9 [|'cr"|'mB"| F

(O
=
-
i
1o
=
ol
lwl

n CR" "TB" S

o)
w
o |

TSUM .|| 7 + |PERM [TSUM | $
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The Boolean precedence matrix PREC would have entries for the

above table as follows:

A B C SVAR TERM TSUM
A 0 0 0 1 1 1
B 0 0 0 1 1 1
C 0 0 0 1 1 1
SVAR 0 0 0 0 1 1
TERM 0 o) 0 0 1 1
TSUM 0 0 0 0 0 1

Note in the tree diagram of STAB that the arrows indicate links
explicitly entered in the tabling of STAB. Entries across rows
of the matrix would be entries in successlve words of memory in

the tabling of STAB, but there is neither an explicit nor

implicit 1link between rows unless there is an arrow shown in the
diagram. In the following examples, we will refer to "addresses"
in the syntax table by giving ordered pairs (p,q). For example
the ordered pair (7,3) picks the element of STAB which is at
the intersection of row seven and column three, namely the
element TSUM. Similarly (6,1) would be TSUM, (5,10) would

be F, and so on.

We now give an example of the operation of ROUST 1n scanning the
simple input string
A+BXC;

To explain the scan of this statement, we 1list in columns some of
the parameters at the various levels of ROUST, and list one row
for each step through the tables. We assume that the initial call

of ROUST set the goal as TSUM.
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Input

Symbol  IVAR GOAL PREC[ (IVAR),GOAL] Comments
Recursion
Level

A 1,1 TSUM 1 1 continue at SVAR

4,1 TSUM 1 2 continue at TERM

5,1 TSUM 3 check for X, not find-
ing,

6,1 TSUM 1 3 continue with TSUM

(+) 7,1 TSUM check for +, finding,
continue across the
same line.

7,2 TSUM 5 call ROUST to check
for TERM.

B 2,1 TERM 1 6 continue at SVAR
| TERM 1 continue at TERM
(x) 5,1 TERM check for X, finding,
continue across the
same line.

5,2 TERM 9 call ROUST to check
for SVAR.

C 3,1 SVAR 0 10 note that we have found
GOAL. Return since PREC
[SVAR, SVAR] = 0

5,3 TERM 1 10 note we have found GOAL,
but do not return as
PREC[TERM,TERM] = 1.
Instead, continue at
TERM.

(;) 5,1 TERM 11 check for X, not finding,
- try alternate.

6,1 TERM 0 11 PREC[TSUM, TERM ]=0, so
return. Since we found
the GOAL along the way,
note success.

7,3 TSUM 1 6 note we found GOAL, but
PREC[TSUM,TSUM]=1, so
continue at TSUM.

(;) 7,1 TSUM 7 check for +, ginee there

is no +, and there are
no alternatives, return

Bk BOKE §13%"EntoWaY.
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In this table, the entries under the column "Input symbol" give

1. If no parentheses surround the symbol, the symbol which
we used to find the entry in TRAN which led to the

correct spot in STAB.

2. If parentheses surround the symbol, the symbol with
which a comparison was made to determlne whether a possi-

ble path through the syntax table was valid.

The entries under the column "Recursion Level" give the number of
times ROUST has called itself without returning. If e 1is the
total number of times since the beginning of the diagramming pro-
cess that ROUST has been called, and x 1is the total number of

times 1t has returned (to the routine which called it), then

Recursion Level = e - X

at any time in the operation of the program. Note also that the

Recursion level gives at any time the number of separate data

groups in BIN for ROUST. (see BIN, section 1.2.2.7).

In terms of a diagram picture, the following diagram shows when the
lines of the diagram would be drawn. The correspondence of this
picture with the table above is given by the column "Recursion

Level", which is repeated in the picture.
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Recursion Level "Diagram" of the input string

+ B X Cc

1 svar

term

iBE -

tsum

(svar]
(term)

O 0O N o u F W

10 |svar]

10 L term |
11

12

6 tsum

7

This exa@ple shows that ROUST continues calling itself recursively
until one of two things happens.

1. The precedence matrix PREC indicates that continuation
forward at the path indicated by the subject of an
entry is invalid

2. A check of symbols in the string, or a call of ROUST to

check for a syntactic term indicates that the input sym-
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bols will not form the necessary syntactic units to

continue on the path through the syntactic statement.

When either of these conditions occurs, ROUST returns (reducing
the recursion level by one, of course) to either the error exit or
the normal exit depending on whether or not the GOAL requested was
found on the level from which ROUST is exiting. If the error exit
is chosen, a test if made on the level to which ROUST returned to
see whether or not the GOAL was found on that level. If the GOAL
was found, ROUST puts into the output string the output quantity
for that level (see below) and exits by the normal exit for that
level. If the GOAL was not reached, ROUST tries any other paths
possible on the current level, and if there are no more paths

to try, exits via the error exit for the current level.

To summarize, the diagramming decisions are made as the recursion
level increases. That 1s, as long as the paths chosen continue to
be valid, the recursion level increases with each step. When a path
is discovered to be invalid, ROUST reduces the recursion level, and
tries another path unless a GOAL has been reached somewhere along
the way up. If, at any point during the backward progression (i.e.,
reducing the recursion level) the process reaches a point where a
GOAL had been reached, then the downward progression 1s one where
some output is given at each level, and an exit is made to the level
below until the process comes to the point where the GOAL reached

had been requested.

The downward progression is then one of two types:
1. Trying new paths or

2. (Generating the output string
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depending on whether or not a GOAL had been reached on the way up
at some point. It 1s very important to note that the discovery of

a GOAL does not necessarily mean that ROUST should return indicat-

ing sucess. It must return only when it has not only found the

GOAL but also has used as many symbols in the input string as

possilile to do so.

The generation of the output string, accomplished during some down-
ward progression (i.e., reducing the recursion level) is
accomplished by means of the quantity OTCEL which is local to the
level of recursion. OTCEL holds the tentative output entry for the
level of recursion. If the action at level P on the way up was
the checking of components in the input string (perhaps by calling
ROUST) then OTCEL for level P contains a type 2 OTP entry (the
indirect type) referring to the section of OTP where the output
links for the component being checked are in OTP. This address is
put in OTCEL, when the GOAL was reached,say at level Q, (Q > P).
The information that OTCELP was to contain this quantity was

passed to level Q as a parameter in the same manner that the GOAL

was passed..

If the action at level P was to continue the diagramming process
by starting at a new sentence in the syntax table (e.g., levels

1, 2, 8 ... 1in the example) then OTCELP will contaln an entry of
type 1 for OTP (the direct link type) which gives the address in
STAB of the definition corresponding to the sentence whose subject

was the name of the new sentence selected for continuation.
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The process is illustrated by the following table of output for the
example given above. In this table we give the recursion levels as

before, but now indicate the action taken on the downward progression

rather than the upward progression. Hence to see the action taken
as time progresses, one must start at the end of the table and work

backwards. Assume that the output is built up in OTP starting at

OTP [1].
Recursion =~ ' Output Time Sequence
_level (left to right, bottom to top)
1 4 xxxxx xxxxx STAB [1,3] T
2 4 xxxxx xxxxx STAB [4,3]
3 4 xxxxx xxxxx STAB [6,3]
Y X XXXXX XXXXX XXXXX
5 O 00000 00000 OTP [2] T I
6 4 xxxxx xxxxx STAB [2,1] |
7 4 xxxxx xxxxx STAB [4,3] |
8 X XXXXX XXXXX XXXXX |
9 0 00000 00000 OTP [1] T | ,
10 4 xxxxx xxxxx STAB [3,3] | |
| ;

10 4 xxxxx xxxxx STAB [5,5] ‘ |
11 |
11 :

6 b xxxxx xxxxx STAB [7,5]
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The resulting output string in OTP may be placed in evidence by
following the time sequence arrows. At the end of the entire

process, OTP would have the following entries:

J_ OTP [J]

1 4 xxxxx xxxxx STAB [3,3]
2 b STAB [5,5]
3 0 OTP [1]

4 X XXXXX

5 4 STAB [4,3]
6 4 STAB [2,1]
7 4 STAB [7,5]
8 0 OTP [2]

9 X XXXXX

10 4 STAB [6,3]
11 4 STAB [4,3]
12 4 STAB [1,3]

where xxxxx 1indicates irrelevant quantities.

If we denote the definition in row k of STAB by Mk’ then we

may indicate the contents of OTP by:
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Expressed in more conventional function notation (see OTP section

1.2.2.5) the string in OTP would be:

M., (M5 (M3 , xxxxx, M (MQ)), XXXXX , M6(M4(M1)))

Recalling the symbol strings which composed the definitions Ml
through MT’ the formation of the final output string (which

TRANSYM generates from the string in OTP) would be:



(v

sSp
sp

er
tab

H

Sp

Sp

cr
tab

= o B

Sp

Sp

cr
tab

=

sSp

S5p

cr
tab

[w B L

sSp

Sp

Lf?i



50.
which reproduced on printing equipment would yield:

IDA O A
STA O T
IDA 0 B
FMU O C
FAD O T

which is the translation of the input string specified by the meta-

linguistic syntax sentences.

In the example given in the preceding paragraphs, the only junction
in the tree form of the syntax table was at the components follow-
ing TERM. (X and TSUM). In this case, X was a component of a
sentence and TSUM was the subject of a sentence. Since the
tabling of the metalinguistic sentences is by the order of the sen-
tences, 1t happened that we specified--by-ordering the sentences
that ROUST should check for X after it had a TERM before 1t
should decide to call the TERM a TSUM and continue at the sentence
beginning with TSUM. Had we reversed the two sentences beginning
with TERM in the original specifications, ROUST would have gone
directly from TERM to TSUM without checking for the symbol X, and
would, in fact, check for X after it had eventually discovered la-
ter that the input string would not form a TSUM at that point. It
is clear that the diagramming process would still work in this case,
since we would eventually check the input string against all the
symbols which could follow TSUM (namely +) and find that X was
not one of these, and so come back to the check for symbols which
could follow TERM (namely X). However, since the successful paths
through the syntax table are all eventually determined by the sym-
bols of the input string, i1t would seem wise to check for symbols

at any junction before wandering off to the beginnings of any other
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sentences. Many times this will enable a decision to be made much
more quickly (as is clearly the case with this example). Of course
the whole question of which sentences are investigated first can be
determined by the ordering of the sentences in the original set of
specifications. But' it is: offen difficult to see in a large set of
specifications how the ordering will effect the efficilency of the
d* sgramming process. At the very least, it is a big nuisance to do
any more than a minimal amount of ordering of the sentences in the
original specifications. Hence, ROUST has been programmed to check
all the components following a syntactic element in the table before
it uses a subject to start off on a new sentence. Hence if the two
sentences in the specifications of the example beginning with TERM
had been reversed in order, the dlagramming process would acﬁually
have been the same as the one given. (Intuitlon dictates that the
best solution to the problem of diagramming efficiency would be a
thorough automatic analysis of the specifications as they were
being tabled to determine the best ordering, but this seems to be
a non trivial provlem, and was left for contemplation on rainy
evenings. The expedient adopted of having ROUST check components
before taking new sentences has, in practice worked well enough to

Justify postponing considerations of automatic ordering.)

The other expedient adopted in ROUST to cope with a problem presen-
ted by the ALGOL language specifications, was to allow for special
internal symbols which denote validity of syntactic sentences. The
output of pass I of the compiler compiling an ALGOL program is a
list of metalinguistic sentences specifying syntactic truths about
the particular problem being compiled. These sentences essentially

contain the information in the declarations of ALGOL, namely that
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such-and-such a variable is a real variable, and another 1s an inte-

ger variable and so on. But ALGOL allows these declarations to apply
only to parts of any problem, according to the block in which the
declaration occurs, and hence if we specify that AXPQ, for example,
1s a real varlable in one part of the program, indeed this does not
imply that it 1s a real varlable for the whole program; specifically
i will not be 1f 1t 1is declared to be somethlng else in another
block. Therefore, it 1s necessary to specify in the syntactic sen-
tences output by pass I over what range of the input string a

given sentence 1s valid.

This specificatlion of validity is accomplished by the use of special
internal symbols 3438 through 3578. The compiling function ;}-5,
used during the first pass, enters the qualification words into
TWOTRAN which give the range of the input string associated with
each one of these special symbols (see section 1.2.2.2 -~ TRAN).

At each step through the syntax tables, ROUST checks the TRAN entry
for each syntactic element of STAB thé% is passes to see if this
TRAN entry is a qualification word (this decision is based on the
sign bit of the entries of TRAN ... the sign bit is "1" for the
qualification words, "O" for all other entries). If the TRAN
entry is a qualification word, ROUST then checks to see whether the
current index of the input string is within the limits specified by
the qualification word. If the index is within limits, then the
sentence in which the qualifier appeared is still considered to be
valid; 1f not, it is considered to be invalid, and another path is
Investigated. However, since we do not wish to pass any Junction
vithout checking all sentence components at the Junction, the quali-
Clers at any Junction are not checked until all the components have

been checked and found not to meet the restrictions imposed by the
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input string. In addition, if there 1s more than one qualifier at
any Jjunction, the path followlng the qualifier with the smallest

range containing the index of the input string is chosen, this con-

vention being dictated by the block structure of ALGOL.

The following simple flow dlagrams give with increasing detail the

interconnections of the processes described in the preceeding para-

graphs.
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f.2.3.2 TRANSYM

ANSYM 1s the subroutine which transforms the definition linking
fist which ROUST constructs in OTP into the £in4dl output string for
i given pass of the compiler, forming this final output string in
OTPX. As outlined in detall in the description of OTP (section
1.2.2.5) OTP is a Polilsh-like string which links the "functions"
which are the definitions of sentences together. OTP 1s further
arranged so that the link to the "parameter" strings of the defi-
nitions occur in successive words of OTP after the link ‘to the
definition in question. That 1s, for a definition referenced in
OTP [k]. bharlinw to the nth parameter of that definitbn, ( GJn)
is found in OTP [k+n]. This arrangement of definition "1links"
allows TRANSYM to put together the definitions specified by OTP in

a reasonably strailghtforward manner.

TRANSYM then, is basilcally composed of a set of interwoven sub-
programs which recognlze the metasymbols which occur in a definition
and take the apbropriate actlion in each case. We shall explain here
in general terms the action TRANSYM takes for each of the metasym-

bols.

1. The metasymbols $ , X and TE

The symbols $ and '3: are used as parentheses to enclose defini-
tions in the syntactic sentences. However, since the definitions
may be in face syntactic specifications, they may include definitions
themselves, in which case special conventions must be put into effect

while dealing with the inner definitlons.




56.

Of course, one of the primary duties of the parentheses is to indi-
cate the end of the definition. ROUST specifies that the initial $
is not part of the definition: Furthermore,. if the parentheses

and 3 occur within the definition, they must be paired in proper
parenthesis fashion; hence TRANSYM determines that it has reached
the end of a definition when it has found one more 3 in the defi-
nition $ ‘'s.
Where the definitions of sentences are themselves syntactic
sentences containing definitions, the EE 's serve to indicate
which part of thé syntactlc sentences the parameter string designators
G}n' and function deslgnators -:},n, refer to. The convention

is that if the number of :EE,S preceding a 6> or ‘E} is
equal to the number of $ 's to the left of the @ or 3" P
then that 6? or ‘E% applies to the outermost definition, and
hence must be treated by TRANSYM. If not, the EP or E} applies

to an inner definition and in thils case TRANSYM must pass along

the 63 or Ek together with the L 's and all other metasymbols
associaﬁed with the occurance of the ‘6) or :3? (namely ¢.)i#
or EZ ) in their original form. That is TRANSYM must treat them
as ordinary symbols. Hence, each time a series of EE ’s is
encountered, the number of them in sequencé is counted, and compared
with the current count of ﬁE \s thus far passed. If the counts
are equal, the IE ’s are ignored and the following 6> or ?3: is
treated normally; if the counts are not equal, the 1&5 ! s and the

metasymbols following them are passed on as normal symbols.
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2. Paremater string designators, m & p:l:l: PPP\‘P¢ Pﬂ?PP PY

TRANSYM fundamentally picks up the symbols in a definition in order
and puts them into the output string OTPX. However, when a para-
meter string desilgnator 1is encountered (assuming that it has the
proper number of s preceding it) TRANSYM then calls 1tself,
specifying the definition named by the parameter number n, to
output the symbols of the parameter string in place of the desig-
nator. The primary input parameter of TRANSYM is the location in
OTP of the link that specifies the definitlon TRANSYM must output.
TRANSYM finds the address of the parameter string (definition) by
consulting the entry in OTP which occurs n words after the 1link
whose address was supplied as an input parameter to TRANSYM. In
calling ltself, TRANSYM specifies to the next level in the recur-
sion the address in OTP of

1. this word (i.e., the one n words after the current

OTP address) if the link in this word 1s direct, or
5. The address which this word contains if the link is

indirect. (see OTP -- section 1.2.2.5)

When TRANSYM comes to the end of the second definition it exits
to the last level of recursion, and TRANSYM continues on that level

as before.

However, 1f the parameter string designator is followed by a sub-
stitution 1list, TRANSYM enters the indicated substitutions into a
substitution tables SUBL and SUBX before calling itself to effect

the instantiation of the parameter string. The variable to be re-
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placed in the parameter string is entered into SUBL as described in
1.2.2.8, and the string following the # 1is entered into ISUBIX as
1ndi¢ated in 1.2.2.9. Since, however, the string specified to re-
place the variable may in general be composed of any of the allowable
symbols of a definit.ion, including the metasymbols, 1t is necessary
to analyze the symbols before putting them into ISUBIX so that they
are reduced to the "proper" string containing no metasymbols.

Since this task 1s exactly the function of TRANSYM, we indeed call
TRANSYM itself to reduce the substitution string to the simple form.
Tn order that TRANSYM convert only the substitution string, we
specify that TRANSYM shall exit whenever it encounters the metasym-
bols 4. or E{ since one of these two symbols must appear after
each substitution string. Once all the substitutions have been
entered into the substitution tables, TRANSYM proceeds to call it-
self for the instantiatlon of the parameter string as in the case
where no substltutions were indicated. But when TRANSYM returns this
time, any substiltutions entered into the substitution tables for the

instantiation of the parameter string are removed from the substitu-

tion tables. Therefore, at any given time during the operation of

TRANSYM, the substifutlon tables contain a list of the substitutions

currently in force.

Each simple symbol 1s checked against the substitution tables before
1t is put into the output string OTPX (see "simple symbols% below).
Note that 1t 1s possible to have several strings specified to be
substituted for the same variable in the substitution tables at one
time. Tn this case the last entry (the latest in time) is the one

valid for the substitutlion. Nested substlitutiaone are effected nor-
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mally by this process, since all the symbols in the substitution

strings tabled have been reduced by TRANSYM and therefore have had
substitutions indicated by the previous contents of the table done

on them.

3. Function deslgnators Em_, q_ PPP,,.PJ‘; PPP.. P¢ .\.12

Function designators in the definition string of any sentence indi-
cate that a special string function n should now be called to
transform the parameters of the function designator into a string
and place this "output" string in TRANSYM's output string OTPX.
Hence, when TRANSYM encounters the metasymbol j§f in its progress
through a definition, 1t merely transfers control to the 1ndicated
function. If this function has parameters (some do not) these
parameters (i.e., the strings enclosed 1n the meta brackets [

and :ﬂ ) are placed at the current end of the output string OTPX,
where they may be used by the function being called. As for the
substitution»strings, the function parameter strings may contailn
any of the symbols legal in a deflnition, so TRANSYM is called to
effect the reduction of these parameter strings to the simple form
in exactly the same manner as for the substitution strings explalned
in the last paragraph. Since TRANSYM normally places the reduced
string in OTPX, it 1s Just left there for the function, and the
first and last address of the parameter strings are supplled to the

function so that it can locate them in OTPX.
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4, Simple symbols

The main loop of TRANSYM sequences through the symbols of the
definition TRANSYM is workiling on at any recursion level and as
described above checks them for the metasymbols which indicate spe-
clal actions, Most of the symbols, however, wlll be simple symbols
and, in this case, the symbol 1s merely transferred to the next
avallable space in OTPX. However, before the symbol I put into
OTPX, TRANSYM must consult the substitution tables to make sure
that the symbol 1s not on the list of symbols to be replaced by a
string. If the symbol 1s in the substitution 1list, then, of course,
the string indicated by the substitution table 1s put into OTPX in

place of the original symbol.

The following brief flow diagram indicates the relation of the
operations described above to each other, and provides the position
correspondence of the operations to the code 1n the listing which

carries them out.



APPENDIX
USE OF THE INPUT-OUTPUT TRANSLITERATION ROUTINES

The translator will consist of three closed subroutines:
INTRAN, OUTRAN, and DEFINE. We define a characier as the unlque
action of an external equipment when directed by {or produqing)
an n-bit code, when n 1is the number of bits required to define
all possible actions of any particular external equipment
(usually 6). Examples of characters are

Pp (. 3 (=carriage return lower case

~

Define a symbol as a group or string of characters which are to
be represented in the machine by a p-bit code, where p 1s the
number of bits required to represent the entire set of internal
codes. Again, p may be 6 bits, but it 1s intended that the
internal code be of any size desired by the programmer. Examples
of symbols are

begin end step .LDA EQS A 2

INTRAN :

INTRAN 1s a closed subroutine wlth one output parameter --
that parameter to be transmitted via the accumulator. A return
Jump to INTRAN will cause the following action: Characters will
be read from some previously specifled input equipment (see DEFINE)
and translated according to a previously specified table, into
one symbol. Control will then be returned by the return jump
mechanism with the translated symbol appearing at the right end of
the accumulator. If the symbols read from input equipment cannot
be translated, a specified “symbol distinct from the defined
symbols will be given as the output. If there are no more
characters available from the external equipment (as when the in-
put operation has been concluded), a character distinct from the
above characters will be returned as output.

At the time when INTRAN outputs the end-of-input character,
it will restore itself for a new input string. Hence, the first
time a transfer to INTRAN 1s executed after 1ts output was the
end-of-input character, it will initiate a new input from the
same external equipment and using the same external code as for
the last input operation (unless the code or equipment has been
re-defined by operation of DEFINE).

OUTRAN:

OUTRAN 1s a closed subroutine with one 1nput parameter,
that parameter to be transmitted via the accumulator. A return
Jump to OUTRAN will cause the following action: The internal
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symbol found in the right end of the accumulator will be translated
to a string of symbols according to the previously defined table,
and output on the previously specified output equipment. The last
symbol supplied to OUTRAN in any output sequence must be the
symbol used to denote end-of-input. Undefined symbols will not
be translated, but will be ignored. In case there are several
strings of characters representing the same internal symbol
synonyms), the output will be the one specified by the table
see DEFINE).

DEFINE:
, DEFINE is a closed subroutine with several input parameters
which, when executed, will construct translation tables to be
used by INTRAN and OUTRAN and specify the external equipment to
be used for input-output operations. These definitions will
remain unchanged until DEFINE 1s executed again. The operation
of DEFINE 1s determined by 1ts 1nput parameters:

1. If the A register is zero, the input-output
equipment to be used by INTRAN and OUTRAN
will not be redefined.

2. A non-zero upper address of A specifies the
entry address of an "actuate input equipment
routine" to be used with subsequent input
operations. The specifications for such
routines are found on page

3. A non-zero lower address in A 1is the address
of an "actuate output equipment routine" to
be used with subsequent output operations.
The specifications for such routines are found
on page

b, TIf the Q register is zero, the translation
tables will not be redefined. If the @Q regis-
ter 1s positive and non-zero, the translation
tables will be defined as those tables beginning
in the location 1n memory whose address 1s in
the lower address position of Q. If the Q regils-
ter is negative, a new set of translation tables
will be generated at the address specified in the
lower address position of @Q from.the character
string available at the input equipment specified
in the A register. The terminal address of this
newly defined translation table will be given as
an output parameter in the lower address position
of the accumulator. If the contents of the lower
address position of A 1is zero, the table-defining
character string will be expected to be avallable
at the last specified input equipment. If hew
"tables are being constructed (sign bit of Q=1) then
the upper address potition of Q must contain either
2008 or (the maximum internal symbol value) + 2

which ever of these is greater in value.
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The character string defining the translation tables 1s de-
signed so that the translating routine is completely independent
of the particular equivalence table being used. Since DEFINE can-
not have a priori knowledge of the representation of the characters
of the deTinition string, it must assign meaning to these
characters by virtue of their position in the string. However,
the equivalence table may have the following properties:

1. A symbol may be composed of more than
one character.

2. More than one symbol may be placed in
correspondence with one internal code.

3. The length of the equivalence table 1s
arbitrary.

Therefore it is necessary to define several metasymbols for
punctuation before the body of the defining string may be presen-
ted. One of these characters 1s used to terminate each symbol.
Another is used after a 1list of symbols equated to the same inter-
nal code. A third is used to terminate the defining string. (We
might define the first to be a comma, the second to be a carriage
return, and the third to be a Flexowriter stop code, for instance.)

The assignment of groups of symbols to internal codes 1s by
position. Hence, following the group of characters defining the
metasymbols is the group of symbols to be assigned the internal
code zero, then the group of symbols to be assigned the internal
code one, then two, and so on. :

In order to describe the composition of the defining string
more formally, define a format character as a character which 1s
used in this string as a separator, or character to be used for
defining the tables, and denote such characters by f[i] where
i indicates the particular format character in question. There
are 4 format characters which must occupy the first positions in
the definition string:

Character 1. The upper Case character (if used) (denoted
fii].

Character 2. Any character (essentially a positioning
character).

Characfer 3. The Lower Case character (if used) (denoted
T[3]). If the alphabet used for the external code does nodt
contain upper case and lower case characters (as for IBM
equipment), Characters 1 and 3 must be the same character,
though they may be any character in the alphabet. (In this
case, the fact that they are the same character is the only
information used by DEFINE.)

Character 4. Any character (as character 2, a positioning
character)

Character 5. (denoted £f[5]). This character will be used
in the following string of characters to denote the end of
a symbol.




Character b. (denoted f[6]). This character is the
character which will be used in the followlng string of
symbols to denote the end of a character string associlated
with a particular internal symbol.

Character 9. Beginning with character 7 1s a list of sym-
bols which are to be ilgnored by INTRAN. Following this
string of symbols must be the character £[6]. (This list
may be empty, but the character £[6] must be present
whether the list is empty or not).

Following the above string of characters will be a string of
characters designating a symbol to 1ndicate the end of input
strings called by INTRAN. This symbol will also be used to indi-
cate the end of the definition string. The symbol may be any
string of characters. The - symbol must be followed by the
character f[6]. This ends the preface to the translation table.

Following the above string of characters is a list of symbols
separated by the characters f[5] and £[6], which defines the
translation. The list of symbols before the first f[6] is the
1ist of symbols which INTRAN will translate into the internal
symbol zero. The list of symbols following that f[6] and preceding
the next f[6] is the 1list of symbols which INTRAN will translate
into the internal character one, and so on. Every symbol in the
list MUST be followed by the character f[5]. The lists may each
be composed of an arbltrary number of symbols, and each of the
symbols in the list may be composed of an arbitrary number of

characters.

The characters f£[5] and f[6] may be defined as symbols, but
they may not be used as characters in a symbol composed of more
than one character. (f[5] followed by F[5] defines £[5] as a
symbol, and f[6] followed by f[5] defineg§ f[6] as a symbol.)

The last character of the definition string must be followed
by the "end-of-input symbol" which appeared at the head of the

string.

The internal symbol one greater in value than the last defined
internal symbol will denote the "end of input" symbol for INTRAN
and OUTRAN.

The internal symbol two greater 1in value than the last defined
internal symbol will denote the "error" symbol which INTRAN outputs
upon discovery of an illegal input sequence.

Example

The following 1s an example of a definition string as it might
have been prepared on a Flexowriter to define the Flexowriter codes
to the translating routine. 1In order to give a complete indication
of the characters punched on paper tape, non-printing characters
have been noted at the right margin where it is not obvious that
they have produced a punch.



In this example, f[3] is a comma, and f{4] 1is a carriage
return.

Xx, Preface, which was UC X LC x , CR
actually produced by delete tape feed BS CR
these . operations 5Top code CRH

O,
1,
2,
3,
L,
5,
7
8

2

3
BEGIN, BEG,
END,

stop code



EXTERNAL EQUIPMENT ACTUATING ROUTINES

These routines, which may be many in number, will be closed
subroutines providing a 1link between the translation routines and
any external equipment which may be associated with the 1604 at
various installations. It is intended that these routines should
have no knowledge of ANY codes assocliated with the external equip-
ment, but should only be capable of operating the equipment and
passing along the information received from the equipment to the
translator, or from the translator to the equipment. The purpose
of so separating the functions of translation and equipment
actuation 1s to minimize the programming effort necessary to
make routines  operating on one type of external equipment oper-
ate on another type.: There will be two types of routines, those
for input and those for output.

INPUT ROUTINES.

Each INPUT routine will be a closed subroutine (entered
with a return Jump.) Each time an INPUT proutine is called it
will provide one character from external eqﬁipment and leave 1t
in the lower part of the accumulator. The accumulator will nor-
mally be positive on entrance. If the INPUT routine is entered
with the accumulator negative the routine will adjust itsélf so
that the next entrance will initiate a new input sequence and re-
turn. On this last type of operation of the INPUT routine, the
contents of the accumulator will be considered to be irrelevant
upon exit.

OUTPUT ROUTINES.

Each output routine will be a closed subroutine (entered
with a return jump.) Each time an OUTPUT routine is entered,
the accumulator will either be negative or will contain a
character in the lower part of the accumulator. If A 1is posi-
tive, the routine will output the character it finds in A. If
A 1s negative, the routine will adjust itself so that the next
time it is entered a new output sequence will be initiated. [
[Note that although the routines handle only one character for
each operation, 1t is clear that they may not necessarily input
or output one charachte at a time, since it is entirely possible
for the routines to store characters in their own storage until
a convenient number of characters for input or output have been
accumulated. ]




APPENDIX

DETAILED WORD DESCRIPTION OF THE LISTINGS

This appendix contains a detailled description of the parts
of the compiler written to correspond directly to the

listings of the compiler. In these descriptions, the tags
in the listings are listed 1in order at the left margin and
the description of the commands following these tags in the

listings follows the correspondlng tags.



TRANSYM: Detailed word description of the listing:

TRANSYM : Set P and @ to 0. P counts the left paren-
theses '$§ 1n a definition being outputted, and @

counts the "parentheses counters" E .

PI: {L[B1] 41is the next symbol in the deflnition belng out-
putted. If this symbol is $, add 1 to P and go to
B203, which will put the $ in the output string and

start over at PI with a new symbol}

B200: {1f L[B1] 4is a closing parenthesis 3 , check P to
see if it is the outermost one. If 1t is, return, if not,

go to B203 to put it in the output string.}

B201: {1f L[Bl] 4is a left parenthesis counter E 5
then look at the following symbols L[Bl] to see how
many of them are also E s. If the number of them
equals the number of left parens we have passed so far
(according to P) then

B204 discard all the E s and proceed to SUBS to perform
the function requested by the next symbol. If the counts
are not equal then put into the output string all the E s,

and proceed normally}.

B202 {We arrive here if the symbol L[B1] was neither z
nor $ » or the E s indicated that parenthesis

counts were not equal. Test P +to see if substitutilons



are to be made. ' If s@, proceed to SUBS which will check
the symbol against the rest of the speclal metasymbols.

Othersise...}

B203: {Output the character under conslderatlon L[B1]. Check
PUTIKR to see whether we are outputting into the output
1ist final output characters or functlon or string sub-
stitution parameters. If the former, dump OTPX onto
output equipment by calling ASSEMBLE. In elther event,
put the symbol in the output list, up the index of the
1list and go back to PI to go through the works agailn

for the next symbol in the definition under consideration.

SUBS ¢ {Check to see if the symbol L[B1] is any of the meta-
symbolsz » E s ¢ s br I . If 1t 1is any
of them, proceed to the routine which handles that type
of symbol (getting the address of the routine from
TLISTLNK). The routines are PARAM, FCN, RETURN, and
RETURN respectively. If the symbol 1s none of these,

then 1t must be a simple “#«s symbol.)

SIMSYM: {Having arrived here, the only thing left to check is
whether the simple symbol we know we have 1is in the sub-
stitution 1list or not. If 1t is NOT, proceed to B203
to put the symbol in the output list. If it 1s 1in the
substitution list, set up the loop which outputs the
string which the substitutlon 1list says 1is to be substi-

tuted for the symbol.}




B210:

CVRT s

PARAM ¢

{This begins a loop'which outputs the symbols 1n the
substitution 1list in place of the symbol for which

substitution has been indicated. The loop 1s terminated

by finding the character 3778 in the string.}

{This is a short closed subroutine which converts the
octal digit L[Bl+l] and the longest string of octal
digits following it to an octal number. It advances Bl
in doing so so that LIB1] 1s the first non digit
character after the digit string whcen the routine exits.

The octal number is left in the accumulator upon exit.}

{This routine 1s the one invokedvﬁhen L[bl] 4is found

to be . We first find the number of the
"parameter" of the definition that 1s wanted (by looking
at the octal digits following the Tao , then add RR
to thils local digit to give us the machlne address of
the link word in OTP which tells us where the definition
wanted is. RR always contalns the address in OTP of
the link which specified the definitlon we are currently
working on. Therefore adding n to 1t gets the address
in OTP of the nth parameter of the definition. (See OTP,
section 1.2.2.5). We étore the address of this parameter
link in TE, and then check to see whether the next
symbol 1s a Ei“ . If it is, we proceed to MACFORPM,
which calls TRANSYM to start working on the definition

which is specified as the parameter (whose 1link we have



just stored in TE. If the next symbol is not a I R
we know that the string designator has some substitution
specifications attached to 1t, and we proceed to enter
these in SUBL and ISUBIX before going to MACFORPM to start

working on the new definition.}

STARTSUB: {Recall that strings to be substituted for a symbol
may, in general contain any symbols of which may be put
in any definition. Since TRANSYM 1s designed to handle
all these symbols, the easiest way to handle all the
cases that might turn up in a substitution string 1is to
call TRANSYM to straighten them out to their final form
(1.e., handle string designators function designators, |
etc. which might be in the substitution string.) Hence,
at this point, we do, in fact, call TRANSYM. In doing
so, we must, of course, increase B5 by 11 so that the
data we are now working on will not be destroyed by the
call. At the same time we make sure that all the quanti-
ties we will need when TRANSYM comes back are safely
tucked away in BIN (namely we store SUBIX; the contents
of Bl and B6, etc.) Also we pass along the value of
RR, since the next call of TRANSYM will be working on
the same definition that we are now working on. (See
the last paragraph for explanation of RR). Just before
going to TRANSYM we change the value of PUTIKR so that
the output symbols from TRANSYM will remain in OTPX

where we can recover them, rather than being dumped out



on external equipment. (See B203, above.) We also
must store the address to which we wish TRANSYM to return
in EXIT (for the next level). We indeed know that
TRANSYM will come back after having dealt with the sub-
stitution, Since the symbols c\: and Y. will cause

TRANSYM to return to whatever called it. (See SUBS above).

B213: (Here begins a "start-in-the-middle" loop. Notlce that

8212  TRANSYM comes back to B212. Beginning at B212, we
set up the loop to transfer the output string provided
by TRANSYM to ISUBIX so that it willl be avallable as a
substitution string. We remembered to tuck the contents
of B6 away in BIN before calling TRANSYM, so we can
tell how many symbols were in the final string by com-
paring that value to the present contents of B6. Having
set up the transfer loop, the end test for the loop is
made first, rather than after one transfer since 1t 1s
possible to specify null strings to be substituted for a
symbol. We then proceed around the loop the maln part
of which begins at B213 until the string has been

transferred to ISUBIX.}

B214: {Having put the substitution string in ISUBIX, we add a
3778 to the end of the string to mark its end and then
check the next symbol in the definition to see whether
there are more substitutions specified. If there are,

we go back to STARTSUB to do the whole operation over



again. When filnally we comé across the EZ. which indi-
cates the end of the list of substitutions 1in the string

designator, we proceed to MACFORPM. }

MACFORPM: ({Having by now entered all the substitutlions which
were indicated into ISUBIX, we may proceed to call
TRANSYMFto go to work on the definitilon which was
specified by the string designator, and the address
of whose link 1s stored in TE (see PARAM above). We
have not yet determined, however, whether this 1link 1s a
direct or indirect link. We check this by looking at
the sign bit of the link (see OTP, 1.2.2.5). If the
1ink is indirect, we get the entry in OTP whose address
18 given by the indirect link. Having done this, we
now know that we ha&e a direct 1link, since we are
allowed only one level of indifection in OTP. We
sUpply this direct 1link to the impending call of TRANSYM,
storing it in RR (in the next space in BIN). (This,of
course,will allow the next level of operation of TRANSYM
to find the parameters of the new definition (if 1t has
any in the same manner this level did (see PARAM above)).
As for every recursive call of TRANSYM, we must tuck away
in the section of BIN reserved for thls level of recur-
sion everything we wish to have when TRANSYM returns.
This we do. We supply the exit address to the next
level, and call TRANSYM. When TRANSYM returns, we know

that all the output symbols which should have replaced



FCN:

B220

the string designator which caused the call of TRANSYM
have indeed been put into OTPX and that B6 has been
incremented appropriately, so we may now continue
considering the symbols of the definitlon we were working
on at this level. We do this by transferring to PI
after havling restored to théir proper places the things

we tucked away in BIN}.

{This part of TRANSYM is executed when 1t 1s discovered
that the symbol under conslderation 1s the functlon
designator 'zi- . The first thing done here 1is to
return Jump to'CVRT to get the number of the function
which should be executed. This number i1s then added to
the base of a transfer vector (the first entry of the
transfer vector being in FNBASE) to give the address to
which we must jump for the execution of the functlon.
This address is stored in TE. We then test to see
whether or not the function 1is to have any pargmeters
by looking at the first symbol after the function number.
If that symbol is a EZ , the function has no para-
meters, and we go to EXECUTE which transfers to the

function. }

{We arrive here only if the function has parameters. The
action taken if indeed the function does have parameters
follows the same line as for a string designator with a

substitution list. We call TRANSYM to output into OTPX




the untangled string of symbols which 1is the first para-
meter of the function. In doing so, we pass along to

the next level of TRANSYM the value of RR, since the

next level of TRANSYM will be working on the same defi-

nition that this one is working on. Also PUTIKR 1s set
to indicate that TRANSYM should retain the output string
in OTPX rather than‘putting it on external equipment,
since, of course, the function must have the parameter

avallable for 1its operation.

TRANSYM will return after having unravelled all the
symbols after the metacomma & up to the first Ct' or
:3[ . (This because these symbols cause TRANSYM to re-

turn to the routine which called it --- see SUBS, above).

When TRANSYM returns, we put the character 3778 in the

EXECUTE:

output list to 1ndicate the end of the first parameter
string and then check to see whether or not there are

any more parameters of the functlon. If the next sym-
bol in the definition string is a qL , then there are'
more parameters and we go back to B220 to have the next
parameter buillt up in the output string. When we filnally
have converted all the parameters, we then proceed to

EXECUTE, which finally calls the function. }

{By the time the program has arrived here, all the
parameters of the function to be called will have been
built up in the output 1list (if 1t had any). Having

saved the contents of B6 Dbefore we started converting



the parameters (in VKEEP) we may enter this quantity into
the accumulator and transfer to the address we have kept
in TE, which causes‘control to be turned over to the
function in question. This function must be written to
leave its output in OTPX and exit to PI. Hence, after
the function has done its Job, it returns to PI where
TRANSYM begins operating on the next symbol of the

definition. }

RETURN: This is a short exiting routine which gets the address
in EXIT (which presumably had been put there by the
routine which called TRANSYM) and, after having decre-
mented B5 by 11 to reset the pushdown 1list of data
to the proper place for the last level of TRANSYM, con-

trol is returned to the calling routine. }



ROUST: Detailed Word Explanation of Listings:

There are 8 parameters of ROUST which are local to the level of
recursion. These are addressed, as are all such quantities 1in
these routines with B5. Before giving the detailled explanation
to follow of the sections of ROUST, we describe briefly these 8

parameters and their function.

IVAR (BIN+0) holds in the upper address position the
absolute address in STAB which was specifiled as
the point in STAB which ROUST should consider in
the diagramming process on this level. ROUST
uses the lower address position of IVAR as tempo-
rary storage to hold the contents of Rl at the
beginning of ROUSTS operation on current level of
recursion, so that Bl may be reset upon exit

(Bl holds the address of STAB currently of interest)

GOAL (BIN+1) holds in the lower address position the
internal symbol which is the GOAL for the current
level of recursion. The upper address position of
GOAL is the index of the input string which marks the
symbol of the input string which will be the first
symbol of the group which will form the GOAL should
the GOAL be reéched. If the GOAL is reached this
quantity will be assigned to the position X of
the Format 1 OTP entry which designates the defini-

tion associated with the discovered GOAL, and will



subsequently be used to form a qualification word in
'TRAN if this formation is called for. (See OTP,
section 1.2.2.5, and the description of ALGOL function

Compile function number 5, section 2.2.1.5)

MAC (BIN+2) holds in the lower address position the address
of the cell in BIN (on a lower level of recursion)
into which this level should put the address of OTP

wherein begins the output for a discovered GOAL, if

indeed the goal is reached on this level. The upper
address position of MAC holds the address in STAB of
the entry following the satisfied qualifier with the
smallest range of the qualifiers at the Junction of
STAB considered at this level. If no such qualifiers
exist at the Junction in question, then this quantity

(i.e., the upper address position) must be 00000.

REXIT (BIN+3) holds in the lower address position the add-
ress for the normal exit from ROUST. The upper
address position of REXIT holds the address for the

error exit from ROUST.

QUAL (BIN+4) holds the qualification word last found at the
Junction under consideration by ROUST which:
1. has a range including the index of INPUT
2. has the smallest such range of the qualifi-
cation words thus far passed at the junction.
The initial value of QUAL at any level is set
to the value of QUALCON, namely 400 77776 001

77776 indicating the range to be +77776 to -1)



QUALCON (and hence the initial value of QUAL) thus indi-
cates the largest possible range of the index of INPUT,
so no matter what the value of this index is it will al-
ways be contained in the initial range in QUAL. If no
qualification words are passed whose range includes the
index, then this initial range will be taken to be the
range of vélidity of the sentence parts eminating from
the junction, and therefore all these paths will be

considered legitimate.

COUNTS (BIN+5) holds in the lower address position the

SW

value of B3 wupon entrance to the current level of
operation of ROUST, and in the upper address position
the value of BY4 at the same time. Hence COUNTS re-
cords the index of the INPUT string (B4) and the index
of the OTP string j(B3) upon entrance so that these
quantities may be reset to those values if the error

exit is taken from this level.

(BIN+6) 1is a switch parameter. Durlng the operation
of ROUST on the current level SW 1s -1 1f the re-
quested GOAL has not been reached at this level and O

if the GOAL has been reached at this level.

PAR (BIN+7) (denoted as OTCEL at some points in the

‘description)
holds the output word which will be placed 1in OTP at
the current level if indeed there is to be anything

placed in OTP from this level. Hence the address of PAR



for the current level is specified as a parameter of
ROUST when ROUST is called to check a component of a sen-
tence this parameter being known as MAC at the next level

of recursion. (see MAC above).

Of these "parameters" some are assigned values by the last (i.e.,

1ower) level of recursion: namely IVAR [upper], GOAL, MAC {[lower],

and REXIT; the rest of the parameters are used on each level as

temporary storage, and have no relavent value upon entrance to

ROUST, namely: IVAR [lower], QUAL, COUNTS, SW, and PAR.

The following pages give the detailed word description of the

listing of ROUST

ROUST

{The initial section of KROUST sets up local parameters
for the operation of ROUST on the current level. In
particular, it stores B3 and B4 in COUNTS so that in
the event of an error exit from this level they may be
reset, it sets the initial values of SW, MAC [upper],
QUAL, and IVAR [lower]. In the operation of ROUST, Bl
at any time contains the absoluté address of the one
element of STAB which is of interest at the exact moment.
Logically, when ROUST calls itself therefore, 1t should
save the contents of Bl in BIN, since a different
section of STAB will be investigated by ROUST on each
level of recursion. It turns out to be more convenient
to have ROUST save and regset the contents of Bl upon

entrance and exit than to have ROUST savethe contents of



Bl ©before calling itself, and reseting Bl after each
return. Therefore, Bl is stored in IVAR [lower]
upon entrance, and reset from IVAR [lower]o (either

normal or error ) exit.}

COMP {Here begins the section of ROUST which checks all the
syntactic elements of STAB at the Jjunction specified by
IVAR [upper] to see whether they are components (or
qualifying components) of a sentence. The subjects of
a sentence among these syntactic elements are dealt with
later in the program, (in the section labelled LINK). We
begin by checking the first syntactic element at the
Junction, namely the one whose address is contained 1in
IVAR [upper]. We check first to see whether this element
is a qualifier by looking at the sign bit of its entry
in TRAN. If the element is a qualifier, we transfer to
LIMITEST which is the section of ROUST which -deals with
gualifiers. If the element is not a qualifier, then we
check to see whether the element is the subject of a
sentence by testing the element after the one in ques-
tion. If the element in question 1s a subject, the
element of STAB following it will be a $ (internal
character 161). If the element in question is not a
subject, then it must be a component of a sentence and
we proceed to the processing of this component. If the
element 1s a subject, then we proceed to LINK which
‘changes Bl o the address of the next element at the

Junction (see LINK).



In processing the component of a sentence, we wish to
initiate a call on ROUST to see whether the elements of
the input string will form the syntactic structure named
by the component. In order to do this, we first read
the next column of the input string. Since ROUST moves
back and forth across the input string, it may be that
the element has already been read into the machine. We
check to see whether this is the case by adding CURIN

to the contents of BY. CURIN in a global (i.e., not
local to the level of recursion) parameter of the rou-
tine whose value is the negative of the index of the
last element of the input string which has been read
into the machine. Hence if the addition of CURIN to the
contents of B4 yields a positive number we know that
the symbol we want has not yet been read into the machine,
and we returﬁ jump to GETNS to have the symbol read in.
Otherwise we merely increment B4 so that it will pick

out the next element of the input string.

Having properly incremented B4 (and, if necessary, read
in another character), we now test this character to see
whether 1t is equal to the syntactic component which we
must form to proceed across the sentence. (Recall that
basic symbols of the language are considered to be syn-
tactic elements). If the symbol of the input string is
the same as the syntactic element, then we set SW to

O to indicate that the element has been found. However,



CANGOQ

1t is possible that even though the two are egual that
the symbol may be the first element of a syntactic con-
struction which is again the element, so we must check
PREC to.determine whether this symbol will lead through
a sequence of paths in STAB to form the same symbol.
(Consider for example the syntactic specification in
ALGOL

H comment NSXi H $ z

which indicates that a semi-colon followed by the ALGOL
word "comment" followed by any string X not including;
or "end" or "else" is a member of the syntactic category
semicolon). This consultation with PREC is carried out

at CANGOQ.

Whether or not the syntactic element is equai to the
element of the input string which has Jjust been read in,
we perform here a check on PREC to see whether the input
element can ever lead us to a path which goes eventually
to éhe syntactic component which we must at this point
form from the input string. This check is tantamount to
asking the question:

Is PREC [input element, syntactic component] = TRUE.
If the answer to this question is yes, we then proceed to
call ROUST to form the element from the input string,
but if the answer is no, we don't bother *o call ROUST
since PREC indicates that ROUST could never form the syn-
tactic element from the part of the input string which
begins with the input symbol. Instead, we go to SWT1
to check whether the input element was equal to the syn-

tactic element.



The asking of the question PREC [x, y] is detailed under
the description of PREC in section 1.2.2.3, where we give
the formula for calculating the value of PREC [x,y].

The orders at CANGOQ down to the AJP to SWT1 are merely
a set of commands to evaluate this formula, and the AJP
Jjumps to SWT% o does not,depending on the value of

PREC [input element, syntactic category]. If the Jjump

to SWT1 is not executed, we then begin the recursive
call of ROUST which will determine whether or not the
elements of the input string do in fact form the syn-
tactic element, and if so will diagram the input string
elements according to the syntax tables and output the
links in OTP. We supply the parameters to ROUST as

follows:

1. Supply to IVAR [upper] the address in STAB of the
syntactic structure which eminates from the input sum-
bol. This address, of course, is found by consulting
TRAN.

2. Supply the syntactic element which we desire ROUST
to form (namely the component of the sentence which we
are currently considering) as the GOAL for the next
level.

3. Supply to GOAL [upper] the index of the input
string which is assoclated with the input character
under consideration.

4. Supply the address of PAR for this level of recursion

as the memory cell where ROUST should store the address



SWOF

SWT1

in OTP where it puts the output associated with this dia-
gramming of the input string to form the requested GOAL
to MAC.

5. Supply the normal and error exiis for this call oﬁ

ROUST to REXIT.

We then increase the index (B5) of BIN by 10 as for

every recursive call of ROUST, and transfer to ROUST.

CHASE is the normal exit from this call of ROUST, and
at CHASE begins the section of ROUST which continues the
sequence across the syntactic sentence. SWT1l 1is the

error exit from this call of ROUST.

SWOF is a short routine which sets SW to -1 1in case
that the input element under consideration was not equal
to the syntactic category denoted by the sentence compo-
nent under consideration in the preceeding sections.

After setting SW to -1, control goes to CANGOQ (above)
whence it goes 1f the two quantities were equal, (sw

having been set to O in the latter case)

Whenever it 1s determined that the syntactic component
under consideration in this section of ROUST cannot be
formed from the input string (either from PREC or from the
call of ROUST) we arrive at SWTl. Here we check to see

whether the input element itself was equal to the syn-

tactic component. If so, we proceed to CHASE to continue



LINK:

investigating the sentence one of whose components we
have just found in the input string. If not, we then
proceed to do the whole process over again for the next
syntactic element (if any) at the Junction in STAB
currently under consideration. Before doing so, however,
we carefully reduce (or which is the same, reset) the
value of B4 which we had incremented before starting

the above process of checking}.

We arrive at LINK whenever a component check or the dis-
covery of an illigetimate path demands that ROUST
progress to the next element at the junction of STAB
under consideration at the current level of recursion.
We proceed to the next syntactic element at the Jjunction
by following the arrow, if any, leading out of the
Jjunction; this is, of course, accomplished by proceeding
to the 1link address in the word of STAB currently under
congsideration. Since Bl contains the address of the
element of STAB under consideration, we set the contents
of Bl to the 1link address of the word whose address 1s
in Bl. Having done this, we now check to see whether
the link address was zero. If not, we have not checked
all the elements at the Jjunction to see whether there
are any more components, so we proceed back to COMP to
test the next element (whose address is now in Bl). If
the 1link address 1is zero, then we have checked all the

components at the junction, (and have found that the



input string will satisfy none of them), and we proceed
to check the qualification elements and the subjects at

the Junction.

Antlclpating the check for subjects at the Jjunction we
first reset SW to indicate that no GOAL has been found,
and reset Bl to the address of the first (lowest in
memory) element of STAB at the Junction (this address
having previously been stored in IVAR [upper]). We then
test to see whether any satisfied qualifiers were present
at the Junction. During the ckeck for components (at
COMP) we also tested for qualifiers; and upon finding one
transferred to LIMITEST. LIMITEST in turn tested to see
whether the qualifier was satisfied, and indicated the
passing of a satisfied qualifier by storing in

MAC[upper] the address of the entry in STAB following

the satisfied qualifier (see LIMITEST). If no satisfied
qualifiers were passed, MAC[upper] will be zero, since we
gset 1t to zero upon entering ROUST. At this point, how-
ever, we wish to follow the path indicated by the satisfied
qualifier with the smallest range (if in fact there were
any) before checking the subjects at the junction. We
therefore test MAC[upper] and if it 1s non zero, we
proceed to SNAKE to follow the 1ndicated path. If,
however, MAC[upper] 1s zero, then there were no quali-
fiers, and we proceed to check any subjects present at

the Jjunction.



EQTEST

To do this, we check STABtB1+l] which will be the meta-
symbol ‘$ (internal character 161) 1f indeed the first
syntactic element at the junction is a subject. If the
first element 18 not a subject, we proceed to LNKSUB
which will set Bl to the address of the next element at

the junction, and repeat the test for a subject.

Having arrived at EQTEST, we Kknow that the STAB[Bl] is

a subject, and we proceed to the processing of that
subject. Since it is possible that the GOAL for this
level may be reached at this or some higher level, and
since if it 1s reached we must be prepared to specify
the definition for the subject under consideration to
OTP, we build in OTCEL the Format 1 OTP word which will
be placed in OTP after the GOAL has been reached. It 1s
in fact not known at this time whether this definition
will .+ +=-% be the one specified from this level. The
processing of subjects at any given level of recursion
is continued only as long a8 the GOAL has not been
reached; hence, if the GOAL is reached at this level or
a higher level, we will already have supplied the correct
output word. If the GOAL is not reached on a path
eminating from this subject, then we will (through
LINKSUB) pass to the processing of the next subJect at
the current junction, and will at that time specify a
new definition in OTCEL, namely the one associated with

the new subject. The Format 1 OTP word is constructed by



putting the inserting in 15 bit patterns from left to
right, the current index of the input string, the index
of the input string which was in effect when we first
began looking for the current GOAL, and filnally the
address of the definition which 1s assoclated with the
subject which we are now conslidering. (Note in the

listing that PAR 1s the mnemonic used for OTCEL) .

The next step in the processing of the subject 1s to

test to see whether the subject under consideration 1is
equal to the GOAL. If the two are equal we set SW to
zero to indicate that the GOAL has been reached on this

level. Note that this does not lmply that we may stop

the scaning process. In particular, we may stlll be

able to reach the same GOAL on a higher level and use up
more symbols in the input string in so doing. Since we
with to use as many symbols of the input string as
possible in reaching the GOAL, we merely note that we
have reached the GOAL, but continue the scanning process
until we have determined that 1t will not be possible to
reach it again by further scanning. To allow for the
possibility that we mlght have reached the GOAL for

the last possible time, we enter the address of the next
empty space in OTP into the memory cell speclfied by
MAC[lower]. This address was provided by the level of
ROUST which first requested the GOAL which we are

currently seeking. The next avallable space in OTP will
be the location i



OTP of the definition which corresponds to the requested
GOAL, 1if indeed this 1s the GOAL which dlagrams the lar-
gest number of input symbols (since we will enter no

information in OTP on higher levels of recursion unless

we agaln reach the current GOAL. )

COMPATST Whether or not the subject was equal to the GOAl, we

arrive at the COMPATST. It is here that we test PREC to
determine whether 1t willl be possible to reach the GOAL
starting at the tree branch of STAB which begins with
the subjJect we are considering. (Note again, that the
test of PREC to determine whether or not to continue

diagramming is independent of the test for having reached

a GOAL). The test made 1s asking the question
PREC[SubJeCt , GOAL] = "true"

If the answer 1s yes, we proceed to contlnue the dia-
gramming process. If the answer 1s no, we then test SW
(AJP O SWTST) to see whether the GOAL has been reached at
this level. The locating of the pertinent element of
PREC 1s done by evaluating the address and bit formulas

given in the description of PREC (section 1.2.2.3).

If the test of PREC indicates that we may continue the
diagramming process, we do so by calling ROUST recursively
to continue the diagramming at the tree branch beginning
~with the syntactic element which 1is the subject we are



ROUSTX

considering (LDL 1 O, etc.). We specify as the error exit
for this call of ROUST the tag STWST, which 1s the tag of
the routlne whlch checks to see whether we have found the

GOAL on thils level.

ROUSTX contlnues the supplying of parameters to ROUST for
the recursive call, but thls section of the call is used

by several calling sequences, since the last parameters

are the same for several of the calls (see SNAKE, and CHASE).
Since these calls of ROUST are merely to continue the
diagramming process (while remembering by virtue of the
recursion the paths taken to get this far) but not to
speclfy a new goal as when checking for components of a
sentence, we pass along to the next level of recursion

the GOAL of thils level as well as MAC whose contents

speclfy the address of the memory cell into which we
must put the OTP address of the output for the GOAL .

should we reach it.

The normal exit for these calls of ROUST is GFOTP, which
is the routine to which we go when the GOAL has been
reached at this or a higher level of recursion. (The
fact that ROUST returns by the normal exit indicates that
the GOAL has 1n fact been reached at a higher level, and
that this level is only obliged to enter its contents of

OTCEL into OTP and return to its normal exit).



SWTST We arrive at SWTST under one of the followilng two condi-
tions:
1. PREC indicated that the subject under consider-
ation could not lead to the GOAL.
2. PREC 1indicated that the subject could lead to
the GOAL, but the ensuing call of ROUST determined that

in fact 1t dit not.

Hence, we know now that the GOAL could not be reached at

a higher level of recursion, if the further recursion was
begun at the tree branch of STAB named by the subJect belng
considered. Therefore we test to see whether the GOAL
was reached at this level. If so, wlth no further adieu,
we proceed to GFOTP to transfer the contents of OTCEL
(PAR) to OTP and return via the normal (we found the GOAL)
exit. If on the other hand the GOAL was not reached on
this level either, then we proceed to try the next subject
at the current junction to see if it will lead to (or
become) the GOAL. The progression to the next subjJect

is effected by LNKSUB.

INKSUB We arrive at LNKSUB when we wish to proceed to the next
syntactic element at the Junction of STAB under considera-
tion either because

1l. The element at the Jjunction is not even a subject
or
2. The element 1s a subject, but has been shown to

not lead to the specified GOAL.



SNBACK

CHASE

We progress to the next element at the Junctlon by setting
the contents of Bl equal to the link of STAB[B1], as at
LINK. We then test to see whether Bl contalns zero.

If so, then there are no more elements at the Junction to
be considered, and we have at this time no alternative ot
other than to proceed to the error exit of ROUST, namely
ERRX, for we have investigated all the possibilitiles for

satisfying the GOAL at this level and have had no success.

At SNBACK we test the current element of the STAB junction
we have been considering at this level of ROUST to deter-
mine whether this element 1s a subject of a sentence.

This test is made by testing the element followlng 1t

for the symbol §$ (internal symbol 161). They will, of
course be equal if the element is a subject. If the
element 1s not a subject, we proceed to LNKSUB to try the
next element. If the element 1s a subject, then we pro-

ceed to EQTST to process the new subject.

CHASE-1s the sub program which enacts a recursive call of
ROUST to proceed across a syntactic sentence in STAB when
we have successfully found that the input string will dia-
gram into a component. (This section 1s a continuation
from the component checking section at the beglinning or
ROUST). For this call of ROUST, we wish to pass along

the GOAL and merely specify that the next level of recur-

sion should begin working on the next element (or Junction



if there 1s an arrow eminating from the element) in the
syntactic sentence under consideration at the present
time. We accomplish these ends by specifying to
IVAR[upper] on the next level the address in STAB of the
next consecutive element in STAB. The error exit for this
call of ROUST is STW1l + 1 which will, in the event

that the continuation across the sentence turns out to

be an invalild path, continue investigating syntactic
elements at the junction of this (i.e., the current)

level, after resetting the input string index.

The normal exit for this call is GFOTP, where we put the
current contents of OTCEL (PAR) into OTP and go to the
normal exit. Note that in this case OTCEL will contain
a Format 2 entry for OTP which contailns the address in
OTP of the definition corresponding to the Syntactic
component of a sentence into which we diagrammed part of
the input string. Since the last part of the call is
identical to the call resulting from a subject investi-

gation, we proceed to ROUSTX +1 to complete the call.

RESTJ  Here we reset the index of the input string (B4) and
proceed to SNBACK having come from the error exit of the
call of ROUST resulting from a satisfied qualifier. (see

SNAKE, following, for more detail)



SNAKE

ERRX:

At SNAKE we initiate a recursive call on RQUST having
determined (see LINK):

1. that none of the components (if any) at the
current Jjunction could be formed from the Input string,
and

2. that there was a qualifier at the Junction
which is satisfied.

We arrive at SNAKE with the address in STAB of the
element following the satisfiled qualifilier in the
accumulator (having just tested this quantity and
discovered 1t to be non zero). Since the discovery of

a satisfled qualifier means simply that we should con-
tinue the dilagramming process with the elements of the
specifications following the qualifler, we merely supply
the address found in the accumulator to IVAR [upper] of
the next recursion level. We supply RESTJ as an error
exit for this call so that in the event that the
elements of STAB followlng the qualifier cannot lead to
a correct diagram of the input string, we can reset the
index of the input string and proceed to the checking

of subjects at the current Junction Jjust though there had
been no qualifiers. Since the rest of the call of ROUST
is the same as the call occuring in the subject investl-

gations, we proceed to ROUSTX for the completion of the

call.

We arrive at ERRX when we have investigated all the



STAB elements at the current Junction and have found that
none of them lead to a successful dlagramming of the 1in-
put string. We reset the 1lndices of the input and out-
put sbtrings, and get the error exit (found in REXIT
[upper]) into the accumulator so that 1t may be planted

in a Jump to effect the error exit.

BOTHXIT: BOTHXIT serves to effect the final exit procedure
from a call of ROUST. The address to which we must
exit 1s in the accumulator when we arrlive at BOTHXIT;
hence we plant this address 1n‘a Jump command, and
after resetting Bl to the value 1t had on entrance
to ROUST, we decrement B5 (to reduce the level of

recursion) by 10 and exit to the specified address.

GFOTP: We arrive at GFOTP after having returned successfully
from a "continuation" call of ROUST. At this time
there will be in PAR (OTCEL) the proper information to
be put into OTP. This word 1s put in OTP, the index
of OTP is incrgmented, a check 1s made to insure that
OTP has not overflowed, and then exit 1s made to the
-normal exit of RQUST. The followling three cases are
distinguished.

1. Arpival at GFOTP from the normal exit of a
Mgubject investigation™ call on ROUST. In this case the
contents ¢f PAR will be a Format 1 OTP entry glving the
addreaiwinAﬂx!ﬁwofwthe definition corresponding to the




gselected subject.

2. Arrival at GFOTP from a "normal continuation"
call of ROUST (originating at CHASE). In this case the
contents of PAR will be a Format 2 OTP entry. This
entry 1s placed in PAR by virtue of a "component checking"
call of ROUST. Note that 1t 1s lmpossible to arrive at
CHASE without having found that the input string formed
one of the components at the junction of STAB under
consideration. If the discovery that the input string
formed this component was made by a call of ROUST, the
indirect 1link to the definition assoclated with the
component in question will have been put in PAR by
virtue of PAR having been specified in the "component
checking" call as the cell into which this quantity .
should be put.  The indireet link would have actually
been put there from the EQTEST section at a higher ievel
of recursion. If on the other hand, the discovery that
the input string formed the component was made by a sim-

ple equality test on the component and an element of

the input string, there will be no relevant contents of
PAR, but the irrelevant word must none the less be placed
in OTP so that position correspondence will be maintalned
in OTP. (In other words, the element +, for example,
will never have a definition assocliated with 1t, but it

is s8ti1ll counted in referring to the components as though
it had one. In fact, in the definition followlng the +

in some sentence no references will be made by a E;%m



to the + since 1t would make no sense to do so, but since
the + 18 counted as a legitimate syntactlc element Just
like the others, one must still treat it in the OTP list
as though it had a definition attached to it.)

3. Arrival at GFOTP from a "qualifier" call. In
this case, as iIn the case for + above, no relevant in-
formation will be in PAR, but again the irrelevant word
must be placed in OT? to maintaln the position of the

entries following.

GFNDX: . Here we merely initiate the normal exit from ROUST by
getting Into the accumulator the normal exlt address
and transferring to BOTHXIT where this address will be

used to effect the norﬁal exit.

LIMITEST: It 1s at LIMITEST that the check 1s made to discover
whether or not a qualifier 1s satisfied. This test
falls in two parts:

1. The current index of INPUT, in B4, is compared
with the upper and lower bounds specified in the qualifier
word.  If the index is not within these bounds, the
qualifier is considered to be unsatisfied and control
passes to LINK where the next element at the Junction
undar»cﬁnsideration is iInvestigated.

2. If,on the other hand,the index is within the
bounds, the qualifier 1s then compared with the last
Batiifl&d%qnilirier (at the current junction) to
deterlQHthhiéh»af the qualifiers has the smallest range.



If the new qualifier has the smallest range, 1t replaces
the old one,in QUAL, and the STAB index of the element

~ following the new qualifier is put into MAC[upper]. If,
on the other hand the old qualifier has the smallest
range, it 18 left as the valld one, and control passes
back to LINK. Note that if no qualifiers have been
passed so far at the current junction, the new quallfier
- will be selected, since the initial value of QUAL indl-
cates the largest possible range for any qualifier, and
thus the new qualifier automatically has a smaller range
than the "old" one.

The bounds are stored in the qualifier words with
the upper bound in the upper address posltlon and the
lower bound in the lower address position. Because of
this storage, it 1s possible to make the test on both
bounds with one subtraction. Furthermore, both the
test for the index of #NPUT and the comparison of the
two qualifiers can be made 1n the same way. The quantity
which must be less than the upper bound 1is put into the
upper address position of a test word,(LOCN) and the
quantity which must be greater than the lower bound 1s
put into the lower address position of the test word.

The test word 1s then subtracted from the qualifier. If

the result of the subtraction ylelds a "o" (corresponding
to +) to the left of the upper address position and a i
(corresponding to minus) to the left of the lower address

position, then the test word 1is within the bounds of



the qualifier. Otherwise 1t is not within the bounds.
The result of the subtraction 1s compared with the
" TSTBITS to determine whether the correct bit pattern is
obtained, thus determining whether the test word passed
or falled the comparison with the qualifier. When the
index comparison 1s made the upper and lower address
positions of the test word both are set to the value
of the index. When the new and old qualifiers are
compared, the new one 1s subtracted from the old silnce
the criterion for passing this test 1s that the new one
should be within the range of the old one.

Note finally that the new qualifier 1s already in
the accumulator when we arrive at LIMITEST since we
tested the sign bit of this qualifier to determine

whether or nét it was a qualifler.
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