THE INTERNALS OF ALGOL 205

How does this compiler work? Frankly, it's a miracle if it does.
The comments given here, however, serve as some sort of a key

to understanding the internal mechanism of this translation
process. They are not intended to be merely a restatement of
what the program does, step-by-step: the symbolic listing

of the program gives a precise version of that. These notes

are abstracted one level from the program itself and they attempt
to tell 'Yhat is happening from an overall standpoint.

The reader who encounters these notes for the first time
is advised to write a simple little Algol program and try to
follow it through the flowsharts. Then when he gets a fedkl for
what is happening he should take closer looks at the steps.

The order of presentation here is supposed to be such that
"the first routines illustrated use no other routines internally,
the next ones use these first ones, and so on, each routine using
only those which have been discussed earlier. This order was
actually impossible to follow in the case of the "GET" and "MASTR"
subroutines, which use each other, but elseMhere it's pretty
much all right.

Some of the author's terminology may need explanation:

a "counter'" is a storage location which keeps count of something
or other. Counters are distinguished from ordinary temporary
storage in that they can be used to store only one type of
information throughout the program, while temp. storage is a’
relatively short term storage which can be used for many things.

A "stack" is another word for a table which initially contains
nothing)but things get piled into it, one on top of another;

and these things are generally only taken away when they are
removed from the top. Several stacks are distinguished in this
compiler: the operator stack, the operand stack, the subscript ;
stack, the constant stack, the true-false stack, and the do-stack.
The operation of these stacks will become clear by working through
some examples. Phrases such as '"put onto the top of the operator
stack" and "removed from the top of the subscript stack" will

be used in this description, and they should have a clear meaning
by the analogy above.

The style of presentation is adapted from the practice of
computer publications in the U.S.S.R.: the flowchart boxes
contain only brief comments and code numbers which reference the
text, so the diagrams indicate the "topology" of the situation;
the explanatory text which accompanies the diagrams tells what
goes on inside each box. Code numbers, a letter followed by
an integer, serve to cross-reference the text, the flow-chhrts,
and the symbolic listing of the program. The information labeled
"Coding Details" is to be bypassed on first reading -- it applies
directly to the symbolic machine language and are included here
only for reference in partial expdanation of the coding, for
someone who would like to make changes.

M.

[Succeivg

\ tLANKSY

" AL

Az,
WORD 2
empx’ 8;;?:’.
\S
;.‘_.I ufﬁ;@ew S P
l CHIRATER WoKD GZ%F‘I’R,

AS.
oN
FLEXOS

SPecIAL
CobVE

A. NkTcH

SUBHUTINE™

Inside Algol 205 - 2

More general information about the compiling process may be
found in section I, where the program itself begins.

.

. A. "NXTCH": Next-Character Subroutine.

(
This serves as the sole communication link between the compiler
and the input pseudo-code. Two routines are necessary, one for
Carcdatron input and one for paper-tape input, It also is tied
in with the ALARM routine, as it prepares the input for possible
Flexowriter typeouts. Remarks: £24% The counter WORD is initially
empty, as is the "input buffer" and the "ALARM buffer.”" Input
to this routine is the counter Q which is either 0, 1, or 2.
The subroutine yields as output the n&t character, from left to
right, of the user's program.

Al. If WORD is empty, go to A2; else to A5.

A2. If the input buffer is empty go to A3, else to A4,

A3. Fill input buffer with next card or next paper tape record

4 Stop if a paper tape record too long is sensed.

A4. Fill WORD with next five alphanumeric characters.

A5, Take next character from WORD. ‘

A6. Tf £¥3% both it and the last character were blank, return to Al.

A7. If it is alphabetic or numeric, go to AlO.

A8. Stop if it is not a valid special character., Go to AlO0 if
we are processing part of a Format string between asterisks.
Otherwise go to A9 if the Flexowriter cannot type this
character, to Al10 if it can,

A9. Push space-letter-space into right side of ALARM buffer. To All,

Al0. Push it into right side of ALARM buffer.

All, Put it into the counter A(2+Q). Exit,.

Coding Details. Entry NXTCH: rAmexit, rB=desired value of Q.
‘ Entry NXCHl: rAmexit. Q will be set to 1.

Exit: rA,LSTCH, and A(2+Q) all contain next
character. rB=Q. Specidal characters have been
translated into a code number between 1 and

, 10, unless inside Format strings.
Temp Storage Used: loop 6, WORD, Q, A4, A(2+Q),Z,CURNT table,
LSTCH,NEXIT. ‘

B. "BUILD."

This subroutine obtains an identifier from the NXTCH routine and
converts it into a number between 1 and 225. The latter number is
the code number which the compiler works with. Remarks: Input

to this routine is the first (alphabetic) character of the
identifier in temp storage location A3, Output is the value of I.

i (5 ‘ B, | B3
i ZE]'" RecoRO A3 AZ NYTH

{

E——

EG.

T

wor {INSLPT

o § L onepbir
L__..m,l'bu'e'a

Cat
GLiAL
}{srlx viN G

SCf AMBLE
NUMBLE 7

Rinae?

817,
SPecIAL
EXTE

C. PUNCH SUBrRouTING

& i

LRGN

1 Pancd |

; CC?G B
ouTAUT

Inside Algol 205 - 3

Bl. Sct Name Buffer to blanks and set the special flag off.

B2. Insert A3 into name buffer. .

B3. NXTCH into A3(Subrmtine A with Q=1),

B4. If A3 is alphabetic a numeric, go back to B2.

B5. Insert length of identifier string and procedure hgading number

(zero if outside procedure declarations) into name buffer.
B6. Special exit to I8 if the identifier is the word TO. Else to BS.
B7. This special entry pointgs2ilii"s sets up for a lookup on only
the first character in the name buffer, with its procedure
heading, as a prefix character.

B8. "Scramble" name buffer into a number I between 1 and 100.

B9. If table entry for I is unused, go to BlS8.

Bl10. If identifier for table entry I matches the name buffer, go to Bl7.

Bil. If table entry I indicates a "chain reference" to another ,

number I, go to Bl6. Else to BlS8,

B12. Special exit to I18 if called for.

B13. IF table entry for I is unused, go to BlS5.

Bl4. Find highest unused place in table, * ALARM if none are left.
Put this as a chain reference into table location I and then
set I to this number.

B15. Put name buffer into table associated with I. ALARM if table
is packed., Exit.

Bl16. Set I to the chain reference. To B1lO.

Bl7. Special to I18 if called for; else normal exit.

Bl18. If flag is on, go to Bl2.

B19. Set flag on. Insert global-word heading in place of procedure
heading number in name buffer. Go to Bb.

Cdding Details. Entry BUILD: rA=exit. A3=first char. of ident.
- Entry BLDl: EXITO=zero if special exit desired at
steps Bl2, Bl7; else EXITO=exit.
R contains ident; a prefix lookup is done.
Entry BLD2: same as BLD1l, with rA=0,
Normal exit: TEMP3 contains the dquivalent in
the low-order 4 positions.
Temp Storage Used: TEMP1,TEMP2,TEMP3,TEMP4,MEXIT,RIGHT,LEFT,OP,
GEXIT,TOGET,TODO,MFL,PVAR,SPEC,COLUM,A3,EXIT0,C1,C2,PART]l table,
PART2 table, PART3 table.
Subroutine Used: NXTCH.

C. PUNCH Subroutine., This is the only link between the compiler and
the punching of the output, except possibly for the initialization
and FINISH where special things are punched. Two routines are
necessary, one for Cardatron, one for papertape. Remarks: Input

to this routine are a computer word and the location into which it

is to be loaded; or, a forward reference table entry is produced.

Cl. St Location to the next available place for a forward reference

table entry, set Number to the forward reference code desired.

C2. (Cardatron) If Location is one higher than peevious lomtion or
if the Card Buffer# area is not full, go to Cé&.

Inside Algol 205 - &

C3. (Cardatron) Punch contents of Card Buffer area, set Location as
beginning location of new card buffer load. .

C4., (Cardatron) Put Number into Card Buffer area. If Skip Switch is
off, print Location and Number on 407. Exit, ‘

C2. (PTape) If Location is one bigger than previous location, go to
C4,

C3. (PTape) Punch "PTR Location'" with sign of 4.

C4. (PTape) Punch Number. Exit.

Coding Details: Entry PUNCH: rAmexit,TEMPl=Location,TEMP2=Number.
Other entrances are for forward reference entries:
Entry PNCHl: rB=exit,rR:44mforward reference spot,
DRUML+LOOPL=current location.
Entry PNCH2: rB=exit, £z fwd. ref. entry in TEMP2.
Entry PNCH4: same as PNCHl, except rA:04=fwd.ref. spot.
Entry PNCH5: rB=exit, fwd. ref. entry in rA.
emp Storage Used: TEMPl,TEMP2,FREFL,LLOC,l00p 6,PCH table,PEXIT.

D. O0UTPT SUbroutine.

This subroutine is the normal outlet for compiled instructions; it
enables the automatic use of high speed loop 7 in the object
program. Remarks: DRUML is the counter which tells where the current
loopfull will go etart on the drum. LDOPL is the position in the
buffer where the next compiled instruction will go; thus the sum,
DRUML+LOOPL is the location of the next instruction to be compiled.
ABC is a counter which keeps track of the number of constants which
are to go into this loopfull.

Dl. Put coded instruction into Loop7 Buffer.Increment LOOPL.

D2. If special entrance 3 was used, exit. If special entrance 7,to D4.

D3. TIf there is room for more than one more instruction in Loop7
Buffer, exit,

D4. Calculate address of next loopfull. If it comes out between
981-999,1981-1999,2981-2999, round up to next 1000,

D5. If special entrance 2, exit. If special entrance 7, to D7.

D6. Put CUB(next loopfull) into Loop7 Buffer.

D7. Edit instructions »xEExrerzeesrwz® in Loop7 Buffer from compiler
code to 205 code and punch. Punch all constants for this
loopfull. (Subroutine C). Set DRUML to next, and set LOOPL,ABC to
zero, then exit.

Coding Details: Entry OUTPT: rA=exit,TEMPl=m=coded instruction

Entry OUTP3: same. Omits the test for full loop.

Entry OUTPS5: same as OUTPT except EXITOmexit.

Entry OUTPl: rA=exit. Acts as if loop was almost full.

Entry OUTP2: calculates address of next loopfull only.

Entry OUTP6: EXITO=exit,TEMP3=addr. of next loopfull,
Punches the loop only.

Entry OUTP7: rAmexit, TEMPlmscoded instruction.
Combines features of OUTP3,0UTP2,0UTP6.
Upon exit, rA=0.

Temp Storage Used: TEMPl,TEMP2,TEMP3,TEMP4,DRUML,LOOPL,ABC,O0UT table,

CON tablc¢,LLOC,PART2 table,EXITO.

Subroutine Used: PUNCH.

\/

(1 La.
3 ST m;'._ & [SPeCAL
N INS T, ENIRY T

D, OuTPUT SubbouTivg

J"g' .
SELLIAL
’ X M

PG,
g B NEXT IN2 INL
. -
ini
F1 F2. N ey —
R Lo .’ RooM use PN e .
M3] i
g l
» F4, N X
Fs. ENTRY F3. ol
SToRE com i €
our CorSTANT IN1 2 UNLOAD
Y

F, Cornor rutlk SULLoUTINES . E, ACALLI ECALL Subbontive

“ cue nerr

E. ACML, €Chu Suttonry

Inside:Algol 205 - 5

E. ACALL, BCALL Subroutines. f

These produce the object program instructions to call a.subroutine
with exit in ghe A or B register, respectively. Remarks: input is

the address of the subroutine; a special flag 18 set by the "FOR".
processor to cause the output program to jump back to the incrementa-
tion phase, otherwise conftrol of the object program would continue
in sequence, after execution of the subroutine.

El., If there is romm for only two more things in the Loop7 buffere
go to E3,
E2. Compile CAD or LDB with next constant(Subroutine D). To E&.
E3. Compile CAD or LDB with next drum location (Subroutine D, IN3).
E4. Compile CUB(subroutine) (Subroutine D, IN3). Get the address
of the next loopfull (Subroutine D, IN2). Prepare constant
CUB next, or if FOR flag is set, CUB incr. Add it to the constant
buffer. Punch out the Loop7 buffer (Subroutine D entry IN6). Exit,

Coding Details: Entry: rA=subroutine address,rB=exit . If rB is zero,
: exit will be made to FORIN. '

Temp Storage Used: TEMPI,TEMPB,TEMP&,LOOPL,ABC,DRUML,RB,CON table,

PHOR1,EXITO.

Subroutine Used: OQOUTPT,

F. CONOT and FULL Subroutines.

These two short routines are used fairly often. CONOT prepares a
constant for compilation. FULL makes sure there is room for M more
instructions in the Loop7 Buffer.

Fl. (CONOT entry) Set. M = 3, :

F2. (FULL entry) If there is room for M more instructions in the
" Loop7 Buffer, go to F&4,

F3. Punch contents of Loop7 Buffer (Subroutine D, INl)

F4. If doing the FULL subroutine only, exit,

F5. Increase ABC by 1, put constant into constant buffer. Exit.

Coding Details: Entry CONOT: rA=constant, rBmexit,

Entry CNOUT: TEMP5=constant, rBmexit,.

Entry FULL: rA=M.2, rBm=exit.

Entry FULLl: rA=M-3, rB=exit,
Temp Storage Used, FULL: 4R€I%EEY none. Submutine Used: OUTP1,
Temp Storage Used, CONOT: EXIT1,TEMP5,ABC. Subroutine Used: FULL.

G. GET Routine.

Now we get into the meat of the compiler. This .very general routine
compiles the instructions to bring a coded quantity into one of

the registers. It is practically the only place arithmetic
instructions are compiled. The routine also does some of the
bodkkeeping for allocation of temporary storage. Remarks: This
routine uses itself as a subroutine, and it also uses MASTR which
uses GET as a subroutine, so it must store away its exits and
inputs to prevent them from being overlaid. Inputs to GET are
"TOGET," a code for the quantity to be compiled for, and "TODO",

a code for the type of operation to compile it with. When we

say merely "GET something™ we mean TODO = CAD.

A

/ /N ‘w————-,»’ ‘rszCAD > ARRAY %

yd e

WITALIZE || pe puAR

ST

- T

aiz. ,
IV "‘n'i" 2 How M NJY °f b(ﬂu \ = "ALMoST
CSuEslu] ueser \f” ‘ GeT 't
/AN :

&g,

\QN.

SivfLE .
SUBSCf"fT‘ ,‘—" INT‘£~A

M % L }
\ ,; F‘.Mﬂ&n
e \MFLE

Y R

cza. ' [gzl Gl9.

”“,. Li-—)."v-‘. N
rect) ' i (GeT SutsC | LDR suesc

&7, ' 1 gas.

ALD :
546'@rr >|fuT IN B

€, GET RouTine,

KMot -\
GET T o

'C"f@Mﬁ&ﬁf; 1

6. GET Routine,

Inside Algol 205 - 6

Gl.
G2,
G3.
G4,

Set TODO = CAD.

If TOGET is an array, go to Gll. .

If TOGET is a temp storage code, go to G1l0.

If rA in the futput code contains something that must be

stored away, compile a store instruction (Subroutine D).

G5.
G6.

If TOGET is not a constant, go to G7.
If TODO = CAD and the constant is zero, compile a STC instr-

uction (Subroutine D), Otherwise take the constant off the
constant stack and execute Subroutine ¥ (CONOT).

G7.

If special "ALMOST GET" exit is called for, exit,

G8. Compile the desired TOGET-TODO instruction by using the

G9.
G1l0.

Gll.

Gl2.
Gl3.
Gl4,
Gl5,

G1l6.
Gl7.

Gl1l8.

Gl19.
G20.
G21.
G222,
G23.

G24.,
G25.
G26.

following operation code:

TOGET TODO
Minus Absolute
Tag Tag CAD ADD FAD MUL DIV FMU FDV LDB
OFF OFF CAD ADD FAD MUL DIV FMU FDV LDB
ON OFF CSU SUB FSU MUL DIV FMU FDV LDB
OFF ON CAA ADA FAA not used FMA FDA LDB
ON ON CSA SUA FSA not used FMA FDA LDB
(Subroutine DY.(These are the 220 mnemonics for the op-codes).
Exit.
undefined

If TOGET is already in rA in the output, and TOGET-i8.CAD,
exit. Else to G4,
Stash away inputs and temp storage.Tdke subscripts off top

‘of subscript# stack. If TOGET is not a procedure parameter,

set SPEC to base address, set PVAR to zero. Otherwise set
PVAR to input information address and set SPEC to zero.

If TOGET is a vector, go to Gl8., If TOGET is a prodedure
output variable, go to G20. Otherwise TOGET must be a matrix.
If TOGET 1s a non-procedure-parameter matrix and its first
subscript is a fixed point constant, go to Gl4, else to Gl5.
Pull constant off constant stack, multiply it by hhe number
of columns, and add it to SPEC. To Gl8.

Compile to multiply the first subscript by the number of
columns (Subroutine H).

If the second subscript is a fixed-point constant, go to G22,
Compile to add the second subscript to the previous result,
(Subroutine H). Go to G23.

If subscript is8 a fixed point constant, go to G24. If it {is
floating point or TOGET is a procedure parameter, go to G21.
Compile to LDB with the subscript (Subroutine G). To G26.
Compile to LEB with PVAR (Subroutine G). To G26.

GET the subscript (Subroutine G). To G26.

Take the constant off constant stack and add it to SPEC.

If the result in rA is floating point, compile FAD(5810000000)
or FSU(5810000000) according as rA contains the true result
or its ne gative (Subroutines F,D). Then if TOGET is a
procedure variable, also compile ADD or SUB (PVAR). Then
compile STA 4001, LDB 4001 (Subroutine D over and over).To G26.
Take the constant off constant stack and add it to SPEC.

If TOGET is a procedure parameter, go to G20,

Change TOGET to SPEC, with or without B modification. Restore
temporary staerage. Go to G&. ' :

Inside Algol 205 - 7

Coding Details: Entry GET: rBmexit, rA=TOGET(TODO-will be set to CAD)
Entry GETl:rB=exit, TOGET=TOGET, rA=TODO. :
If TODO negative, we take special "almost get" exit,

Temp Storage Used: TOGET, TODO, GEXIT,STOR, TEMP& , TEMP5,COUNT, CNO,

NUMST table,SPEC,PVAR,COLUM,HOLD table,CMTX,LEFT,RIGHT,OP,RB,

sometimes TEMP6,

Subroutines Used: CONOT, GET, MASTR, RSULT, STLDB.

(Note: When the temp storage is stored and restored again, the

entire loop 5 18 stored. Therefore all counters in this loop -

Q,WORD,LSTCH,A0-A4, were chosen so that they would not change

during the time the temp storage was down on the drum, Something

like CNO, CMTX, STOR, LOOPL must not be kept in loop 5.)

H. MASTR routine,

This general purpose routine takes charge of compiling the instruc-
tions necessary to do addition, subtraction, multiplication,
division, exponentiation, and substitution., Remarks: this routine
is a little tricky because it uses GET as a subroutine, and GET
uses MASTR as a subroutine, and MASTR in turn uses GET yet again,
The process 1is rigged, however, so that the nexting doesn't go
any deeper than this. Inputs to MASTR are an operation OP and
the operands LEFT and RIGHT. OP is thought of as being floating
point unless changed to fixed point by the MASTR routine. The
coding turned out by MASTR is efficient in most respects. The
major inefficiency is in the treatment of arrays with very simpleg
(e.g. constant) subscripts, when occasionally store instructions
are compiled in anticipation of a difficult array subscript., The
other weakness is an fixed point multiplication when LEFT has an
absolute value to be taken and both LEFT and RIGHT are simple
variables - this case was of such infrequent occurrence it was
not accommodated.

Hl., The top of the operand stack is removed and placed in RIGHT.
Then the (new) top of the operand stack 18 removed and placed
in LEFT.

H2, If RIGHT is fixed point, go to H4. v

H3., If LEFT is fixed point, go to H5; else to HY.

H4. If LEFT is fixed point, go to H8; else to H6,

H5. If OP is "=", go to H7.

H6. We have one fixed point operand and one floating point operand.,

'~ We want to float the fixed one; if LEFT is the fixed one and
both RIGHT and LEFT are arrays, we first GET RIGHT (Subroutine
G) and replace it by a tep storage code so the subscript stack
will be last-in-first-out. If the operand to be floated == is
& constant, we merely change the constant to floating point.
Otherwise we reserve room for the float subroutine in case it
has not been reserved, and finally GET the fixed-point operand
(Subroutine G) and BCALL the float subroutine (Subroutine E).
To HI.

H7. Same as H6 except we are changing RIGHT from floating point
to fixed point and there's no test for constants. To H9.

H8. Set OP as fixed point.

H9. Now the preliminaries are all taken care of and we are ready
to do the real work. If OP is "=", go to H21; 1if OP 18 "#",
go to H20, .] - SR S R

c,,}:;“ -

A

__—-—-—[-“- -

VTRER

N U
#ig. A3, / ‘5:21’ g:::.
: SiGN | SET 0P I
FiX uf N’ FIveD T, T OR Powen bkl
r. ‘
..yib
- \\
R — m : Hlo.\ CHALN niz,
Hl‘:} \ / \ L T B
: £ UNDETINEL ,(1 S!MPLEC j i’;‘ sl T =
CET RISHT \oeasp € ARRAY 2/ R\GHT
/ %
, ¢ -
- Yoz, | #=3.
e, { i i
Gohvu- Y. | | LEFT x
CET LEFT ThTiIoN "”'L““"“TE | RIGHT
N O‘K\t./ -
L . _
LEFT ARRAY r

MASTELR rutine,

OMMUTE |

Inside Algol 205 - 8

H10. If RIGHT is an array, go to Hll., If LEFT is already in rA
except possibly for its sign, go to H17. Else to H1l2,
H1l. If LEFT is also an array, go to H1S5.)
H12. Gf OP is non-commutative, go to Hl4., If LEFT is -an array,’
commutation will do no good, so go to H16.
H13. Sct OP as non-commutative. Interchange LEFT and RIGHT. TO H10,
Hl4. If RIGHT is not an array, go to H16. :
H1S5. GET RIGHT (Subroutine G). Change RIGHT to a temp storage code.
H16. GET LEFT (Subroutine G). Change LEFT to a temp storage code.
H17. Now we have + LEFT in register A and RIGHT is sufficiently
simple to finish the operation, unless -OP is fixed point
multiply or divided and RIGHT is to be taken with absolute
value. In this unfortumamte case, go back to H15.
H18. If register A contains -LEFT, negate the sign of RIGHT.
(If OP is +, the sign of the compiled result will be the
sign of fIIIY LEFT, otherwise it is the sign of RIGHT.)
Now if OP is divide, compile either CLR (floating point)
or SRT 10 (fixed point) (Subroutine D).
H19. GET RIGHT with the proper OP code (Subroutine G, IN1l). If
OP is fixed point multiply, compile also SLT 10. Exit.
H20. Reserve room for the power subroutine in case it hasn't
been used yet. Then GET RIGHT (Subroutine G). Compile
STA 4000 (Subroutine D). GET LEFT (Subroutine G), BCALL
the power routine (Subroutine E). Exit.
H21. If LEFT is an array, go to H23.)
H22. GET RIGHT (Subroutine G). Then, if LEFT is not the name of
a procedure currently being defined compile STA LEFT
(Subroutine D). Exit,
H23. If RIGHT is also an array, GET RIGHT (Subroutine G) and
replace it by a temp storage code. Then "a}most get"
LEFT (Subroutine G, special exit at step G7). Then GET
RIGHT (Subroutine G) followed be STA (LEFT) (Subroutine D). Exit.

Coding Details: Entry MASTR: rA=exit; RIGHT,LEFT,0P are set up.
Entry MASTl: rBmexit; rA=OP; RIGHT,LEFT will be
set up from NSTAK.
Entry MAST2: same as MASTl except rB sswrwig® will
be set to exit to FIXT1
Entry MAST3: rA=RIGHT;rB=CNAME-1;0P,MEXIT are set up;
LEFT will be set up from NSTAK
Entry MAST4: rAmzero;RIGHT,LEFT,0P,MEXIT are set up.
Temp Storage Used: MEXIT,MFL,RIGHT,LEFT,OP,SEGl,SEG2,HIGHL,NUMST table,
T,STOR,TEMP1,COLUM,PVAR.
Subroutines Used: GET,BCALL,FIXT3.
Coding Details on "hidden" subroutines FIXT and RSULT:

Entry FIXT2: sets TMIN=min(TMIN,T) and sets
T=max(COUNT+1,T). Exits to HIER.

Entry FIXT3: same except rA=mexit,

Entry FIXT5: rA=exit. Sets TMIN only.

Entry RSULT: sets STOR=T=T-1, on exit rA=STOR with
arithmetic of OP and sign of LEFT,
TrB=CNAME,

Entry FIXTl: FIXT2 followed by RSULT followed by
putting (rA) on top of operand stack,
exits to HIER.

Entry FIXT4: FIXTl with rA=OP,LEXT vill:beJsset
positive ; :

LA

AN
Inside Algol 205 - 9

I. PRESCANNER.

The general plan of attack in this compiler can be summarized as
follows: The program looks at the input string language character
by character from left to right.ds soon as it sees something it
can do, it does it; meanwhile it saves information about what

the input has previously contained in counters and stacks.

The control of this process is handled in the following way: ,
There are five locations inside called AO,A1,A2,A3, and A4. Characters
come in from the input string into either A2, A3, or A4 and from e
there tiucy proceed leftward until they are processed. Most
characters get all the way to A0 before they are processed, but

some get no farther than A3. When characters originally come into
A2, A3, or A4, they are in Cardatron code or in a special code

for special characters. But the contants of A0 and Al are in a
completely different, more versatile compiler code., A2 is the
transition where the codes are converted from one to another.

A "scanner" is a routine which looks at a string language
by examining two (or more) adjacent characters at a time. There
are four scanners in this compiler: the main arithmetic scanner
(routine K) which operates from A0 and Al; the prescanner (routine
I) which looks at Al, A2, A3, and A4; and the SWITCH and Procedure-
call scanners (routine §) which operate from Al and A2, The
Rube Goldberg procedure call scanner actually begins by operation
from A0 and Al in conjunction with the arithmetic scanner,
then shifts to Al1-A2 after encountering a semicolon,

A "condenser" is a routine which takes a look at sequential
characters in a string language and condenses them into a single
entity or discards them entirely, There are 8ix: condensers in
this compiler: the COMMENT condenser (routine L), the identifier-
building condenser (subroutine B), the procedure input string
condenser (part of routine N), and integer and array declaration
condenser (routine M), the FORMAT condenser (part of routine N)
and the constant condenser (routine J).

The PreScanner really seems to huve the most control over the
whole process, for it usually decides which scanner or condenser
is to be used next. The job of the prescanner is not only to con-
trol the flow of the program, however; it also must editg the
incoming language into a form which the other routines can
digest. For example, it inserts multiplication sign when implied
multipli®{3™1s indicated, it handles the translation of A2 from
the original two-digit %¥ code to the compiler code, and it
decides whether identifiers are labels or variables. Since the
prescanner occasionally inserts a character there is an extra
location called Al.5 which holds inserts.

Compilation begins with AOwa semicolon, Al, Al.5, and A2 blank.
A counter Q tells whether A3 and A4 have any information; when
Q=0 it means they don't, when Q=1 it means A3 does, and when Q=2
both A3 and A4 are filled,. Q is initially zero. After the initiali-
zation, compilation begins in box I7. '

7 K7IK?1
hel) Kis, NtO,
i 5y uz,uyg,u

‘ -
123, Ni“']:"‘” Tis. .
; . CHERK OEFINE b5
i Go To k3 PLEFIXES VARIABLE e

' I3i7.
e
1 CINTINAE

T16. [
BLANK our Ad] iﬂ’“‘ﬁm

/12,
N3, NIS
A

' 7. 13,
« A2 HYTCH guILD

Y

ALPRARETIC

Lo, \
A2 NYTCH CeLon §)

I, 120,
uNbo
TeMSLATE VARIAGLE Y

127.
%f] SeeciaL : bk '
fAGi T SCANNMER Al PeFiNE C
Oelirg.° SWITCH? BLANKY LARL
te o ON
Y

% 7] 1 132,
cretie 1R 1—;1.56- +

DA ©YoR Alé& BooFL

L Feavy en
S A G 1Y 9T

i
H

i PP R

. I. fRESCANNER,

T
| meries |

AR

BUILD

L JAREETIC

%

Lo,
LS weTeH

s
CTERhRTE

— if .

CHyew

tafL b
POLT

/o

Insi

Il.
I2,
I3.
I4.
Ihk.
I6.
I17.
I8,
I9.

I10.
I11.
Il2.
113.

114,
115'

I16.

I17.

118.

I19.
120.

I21.
122,

I23.

124 .
125,
126.
127.

de Algol 205 - 10

Move Al into AO.
Go to I4 if Al.5 is blank.
Move Al.5 into Al, clear Al.5. To K1, .
Move A2 into Al.
If Q greater than zero go to I8; else to I7.
Blank out Al.
NXTCH into A2 (Subroutine A with Q=0). To 19.
Move A3 into A2, A4 into A3, and set Q=Q-1.
If Al=FINISH, stop compilation (actually punch out the
yet unpunched instructions and call in the library portion
of the program). If A2 is blank, go to I7. If A2 is a
number, go to J1, If A2 is a letter, go to I13., If A2 is
a decimal point, go to I10. Else to I12.
NXTCH inst A3 (Subroutine A with Q=1).
If A9 1is a second decimal point, go to Il9. Else to Il2.
Change A2 into compiler code. To I26,
Move A2 into A3 and BUILD an identifier (Subroutine B), Set
A2 to the compiler code for this identifier,
If the LABEL switch 1s on, go to I22 (this switch is normally off)
If A2=COMMENT, go to Ll. If A2 is a library function or pro- '
cedure name that has not yet been used, go to I23. If A2 =
INTEGER or ARRAY, go to Ml. If A2 hasn't appeared before ,
except possibly in an INTEGER declaration, go to Il6. Else to 126.
:Tf Alm INPUT,OUTPUT,FORMAT,SUBROUTINE, or PROCEDURE, go to ' i
"N1l. If Al=ENTER, go to I24. If.Al-FO, go to I25,
In this case A2 is either a statement label or a variable,.
Let's acts under the assumption it's a variable. PFirst we
see 1if any prefixes for this lbel have occurred (Subroutine
B, calling for special exit at steps B12,Bl17).
Adjust arithmetic of the variable accordingly. If loop 6 is
not full of simple variables, put the variable there, otherwise
put it down on the drum. Go to I26.
If Al has not been coded as a variable, go to I21,
Free up the location used for the variable and recode Al as a
label.
Define Al as a label equal to DRUML+LOOPL. To I26..
Replace A2 by the label code, which is:
a) 5 CUB enguiv for a regular label _
b) 1 BUN equiv for a procedure parameter label
c) a simple variable code, for a defined procedure name]
-d) a procedure output variable code, for a procedure parameter
procedure,
Go to 1I6. . :
Reserve space for the Eibrary routine om the drum if needed.
Calculate address of subroutine and enter it into the compiler
code table. Go to I26.
Compile ACALL to the label code for A2, (Subroutine E). TO I39.
Compile the label code for A2 (Subroutine D). Go to I139.
If Al is blank, go to I&.) ‘
At this point, Al and A2 are both in compiler code. A switch
is set normally to go to 128, or else to go to the SWITCH
scanner 0l, or to the Procedure-Call scanner 05,
If Al is a right parenthesis, END, constant or simple variable,
go to I30,

Inside Algol 205 - 11

I29.

I130.

I32.
I33.

I34,

I35.
I136.
137'

I138.
139,

Coding Details: Temp Storage Used: AO,Al,A2,A3,A4,INSW,Q,PART2 table,

If A2 {8 a plus sign, go to I5 (this ignores unary +); else

go to I33.,
If A3 is a minus sign, go to I32 (this changes binary minus

.. tqQ unary minus).
131 .

If A2 is a constant, any variable, function name, or

procedure name, or a left parenthesis or BEGIN, set Al.5

to a multiplication sign. (This is the test for implied
multiplication) Go to Kl.

Set Al.5 to plus sign. Go to KIl,

If Al=FOR,go to I35, 1If Al is an equals sign and the FOR flag
is on, go to I36. If Al=UNTIL or IF go to I37. If Al is a
semicolon and the Boolean flag is on, go to I138.

If Al is any of (left parenthesis, BXTIA BEGIN, semicolon,
STOP,comma) and A2 is any of (right parenthesis, END, semicolon,
comma) set Al.5 to "nullstring" code. Go to Kl.

Set FOR flag on. Go to I4,.

Replace Al by BOR, set FOR flag off, increment Doo counter,
SEt Boolean flag to Al, Put DRUML+LOOPL with Boolean storage
code on top of operand stack. To TI4. .

Replace Al by Boolean flag, turn this flag off. To Kl.

Set Al = CONTINUE. To IS5,

EQUIV,L00P6,HIGHL,SEGL-SEG5, TEMP1 FORFL BOOFL CNAME cnoo Pnocx table,
Subroutines Used: NXTCH, ACALL OUTPf’LABLE. .

J. CONSTANT CONDENSER.,

This routine changes constants from the input string code to 205
code. It is entered only from the Prescanner at a time when Q=0

- and

J1.
J2.
J3.
J& .,
J5.
- J6.
J7.

J8.
J9.
J10.

J11.

J12 .

J13.

J14,

J15.
Jlé6.

J17.
J1i8.
J19.
J20.
. NXTCH into A3.

J21

A2 is8 the first mmulr®® numeric character,

Set N to A2, ARITH to fixed, MU=O0.
NXTCH into A3 (Subroutine A with Q=l),
If A3 is not numeric go to J5.
Set N to 1ON+A3. To J2.
If A3 is not a decimal point go to J12.
NXTCH into A3 (Subroutine A with Q=1).
If A3 is not numeric, the decimal point was a multiplication
symbol which will be reinserted later because of implied
multiplication. In this case go to J13.
N = 10N+A3, MU=MU+1,
NXTCH into A3 (Subroutine A with Q=1).
If A3 is numeric, go to J8. '
Set ARITH floating. Convert N to floating point notation
(divide by 10%*MU).
I1f A3 is an asterisk go to Jié4.
Set A2 to constant code. To 126,
NXTCH into A4 (Subroutine A with Q=2),
Tf A% is not an asterisk go to J13.
If N hasn't yet been converted to floating point, set ARITH
floating and convert N, Set Sign plus, MU zero.
NXTCH into A3 again (Subroutine A with Q=l),.
If A3 is numeric go to J20.
Sct Sign plus or minus according to A3. To J17.
MU=10MU+A3.

.y

1.

R I
| J

-
v o'l

A3 NYTeH

é—"-

74,
Byio N

T3.

A
NImMERICE

T COLSTRIIT GorpLNSER,
|]

A\

TS,
A3

Oec. Pr.? .

’

e

JIa.

'Azx?.

Ti¢,
M NKTed

A X2

T,
FLoAT

7.,)
A3 NXTcH |

‘ T,

| FLOAT
L__"""'"_T

126,

3. =23,
Cove AR [¢] AoTust
EXPoNeWNT

Jio,

A3
Nuperi S

\§

T,

I7.
A3 NXTd

Ts.
BuiLdo N

J22.

A3
NumMeriC?

8uleo My

7.
A3 NXTCH

EXPONENT

T,

Y

Ji8.

A3
Numeric?

I:ld
A3 NXT<H

v fﬂy
' 'ﬁ:s. N}: cd

T
Mwited |l eope e 2
‘L ’ _J |exerar | s !

/s
A X7

s

,"m.w ,
&zlw‘ ;ngg

sk

e //}iﬁ
| FloaT %f*:f» A»:Tm = A%
”ﬁnmin? i

wl}’

Tie,
] &:x S
+ OR -

Inside Algol 205 - 12

J22, If A3 is numeric go to J20.
J23. Multiply N ¥ "1 by 10*+MU according to Sign. Tp J13.

Coding Details: Temp Storage Used TEMP5,TEMP6, TEMP7 ,N
Subroutine Used ¥ NXTCH)

K. ARITHMETIC SCANNER.

This consists mostly of tests on the type of Quantity AO is.

The scanner has two main functions: a) to control what goes onto

the operator and operand stacks; b) to detect when an operation 1is
ready to be compiled for and in such an event ‘to go to the proper
generator. Between every two times the scanner is entered, the
symbol pair AO,Al has been moved to the right across the

input language. The input language as seen by the scanner has been
edited by the prescanner into a convenient form; a few non-arithmetic
things comé&through here, but not many.

Kl, If A0 is an operator, a left parenthesis or BEGIN, go to K6.

TTL If AO is a semicolon or comma, go to Kl12. If AO=RETURN,go to K7.
If AO=CONTINUE, go to K9. If AO is function or procedure name,
go to K5. If A0 is a variable or "nullstring" go to K3.

If AO is a constant, go to K2,
Otherwidse,believe it or not, A0 is a right parenthesis or END.
Go to K8.

K2, Put constant onto constafit stack.

K3. Put A0 onto operand stack.

K4, If AO is not a subscripted variable go to K9.

K5. ALARM if Al is not a left parenthesis.

K6. Pit A0 onto operator stack, go to Il.

K7. Compile BUN(exit) (Subroutine D, IN7). Go to K9.

K8. ALARM 1f top of operator stack does not pair with AO. Remove
top of operator stack, Go to K9. ’

K9. If the heirarchy of the top of the operator stack is not greater
than the heirarchy of Al, go to Il. (In this test we associate
"heirarchies" with left and right parentheses, commas, and
semicolons, as well as with all operators, but the "heirarchy"
of a left parenthesis is tested only from the right, and that
of a right parenthesis, & dfixauixaxkXXERARLXXRXXEER semicolon,
or comma is tested only from the left.) The heirarchy table is:

() BEGIN END FOR 00

STV TO 02
UNTIL IF DO 04
STOP = 06

, 08
SWITCH 10

OR 12

AND 14

NOT 16
LSS,EQL,etc 18
","in MOD 19
+ 20

/ 22

. 24

- * 26) o
"all others infinity

he ,l

L | 2ol 1AV E .
e i _

T w7 VT xel T xa K. .
; Conpri e ; L unsTALK || STAck 1S HicRAR-
L eyl j C:WSW“’r cnX RIBHT! 11.

- Y

I X4.
K3, SuBSCe, Kio,
13‘,13)_*—“)"; TesT AO STAK VARWABLET UNSTACK
(134 323 :;5 .\\ / l o PLRAND OPERATOR,,
99 \ n}»c'hou.
Feegl
RN
K¢, Ks. /KA.
STACK cHECK “To
OPL RATUR AL=(GEMRATORS,

K. ARITHMETIC SCANNER,

L1. L2.
ﬁ;; B o e A3 WA

L. Combripl CetbiliSER,

o sugse, N
VARG |

\’; ’

i
& .

AT AL
CSppileleiy

SeMiccloN

e] M. INTEeCER ', ARRAY
i
DR DECLARATIONS .

M7 M.

|
'l,ﬁ.'u,b M i FELFIX immm‘ze’ r

‘ ‘1
| Mil,

N\

MUMIR

10,

. M9, _ . . -
AS A2 NYTCH

CoMMA

P
Se F@{
TR

MATR

pooMs
CINTALIEE |

%

/

e M
Az Nt

Inside Algol 205 - 13

K10. Remove top of operator stack f

Kll. Go to generator dor this operation. Generators are in sections
Tl..Liiunz P through U,

K12, If top of operator stack is FOR, go to Ul,

K13. If next from top of operator stack is a procedure name, go to Pl.,

" K14, If AO is a semicolon, go to Il.

K15. If next from top of operator stack is INPUT or OUTPUT, go to
+™7 sl (OUTPUT) or S2(INPUT). If it is MOD, go to K16, If it
is FOR, go to U2, Otherwise go to Il,
K16. Set AO = divide with hierarcky 19. Go to Ké6.

Coding Details: Upon entry to the genétators, rA=Q ,rB=CNAME-1,

rR:88 = Operation code:08, and COUNT=0, These conditions were found
to be most useful in the generators. ' ‘
Temp Storage used: COP, OPST table, A0, CNO, NUMST table, CNAME,
NSTAK table.

Subroutinc Used: OUTP7,

L. COMMENT CONDENSER

' This routine is so trivial it réquires no COMMENT.

Ll. YIf Ao is a semicolon, go to 17.
L2. NXTCH into A3(Subroutine A with Q=l). Go to L1l.
Coding Details, subroutines used NXTCH.

M. INTEGER AND ARRAY DECLARATION CONDENSER

Entry is only from the Prescanner when A2=INTEGER or ARRAY, A3=blank,
Remarks: Prefixes apply on¥y to those simpla variables vhich appear
only after the prefix.

M1l. NXTCH into A3 (Subroutine A with Q=l).

M23 If A3 is a semicolon, go to I7. If A3 is alphabetic, go to M3,
Else to M1,

M3. BUILD identifier (Subroutine B),

M4, If A2 is ARRAY, go to M8, Otherwise A2 is INTEGER.

M5. Make this name or prefix have integer meaning in compiler code,

M6. If AD is not a period, go to M1,

M7. Set A3mblank and go to the prefix routine (Subroutine B;INl).To M5,

M8, Set dimenxion to 1, MU=O,.

M9. NXTCH into A3 ignoring all blanks (Subroutine A, with "last

character" set to blank,Qm=l),

M10. If A8 is numeric go to M1l1l. If A3 is a comma, go to M12, Else

to M13.

M1l. MU = 10MU + A3, Go to M9.

M12., Set-dimension to 2, NU=MU,MU=0, Go to M9,

M13. If dimension 18 one, reserve MU locations. If dimension ®s /S

two, reserve MU°NU locations. XXZX Set compiler code for this name °

with proper base address and dimenlionality, retaining INTECZR status

i£f previOusly declared Go to Ml.

Coding Details: Temp Storage Used A3, TEMPJ, TEMP6, TEMP7, HIGHL,

?ART2 table, LSTCH,

Subroutines Used: NXTCH, BUILD, BLDIl,

: N,
,F\N\SH
i ur

NS,

_'N;f.
) Book - LND oF
KelFinG sTRING?
] .
n NG N3,
INITALIZE A3 NXTCH 4—-i kF;\vﬂ
A

NiG.
QUL D
NAME

M.
A3 =0 2

N. DLCLARATIONS,

NIY.
3= (2

Y

M. N27. -
A3 Nxted B wxagt (e STer
LoofL
Nz3,
A3 conmp?,

A3 NITCH

< RECURD

LA

: %MWWW“W

NG,

A% NKTCH

REEH

1 mw;{, ;

Inside Algol 205 - 14

&f‘ N. DECLARATIONS.

This routine processes the "beginning phase" of INPUT, OUTPUT,
FORMAT, SUBROUTINE, and PROCEDURE declarations. The "mdddle phase™
is handled by the normal scanner. The "ending phase" of these
declarations is done by Benerators. N5-N10 is the FORMAT condenser,
N12-N24 is the y% procedure input string condenser. :

Nl. Compile CUB(around). (Subroutine D, entry IN7). This is done

so that the coding produced by the declaration is bypassed at the
time it appears @n the running program.

N2. Define A2 to be a label located at DRUML.

N3. If Al is INPUT or OUTPUT, go to I5. If it is SUBROUTINE, to N25.
% 2~If Al is FORMAT, go to N5. Otherwise Al is PROCEDURE, go to N11,.
N4. undefined

N5. Set A2= left parenthesis, set STAR=0, FWORD blank. :
N6, NSTCH into A3, bringing in actual untranslated alphanumerics i1if
we are between two asterisks, ignoring all blanks if we are outside
of asterisks. (Subroutine A with special flags)

N7. If A3 is an asterisk, set STAR = 1 - STAR.

N8. If A3 is a right parenthesis, TExExXNELX and STAR = 0, go to N1O.
N9. Add ‘A3 to FWORD. If FWORD is full, punch it (Subroutine C) and
set it to blanks. Go to N6.

.. N10. Punch FWORD (Subroutine C). Go to Il. 4)
. . Nll., Set temp. storage counter so as not to overlay any which occurred
K«';previously. Define A2 to be a procedure label with global significance.’

Set up procedure heading. »
N12, Set I =0, J = O,
N13. NXTCH into A3 (Subroutine A with Q=l1). ‘
N14. If A3 is a semicolon go to N1S If alphabetic, go to N16. Other
wise A3 ought to be blank; go to N13,. ‘
N:5. Set I=I+3,JmI., Go to N13.
N16. BUILD an identifier (subroutine B).
N17. If A3 % 0, go to N19,
N18. Put next nonzero character into A3 (Subroutine A,Qml) ,
N19. If A3 is a left parenthesis, go to N22. ALARM if A3 is alphabetiec
or numeric.
N20. Step LOOPL by one. Set the identifier last encountered to have
the meaning specified by J: (simple variable, proc. param. vector,
proc. param. matrix, proc. param. output, proc. param, vecéor,
proc. param. matrix, proc. param. label, proc. param. procedure)
respectively for J= 1 through 8. Then set J = I.
N21. If A3 is a semicolon go to N15. If A3 is a comma, go to N13.

- Otherwise, A3 is a right parenthesis; go to N25.
N22. J=J+l. Set A3 = next non-blank character (Subr. A, Qmwl, last charm=0).
N23. If A3 is a comma, go to N24, Otherwise A3 is a right parenthesis;
o to N18,. '
N24, Step LOOPL by one. To N22,
N25. Compile STA exit (for either procedure or subroutine) (Subroutine D).

. Then go to I7.

&Ej Coding Details: Teap Storage Used: Al,A2,PART2 table, DRUHL,LOOPL.TBHPS,
TEMJG,TLMP7, THISE,PROCC,PROCT.
Subroutines used: NXTCH,DFINE,PUNCH,OUTPT.

/s 3 '
7o ey
/ - ’(O\\ . ! 07, ’
K[}' Sl T eALL By |
s lis / ; NARE CeMPIULE cal
I

ollp .
, « o4.
uN(" o 'WT
F Voru: SWATCHES

\F Lo,
/o M ihiEL SCAN T
4 6 . \ L SWITCH ONJ Y o

/ SWATCH, PRocebuhe s SCANNERS.

! IR,
j CALL X
| VAWE |

LY &s,100 . | | CE
nwg f1. \‘M) P3. S
T TeST TWE fuLl .
\.\ i NULLSTRW(S
\\\

/ \ ‘ P. TFoCCIRE GemeRATOR.

[RULLSTONES]

R

P, CRecctife ¢

Inside Algol 205 - 15

O. SWITCH, PROCEDURE CALL SCANNER.

This scanner alters the normal mode of compilation wildly..The

SWITCH and PROCEDURE generators do the prehiminary work before

this routine takes over. Remarks: The entrance to the procedure

call scanner in its first phase (from the Scanner) is made to the ___
generator Pl; the second phase enters at 05 from the Prescanner. TE.P
switch scanner enters at 0l from the Prescanner.

O0l. Set DRUML=TEMP7=~TEMP7+l1. Compile label code for Al (Subr. D).
02. Tf A2 is a right parenthesis, go to 03. Else to 16.

03. Fix up forward reference %£xduw made by SWITCH generator.

04. Reset I27 switch xX¥x and label switch to normal position.

- Adjust A0 so it will be bypassed at next entrance of scanner. To I39.

05. If Al=nullstring, go to 011, If it is a label code for a non-
parameter label, go to 09. If it is a simple variable, go to 07.
Otherwise go to 06 (testing Al).

06. If it is a procedure parameter array, go to 08,

~ 07. Here we have an ordinary call by name which is to be entered

as input to a procedure. Compile CAD (const) (Subroutines D,F),

STA (procedure input storage) . For a matrix, do this twice. To 01l0.
~08. Compile CAD (cu¥rent procedure input storage), STA (called ‘ SR
procedure input storage)(Subroutine D). For a matrix, do this twice. To 010,
09. Provide for four locations in loop7 buffer (Bubroutine F,INl), S
Compile €XIXx2%x& CAD (self plus 2), BUN (self plus 2), label code,
"STA (called procedure input), all four of these instructions(Subr.. D).

;5: 010. If A0 is a right parenthesis, go to 016, If it is a comma, go

to Il, If it is a semicolon go to 0l4., Otherwise A0 is an exclamation
m=i® mark.

011. If A2 is a right parenthesis, go to 016, If it is a left paren-
thesis,go to 013, If it is a semicolon, go to 0l2. Otherwise it's a
comma and we go to I16. '

012. Set label switch on, go to I16.

013. NXTCH into A3 until it is a right parenthesis (Subroutine A with

'Q=1). Then set Al=nullstring. To 1I7.

0l14. Set AO=exclamation mark. Set I27 switch to jump to 05. Go to 05.

015. Compile to ACALL the procedure. (Subroutine E).

016. If A0 is a right parenthesis, we are using the procedure as

a function; go to K9. Otherwise A0 is an exclamation point and

we go to 04, :

@®ding Details: Temp Storage Used: OPST table, CNAME, CMTX, A0, Al,

A2, TEMPl, TEMP6, TEMP7, PROSW,SWTCH,DRUML.
Subroutines Used: NXTCH, CONOT, OUTPT, PRSUB, FULL, GET, LABLE, ACALL.

GENERATORS

The remaining routines are the special processors which handle their
own Iitgle feature of the language.

' P. Procedure generator. Used for library procedure calls and previously
defined procedure calls.

Pl. If the top of the name stack is the nullstring code go to 010,
If it is an array and the top of the subscript stack is a nullstring,
go to P3.

&, ARTAMETIC GEMERATURS,

e — “W"T

T"‘"" . ’“"""I

HE

usmm(—
L__Ef_‘:.‘:____j

A e ey

(—e
afb- ‘ \‘ a7- ¥

L’iﬁi“iJ AN

R1,
SINPLE
LATBAES

R, SWITCH GeweAToR

Y.
CoMpiLE
To SWITLH

S, NPT -ouTAIT CENERATOAS.

3 y’u
L eror e DATA

3
5‘\ [se.

‘ ; 1)
| CeT ofrrt T BCNL 0070 [. Aol L‘*f FinISH up

L e

" LIRRARY

f%fiff{f‘ 7

e 55

.

GToRE WA

il ; 5 % -

S5,

Inside Algol 205 - 16

P2. GET i1t (Subroutine G) and compile STA (procedure input storage).To 019.;
P3. Remove all "nullstringg" from subscript stack, go to 06 (testing -
top of name stack).

Q. Arithmefdic Generators. Addition, Multiplication, Division,
Exponentiation, Replacement go to Ql. Minus goes to Q2. ABS goes to
Q3. MOD goes to Q4. Library functions go to Q5. Arrays go to Q6.
"STOP" goes to Q7.

Ql. If we have a simple variable or a temp storage location raised
to the second power, change it to a multiply. Compile for the

proper operation (Subroutine H, entry INl). To K9.

Q2. Reverse sign of top of operand stack. To K9.

Q3. £uu Set absolute value tag of top of operand stack on, set it
positive. To K9.

Q4. Compile SLT 10 (Subroutine D). Go to K9.

Q5. GET top of operand stack (ALARM if fixed) (Subroutine G). BCALL
the library function (Subroutine E). To K9. ‘
Q6. Move subscripts of operand stack to subscript stack. If they are
arrays, GET them first (Subroutine G) and replace them with temp.
storage symbols. Take care not to introduce any holes in the subscript
or constant stacks! Go to K9.

Q7. If top of operand stack is not a nullstring, GET it (Subroutine
G). Remove it from stack. Compile STOP 037 (Subroutine D). To K9.

R, Switch Generator. When Rl is entered the hierarchy has been

rigged so that AL is a comma, A2 a left parenthesis. ‘
Rl. If top of operand stack is a fixed point simple variable, go to R3.
R&. GET top of operand stack (Subroutine G). If it is floating, com-
pile FAD (5810000000) (Subroutines D,F). Compile STA 4001, LDB 4001,
(Subroutine D) and go to R4,

R3. Compile LDB (variable) (Subroutine D). ,

"R&. Compile xLulxxuZIxpkuxxzs®# -BUN (next) (Subroutine D, IN7).

Set TEMP7= DRUML; compile CUB (fwd. ref) (Subr. D again). Set 127

. switch to exit to 0l. To 16.

S. Input-Output Generators. S1 is OUTPUT entry, S2 the INPUT entry.

Sl1. GET top of operand stack (Subroutine G). ,
S2. BCALL the coroutine line (Subroutine E). (i{.e., BCALL location 0070Q)
$3. If INPUT, go to S4; if OUTPUT, to S5.

S4. Set RIGHT= temp storage code with same type (fixed or floating)

as top of operand stack. Compile to store (Subroutine H, OP=replace).

§S5. If A0 is a comma, go to Il; else it is a =mmwirxXsx-right parenthesis.

- S§6. Compile CAD self, CIRA & Wm BLMH-O the coroutine line
(Subroutine B). Go to Il.

T. Relation Generators. PCS enters at T5. EQL,GTR,etc enter at Tl.

NOT enters at 16, AND-OR at T7, UNTIL at T8, IF at T9. IF and UNTIL
generators take over after the statement following the relations has
already been processed.

I For,

U§,

277 FLAG,
TeSTVER

\51 ATeHoT c'/

vl

_/

¥

s)
L CompiLE
LINKACE S

ub,
INTCR L GATE

OVERFLOW

© Uie,

PREPARE
For “po ¥

~ relation feeding them into the second relation where it has to be

Hl 'T9. Fix up’ remaining forward references for the top relation in the
true-false stack, and pull it off the stack. Some & the forward

e

3

"~ CUB 0000. The 0000's will be filled in later. Record the location

" U3. Turn special-comma flag on. Look and see if Al is a minus

" Tl. Negate the sign of the top operand and compile to subtract
the two quantities (Subroutine H, OP=non commutative addition).

' we alter this constant to get the appropriate branching situation,
'in the other event compiling ADD (+9999999999) (Subroutines D,F). :
"T2. €. ... ":mNRIF we are in the FOR routine, go to U6. Else to L& T5.
T3, undefined ' . T

" IS. Compile either 9CUB 0000 (for PCS) or LCUB 0000 (for EQL,NEQ) or

. entries in the true-false stack. Go to K9.

~"U. FOR generators. Entrance is from the scanner when AO is non ot‘ﬁ;ﬁg

Inside Algol 205 - 17

If we have EQL or NEQ, compile CNZ (self plus 2), otherwise
if the last instruction wgs ADD,SUB,FAD,or FSU some constant,

m—

T4. wundefined
1CCB 0000 (for GTR,GEQ,LSS,LEQ) (Subroutine D, IN7). Then compile
of these 0000's, and whether they represent a true or false situation,

in the true-false stack. Go to K9.
T6. Change all the true-false conditions of the topmost relation

T7. Combine the two top relations of the true-false stack into a
w¥~w single one; fix up forward references for those of the first

tested in order to obtain the proper AND-OR condition. To K9,
£T8. Compile CUB (back to relation test). (Subroutine D, IN7).

references go %l to the beginning of the statement, others bypass
4t, Then go back to K9.

‘Ul. If special-comma flag is on go to U5, otherwise to U7.
U2. We have the (B1,E2,E3) case where we're scanning one of the
two commas . If the special flag is on, go to Uk.

sign or not, and remember this. Compile to set the variable equal

to E1 (Subroutine H, OP=replace). Compile CUB (test El vs. E3).

Go to 1I1.

U4. Compile @o add E2 to the variable (Subroutine H). Compile to
store the result in the variable (Subroutine H again). To Il.

US5. Turn off special-comma flag. Go to GEQ or LEQ (depending on
‘whether E2 began with minus sign) generator, Tl.

U6. Compile either BOF (seff plus 2) CUB back, or CCB back depending
on branching situation. To US8. S
U7. Compile to set the variable to this value (Subroutine H,OP=replace).

U8..l...° ACALL the next statement. (Subroutine E).

U9. Tf AO is a comma go to Il. Else A0 is a semicolon,
Ul). Compile CUB around (Subroutine D,IN7). Change operation from

'FOR to DO,and compile STA exit as in a subroutine. Go to Il.

..;....35%5 and that's all there is to this compiler.

	g018.tif
	g020.tif
	g023.tif
	g025.tif
	g028.tif
	g031.tif
	g034.tif
	g036.tif
	g037.tif
	g039.tif
	g041.tif
	g043.tif
	g045.tif
	p001.tif
	p002.tif
	p003.tif
	p004.tif
	p005.tif
	p006.tif
	p007.tif
	p008.tif
	p009.tif
	p010.tif
	p011.tif
	p012.tif
	p013.tif
	p014.tif
	p015.tif
	p016.tif
	p017.tif
	p018.tif
	p019.tif
	p020.tif
	p021.tif
	p022.tif
	p023.tif
	p024.tif
	p025.tif
	p026.tif
	p027.tif
	p028.tif
	p029.tif
	p030.tif
	p031.tif
	p032.tif
	p033.tif
	p034.tif
	p035.tif
	p036.tif
	p037.tif
	p038.tif
	p039.tif
	p040.tif
	p041.tif
	p042.tif
	p043.tif
	p044.tif
	p045.tif
	p046.tif
	p047.tif
	p048.tif
	p049.tif
	p050.tif
	p051.tif
	p052.tif
	p053.tif
	p054.tif
	p055.tif
	p056.tif
	p057.tif
	p058.tif
	p059.tif
	p060.tif
	p061.tif
	p062.tif
	p063.tif
	p064.tif
	p065.tif
	p066.tif
	p067.tif
	p068.tif
	p069.tif
	p070.tif
	p071.tif
	p072.tif
	p073.tif
	p074.tif
	p075.tif
	p076.tif
	p077.tif
	p078.tif
	p079.tif
	p080.tif
	p081.tif
	p082.tif
	p083.tif
	p084.tif
	p085.tif
	p086.tif
	p087.tif
	p088.tif
	p089.tif
	p090.tif
	p091.tif
	p092.tif
	p093.tif
	p094.tif
	p095.tif
	p096.tif
	p097.tif
	p098.tif
	p099.tif
	p100.tif
	p101.tif
	p102.tif
	p103.tif
	p104.tif
	p105.tif
	p106.tif
	p107.tif
	p108.tif
	p109.tif
	p110.tif
	p111.tif
	p112.tif

