Tl«is .anltwu—o Iﬁﬂ/’ memo wuch /a/"w/
Han du o flov matevied | but ;—n//u/s Mo sama Husn,
Tl sfu.ci.occ‘e sccasm wae Hu af, et of of
& Progesed St staudands 4{: fu Pragram
L»T‘« Masinad s T soFtaan, edhich
wevt "l ,h A«l fmauu 009/ locumcm‘u:/im. 6/&.5‘)
HAY kovt emceavied o./mos'f' a)[«//y M% m, nat
uu#u:i’) Mo‘ JLA l;»/'ij;:; e.m*‘ud’ Wen a.Js fyocluuﬂ
Ao accdoncs with Huss shududs , Sbile hih, wodby
h%mul wst b angan . b I said iu fu (et B
H«.Vo wev o'm,;w..ss')rc/ well dava — bt tw much dlu
Samh S SL n\.a-f' o &L?Ldl/-td)'efh&ucﬁtbom 7 ”I(/MLf
QWSS'.v JLI Dz/a.wwe“ -M(chf‘ecoodm 7avuu.s(7 co/.,‘vd
M 7;)13 ng\ Anﬂ'm mtjﬂfﬁ U&(/ JM. J'u,d'
raleveud awd only 40«(&&11(&‘ t.wLWCS"';»\a‘.

T W(w\& A{M {)fect \M.& S cn'rcwlo.QLCM
wihin TOM s Wad b1 We both com oquess
Wiw wanch J&u."" it hed o QLM s

October 20, 1967

Comments on "Proposed Standards for Program Logic Manuals"

It's hard to take exception to either the stated cbjectives of the proposed
standard or the methods by which these are achieved. There are several
points which deserve comment, however.

° The standards adequately describe how to document ''conventional"
programming techniques--flow charts, load modules, procedure calls,
etc. However, programming techniques are getting more sophisticated
all the time, and there may be difficulty adequately presenting these in
the traditional format. An example which comes to mind is the use of
re-entrant subroutines with multiple entry points, in which one or more
subsequent entry points are determined by the routine itself as a result

of processing performed at the current entry point. (This technique is
often used to manage asynchronous if/o activities or to schedule in a
multiprocessing environment.)

B The standards talk about !'inputs,' 'processing,' and "outputs'
as if these determined exactly what a given piece of code did, and could
be explicitly identified. Again, with advanced coding techniques, inputs
and outputs may be determined by multi-level indirectness, or by
temporal and spatial contextual information which requires extensive
processing to make explicit. And a routine need do no processing at
all, but merely invoke one or more of a great number r of possible sub-
protesses. It is perfectly possible, and often profitable, to invoke a
routine which '"doesn't know what its inputs are, doesn't know what the
processes it applies are, and doesn't know what its outputs are'. This
is particularly true as systems grow hierarchically, relying not on
hardware for their execution, but on other system software. A low-level
example that comes to mind is the internal use of mterpretive techni-
ques; there are many others.

LY

e
s

.

L . B : - z - octOber 20, 1967

] My concern is that there seems to be no real provision for
documenting programs structured as I have outlined. This might
not be so bad but for the feedback effect; a system designer, or
development programmer, may tend to avoid such powerful
techniques because of the difficultyi in ""PLMing'' them, and we
have the case of the documentation tail wagging the system design
dog--clearly an undesirable effect, so far as I am concerned.

° On a different plane, however, I still have some serious
reservations about the utility of the documentation as described.
Consider, for a minute, when the PLM's are likely to be used;
when the program doesn't work or when it is to be modified to
make it do something else. If the program did exactly what the
PLM said it did, there would be no need to consult the PLM at all.
Although it sounds facetious, a more useful function of the PLM
would be to describe not how the program works, but how the
program fails. After all, this is what has probably happened, and

is why the FE or SE is perusing the memory dump. To this end,

the PLM needs to state, quite explicitly, under what conditions the
program fails, and how this failure manifests itself. The sorts of
things we need to know fall under the general headings of Constraints,
Assumptions, Scope, Limitations, etc. Additionally, we need to

know the response to unexpected inputs; the response if the routine

is executed under the wrong circumstances; the symptoms expected
as the result of various hardware failures, both hard and intermittent;
and the responses which might result from failure of associated soft-

ware.

o The PLM takes great pains to tell us how each routine or
module integrates with all the other modules or routines. However,
what we really need to know is how to isolate a given module from all
the others, so that we can test it in an environment more tractable to
analysis and tracking down trouble. This may necessitate the design
and writing of a small auxiliary routine to create a data get of known
format, for instance; or a routine to verify the outputs of the code

in question, or even suggested additions or modifications to the routine
itself. In a word, the PLM should include diagnostic techniques.

® It is well known that every code or program represents a
compromise among many competing factors--storage and speed of
execution are the canonical ones, but there are always many others
involved. It's probably true that if a PLM isn't being consulted because
the program has failed, it's being consulted as a guide for modification
of the routine because the limitations and compromises originally
adopted are no longer valid or optimum. The designer and develop-
ment programmer have a clear obligation to make sure that these

Fa]

P

-3- October 20, 1967

constraints, and the means for changing them, are explicitly
conveyed to the writer of the PLM. All of this can really be
summed up under the heading '""How to make the code do something
else' and maybe even "Don't try to make it do thus-and-such;

it looks as if it should be easy, but there are hidden pitfalls®.
Candor is rare, but {t's vitally needed.

° Implicit in the above comments has been the assumption
that a PLM serves three purposes: as a maintenance guide, as

a modification guide, and as an archival, which is to say tutorial
guide. Most attention has been given to the shortcomings of the
proposed standards in the first two areas, as these are of imme-
diate concern. However, the third function is of importance over
the long-haul, as intimated in an early point, and, once again
candor can be of great value. To serve this purpose, at least
some attention should be given to presenting those things that were
done wrong and those decisions that were in error, but which
weren't discovered until the coding or checkout or integration was
so far along that a change was impossible. This always occurs, to
a degree, and results in patchwork features in the design or coding
which work, but really aren't the right way to do things. These
are often the vulnerable places in the program, and may even have
been described as such. To avoid perpetuating the bad techniques,
an exposition under the general heading "How it should be done if
it were being done over again'. Progress comes from recognizing
failures as well as from recognizing successes.

e Let me emphasize in summary, that the document is an
impressive piece of work and, in detail, extremely well done.
PLM's will have to be useful, however, and I believe their
utility could be improved markedly along the lines I have indicated.
Probably what's really nceded is an Alpha test and Beta test for
PLM's to see if they really meet the needs of those who must rely on

them.

C. L. Baker
CLB:kd
cc: R. W. Arnold
M. Dyer
F. A. Fay

R. D. Phillips
P. H. Trautwein

	e 0001.tif
	e 0002.tif
	e 0003.tif
	e 0004.tif

