Some Comments on the Problem of Sorting
Andrew Gleason

December 18, 1956

: Decem’ber 18, 1956 |

Subject: Some Comments on the Problem of Sorting

We are given a collection of objects hereinafter called items which

are linearly ordered in such a way that the relative order of any two
items can be determined by direct comparison of the items themselves.
Our objective is to arrange the items so that their linear sequence
agrees with their intrinsic order. Many procedures have been described
for bringing items into sequence and it is important to know which
method is the fastest. The methods of information theory enable us to
find certain theorems which are at least related to the prodblem of
determining the fastest method of sorting,

In any machine computation, the stops can be divided roughly into two
kinds, the administrative and the decisive. By the decisive steps we
mean those places in the computation where the data itself onters in
such a way as to affcct the final result., The other stops are adminiss
trative; they include any sort of data rearrangement, counting routines
(when the counting objectives are independent of the data), address
modifications, print outs, etc. The distinction is not always clear-cut,
but in the problem of sorting it is, or at least for the procedures which
are widely used. Information theory proves that there are definite
lower bounds to the number of decisive steps for any operation, so that
one.measure of efficiency in any procedure is obtained by comparing
the actual number of decisive steps with the theoretical minimum, Un-
fortunately this measure takes no account of the administrative steps
which can frequently be the principal part of the computation as far as
overall time is concerned.

We shall discuss sorting by counting decisions, where we assume that
all decisions are of the simple binary type: "Is item A ahead of item
B '

Let us note that the fair estimate of the length of a process is the average
length taken over all possible input data, weighted by the a priori proba-
bilities of these data.

Theorem 1. Consider the problem of selecting one of n possible alternatives,
all equally likely a priori, by a succession of binary decisions, The
minimum, over all procedures, Qf the expected number of decisions is

n) where:
7! Pl =p+l - 22 waplen g 2P
.. n

-2- December 18, 1956

(Proof will st beinctuded pare)

‘Theorem 2. ¥ C = 1-log, e + log, logye ~J .086, then

log,n <¢(n) ¢ log2 n + C,
The lower inequality is equality if n is a power of two. The upper bound
is approximated when n s 2P/log,e. :
In proving theorem 1, it is assumed that one may ask any sort of a question
requiring a two-valued (yes or a0} answer. The minimum will always be
attained if at each stage the poséible alternatives are divided into two
groups as nearly equal as possible and asking whether the correct choice
lies in the first group. In practice, we cannot always ask a question of
this type by a simiple step, so that <P(n) can be well below the minimum
of practical answers. Example: Given a file of n items, known to be -
gorted, and known to contain exactly one pair of duplicates, find them.
In this problem there are n - 1 alternatives, since the pair can be the
firat and second card, the 2nd and 3rd, .., (n-1)st, nth. According to
the theorem, the minimum length of a process for finding the pair is about
log,(n-1). This would be achieved if we could ask the question "Is the .
pair in the first half of the file ?"" But since there is no way of answering
this question short of looking through the whole first half of the file, which
itself would involve a lot of decisions, we cannot achieve the minimuwm of
the theorem, or anything near it. It is clear that the best we can do using
elementary questions, is to turn the file from the beginning comparing
successlve cards, Since we expect to find the pair halfway through on the
average, the length of this process is 1/2 (n-1), a far cry from log,(n-1)
if n is large. Our process would be ideally cfficient if we were asked to
find the duplicates in a sorted file, without knowing that only one duplicate
occurs. In that case we would have to go through the whole stack in any -
case 80 the process would have length n-1, But there are precisely 2n-1
ways that the file could contain duplicates. In the first problem, we seem
to be obliged to reacquire information which we already knew, that most
cards are unlike their neighbors.

Let us apply theorem 1 to the question of sorting a mixed file of n items.
OCur problem is equivalent to determining which of the nl| rearrangernents
of the file actually puts it in sort, and these rearrangements are equally
likely, since the file is presumed to ce randomly mixed. Therefore the
absolute lower bound to the number of binary decisions is <2 (nl). Now we
cannot actually ask an arbitrary question; we are restricted to asking
questions comparing just two items, and therefore this lower bound may
not be attainable. By actual trials it was found that it is indeed attainable
forn=2, 3, 4, or 5, but there was no apparent system for doing so, and
even if there were it would probably be unfeasible from the administrative
view-pdint,)

Consider the fonowingf method of sorting: Successlvély put each item into

-3- December 18, 1956

the file in its correct place. Here we start with the first item, which
can be filed in its place with no comparisons, Then:the;seconditem .can
be ‘filed in one of two places, before or after the first and the mean number _
of decisions in ¢Z (2). The third item goes in one of three places and the
most efficient procedure will require;a(3) decisions on the average, In
general, the k-th card can be added in k ways and the correct decision will
reguire 79 (<) steps on the average. This value can actually be achieved
by comparing the new item with the middle item of the file, then with the
item in the middle of the.appropriate half, etc. The whole process will
require 94 (1) + C/(Z) + eeeea ¢ ;:ﬂ(n) steps on the average,
Using the estimate of theorem 2 we have

~ logpnl = logzl + logy2 + =eese + logz(n) ;0(1) + =e=(h) 79(1‘)6

< (logzl + .086) + (logzz + . 086) 4 emen ¢ (logzn + ,086)
= log,nl + i 086n,

,Wo. can show that on the average
‘ 7’(:1) - 1§gan A2 . 056
80 that
= ‘7g(1) + waans +fﬁ(n)fvloo nl + ,056n

This proves that the method of successive filing of smfrle items is very
close to the absolute lower bound percentage-wise. Thus for n =1, 000,000
we find that ?(1 000,0001) A, 18.5 (108) so that $2 (1) + ~==um 4

f (1,000, 000) is only 0, 3% larger.

We coneider the method of merging into blocks of two, then four, etc. We
assume that the block sizes are always exact powers of two, and, for con-
venience, that the total number of items is a power of 2, say 2°. We use
the ordinary process for merging two blocks of size 2, This will never
take more than 2k+1 .1 comparisons, and on the average it will take

2kt 1.-‘Z + 2 . Then the entire process will take on the average

k4.1
.1 ’
P72 e 24 -2) 4 P2 22 5y Y+ 2P 323 024 2)4 aee-
1+1 0 , 2+1 TR
+ 2Y@2P .2+ 2)
2P 1T ¥ 1

steps. The principal terms work out to be

2P (p-2+49)

-4 \ December 18, 1955

~

where €= 1 + 1 +) o+ 1 n/ .13
1{1 + 1) 2(2 + 1) 4(4 + 1) Zp-l(zp-l + 1) '

Using Sterling's approximation to log n!, we find
?(ZPI) ~v (p - logpe) 2P
Therefore, this method is proportionately longer than perfect by

loge -2+0 = 1.442-2+.736 = ,178

P - logse P~ logze p-1.442
_For p = 20, i.e. 220 or about 1,000, 000 items this is only 1%.

When the method of successive collation is applied to blocks of mixed sizes,
it is necessary to continually check for the eand of the block, This has the
effect of nearly doubling the number of comparisons, while its effect on the
number of passes through is to reduce it by one, hence this method will
always be markedly inefficient whea judged by the simple criterion of number
of comparisons made. This is not to say that the method is unsatisfactory,
Rather it suggests that tho number of comparisons is not an appropriate
measure of efficiency,

The two procedures discusscd in detail also show that the measure of
efficiency is inappropriate. Single item filing can be done very efficiently

in terms of number of comparisons, but in practice it is not easy to do on
tapes. It would require a grcat deal of administrative time. The factor of
two in comparisoas between the fixed-sized and random-sized block methods
is also illusory, because in the fixed size method a count and corresponding
interior comparison must be made to identify the ends of blocks. Unless

the method cf determining precedence between items is complicated, the
random sized block method will be easicr. In this method, hard comparisons
for ends of tlocks can be avoided if an extra control symbol is added to the
beginnings of blocks. This reducés the comparison to a simple scarch for the
control symbol which is almost always quicker. This gives up any random
increases in block size, but these are in any event rare after the first pass,

. Theorem: Suppose we are given n equally likely hypothesis concerning an
object and wish to determine which is valid by binary conbinational questioning
(i. e. each question we ask receives a yes-or-no answer)., Each questioning

~
-5- December 18, 1956

procedure ylelds an expected number of questions and also a maximum
number of questions. Among all questioning procedures, the minimum
value of the expected number of questions is

E (n) =+ 1) - Ef_ ~ where p is the least integer for which n < 2P,
5 . .
Among all questioning procedures, the minimum value of the maximum
number of questions is

M(n)

Both of these bounds are attained by the procedure of always dividing the
hypotheses remaining into two equal groups (or groups as nearly equal as
possible, 1. e, within one) and asking in which group does the correct
hypotheais lie,

Proof: Whatever quostion we may asl, the two answers have the effect of
dividing the hypothescs into two disjoint groups, so we may as wcll consider
every question to be of the form '"Is .it in this group?". Now since the
hypotheses are asenmed to be a priori indistinguishable, the result of asking
the questions question "Is it in this group of k?'" is either 1) to put us in the
position of determining which of k hypotheses is valid, which happens if the
answer is ''yes', an event of probability k/n or 2) to put us in the position

of determining which of n-k hypotheses is valid, ‘which happens if the answer
is '"no'", an event of probability (n-k)/n. In any case, we then proceed to
ask about the reduced group by whatever procedure is optimum for the size
in question, I, then, E(n)'is the expected number of questions by the
optimum procedure for a group of n, the expected number of questions by
the procedure outlined above is

1 +kE(k)+n-k E(n-k).
n "~ n

The optimum procedure for n-hypotheses is, then obtained by choosing the
minimum value of this expression for all possible values of k (i.e. 1, 2, ...,
n-1). Thus

E(n) =1 + min k E (k) + n-k E (n-k) *
k n n

This gives us a recurrence from which E can easily be calculated. We may
however achieve a closed form by first putting :

F (n) = nE(n)
Then F(n) =n + min Fk) + ¥ (n-k)z , o

Suppose that n=2P"" 4 q where 0¢q < 2P-1

b~ December 18, 1956

Put Efn) =(p-1)2P1 4 (p41)q

(-4

First, we note that F,(n) =n + F, ([27) + F,(n -[3])_
2 . 2

by direct computation in two cases according as n is even n odd. Second,
observing that F, in a linear interpolation of the function x logzx, agreeing
with the latter for powers of two, it is clear .that F, is convex, so that

Bhroar (oW # R} =) o))

Therefor F, satisfies the recursion **, Hence F = F, .
Writing F (n) =p 2P-1 4 pq + q - 2P-1 =pen+n-2P

We get E (n) =p+1- 2P as stated.
) .

Secondly, the choice k ={'_r_1_] s always a suitable cholce of k in ¥, so that
: 2 ,

the minimum value of E is in fact attained with a procees which always
divides tha stacks evenly as noarly as posaible, Finally, if ng 2P, then '
at the q-th stage all groups will be loss than n equal to 2P {n nuraber, and
after p stages, no group will have more than 1 member, i, e, the problem
is done. Evidently M (%) > 2P, '

Theorem: 9& E (n) - log,n g 1- log,e + log,log,e A/ . 086'

Probf: F (a) is linear between n = 2P~! andn = 2P and agrees with
n logzn at these two points. The latter being strictly convex ‘
n logzng F (n) for all n,
Hence log,(n) £ E (n) for all n.
In the interval
2P-1g n g 2P we may write

E(n) = p+1-2P
: n

E (n) - logon=(p + 1) - _‘_23 - logzn
n

The maximum value of the function

p+1-2P - log_x
X 2
is achieved when) o :
: 2_P - lo £ — -
2L -lnf -6 .
‘ :

e 0o e — ——————— - e

-7- ‘ December 18, 1956

x = 2P
logze

when p + 1 -_2_‘: - logzx =(p+1)- logze -p+ 1.ogz (logze)
. _

2] - .légze + log,log,e.

.. E (n) ~ logzn < 1 - logze + logzlogze' for all'n,

Comments: Evideatly not more than 29 hypotheses can be distinguished
with g questions, and exactly this many can be done with q questions, If
the number of hypothecses 1s not a power of 2, then one cannot make all
questions efficlent, so thoxc i3 bound to be a loss due to "breakage'. The
discrepancy '

E (n) - log,n

measures this loss. It is remarkably small,
Application to sorting problem: B

1. To put the n-th number in sequence in a file already containing
n items proparly scquenced, There are n possible places to put the
new(§jfne. Therefore the minimum expected number of comparisons
is atleast R (n). But since it is possible to always make the com-
pariscn so as to split the possibilities as nearly evenly as possible,
‘1. e. alwaya compare the new item with the middle item of the string
in which it belongs, the number of comparisons need not be more
than E {n). ’

2. To arrange n items in sequence, with no a priori information
about their order, There are nl rearrangements possible. .To
sequence the file correctly we must determine (possibly not
explicitly Which ofs these arrangements to correct. Hence any
procecure muzst have an expected number of comparisons >E(nl).
It is by no means clear that the questions which achieve this expectation
can actually be phrased in the form of simple comparisons between
two items, 8o it may not be possible to achieve this bound. However,
we can sex that the method of adding one more item to the file after
another has an expactation '

E{l} + £{2) 4+ === + E(n)

=logl4+log2+4 <=~ +logan+ S _(E@) ~logi) £ logyn! + n(.086)

AG/i A. Gleason

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif

