uz6y¢

ENGINEERING RESEARGH INSTITUTE

AN INTERMEDIATE PROGRAM LANGUAGE AS AN AID
IN PROGRAM SYNTHESIS

- By
Arthur W. Burks

PROJECT M 828

BURROUGHS ADDING MACHINE COMPANY

DETROIT, MICHIGAN
~ JANUARY 25,1951

UNIVERSITY OF MICHIGAN ¢ ANN ARBOF

TABLE OF CONTENTS

An Approach to Program Synthesis
A Proposed Intermediate Program Language
Comments on Flow Diagrams

The Value of the Intermediate Program

Language

Page

10

, ‘ ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN

AN INTERMEDIATE PROGRAM LANGUAGE AS AN AID

IN PROGRAM SYNTHESIS

1. An Approach to Program Synthesis

As a practical matter it is necessary to begin programming with a
formulation of the accounting problem in ordinary business language. The end
result of the process of programming is a definite program stated in the in-
ternal (machine) lanéuage (in the narrower sense)?' Thus the task of the
programmer is to‘translate statements from ordinary business English fo the
internal program language. We propose to simplify this task by means of
intermediary languages so that the translation can be done in smaller steps.

We suggest the following four program languages and present them
in the order of thelir use: |

1) Ordinary Business English (as it now exists): This language

contains such commands as "post the ledger", "modify the in-

ventory record in accordance with this sale”, etc.
2) Operator Program Language: This is to be & restricted form
of 1) designed from the operator's point of view (hot the

machine's) — in it he is to express accounting problems in

* For a definition of the terms used here see Arthur W. Burks, "The Logic of
Programming Electronic Digital Computers", forthcoming in the first issue of
the Journal of Industrial Mathematics, Industrial Mathematics Society, Detroit,
Michigan, Section 3. We will refer to this article hereafter as "Logic of

Programming” .

The essential point here is that the program must ultimately be expressed
in a language that consists only of numbers (arbitrarily assigned to represent
operations and memory locations) and does not contain variables. '

o s R

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 2

~

a sufficiently precise form to make mechanization feaaible?
3) Intermediate Program Language: An abbreviated form of 4),
to be discussed in detaill subsequently.
4) 1Internal Program Language: This is designed from the point
of view of the machine, with efficlency of computation and
communication the main consideration.
Only the conception of 3) is new; it is the ﬁain purpose of this memorandum to
elaborate on it. The use of the complete hierarchy of languages is discussed

in Section 4.

Hereafter "Program Language" will often be abbreviated by "PL".

2. A Proposed Intermediate Program Language

The actual locations of quantities in the memory are arbitrary.
Hence, to assign them when thevprégram is first being constructed is to add
to the complexity of writing the program and to decrease the perspicuity of
the representation of the program., Indeed, in many cases definite addresses
are not assigned but only free variables; e.g., instead of

7. i

8. 1

9. +(7,8,7)
we write

E.6) 1

E.7) 1

1.3) +(E.6, E.7, E.6) .

It is therefore proposed that the variable quantities themselves be used in

t Cf. Arthur W. Burks, Frank D, Faulkner, Janet C. Wahr, Don W. Warren, Jesse
B. Wright, The Design of the Languages for an Electronic Accounting Systenm,
hereafter referred to as Design of languages. As remarked on pages 9 and 1l
of this report, the Operator Program Language presented therein mekes no claim
to achieving this ideal.

A —"

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN e 3

the Intermediate PL instead of their (variable) locations. Thus the above is
replaced by

I3') 1+1 —> 1.
The fundamental point here is that though the variables and constants repre-
sent quantities rather than memory locations, they are to be chosen so that
there exists a certain kind of correspondence (to be discussed later) between
the atomic symbols used and the bins needed. Hence, when the program is trans-
lated from the Intermediate PL to the Internal PL the assignment of memory
locations is a routine step, easily automatized.

It should be noticed that because of the rule of one symbol to one
bin, the assignments of variables in the Intermediate PL will sometimes be
different from the assignments now used. Sometimes fewer variables must be

employed. For example, whereas we may now use different variables to distin-

" n

€11
in the example presented in the next paragraph), in the Intermediate PL only

"

&4

guish the contents of the same bin at different times (e.g., and
one variable can be used. On the other hand, whereas we may now use the same
variable to describe a single quantity at different points of the memory, in
the Iﬁtefmediate PL es many variables as there are bins occupied by this quan-
tity must be employed. Consider, for example, the problem of meshing the
monotonic sequences aj, 8p, ..., &, and by, by, ..., bm . Let us suppose
that a;<b; so that the first term of the resultant sequence is &, . In
the symbolisr of the Intermediate PL this term is no longer a; after the
transfer. Rather, we must symbolize the resultant monotonic sequence in some

such way as €1, Cpy +sey Cpuy 6ond indicate the transfer by

It should be emphasized that this is a natural way of ueing variebles to

—

B ,mw.,-—l

ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN

Page L

describe processes and that it should facilitate the process of programming,
not hinder it.T

It is sometimes desirable in the Intermediate PL to refer to memory
locations rather then to their contents; this can be done by means of brackets.

Consider, for exemple, the following sequence in the Internal PL?uF

L+i. ai
1. 84
2. +(1,L+1,1) 81 = 841 +8&g .

In accordance with the abbreviations used previously, this could be written as
1. g + 8y —_— g .

However, this way of writing the program does not make it explicit thét the
address of ay must be computed from a constant and the index 1 and then
substituted into a command. To make all this evident we write the following

in the Intermediate PL:

L+i. ay
1", g + [;+g —_ g .

The expression "[L+{]" means the quantity located at L+1 ; in contrast,

the expression "g" means the quantity g . Note that the subscript is

omitted from "g" at 1" ; as we pointed out before, this is necessary to

keep & correspondence between the atomic symbols used and the bins needed.

Jesse Wright, who brought this problem to my attention, suggests that there
are often naturel ways to symbolize the variables needed in the Intermediate
PL to describe accounting problems. For exeample, "pricepefore &nd
"pricegpiep could be used to symbolize the price of an item before and after
an order has been converted into an invoice.

**‘Strictly speaking, the language used here is not the Internal Program Lan-
guage but a metalanguege for it, and hence is already an intermediate language.
See "Logic of Programming", Section 3.

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 5

(Note that for our purposes & symbol like "03" is an atomic symbol.) In
general, subscripts showing variations in the contents of a bin with respect
to time must be omitted.

Variables with such subscripts may, however, be employed on the

right. The following is & more complete expression of the above program:.

1", g + [L+1J —_ g gi=ZaJ, go=0 .

In the notation used for the Internal PL the explanatory comments on the righ
tell the reader more than the commands (written on the left) do. The reason
for this is that.the information on the right 1s recorded in a significant
notation (one belonging to the operator PL) rather than the arbitrary notatior
of addresses (whether g; is stored at address 1 or eddress 23 doesn't
matter until we are ready to give the machine a definite progrem). What we
should do in constructing the Intermediate PL is to employ as much of this
significant notation on the left as is compatible with indicating the details
of the computation and the memory requirements.

The planning of a program is simplified if the main course of the
computation can be charted without concern for the fine details. Hence, it
is an advantage to abbreviate short aequenceé of conmands by single commands.
As an example consider this sequence of words expressed in the Internal Pro-
gram Language;+

60. X(39,53,57,61) \ 5T: vy 18
63. X(40,23,40,6k4) 40: F(hyn_l)G(en_l)

"Logic of Programming", Section 4.

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 6

64. +(40,54,40,65) ko: E,_, {- F(hyn'lgG(sn'l)}
67. X(4%0,57,41,68) bl: E__,v. ;8 - |
68. X(55,53,40,69) Lo: ga

69. +(40,41,4%1,70) b1: En_lvh_itx + gh

70. -(39,41,39,72) Vg = Vp1 -

When one is making a logical analysis of the problem and deciding on the
method of computation, it is easier to design the main flow of commands if

all of the above is expressed in the Intermediste PL by a single command
55'. vV — =5 VA - gh —> v .

There is one point of importance which the sequence starting with
60 shows that its abbreviation 55' does not, namely, the order in which the
intermediary quantities are computed. This order 1s not particulgrly relevant
when we consider only the single command 55' , but it is when we consider the

complete abbreviation of words 51 through 70 (of which the above sequence

is & part):
51'., t+A T % oty = oty + b
52'., X +ud —T> x . Xp = X, * Uypd
5%'. y+vVvA —™> ¥y Yo = ¥p-1'* Vn-18
1 -—E —
Skt. w =T ub u Uy = Upo) - Epoipoyd
55'. ¥ _.%g VA -gh —> Vv ' Va = Vpe1 - En-lvn-lA - gh .

Clearly, the recomputation of v4 and FG/C at 55' would be wasteful and
must not be permitted. There are two alternatives here: on the one hand, we
- can leave it to the person or machine making the translation from the Intermed-

iate PL to the Internal PL to decide on the order of computation; and on the

ot e e A

« g mngeny - 20w v

e e

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 7

other hand, we can indicate this order in the Intermediate PL program by means
of an appropr;ate symbolism. Since the former alternative makes the Intermed-
iate PL to Internal PL translation more complicated then we desire, we choose
the latter alternative.

In the original program, 51-TO , permanent addresses were assigned
to the quantities ud and #A while FG/b wvas stored in a temporary storage
bin., We will assign all these quantities to permemnent etorage?b "permanent
storage" here means "storage occupied by only this quantity throughout a given
program." Previously, we had assigned only atomic symbols ("t", "x", "c3",
etc.) to (permanéht) storage; we must now extend this assignment to include
some compound symbols. To differentiate these compounds from others, we place
the former in parentheses. Further, we prime the first occurrence of each in
a program to indicate that at this point the parenthesized quantity is to be
computed and stored in its assigned bin?sF In accordance with these rules
51'=55' 18 rewritten as fbllows:

51", t+4 —> t

52", x + (ua)' —2 x

53". y+ (va)' —> 3y
54", u - (FG/)'(uvd) — u

55", v - (FG/C)(va) -gh —= v .

We eare now in a position to discuss the correspondence of Intermedi-

ate PL symbols to Internal PL storage addresses. Let us first distinguish

A

This may sometimes cause an inefficient use of storage space. To obviate
this we could employ a concept of "relatively temporary storage” (cf. the con-
cept of "temporary storage" introduced below) or "storage over a few lines of
computation". Such & device raises problems concerning the automatic transla-
tion of a program from the Intermediate PL to the Internal PL, and we will not
congider it further here.

T This technique was suggested by Janet Wahr, Don Warren, and Jesse Wright,
who are also responsible for meny of the ideas concerning storage and the one-
one correspondence principle formulated below.

ENGINEERING RESEARCH INSTITUTE

UNIVERSITY OF MICHIGAN Page g

storage of commands from storage of noncommand words and consider only the
latter. We ‘have already stated that the atomic symbols ere to be assigned
on the principle that each such symbol requires exactly one storage bin, and
the same holds for parenthesized compound symbols. (This generalization
covers constants as well as variables.) The foregoing remarks cover all the
storage requirements except the "working storage", and we propose to handle

that in the following manner.

Let us define line of camputation as the sequence of steps required
to execute & single line of instructions stated in the Intermediate PL (e.g.,

line 53" or 55" in the above example). Further, define temporary storege

(in contrast to permenent storage) as the storage required during (at most)
one line of-computation (e.g., the storege required for (FG/c)(va) + g
while the machine is on its way to produce v). Clearly, the same temporary
storage bins can be used for each line of computation, and the totel number
of such bins required is the largest number (call it "n") required by any
line of camputation. These temporary storage bins may be represented in the
Intermediate PL by the atomic symbols "t;", "tp", ..., "tp" . It is impor-
tant that these symbols are merely introduced for convenience in formulatihg
the one-one correspondence principle given below; they would not appear in
Intermediate PL programs (but only in the list of primitive symbols).

The preceding rules of symbolism for the Intermediate PL have been
constructed so as to guarantee an isomorphism or one-one correspondence be-
tween certain of the expressions used in the Intermediate PL and the storage
required for noncommand words in the Internal PL. This correspondence may be
formulated as follows: There exists & one-one correspondence between the
memory bins needed for noncommend words in the Internal PL and the atomic
symbols (including the t's) plus the perenthesized compound symbols in

the Intermediate PL. The purpose of imposing this rule on the Intermediate

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 9

PL is, as we remarked previously, to insure that a program in the Intermediate
PL will cover the essential details of the final program even though actual
bin numbers are not employed.

There are problems that need to be investigated here. For example,
when two programs are combined to make a compound program, these two programs
might initially have some symbols in common which do not have the same mean-
ings and hence do not represent identical bins. In this case the symbols
would need to be redefined in order to preserve the one-one correspondence
principle. The general situation here 1§ similar to that resolved in logic
by means of quantifiers of specified scope, ;nd perhaps an analogous theory
would need to be developed.

It will be seen from the foregoing remarks that the essential merit
of the Intermediste PL is that it is an abbreviated form of the Internal PL
in which the essential features at the planning stage are shown but the de-
tails at this stage are not. Hence, other kinds of abbreviations besides
those 1llustrated in 51" through 55" should be made. We shall mention
a few others just as examples. First, the computation of an address and the
substitution of it into a command may be‘conveniently combined. Thus the

sequence of words 21 through 267 reduces toTt

21, M+z -—> 22 M+ z: £(z)
22, [M+z] —> £;8 Look up f£(z) end transfer
: it to a bin; shift control
to B .

Second, unconditional switches of control may be indicated by & symbol to the

F "Logic of Programming”, Section k.

T+ It might seem that special brackets should be placed around "22" at bin
21 to show two things: first, that the contents of 22 (rather than the
number 22) are being replaced, and second, that only part of these contents
are replaced (since this is & partial substitution). However, no ambiguity
can result from omitting these brackets, and it is simpler to write the pro-
gram without them.

ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN

Page 10

right of a semicBlon, as in 22 . Third, the transfer of a phrase from one
area to another* involves a simple cycle which maey be represented by a single

commend. Finally, a phrase-comparison operation which normally requires

geveral cc:m:nandass'W may be represented by one.

%, Comments on Flow Disgrams

Flow diagrams have been proposed as an intermediate language.

Most people have not found them adequate for this purpose, however; the dla-
grams are cumbersome to draw and their formuletion requires that certain de-
tails not represented on the diagram be settled. Hence, they are generally
used either\as convenient accessories in the process of writing a program or
as summaries to be prepared after the program has been written.

As suﬁmaries, flow diagrams do show clearly something that an ordi-
nary program does not: the path of the control through the commands. Part of
this superiority of flow diagrams over programs is not avoidable, but part of
it is. A program is naturally one-dimensional whereas & flow diagram is two-
dimensional, and on this account it is impossible for the former to show the
path of the control as clearly as the latter. But it is frequently difficult
when one is reeding a program to determine how the control gets to a certain
command, and this‘information can be easily incorporated into the Intermediate
PL representation of the program. The following translation of the 48 words

of Programs III and Iv*ﬁ% shows how this can be done.

¥ Design of languages, p. 56.

v14., p. 51.

%ﬁ'By H. E. Goldstine and John von Neumann, Planning and Coding of Problems
for an Electronic Computing Instrument, Institute for Advanced Study, Prince-
ton, New Jersey, Vol. I, 1947. They do not present the diagrams as a lan-
guage, but they do hold that programming is best accomplished in two distinct
steps: preparing the flow diagrams and doing the detailed coding. ,

it

"Logic of Programming", Figures 2 and 3 end Section k&,

BN NIVERSITY OF MICHIGAN P gy
E Function Table Subroutine:
From 33, 41
21, M+z —> 22 i M+z: £(z)
22, [M+zJ —> f£;8 Look up f(z) and transfer to
storage.
To 38, 51
| Main Routine:
31, hy —> 2 Transfer argument of F(hyn;l)
\ 32, 100 —> M ' 100 + z: F(z)‘
) 3. B — B By = 38
To 2%)
From 22 (;31)
38, (u® + v2)1/2 —_> zv Transfer argument for
: G([2 + va]1/2)
9. £ — F Transfer F(z) to storage .
Lo, 200 —=> M : .200 +2: G(z)
bl. By — B | Bp = 51
To 21
From 22 (B»p)
51, t+4 —> t ty = tpog + A
52, x + (ua)' —> x Xp = Zpo] * Upod
. 55. y+ (va)! == 7 Yn = ¥n-1 * Vn-18
sk, u - (FG/C)'(wA) —> u w, = .y - Ej_quy g4
55. v - (FG/C)(va) - ga —> v vy, = Vp.1 - Eqo1Vp-1b - &8
* Don Warren and Jesse Wright have suggested that the term "maximal linear
sub-sequence” may be appropriately and usefully applied to sections between
"From" and "To". '

-

o g o,

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN g 12
s6. 0, y; 31, 6) Repeat cycle until shell strikes
the ground.¥

To 31 if y> O
To § if y 40

A

A few teste made by the writer indicate that it is possible to
write a program at least for simple scientific pr&bleme in the Intermediate
PL in a straightforward manner, given a formulation of the problem in the
Operator PL:#. It is easy to translate such a program into the Internal
PL; indeed, the Intermediate PL was designed so that this step would be
routine. In contrast, it is not generally possible to write a program
directly ig the Internal PL; at least it has been the experlence of the
writer that (except for trivial progrems) & number of trials are necessary.

In the next section we will consider why the Intermediate PL should make this

difference.

4, The Value of the Intermediate Program Language

The purpose of the proposed system of languages 18 to enable the
programming to be done in smaller steps than are now possible. This has two
principal edvantages. First, sﬁaller gteps can more easily be mechenized than
larger ones. Second, different kinds of work can be allocated to different
stages of the process and to different specialists. Let us consider in detail
how this second point works out with respect to the hieraréhy of languages.

The programming process begins with a vague, general statement in

Ordinary Business English of the accounting problemfﬁ* The first step in

* "0, y; 31,8" commands a conditional switch of control: "If O¢y , then
11

take command at 51 ; 1f O ® y , then take command at & ".

* Thus it seems to achieve the purposé Por which von Neumann and Goldstine
designed their flow diagrems.

it Pecent work on Symbolisis, Abstraction, etc., is attaéking the problem at
this level of the hierarchy.

e e

ENGINEERING. RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 13

programming is to make the problem definite by specifying precisely the in-
puts and the outputs (the time dimension must be included here). This is
done by expressing it in the Operator PL, which has the requisite symbols
for this purpose. It seems impossible (in the present state of the art of
planning accounting systems) to separate the formulation of the problem from
+he choice of the methods for achieving the transformation of input into out-
put (sorting, monotonizing, searching, blending, etc.). But at this stage the
operator does not need to concern himself with the details of these methods.

The next step is to write the program in the Intermediate PL. This
involves more than a mere trsnslation of what was written in the Operator PL,
for the methods of solution must be worked out in considerable (though not
complete) detail. The variables needed to describe the computation-communica-
tion process are chosen in such a way that each variable requires exactly one
storage bin and the steps of computation and the flow of information are de-
scribed.

The last step is that of translation into the Internal PL. This is
a bona fide translation, for methods of assigning addresses and of expanding
abbreviated commands into sequences of commands can be worked out in advance.
Hence the computer could be instructed to do this work. The main problem here
is that of conveniently representing in the Internal PL (which contains no
variables) programs written in the Intermediate PL (vhich contains genuine
varisbles). It should be emphasized, however, that even if it were not effi-
cient to use a computer to make the transletion, the Intermediate PL would
nevertheless be useful to the human programmer in planning and constructing
programs.

We can summarize the process of coding as follows: In the first
stage the programmer is concerned mostly with the statement of the problem,

in the second with the logical formulation of the method, and in the third

ENGINEERING RESEARCH INSTITUTE Page
UNIVERSITY OF MICHIGAN 14

with the routine details of coding. Thus the hierarchy of languages makes
possible a division of labor and the use of apecialists. Even if a single
person does the complete Jjob of coding, he needs to be concerned with only

one kind of consideration (formulation of problem, logical analysis of method,
jetails of coding) at a time. It is for this reason that one can probably
Jearn to write a program in the Intermediate PL in a direct manner, without
having to make several trials.

The Intermediate PL is much easier to use in coding than the Inter-
nal PL because the variables uséd have significance for the operator. (This
is true essentially because they are symbols of the Operator PL.) Yet, it 1is
close enough in structure to the Internal PL to enable one to decide on all
but the most routine details of the progrem. Hence, it mey be used effective-
ly in testing command languages and studying programs, even to the point of
raking time studies.

To conclude the discussion of the value of the Intermediate PL we
make two comments concerning its value in programming'accounting problems.

The use of & library of tapeé has often been proposed as & method
of mechanizing programming. While this technique is very promising for
scientific computation, it has one great drawback for accounting. In general,
& program made by compourding already existing programs does not take advan-
taege of the unique features of the problem, and hence, does not give the quick-
est path of computation. This is not a serious limitation in scientific work,
where a given program is used only relatively few times, but it would result
in.inefficient computation in accounting, since in that field a single program
may be used for weeks snd months. Hence accounting programs must be tailor-
mede. Since the Intermediate Program Languagé is very close in structure to

the Tnternal Program Language, it may be used to facilitate this process.

k2R 4

ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN

P
age 15

P

B e,

Further, it should be pointed out that there are questions associ-
ated with clerical problems stemming from the use of processes which ere '
mainly combinatorial (as contrasted to arithmetic) and also from the inclu-
sion in the language of such things as variable-length phrases and paragraphs
— situations not encountered in scientific problems. TFurther 1pvest1éation

is required before specific questions of this sort can be answered finally.

™.
.

~. .

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif

