Co ‘},'7',14 box §

Forward into the '90s

Donald E. Knuth
Grand Wizard of TpX

%Uun Group Conference, Coﬂsﬁ Station, Texas, June 18-20, 1990

| d1c¢

T ca",aAZA s beau, y W A,
ﬂ/»/ péllwwl # Moj ba/%’/ 77 /%

/0 // ? /w/ J'o wie (b;/j// Mw"%/l /\/ 7/

~a) ffwlf f?L
///// /74/4”76'4‘

ﬁmﬂl &zy 20[7}’>/f

cmr17 scaled 20000 for a 15 dpi “writes-light-grey” device
Printed with TEX and TgXrox on a Xerox 9790 at Texas A&M University

e i i RC iR o 4 I TN i i o i e i SR C T L N SN Y T g S 2 vk g e N TR N 4ty Yot L N ol) T TN, SR R e o A e A LR e e
RS L S AN P T T e L ST o MR N SIS e R T S e R AN S B v SN A S a o TN T T T T TN e e, TV RTE . T g P SR TN -
- PP ST N D TR T A ST T - ., . . e s e e, g L. 2% e m Y
RICTI el d Rl AR el . " ;

COMPILER

SCIENTIFIC

LARC
INTERNAL SYSTEMS MANUAL

I<NUTH

LARC

SCIENTIFIC

COMPILER

INTERNAL SYSTEMS MANUAL

The compiler described herein was developed by Computer Sciences
Corporation, Palos Verdes, California, under contract with Remington

Rand Univac, Division of Sperry Rand Corporation.

Acknowledgment is givenbelow tothose members of the CSC staff whose

efforts in design and implementation resulted in the system described

herein,
Joel D. Erdwinn (Phases VI and VIII)
David E. Ferguson (Preliminary Design, Phase VII,
and Sorting System)
Louis Gatt (Project Director)
Reginald E. Martin (Phase I and VII)

Jack P. Middlekauff (FILE Program and I/O Routines)
Hayden T. Richards (Phases IV, V, and VI)
David W. Roberts (Phases II, III, and IX)

INTRODUCTION

The Larc Scientific Compiler (LSC) is herein described by prose as
well as by detailed flow charts. The major function of each phase is
explained. Following the explanation, flow charts for that phase will

immediately follow.

The peripheral programs associated with LSC are also described
(See LSCN). In that section a description of the input and output sys-
tem available to the object program is contained in the form of prose

and flow charts.,

During implementation, special attention was given to describing the
coding of L.SC with comments. These comments appear in the parallel
code edits of the entire LSC system and should be helpful in going
through the compiler.

TABLE OF CONTENTS

General Flow of Control in LSC
General Flow of Data in LSC
Input and Output of LSC
LSCN
I Main Control
II. The Communication Region
III. The Sorting System
IV. LSCN Diagnostic System
Sorting System Flow Charts
File Program
File Program Flow Charts
Object Program Input-Output Routines
Input-Output Routines Flow Charts

Phase [
General Description
Sequence Counters
Item Formats
Identification Digits Assignment
Mode Word
Flow Charts

Phase II
General Description
Item Formats

Flow Charts

Page
0.0

0.2.1
0.3
0.4
0.4
0.4
0.5
0.5
0.7
0.16
0.24
0.31
0.34

1.0
1.4
1.8
1.21
1.23
1.28

2.0
2.3
2.6

Page

Phase III
General Description 3.0
Output to File 4 3.8
Output to File 91 3. 17
Flow Charts 3.19
Phase IV
General Description 4.0
Input and Output 4.2
Treatment of:
FUNCTION and SUBROUTINE 4.3
LIBRARY CALLS 4.3
PARAMETERS 4.3
SIMPLE VARIABLES 4.4
DIMENSION 4,5
EQUIVALENCE and COMMON 4,5
CONSTANT 4,7
ARITHMETIC STATEMENT FUNCTIONS 4.7
EXECUTABLE STATEMENTS 4,7
Subroutines 4.14
Flow Charts 4.19
Phase V
General Description 5.0
Input 5.0
a - Rename Variables and Constant Subscripts 5.1
b - Number Subscript Terms 5.2
¢ - File Loops by Level 5.3
d - Unpack Terms 5.4
e - Form Non-constant Counts 5.4
f - Form Non-constant Initial and Incremental Multiples 5.4

g - Form Subscripts 5.5

Page

Special Subroutines 5.7
Output to File 61 5.9
Format of Phase V Internal Files 5,12
Flow Charts 5.13
Phase V1
General Description 6.0
First Phase VI - Pass 6.1
Every Phase VI - Pass 6.2
Output 6.3
Flow Charts 6.4
Phase VII
General Description 7.0
Generator 7.1
Successor Item Generation 7.6
Generation of Arithmetic Expressions 7.7
Examples of Object Code 7.11
Library Routines 7.14
Flow Charts 7.15
Phase VIII
a - Backward Scan 8.0
b - Forward Scan 8.2
¢ - Build Flow Tables 8.10
d - Index Analysis 8.11
e - Produce F and S Commands 8.13
Item Formats 8.15

Flow Charts 8. 27

Page

Phase IX
General Description 9.0
a - Output Error Messages 9.1
b - Output of LSC 9.2
Name Generation 9.4
File 91 9.7
File 92 9.8
File 94 Items from Phase IV 9.10
File 90 and 94 Items from Phase VIII 9.13

Flow Charts 9.19

GENERAL FLOW OF CONTROL IN LSC. 0.0

START

LOAD LSCN

1. Control and phase loader.
2. FILE.

3. SORT.

4, Diagnostic system.

Load Phase I

Phase III : Inpuf F3, output more F4,
Associate defining items with
reference to a name,

Generate mode word for item,
File names in F91.

Assign "Parameter'™ to references.
Set up Dimension table.

Detect errors of illegal use of a
name,

o

f

Phase 1.

1.

5.

Analyze source input

a. Found on drum located by CRDRL
Output items to:

F2, F3, F4, F91, F93.

{error items to F92 in all phases.)

F4 now has items for the entire
program (except FORMATS and
Hollerith arguments of calls.)

SORT F4 on the Phase I assigned
sequence number. (puts all express-
ions in "POLISH" form.)

SORT F2 on name (each group has same
namej.

Phase II: Input F2, generate more F3.

1.

2,

Associate statement names, N, with
N in assign, to M.
Output items for built-in Function.

SORT F3 on name and sequence number.
All F3 items have a name, and all
name items are in F3.

Phase IV.

1. Fill in Dimension table.

2. Solve Equivalence and COM:MON
relationship a. output F94.

3. Set up storage assignment for all
variables.

4, Update definition point for variables.

5. Update modes of arithmetic
operations.

6. Output to F50, F51 and F52
information on subscripts, DO-loops
and lists,

7. Converts suigscripts to single
expressions.

8. Outputs program to F60, F61.

GENERAL FLOW

OF CONTROL IN LSC. 0.1

Any serious Yes

gource errors ?,

Phase

No

SORT F50, F51, F52, the input to
Phase V.

Phase V.
Optimize the resultant object code with
respect to the manipulation of
indexing quantities.
1. Creates code - generating items to:
a. form induction variables.
b. form subscripts containing
induction variables.
c. count the number of times
through a loop.

Output F61.

Phase VIIL

F7 is in sort.

F7 now contains the entire program
where each item now contains all the

‘linformation necessary to form code.

Output is to:

1. F80, the main body of code items
in sort.

2. F85 code items out of sort.

The output also contains information

items to Phase VIII. 7This will permit

better optimization of A-registers.

SORT F85

1

SORT F61.

y

Phase VI: Input F60, F61.

1. Merges F60 and F61 to form F7,
the output.

2. Marks all Common subexpressions
as such - so that Phase VII will
not form code generating items for
a repetition when it is not
necessary.

3. Reduces arithmetic combinations of
constants to a single constant,

Phase VIIL

The input F80, F85 is merged and
analyzed with respect to optimum use
of A-registers from the standpoint of
indexing quantities and arithmetic

registers.

Output is to:

1. F90, the main body of the program
in sort.

2. F94, additional out of sort code-
items,

!
SORT F9%4

GENERAL FLOW

OF CONTROL IN LSC.

Phase IX.
Edits the generated object code in a
SAL accepted form.,
1. Associates error messages with
items in F92, output to F93.
2. SORT F93:
a., The original source lines and

error messages as SAL comments.

b. FORMATS and Hollerith
arguments as SAL - ALPH lines.
3. Merges F90, F94 and F93, forming
SAL acceptable lines to F10. FI0
is output according to CRDRG.

|

Return to Operator Program.

0.2

0.2.1

LARC SCIENTIFIC COMPILER.

DATA FLOW IN LSC.

ai

oseyd

)

Pl L

g AL
aseyq

A MWV l OSTYd

VAL

qu’J

oseyd

OS1

0.2.2

el

<<
[v2]

‘76 ‘€6 ‘S8 ‘¥8 ‘g8 ‘Z8 ‘TI9 ‘gg
‘8G ‘%G ‘1S ‘0C ‘¥ ‘g ‘g ‘osn o10Joq PolIOS 9B SOIJ SUIMOI[OF OYL
"26 d 01 9INqLIIu0d AW SOSBYUJ IV *x

9x1
oseyd

LARC SCIENTIFIC COMPILER.

(continued)

DATA FLOW IN LSC.

-O-O—O®

Mmmm All@

*x

AIA | 3
oswa [~

€

ol..
oemig [~

€3

78

0.3
INPUT AND OUTPUT OF LSC.

The input described in the Programmer's Reference Manual, is given to LSC either on
tape’ or on a specified drum. The Gommunication Region (CR) contains a flag, CRT,

which is zero or non-zero.

1. If CRT #0 input is on tape 11 in alphanumeric form, 2 lines per
blockette.
2. If CRT =0 input is on a drum. The starting sector;, ‘band, and drum

numbers are specified in CRDRI.

During the operation of LSC, seven drums must be made available for temporary
storage of generated files, and for the Sort-Merge program. The seven drums must
have consecutive drum numbers, the first of which has drum number:

1+(CRDRF)

The input drum, specified by CRDRI, may be one of the seven temporary drums if it

is equivalent to : (CRDRF) +#1, > (CRDRF) + 2., or (CRDRF) +6.

The output of LSC is always output on a drum; however, it may also be output on tape
or the on-line printer. The output drum is specified by CRDRO, by specifying the
starting sector and band of a drum. CRDRO must.not be any of the temporary drums.

The output itself is more fully described in the Phase IX section of this report.

If CRHSP is non zero, the output is also generated for the on-line high speed printer
or a tape. This choice is specified by setting CROUT to either zero or the appropriate
tape servo number. For example:

CRHSP #0
and CROUT =21 output is sent to drum and on tape servo 21. When

the output is generated for the high speed on-line printer or for tape, an additional
line is written, which contains an internal sequence number as a SAL comment. The

tape so generated may be used as input to SAL.

0.4
LSCN

Compilation of a source program begins by bringing into memory that portion of LSC

labeled LSCN. This will consist of:

IL.

The LSC Main Control and drum loader (Main Control)

°

The Communication region.
The sorting system

The diagnostic system

N

The FILE program

Main Control

When LSCN is read into memory, a word in the communication region, CRDLSC,
contains a define-drum summary order. This summary order is issued so that
the phases of LSC may be read in relative to the definition contained in CRDLSC.
LSCN, itself, may be on any other drum, or it may be loaded from tape. When
the phases are read by LSCN, they are assumed to be on drum according to the
method of loading defined by the loading program LSCLDR (i.e., each segment
of a phase occupies an integral number of consecutive sectors, with the (n + 1) st

segment beginning immediately after the nth segment).
When each phase is loaded into memory, control is transferred to it via:
TB Al Phase n

When each phase receives control, it displays in the 5-digit display register:
++n++ and sets up the diagnostic control in CRCRUD (see below - LSCN Diagnostic).
Prior to the exit, the phase will display in the 5DD: --(n + 1) --. Upon returning

from Phase IX, LSCN will return control to the master operating routine.

The Communication Region

The Communication Region in LSC has various functions:

1. Permits altering LSC parameters to produce a different object code.

2, Allows communication from one phase of LSC to another.

0.5
The Communication Region is located 762 words from the start of LSC. The SAL
parallel code edit of LSCN contains a detailed description of every item in this
region; hence, the entire list is not repeated here, Throughout this report, how-
ever, various quantities in the Communication Region are mentioned and described;

each symbol in the Communication Region begins with "CR".

111, The Sorting System

Contained in LSC is a sorting system which is entered via:

TB 1 PRESRT
SK K Fn

Where K represents the length of the sort key in number of 2-digit pairs and Fn
is the file to be sorted. The flow chart of this section is contained herein; however,
it is worth pointing out a general characteristic of the system, First, every file
that is to be sorted has been previously ""Closed" or "Released' via the File pro-
gram. A test is made in PRESRT to see if the entire file is in memory (i.e.,
entirely contained in its double buffer). If it is, then only an internal sort of the
file is made and left in the buffer. If the file is on drum, it may still be small
enough for only a simple high-speed internal sort. If it is less than 12,500 words,
then the entire file is read in, sorted, and written back on drum. If the file is
greater than 12,500 words, then a more complicated and more time-consuming
process takes place. This is described in the Sort Merge flow charts. However,

in every case, the same internal sort program is used.

The internal sort is a left-to-right radix sort where the base is 100; i, e., two

digits constitutes one character.

Iv. LSCN Diagnostic System

Built into the control of LSC is a diagnostic system designed to simplify the ob-
taining of pertinent information should a difficulty arise while performing a
compilation. This system includes A-register dumps, selective memory dumps,
and dumps of sorted and unsorted files. LSC will produce the output on-line or
on a tape for off-line printing according to the setting of CROUT: (See Communi-

cation Region).

0.6
There are two methods of taking action depending on whether:

1. LSC runs through to completion with incorrect results or

2. LSC fails to go to completion.

Case I
When LSC runs through completion with erroneous results, the files may be
output to give all the necessary information., LSC will output all necessary files
by setting:
CRFDMP =0
CRFDMP is located at LSC + 768. If it is suspected that files produced by Phases M

to N are in error, then only those files may be output by setting

CRFDMP =000 000 000 0 N M

Case II

If LSC fails to complete a compilation, the operator should cause the computer to

transfer control to:
CRCRUD = LSC + 794

This will cause a selected dump of memory to be output according to the phase
currently in operation as well as all important files. If LSC is in an infinite loop,
the operator should first bring the computer to a stop and force an A-register dump

before transferring control to LSC + 794,

0.7
LARC SCIENTIFIC COMPILER

fRreskT L
SHRT and PRINT FILES
>
PRESRT e , &ﬂml::‘ts N
. » =Dm = pahls amost
Start CaLLUA3 Sequence "|~t
No regisfers o TB | PRESRT gl ofplag word
are saved, ot A F cRFYMMP
°b " COFIMP ~ Second right
ol+2 reform R ’
Save relvran . on Ghtum, NWFL = na. O_[wolds ua
{ ~NIT = m.of “‘Jems i
s o
A 'O = . = crpsT = O
AVEMM \ . E
¢ no,
- Save o CRDRS or lape

M (12 Soo NWFL +2499) vse (f“ r off lime
' > T 2500 /) prcv\kuﬁ.
QﬁrMemof}j_

e

j
Sel: M,b H‘e sort !

call seq. ~|3:r~ s .
NwEL 2 12 .7
Fd-e/ Fa. : Soo

<
No Sor.b) QEA’DFL .
tfj FrLLWt Eead. e.,JIx e
owe. lune. .
«R'e ua Menwoly,

SaeT @xlire
e Lw mewmornry.

Sork ,FLle, ~

ef,
?jﬁrum ach\u"JL‘J

Restore

Memorj .

S

l

File has more
‘”'\an 1285co words

LARC SQCIieNTIFIC ComPILER

LERT AND PRINT FLLE,

@ PreseT 1

PasrT 3

o

G

!

Set up 4 fempora
drumwhoeaﬁows «F:‘;‘
Sork merge.

FLTR 27 wndieates

the Fro}:er droms B vse.

SJPRT MERec
rootdhe,.

Ts soocted
-F\”Je. on the ohﬂiv\aL

drom?

No

Ves

Move .Fa; k

of Lsinal. cdrom.

fcﬂ\FDﬂ\P‘: cRPAH
y
Rear 12500 words

of fae for print

|

@ frESRT 4

s

FDMPzgcRPH <

>

[

Sﬂ.tu. B rut
ﬂ'\eﬁbc.F

(Sorted or vnsorted)

0.8

PRESRT 2.

CNTPR

Pronk B
mm)z__. i fefjjo‘

th CRGUT

LARC SCIENTIFIC COoMPILER.

TITNTERNAL SORT

Sort M ‘dems of length L on N mb‘ds s’raptms ar k.

w1

L—>m (T1)
L— n (88L)
— (8),(81)

O —» X

L2 v

@.___._ (&)+1—» (8),(81)
(88L)-1—>(88L)

<0

>0

L3
N —12 —=N

L4

[N/z:(— L

t5

+* Set Vo and V2
> N(’“°d2) -g—hfasded'lﬁ.hel{.'
o[:(i-«- D, d.'.g‘a

=0

99 — ¢

select Lth digit
Ll —L

Set Vo and N2 15

(W43
9-—-»?‘

L8 +
& —»T
M —>j

(5 No

(T) L h

(R'w)+ —=(R%)
THL— T
g1 —=J

0.9

LARC ScIENTIFIC. ComPiLER

INTERNAL SoeT (eowt)

Sorl ™M dewms o.f lensﬂ»\ L onw N dls'd‘s sfarfws ab K.

®

L2o l

—

& —o M
&) — T

|-—-»l'\,

0.10

L2 b

S[ek V3
and V6

L2s

|

(-

L22

Vi

(Mt— k
(R'n)+1— (Rh)

y—

A,

V3,V4,NS Vo

St V4,VS
T+l)= (P+Y
(L=o .

D

.

L23 Y

V2

f—l—) L+'-—F e
Sk) —
pP+L —> (Sk)

9
Qer N2 kb select
Lﬂ\, digd

L33

ﬂ"'

L= —»L

124
o /o

|

T —P
=0
L2¢ Loy | #o
l T+ ‘L-—-. T —‘————@
=0
L2%
h+t —h
fﬁo
L3z
(RS
—
(&8L)+1 — (88L)

LARC SCIENTIFIC COMPILER. 0.11

FLOWCHART DEFINITIONS FOR PRESORT.

Lo = Location of 1st. buffer.
M0 = Location of 5th buffer =limit of string buffer.
k = Buffer lengtl (in words).
f = Remaining length of file (initially length of file' (in.words).
t = Item length (in words).
L = Next location in lst 4 buffers (for constiuctingistring).
M = Next location in 5th. buffer (for overflow items).
i = Output drum (3 or 4 in Presort).
M1 = Limit of overflow buffer.
A REGISTER ASSIGNMENT.

Presort Merge /@
16 f "g,..9"
17 k K,(Ai)
18 M, K'(A)
19 M KgBj)
20 M K ®)
21 L i
22 j *symbolic drum
23 k *number sectors to transfer
24 remaining sectors this band
25 ‘ used to construct Iy SUM @RDS
26 memory L@C to read/write

*note, 22 and 23 are saved by the I/@ program.

MERGE

MERCE

LARC. SCIENTIFIC COMPILER

e = Zlc‘\][e leugﬁ«. = |
22K s “ =1l
= 29K other Wise.

Fle length (words) — f

Lot e — Mo

My +k — M,

Mo —s M

4 —» L (ovtput drom)

Twitwalize all other quadtites

depw:*ﬂé-""‘ demsize dtom
nomber e.

Reposidion all heads (crew)

PRESORT.
P
Lo—rL
fun
Move kR woms

Read ke words
wbh L.

‘From Mo B L

L+l —L
M,-k—"v’d—.M

PLe

Ltk —=L

L+t — L

o :-F»-F

Move M-M, words
.FpQM M, B L

Mo —=M

L+M-Mo—> L

~9$__, (‘_)

uss\t,_,,(l_{.t)
L+2—1L

“Og" owdrum L

fok—F

0.12

PL®

f’>L7 (L-E)—> (m)
Myl)= "0s"—a (L-t)
_] M+t —mMm

P9 L)

Sort (L-L)/t
u’evus at Lo

T—L—> L

Oot,bot L-Lo
ords abt Lg
on drom L

LARE SCIENTIFIC COMPILER

0.13

MERGE

‘/es End o_F
& block ? kR+I1—R

l _ o

v

Yes (" End of ~o Reskk end
Strg? /) data flag.
{N.C,I
Move &; b Cip

—=f Cet KK (AL) >

Cek Kk (8;)

Swap Tnpot &
Oa‘?,ru‘l' otiroms,
Leact tsh. A blocke meel >

Readl Ist & block

Read 2.d. A blocke v o{ k(A;) + K(B))

2. & blocke T \ ’
Qer K (AY) <
Zer K (&) |G¢l: k (Ay)

L
Move AC b Ce

CAl— L

ok k< (8) |—

. Y
. . No /" End of
1=
T Yes

‘ \/e s En.d o ¥ ~No ReSQJ: end
s"r'wus? Data ‘Fng .

Yes emqr\‘ ;e.H_.,ki

LARC. SCIENTIFIC COMPILER 0.14

meeee (conk.)

e @

Swap A buffers. Swap & boffers | Swapc boffers

o— i O — o—k

Read next A Read next & lacde last <
block. block Slock.

O ~—» MPF

. Swap droms (mcs) '
End S‘h‘ms makk End Sh‘\:V\ﬂ N\e\.k__,,ck
—Cile End o.F No e+ |l— |
R+ —> ke \ meRcE ? torcte last block on
= lorde Last bloek : alternate (ML8®S)
(Meske) Yes Re.sind droms,

Gek end. pass -P‘ag‘

Resek end. pase flag

LARC SCIENTIFIC. COMPILER

T/ ROUTINES _foc QORT-MERGE

Read undo (or tordte OM) loc.), S sectors.

|

0.15

T

Sek read Save 26
fleg. Loait for drum at
— (EPE word)
Sek wede Reset EPZ worck

Plag. TatpP T

"l‘raws-fu Psectors

fef:os‘\:howau headiy
o— T

25 —» EL
(t=0,-:.,5)

Y starly Q'Td-f-‘
Save 22, 23) £ Restore 2.
')
Stkup head ond s
2s — Ra =
O — 14

F+ looRyq—F
S - R~ S

O

Ry —S—» Ry
Resrore 22,23 ,
l iy

@P

re—— Ta

y

Qd. = (‘emaiv{w\j sectors currenb band drom A
Ty = next sechrs fthis dana drom o

A feld of (mTs + a)

0.16

FILE

FILE is an LSC subroutine which stores items in files (writes) and retrieves items from

files (reads). It is used by the main control program and by each phase of the compiler.

Different types of entrances to FILE specify opening, extending, marking, backing up,
closing and releasing files, as well as reading and writing items singly or in groups.

Description of these operations will be given later in this section.

For each file, the FILE subroutine keeps track of where in a buffer the next item is
to be stored (if writing) or fetched from (if reading). In general, the buffers are
intermediate storage areas which hold a block of items prior to and during writing on
a drum or during and following reading from a drum. If short enough, however, files

may be allowed to remain in their buffers without ever being written on a drum.

Each buffer is actually a double buffer. During writing, for example, items are
collected in buffer 1, while the contents of buffer 2 are being written on a drum. When

buffer 1 becomes full, the roles of buffers 1 and 2 are interchanged.

Information about each of the files is stored in a set of tables. A description of some of

these tables follows.
Table 1 (origin, FLTBI) contains three consecutive words for each file:

OTTIIIDDBBPP
OOOO0OWWWWWW
OOOOOO0ZZZZZZ or OMMMMMZZZZZZ

T = relative table 2 origin for this file
I = number of words per item
D = logical drum number

B = band number of file origin

0.17

P = last permissible band number
W = item counter
Z = number of items in file

M = location of file in memory (zero if file is on drum)

The actual drum number is obtained by adding D to the contents of CRDRF (a cell in the
communication region). Exceptions are files 1 and 10, whose actual drum numbers are
found in CRDRI and CRDRO, respectively. The starting band and sector numbers of
files 1 and 10 are likewise found in CRDRI and CRDRO. The format of gach of these

cells is:

BB Sector Band Drum

Word 3 of table 1 is used as an item counter during the writing of the file, and has the

form indicated above only after the file has been closed or released.

0.18

Table 2 {origin of file F information: FLTB2+F) has the format
FORM 2235 PH R V1V1V2 M1

PH = phase number

R = relative locator for tables in phase PH

V1V100 = L1 = capacity of buffer 1 in phase PH
VIVIOO - VZOO = L2 = capacity of buffer 2 in phase PH
ML = origin of buffer 1 in phase PH

M1 + VIVIOO = M2 = origin of buffer 2 in phase PH

The tabies with which R is concerned contain origins of special sequences for handling
writing or reading of items or groups of items, and locations of instructions in these
sequences which must have their addresses preset. These tables are numbers 5,6,7,9,

10,12, and 14.

If I, the item length, is not a factor of 100, space for I-1 additional words must be
provided in front of buffer 1 when reading, and space for I-1 additional words must be

provided following buffer 2 when writing,

Table 4 is a storage area reserved for index words, one for each file. The index word

format is given here to indicate the notation used:
BB NNN I Delta

Tabie & consists of three words per file, These are initially zeros, and are replaced
by drum summary orders when required. The location of the second of these three words
is centained in the third word, which is an EPZ. Because of this, an absolute zero re-

places the second word when the drum operation is completed.

Table 15 is a storage area reserved for the storage of buffer counters, one for each

file, These have the format BB 0 C 0, where C =0,2,4,etc. C is increased by

0.19

2 each time a drum read or write operation for the associated file is initiated. The
buffer counters are used only by the marking and backing up operations of phase 1. To
form the mark word, the buffer counter is combined with the variable portions of the

index word. The format of the mark word is:

BB NNN C Delta

Another storage area, FLZ, contains transient information about a file. The contents

of this area are as follows (cells not shown have general or temporary uses):

Cell Contents
FLZ + O file number
+ 1 3 X file number
+ 2 relative location of
table 2 information
+ 3 I
+ 4 physical drum number
+ 5 starting band number
+ 6 P
+ 7 R
+ 8 M1
+ 9 M2
+ 10 L1
+ 11 L2
+.12 L(from calling sequence)
+ 13 starting sector number
+ 17 ' current band number
+ 24 L2
+ 25 L1
+27 L1+ L2

+ 30 IX 100000

FILE has four calling sequences.

0.20

Two of these (numbers 2 and 4) are high-speed

entries to special instruction sequences within FILE which handle the two basic

operations - reading or writing a single item.

XX = SK:
XX = AX:
XX =A

XX = AM:
XX = AU:
XX = AAX:
XX = AA:
XX = NX:
XX = N

XX = NNX:

Cziling sequence number 1:

TB 1 FILE
XX F L

opeun file F for writing

mark the current positions in phase 1 output files 2, 3,4,91, 93, store

mark words in L on

store in file F the n items starting in L (n must be given in register 2)

back up to positions marked in phase 1 output files 2,3,4,91,93 (the

mark words must be supplied in L on)

close output file F

extend output file F

release output file F

open file F for reading forward

open file F for reading backward, starting at the end of the file (items not

reversed)

mark current position input file 1, store mark word in L

0.21
XX = NN: back up to the item preceding the position marked in input file 1 (the mark

word must be supplied in L)
XX = MXR: read the next line (10 words) from input file 1, store in L on,
If part of a file is on a drum and part in a buffer, closing or releasing the file causes
the contents of the buffer to be written onto the drum. If the file is entirely in memory,
closing the file leaves the file in memory, and releasing the file causes it to be written

onto a drum. Extending a file allows more items to be added to a file after it has been

closed or released.

Calling sequence number 2:

TB 1 FILE+F
H O L

This causes one item, whose first word is in L, to be stored in file F.
Calling sequence number 3:
TB 1 RFILE
XX F L

mask (or 0)

XX = MXE: read the next n items from file F, store in L on (n must be given in

register 2)

XX = MR: read the group of items (defined by the mask) from the file F, store in L

on, supply index word in register 2

XX = M: read the next item from file F without counting it, store in L on,

The mask is a word of 1's and 0's (e.g., 111100001111) and is applied in MR entries

0.22
to the first word of each item to determine a group. All consecutive items in a file which
have their 1-corresponding first word digits respectively equal constitute a group (with

respect to the mask).

Upon return from an MR entry, register 2 contains an index word:
BB NNN I L

where NNN is the number of items in the group.

After an M entry has been used to read the nth item, the next reading of the same file

will then again bring in the nth item, rather than the (n + 1) st item as in the normal case,

The normal return from the FILE subroutine following an entry via calling sequence
number 3 or 4 is to the second instruction beyond the mask or zero word. The end-of-
file return is to the first instruction following the mask or zero word, The end-of-file
return is made following every entry after the end of file has been reached, unless an

intervening NX or N entry has been made.

Upon a normal or end-of-file return following an MXE entry, the actual number of
items read appears in register 2. An end-of-file return following an MR entry indic-

ates that all the items in the file have been read previous to this entry.

All references to files are made symbolically. For example, F3 denotes file 3. The
correspondences between symbol and absolute designations are given in the following

table:

Symbolic Absolute
F1 3
F2 4

F3 5

0.23

F4 6
F5 (or F50) 7
F51 8
F52 9
F53 10
F54 11
F55 25
F56 26
F6 (or F60) 12
F61 13
F7 (or F70) 14
F8 (or F80) 15
F81 16
F82 17
F83 18
F84 19
F85 28
F9 (or F90) 20
F91 21
F92 ‘ 22
F93 23
F94 27

F10 24

LARC SeieNMTIiFIc. ComPILER, 0.24
FiLe Roumine (details tn Parallel Code Edit)

F
ILE FLSIK

C aLle.:‘ $e_que nee

Nombes 1. XX =00
« T& 1| FILE

. xx &t X% = 0o 1
ol _
o2 Open F‘_«J.c ~
o3 -For wrdlug
FLSR cq ' ’
o5
Sk 06 -
roubtine. i S8
& roctine.
)
Y . 16
CGenerate Slszc'tal, 20 y
.) - -
iformation ““’"__ :de, v t. O—> FLT&I+3 ¥ F+]|
in FL2 <Fl‘o~\ FLT 43|'Ful!2 O —» FELTBI + 3% F +2
. F,3F 2. S@bu\piwde_x, word B
2. Drom location, load buffe-.
3. buffer scee 3. Set eubry b fleone
4. Boffer location. Urem for Jeie
(See s“oragc. -(»ot‘ FL:.)

, e

Mack the corrent
POS&\O\AS ;J’\rau P‘\ase. .

T outrut foles andt

Shore informabion tn | ‘

5 Fie n tews

L ou. (Ths M‘b‘“‘“aﬁ""\ (n,lc mousk be o’-tz.\ui %r
will be used f these | wrking) Use the move
fdes are b be eraged | SQg'ue,Acc b fde) ilewa
back kB H\tse marks by | fol‘ Foe v n Times.
*Backe uP Y see HM3 See
' ("s | FILE + "F“)

ol4+2

LARC SBCIENTIFIc COMPILER 0.25

FILE. ROUTINE (conr;lnucd.)

FLam

Back all Phase I oatpul‘
fdes 1o marks shored in Foe F.
L oon. TP the oatput on
Buy fle is on driom then,
the crom 1% read backe FLa R
wadex words ana coonls

Close outp

are akjushed as -’-‘J y

Leave -«ch w Mmemory
(No drom wrile)

FLTB I+ 3% 42 =

O Ll NNNNNR

L= location o.{. 1% Lt an

may take p‘ac’e v{’l‘om Last

marke on,

Memoo:, ?

Rest 04 «fUC +5 cltom,

FLTAI + 3K F12 T OO000TONNNNNN
NN = nowmber o,‘j hews on frle @

Exlend output File &
for more wriling.
(The oukpot fie has
been prediously closed)

Releaze oo tpot

fde, F

‘

|]

FLSR FLSR

Ts fide o Sef covnls and Same as crose fue (AU)

the cirum? ('"d':&'f‘w“” for eccept wide ron drom,

3 t‘e.gérd(ess Q‘F sScee.
‘(es FLTBI +3 & F+2 = ©00T0O0 NNANNAN

Reaa last buf(e.r W Andh .
adJ.uSt counls and imdex
words --f'c:‘ -{Lrﬂ«er{dwﬂ.

LARC

SONENTIFIC CombPruiefr

FIlLE RoUTINE (c:onl:Cnua_d.)

FLNX

-—a—’/

. Y
OFen File & -l::r
Peé\(i:_v\g ems tn a
¥oruaz,\rc:l. cirechion.

fond . —
Keadms e ‘)

the Source progeaea
pres

The source
progr s 's

Read sowxe P"Ojk“aw
From Tape and domp

o the drom

Reod im Purst
12 boffers

0.26

Set unden words and
coonls for reading,

(Do not delay)

B e

on citom (dram
Anomber 1S ta c’daT)

Fl._f:l

y
Chea Fue F k reaa \‘
wn bacic waid dufection
(tus s Csedd ouly by
Phasge VT)
Cleations o Same ay

..G_;r XX=101

FLanX

y
Mark inpol file (F1)
al cufreant Pos‘d‘;u\.
;{'rar a possiblke tack: ub
(see ! FLNN)

Store marka L

Set ewt?.:, b read | ke
for File F un forwatd direct,

A

Adjust buffers anci
mdlex words for Fi fo
back up the Lv\'mt «F\‘Je
5 the mark S"Of‘w -

LARC SBCIENTIFIC COMPILER 0.27

FlLeE RouvTiNE (CO'\tCuu(fL)

FLMXR

Speci.aL enb\:, b read

JO words (l Source line)
from Kle, F1,

Store im L on,

There i€ W end af {'Ue exi t
here , Phase I willconlinve
b read lines ualil the
‘End shalomenl ix

encounltered.

&

LARC SCIENTIFIC COMPILER, 0.28

FILE RouTiNE (Co»»t;,wu(ol)

Ca,U.w\j gzqvowce,
Nomber 2.
ol TG | FILE+F

B+ H © L

FLwW L

The transfebls thus
pomk was sek up byt
ofEN FiLE (SK) or by
EXTEMD FitE (AAax)

\
Mave n words (t'ilew)

from 5 boffer | Seion
Fole ™
Ts buffer O\ Yes oW buffer onclrum, {
-P(JLL ? Set wlc wmdew word B muﬁlef‘el:’ td‘v’lbw
vse other buffer.
o
‘/ea

oi+2

LARC SciENTIFIc COMPILER, 0.29

FiLEe ROUTINE. (CQvLU'.M.ucd)

RFILE FLmxE

Calhlmg &quwcc YY:-' 21

Nomber 3.
A TR | RFILE)
A - () Read the next n iens .F-oM
42 magk (or zero) = ‘ e o '
pl+ 3 possible End of Fule, Y = 2(Fe F, using rhe ea.cl_
pl+4 refirn 29 Uea sequence for File F

23 (gee ' RFILE+F)

Exit b (43 i.# End of
Fille was encoonterest
duréus reading.

G-

Read the next Hgnou': o..F J‘w:l Fum

{»f\ow\. FGJ-C F. VY =23
A af‘ouh qf Uems are those
conseculive ifems ther have
the same digds o the
posilions defined by the

magk ‘un of +2

(see: RrILE+F for bufferiug)

) ECad the next Uem —Ffo««

Exit B «+3 x_ﬁ End o_F Fde Fue F unle L on wdhoout

was encoontered dorug advsncing buffes localious

reading. _ of counls. ((Allows Peeﬁiwa
at next e and reacfu«s

Wt larer,

LARC SBCIENTIFIc ComPILER 0. 30

FILE RoOUTINE (Cow[&nuo..dv)

CaLLuAj Sequcmce_

Nomber 4,

o TS)} RFILE 4+ F
A+l H © [
d+2 o

d+3 €E~D of FILE
ht4 normal relorn

14
RFEFITLE + F l

END OF "/es
Foe ?

~o

FLR L !
The transfer B This pount

wasg S@tw‘absQSPENFILS Del
for READ (XX= N or NX) ay.

No

Sek tndex words B react .
TS read

Ts inpot : from next boffer. [Combplete: -FU:?
buffer ey Thnitiate read inbk next bufper?

Yes

L
Move n words (1 rew)
_F(\OM b"“F‘FU & L ow.

:

0.31
INPUT-OUTPUT ROUTINES

A typical calling sequence to an input-output routine is:

TB #0 9RIPT
SK 0 ©0.2(@2))
SK 0 0L 0 9

The second word contains the location of the tape number (the tape number is in
floating point), and the third word contains the format location. If the format is

assigned, the third word becomes

SK 0 (10L) 0 6

Immediately following the calling sequence are the list instructions. A typical

list for an input routine is:

A, B, (C®I, I=1,10)

" which might be represented by the following instructions:

S 1 A 0 5
SS 2 B 0 5

F #3 (BB 10 1 1)
S 1 C #13 5

BIT #13 HERE-1

T 9FIN

Here B is double precision, the other numbers single precision.

The same list for an output routine would have the S and SS instructions replaced by

F and FF instructions.

0. 32

Before referring to the list, the input-output output routine causes the tracing mode
to be entered. This is done in the subroutine 9LEV.

Reference is made to the list simply by transferring to its first instruction (by way
of the subroutine 9NTR, which transfers to 2600, in which S9LEV has stored a
transfer to the list origin). When an instruction with a tracing mode selector of 5
is reached, control returns to the input-output routine by way of location 2601 (in
which 9LEV has stored a transfer to the subroutine 9XCHj.. A transfer to the next

list instruction is also automatically stored in 2600.

9XCH, after ascertaining that the tracing of an instruction did indeed just occur
(rather than the occurrence of an error, which would also cause a transfer to 2601),

forms an untraced version of the traced instruction, places it in the cell 9XCHX, and

executes it.

For example, the instruction:

S 1 A 0 5

would become

S #1 A

Prior to the execution of this instruction (in fact, just before transferring to 9NTR),
an input routine would place the current word from the input buffer in #1 (or #1 and
#2. if double-precision transmission is a possibility). An output routine would store

the contents of #1 (and perhaps #2) in a buffer after the execution of a fetch in 9XCHX.

If a format is involved in the input-output operation, the scanning of the alphanumeric
format is interpolated in the process described above. The subroutines WI'G, GN, and

GXB are used for this purpose.

Two 20-word buffers are used for alphanumeric tape input (READ; READ INPUT TAPE).
While a tape block is being processed in one buffer, the next block is being read into the
other buffer. However, if the program reads more than one input tape, the second one

referred to must operate with a single buffer.

0.33

Two 20-word buffers are also used for alphanumeric tape output (PRINT; PUNCH;
WRITE OUTPUT TAPE). A block is prepared in the first buffer and then moved
to the second buffer for writing on tape, during which the preparation of the next

block in the first buffer can proceed.

The remaining input-output operations use single buffers (with the exception of
REWIND, REWIND INTERLOCK, and alphanumeric END FILE, which do not
require buffers). WRITE DRUM and READ DRUM share a single 100-word buffer.
WRITE TAPE, END FILE (decimal mode), and READ TAPE also share a single
buffer whose origin (9STB) and length (9TBL) are given in the main program.

(9TBL is a constant supplied from the communication region of LSC via CRTREC.)

More details on the above program are found in the attached flow charts and the

code listings of these programs.

LARC. SCIENTIFIC ComPILER 0.34
WDR 1

WRITE DRoM

9 DRD I

[© WDRM
‘ ,
LARC druom nomber ’
—= Sommarny ordess, Enter 9DRD
suvbroutine.

B and nomber

Seckr no.—» reac

Summara order,
ISsSce Summary orders
(postion head, read),

. RS

Get tnitial loestion. letég;f;l;\one (o>
Replace Fosi:h‘ow head L:!
wrde sommary order.

— Iummarnry orders

Find, store. sector '

nom b.z!‘.
Enfer SLEV sSubtooutine ,
l (Sece Read Tnpot Tape)
Set -FCV\GL relomn —From
O— T List (n OFIN+1

@ ‘ .
Sector no.—» write

Sommary order,
Advance secior no,

— =148 — boffer 'ev\s‘H'\

/
o —» S&'lbt\ r\oMi)U.

LARC. SCIENTIFIC CoOMmPILER.,

FINAL RETLRN

FRom 1LIST

9 WDRY9

Sec'j'or no,—= fead
Suommary otder,

e

y

Entes h's“')—Fe;!’el« nexk
word (9NTR subroutine)
Sre wworad uA buaF-fzr
Advance location by -
pf\ezﬁsion number,

No V
|
nd end ~o
~Z2
TT | of Boffer ?
: Yes
Re'alace. reacl Summary L

onder by Skip.

Enter QR™T™N subroutine

IBsve Sommary ondess (90Rs)

(See Kmrn!:u't 'Tobe)

Decrease location by

1
<bore word Lollow
e g
LA—FJST word. location.

(&) vioes

0.35
WDR 2 |

READ Derom

9 RDR M

Enter 9DRD Subrodtine
(see Wrde Drom)

Y
Enter é LEN |ubtostine
(see Kead Tnbut Tape).
Set -PCMO.L retorn -F(OM
ust bn 9FT~N+1.

®__.

f

Secior no.— read
Summary order,

Tssoe Summary ordess,
deley oalildone (9 DRS

subroutine)

LARC SCIENT \FIic. CoMmPILER

EAL RETURN

FROM LIST.

© RDRY

|

Enter 9RTN
Soubroutune

Store. lagT wora mbu.ﬁfer
un front o,¥ ..{,’q.,rs'l' woral.

?&cku.}: oS A Loc.nH)
loc.¥2 (Un buffer)
Enter list store word
(9NTR subroutine)

)

Was locstion \Ves
ar end of

boffer?
No

\

Advance locaton by
Pﬁédl&ibn number,

\

~o Ts location

- A8 —
Secfor.;\o‘—e?o - F rer leMs'ﬂ\
1
loo —» buffer length '
| —
n gector nomber,
: v
éo? s N2 kB T
~No
y

loc, (in buffer)
Pele up ara execule

unslTroctions ‘un OxeCHX

Relc up words ua loc.-l)

e

C

—_— %ond end of

boffer ?
Yes
i

locetion.

| —n

0.36

2 —>
[oc s‘Hon.

Advance Sector no,

WRITE oOuTPUT TAPE \

LARC BCIENTIFIC CoMmPILER

PRINT |

POUNCH

! 9 XCH '

\

;@N‘,_

SOWofPT

i

Enter 9DcodE subrostine,

0. 37

Tracu
en";?ed ? Set -ﬁMaL celorn —From
' Ust h 9 FIN+L
V. Fix NT‘G) XISRP —ﬁr eu‘i"w‘t
es
’ -
@eset‘trac{ng mode FF2o [
Store tape in Bummary
orders (9 8UF 1)
1 A L Store mode (© for
—i?aclng Kestore 6[Phanu vefic) 'ta}:w.
mode FF2S o previous mode {lag. (98To)
Sek ? (Dn’}evd’s oi
2601
Yes -
f Enter SLEV subrodtine Retorn :&om
Gecision no. o o To 260l (see Read Tnpot Tape) | XISSL or XISRP
Modify Faced instruction QoPT4
Slore in IxeHx, execvte . - |
' Y
Ful buffer wicth Haunks.
. (9FL)
Set u.t: fer urdex words
REJJ)\C]G\SM Confh‘o\ [WTe.
FIiNAL RETORMN FRPoMm LIST.
Qo MPT 9 WoPT ¥
i
De,las ontil Last wrde BulPer Yes
oberation is done. %“tﬁp -
Move buffer aontents)
boofput location (9mou) vNo
J Enter OMPT subroutine
Issue Sum orders
b wede odﬂpu“' er - =
ovite tape. |
3 .?Las indicatin
boffer is emplty. 3 Enter 9rmy subrostine {fd“"‘ w
(see Read 'In_}w"' Tape) Proaram.

| G RIPT l

Enter 9dcope subroshine,
Szl:.f«:nal, cedorn -Fle
list (v 9 FIN +|

RxwTe, xIs@pP fror .LV\FU‘"

|

Stote tape no, tn Summany

| Store mode (o Fot‘
sl phanomesic) untape

mode Jlag (99T0)

orders andu NumPe (98ure)

LARC SelENTIRIC coMmPILER 0. 38
READ TnPUT TAPE, READ.

9 RT~ | 9 LEV
Restore wous S ave contenl®
condenlt of 260! 2601,

Restore preduous Shore (T oxew)
Fres afatus. n 2601,
{ Store (T ust
FINAL RETURN FROM LIST ofigin) wA 2600

S

) Retorn —feom YISSL or XISRP

|Enfer 9Lev subroutine.

QRIPT4

ksTAPE =
Numee ?

{Tssve s8ummary orderg

b read {irst IdoTape
blocks (RDFILI) (RDFILR)
bnzﬁg:c no. in | STRPE

Tsave summary
orderg to read
hext Tape blooke
info corcent Bu{{u

(R>RILI)

Y
weg onlil next bloek
s i current ‘ba-HeJ‘

|

ORxTPTE
Save FF25 status
Enter 9RTN Sek: tracing made
gubrostine. FF 25,
Ketorm
e Matn
ﬁvaram

Deley ualil next blodeis
U read - ahead ‘bg,Ffa_

i

Move confenli of reacl-
ahead bq.r er B

rrent buffer (Qmov)

|

TIssve Sum orders

o reac nextTa bloadle

onb read -ahead Soffer
(RDFIL2)

\

Sek u‘o buffer wmdet words
eelu«quish antrol B WTG,

LARC SCIENTIFIC COMPILER 0. 39

ROUTINES USED by QRIPT & SwoPT

odcode XISRP '
- 1. Restore. paren-
ek u’n -Ferma‘l' undex Mesis level,
Lo "ds) rM6|' (:V\dex,
wards B values
at tashial left
Parewﬂae:is .

O—> 3cale —[’acfor’

Farev&lmj :;Alf?vd , fepeat

~o
bu_H\eJ‘ 13 eMFt\:j .
Cestore Fareudhesis 'euel)
. —‘::rm&t wndex words L
values at last la[ll:

Sek flag inclicating -
l es

parevcﬂr\es?s .

Sc_ap\, -F-Of Ma"._

XITSsP
WTG.
)
i Add | B Pere»d'k&m‘s
Enter @N subroutine. level.

Y _
GN : obfaun nomber (ord) A Eepdd-m nuomber —=
b NuM M#&,-ﬁlbdms nepeat cke

now- blanlccharacter wa 44 s l

Save —forma‘f wmdex words

Characler 'Trami-fg +

(XITsLP

(IF not (, shore NZ i Pe,aeal— ‘Fl.ag)

XISRP
XTSP

XIsX

X1ISE, YISET

XISF, YISF X foe
XIST, YISET) outpof,

xTSH, yIsH [Y for

XISA: yIsa Lw&t Save %m\at u«dex wordsg

XISSL, YISSL and. Pamﬂw&l leu:; for
cmat.

WwWTE . re,cﬁclmj thro

%\sz-nmX‘bv

-

LARC RCIENTIFIC COMPILER. 0. 40

RouTINES USED by ORIPT & 9wWoPT (cont)

XIssL XISE l

y 1

J TeRom XISRP
O — re’:eet —FLag ’ xTssu | Enfer XISEF, gelw,d.

<t

' NZ —p XPNT .
! Ceok numbes O.f. leadu,\ﬂ

Enler ?MPT subrosiine.. Blenks, numberof
(sce Wrde Cutpot Tabe). : lead&“i cuﬂl;\'s
2o
INPTH Evifer Iist, get nextno.(9nTR)
Cek exponenk, Sign y scale,
roond , and packe cesk og
no. (eNv 1)
RDTEST I Tsert vaxgle leadt
digie of zero 2f necessary
: Y
Enter list (9NTR) Ender CNV2 sobroutine.
(.F‘_},.isv\,con\lejslton)"\tg nQo,
(nore) repeats e~v2
eeIOrn <F¢‘OM List means retorns T WTGa.
ewd ust not yet
of nzached? repeat.
Fix 9nTRX B execste
last lst unstroction.
20 XISEF

QRIPTH,

' .
Save count (i Q sek=1)
(XSEFA, GN)

Y
b — FLDW , d—=TRDE.

LARC SCIENTIFIC CoMPILEAR.

RouTines LSED by ORIPT £ 9wWoPT (covd:)

CNV2

i

Skib over leadd
blanks tn boffer (BLTs)

S+Of€- o blav\ks wA

Sign pos ttion (3X)
d> o,sore dec. pl. &

tragh,us dgsds (SX, DETNS)

4

‘No

Pot m E (s8X)

Scale ex onevit utwv-
or Havdcs 2 d

Fonent (sX; INS)

Soubtract |
‘F[m leﬁe-i-\h.ov\
eke, 5= o?

~ (reeT)

XISF

y
Enfer xTSEF, geb w,dl.

Q —» XPNT

0.41

Y

Enfer Ust, get next
nomber, (gNTR)

S+o<~e Stgn SCa‘e tounal
angd pack number (CNV 1)

Ves

I8 no. O7

Ex'a. - So

—s LDDG.

Fund Nno. Q.’ lfaduas Hanks,

[
Enter env 2 subroutine

(.qush convession)) «?

pe,)xaf.

no (more) “QPCSFS eNN2
relorms B wWTG,

LARC BCIENTIFIC COMPILER |

RCUTINES USED by QRIPT & 9woPT (cont.)

|Rek n & w (xsEFAY;
O —>» RALKS

Enfer list, get wordl (9nme)

Sk-i‘o over RLkS columns
(BLTNS)
Send w charachers o

buoffer (sx)

XIST

Flow chark —For XIST is he same
as fqr XIS | excepl
1, No Sc.alius iy done.

_g:_jke. _(’.KFOV\eA—t % agsomed ':O b‘

> 80 for non-zero numbers,

X TSH

XTsfP | XTI 8xX l
1]

e (Num) —» P Sikiip N charackers in

boffer (8Trs)

4

® ®

YyIsseL

1

O —»> repeat {.’la.g ’

Lo
ORIPTH,

0. 42

VISEX

LARC SBCIENTIFIC COMPILER

RouTINES USED by OLIPT & 9WofT (couk)

Ender XISEF,

6~¢.t w,d,

1

Enter ¢nv s, comvent

l

Enter list via 9~Te,
or execute Ust umshr,

in 9xeax (gNTRX)

nA '@ (ILtL(}l\
o ey
(Fnrr)

Subtract 1 e

YISH

YISA

l

Coek A 8ud w (xSEFA)|

0 Yes

o

O —» NuM (Avmber of
tra ¢ H&u.lcs)

0. 43

S -6 —PrNUM

-

1

rorm worck ski{ .
on W characters (axs)

S&uf{: G (NOMm)

\

execvte List st foction

Un QrOHX

Enter list va 9NTR or |

o (onTRY) |

Cek character
buffer (& xs)
Send character

-k)rmsf (3&)

O A

r

Sub‘l‘rael' 1

i feo« l‘Q}"it 106,
\ afr.: =207

1)

(FRPT)

LARC SCIENTIFIC CoMPILER 0. 44

RouTimES USED by QRIPT 2 9WoPT (combt)

NIsSF

|
Enter XISEF, 3@‘: w,d.

')
Futer N3)COV\ve.rt

nuomber —P~oM Ea.ﬁer.

'

1s no, Zero
?

No

\,e N

Ts P

(scale -r actor) Jes
-Zz:cy

~No

. TS P - Jes QQPI&‘Q Mb"ﬂ
eXponent] dbsolule gero.

No.

y
)szcrease. exkov\.e»\t bd P

]

Enter lisk via 9NTR, OF
2xecute list dnstroction
i 9xeHx. (9uTRX)

Sobtraet |
—P‘ow\ l‘ePe?ﬁ‘l‘iom
etr.; = O ?

LARC SCIENTIFIC COMPILER

ROLTINES USED by QRIPT £ 9woPT (cout)

eNN 3 |

A V.

O — CNTR, DECPT

i

DGECNT, LDDG C33
l o Cb6
1 <
< ;5 Nes
() '-'—O’j
’No >
W -i ()
- Conszoliaate no. (from
! CNNTHN) and exponenl
- weth Sigv\s 5 -fepm D.P.
Gek nexk dugit or Jloafing pt.no (sad
character (@x8) LdDG B exponent;
normaliee)
(Pigt)= |
\’es Seechart

NE —» DECNT

¥

Form no. By S"\Lﬁluﬁ
o d(s'd' -rrom riﬁa—t

TIs Par‘h'allj Nes

-forMécL ;\o.

SM{It out
la st dx's‘d’ '

m(DECPTZ37

es

)

LDDGE-1 —» LDDG

0.45

—@L_g- T €69

Absolute zero
No

~ o C33

LARC ScCIBENTIFIC CoMmPILER.

ROUTINES USED by QRIPT & HuwofT (Co"d’)

0. 46

DECPT
Chae. & 37 > 37
.I.{‘CLNTQ =0 —>® c33 039
Blank. —_—
'_I_:FC.NTR# o,—> 39 ireat blank asa —s 39
2efo; —» CcC33
—L«c DeeNT = O, make Make ex‘o -5 Malke a', -3
Sgn o_F no,— j; —>C33
0P pec~T #0O, make
exp. —; —>CéG
If dDecnT =0, —>C33| C69
-+ Tf Dee~T +4 O, —>CL6 Slore no. un CRNVTN —=C33
make DECPT >37)'—>CS3
37— DECPTy
° c(eNTR) —e LDDE;
—» C 33
C el
E CNTR - TRDE —>LDDe 6o c a3

(if neg. kek=0)—>C &9

LARC SCIENT IFIC. ComPILER 0.47

WRITE TAPE

| owrTe l @

Set final retorn -
List "wn Enter ligk via
SFIH+I ONTR, or execute
s iastr. Taken FINAL RETURN FRoM LIST.
v —'FI‘OM O XCHX.
Enter 9LEV
subroutine (see) , 9 WRTPS
‘Reat Tnput 18pe) Slore 2 words v ' r
buffer.
N2
; Advance location W
c(Slon NO,
O — bloek no. by prectsto Y y
ex
loe.) W bbe-0?
~No 6@:,0'«9\ endl o,
Delay vatil boffer of H’e_r9 ‘ »
avallable (9WRTD) loc.— l '
L Yes e
1ape Adcdresgs —» - PT
IuMmary orders ! l) l9n&l.. - Q
e rease locaton Q blodk no. —»
-
(9 WRTS) by OTBL-I (no, ’ Pust word,
data words u
' soffer)
Store mode (9 for More o UsC?
nomeric) ua tape N\ Yes (Ender sl via Yes
mode flag (93T9) loe. =0 onTR) (i not, go
5 QWRTPR wa QFIN

. ~No
)
oy unld boffer diers € ot Bofpes
available (QwWRTD) ontape
] - (9wRTT)

Clear LuHu 5 zeroy y

I Yos m@
'Word ,{)olloof,

bu,H?u — word| '
of Soifer Enles 9RTN (Ser

Acd | L'E:}:lock no.

S RDTP

LARC SCIiENTIFIC COMPILER

ReEAD TAPE

©

ek —F_v\aL relorn —FrOM

Ust tn 9 FI~+

Erifer 9LV subrodline
(see Read Tapst Tape)

p
2 words froe boffer

—) 2

Y
Ewnter st via 9NTR,

|

O— loc; O —spword

ta - 3 N~}
o

stere word or words,

4

Advance (oc_.las prec. ao,

Tabe address —»

S|ommary onderss (9Rb‘~'s)

Store mode (9 for. -~

nomesic) in Tape Mmode
Pleg (9879)

Tssve sSummary orders
t read Tape blode bk
bofper ; delay onlil
Aone (QRDTT)

Decrease loe. by
' 9TB8L-1 (no.data

words du buffer)

~No
loc =E?
Nes
i
s
tus the last no
block ?
Ves

\
Tt T Qoo v 260,

Co 5 2600 (<kif
“v\roujh M_xtcf Lisk)

FINAL RETLRAN
Store last weord Q{

l
®

FRom LIST,

predweos blocle
= —F‘rst: wosd ©
this blook (execste

’9RD‘FP8

wmshe, Ln 9XCHX)

Ts
thes the last Yes
blodke ?

~No

no. o,f data
ootds —E

0.48

Enter 9 TN (se=
Read Tup U"’ T@h&)

Tasoe Sommary orders
£ cead i one block (0RDTD)

END FILE

ONDFL

LARC SCIENTIFIC cOMPILER

Was previoss

read or wwide in
decimal mode T
(9s7F)

Is
avalasle 7

‘/es

o

\

TaP¢ no. —»
Summary orders

i,978L -1 o
9578 ({first
word)

7979791797979
o femantnc
words QF {GU‘

alphanumeric

L

'i?..)H er Available ?

!

BAacksPAcE

9 as P

 Aepare define &
react back wand
 ummany ordess,

;
@—‘ e IO VY

ead or wode (n
decimal mode ?

(osvF)
Yes

Lead backwara

| blocle.

Tasue paeude
disclesure
wotd.

0.49

Ts,
bleclke Lt
MEeMmOnYy
o 3

]
/vJ—,ZSJﬂQ' \\
<)‘F blocks >1 2

Ves

Ta}ma No, —»

t

LIsoe Summary
crders

QLuMmMary ondery

REwWiND l@ewu;\d. Imrer‘ock)

9RwL (9RO ML)

1

No

n

fiepare TPS

Summary ofders,

[Issu2 Sommasry
Backas ard)

1

ts Maua
‘7?‘9:)“ Sna

e

Tape no. —> TRW (=)
[uMmMmary ofler

Tssve summary
ordU. .

1.0

PHASE 1

The main function of Phase I is to analyze the initial source program and to output stand-
ard units of information (items), describing the input. These items are listed below with
details of their construction. The source program is read from the input drum via the
FILE routine. If the word in the Communication region indicates, the input line is convert-
ed to the LSC internal character code prior to analyzing the statement. SAL code is not

analyzed except for recording the label of a SAL instruction.

The analysis of the source statement is sufficient for Phase I to output an item for every
meaningful feature of the input and such that no other phase need refer to the source input
again, The items output by Phase I are placed in different files according to their type
and the original source lines (in the LSC internal character code) are filed for editing
when compiling is complete. The items generated are filed by the FILE routine while
the scan is in process. Hence, no restrictions are made regarding the number of lines
(cortinuations) used to represent a single statement except that space on the drums must

exist for the file being formed.

Phase I is broken down into many parts, some of which are described below; flowcharts
of these sections are included. Some statements receive more thorough analysis in
Phase I than others. In general, Phase I does not make an analysis of the program as a

whole. In particular:

1. No distinction is made between subscripts and argunients.
2, The arithmetic mode implied by the name of a variable is ignored.
3. The appearance of an induction variable (explained later) in arithmetic

expressions or subscripts is ignored.

4, Information contained in one expression or statement is not carried along

when processing later statements, except in a DO statement (see 2. below).

1.1
The analysis of Phase I is best summarized by noting the list of items which it generates.
The output of Phase I has been designed in such a manner as to facilitate the analysis of
Phase II, III, and IV. On the other hand, the functions of Phases II, III, and IV make it
unnecessary for Phase I to keep lengthy tables describing variables and searching for

information about a variable before outputting items.
Some areas of Phase I deserve special attention:
1. Arithmetic Scan

During Phase I, an arithmetic expression is scanned from left to right and
items are assigned a subsequence number in such a way as to cause the
expression to appear in the Polish (Lukasiewicz) notation in later phases.
The major sequence number (the lead five digits) is the same for all items
in the expression. The included flowchart contains details on how the sub-

sequence number (SS) is established.
2. Determination of a "DO range"

A DO statement is the only statement which causes Phase I to store inter-

statement information. Whenever a statement:
DOu, I=hb,c,d

is encountered, the guantities: I, b,c, and d are output immediately. The
statement sequence number, S, associated with these items is stored (here-
after referred to as DS) along with the referred to statement name, p, and
with I. The range is detefmined when a stateraent named u is encountered;
at this time a second item for I is output (a "20" type item). Prior to the
arrival of the statement pu (or to another DO statement) DS, as described
above, is associated with all itewis outpui by Phase I that have DS indicated

in the item.

1.2

The occurrence of a '"list'" in the source program (input-output list or
"list" = expression, etc.) causes Phase I, in some cases, to output items

similar to those of a DO. For example:
(((A(1,J,K), I=1, 10), J=1, 5), K=1, 10) = expression
will generate:
1. (Expression evaluation)
DOB, K=1, 10
DOB,Jd=1,5
DOB,I=1, 10

Analyzing SAL statements:

A, An "S" in the first column of a statement denotes SAL coding,

all names interpreted by LSC must be legal LSC symbols.

B. Output special continue item for all names of SAL code.

C. Output a special continue item for the first statement in a block

of SAL coding (ID = 11) to F4.

W1 Seq., O, 11
w2 o)
W3 DS, L, P

D. The induction variable in a DO loop is made available to SAL pro-

grams.

E.

1.3

Any exits from a block of SAL coding to another block of SAL coding or

to an LSC statement must be indicated in the following statement:

SAL EXITS (Nl, N2, c e Nk)
where Ni is the symbol to which a transfer is made

outside of the following block of SAL coding.

Phase I will recognize the LABEL line and a DIRECTORY; in general

these items remain unprocessed and are assumed to be acceptable SAL

items.

1.4

APPENDIX - A
Sequence Counters

During Phase I, a set of sequence counters is maintained in order that every piece of
information extracted from the source program (an item) can have a number associated
with it. The sequence counters (ST, SD, SE, etc.) each have a range of numbers ex-

clusive of the others. The number itself will be an integer less than 105.
1. ST is the sequence counter for the following statements:

INTEGER

FLOATING

DOUBLE PRECISION

INTEGER FUNCTION
FLOATING FUNCTION

DOUBLE PRECISION FUNCTION
PARAMETER

2. SC, SF, and SA are used for:
CONSTANT
FORMAT
Arithmetic functions, respectively

3. SD is the sequence counter for DIMENSION statement items.

Example: DIMENSION A (I, B), B(7)
DIMENSION C (M)

1.5

Assuming that the current value of the DIMENSION counter is SD, the first statement, as
a whole, has SD as the sequence number. (This is for printing purposes). Items A, I and
B have sequence number SD + 1. B and 7 have SD + 2. The second DIMENSION statement
has sequence number SD + 3. Items C and M have sequence number SD + 4. The next
DIMENSION statement encountered would have sequence number SD + 5, etc. Any error

items get the same sequence number as the item which was in error.

4, SE is the sequence counter for EQUIVALENCE and COMMON statement
items.
Example: EQUIVALENCE (A (I), B(5)), (C, D)

COMMOND, E, F

Assuming that the current value of the sequence counter is SE, the following assignments

of sequence numbers will be made:

Item Sequence Number Subsequence Number

EQUIVALENCE Statement SE 0

A, I B, 5 SE + 1 | 1,2,3,4
C,D SE + 2 1,2
COMMON Statement SE + 3 0

D SE + 4 0

E SE+ 5 0

F SE + 6 0

Note: Any error items get the same sequence number as the item which was in error.

5. S is the sequence counter for the items in the remainder of the statements.

In general, the entire sequéncing number (10 digits) is made up of two parts, the Sequence
number described above and a Subsequence number, which gives the order (or desired

order) of the items within a group of related items. Variables in a list get numbered

1.6

sequentially. Variables in an expression all receive the same sequence number, but
receive subsequence numbers in such a way as to transform the expression into a
parenthesis free notation when the items are sorted on the sequencing number. State-
ments in the print file have sequence numbers which differ by at least 1. Error items
always have a sequence number equal to the sequence number of the item which caused

the error.

6. SB is used for the FUNCTION and SUBROUTINE statement.

Sequencing of Arithmetic Statements

S is the sequence counter used for arithmetic statements. Let n be the value of the

sequence counter S associated with an arithmetic statement:

S Statement Statement
Name
n JOE XI, Y=A+B

Sequence and subsequence numbers are assigned in the following manner:

Item ~.Sequence Subsequence
S SS
line n 0
JOE n+1 0
X n+ 2 0
* X 2
n+3 1
I 100
¥ Y n+2 0
Y n+4 0
+ 49
A n+2 50
B 100

* Arithmetic MODE Item

Note that the sequencing numbers of the list items are greater than any of the expression

items.

1.7

Sequencing of Arithmetic Functions

SA is the sequence counter used for arithmetic functions. Let n be the value of the sc-

quence counter SA associated with the arithmetic function:

SA Statement Statement
Name
n SAM FIRSTF (A, B) =2A + B**2

Sequence and subsequence numbers are assigned in the following manner:

Item Sequence Subsequence
line n 0
SAM S 0
FIRST n+1 0
FIRST n+ 2 0 (expression mode
item)

A n+1 1

B " 2

2 n+ 2 100

* " 99

A " 150

+ " 98

B " 200

*k " 199

2 " 250

Note: The name "SAM'" was used here to show that a continue item will be output for it
with sequence number § (the executable statement counter). Normally a statement name

is not given, since reference to the arithmetic function will be FIRST(X,y) or FIRSTF(x,y).

1.8

PHASE I APPENDIX B
ITEM FORMATS
The following formats represent items which are output by Phase I, II, and IIIl. Outputs

from Phase II and III are included here for completeness. The File 2 items are on the

left, File 3 in the center, and File 4 on the right side of each page.

PARAMETER Vl =A1) V2 = A2 s e e e Vp =Ap
Vj ST 0 01
ST 0 01 012 0000 Offff
A, A

] ¥
Aj is truncated to a floating point integer
CONSTANT X =numeric
SC 1 45

0b2 0000 0000
high order part of numeric

X SC 0 38
SC 0 38 Obl 0000 Offff
low order part of numeric low order part of numeric
INTEGER Vl’ o e Vp b =1)
FLOATING Vl’ C e e Vp (b =2)
DOUBLE PRECISION Vl"' . Vp (b =3)
V.
J
ST 0 06

0bl1 0000 00000

INTEGER FUNCTION V1 v s 00, V

FLOATING FUNCTION Vl, I Vp

DOUBLE PRECISION FUNCTION V1 y e s

V.

J
ST 0
Ob4 0000

1.9
b=1)

(b =2)

,Vp(b=3)

07
0000

The mode digit '"b'"" is assigned to all references to Vj by Phase III when the reference

iterhs are sent to File 4.

SUBROUTINE N(Ml s e e ,Mp)
N SB 0 32
SB 0 32 004 0000 Offff
0 0 p 0 Op
M SB j 33
SB j 33 9b c 0000 Offff
0 0 0 0
FUNCTION N(M1 y e e ,Mp)
N SB ¢ 34
SB 0 34 004 00CO Offff
0 0p 0 oOp
M SB 0 42
SB 0 42 b ec 0000 Offff
0 0 0 0

-1.10

RETURN
S 0 49
6 00 0014 00000
0 0
ARITHMETIC STATEMENT FUNCTION NF (M1 S e ey Mp)= .
N SA 0 23
SA 0 23 564 0 000 Offff
0 op 0 op
M,
J
SA j 24
0 0
(j) replaces the (uffff) digits of references to (M,) appearing
on the right hand side of this statement. (SA +17) is the
sequence of items in the arithmetic expression on the right.
CALL N(M,.. .. , M)

If (Mj) is a single symbol:

N S 1 30
S 1 30 0b4 0000 Offff
DS L p DS L P
(LIB request item initiated o 5 44
by Phase III). 0 0
N
Mj S ss 31
S ss 31 abc d 000 Offff
DS L P c=1 0 ——— DP
c=2 aj

¢c=3 DS L P

1.11

If (M) is a Hollerith argument:
J

File 93
wl SF 0 03 S Ss 37
w2 ALPH 000 0000 Offff
w3-11 characters in the SF 0———0

Hollerith argument.

If (Mj) is an arithmetic expression, output Polish string for arithmetic.

1 1 1
RN , A.,...A y .
DIMENSION V (A 1 Ap) 5>V (1 p)
v SD 0 02
SD 0 02 ablp eee Offff
0 Op 0 op
I a dimension is specified as a ‘cons>tant:
SC j 45
012 . 0000 00000
A,
J
If a dimension is specified as a parameter:
Aj SD j 45
SD j 03 012 0000 00000
0 0 0 0
1 dl 1 dn
EQUIVALENCE (Vl(Al,. . ,Ap) P ,Vn(An,. . ,An))y, . ..
Vj SE j 04
SE i 04 abld eee offff
0 ¢ 0 e e ()

a = 2 if not common

a = 3 if common

For each (AI;) specified as a constant:

0000

0000

0

deee

1.12

45
00000

45
00000

05
Offff

a = 1 if not equivalent

a = 3 if equivalent

SE
012
A¥
J
k ies
For each (Aj) specified as a parameter:
Alj{ SE
SE j 03 012
0 0 .
A]
COMMON V_,...V
1 p
Vj (SE+])
(SE+j) 0 05 abl
0 0 0
ARITHMETIC STATEMENTS
V in an expression
v S
S ss 14 abl
0 0 0000

Store: V

owm<

ss
0000

AAA

14
Offff
DP

AAA = the subprogram argument number if V
is an argument of a subprogram that is

being compiled.

S
0 21 abl
0 0000

0

deee
AAA

21
Offff
DP

1.13

Mode of expression item

Vv S 0 39
S 0 39 abe deee Offff
0 e e 0 0 TR At Lt . s O
List Item S 0 60
0 e 0
0
V in an input list
Vv S 0 26
S 0 26 abl deee Offff
0 0 0000 AAA DP
V in an output list
Vv S 0 28
S 0 28 abl deee Offff
0 — = e () 0000 = AAA. DP

If V is a reference to the induction variable within the DO loop, Phase III changes the

item to reflect this type of reference (e.g.)

Vv S Ss 07
S ss 14 411 0000 Offff
0 - DS L P

V (subscript) in an expression

v S ss 25
S ss 25 abl deee Offff
0 ' -~) 0000 AAA DP
V (subscript) STORE: V () =
S 02 22

v
S 02 22 abl deee Offff
0

1.14

Store expression item

v S 0 39
S 0 39 abl deee offff
0 0 0 0
V (subscript) in an input list
Vv S 02 27
S 02 27 abl deee Offff
0 0 0—-0 DP
V (subscript) in an output list
v S 02 29
S 02 29 abl deee Offff
0 0 0 0 DP
DO L I=Nl , N2 , N (DO loop)
(--- ,I=N", N ,N‘?) (List loop)
4 1 2 3
implied name n
I S 1 19
S 1 19 abc 0000 Offff
DS L P O S(e) 00
I S(e) 0 20
S(e) 0 20 411 0000 Offff
DS L P 0] S(e) 00

This item is output from Phase I when statement L is en-
countered. S(e) is greater than any value of S assigned to
items in statement L.

If (Nj) is specified as a variable:

N.
J
S
DS

If (Nj) is specified as a constant:

CONTINUE - executable statement

name name
S 0 08 (S - 4)
DS L P DS

(if unreferenced do not

j+1

S
L

send to File 4)

GOTO L

w

DS

46

36

S j+1
411 0000
DS L
S j+1
412 0000
N,
J
S 0
003 0000
DS L
S 1
003 d 000

1.15

46
Offff

45
Offff

08
Offff

16
Offff

Scont Q—m 0

(if not a drop-out)

S 1 36
003 0000 00000
0 0

(if a drop-out)

GOTO (N, . . .

GOTOM, (N, . ..

j+1

18

ASSIGN N, TO M

2®zZ

12

, N

M

0000

")

w2

DS

w2

DS

(computed GO TO)

j+1

A
AAA

(assigned GO TO)

S(c)

16

14
DP

17

12

13

"1.16

S j+1 16
003 dooo Offff
S(c) 0 0

S(c) = sequence of state-

ment name

S 1 4

003 dooo Offff

0000 AAA DP

S 1 17
003 1000 Offff

DS L P

S 1 12

003 1000 Offff

M

S 2 13

abl 1000 Offff
0000 AAA DP

CONTINUE - (FORMAT statement)

name name
S 0 10 (S - 3) S
DS L P DS L

READ INPUT TAPE I, N, list

READ INPUT TAPE I, N, list
WRITE OUTPUT TAPE I, N, list
READ PAPER TAPE.I, N, list
PUNCH PAPER TAPE, I,. N, list
TYPEWRITE .I, N, liét

READ TAPE I, list

WRITE TAPE I, list

REWIND I

REWIND INTERLOCK I
BACKSPACE I

ENDFILE I

READ N, list

PRINT N, list

PUNCH N, list

READ DRUM I, J, list

WRITE DRUM I, J, list

DEFINE LARC DRUM, J, K, L
POSITION HEAD I, J

ADVANCE HEAD I

BACK HEAD 1

READ LARC DRUM I, J, list
WRITE LARC DRUM 1, J, list

17

Reference to FORMAT "N"

SS

"1.18

For those values of (I, J)specified symbolically:

Ss

name
S
0
CONTINUE - SAL label
name name
S 0 11 (S-4)
DS L P DS
Beginning of SAL block
SAL EXITS (V1 s e o e s Vk)
V.
J
S
DS
IF(-----) Nl’ Nz, N3

If (Nj) is missing

S ss .15
15 005 d 000 Offff
-0 0 0
S Ss 14
14 abl 0 000 Offff
0 0000 AAA DP
11
P
S 0 11
0 0
DS L P
35
P
S j 36
003 0000 0000
0 0

If (Nj) is stated:

N,

J
S j 36
DS L P

SENSE LIGHT I
IF (SENSE LIGHT I) N_, N,
IF (SENSE SWITCHI) N, N
IF DIVIDE CHECK N, N,

IF ACCUMULATOR OVERFLOW N, N

IF QUOTIENT OVERFLOW N_, N

2

2

1 2

If (I) is specified numerically:

If (I) is specified symbolically:

I
S 1 03
0

If (Nj) is missing:

'1.19

S j 16
003 d000 Offff
S(c)

(if not drop-out)

S j 36
003 0000 00000
0 0

(if drop-out)

S 1 45
012 0000 00000
I

S 1 45
012 0000 00000

PARAMETER , I

S j 36

003 0000 00000

0~ 0

If (Nj) is stated:

=]

SUCCESSOR item (ID = 03)
(See Phase III)

Ignore item (ID = 50)
(See Phase III)

Adjacent register flag item

(When one expression must
be in a register adjacent to
another, as in the relational -
IF statements.
TO and FROM items

ID =40 ID = 43

(See Phase III)

SS

leNe}

1.20

S j 16
003 d 000 Offff
S(c) 0————0

(if not drop-out)

S J 36
003 0000 00000
0 0

(if drop out)

48

1.21

Summary of Identification Digits Assignment (Assigned by Phase I)

The preceding items are all identified by a two digit number, the ID. File 2 and File 3

items have their ID in the right-most digits of the second word (W2); File 4 has the ID

in the first word (wl).

DEFINITION

parameter

dimensioned variable

name referencing a parameter
equivalenced variable

common

mode specifier (variable)
mode specifier (function)
executable continue
non-executable continue
format continue

SAL continue
assignor (assign A,
assignee to B)
unparenthesised variable reference
format reference

statement name reference

must be assigned variable

listed assignment

induction variable - begin loop
induction variable - end loop
stored variable

stored variable(

arithmetic function name

arithmetic function argument

variable(in arithmetic

1D
26

A
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44

45

46

DEFINITION

input listed variable

input listed variable(

output listed variable(

output listed variable(

name of routine being "CALLED".
single name unsubscripted CALL
argument

name of SUBROUTINE
SUBROUTINE argument

name of FUNCTION

SAL exit

drop out reference in "IF"
Hollerith argument reference
variable in CONSTANT

mode of store item preceding exp.
TO item

single name subscripted CALL ar-
gument

FUNCTION argument

FROM item

OPEN subroutine, library sub-
routine

literal appearance of numeric
quantities and numeric assignments

limit of DO

IS

47

48

49

60

DEFINITION

Function reference ("F' was
dropped.

adjacent register flag (precedes
first expression)

arithmetic and LSC statement
operators

beginning and end of list item

1.22

1.23

MODE WORD:

Information about an item is passed from phase to phase by a mode word which is part
of the item. Phase I assigned mode words to literal appearances of numeric quantities
and to operations. Phase III assigns mode words to items which represent variables
and functions. Mode words are further up-dated in Phase IV, V, and VI; it is then
used by Phase VII to generate code items. The mode word is a full 12 - digit LARC
word broken down as follows. This summary includes information supplied to the
mode word by Phases Ito VI.

a,b,c,d,e,e,e,u,f, 1, f,f
a (storage assignment) Ordinary
Common
Equivalence
Common and Equivalence
Induction Variable
Arithmetic Function
Dummy Argument of an Arithmetic Function
Built in Function

Library Function
Dummy Argument of FUNCTION or SUBROUTINE

© 00 N o Uod W D= o

b)arithmetic mode) Not a Variable, Function, or Constant
Integer

FLOATING

Double Precision

Integer in integer form

G AW N = O

B-Box word

1.24

c(class) 0 Fast Register
1 Variable
2 Constant
3 Statement name
4 Function or Subroutine
5 Format ‘
6 Operation or Punctuation
7 Built in Function
8 Marth routine
d(quantifier):
I c=0
d = number of fast registers (1 or 2)
If'c=1
d = dimensionality (0, 1, 2, 9)
after Phase IV, d =1 .if reference is subscripted, otherwise 0.
If c=2
d=0
If ¢ =3
d =0 if the statement reference is direct
d =1 if the statement reference is assigned
If c =4
d=0
If ¢c =5
d =0 if the format reference is direct
d =1 if the format reference is assigned
If c =6

d =number of operands for the operator (see definition of eee for the

value of d in each case)

eee;

Specifier digits eee when ¢ =6.

eee =

If c=landd# 0

eee is the dimension table reference for the variable.

If a=9

after Phase IV eee is the argument number of the variable

If c =4

eee is the number of arguments of the function.

I c=6

O IO U B WNMHO

14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1.25

eee represents the operation (the list below gives values for eee and the

corresponding value for d.

+ -

* NN ¥ |

*

fixed multiply
fixed add

RETURN
PAUSE

STOP

END FILE
DEF LARC DR
POS. HEAD
ADV. HEAD
BACK HEAD
R. LARC DRUM
W. LARC DRUM
R. DRUM
Write DRUM
R. Paper Tape
W. Paper Tape
TYPEWRITE
SENSE LIGHT
ASSIGN

RIT

wWOT

READ

PRINT

PUNCH

(Operation or Punctuation)

d=

N NDNNDNNDDNDDNDN

HFHEFMFHEDNDNDNNDHENDNDNDNNDNNDNNDNDEEENDREROOO

ufff:

1.26

36 IF SENSE LIGHT 3
37 GO TO 1
(and ASSIGNED GO TO)

38 IF SS 2

39 IF >0 1 Followed by GO TO. . .

40 IF=0 1 (generated for IF POS. etc.)

41 IF <0 1

42 IF > 1

43 IF = 1

45 COMPUTED 0 K, the number of GO TO operands,

GO TO is put into the M-portion of 3rd word
of the operator item,

49 WT 1

50 REW 1

51 REW INT 1

52 BACKSP 1

54 IF () 3 (FORTRAN IF statement)
55 IF 30 1

56 IF#0 1

57 IF < 1 Followed by a GO TO

5 IF > 1 (generated for IF NOT, etc.)
59 IF # 1

60 IF < 1

61 RT 1

Hc=1landa#4
u=20
fff = dictionary reference to name or dictionary reference to name and
and constant (u = 1 if a = 9 and constant is negative or sequence of

generated statement name.

Hc=1anda=4

uffff = new name of induction variable item

Hc=2andb =3
u=0

ffff = dictionary reference to low order part of the constant

Ifc=6

Phase VI may further use uffff for the mode words of operations as follows

1.27
u =0: expression is not common

=1:; expresion is common and is not in the first major sequence of its
occurrence.

. =2: expression is common and is in the first major sequence of its occurrence.

Ifu =1, 2, then ffff =the integer which represents which subexpression.

Note: After Phase VII, the mode word described above no longer exists. The
code items to File 8 incorporate the information in the mode word of the

File 7 items. The Phase VIII report contains this information.

LARC SCIENTIFIC ComPILER.

Phase T

1.28

General Phase T —-F{o»o o detads on contunve tfems and quoe»\cw\ﬂ

PhaseT
Start

l

aitialiadtion
e ach P"‘Oﬁféﬂf\.
(@~TT 4)

i

Trabalc zé‘i‘bw % «
eacihh statement
(xeiT 2)

S —» Pf‘ivi Sequence
Q4| —» SW

D)

Eritered
Stalemenkt 15 Scamnect,

é.f—fer

EnD.

' T error Uew (only
+ Ou‘f‘FuTeuol d'ew\,
Lo Lo (20) wuﬂx Sequence =
— S+ S=3+3
L L—=1—» L
Close all

Fles.

l

]

Ottt live &
prost file

&ﬁejw

this level 2

\'GS

) 7
T3 current \Mes OO*PJP(:’ gr.yd‘
atatement a e' wuth —>
COMMENT 2 S+1— S
o
p
~ S
I3 coctent Yes <t S+
statemen E—— — g
saL?
reset s
No
‘ y Szt sAL 4’1
| Reset saL §
| Pl woe d‘em Wi
| g name O aud
s—~44,8—> 3|

~No

Starewmenkt name —»

Oo+lc>o+ e U covtinvel

dewa

g = Ypoowe
9 S+(—» S

3

fr ey SName e\ Ves

at

SNAME

st kb Pe,

)

l\fes

sfalement name —+SNAME

To\"M COM:“LVWQ J‘Qw\. u’d‘l\

SNH‘V\C s, L which ig
|ej’e «sdk D= &
5.,_)-4—: —» S,3

OQTPQT line & P("wd'
fue.

S+ 1 —S
OJ“P\)"' K Fa.)

. DOTAR 3(‘-)
wzl < © 20
w3 domrs 2 (L)
P(L) —» P~ l)

(TWDSTHE 2)
L-l——» i
S+2—> 38

\.

I

“heck

Datermime starement
. V=e !oo‘o ﬁ

db. Outpot lems
f2,£384.49.1.49-2, 493

« Sekt wl\j.MCkM
&
~ S d(eﬁalewi

™ Feun, wictle

Pesel bo[:

output F{‘eu\.ou.\H
consTructed co

ud'twe.
D,

& cont flags

LARC. SCIENTIFic. compPiER Phase T

1.29
@ "GET X' "GET XTI “"Gek next chamacter"
1 F|.83$ and SSMLOIS'.
® BLAaNK | aet i‘f blanwk or % chavacler
qek Recr m i no¥ I be (gnored.
€sel ExT i €os P end o,",' stalewienkt .p.as
v L correwl word ua line
reseb . .
, J ' correnl’ character posilion
gel : Nole: (and | are seb wadica bj
eos ot Mmawn conlrol program.
resel
A T8 Al @GETXL
L+1 end o{ statement rétorw (‘§=99)
R +2 nocmal petioru
3
©—J
T (=) — L
Lio)E
Gek characher in e
MI‘Z L) E‘lo-s‘l—lt(owj = 5
of .: ° lo-order 4 output line b
par of 5. T j print file Advauce
; \"7___, ; ‘ - f,néut Subsequence
ave relonn -for‘ conlinvation
maex.
"Gek nexl Line"
=+
XTI has v‘e.fr‘esk relorn. mdex
character (v

M posilion.

@

|

S

colomn 1§~
(conlinvalion
fest)

Yes O

No

Set eos .flaa
99—
(cnd SsMLoL)

&)

A. Mark outpdd

Mark Rie | &
Fles. © > SAMm

%15 the next
Nnon- bl@v\k.
charaches dn

the statemenk,

3)k
mMumed

() dele cmmea

scanvwvo\a P“ (P=1 VY

|unde"erm¢ued =@

LARC &cie~TiFie ComPILER. thase T 1.30
Statement Fﬂouss'tb\S.
2
Mavri Filel
N lar &
Mark FRle 1 akc
Apped % . ~. A=
o & sAM ———v- . @ L:2
L‘,+l —— =
4 4
Mack Fle
ar d
5)
‘.' Lookv\ SAM
99 Jl =2y 6 characker
Able
in
¢ 4
Go & mdicated,
6:3:;.“0})';6“ B wngelermued Scél/\"w"\dj defermiued 3
Fg. Prograw\aud
k1
Look F ‘ZL b [o Cex 3
N QO (&% .
+ QoI i F “
@—*M Sd\aracfer ad “2‘ 1 Sam 'um2 ’2‘?\ Iho N
Lsl charackerlist
' li’v\ ’ N “u,\, v Baclc u all
o ovtpul ﬁles
Back up 14 Relia 1S 1
s X% Maun
Fue | B C E)é\ck'ulo Ppojraw\ (F'iwish
Fle | & B l shefewment nawme
ocess and
= de gkeck)‘A;’st'élde.
akeck 3can- &M'MX File
r\W\J PPosraW\ ‘ t?;
auna checle
uv\;de.'e,"- i 4
. mined. Actamelic |error ” Back u,:
63(3(-»\)’ all R[atement Scan Files® A-
OU‘LPJL —F-‘JCS
y
Co B mdxcd‘ed

LARC SBCIENT IFIC COMPILER

Phase T 1.1
ARITHMETIC STATEMENT ScCAWN, ARS 1
8 — line Prdvd' Sequence
St — s s : Error (s
s*Z:ﬂ:sw I;::'mau(L_Scm) faral ecror —! detected. i
Ser ardlimeélic -F‘-ag el =N LScAN
Sek wp vaiable item aéthmelicfonction 27
Tds for list and fhen SA —» S, S00! |42 2
ardhmetic scaus, o Sw =5
= reivunn
SW'—p SW .
28 AcsP
de%;::;fm ercor_| Afcthmelic Sean |) _[Machire
ASC AN “AscAan” Error #6
end °
)
1)acsz
ol T& Al ARs
ol+1i ERRoR.
ol+2 ~Nor
[reset accli MAL RETLRN
/Here. 6{4'0' SCA\»\RW\S
NOT ... NOV PoSITIVE 21
NOoT ... NOT Z‘ELO
NOT ... NOT NEGATIVE ——*@‘——-— S6—ofP 1D —» ofdD
PosimwvE
ZERo 2
NEZATIVE

—» O\ D
22
Outpot blp‘ll'cm e FRie g
with oPi1D S+ i—>S
The foliowin nuts the
Deoung P
Aks2 use af ‘9" in Pront af the
S+l— S ‘aeTe.
ok
cd TS ARS 2 Get € none
SEcAnN X
L) ~No l
Yes nextchars i

LARC SCIENMTIFIC ComPiLER Phase T 1.32
"egr VvV
ceTv 1
s
O— V, Y+I
R ()
O —a N
e Oy EE©
Set reset resv.f
O —» 18 resti;+]
resets ex'o ex Su«. —‘@—‘3——-_ —= oxpsin,
xbs, ent, fonch 1,084
70 A’d 60
! 'L sn): ek dee,
. < > 2(lo)—- ~
@] set u’f‘
1
Cek V\eLC 7.' ;"’_7/ = *3""" 5 K
character (€) 6 ' @
end
¢ {
- resat
@GOG
- £= <et
ol TB Al CETV ir(.o) — Nd
(x —v NOGE | P
oL+ end refurn o —» ex’nonevd' .
o0+ 2 normal refurn ol wt 1L‘®G_ET\12
with variable (v V ang V+I
Jremt
nomeric part of §—»
s
[d+1—a] m.
L =
‘eat
Atach £
K fraction E wag encoontered, |
n V+1

v

92

—(e)

~ c+l—c

LARC SCIENTIFLC ComPiLeRr. Phase T 1.33
"GET V" (2)

GCeTve2

Set fonchiow 1
2 Flag.
Reset -Fum)' owl
,FLas. o
Sebt ern,

LARC. SCIENTIFIc ComPiLeRr FPhase T 1.34

‘ceT VU (3)

GCeTNS .
Blank b last
char, o,FV
erASLv\s
Cermiral F
52 }
[Append LEV
|
= WO\ %
Left adjyust blank fal, —@
Reset alph.)
8TTach exlpou.euj:

Sign k exponenl.

v LV o Ne Oz edorend
V+1 v‘_ o

Ves

Normalize V
ARach engboue»\t

o;:f'Pur #3
ecoor (Femn

nowe

G)F—] 5ek next

a—>

o+

save relora
ndex

(h is Aunber
.pw P/‘CVKIOOS
o

LARC SCIENTI\FIC COMPILER

D

>

Normal
ehn"cd

Left adjust sequonce
nomber (.{’now\ od+1)
and pot inke SETM,
(Se bsc.ei
2ero)

vence lls

ot word blawke

mle VLTM+ 1

Fotwma 2""‘ and 3."*
word, of S.T. LSing
TD chavacker (d+ 2),
stalement name ({+3)
and class mark (ol+4)
and store i STTM42
and STT™+4. 44—
Alian character
rgertion (cHI) K

SAL Uem gencrator
" s' G‘\
i
o —>¢v '
Sekt u'.-; CHI — ~
‘Fm Fl\e\]‘o ttl—pt I
3 .

Ad+1) s an |

?l'\ase T

exit of

=T
s___..

—®

Colomn 19.

Aot ST word
wm STI.T.Mm

Gype —*
10,
/A+L is B8 n ol
Tpe euwlry.

L actjost
,Sclfat le L\»\}aot

chevracter
|~

Appeud ta pot
charackter & word.

YQ 8T word

£u?

tlanks oolg
12-17 of ST

minus B collf

Gek new ‘
l‘-wh)b word

Secure CHI
and ST word

1.35

Store | k]

,?or next
enlry.

Blamke fuL

S.1. Aud

outpot B
Fue 9. 3

LARC SCIENTIFIC CoOMPILER

ARITHMETIC <SCAn

An arLr}\Mch
explession S
exPecJeo\v-

O — Pc, Lo, So

o —e, P;_ R D
Soo—» EJ, 88,7
reset moult |, molt 2 arg,

ll(“___—. ‘DT
SW —» SEQ
O —» AsSoPc

N— W3

Phase T

1.36

AscAnN 1
ASCANG,
o7
et = resel molt |
54
Ena e 4 N\ 4
stafement
= AScANG
AScANg,

mode —» W2
L{ile constant 'dew — F4
ASofc. + | —» Asofc

” CALL ' ;
shatement ' Ascan 3

2
(H=1,2)— b)
O —> .P‘F,F,F) A numerie
0(:’ mode was last
echov\."ede.
= ' Is
of i -
lopart of Wiz S <SS 48 47— D
no. :©O of constanlt
‘L*'e‘m.
* ’
(SuLSeuH’ed ce,r,) =
DREF + | —»DREF 25 —TD
lo part —» Dick(Foi)
F attach S,33,TD — W2
bscepled red. oO— W3
(vasvbscr)a ef) ot ST s
3—-b 14 — D>
DREF — {444 Asofc + | — Ascfc
: Otwfd‘or'.

LARC SCIENTIFIC COMPILER

Phase T

ARITHMETIC ScAMN.

oL 1
ol+2
oL+rd
o+ 4

No"e 1
Note:

etli—r e
e v U — Le > .
aA-| —v» S e
% me O —» fo
Ou‘fpdf op o
ScaNi AS‘CANl

TR Al AsScAa~

ecror ,

=1 level)" tetorn

o level ",“ retorn

end return

Al tems outpot get squenee nomber Sw
w+2 eit prowbded Wf arith. i set and
Subscrpt 13 resel

o+3 exit Pf‘o‘\'\.ud'zd 3 ﬁ SU!)SCJ‘L"C s sel.

) [

e
30
- / o =3 -
3 ‘
31

P —

mult)
or

32 _
D — DT l

— N

1,37

AacAan 2.

Se —n

-l —ne

cesit |File g Wik SE

wilts /

sef

Asofe -1
—> ASofc

* —» OP

ASO‘W4 I

molt 2
setb

feset molt 2 J

LARC. SCIENTIFIC ComPiLER Phase T 1.38

AR\ TH METIC Sc¢A~ AsCcAN D

G O*——(22)
A3ca~ 1

The variable obltaued

is the furst of an Form name 'dea from S7,
argument of 2 cALL apremtmg #. Makedichonay
ens I‘:’ '&r name thos —-rofM«i

(8FH) . Cutpot tem for name
with DREF v mode wordl B
Fe 4. CGet next N characters
andl form SAL U (s) with
SFH as tag, Make laet char. 99°
end em(s) B F9.3

<F41 —» 3F Asofc+]l—sAsole

A4 18
Output Igpe 31 “call Ceok none 3’ @
Grﬁgme Vitem b g £

File 3.

(only one vafiable is
the arsu-uenx)
Azofc +41 — ASofe

!
TR (@ nsems
%0 seb nexd | AscAanl

output previousiy
£190r))= -l Sdve 3 ument th
D41 Kk Fde3
¥ AScfc 41 —» ASofc.
Output preveously saved]
argomenk widh 23 for E—e D
ordwmary Sv bscdpled vafiable
kRl 3. Asofc+d — Asofe !
i
? Or:e,ra’fbr,

Rk :§e¢ ~——D-@“

AseAnt

LARC SCIENTIFIC COMPILE R “Phase T

ARITHMETIC SCAN

fo.4)— R
PL+1 — P
D—e DT

38 + ET — ST

Oo"‘fw‘l’ "o

a&}:ress ;on .

p-t

@Asa\«s i

1.39

Ascang,

LARC SCIENTIFIC COoMPILER. Thase 1 1. 40
LIST SCAM M

L3cA~ 1

resek -F.w\d" 2, L39
O—s Pu
L —» L'

LSF

G

] et LSO | 4 T

Outpot Su!:scr‘a.'ab.d Arth meTic Scau
_ variable sequence SW F“Og’é\‘w B Scauw
D)— [We have & Y(j m|8ud SUbSequence ©2, = |Subscript B —| C)
= Oukjputs colow Lrem ﬁarevd'k{_sis level.
Wtk sUbsequence ©f rithmelic scou, LCSANS
Set s:.bscm:bt F‘] OQtPurk subscnld?,

@ o T8 Al LSCAN

28 oL+ 1 Taltal efror
o+2 End rélbiran
&Sd-' &)bsc"gbt “_"3 A :.‘h "en,'.w
ftea. Note: “The GETXI prograua
ob\'g'ms the next characfer
@,__Ml‘_d@az' of ol (igactuag Hlaks)
LscaNi)
2 €D
Qt}:o(: u«&ubscrk’al‘ed
vanable U’éu,
o3
W4t —» SW
LacAN

pPege 2

LARC SCIENTIFIC COMPILER (PhaseI 1.41
LIST ScAnN)

L3cANE

neset
arth. S

=73 -

Treat as new blﬁ leola,
PL+ — PL

L4+l —> I_()
i P+1 —» P (PLATOD —~@

St | —> SW LscAand
>eraa 2(L): [sw]]P]

5 3 4

734’2

Outpul shecial expression
moj; J‘Cut wdh v !:wd,
Seguence SwW ! and sub-
saqume, o,

@keuge ounly seq. = swi!

and “ID = 39)

=@
List LecAN 1

FATAL ERROR neg. level Zero level Comma | = ‘
debecrect i rt. parenth. (Shodd act be here) error
aritthmelic scan Machiune ernor #1
s4
VeV, VITMm

LSCAN LScAN ‘
page 1 @ page 1 @ (Chauge) 4 L;;Z‘g

LARC SCIENTIFIC COMPILER Pka%l 1.42

LIST 3¢AN

Lscawn 3

(ARITHMETIC FUNCTION)
SA —» ptrink sequence

SA +1 — SW!

set fonchon 2 flag.
SAVE. Ardhmelice .f‘.;\«\e)'low
de.F«‘Mu:{ou nawme .

O — <

18
44 nomenic
domnay arg,
7
%t C+1—s i
peset [Ovbpul dom
vanZ:L\c ihm“«:’z ‘f
vence SIW ud
3UbsCquence L
MSSH 15
c3 \ T 7
ac‘gumewlt \27

12
OutPut pe 23 Uen. ﬁ;rV =3
Fue 3 wouth Sw, $8z0 and i

i 3 word.

Okt S':.ex'ofess.uok mode ew.
for V(20) it dsw' & Fule 3

13

@ s Cet :‘gj

o(+3

assome Lt
was “ - “w

Last V wag name’

;.V\du e‘hbn

variahble . ﬁeadj
s start D loop
ourput

LARC SCIENTIFIC COMPILER Phase T 1.43

LIST 2ScAN
l.ScAn 4,

widh

| —»

DPTAS and SS |
G+ — B

Oatru'f 20 ck
Wit sut.a.* o

Sw+2 —° JW

19 Weun
L

&
. = S r =V
clo <°/ 1le) =~
+
<ot _
reset
Output variable Type
.L+O/M with = ence
fom DETAB auaL
8s = j+I 2 |
Output condaut
%Fe e wath
sequance
DS TAG B~
as 3§ +1

B a—)

37

L-1—sL
P(+) —=P(L)
-t — PL

| e e

Substitute | ’
—ﬁr increnment ‘
L8cang L8caNg

'
o

Enfer after lefters "cor" encoontered

A
oL+ 1
A+ 2

LARC ScIlENTIFIc ComPiLER. Phase.I

G TF Scan

OubPot K Fq

Wi: 81 o g9
W2: 61037 (9)
W3

21

7
Outpule pe 16
e —Foc-tjv to

file 3

T

Garden var:
Cg T

oy

S[ek next

S

(ascan) (1)

Enlee here afrer
oblfatniwe Hie

charactes GoT

D@
@ ?

‘\/es

7

Sel- ALPH
<k goar

nowe

T& Al GScan~

reforn f not a CgTd
" LF a GO TE

Wika a},’ot‘opﬂare CETd

Tewms ootpo\" and D the

delimrern

Note: s Pnojram ouhours all

Note *

Toums SHe seguewce SW
&3AR ek uhow ek L\ Has
gtalement Al Miﬁhl‘ be

arithmelic .

Ootf:wt 'l‘t’pe. 7
ifem for 7, s8=1
ke 3

GScA~N2,

1.44

ascand

GC3can

LARC SCI\ENTIFIc. ComPILER ?l«\ase,l'

Oul’:put Pe 13
item fortr ss=i
Iz File 3

L+l —s L

nowe

GF T# scam (GScAd) (2)

Outpot Gpe 16
\\'emr%r%‘ S99 = L
B Fle 3

L+l — L

quout inc, 14 Lreun
-?Ol\v‘ S = Il k‘;LH& L ré
File 3.

Outt;ot E F4q

Wl S o 49

we: 6(r+1)as(s)
W3

cscand

1.45

LARC SCIENTIFIC CoMPILER ’Pkase, T

Subrovline GETSY

Subrovline

Use:

ok
oL+
oL+ 2

X
L+ 1

oK+ 2

T Al GETI]V
23S

retorn with Signed
number n V| V+1

NFuUNCT
TR Al NFuUNCT
here (§ Vends w
F aud D=(
here \.F nof

none

—_—

reset plos

nowne

1.46

LARC SCIENTIFIC COMPILER Phage T 1.47
ARITHMETIC. STATEMENT ScAn

ARS 2.

ENinaru‘nmercc
ression . May nioT
he the E~D o{’ a

\ 1 s s a
Compound acdh-

-Fmatéwa resel ’SN“-—bs _,._f‘eselt melic and IF
_ statement and

& Seb not at the end
se of statement
320 1 | End of Y
SA+3 — SA statement 'ngszt IF |
Fonished N
AI"C“«M.eTic, >
-Punc:hon + —» not -ﬁeg
2— L
When eos 18 feset
I s i Lsc i N and st end of
.I..F EQ ' is reset then I8 e nejbebéf‘. - expresgion we muS
analtgzu\s H ARS 1 LF ? have IF stafement
(expression) /IF PosiTive >0 Yes
IF NEGATIVE <O 31
set IF resef

IF 2ZERO =o

IF NOT PoSITIWWE %o
IF NOT NECATIVE 2o
Tanore

rest of
gtatement’

IF NoT 2ERO + o

ARS: 2

Yes @L‘
T? Jornone I ARS4

LARC. SCIENTIFIic COMPILER. Phaga]'_ 1.48
CONT.TM.

save reltrn undex
S 85 45— NV1ITm

O 1 20 0 vt O = VITM+| (Mode
V—VITm+2 o
Oukpot 3 word Ueun B File 4,
l?arresl«\ relonn vadex

L T8 Al CoNTITMm
oL+1 Sequemce (hi Sdik)

ok +2 S)ubsufuew\ce, (nch‘ Sd't."i)
oA+ 3 relinin

LARC SClenNTI\FIC COMPILER. PkasaI 1.49

READPAPERTAPE (n, list
WRITEPAPERTAPE L n, IisC
) TPEWRITE L n, list

ReadiNPUTTAPE (v, list
READOUTPUTIAPE L N, ust

nexl charg)
vrraee ?

[34_—‘_&:3 32 = 0PI D>

26—+ U3LD
27— STD
c 28 —» LSID
29 — S1IDd |
Ootpole type 49
operatoer ' Fena it
q:é)d = 2'£2¢ zof1d
Un nnode wotd .
" 14
GeT v e B
02 _
3 c.: - next chacy "‘_°_,5V
ERTAPE.
Enker comntTMM .
) gek . |avbrovtiue B Yes l
ouqbut pe 435
resek rew I ile 4
- 27— ©FPID>
Oot,oul: E Faed:
WiV
w2 : S) ig
W3, —)

READINPOTTAPE

LARC SCIENTIFic compiLer. FPhase T

L,n, lst

WRITEOUTPUTTAPE L W, Lst

Output Formal
I‘e-fere,nce ewn

(Is) B File 3

l'st scan

end

S

Errot
e

READPAPERTAPE t:) wn, list
WRITEPAPERTAPE L,k GsL
(2) TYPEWRITE L,n, list

(3

22— L
SW+ | —<S

ol+i

nexk charg

28 ~—» oP1d

¢
e

1.50

LARC SCIENTIFIc. comPiLER Thase T

READ DRum

¢, j, st

wRiTE drom g GsC

ReEADd LARE. DROM
WRITE. LARC DRuM

READ TAPE

26 —--'us\:g
2?—-—93!:\)

!

quout O‘:ﬂ'é"‘or
Uenm & Fle ¢

L, hst

WRITE TAPE L, L'st

v, g, st
Oy (M)

SN+ — SN]

.

Out,oub E Rle 3
Wi V ‘
w2: S, ¢, 14
W3 —

Lsc _AM

< [end

k2)

s

1.51

22—

SW+| —= S

LARC SCIENTIFAIC CoMmPILER Thase T 1.52

25 —v of'D
9 —» L

e

28 —» USID
29 —= s1D

&

READ DRuM o« j, Ust

WRITE. DRom L j, usC

READ LARe DRom ¢ Lst ()
WRITE LARe DRom L j, Lst

READ TAPE ¢, Lst

WRITE TAPE L st

LARC SCIENTIFIC cOMPILER

Phase. T 1.53

REWI~ND L

REWIND INTERLOCK. L
BACWKSPACE L

ED FILE. L

14
' 51— OP1D

~No
i
GETVS P none
encon normal
|
\N! Fbbbbb }—
i #
So—» 0P)
® [Ef
@k next V

T

.

-
—

| reset nextv
0

Ou“'ro‘\' OF: dem b F4

none

ek

CONITM

2
~N
lwesd’

Outpot k F53:
WitV

§2 —>ofi1d

w2 s ¢ 14
w3t —

3

2 —L

1 [Sw41—S

LAREe SCIENTI\FIc comPiLER. [Fhase T 1.54

DEFNE LARC DROM L j, kL
fosiTion HEAD L]
ADVANCE. HEAD L
BACK HEAD L

J

20 —~ oPIDl

No
next chan J— =\ 4
D?
Ves

2l — oPT>

LARC SCIENTIFIC COMPILER Phase_I 1.55

READ (¢) N, lLst
PRINT n, list
PoNcH N, ust K

N
c ' Rpum | resell ndan

2 \ o ‘

33— ofD = fatal ercor
26— LD <:> l hScAN l @
27 — SID end
2—er
Out'out ob. fem b File 4 W+ —>» S
with ¢=6,d =1
eee = o> \— L
3¢k rdar \
d+t
3 K
[2ek alph |

1
CcqET }—-M“.

A Yes
Out'aut s Rl 3 : |
WtV 2—RbLim 2—+RDuLiMm
w2 S 1 IS 35 —> oP D 29 — of 1D
W3 —
Sw+1—= SW

28 — LSID
29 — SID

LARC ScledTIFIc. CoMPILER PkaSeI 1.56
AsSs\a~ N (9) To ™

ASsieN

| <er atpl |

(e~ o=

N — first word
of File 2 tema

V

@@
w9 F

"To

- YCS
9 A 29— L
Seb alph W+t — S
» - ‘ | —> L
T e () ,
ol+1
V —= word SO‘F
File 2 iFen
(s 12)—~woed 3 Diend I @
Send 3 wonrd
Uewm kb File 2
On.‘t uCtS F42 "
Wi+ 8w 0 49 2—
W 62030 (5) K
W3 —

LARC SCIENTIFIC cOMPILER Phesel 1.57

PQRQME.TEQ A=|)6‘-‘2,:..«.
PARAME

[[=]
(-
GeT XT ‘_"o"
Go=—=(e)

XT —» p!‘.‘Mt Sequence

ST+ | —= SW

Oui’Ful' = FRle 3:

WL V'
W2! Sw o ot
w3 Vv

SW+ | —» ST | = * .
9—0Colsl"l‘|> @ @ D'D

o+ L

LARC SCIENTIEIC ComPiLER Thase L

; 1.58
DIMENSIon A(él—)N)) 8 (M),q)‘.. (") 5
Dxme~s 4
W'Yes
D — Pf‘ivsl: fequence
<D+ ~—o SW
@c)«a& ~o
o~ ?
Yes
@
8
GETY [P @
Ouf'ou\' E F3:
WitY
w2 8w j 03
W3 —

™M 2
DIMENS DIVENS

LARC SCIENT IFI1C COMPILER Phas’e,.'[1.59
Dimensien A(4,N)) &(m,N).. . (2)

DIMENS D

nowe

4

Oo\'pui’ E F3:

Wit: W
W2! Sw O o2
DimeEas A w3: —

2— L

SW+H1 —o 3D

S —= CcONITD

LARC SCIENT|Fic COMPILER ?hase_T_ 1.60
gquivaLEdce (A8 (5,N,m)c) (PE)... () :

EQuina L
® ®

L .

2:—-’ L
SW+1 —o SE
Q ~—» CoNTID

2 —= SwW

PrwL Sequence

Bes

¢

Start of 8w
Equelcv\ce. class

| —» L

SW+ 1 —» SW

EQuwA 2,

LARC SCIENTIFIC COMPILER Phase T 1.61
EQuivALE~ceE (A B (5, N,M)C)) (p,e) .. (2)

Eauwa 2.

Oul:PutS Fue 3
WiV .

W2: S v og
W31 —

LAl —e U @

26
Oufpol‘oousl’auf
octh SS= L
Ouf'oul' £ F3:
Wi Y . .
EQuiNA 2 , EQuwA1 ug; S:j L o% 19 : | :
! : L=

¢
o W Cer %

@ EquivAl

EaouwA 1 Eg@uivAl 'S»:)

EauvivAl

EQuiNA 2

LARE SCIENTIFie. COMPILER Thase T
Comme~ A B, C

1.62
CHMmmoON

SE ~—a P«*Lwt Sequemee
SE 41 —» SW

l—], ©— W3

5
owne
GETV ———b—
=
V :Fbbbdb
']

resel ;

oo*‘.:ut E Rie3:

3

Wi VY .
w2 SWw j o5
W3 —

J-—f-l——bj

| — L

2—» L
SW+1 —»SE

O —» CONMTID

oL+C

LARC SCIENTIFIC CoMPiL ER Phase T 1.63

INTEGER A A C INTEGE. 1
FLOATING

DouvRLE PREcISION

INEGER FoONCTION

FLOATING FuNCTION

DoOvBLE PRECISION FUNCTION

10
1(10) —= mode word ' v
2 —>i
Sw —> 8T
O —> ConTID
oL
ST —» P“Lnt Sequence
ST+1—> SW
&—>ID
2 |
mode word +4 (9)|
_ | —» mode 0o
v—>ID
ek NTeF PouBLE
13 '
reset NTGE
IS TNTECE 2
GETVYSP ————-y\emo“ : ;

LARC SCIENTIFIC COMPILER Phase [
INTEGER A, B c 1.64
FLOATI NG
DoubLE FPRECISIoN (2)
TNTEGER FoONCT I ON
FLOAT NG FOoNCTION
DoUBLE PRECISION ForcTiON

I~NTEGE 2

Yes

Z(m) —» Mmcde word

O\.)tloot B Fle 3!
Wi Y

TNTEGE 1
we: swW o 1D
W: mode

SO+ —» SW

Append F BV
Wl YF

W2: sw © Id
W3 ! mode

LARC. SCIENTIFIC COMPILER Phase T

-

Sﬂt‘._':) W2 2wz

»C{»J fde 3 dem.

(l-—u)

SALEXTITS A, 6, <

ol+L

Ou‘f‘»‘i'tsF'Cks.‘

Wit Nj

w2: so j 35

w3 DS L P
JH1—]

Sw+l—eS ©
2 —t

1.65

nowne
PR, =

LARC SCIeNT\Fie COMPILER ?hase,l'

SENIELI\CGHT

Outpot & Fe 4!
Wi Sw © 49
W2 Gl ©29(5)
W3, —

et

teset
s

Odpot b Filed:
Wi Vo

CoNTTM

W2 SW | o3
W33, —

S—» L
SAUI+t —> S

[

1,66

LORC SCIENTIFIC COMPILER

?Dha&aji

CBTH n

cdTe o, (n,, ng, .

-)

G TG n ('\n Wa,)

not G b @

31

QW+ | —= S
2—i

Rl

)

n

s Statement
ends 4 DF
. rawge

!

N

1.67

LARC. SCIENTIFic coMPiLeR DPhase 1

: : : 1.68
DB gy T2ty valyes) O Da i
] 2 —=coont
Enfer here afrer st dlof "
@ the lefters D et doar

|__8re mek =V, Vo, V3

O —pCounl ~—

resek dof
A
S

> nesel
coonk b doar

LARC S\ ENTIFiccomPILER Phasz,]: 1.69
Dé A(g) T =ty balyis)® b 2

®

oy

QW6
4 Nowne 2
GETV l——l: FL—_bi 4q

16 N —- V,
resek @ Coonk +c—» cooul
ek r
. , > nesel ' Nesel
Coonl’ll)———t 4oar dn,F
DF 4.

LARC SCIENTIFiC COMPILER. Phase T 1.70
DA o (9) T =ty, by (stz) ()

@ Do 3

\2!/ -

I—G:-‘*v [%fev————.bdq

2%
el
= resel
|
el
oar - 3| \&!/
it X}
/ More Lchlﬁ
V'j—.z:cés(:ﬁ\ = ‘S\‘OJ’M i\S
IFzeey griftwelic il
= IF -Follomer.

Drend) = >é4 @ Deq

LARC. SCIENTIF I CcoOMmPILER. (Pkase.i 1.71
D x (o) T~ 1y, Lty (sia) @) ,

DB 4,

Here _F l‘eaLLj a g, I_E" @ @
this starement termunales
a]);é,\oo}bdptas;s’ sek 4 | —= L
Maiin progrdus, whach s :
aw ervor.

SW+ 22— g

Loo <ek)

resel. AL

23 !
S+ —e8w

P+t —=P (PLaTd)
L+l — L

N— DISTABL,
S.L,P —=DPFTAB DS
qu:ot Kk File 3¢

Wi V¢

we.: sSw | 19

W3, DS L P
| —=

25
Q)f“aul’ 5 Fq .
Wi: S j+1 45

W2 mode
W3 N}

Ouf‘Fu" s File 3¢

Wit Vj g

w2: S J'+l 46 -

wW3: DS L P

=i 9y

LARC. SCIENTIFic COMPILER PkaszI 1.72
TF STATEMENT ANALYSIS

IF A
No
IF2
Yes
)
| Mark Fa;e 1 ar E4J
1 rScaw Starement
as Poss;b\c —o-@
Compound “TF"
next chars,
"T-'TCH" ?
= lootket " TF ss®
oberator Uzu B
e 4. Seq =3
{ IS = O
_@:F2
42
Outkul: "TLe s ‘ 36 nowe 22
o |operator Uen = ey 2 __
File ¢, = SW IF2
S+
Qolput counstaunls

(gpe Ueuw B Fq.
gec;,uwce_ =S
S

S =

Ou(:\oob varable
name ttewm & F 3,
Sequence = 3 _®IF‘2

s =]

LARC. SCIENTIFIC ComPILER, Thase T

TF STATEMENT ANALYSIS

| 2 — Sub‘&eqmcd

s

33— Subse_queucg_'

(U]} jkb be
‘ 3&)‘3 &_f\,

&
(e, &

\Oo": 3el

-t—————- ASc Al

(Here for

"Ofd-l:wa.nd\ TF

Beck u’u Fe 1

b =

1.73

IF2

l)

©,rs

22 —
ewd. v iy

2

Thig state mewnts
Fermam ates the
\"a"\gc o_f Aa DdP

BT

—
SWHl—9g

\
\\5/

|\ —» L

LARC BCIENTIFIC comPiLER Phase L L e

TF SFATEMENT ANALYSLES,

reset m

--—--—>‘ reset I———v-—-»-l CETYXL
A g IF3

At least 4 |€5s1

IF clause was
‘ Mes,%'.
Selb
rexkchars, \No
GATIVE ?
IF3
Ves [i
| |-I=zFap © — TFID |
e S :
, 6y, @)
g Yes neg,t2¢;\arg‘v Ne
IS¢ 56— IFID <el
e 45 ¥ _ —» TFID n
Badk-up Fuel B F reset
OutpaT: s7
Fq Wiy SW O IFID +40
vy:[lz': 63054(5) F2 —p TFID
F
+ - output:
1— suhseguence ©) @ TF2 Fq4 . Wit SW © 49
w2! 610(zD)(S)

sus 2

Sug 2

Suva 2

(R 4
IF2

at

w3 !
SW+l —» SW

33— s«obsaquemccl

LARC SCIENTIFIC oM PILER Phege T 1.75
TF STATEMENT ANALYSTS

IF4
co:»\bow\d F |
Le.an
Rack -
.i.
feet L,m. outpy s
Cenerale "Jo£" name ,Fm Sw
SW+| —»SW
Geuerafe “am" name —-Foom sSw
t TFa
[utpst Aajacent register dem
i
resel nN.
- sua 2 ‘
set alph
Outpot:
- none _ |F4 1w S 58 36
GET V > e 3(9)
w3: o
cio —
+
outpoT:
F Wit V
w2 Sw Ss 16 ——
w3 DS L P 1
Su8 1l Ketorn.

Su8 {4 |/

#
|
o)
®
6 | %
H _ ¥
]
Q—%_ @
7
>

LARC SCIENTIFIC ComPiLER. Phase T 1.76

IF STATEMENT ANALNSIS
IF 5

. - 'mtckap A \‘es o — -—
4:E QUA LTo §’/ @ Lo
Ed l&'\lo
Suk 1

= - chars \’CS
@G Qé’im?zw | —*—~ -1—ID

(] Y
s¢t L
SW+1 —» SW

+
[

4 ' r2
> AScAN |end @Q TFe

V ' B TFS

Odfpo‘l‘ o ——
exbnesscom.

LARC. QCIENTIFIC COMPILER

Chase T

TF STATEMEMNT ANALYSHS

LARC SCIENTIFIC CoMPILER. Phase L 1.78

ILF STATEMENT ANALYSIS 3_;:7

"AND"
Outpot: fesek m
F3: Wi JoE Outputs
W2 S 1 16 F3: Wi, SAm
wd DS L P w2: Sw | 16
- w3 DS & P
sSek m,
SW+1 —» SW
e @
F2: Wi SAM IF?
" reset W2: SW o %
w3: Ds « P
set Cenesdle ne.s SAm
from SW.
\
25 "GO.TU
SWHl —> SW 'Oo‘f,aq'h.
. F3: WIi: SAm
W2, SW 1 16
WwW3: D3 L P
SW4+ | —» SW
F2: WIi. JoE
Yes wg! SwW o 8
w3: dS ¢ P
S+) —» SW

Gyt
¥6
cscaw s'.’_"_'_..

\Ie S

\

SN+ —e SW

- OJ"PJ".’
IFq F2: Wi 34Am
' W2: SW o of

WwW3: Ds « P

|
:1:=2

COoNSTANT A = a4, Rp= 2s ... ARp=ag

8¢ — Pn&x Sequences

SC+ | —= Sc.

Qutpolc!
F3: Wit X
WZ. 8¢ o 3%
W3: Y lo order.
F4a. Wl:Se 1 4S5
W2 mode
w3 V h order
8C+ | —= SC

1.79

LARC SCIENTIFIC COMPILER. Thase I 1.80
AL V\(M|)M2)t». . MK>

) ,
\2 A
<
e DO
>
g
)
R2
_— (=)
C —» @ Save W4 | —» Q
O\)l:r:\)bt; =3
WiV N
W2' SW | 3o -
W3 Ds w P '3 ‘

l Reselz caLL
@ sk . Resels sobseript ' .

vesel

?7

1
Outpob i F4:
Wl: 8w o 49
W2 620066 (5)
w3, —

Sel CALL .
Sek Subseript

LARC SCIENTIFIC COMPILER hase T 1.81
FuNeTio~ Nome (a,, A2, ¢)) '
SUBROUTINE name (a1, 3, +++)

FoncT 4

_ |
1
34 —» FRMMID nexl charg
42 —e FNAGID TNE ?
Yes
1
Y
32 —» FNNMAD
| —» R
(’/l«ans¢ CONTINOE. 93 — FrAG>
vk q
QR — Pp.jnl: Sequeucd

l @FuNCT 1
F*
@ 33 82) e 2

l l —» cRguUAP '

=11
none
FomeT 2

FoNCT 2

LARC SClEmTiFic ComPIitER Phae L

FumeTion name (a1, 82, .-+) (2)

3uBRoVTINE name (Qy, ap, « .-

)

\o

Out":ob E F 3
WiV
W2: 38 R ARGD

W3, —

S\

s

=*

OubFaL—, k Fig:
Wi 3o8NAaM
WwW2'!: S8 o FNNMID

W3 k

FuncT 2

'k+l~’k_

[=x

FunNeT @

A+l

s

1.82

FuNCT 2

LARC SCIENTIFic comPiceER. Thase [1.83
IF ACcoMULLATOR OVERFLOW W, no,

IF QUOTIENT OVERFLOW V\,) no
’ IF DINIDE CHEQC W wo
O

nexk haes)
ULATOROVER-

\
cetr v | Nnone . @

OvbPutE 3!
Wi NV

W2: SWw | 16
w3: DS L P
ootput k Fq,
Wi SwWw o 49
w2 61037 (5)
W3 —

(

SW + | —» S

2—->§.

oA+1L

| cerxz J
nowe

|

V

LARC SCIENTIFiIC ComPIER Pkas'c.'_l'_

Oulcput E ¥4

Wi
w2
W3

SW © 49
coolq (5)

SW+1 —» S

)

RETLRN
FREQUENCY
CONTINUVE

==
Na @

%

&

Digcard
starewrent

&

1.84

LARC SCIENTICIC COMPILER- phasz’_[1.85
FormaT (=== =) ()

FORM 4,

next chan, \ No
?

Yes

\o

SF —e POM" Sequence.
IFH+1 — SFJSLO
— L
O —
reset a, b, e h
R[ek conkinve ITd B 1o
SNAME —> SALNAM

SF—» JALSE Q@ .
Srart Sal ewa S@uerahow
30—k

Fokm 2

L—o L

LARC. SCIEMTIFIe ComPicel Phase T 1.86

FoRk maT (-~--) corm 8

@
A A te

@———‘h ﬂ;a}i\ft u"s% ——(k Qi Fngh odt sAL Uead
R-1—k SF+(— SF

£
@ sat ®
resel
%f&\ft new SALem
et woith name = blanks
" f 3o-—+k
poad - LE | GETXI

GO =T~ O

resel

- F

FoR™M 2

40 l4

! reset a l

A

Form 2

LARC SCIENTIFIC. ComPILER Phasge. T 1.87

FormaT (—---) FoRM B

{'esp,b C

resu:, a

<el
56 \57
resekt o]_ reset a
Lio

e form 2

24

resat &

Appendl n
J

Oy

LARC. SCIEMTIFIe ComPicel Phase T 1.86

FoemaT (----) Form 2

€

N~

@_~ AP‘: : ,_‘_i d‘i}f (R 9 = [F-mishpou't SAL Ci'em
R=1—k Sr--@-l»-—-»Sl'

’ ¥
(cos (i)

resel

%fart new SALUem
- woith name = blanks

" 30>k
reset ek nove [o orwT
blank J ‘
reset é
13 gekL N " @ =+
4 O C——an _1—-> L P
sesel 4=
FoR™M 2 ==

———— r'esd:a O—>

L+i—r L

Form 2

LARC. SCIENTIFIC COMPILER M 1.88
SToP =~
Pause wn

(g e—(®)
Yes

{0
| 16 — oPTD |

2 \

Oot‘odbtg Fq:

Wi Sk © 49
W2: GooxTd (5)
w3, V

o J—

IW4+| —= §

o+t

16

[TiF\C

P

LLER Phase T

EnND (Ll, “'2) ;'31('4);'5)

END

22222 — Ly, la,i3,i4,ts
Resat emdere,

GET XT Lnowne.

& O*—(e1)
1o

J+tli—y 1

GET V AQOWE. G

2/

Li,t2, L3, tg, ts—>

M dgils of crRE~D

Gnderw
resel

EV\«tu Ma{.,w Pf‘ost‘%
at the gsmbo\r

PHSEMD

18 1

GET XT ‘EI'

Nowe.

1.89

2.0

PHASE II
GENERAL DESCRIPTION
The functions of Phase II are:
1. To append information associated with a stétement name, Ni’ (continue

item) to items generated from ASSIGN Ni toMand GOTOM, (... . Ni e o)

items,

2. To detect, error-- mark and eliminate multiple uses of an alphanumeric

word as the name of statements within an LSC source program,

3. To issue "collector" items for each built-in (open) and library (closed)

subroutines, and

4, To attach pseudo-sequence numbers for most items written in File 3

by Phase I,

All items output by Phase II will be written in File 3, except error items which go

to File 92.

A group of items to be analyzed in concert by Phase II consists of all items with the
same name; there should be one continue item in each group, When all groups in
File 2 have been processed, the function collector items are filed, library subroutine

names are given dictionary references, and return is made to the control program.
STATEMENT NAME (CONTINUE) ITEMS
A gfoup which contains more than one continue item will generate only one continue

item for File 3 and one error item for each of the other continue items. The continue

item sent to File 3 will be:

2.1

a, The first item generated from a named executable statement (ID = 08), or

b. If none of these, the first item generated from either a named non-

executable statement (ID = 09), or from a named SAL instruction (ID = 11), or
C. The first item generated from a FORMAT statement (ID = 10).

The sequence number of (08, 09, and 11) items in File 3 will be (CRS-4); the sequence
number of (10) items will be (CRS-3). The original sequence number of these items

has become the subsequence. (CRS) is the initial value sequence counter used for

executable statements.
ASSIGN STATEMENTS

Each assign item (ID = 12) in File 2 generates three items in File 3 and an error item

if a continue item is not within the group. The first of the items in File 3 is merely

the assign item carried forward. Two assigned items (ID=13) are generated for each
assign item. The first item has sequence (CRS-2) and sub-sequence equal to the
sequence of the continue item which was assigned; the second item has the same sequence
as in the (12) item. Each of these (13) items will be in an assigned variable group in
Phase III and will contain in the third word the DO sequence, level, and plateau numbers

of the appropriate continue item,

ASSIGNED GO TO STATEMENTS

Executable statement names which appear in "assigned go to' lists and in assign state-
ments generate items (ID=18) which appear in assigned variable groups in Phase IIL
These items contain the DO sequence, level and plateau numbers of the appropriate

continue item in word 3. An error item is generated if the listed assignment does not

have a corresponding assign statement or continue item.,

LIBRARY AND BUILT-IN FUNCTIONS

One Item (ID=44) is sent to File 3 for each possible built-in and library function which

2.2

may have been referenced in an LSC source program. The sequence number for these
items is (CRS-1); the third word contains an embryonic mode word for use by later
phases. This mode word contains the (a, b, c) digits and for built-in functions an

assigned operator for Phase VII in the (ffff) digits.

PHASE II ITEM FORMATS

From Phase I To Phase III

1.

CONTINUE - executable statement

W1 NAME W1 NAME
W2 S.O.08 W2 (CRS-4). S. 08
W3 DS,L,P W3 DS,L,P

ID = 09,10, 11 are similar

ASSIGN NAME = TO M

w1 NAME w1 NAME
w2 S.1.12 w2 S.1. 12
W3 M w3 M

W1 M

w2 (CRS-2) . S_. 13
Sc = sequence of continue item w3 DS,L, P
DS, L, P are from the continue
item for NAME w1 M

w2 A, Sc . 13

W3 DS,L,P

GOTOM, (.. N...)
Wi N Wi M

W2 S. j+l. 18 W2 S.S .18
w3 M W3 DS,L,P

N
(V)

BUILT-IN FUNCTION ITEMS (to File 3)

w1

ABS
DIM
FLOAT
INT
MAXO
MAX1
MINO
MIN1
MOD
SIGN
XABS

XFIX
XINT
XMAXO
XMAX1
XMINO
XMIN1
XMOD
XSIGN
MAX
MIN
XMAX
XMIN

w2

(CRS-1) 0000144
0000244
0000344
0000444
0000544
0000644
0000744
0000844
0000944
0001044
0001144
0001244
0001344
0001444
0001544
0001644
0001744
0001844
0001944
0002044
0002144
0002244

Y 0002344
(CRS-1) 0022444

w3

707000000012
707000000085
707000000009

707000000010

707000000086
707000000086
707000000087
707000000087
707000000083
707000000084
707000000011
707000000095

707000000010 -

707000000010
707000000096
707000000096
707000000097
707000000097
707000000093
707000000094
707000000086
707000000087
707000000096

707000000097

ro

LIBRARY FUNCTION ITEMS (to File 3)

w1

ACOS
ASIN
... .ATAN
CBRT
COS
COSH
coT
CsC
EXP
LOG
LOG10
SEC
SIN
SINH
SQRT
TAN
TANH

(CRS-1)

w2

4

1

0000044

(CRS-1) 0000044

w3

82400000FFFF

y

82400000FFFF

2.5

g
d

LARC SCIENTIFIC. COMPILER 2.6

2NEXTI

SoRT F& o~

none

2 8AD
13 —=ID|

2 8EGI
Oken F2 for reading.
Open F3,F92 Jfor wrding.

2crseT _—W

(crs—4) —= 2 conT

(cRZ-3) —= 24 MATS
(cgs_,g) — 2 ASIGN
(crS=1) —> 2 woRrd

!
‘ @Ct f\w: 300._9# none.
(all ttems with same name)

!

1. Save udex word,

v 00090

O —> 2DS5LP

2NEXT)

LARC SCIENTIFIC. COMPILER

Non - EXECUTAGLE

Phase TT 9.7

SAL_mEm

CoNTINUE,

NAME

= 2NEXT |

word 3 —» 2 dsLP

imdex —s T of
s —= 3 coub

word 3 —= 2 psLf
wolex —» I oﬁc_

FORMAT

<et ocosS

wndex —» IQ.F F

ool

o002

:Mulﬁb‘e executable ghatements

with same name.

Execulable dud nown-

) oos
executable statement have \/

Same name.

i L

Moltible nown- executable
shatements and/or SAL itewms
have Same A3me.

Moltiple Former sharements
have Same name.

LARC. SCIENTIFIC COMPILER “Phase 1l

2.8
2Pass2
Cowfu«uc ‘Jem
NAME [
2couT S. TD{ F3 | Geb next [nove
DS, L, P rewa
oF
- ,09, 10, > 12 OXTT

"3

Formatb itewm

NAME,
|29 mRT, S. 1o { F3 |——=
S, L, P

Output dummy
Conlinuve. ilena
e F3

Eeneocd

[resel wudex Sfrss?

woral

Grovh conbained
CMLB conkinve em(s)

- , ~No asslgn : No conlinve J’em
C03 t
statementl «for‘ v r ass or ass
Ligked. assignment ' go k “ewcu.t

LARC SCIENTIFIC. COMPILER Phase. 11 2.9

AssieN N To m @ CoTgd m (0, N oos)

s ‘; S (comt). 1® ;cs
. . F . (< D
fr\ ! 12§ ® (DS, L,P)e
M
2AsieN. Slcont) 13 gpg
(ds,L,P e

]

™M
s. 2. 13 g F3
(bst L)P)C«

(D

Bult -in Fonchion.

NAME
(crs-1). L. 44 g F3

mode word

2 L18RF

Library Fometion,

Neame
(cr3-1), o©. 49 F3
mode wotral

(D

. Close F3,F92

2. Sek -?irs\‘ wshe, B
go @3

(D

PHASE II1

GENERAL DESCRIPTION

The function of Phase III is to analyze the use of all names in an LSC source program,
This analysis involves the generation of mode words for fuﬁctions and variables, the
association of statement names with references to statements, and the detailed cross
checking of the use of names. The important function of error detection in the

compiler is also accomplished in Phase III through this process of cross referencing,.

Before Phase Il begins operation, File 3, which has been generated by Phases I and II,
is sorted on the name of the item and the assigned sequence number, This sort makes
it possible to avoid forming and searching tables to obtain information about a name.

File 3 items have three words of the following form:

Word 1: Name (6 alphanumeric characters)

Word 2: Digits 1-10: assigned sequence number
Digits 11-12: item type identification (ID)

Word 3: Special mforma,tion

Phase !II begins its operation by requesting a group from the general file maintenance
rouvtine (FILE), A group of items in Phasé II contains all items with the same name
arranged on monotonically increasing order according to sequence numbers assigned by
Phase I and Phase 11, This ordering brings defining items to the top of a group enabling
Phase IJI to complete mode definition by skimming off the top of a group raf'her than re-
quiring a scan of the complete group, necessary if defining items had been homogenized

with reference items,

The first scan analyzes items for determination of mode word information. Items
are examined until the storage assignment, arithmetic type, and class of a group have
been determined. These characteristics are translated into a, b, and c digits of the

mode word; this word is completed; and the second scan, which produces items for File 4

3.1
is initiated, After all name-groups have been processed by Phase III, return is made

to the control program.,

DEFINITION HIERARCHY

The LSC set of sequence counters described in Phase I and Phase II is used to
arbitrate errors arising from multiple definition of LSC names. Phase III will class-
ify a group as belonging in one of the 16 possible categories as dictated by the first
item in a group with ID digits listed below. Subsequent definitions and improper

references will be considered offenses against the first definition,

SEQ. GROUP CLASSIFICATION ID DIGITS

SB FUNCTION 34

SB SUBROUTINE 32

ST PARAMETER 01

SD DIMENSIONED VARIABLE 02

SC CONSTANT 38

SA ARITHMETIC FUNCTION 23

SA DUMMY ARGUMENT OF ARITHMETIC 24, note 2
FUNCTION

5-4; S STATEMENT NAME 08,09,11; 16; 35

S-3; S FORMAT NAME 105156

S5-2 ASSIGNED VARIABLE 13

S-1 BUILT-IN FUNCTION 44

S-1 LIBRARY FUNCTION 44

S CALL 30

S IMPLICIT FUNCTION 47,25

S GENERAL VARIABLE note 1

S INDUCTION VARIABLE 19, note 2

3.2

Notes:

1, A group is classified as a general variable group if its first item
with sequence (S) has valid ID digits different from those in the preceding table.

2, These groups are sub-groups and may appear within groups with differ-

ent classifications,

Arguments of a FUNCTION (42) and SUBROUTINE (33) are considered as reference
jtems although they are assigned sequence (SB).

COMMON (05), EQUIVALENCE (04) and mode specification (06, 07) items are adject-

ival items; that is they restrict, but do not themselves classifya group into one of the

16 categories.

- PRONOUN GROUPS

If one item in the group has the ID of a PARAMETER statement, then the value of the par-
parameter is attached to all other items in the group. These items (except the PARA-
METER item) are then filed in File 4 as "numevic" items, I« the group has more than
one PARAMETER item, an error is recorded and the first parameter given is used.

Any item in the group which would not have its value supplied by a parameter generates
an error (e.g., GO TO N may not have a parameter given for N). If a group contains

an item with the ID of a CONSTANT statement, the group is treated in a similar manner,

STATEMENT NAME GROUP

If the group contains a "continue' item (a statement name), then all other names in the
group must be references to that name. (GO TO NAME, etc.) If a group contains only
a continue item, nothing is output from that group, as a result only those continue items
which are referenced will be treated as "entry points' when computation of common sub-

expressions are eliminated in Phase VI.

[
(4]

Reference items (output to File 4) contain the sequence of the continue item in the

third word.

In addition to reference items, special control items may be generated; these items

are SUCCESSOR and TO and FROM items.

SUCCESSOR ITEMS

A successor item is generated whenever control leaves or enters a block. Phase III

generates successor items when four types of items are encountered:

1, A listed assignment in an ASSIGNED GO TO statement,

2. SAL EXIT item,

3. A statement name used as an argument of a CALL,

4, A GO TO item which occurs within an assigned variable group, but

the possible assignments are not listed. In this case, a successor is

generated for each possible assignment.

The successor item contains the sequence numbers of the continue item (SCONT) and

the reference item (SREF). These numbers are obtained in the following manner for the

case listed above:

SCONT SREF
1. Subsequence of an 18 item Sequence of the preceding 17 item
2, Sequence of an 08 item Sequence of a 35 item
3. Sequence of an 08 item Sequence of a 31 item
4, Subsequence of each 13 Sequence of a 16 item

item within the group.

The format of this successor item is contained in the item format part of the Phase III

section. (A full description of successor items is in the Appendix).

3.4
TO AND FROM ITEMS

Possible transfers of control into, within, and from DO loops generate TO and FROM

items. The generation of these items is subject to the following tests:

1. ¥ (DS,P) c - ((DS,,P)R , neither item is output.
2. ¥ (DS,P), # (DS, P , and if (DS)C # 0 a TO item is output.
3. i (DS,P)C # {DSSP)R , and if (DS)R # 0 a FROM item is output.

DS is the DO sequence number of the current loop
P is a count of the number of preceding DO statements
sub C denotes a continue item

sub R denotes a reference item

The DS and P numbers of continue and reference items are contained in the third word
of these items. The occurrence of items for which TO/FROM tests are made is
identical to the four occurrences for which successor items are generated; in addition
all ordinary references to statement names (ID = 16) which are not in an assigned vari-
able group are tested for TO/FROM generation, These TO and FROM items are used
by Phase IV for DO loop analysis.

The format of TO and FROM items is contained in the item format part of the Phase III

section.,

PSEUDO-CONTINUE ITEM

The pseudo-continue item (ID = 13) generated in Phase II, will be processed according
to the type of reference made to it as a statement name. However, in the same group,
the name may be referred to as a variable; if it is, then the remainder of the items (not
statement name references) are processed accordingly. In this case, the "ASSIGN A,
TO B" statement is treated as a "definition point" for the variable B, (Definition point
is described below.} A group which contains an assigned variable may, therefore,

have both statement referencing items and variable referencing items without generat-

()
»
(9]

ing error messages. Note, however, that such a variable may not be subscripted;

an error item will be recorded if such a variable is subscripted.

VARIABLE GROUP

If the group obtained does not contain any specified defining items, it is assumed to
represent a variable. All occurrences of the variable in the source program will be

in the group. The functionof some of the items is to indicate information about the
variable (e. g. , it is floating point, double precision, 3-dimensional, is in an
Equivalence or Common statement, etc.). When the mode is not specified, its first
letter determines its arithmetic mode according to the LSC naming conventions. This
information about the variable is collected to form a single mode word for the variable,

This mode word is attached to every item in the group generated from an executable

statement,

If the variable occurs in a dimension statement, Phase III does not know what the max-
imum dimensions are since these may be parameters which are assigned in a diff-
erent group by a Parameter statement, however the number of dimensions is known.
The number of dimensions is assigned to the mode word as is the location in the
dimension table where the maximum dimensions for the variable are to be found. (The

actual maximum dimensions will be stored there by Phase IV).

Later, in the compiler (Phase VI), an analysis is performed to avoid the recomputa-

tion of common subexpressions within a "block." In order to perform this analysis,

it is necessary to know the last definition point (DP) of each occurrence of a

variable. The last definition point shows where the last point (with the smallest sequence)
in the program was that the variable was defined. A defining item may come from the
following sources: (1) An Input Statement, (2) an Argument of a CALL, (3) the occur-
rence of a variable on the left hand side of an equation (a store item) or an ASSIGN
statement, A defining item will have its sequence number (DP) assigned to every

other item below it in the group until another defining item in the group appears, then

the sequence number of the new defining item is used for DP, etc. (Recall that a

group is sorted on the Phase I assigned sequence number in File 3).

3.6
Although the main function of Phase III, with respect to a variable, is generating a

mode word and assigning definition points to each occurrence of the variable in an

executable statement, some items require additional processing. These are:
1. Induction Variable (the controlling variable of a DO loop).
In the statement: DOu, I=L, M, N

I is the unduction variable. Every occurrence of the quantity, I, in

the range of the DO (all statements from the DO, down to, and in-
cluding p) must be recognized and associated with the induction var-
iable in the DO statement. It is possible, in a source program, that
several other induction variables named "I'" are controlled by differ-
ent DO loops. The variable, I, may also appear outside the range of

a DO. Any other item (not a defining item) in the group whose sequence
number lies in this range is identified as being associated with that
particular induction variable. This information is retained in the mode
word for that item as well as a new name for the induction variable of
a DO. In the case of induction variables, the DO statement is the
definition point for the variable. Phase III will error any defining

item for the induction variable in the range of a DO. (i.e., a defining

item between a 19 and a 20 item).
2. Dummy Variables in an Arithmetic Function Definition
Phase I will have associated with each dummy variable Xi in;

ABCF (Xl’XZ’ o o e Xn) = expression (X1 s X2 s o o Xn) an identi-
fication that they are dummy variables. During Phase III any occur-
rence of Xi in the sequence range for the function definitions will be
renamed, but a name Xi occurring elsewhere in the program will not
be confused with a dummy variable. Furthermore, a name may be the
dummy variable of several arithmetic functions, it will be unambigu-
ously renamed for each function. The arithmetic mode of the vari-

able, Xi’ will be defined in the same manner as other variables.

3.7

3. Variable storage items are output for non-dimensioned, non-common,

non-equivalenced variables.

Further checks performed in Phase III.

1. If N appears in: FUNCTION N(. . .)
then N must also appear in the group as a non-subscripted store item

or in an input statement list.

2. If N appears in: CALL N(. . .)

then every occurrence of N in the group must be from a CALL N(. . .).

3. If N appears in: SUBROUTINE N(. . .)
then there must be only that one item in the N group (i.e., N may

not occur anywhere else in the program).

4, A name will be indicated as a subprogram reference (in its mode
word) if it is followed by a left parenthesis but does not occur ina

DIMENSION statement.

5, If the first item of a group is a built-in or library function item which
was generated in Phase II, the group is processed accordingly.
Library function names have been sent to File 91 by Phase I; built-in
function names are dropped, since these functions are considered to be

unique operators after Phase III.

ERROR PROCEDURES

The recognition of an error in the source language causes a two-word error item to be
sent to File 92 and an appropriate item to File 4; the File 4 item generally contains the
usual sequence information in word one, the mode word for the group being processed

in word two, and the third word of the item in File 3 in the third word. If the error

detected would create anomalies in later phases. Phase III will putput a necessary

item to allow the compilation to be completed.

OUTPUT FROM PHASE III

Items output to File 4 have a three-word format:

Word 1: Digits 1-5 Sequence number
Digits 6-10 Subsequence number
Digits 11-12 Item identification

Word 2: Mode word

Word 3: Special information dependent upon item type.

1, References to variables

ID = 14, 21, 22,25, 26,27, 28,29, 46

Word 3 contains the definition point (DP) right adjusted.

2. Referenced statement

ID =08, 11

Word 3 contains (DS, L, P)

If any non-executable statements (ID = 09) were references, their

ID was changed to 08.

3. Statement references

Word 3 contains the sequence of the continue item right

3.8

3.9

adjusted. If this item occurs in an assigned group, or

should be assigned the D digit of the mode word is 1.

Word 3 contains the alphanumkeric name of the assignee.

ID =35

This SAL EXITS item dropped (see SUCCESSOR).

FORMAT statement

This item is dropped.

Format references

Word 3 contains (DS, L, P)

PARAMETER

ID, 01

Word 3 contains the value of the parameter in floating point notation.

The B digit of the mode word is 1; the C digit, 2. Thus, a parameter

must be an integer and need not appear in a mode specifier statement

(ID = 06).

10.

Parameter references

Word 3 contains the value of the parameter in floating point notation,
Valid references, ID = 03 or 14, are changed to 45.

Missing parameter values are set equal to 1.0

CONSTANT statements

Word 3 contains the value of the low order part of the constant, It is

not checked for being non-zero, nor is an improper mode word B

3.10

digit changed. Constant references are treated like variable references.

Mode specifier

ID = 06,07

These items are dropped.

DIMENSION

Word 3 contains the number of dimensions in fixed point, right adjusted.

If more than one dimension declaration is made for a variable, all save

the first have ID = 50.

11. EQUIVALENCE and COMMON

ID = 04 and 05

Word 3 contains zeros

12, Induction variables

Word 1 DS, 1. 19
Word 2 mode word for non-induction variable
Word 3 O. (Se). 00

Se = sequence of 20 item or, 0———0 for nested

DO's on same induction variable).

13. References to induction variable (within DO loop)
A. ID = 07
Word 1 S.SS. 07
Word 2 411 0000 OFFFF
Word 3 DS, L, 6P

Valid references (ID = 14, 28) are changed to 07.
Arguments of a CALL, ID = 31, are unchanged.

14. CALL

ID = 30

Word 3 contains (DS, L , P) (see 21).

11

15..

16. .

17,

Arguments of CALL, unsubscripted

These items are treated as references to variables (ID =14),
statement names (ID = 16), or formats (ID = 15) as approp-
riate.

Arguments of CALL, subscripted

B. ID =41

These items are treated as references to dimensioned.

variables (ID = 25).

SUBROUTINE

32

S|
I

Word 3 contains the number cf arguments

The name becomes the SAL LABEL for the object program. (See
"OUTPUT TO FILE 91" - below).

Argument of SUBROUTINE

ID =33

References to an argument will contain the argument's order number

(within the list of arguments) in the mode word.

Word 3 contains the definition point.

3.12

18.

19.

20.

21.

FUNCTION

ID =34

Word 3 contains the number of arguments.

The name becomes the SAL LABEL for the object program. (See

"OUTPUT TO FILE 91" - below).

Arguments of a FUNCTION

References to an argument will contain the argument's order number

(within the list of arguments) in the mode word.

Word 3 contains the definition point.

Store expression item

Word 3 contains zeros.
(The mode word of this item is required to properly complete the

Polish notation analysis in Phase IV).

Library Request Function

This item is output to File 4 only for CALLed and implicit functions.
It provides proper mode information for referenced functions. Word
3 contains the alphanumeric name of function to be included in the ob-

ject program.,

22,

23,

24,

25,

3.14

Name of Arithmetic Statement Function

Word 3 contains the number of arguments. (See "OUTPUT TO FILE
91" - below.

Argument of Arithmetic Statement Function

This item is dropped; however, its subsequence number becomes a
pseudo-name (UFFFF of mode word) of references to this variable
which are in the function skeleton appearing on the right hand side of
the function statement.

Variable Storage Item

For all non-dimensioned, non-equivalence, non-common variables,

a storage item is generated with the following format:

Word 1 (SD-5) . i. 0€
Word 2 mode word
Word 3 0——90

(SD-5) is the DIMENSION sequence counter less 5;

(i) is a counter denoting the ith such variable,
SUCCESSOR Items (non-extensible. - see Phase VIII).

Word 1 (SREF) . 0. 03 sequence of reference
Word 2 0200000 (SCONT) sequence of continue
Word 3 0 01

26.

27.

28,

TO Item
A, Word 1
Word 2
Word 3
FROM Item
B. Word 1
Word 2
Word 3

Function Reference

ID = 47

(DSc) . 00007 . 40

(DST) 0——o0

(Sc) 0——— 0

(DSr) , 00006 , 43

(DSc) 0————0

(8) 0

3.15

DO sequence 0f!
continue.
DO sequence of

reference.

If a group contains only 47 and/or 25 items it will be treated as a

reference to a compiled function.

Word 3 contains zero. (see 21).

Reference to assigned variable) from "ASSIGNED GO TO")

ID =17

Word 3 contains (DS, L., P)

The mode word D digit is 1.

29,

30.

3.16

Listed Assignment

These items are dropped; they produce SUCCESSOR and may produce
TO and FROM items.

Assignee

ID =13

Word 3 contains the DP, which is the sequence of this item,

The mode word D digit is 1.

3.17

OUTPUT TO FILE 91

A. File 91 is the dictionary file for LSC; it contains all the names
(i. e. , symbols) used in the source program and names generated

by LSC. Phase III will file all names it encounters (one for each

group) with two exceptions.

1. Names of unreferenced statements,
2, Names of library and of all built-in functions.
B. The name of an ARITHMETIC STATEMENT FUNCTION;, FUNCTION,

or SUBROUTINE when filed in File 91, will be immediately followed by
(n) items, one for each argument of the subprogram. These list names
are generated by converting the File 91 entry number (CRDREF) to

alpha-numeric and appending AR,

e.g., FUNCTION NAME F (A , B)

FILE 91 66 NAME
67 67AR
68 68AR
C. LSC names which are incompatible with SAL are prefaced with a 9 by

Phase III. These names are; HERE, SAME, and SEG ii. The name
of a FUNCTION will be attached to the first executable statement of
the subprogram; all references to this name within the subprogram
will be prefaced with an 8 to avoid having a statement name and vari-

able with the same name.

c.18

OUTPUT TO FILE 92

Error items (described in the Phase IX report) are output as two-word items. They
will contain the alphanumeric name of the group in question and hence will facilitate
understanding the source error (or probable error). A complete list of all con-

ditions which will cause an error item to be output is found in the Phase IX listing

(the "parallel codedit").

l

3.19

LARC SCIENT FIC COomMmP|ILER Phasge 1|
[0RT F3 on Gek next SPOQP‘ Nowe.
NAME AND SEQ. (all ttewms with |—— Close F4, F9I, FOQ
‘ Same ~NAME)
@ Save wdex word ConTROL
v ss 2.
I PNCE -fo Pa
29 NAME

00000 —»p3SSaf CRSDEL

I. (cRSD-5)—+Safcrsde
o6 ——'tbo,rc&sbe}

O NAME —» NAME

S, O—s+onLY 1
o —» FROM+2
C —» O+ 4

3. (CRSA—1001)—> CRSIT

I RESET

AR

2. o— A,8c,D,C
m,DFP XXX

*)
Specifieat by
RXX

@ T‘é\ns—[‘e ¢ B loc,

(Tspiwﬁcl’e;
LScER 3Lt
= Loc Q; ecro’

Lilie =
detection .

§

& &

Continoe B lock -for Gongtroet mode mrd;
mode wordl a\.fcrmahbn and bejm pass 2,

LARC. SCIENTIFIC COMPILER Phase TIT

3.20
Develop mode weord
and resgel .rcx- ‘#acc 2
| —=cC
+
¢ —c
: A
T = 1,24 > - Is\‘.chr.q‘nbw. $h S —6
c:1,8%4,5 Bto X3k, L, MmN
=35 -
1
l |—>» 8 '
3998
CRDREE — Y RrFpe Restore index
[b’ud—
¢ —< b initial vele,
ABCDHEEEUF®FE —p MODE —s M T
O3iliopsssss ; NAME —» FO2 (Ennon‘d"cu)
Lym;N —e F4 (Fue 4 rad)
thew
Nowe

Thss l: deude'a moole
word,

?a«&: ga\enaib Fq
Yrewms

3ID+ k)[Go b Fausfe- fable
Moulbqr

LARC SCIENTIFIC COMPILER “Phase. Il

3.21
.D'scl‘:ov\ar\j enkies
.For arsumou«rs O,)C
SUBPf‘C:ﬁf‘aMS
(aot a varable)
= (varusble) o oﬂpélﬁs'
= (GOMMOu. or #
etivl\la‘&/\b‘)
+ ” NAME — FOI I
("‘4“‘%*@9@‘; N\
Pomt — Sek
1
OCo
no. o_ﬁ args —> D
3CHEKI
[dlmus:éned)
(Q&m‘a\e varable) [= 1. (cRDREF) => od humeric
store Lrem. i o 6‘+ AR
CRSDG + 19000 —>» CRSD— L .
O —a N R,]Oszudo Name —» F9'
L; M N —>F4

3chexk

reselt

NAME —= FOI l(b""“"“a"ﬂ)

eam

e.q. I_F He name q.(a Subknosrem)wkiok
' has three argoments, were .ﬁ_k_d as
the 88™ iewm in the dichounaryy the
g9 9o™ and 91¥ emkries wouldd

be , t‘eskceh'uo.k' ! §9AR, go AR awd
o1 AR.

No doftl«'d‘.bn powk
.Far variable

LARC BCIENTIFIC CoOMmPILER ?kasem 3.22

PARAMETER

| —=B (’d\rtger)
2 —c!
value of parawmeter —» VALLE

VALOE —» N

) Tarameler is deﬁued
Mmore ‘H'\aw ownce.

lLARC [CIENTIFIC CoMmPILER

DIMENSION

{ SO0 —ID

991 —e EEE
and. CRDIMT

—

Thase T

3.23

D+ CRDIMT
— EEE
and CRdPITMmT

3Anead

3oav
Iboz.l nomber o_; Admen —»= N J—————-—-
202
e
Dimemsion Variable aud
o226

Name a\ﬂ:e_avs m Mmore
v tHan one dDiMENSION

statement .

Dimension table

o2s exceeded.

parameler have sawmme
nawme.,

O — Dumensicuned
Varable.

LARC SCIENTIFIC. COMPILER Phase T

3.24

PARAMETER. REFRERENCE

- -~ Name mugt be Starement name uvsed
b et
PARAMETER. relerence.
— Tacameber r‘efere,v\ce_ Formak name
o338 _F,,‘ de.F\Mcok rezrumed as
COMSTAT Paramgl”er.

LARC SCIENTIFIC COMPILER Thase T 3.25

EQUIVALENCE

309 %
3049X1
=0, A
Iboq‘o Ao ,2 3 Ar2 —
=2,3
3AMEADd
304V
O —e N :
304c
IDog.o 2 set o —n STremq
resel

103

Tarameler on
eqguivakeuce Usr.

LARC. SCIENTIFIC. COMPILER Phase TIT 3. 26

305V

> Name tn more Pacameber n
than one Common Commont shatemeut.
s\’a\'e menls .

LACC SCIENTIFIC COMPILER Phase TIT 3. 27

VARIABLE MoDE SPECIFIER

203A
o030

Extract 6 digik
a.r wordh 3

FuoNCTion MODE SPECIFIER

3074
© 3o

Extract B dlSU'
o.f word 3

3078
[Oo —-Ib—|

Name appears wm Mmore
thauw | mode
s|p¢c'u,?i¢r' stafement.

Phase TTT | 5. 28

LARC SCIENTIFIC COMPILER

NAME oOfF EXECUTABRLE TABLE

'DS)) P —» DSPe

= D3, coocoo T do —+T¢

s‘;i‘?;;:: — a|DS. 0. O —>FROM
- 8. ©. 0-—>3g¢F%

0200000093553 23N T]

308V

subseq,,—o Seq.
©— Subseqg.

3sea

J(DS LP) —e

Starewenkt and
Paramd'er have

Same. nawe.

Statement Aund
o3) variable hauve
Same nawe

g <

Shatemenlc and No re.(gru\czs
constaul have = named
Same name gratement.

LARC SCIENTIFIC COMPILER Phase I 3.29

Check «ror “cheop -oob“)

l‘e{ rences

O—» 3 ALL

Y

Gek None 3ALLiO }— ANEXTG
“4: LreM
* (All. refs. were
"dt‘ofnod':“

non- Zesro
—» BALL

2 C)

S, Ss . 3¢
OO —» ITD Q,F Qz.r fo——————— 003 ©o0oOo 0OQOO0O }Fq
(= ©

@ Poss'oUe d "o’> -oul f‘a(e_re,«ce.

lb— ID of Ref. (C“aMgé possible dwF«out")

13 s". name. rg_ﬁ.

LARC SCIENTIFIC COMPILER Phase TIT

NAME oF NON-EXECUTABLE STATEMENT

Og —+ ID

NAME oF SAL STATEMENT

—{ 3NEXTG

3. 30

LARC 9SCIENTIFIC CoOmPILER ’Pkase. l”

3.31

NAME OF FORMAT

310X
QO -——’ID SF
5 —c! !
3oV
o35
el

31TEMY

3103
Ibao.a 3NgT
™, 3xxx
310F
Do s 3NEXTT

Yariable and ' Stalement name aud
-F;rMat have Paramel’er have
Same name Same. Nawme

Constant aud
rmalt have
Nnawme

LARC SCIENT\FIC COMPILER

ASSi@&NED ST. NAME REFERENCES

2%

| @
312V
\ c4i
3i2¢
A vy, —(3125
L \/
W/ 312s
3i2s

BRF

(PS,.L,P) —a N [———m

T

Varable was
assijv\ed as
S*al‘em.t re-rdewc:

o4 043

oqe ?araw\el' er Wwas
aSS(qu\eD\ as
staremenkt M.{erewng .

Phase. T

Constant was

a3sg(

Sfam r‘efcw

3. 32

LARC SCIENTI\FIC COMPILER “Phase 111 3. 33

AsSsiEnNED VARIABLE

| — B&X 13
4— c R
RIAXY —a XXX

313X

3N3X|

BBXI13+|—> BSXIB

- | DLTEMg

Asgsignment mad
gt mose

ASSiﬁnc.d. variable v Assuonmenls made
in A4 cdumension B coustaut.
Stalemenst.

LARC SCIENTIFIC COMPILER. Phase TIT 3. 34

UNSUBRSCRIPTED VYARIARLE REFERENCE

39

)

319v

‘._"DP-—*N -,

Iblf—\.l

314¢

VALLE —=
45 —» ITD

?

3195

3

3iqr

Stalement name
refecemcest 83
varable

rotwmal nawe

r‘e,{’ eremcecl AL
variable

LARC SCIENTIFIC COMPILER. M 3.35

STATEMENT NAME REFERENCE

NG R
Iblé‘o 3T'D99
OUTFPLT SUCCESSOR
TrEm 1
SE - S’eqq{' ass.(gv\wtc“l’ -] SS5s3, 99999'03
s — » SSSSS 02000, 00(sconT) :¢
O = 4

Ves

3o

OUTPUT T I TEM

L (b S (‘ow") . °°°°7A4O}F4

(DSrep). ©.
Ay

- (DS, L,P)—> N

2 OS54 OUTPUT FRowm TTEM
(DS“‘F). Ocoob. 43 -
(‘BSCOV\}')‘ o. O.

4

o — ©

Unass’ll.jned vacrable r'e.-rereucad
as shatement name.

<

os2 Paraw\e)'c(' F&Fercmced as
statemenkt wnawme

(DS,L,PDof next
Coustaut r'e.ferwced as azggn—> DS, ‘ZOV‘_‘,
3"ér€we»~t name., -

formalt name l_f‘efermeot @
as shabzmenlz name.

<q <

LARC SCIENTIFIC COMPILER “Phase TIT 3 36

ASSIGNED VARIABLE REFERENCE

37 x

3

-

7Y 31TV

2\ Sef | 11—
- word 3 —=(DS,L,P)e
VYrega t -

lo®

\/4-

817

93/

»{ STTEMQ

Y ~No asétsnmeu.t . ©93 Asstﬁn‘v\ewt made
-Yor variable \/ b coustauk

' Ass‘:.sAMm.t made.

7 et

LARC. SCIENTIFIC COMPILER Phese TIT 5 37

LISTED ASSIIGNMENT

BEX

31¥V
Ootput Successor
wordt 3 DS, ., P h
1| irembFq —es e @ é

LLARC. SCIENT\FIC COMPILER. ’Pkase_ T{T 3. 38

INDUCTION VARIARLE,

G20

L.— SgF 19
4\ — ABc o,f mode [T
BIGVR —= XXX

. O — Id ‘
(Word 3) —e ™

oo(s () cooo o —+N LM, —> Fq

|

—= FLG 19— H

SANE —= XXX

SEF 10— L

O —»)
-t —>H
H —=FL&I9

o~ O ~—eSS |

Fug 1 — H
H+1 — H
H — FLES

) 6o
PYTA —_,L_y\due)‘wvm varable o558 Counstauk or
not an w\'tesu parameler vsed
as IV, '
Sobsercpred St name uvsed v
v e oase v o T
< Im)ooo}:‘er =S ———— Format name }
uduehon variable o6o vused as T.V.
w‘dl«m “J's look

O ntle)

LARC. S8cieNTIFic COMPILER “Phase TIT

STORED UNSUBSCRIPTED VARIARLE.

321x

Ibzv.o 3ID99

32iv
32l
YSet

32)s

Statement name

Peramd‘e.r a{:ktars | -_553_
v as shore Uem C!Ft:ear's as stoce. U,

Gonstanl aH:zars Formalr name
as shore itan. a’a]xars as shore Uem.

3.39

LARC SciENTIFIC ComPILER. ’Pl'\asc-m

INPUT—~LSTED UNSOBSCRIPTED VARIABLE

3A26x
T, o 3Tdgy
326y
3%
é
Sek
o7s
326s
oy

s

o76 raramelec St name
tnpot List T/ lsk
&V\S\'M LM,
u,\\m_,l: Lis\ |

formal name
wm I/g usk

3.40

LARC SCIENTIFIC COMPILER Phase TIT

D, CUTPLUT— LISTED VARIABLE UNSUBSCRIPTED

2

2%.0

32%v

DP —> N -

328
45 —= ID
Varoe —=n
328s
IDgg 3 AN 0777 »==(3TTEMY

V

32%rF

P77

o77/ St .name v I/ bsk

Tormal nawme tw I/¢ [isk

3.41

LARE ScleNTIFIC COMPILER

Phase T

STORED SUBSCRIPTED VARLIAALE

O20 Ib?.l

OUTPUT -LISTED SUBSCRIPTED VARIABLE

: INPUT - LISTED SuRSCRAIPTED VARIARLE

o2 Subsatfu)a}‘eol referenc e =
non - dumensgiowed vacusble.

3.42

LARC SCIENTIFIC COMPILER %&Tﬁ

@ SVUBSCRIPTED VARIARBLE 1IN AR THMETIC

32sx
= (47 —T> | @ C'rzatpas -F.me)‘lov)
= eference.

3.43

Trear as
variable

325v

)
R
o

W
¥

32SF

6
<
<)

Sobseripled reference Sobserpled refesence
1) Faram&\’er e‘)& NG) —F:ww\a\' name ,

Sobsenpled reference
6 o glafement name

LARCE SCIENTIFIc COMPILER Phase TTI

3.44

3236 —b XXX

ARITHMETIC STATEMENT FuncTiod paged
323x%
4 — c’ ‘ ‘B ‘o > -
5 —=A
<
Ist.char. ! X)X 2—8
) — B

323x0) | FOf args. —= \
B23K2 ——> XXX (23 tem)
QO —
293 KD e XXX . (39 itew)

o.r at‘gs. —_— D

323V

Save mdex
Lo 0.

o6y

LARC KIENTIFIC COoOMPILER

Phase TIT

@ AR THMETIC STATEMENT FurlCcTiON Pase 2.

W

Im‘aoo‘:»er (‘E-FCJ‘eMce

B arthimelic st

~F~Jv\d{ow .

Arthmelic —F.mchow
name LV\
Aumension sk

Acthmelic %nol"ﬁon

name (i Gommon

st

Ar‘d"r\MeT'ac. -F)nchon
name iw
eq,uu/a\emce. st

3. 45

LARC SCIENTIFic COMPILER. Phasge T

Dommy ARGUMENT OF ARITHMETIC FuNCTION

. = ist. chae \ =%
Blo anaww.:)(

—

329A

&—> A o,f medle

| ——c o{’ mode

&2|— Ak QfMOdG‘

3. 46

XXX —» SAVE
3 == XXX

Sub. Seq—»> LFEFFE

@ G:H—"F\ECQ(Mod

Im}aoo\uer use Q-F dommy
argoment 0{’ arf thmelic -F.md’ion-

LARC. SCIENTIFIC COMPILER. Phasge TIT 5 47

cAaLL

— 4 —c!
BIOoXK | ——e XXX

330V
oS -
330c,
set ,
\ o6 ,
33208
oIF
330F
o9
p= IMFr‘obu vse Constaul Sk, name
4 called fe{’enewced as referenced as
gUbroulime called subfooline called subroulime
Nacuable p= farameter Tocmat
ols rePerenced, a3 4 ;ﬂ'v&z\cm as ©19 referencedt a3
led Subroutime called, Subrovlime

called. Subroulivne

—

LARE SCIENTIFIC COmPILER. “Phaze I

3.48

UNSL&Sc PTED ARGUMENT ©F ALl

33X
@ v@
33iV
S—e 2P |
—e]
S —» N
33ic
45 —ID ={3ITEM4
VALWE —» N
33is
T—D33 (DS.L;P)—‘"'" - S»ccessor—-—F4‘
[

33IF

LARC SCuENTIFIc comPILER Phase T 2. 49

SuBRCUTINE

other ™\ Yes e
392 u@ *\0"/‘
o

No
Name «Vor)
NAME —» CRLABL chéc.)‘
335284
4 —c

332 D —e XXX

no. args -— D

R332 g —= XK¥ X
V\oAargs —_— N

"~ Moltiple svbraoline - “Name < subrooline
atafemenls. f usect elsedhere (v
F!‘o&f‘éom.

coz/ Subtaslne and
] .Fmdow alatement

LARC SCIENTIFIC ComPILER thase TIT 3. 50

333F

SR

ArBuMeu.t o,F subrodslme ocoP Af‘sumewb o_f subraclime
“iiF’ n Commown s @ratfement name

_/-\ogumcv\t o,{’ sobralline 009 Qfguw\w q.f’ sSubroulime
W eguivalerce. i afoomat name.

LARe SCIENTIFIC COMPILER Phoge. T 3.51

FoNCTION

'

~NAME —> CKLAR L

Y
4 — !
B334QY —= XXX
no.of args. —= D

| —»
(croREF) —2-UFFFF of mode
word,
Mmode oM — CRFLNC
B NAM E—e NAME

l

fesel

Subroolume. and

‘F" ou (nest c[grovp will be >
©

Moltiple fonction

W stafemen(.

[rocesged &8 A vaciab!

LARC SCIENTIFIC COMPILER Phase TIT

SAL EXITS

235¢

o O.Jl'puf' Successor
353 tem b Fq

Unassigned variable Coustant un SAL
W wm SAL exilB hsk. v exils Usr
oo TArameler un SAL Formalr n SAL
exifzs ligk v exds \sr

M)
on

LARC SCIENTIFIC. COMPILER Phase 1

. ConNSTANT

33§x
2—sc!
[Loord 3 — VALOE
335V
oL3

33Fc

+

r

095 / |
= 3SuUxS

SuccESSoR. TTEM

. 83S$$.99999,Vo3 — L
© 200000 (seq,. (’owam;e) — M

O —» N

~(

o83 VNarable and coustant
have same name .

V. Molkble defining Uems
& —F:r counstant.

LARC SCIENTIFIC. COMPILER Phase T

@ STORE EXPRESSION

339x

SRS

3%0v

ot
s msd' _\-59,7 A
s

3.54

D

Paraw\ef'er and Cx};neSSlov\ Sk name Aud en{:nzss'\ov\
have Rame name. v have same name

Constant aud expression oD Format and exhression
have sawme nawme have same name.

|

]

LARC SCIENTIFIC COMPILER Phase M1

(%)

[55]

SUBSCRIPTED ARRUMENT OF CALL

Id B3NEXT

%

o023

Non- Subsc.f‘;}:"ed f‘efaemcg Sub&’.l"-.#*ed r‘a.ferev\ca)b
o dumensioned varwable. w stafemenl name.

gL)lQSC.f"Lbi'cd r’e-fercv\ce. o guhSaoLFVed (‘G)Defemee_
Perevwefer or Coustant. v = mal hawme,

LARC SCIENTIFIC. COMPILER. Phase TIT 3 56

ARCUMENT OF FuNCTIoN

342x
l—D-'-L%?.o _@
3492y =p
A:OQ\‘S:z : ~:O\\7 S—a |
)y \/ O —a» N
= !)3
|
\ oo =3
=1
342
¥
VALVUE —s N
45 —= ID
242s

0‘3 | @

oo .Af‘gume,wl: o,f -ﬁmchow o2 Acgoment of ﬁ;ncfm
i common Stakement. i shtatement’ name.

Argoment ton Coa/ Amgoment nehiow
erpn g Srowd R

LARC. SCIENTIFIC COMPILER Phase 1T 3. 57

BLILT- IN OR LIBRARY FUNCTIOMN

Yes OO —=Ib
any refs? 4 —-c' ‘
of 3GTRI — XXX
~No

._.CD gl
ey
\o84 /

o849 Im*;ﬂo’pe_r reference B Libranj
v or builk-in nehion.

LACC SCIENTIFIC CoMPILER Phase. 11

3.58

LT OF Do

b
(@)

dJ
&

~ 3zD99

e
VALLE, —— N
03 —=ID

o

£

[l

246s

St name used as
T S

o8o/ Tormat used as |
Linack Q.y DF

LARC SBCIENTIFIC ComPiLER Phase 111 3.59

@ FoNCTION REFERENCE
00000, 00005 494 —=L
4 —< - & e } Fq
B3YGTXKI —e XXX NAME —> N
= T
Seq. —_— N
+*
2347y
)

M7

Q= Ry
sk
347s

347F
Tm f‘°}>€1 fefefo\ce 089 /(ongtant t‘efuenced Tormat neme
t fonetion asg .Fmd‘u‘on. I‘e[’eremce‘i as
-F)nc‘h«'on.
\C%8/ Tarameler M”,,e“ed St name referenced
as fonchion. as fonetion.

4.0
PHASE IV

Phase IV performs the following major tasks,

1. Determines relative locations of all variables in memory.

2, Solves the system of linear equations provided by EQUIVALENCE
statements,

3. Determines the mode of arithmetic expressions and attaches it to

operations and functions within the expression.

4. Updates the definition points of common and equivalent variables.

5, Determines and forwardsito Phase V a great deal of information

about DO-loops and lists,

6. Converts subscripts to single expressions.

7. Performs the numeric arithmetic in reasonably uncomplicated

subscripts and splits or puts their terms into three parts.
8. Computes for Phase VII the number of elements in implicit arrays.
9. Creates all of Files 50,51,52 and 60, and part of Files 61 and 94.
(Output to File 60 and File 61 is in F4 format, Appendices describe

the other files).

10. Performs several error checks on the source-program-generated

items.

4.1

File 4 contains nine classes of source language statements in the order below.

(Within each class source language ordering is preserved, unless otherwise noted).

A.

FUNCTION or SUBROUTINE statement if one is present.

LIBRARY calls

PARAMETER statements

One item for each variable not appearing in a DIMENSION, EQUIV-

ALENCE, or COMMON statement, or as a dummy argument of a

FUNCTION or SUBROUTINE statement; hereafter called "'simple

variable'" items. (Alphabetic order).

DIMENSION statements.

EQUIVALENCE and COMMON statements.

CONSTANT statements.

Arithmetic statement functions.

Executable statements, including:

1. Arithmetic statements

2, Induction variable items

3. Control statements (IF's, GO TO'"s, input-output statements,
etc.).

4, CALL statements.

The treatment of each class of statement by Phase IV is indicated below.

4,2

Phase IV operates on File 4, which is sorted on the first word of each item. The

general form of the items in File 4 is:

Word 1:

Word 2:

Word 3:

or

or

Digits 1 - 5
Digits 6 - 10
Digits 11 -12

Sequence number
Subsequence number

Item identification

Mode word for the item

Special information depending on the item type.

a. ‘A numeric value (for a constant item).

b. A "definition point" (D. P.) (for a variable).

c. The level (for an induction variable reference).
ete.

File 4 was formed by Phase I and Phase III. Items in File 4 that represent

punctuation, arithmetic operators, numeric quantities in the source program, and

executable LSC statements are filed by Phase I, the rest by Phase IIl. Phase III

creates several new types of items for File 4, as well as substituting constant items

for all parameter references.

The new items conform to the above three-word for-

mat. In most cases, the item identification is that assigned by Phase I

Output from Phase IV goes to Phases V, VI, and IX. When F4 is thoroughly pro-

cessed, Phase IV operation is complete.

Note: Phase IV has its own contingency routine.

FUNCTION or SUBROUTINE Staterent (if any).

Subprograms differ from main programs in that the memory
locations of parameters to the subprogram cannot be known at
compile time. Later phases of LSC produce coding to generate
these locations from the parameters given in the main program's

calling sequence.

Phase IV assists in this generative process by sending to File 94
items defining each parameter as 0. (See Appendix III for formats

of items sent to File 94).
Example: Source Statement: FUNCTION F(X, Y)

Object Statements: DEF X: 0
DEF Y: 0

LIBRARY CALLS

A library call item is output to ¥94 for each item.
PARAMETER Statements.

Phase IV sends a raw-code item to File 94 for each parameter.

Example: Source Statement: PARAMETER N=30
Object Statement: DEF N: 30

Since the value of a parameter is substituted for its symbolic name
throughout the program, the definition of parameters is not necess-
ary; it is added as a convenience to users who may want to refer to

the parameter in SAL coding embedded in the LSC code.

D. SIMPLE VARIABLES

Phase IV makes storage assignments for all variables mentioned in
the source program (except CONSTANT''s, subprogram parameters,
and COMMON variables in subprograms).

The storage is reserved by Phase IX. Phase IV sends out an item
giving the total size of COMMON and of non-COMMON data. (The
COMMON item is not output for subprograms).

Each variable is then defined by a DEF item to falliin COMMON or

non-COMMON storage, whichever is appropriate.

1. DIMENSION statements produce DEF's for non-equiv-

alent non-common arrays.

2. EQUIVALENCE statements produce DEF's for all

equivalent variables.

3. COMMON statements produce DEF's for all non-

equivalent common variables,

4. The remaining variables are defined by Phase IV on
receipt of a group of "simple variable'" items from
Phase III. The "simple variables'" are defined in
alphabetic order and are in alphabetic order in memory

when the program is run.

The leading statements of the object code thus provide the user with a complete stor-

age map for variables in his program.

4.5

DIMENSION STATEMENTS

Phase III places in the mode word of each array item its relative dimension
table reference. Phase IV creates the dimension table and files all dim-

ensions in it for use in later Phase IV processing.

DIMENSION statements also have reservative force. DEF's for "ordinary"
arrays go to FILE 94, Also, each array name is defined in terms of an
LSC-created symbol which represents the actual location of the array in

storage, again by F 94 items.

Note: The location of the array contains its first element (1, . . . ,1)
while the name of the array refers to the non-existent element (0, . . . ,0);
that is, the array X begins in the storage location (1, . . . ,1) beyond the

location named X. This substitution of variable is done in Phase IV to

speed up later processing and enhance the readability of the LSC output.
EQUIVALENCE and COMMON STATEMENTS

These two types of statements are intermixed. Since EQUIVALENCE
statements cannot be processed until all the EQUIVALENCE relations are

known, the subroutine which processed COMMON variables is called by the
EQUIVALENCE processor.

1. Phase IV Treatment of EQUIVALENCE Statements

Each statement contains one or more chains of variables.
A set of interrelated chains is here called a class. The

processing as as follows:

4.6

Two internal files are created, one containing
an item for each chain; the other, an item for

each variable.

The terms of the subscript of each variable

are multiplied by its dimensions to yield a
single subscript. (If any term is zero, 1 is
substituted and an error is output). The dim-
ensions of the variable are multiplied to

yield its total size. If the variable is COMMON,
the chain is marked COMMON.

All previously processed variables are
searched. If a match is found in a chain of
the same class, the current item is either re-
dundant or in error. The two subscripts are
compared for error and the current item is
dropped. If a match is found in a different
class, the difference of the two subscripts is
used o ''relativize" all chains of the later

class to the earlier class.

After all variables have been scanned, the sub- -
scripts within each class are relativized to a
mutual point. The largest subscript and the
largest inverse subscript (distance from the

mutual point to the end of the array) are saved.

During the final scan, Phase IV computes the
size of each class (largest subscript + largest
inverse subscript) and the start of each class.

It files in F94 an item for each variable giving

4.7

its category (COMMON or not) and its distance

from the beginning of its category

2. Phase IV Treatment of COMMON statements

Variables which appear in EQUIVALENCE statements
are ignored (they have been processed already). DEF

items are filed in F94 for the others.

CONSTANT Statements

Both halves of the constant and its mode word are forwarded to F94

for output.

Arithmetic Statement Functions

Phase IV ignores the left sides of arithmetic statement functions.
The right side begins with a mode-of-expression item and it's anal-
yzed by the Expression Analysis Subroutine EXAN described in
Appendix 1.

While subscripts are permissible in ordinary arithmetic statements,
they are not in arithmetic statement functions; if one appears, EXAN

outputs an error,

EXECUTABLE STATEMENTS

When the first executable statement is encountered, the two data-
size items (above) are output. To aid Phase VI and VIII, a con-
tinue item goes to File 61 which makes the first executable state-

ment the beginning of a block of code.

4.8

Executable statements are of many types, and the types are inter-
mixed unpredictably. Phase IV processes input from File 4 in
groups, each group containing all items with identical sequence
numbers as assigned by the previous phases. The identification of

the least item of the group determines the path of processing.
1. Arithmetic Statements: Left Side

The EXAN subroutine processes subscripted variables on
the left and in input-output lists, the entire right side of
arithmetic statements and arithmetic statement functions,
the arguments of CALL statements and the operands of

control statements.

Each variable on the left appears in a group by itself. Pre-
ceding and following the list of variables on the left are
"list" items. Phase IV attached the arithmetic mode of

the expression to these items.

a. If the variable is equivalent, it is treated as a defin-
ition point for all equivalent variables. (Treatment
of definition points in Phase IV is described in

Appendix II, TEST 1 subroutine).

b. If the variable is unsubscripted, Phase IV asks
whether it representsanundimensioned variable or
an implicit array, if the latter, the number of el-

ements in the array;if attached to the item.,

c. If the variable is subscripted, EXAN analyzes the

subscript.

4,9

d. If the variable is an array scanned by an explicit
induction variable, it appears in File 4 as a DO
loop group (q.v.) where the group contains only

the variable within its range.

Arithmetic Statements: Ride Side

The leading item ina group containing an arithmetic ex-

pression determines the processing as follows:

a, +, -, *, /, or **, Go to EXAN,

b. Colon. Colons also precede CALL's and subscript-
ed variables on the left side and input-output lists,
Treatment of these cases is explained elsewhere.

Unexceptional cases are handled by EXAN.

c. Mode of Expression ltems. Phase III outputs one
such item corresponding to each variable on the
left. Phase IV examines them; if any is double
precision, the mode of the expression is set to
double precision; if not, it is set to single precision.
EXAN then analyzes the expression, attaching the

mode to operations and functions.

CALL Statements

Because the called subprogram may redefine any variable

in COMMON storage, the CALL statement is considered a
definition point for all COMMON variables (see TEST 1,
Appendix II). At each CALL, Phase IV arranges for Phase V

to compute and store all current common induction variables.

4.10

The arguments of the CALL are processed by EXAN. If
statement names appear as the arguments of CALL's,
Phase III will have generated successor items and attached
them to the CALL group. These are sent unchanged to
File 60.

Control Statements

DO statements are described separately below. The
operands of all other control statements are processed
by EXAN,

DO Statements

Note: Explicit arrays in input-output lists and on the
left of arithmetic expressions are treated as DO loops

after Phase I.

Phase I and III generate and Phase IV receives the following

items:

a. At the beginning of each loop:

1. A 19 item, containing:

A, The mode word of the induction
variable.
B. The sequence number of the loop's

end.

4.11

The initial, final, and incrementing values

of the induction variable (constant or varie
able). These values are forwarded immed-
iately to F51, along with the dictionary ref-

erence of the induction variable.

TO and FROM items for possible transfers
of control to or from the current loop, ex-
cept transfers to the same loop which do not

bypass inner loops.

At the end of each loop:

A 20 item marking the end of the loop and containing

the mode word of the induction variable.

Throughout Phase IV, a table is kept in memory of

current loops. An entry is made in the table at the be-

ginning of each loop; the entry is output at the end of the

loop.

Each entry contains:

The sequence number at which the loop

begins.

The sequence number at which it ends.

Whether or not the induction variable is

COMMON.

W:hether or not the loop has the same range

as the next outer loop.

4,12
Whether or not there are entrances to the
loop, i.e., FROM items from outside the

loop's range.

Whether or not there are exits from the
loop, i.e., TO items to outside the loop's

range.

Whether or not the loop is optimum as an
outer loop, i.e., the only transfers to the

loop are from nearby in the same loop.

Whether or not it is optimum as an inner

loop, i.e., has no exits to outside its range.

Whether or not .coding must be generated to

compute and store the induction variable,

i.e.,

1. It is used in arithmetic, or in a con-
trol statement,

2. It is COMMON and a CALL exists
within its range.

3. SAL coding exists within its range.

4, Its loop contains an exit,

The new name of the induction variable.
To facilitate Phase V processing, each in-

duction variable is '"renamed' according to

4.13

its nest number and level number, where

these are defined as follows:

1. The nest number (0-999) begins at
zero and increases by 1 each time
one or more loops end. There are .
as many 'mests' in this sense as

there are innermost loops.

2. The level number (0-99) begins at
zero, increases each time a loop
be gins and decreases each time one
ends; it represents the number of
current loops at any point. 100-level

is the L part of the new name.

Items a through i are forwarded to F51 only
when the loop is complete. At that time,
also, an error is output if there exist: one
or more outside entrances to the loop but
no outside exits. Also, the loop is called
non-optimum if it is at Level 1 or if the
next outer loop is non-optimum as an outer

loop.

Note on Cptimum J.cops

When a subscript contains induction variables from two successive loops, Phase
V will attempt to combine the increment of the outer variable with the initializing
of the inner variable if the compiler can guarantee that the execution of one of

these terms necessitates the execution of the other; if so, the inner loop is called

"optimum?".

4.14

The inner loop is optimum only if it is optimum as an inner loop and the next

loop out is optimum as an outer loop.

The flow of control can be quite complex. Phase IV does not do a flow anal-

ysis; but where there is doubt it errs on the side of safety.
5. SAL Code

The presence of SAL code is signalled by one item in
F4. When such an item is encountered, the SAL block
item output by Phase III is changed to a continue item
for Phases VI and VIII. All current induction variables

are marked compute: and store.
i’hase IV - - Appendix I - - EXAN (Expression Analysis Subroutine)
A. Treatment of Expressions by EXAN
Expressions treated by EXAN arise in a number of different types of
LSC statements, as described by the writeup. All expressions in

File 4, however, consist of sequences of operators and operands in

"Polish'" notation, each operator requiring two operands.

B. Processing in Phase IV consists of:
1. Attaching definition points to variables as described in App-
endix II.
2. Attaching the mode of the expression to operators and functions

not within subscripts for use by Phases VI and VII,

3. Recording uses of induction variables (except in simple sub-

scipts) for Phase V (see DO loops).

4,15

4, Deleting subscripts within subscripts and subscripts within

arithmetic function statements (these are errors).

5. Breaking down subscripts into several parts, testing the parts

and sending them to Files 50, 52, and 60, as described below.
Treatment of Subscripts by EXAN,

Each subscript consists of from 1 to 9 expressions or terms, terms
being set off by commas in the source language. Except that terms
may not contain subscripts, each term is itself a full arithmetic ex-
pression, as simple as a single constant or as complex as a nest of

400 functions.

By multiplying each term by the product of the dimension of the pre-

vious terms, Phase IV converts the source language subscript

T1, T2, . . . into the single arithmetic expression

Tl1+ D1 *T2+D1 *D2*T3+. ..
(where D1, D2, . . . are the dimensions of the subscripted variable).

If the wrong number of terms is present, Phase IV outputs an error

item and processes only those for which dimensions have been given.

As it creates a single expression from the subscript, Phase IV breaks

the expression into three parts.

1. A constant part, This, and the namé and sequence number of
the subscripted variable, go to File 50. The two are renamed

to become the M-address of the output SAL code.

4.16

An induction variable part. Each induction variable, its

numeric coefficient, and the sequence number go to F52. The

induction variables are included in the B-register of the output

code.

A remainder. The remainder contains ordinary variables,

functions, and the part of the subscript, if any, which is too

complicated for Phase V processing. The remainder goes to

F60, and is included in the B-register of the output code.

EXAMPLES:

a. File 1
File 2
File 50
Files 60-61
Files 7

b. File 1
File 4
File 52
Files 60-61

A has dimension (2, 3,4)

A (1,2,3) 1+2(2)+ 3 (6) =23
:A, ,123

+23 A

:A'0

A’

A (I, J, K) I,J,K induction vari-
LA, ,IJK ables.
11, 23, 6K;n =0

: AB

B is a B-register name.

c. File 1
File 4
Files 60-61

AX, Y, 7) no induction variables.
A, , XY Z
A CX+X+*¥2Y *6Z

CX = "convert to fixed' function.

d. File 1
File 4
File 50
File 52
Files 60-61

AQd,Jd, Z) J and Z as above
:A, ,1d72Z

+1A

2d;n=1

:Afx+*6ZB

fx+ = fixed point add operation

4.17

Treatment of a Single-Item Subscript-Term by EXAN

Numeric. The term is multiplied by p (Product of dimensions
to that point) and added to total constant for the subscript. An
error is written if it is larger than the corresponding dimension,

or less than 1.

Induction variable. The product p is added to the coefficient
for the appropriate induction variable. (Coefficients for all
current induction variables are set to zero before processing

of the subscript begins).

Ordinary variable, or function without arguments. The SAVE

subroutine saves the item and its coefficient.

Treatment of Multiple-Item Subscript Terms by EXAN

The processing is in three passes, as follows:

Scan forward, creating an internal file, one item for each item

of the term.

A, Operation items include the type of operation and the

addresses of the operands.

B. Numeric items contain their value.

C. Variable items contain coefficients of 1 and whether or

not induction variable.

D. Terms containing division, exponentiation, a function
with arguments, or more than one non-induction variable
are not broken down. Instead, the term goes to F60, pre-

ceded by +, *, and p items.,

4,18

Scan backwards, examining operations only.

A.

Addition. Perform addition of numerics.

Subtraction. Perform subtraction of numerics. If
either operand is non-numeric, multiply the terms of

the second operand by -1.

Multiplication. Perform multiplication of numerics.
If only one is numeric, multiply the terms of the other
by it. If both are non-numeric, send the complete term

to F 60 preceded by +, *, and p items.

Scan forward, examining operands only.

Numeric. Multiply by p and add to term's constant.

If zero, ignore.

Induction variable. Multiply coefficient by p and add to
induction variable coefficient table, If the coefficient is

negative, note special situation.

Other variable or function without arguments. The SAVE

subroutine saves the item.

4.18.1

Source Statements: A =B(..., (4*3)-(2+]),...)

Treatment of the term: (4*3) - (2+1)

F4input: - * 4 3 + 2 1

1st Pass Table:

Entry: 0 - 1, 4 (operand addresses)
1 * 2,3 n "
2 const. 4, 0 (coefficient)
3: const. 3, 0 "
4 + 5, 6 (operand addresses)
5 c 2, 0 (coefficient)
6 I 1 "

2nd Pass:

Scanning backward the first operation is + in (4). Its operands (5) and (6) are
both single but not both numeric. No change. Next operation is in (1). Both
operands are numeric; so the constant designator c¢ goes to (1); 4*3 goes to
coefficient (1); "ignore" mark goes to (2), (3). - in (0) has one non-numeric
operand. Its terms (2 and I) go to a new table, the coefficients of which are multi-

plied by -1; so that -2 goes to coefficient (5); -1 to coefficient (6).

3rd Pass:

The table looks like this (ignoring operations):

wo - ignore
w1 constant 12
w2 ignore
w3 ignore

w4 ignore

4.18.2.
W5 constant-2

w6 I 01

The constants 12 and -2 are added to the total constant for the subscript.

If I is an induction variable, -1 is added to its coefficient so far. If not, the

SAVE subroutine files it.

F. Post-Processing of Subscript Terms

After a decomposable term is processed, a note is made if it is potentially negative.
This is necessary because the LARC represents numbers in signed magnitude form but

does not consider the sign of the index register in indexing.

2. Induction Variable Part.

An item goes to F52 for each current induction variable with non-zero

coefficient.

3. Non-Induction Variable Part.

The table set up by the SAVE routine is scanned and its entries output.

If it is not empty, items causing fixing of its components are output.

4, Potentially Negative Subscripts.

If part of the subscript goes to F52, the note of negativity goes with it.
If not, "+100000" goes to F60. Thus, the M-field of the generated

B-register is biased so that it cannot go negative.

The command
F #0 A+20 #
works identically for the two cases

(#1) = 1 and (#1) = -1.

4.18.3

LSC adds the constant portion of a subscript to the M-address of the object code:
the rest of the subscript is contained in the referenced B-register. LSC must, there-

fore, insure that no B-register is negative when it is referenced.

LSC assumed that each term of the subscript is positive and, therefore, only those
terms which Phase IV decomposes can possibly create negative B-registers. In fact,
a negative B-register can result only if the term contains a constant greater than zero.

It must also contain a negative induction variable or another factor or factors non-

analyzable by Phase IV,

Phase IV also checks whether a decomposed term contains only induction variables

and a positive constant greater than the corresponding dimension. This is an error.

G. Post-processing of Subscripts

1. Constant Part

If the total constant is zero, the item for the subscripted variable goes

to F 61. If not, the variable and its constant go to F50.

If the subscript is all constant, a zero goes to F60 as the subscript.

(Phase VI eliminates zero subscripts.)
Phase IV--Appendix II--Subroutines

A. TEST1

TEST1 processes an item in an arithmetic expression and returns to the calling

sequence at one of 5 exits as follows:

1. Constant
2. Induction Variable
3. Unsubscripted Variable.

The parameter number of the variable, if any, is moved to the mode

word, The d-digit of the mode word is set to zero.

4.18.4
4, Sﬁbscripted Variable

After the above, d is set to 1.

5. Operation

Operation and functions are marked with the mode of computation of the

expression. Functions are then treated as variables.

To eliminate unnecessary recomputation of arithmetic quantities by the object
program, Phases III and IV attach to each non-induction variable a definition

point, representing the last possible change in the variable's value.

TEST 1 modified the Phase III assigned definition points of common and equivalent

variables only. The phase keeps a running record of the definition points for those

special classes of variables.

The EQUIVALENCE point is initialized when the first executable statement is

processed, and replaced by the current sequence number whenever an equivalent

variable is encountered:

On the left of an arithmetic expression.
In an input list,

As an argument of a CALL.

L

As the induction variable of a loop.

The COMMON point is updated at each CALL statement.

TEST2

TEST2 tests all limits of loops. Its primary function is to update the definition

points of common and equivalent variable limits.

4.18.5

SETZ

This subroutine, which is called by TEST2 (see below) and by some of the calling
sequences to TEST1, simply records the necessity to compute and store an induc-

tion variable by setting a digit to 1 in the table for that variable.

SAVE

This routine sets up a table of non-induction variables in subscripts and their

coefficients. (A maximum of 9 entries).

It insures that the source statements

DIMENSION A, 5, 6)
B=(A (X, X, X)

produce this code not this code
F #0 (.25 (02)) F #0 (.20 (02))
#0 X M # X
CX #0 61 F #1 (-4 (01))
F # A #0 M #1 X
#0 B A #0 #1
A #0 X
CX #0 61
ete,
ITEM

Given a coefficient, R, and item, K, and a sequence number, S, this routine outputs
to File 60 on S the items
* R K

If this is not the first call to ITEM within a given subscript, a + item is put out

on the sequence left from the last call.

Phase IV--Appendix III--Output to F50, F52, F52

F50

o]
o
(WY

Item 1

Items 2-4

4-word item

w1
W2. 4

ccceccOfffff

F40 item for variable

: fixed point constant
leading digit = 0 or 1 for + or -

: dictionary reference of variable.

4~word item, 4 items per loop

w1
w2
W3-4

w2
w2-4

IIIIT 00 DDDDD
tuvwxyz EEEEE

ignored

IIIII jOo FFFF
F4 item for DO limit

: new induction variable name
: sequence of start of loop

: sequence of end of loop

: indicators

: subsequence 1,2, 3, of limits

: dictionary reference of I

2-word item

w1
w2
I
a

n

IIIITIMOMaaaaaa

S SS On

: new induction variable name

: fixed point constant, leading digit 0 or 1 for + on -

: 1 if potentially negative.

4.18.6

Phase IV--Appendix VI--Output to F94

Fo4

Note:

wooqosmn'xoowle

[
- O

12

4-word item

w1
w2
w3
w4

(Sequence)
(I.D.)
(In general, left of

=)

(In general, right of =)

For ID = 11, second word contains abcdeuffffID

Implied
by I.D.
DEF

DEF

DEF

DEF

DEF

DEF
$STOR
DEF
$STOR
Reserve k-
storage for
F

LIB

Word Implied
3 by I.D.
F : G-
G : 9 DAT+
G : 9 COM+
G : 9 COM+
F : 9 DAT +
F : 9 COM+
: 9 DAT
F
: 9 COM
1st half
F

F = contents of dictionary reference f.

G = symbol generated by Phase IX from f.

K = fixed-point constant

Word

4

AR R R R R AR RA

2nd half

ignored

4.18.7

Generating
Source Statement

DIMENSION
DIM, EQU I
EQUIVALENCE
COMMON
EQUI

COMM, EQUI

PARAMETER

CONSTANT

LIBRARY

LARC ScCIiENnTHIFIiC CoMPI LER.

Phase IV

‘ (®)

1

(W) =
CcRes =
Sor‘b Fq own
Seauence , Subseguence
Exc =

ne

O —»

— @
CRR —» EXC
trap location 270)
=2t FFIS

A
F4 grovp [s]
lNOv\e,

Close FSo,Fsi

i

[

|
Kesek loe. 270!
Resek FFIS To TTEM TYPE

‘ 60— way Hdranch
F§52 Feo, Fel . < |
l on Lj'c—ws, gm

is Ik be reaa
fue is b be written
Sequence o_’: ,F.‘rst executable

unstroction.

- statement name 04 -F§‘s|’

execotable wnstroction.

coonk c,Y S‘bf‘ase, .For not -

common varuakles

cc = coonk o,F S\Urajg %!‘
OFM w9 () Common varwables
O’:&v\ F'-éo) F% (W) . ' .
extena. F92 (W) location 701 13 ‘l’rangd, and FRIS ig
' anelysie of COW'tivtsemE:cs.
O —» NG

LARC ScCIENTIFIC ComPiLER

Phase N 4.20

O —» @Pf

O —= P
O — NL

—» F94 on ©.09 !
"$ STor DATA, NC*

— F94 on O.O08"
"4 SToR Comm jcet

(Ne+ce)icRmEms

Ac)

release. F99
o,pe,,\. FSo, FSI, Fse

Fel (W)

|

P FG| o ORI -1 ¢
‘Statemewt Nname Exc"

7

reqqued .

oo much sl'orage

(1]

de‘fmd' on Powd‘ qp

EQUIVALENT Varidbles.
defuntion Pont o_P
commom variables.

nest and level numbers o“
corrent tnduchion varcwablz.

Qf

cP

pA
P~

N = oocoo -~ 999
L= oo — 99
CRMEMS = memory available 1001-

data Sfbraﬁe .

LARC. SCIENTIFIC COMPILER Phase IV 4.21

FoNCTION On PARAMETER.
SLURAROULTINE.
|
Name —= Exc ;:FF?:‘; n
) » —»F94q o S.33 . 3
Fq dem "“DEF fPro” F4 dem
None Nowe

|
6 : }———* GrooP —o F&o @
4.9

()5

CONSTANT

17

—> F94 on S. |8

SIMPLE VARIABLE b .F) double - lcvsﬂr\
‘ ?

COns*avd'.

—> F9q.

“DEF ‘F: DATA + Nt
~Ne+1 4.19

b: 3 = NC+ 1
+ ©OPEN S0&RCUTINE
AH 1

| F4 Uem ' ,
None —> F94.

"LiR Nname“
Fdq e

d and ..F are Mode word em
Nowe

-F\élds. n is The nomeric

valve o_l: the ParsMe‘fel‘. @
a.9

LARCE SCIENTIFIC. COMPILER

Phese W 4,22

DIMENS IO

DA

y

11—t (total size)
o —w (offset)

double
b: Freé(s'tcf\

coMmmont

Commors

4.\9

)
t+t—t Die
wttbt —
| t*n—»b
V\——’ng
e+li—e
8 1
Fg “Jdem
novne

. availsble
memory

—» FO4 on S.s8s844:
"DEF £’ DATA+NC®

Ne+t —» Nne

|
4.19

TR = dumensSion 'table
ato .-For Common | EQUIVALENT
or Sub{:f‘csram arsumen‘f.

W Too moch e}br.gsc negured,
V Subseribt o Small.

M 4,23
cCommonl —
¥ l
IF : i—-bt:
! EQuL
: d—=g
+
| W
SIEE |A—— £4t e
o ecision
)
* Sek exit 1
aso
I
«F_’..F o ExT3 —
> K 1 Se
8?0 el 41— €
DT Y

— F94 on SE .O':
"DEF £ : commsce”

= g-1—>g

\

fx()—t @

DOUVALE e
PrEC\S IO

P&EC‘SKDN .

dL‘IN\GVIS.lOV\g 04\ a Vafi.able
Soubroutine b aSSISn

S"‘DrasQ 'L; Commont

Var{eue.

LARC SCIENTIFIC COMPILER Phase 1V 424

EQUIWVALENCE

TS = bable o,? variahles.

TS dem
lsIEIId'-OI 1""0:
Subscript 8

tobal size L k-s =t'

W scaus the table

SE * major Sequence

d * # dimeusious

-F dictionary l‘z”w:c.

T4 = bLable of chaius.

11}

£he T4 dem.
- &9
t+t—t c|l o, o H W, R
msS) [
mkt

T scens the table.
= o chan not Ccommon

— chain common

H = relafive location o‘r flrst chaiu
wm Hus olass.

W = reldfwe localion of first

o — TSw Ve“lal)k, ;W‘- chalw. '

1++3—T ms = largest subscrbt in class

H+3 —H wmb = Larscst k! ((uverse subserdt)

wn class. .
r = relativieer, ie, cistance
memory belveew char'n aund

.F(rs!' chain w class.

ELE |
F4 geoop Common —_"@
F4 grouk ———’@

emM) To SEcond PASS
4.27

e o CoMPuTE
™\+&/ SuBscrieT

Wl —» W

LARC SCIENTIFIC ComPILER Phase W

EQUIVALENCE (c',owtu‘.uuzd): ComPULTE SLB3CRIPT

4.25

p= rvodud’-zd e.F dumension So fFe(-
a'= & of terms 3ul¢n
d = # dimeaswons sgtahed.

4.24

@ noné @

4.24

none
Fa dem | an

Wrm\s number &bwqat 3 Subwi’at
o_;' sobscri,o‘l’s. lbo 3mall ko larae.

LARe SCIENTIFIC ComPILER. R«ase.W 4,26

EQuALENCE (conlinoed): Search chaln subreotine.

Search.

S+3

This subroustine compares the current
vahable fo each previcus variable.
If a makeh is found, the latter class
it made part of the —former.

w41l

Theousistent uses Q} EQUIVALENT
variable.

LARC. SCIENTIFIC. ComPILER. Phage

4,27
EQU\WALENCE. (cowtmued,)' Seconck fass

This pass marcks the class dems
(fost chain dem for cach clase)

Commod or not) relativiees every
Wof Tq — X

<) Hof Tadw— H varisble n the class |5 a Single
ms of Tqy —> MmS

point, ana COmlpu'\'es the martmum
mkt of T — mt . .
avbsedpl and lnverse sobserpt

/ _,for Hhe class.
Euro)=

LARE. SCIENTIFIC COMPILER Phase W 4.28

EquivAaLENce (continved): TThird pass.

This pass outputs a DEF
tfem & F9q for eech

EQuUIVALENT Variable.

O —=

Hu_——i' H
Wy — X

ER
. - @ i ywo—

4

' !

H:LL =+ =+ \H.“U-

CC+4+ MmS —» MmS Nc + mg — loc

P—¢

ET)

—> F94 ow 3.38!
"DEF £ 1 N4+ S, v
S.8Ss+1 —» S.S88S.

LARS SCIENTIFIC. COMPILER. Phase N 4.29

SQTOLEN VARIARLE.
> MOodDE ExPREsSSION
INPUT LISTED VARIABLE

]

\
| S —>@a°Ff I

OUTPULUT LISTED
VARIABLE. =

1—c (# elements)
o—=w (offset)

— 1
F4 dem
w+ t —»w
cri—e __ﬂgswg
~o
|
EX on

LARC ScCIENTIFIC COMPILER

OPERATION

L Yes

Aa

Examine next Uem.

Phase IV 4. 30
ADIACENT
REGISTER
T Exan
none)
@ ttem —» FGo
4.19
1
F4 ‘dem.
— S —e P

7

O—sm (mode)

Y

Expression

A-v\al:;s S

k),

O—» M
Y
Expression
Anal«dsfs
Aw] AX
= F4 tem plone o level = T

)
L“’e»\ —» FGo

CALLED RoOUTINE

LARC SCIENTIFIC COMPILER Phese W 4,31

XA

EX AN

1— k (Counf)

5
d’em——» Foo f= é Test 4 -+ ——@

2 14
Xe
sSek 2 su !
o
-1

l

Tnitalize Ti0

|r gubxrq;i' :
| R |
Analysis !

W Subseript withia arithmelic fonchon chafement.

LARC SCIENTIFIC ComPiLER Phase W 4.32

ExXAN (cod"ﬁnued): Tnhaiee Term Pr‘oc.essfms.

PL = ©O o Terms k Féo
P = Ff‘oduc;" 0)(dlmensions,
vence:, CX Terms ac = # terms ordten
I— d = # dems reqired
:_:— Zc_ L = # terms to Pr‘occss
J = § terms © ignore
c = total constant for sobserpt
:dougﬂe- —;:-—,;— To = table Qf wndoetion variabe
pree==2 coefficients.
* T, = © B resis+er cannct e
X< negahive.
o — To, ega e

1
X O

>
ac+4 -~ F4 ttem = 6
L. 65
L#

Oo—» C
Ac—e L
o—J

S ac+d —r

XS
1
'\2/ @ 4.33

HPOnj r\umber o_;z SL)bscrLH’ -"QJ‘N

LARC SCIENTIFIC CcoOoMmPiL ER P’r\a%w ’ 4.33

EXAN (qo»«d‘baued)*. Process Simpe Teem,

X s _@
< < \ —_ .
| . lest 1
cC+nK p M :(e) @———- 4 } .34
> Nie 2 B
v YA ¢ | '
3 a.+p | |l save

(e)—=)= D
Lio !
4.39

P T3 —p
e+i—e

F4 ‘tdem

_J-er'M t'?r.-; SMG“.

Tecm lso larse .

S

LARS SCIENTIFIC ComPILER Phase TV 4, 34

EXAN (covd’inoad): Process Comi:lex, Term.

PR L
No
2c
P, scan
@——‘ resel scan. -
| Uem
2—>J
@———; Fq k% -3

setz |- 2 Test 1 S - JT4+2 —-.—<::>

BE] 4
ZzD
ﬁy
od’"pu‘.' 1 CXo
TE&nNo
=2t |
ze r > Foo on R J-1 -+
‘d'em \T:O

LARC. SCIENTIFIC COMPILER (Phase_w 4. 35

ExXAn (COnanue_oL) . Exln\anaf o o{- Sobscr"g]of Term ?r'occss.uas.

1. TFurst Pass,

The f&si’ pass creafes the W Table X which contains one dem ~For‘
each Jdem 0 the subscrdpt ferm | as »fb\lo\»s:

operation _ T Ty T=1,2,3 {oﬂ +, -, %

é By B = W of 3econd openawd,
A A A= Wef firsy operant.

nomenric : .o Ty = _Floaﬁv\g pt 1
nomeric Cw
X X
variable: [oca‘hbn o,f. “dem TW
nomenic Cw
D D= O = mduckion variable.

2. s&cond Pass.

The second pess consigls QF an ‘wshpection -Foom back & -FPM“’ o_p
the 0|Der‘a" ions n the table, Constant arithmelic is done; the

mef.f(olewfé q{,’ variables are comlauhzd.

3. 'Tlm}'d Eass.

No’rkmj remans on the Table but additive constants ana additive
varcable terms aith Coe#«e'.ev\ts. These are oo+PJl‘.

LARC. SclieNTIFIC ComPILER Phage IV 4, 36

ExAN (continved): Term Furst Pass.

Scan—=s
2 —=NC

+0o —» N
O —> W

N Y
O‘D —> T
- —» By
wW—Y
wW+1—»W
w— Ay

YeA
W+i—>W

YF

Yes

YJA

x—o-&(‘ \{“o

LARC. SCIENTIFIC ComPILESR Phase IV 4.37

EXA~ (continved): Term Second Pass.

—Caq—C

C?&;P—C}: ‘(::)cw Azg— (Y) Y+1—Y
' Ba —(Y) Y+1—Y

TI _.TA)TG

Nu y
(X) —2
X+1—X

LARCe AcCiENTIFIC ComPILER Phase W 4,38

EXA~ (COntCmued.): Term Third Pass.

Pc: COnsTav\t Pa«‘t oF 'fefM_

’ X
NV — pe + Cw

[
T6, T C\ ¥ P

Thndochon s
variable ? ‘
<

No

Y
M o—\V
ave

|
)

LARC SCIENTIFIC COMPILER Phage IV 4. 39

EXAN (confinved): TFost- Anal:‘sw Q.F Sobserdpt.

| encode munus

L—K = ¢ var

YK

—>FGoonQ:
o

| — F6l o QY
Ioooco

!

VIA

-ronm FS 2 ‘Urem
Q—> 3,88 -
Téo —_— N

—IK—PI

LARC SCIENTIFIC. COMPILER, P,’\GSQW 4. 40

I I&cNo

| —» Ke

=T

@ o‘>e-a'h'on ? —\le—‘—a- ke+1

-+

This subroutine scans a Polish

Euv S""r'i.ng withoot o};er‘ah'.ns on
—> F60 on Q!
¥ d.
= ' SANE

—» F60o on R

(e)

nextente 9

This subroutine sends a variable o

Puncfoaﬁon ‘Fem b Foo.

The {oam of A(X+2Y4I) th Q& 1S
FX ’ .

TAF+ Tex+x¥ 2YT! store v adt oo

where ‘::(m'oncsa&fs -Fx P‘l’. adddion. Y

and T' s the A register containing T, #Tio tfems 41

LARC SQCIENTIFIc ComPiLER

TEST1

Y

Phase W

maric wilh

mode

Yy
Gt (oo e)EE

variable |uccessor
statement
formsf

TESTA
Q—>cl marte woth
pacrameter ¥ Mmode
b e

o @
G

CcP—rnN

\ LSceR

SET &

tfo — Z_

N —» DP

LARC Qele~NTIFIc ComPiLER 'PkasaW 4,42

2¢ oof T = news name o.[unduchion variable
D = stact of loo‘o
I E* end of loop
! F - d«c"tby\ard reference

O —s J = o,1,2,3 Sequence FsSi1 3¢-°0P
Lt t - © ot common
w = (@] NO+ COM MO r‘aVLSC
y
- 4
Form T iden N © no enlfance
N) loo-L —» L W = o e .
X = o e):f. ovter lco},:,
8 = O ol;:‘,' wner ‘oo}_,
2= O no m»«’wi’e store.
T9 iem
T ‘lo D
t,w,v, W,X, 4,8 E
Fs1 dem
I I F
b‘LTQAM.
T 2| F
G‘J%
I 3‘ F
d Uvem

DB LooP (continved): Limits.

¥

LARC ACIENTIFIC COMPILER

Phase IV

Test 2

,I,

J> F —= lowest item
I ‘Lj-QM——-D T9|__

/

Fq4 Udem

—» 5]
c em

Fq dem

Trest 2

—= S|
ol ttem.

4.44

10 - way
branch ona

O,

(=)

TEST 3

e D —» DFP

QO

ONORONO

i

LSceR

LScER

LSCER

parameter # —» ol

4,43

P—— gett?. ——@

LSCER

LARC SCIENTIFIC COMPILER Phage_w

Db LIEP (continved): To & FRom Jems.

.)
Yes
+3
~—"4.42

Hi<
| FO —> X

T“\eﬁral +rans-fer‘ —Fr‘omms |oo|>

LARC SCIENTIFIC. COMPILER Phase W 4, 45

END DF SAL BLOCK
] L
L— 1 — Foo:
get L tdewr bloek. header.
]
nowne
] X F4 (:fem
o
‘ d'ew\ — FGo
1

‘ #
X _,3%0 =

INDUCTIoN VARIABLE

io—bak

|
gt‘ouP —» FGo

4.|9

5.0
PHASE V

PURPOSE:
The main function of Phase V is to optimize an object program with respect to

manipulation of indexing quantities. This includes:

S 1. René.ming subscripted variables containing constants in their
subscripts.
2, Creating code-generating items to form induction variables which

must be made available to the program.

3. Creating code-generating items to form subscripts containing

induction variables,

4, Creating code-generating items to count the number of times through

each loop.

INPUT:

Prior to Phase V, Phase III has labeled references to induction variables in the range

- of the controlling loop as such, and Phase IV has collected a great deal of information

about each induction variable, passing this information on in the form of Files 50,

51, and 52,

File 50 contains one item for each variable containing a constant in its subscript,
F50 has nothing to do with induction variables; a program without any may still generate

a large F50.

File £1 contains a group of items for each loop in the source program, including the
old and new names of the induction variable, its range, its limits, exit-entrance

information, etc.

File £2 contains an item for each reference to an induction variable in a subscript
(unusually complicated subscripts excepted), The item contains the variable's new
name, its constant coefficient, the sequence of the reference, and indication whether

the subscript is potentially negative.

5.1
DATA FLOW:

F50 is read in and its item split to be sent to F61 and F91.

F52 is then input and used to form F53 and F54.

F53 is sorted and processed to form F55 and F56.

F55 is sorted. Then it and F56 are processed in alternating groups by F51 and F54.

When F51 is exhausted, Phase V is finished.

The forms of F50, F51, and F52 are described in an Appendix to the description of
Phase IV. The internal files are described in Appendix ‘A. The prdcessing is des=

cribed in detail below.

Note: Phase V has its own contingency routine.

PHASE Va: RENAME VARIABLES AND CONSTANT SUBSCRIPTS.

Example

Source statement: A (5) =A (I+5) + B (2*J-1)

Object statements: Fil #0 A+5 #1 (1)
A #0 B-1 #2 (2d)
S #0 A+5

F50 contains the pairs A, +5; B, -1; A, +5; these become the M-fields of the
object code.
Phase Va's function is to file each pair once in the dictionary (F91) and replace each

F50 item for the variable (A, B) with an item for the variable-subscript combination

(A+5, B-1).

5.2

A F50 group containing identical constants and variables is read in. The constant
and variable are sent to F91. The dictionary reference is attached to the mode word
of each F50 item, and the item is passed to F61. (The size of F50 and the number of
dictionary words required is greatly reduced for most programs by the Phase IV '
device of starting subscripts from 0 instead of 1.) At the same time subprogram

arguments containing negative constants are marked for Phase VIL

PHASE Vb: NUMBER SUBSCRIPT TERMS

Example

Source statements: DIMENSION A(3, 4, 5), B (3, 4, 5,), C (3, 4, 5)
A (1, J, K) =B (I+1, J+1, K+1) + C (+2, J+2, K+2)
where I, J, K are induction variables.

Object statements: F #0 B+16 #1

A #0 C+32 #1
S #0 A #

Phase V insures that multiply-referenced subscripts (I, J, K in the example) are
computed only once by naming "identical' subscripts alike. The names are sent to

F61 to be merged into their proper places in the Polish string.

Each term of a subscript contains an induction variable and a coefficient (11 digits
of information). The first step in eliminating duplicate subscripts is to condense

~ the information given into four-digit numbers.

‘ Input comes from F52 in groups by term. The term of the group is filed in F54; its

number goes to F53 once for each reference to it.

5.3

F53 is sorted so that within each subscript, the terms appear "inside out. "
Subscripts containing 1-3 terms go to F55; larger subscripts to F56.

F55 is sorted and now the major work of Phase V begins. All its files are formed;
they must now be processed in interrelationship with each other. Output will be to
F61 only in the form of both Polish strings and pseudo-code.

PHASE Vc: FILE LOOPS BY LEVEL

The loops shown have been numbered by Phase IV as follows:

\' 000 99 —W
X 000 98 EX
Y 001 98 ‘ Y
Z 001 97 EZ

Phase V will process loops W and X and the subscripts within them completely before
beginning work on loops Y and Z. When loops Y and Z are processed, all information
on loop W will still be available for use in forming subscripts containing terms from

Y and W, Z.and W, or all three,

Phase Ve reads F51 and files the 16 words for each loop with minor modifications in

a table (where each remains until replaced by another loop of the same level or until

Phase V is over.) At this point also 3 sequence counters are initialized for each loop:

C (initialization outside the loop); D (incrementation inside the loop); and E

*

(looping logic at the bottom of the loop).

PHASE Vd: UNPACIKK TERMS

The F54 items for the loop, if any, are input for use by the subscripts and unpacked

into more convenient form by a scan.
PHASE Ve: FORM NON-CONSTANT COUNTS; MATERIALIZE INDUCTION VARIABLES

Each loop is now examined in turn, I its initial, final, and incremental values (b, c,

and d, respectively in D@ S, I=b, c, d) are all constant, its count is constant. The
fastest object code for counting and looping would load one or more A-registers with

counts outside the loop, then loop with a BIT command, This is what Phase V does,

as described later.

Unfortunately, this method is impractical for variable counts. Phase Ve produces
instead code to initialize an A-register to (b-d) outside the loop and to add d and

test against zero at the end of the loop.

If the induction variable must be made available to the program (the conditions are
described in Phase IV), it is '"materialized" by creating the instructions F in b,
S# I, A #ind, at C, D, and E respectively. (See bottom of Vc.)

PHASE Vf: FORM NON-CONSTANT INITIAL AND INCREMENTAL MULTIPLES;
CHECK ERRORS '

The faformation of initial (a*(b-d)) and incremental (a*d) multiples of subscript terms
(where a is the coefficient of an induction variable in a subscript) is a space-and-
time-consuming process (especially when, as is often the case, there is more than
one a to be multiplied). Phase Vf effects the production of code to form these
multiples as many levels before use as possible, and saves the "names" of the

A-registers in which they are formed for later reference.

Phase Vf also evaluates the count if it is constant, checks that the limits of the loop

are reasonable and saves optimization information.

5.5
PHASE Vg: FORM SUBSCRIPTS

The subscripts are now in F55 and FF56 in slightly different forms. Associated with
each subscript are its sequence and subsequence and the Phase Vb-assigned numbers -

of its terms. The indication whether or not it is potentially negative is still attached.

All F55 subscripts whose innermost terms contain the current induction variable

are processed, then all F£6 subscripts of this type. The processing for the files

is similar:
1. The subscript is checked to see if it is contained in a current loop.
2. The terms are filed in a table.
3. The negative indicator is saved.
4. Item(s) are sent to F61 naming the subscript at each reference to it.
5. The terms are then processed by the subscript subroutine as described

in Appendix I.

PHASE Vh: CONSTANT COUNTS
(A reading of Appendix I will clarify this section.)
Constant counts may not be formed before Phase Vh because:

1. In some cases two or more adjacent constant counts may be combined,

but these cases can't be distinguished until after Phase Vg.

2. In some cases the BIT instruction which counts may also be incrementing

a subscript provided by Phase Vg.

Phase Vh consists of a final scan of the loops inznt in Phase Ve, from the inside out,

with attention to constant counts only.

Tests are made as described below to determine whether the loop can be collapsed
with the next outside loop. If not, items to fetch and count down an A-register contain-
ing the count modulo 1000 and ad and ab fields, if any have been saved, are/othput.
As many other A-registers as necessary are loaded and "BIT"-ed to complete the
count. (The program takes account of the fact that setting up multiple BIT's is not

straightforward when any of the partial counts is zero.)

5.6
I two loops can be collapsed, no items are output; the product of their counts becomes
the count of the outer loop, and if the inner loop's BIT command was to have incremented

a subscript, the outer's now will.
Two loops can be collapsed only if:

1 The inner loop is optimum.

2 Their counts are constant.

3. They include exactly the same executable statements.

4 All subscripts containing either induction variable contain both in such
a proportion that one complete execution of the inner loop increments the sub-

script by the amount of one step in the outer loop.

After the last loop's count is inspected, the program returns to Phase Vc to process

the next nest. When F51 is exhausted, Phase V is through.

5.7
PHASE V - Appendix A - SUBSCRIPT SUBROUTINE

Subscripts are formed in A-registers. Through most of Phase V a five-digit counter
serves as a source of A-register names. The counter is initialized at the start of each
level-one nest of loops. A-registers are named in such a way as to minimize use of

index registers for arithmetic by Phase VIIIL..

Each subscript is compounded of terms of the form ad and a(b-d) (where b and d may

be variable) and.constants. from four other sources:

1. 100000 - added at the first initialization of a potentially negative
subscript. '
2. The ad, ab parts of a counting A-register - added as that term's loop

is executed.

3. The count of a counting A-register - fetched originally or added later.

4, The total increments of optimum:loops with constant limits - added

and subtracted as described below.

Like everything else in Phase V, subscripts are examined from the inside out, for

only in that way can the optimacy of each loop in turn be checked.

The followihg examples show the operations produced for several subscripts, where

the successive P numbers are successive A-register "names."

Example 1: Single Term

at C: Pl =al (bl - di1)
at D: Pl =P1+aldl

Example 2: Two Terms

at C1: P2 = al (b1 - dl)
at D1: P2 =P2 +aldl
at C2: Pl = P2 + a2 (b2 - d2)

at D2: Pl =P1 + a2 d2

5.8

In the above examples, ad or a(b-d) may be variable; if so it is referred to by the

name assigned its register in Phase V{.

Example 3: Two Terms, Optimizable

"Optimizable' means:

1.
2.
3.
t =

at C1:
at D1:
at C2:
at D2:

Inner loop optimum.
Terms from 2 successive loops

d of outer loop constant and total increment t of inner loop calculable.

dk where count k is constant.

Pl =al (b1 -dl)+a2 (b2 -d2)+a2t2 1-2commands
nothing

P1 =P1 +aldl - a2't2 1 command
Pl =P1 + a2 d2 1 command

Formidable though the analysis seems, the commands generated are minimal, because

all operands

are A-registers or constants.

Example 4: Completely General Subscript

at D,
at C,
at C,
at C,

inner loop: P=P+ad.

optimizable loops: P = P + ad(outer) - at(inner)

non-optimizable loops: P = P' + (all waiting a (b - d) s) + (BB, if any)
outer loop: P' = (all waiting a (b - d) s) + (all mt's added

later) + (100000 if applicable)

The Form Subscript Subroutine forms code-generating items to do the work described

in the examples. In doing so, it sends several new types of items to F61. (New items

are described in Appendix B.)

PHASE V - Appendix B - NEW ITEMS OUTPUT

A. Items in Phase IV form:
1. Fixed-point multiply operation:
W1 - SSSSS sssss 49 S = Sequence
w2 - 00620 07000 00 s = subsequence
W3- 0 0

Used to form ad, a (b-d) multiples.

2. Fixed-point add operation:

W1 - SSSSS sssss 49
w2 - 00620 08000 00
w3- 0—0

3. Convert-to-fixed-point function:
W1 - SSSSS sssss 47 V = scale factor
W2 - 70700 VV00013
w3- 0———————0

Used to fix d, b-d before forming multiples.

4, Integer in integer form:

W1l - SSSSS sssss 45
W2 - 0420 000 00000
W3 - integer

Used for adding subscript terms to A-registers.

5.9

5. BB literal

W1 - SSSSS sssss 45
W2 - 05200 00000 00
W3 - BB

Used for initializing counts of loops with constant counts.
Pseudo-code items:

1. Register name item

W1 - SSSSS sssss 58 A = A-register "name"
W2 - 0000001AAAAA
w3- 0——0

Used to name register in which following expression is to be calculated.
2, Register Definition Item

W1 - SSSSS sssss 57
W2 - 0000001AAAAA
W3 - O000LLOOTTTTT

Used as a signal to Phase VIII that an A-register has been:defined.

LL = inverse level modulo 100,

T is zero except after BIT command; then it is the sequence to which the

tlw'ansfer is made.

3. Add -- same with ID = 52

Used to increment induction variable.

4. Add fixed-point -- same with ID = 54

Used to increment subscript.

5.10

6. 11
5. Negate fixed-point -- same with ID = 59.

6. Store -- same with ID = 53

Used to store induction variable in memory.

7. Transfer Less than Zero
W1 - SSSSS sssss 51 C = numeric part of statement
W2 - 0000001 AAAAA name created by Phase IX

w3 - CCCCC0000000

8. BIT -- same with ID = 56.

9. Store to fast register

W1 - SSSSS sssss 21
w2- 0
W3 - 0002001AAAAA

5.12
PHASE V - Appendix C

FORMAT OF INTERNAL FILES

F53: SSSSS sssss LL L = level
0000WWWW000n n = negative indicator

W = name of term

F54: IIIII 0 aaaaaa I = new name of variable

a = coefficient

F54 (unpacked):
+ aaaaa 0 KKKKK K = F&51 table ref

F55: W1 W2 W3
SSSSS sssss On

F56: W1 W2 W3
-n SSSSS sssss

One or more a) items followed by one or more b) items, followed by a zero

word.,

AB

LARE SCIENTIFIC. ComPILER

Phase V.

Qesorfs'
FSo

= Lot)
22 [5]

@
|

Open FSO (R

Open FS3 F54 F55F56 (W)

xtend. Fol (W)
Exfend. F91 (W)

AR

@-pﬂe'—- FSo 3roula‘

F4o

Ac |

- FSo Tem

Y

)

none |(firsk wordl)

— F91

DREF — mode

2ncl -—C“‘k wds. — F6l

FS2 rem

5,13
A
Releate F9I (W)
Ofen F 52 (R)
|=—» W
- Ia— F&4
W | =2 W
AE nowne
FS52 grovp [I, al - F52 Lem
none
AF : AD
Close FS3, FS4 (w) S‘SS'L-F,\;én
Sort F53 |‘_s ss,Lw) —
Open FS3 (Q)
o—aT'o
F53 dem FS4 dem.
KR E Lz [of
Llon m\':‘n lon 'VL

LARC SCIENTIFIC COMPILER Phase ¥ 5.14
AT Ac
| FS3 grovp [s.53] rone °
(. 5.1\5
-]
8.88. N — em last
d-evn — F55 WWW
Mmove
AH
o —(
AHD ’\
e (ww) # o — FSG
= AHe)
AxA WWW—s T »
L+ 1 L+1
more Nww Mmove
Last
T }
- AHe r
L—T¢
W —»TL
t+1 Udewms —»FS5G
AHC 1
—n s.8s —» F5¢
FSe item Fss dea
variable
W, Wo W3 nomber W, l W I W3
. s | ss |o | n
> variable
—|n S Ss nomber
o end o,F "3'0“4;

LARC. ScleNTIFICc COMPILER ?kase. V 5.15

Close FS5, F56 (W)
Sort F55 [W,,Wz,W3l
Discard. F56 dem
Open F51,54, 55,5

)
r,— P (A- r'egls"er\ name)

1—W
DI Alc
®___. FSI word |2222 wmlClose F6lI(W) __._@
y
level — J, L
FSigreop [I1] K Table dem
(] T Y, | m
i c
Y — Ko 2 D
D+ 1.2 —= kp (D) 4 = | F-
JT+1—7J ¢ mode b
VCS’ 7 \lalOC
] 8
7o wora J———(20 5 =
none o mode
o I} value
- 12
v (0{—’) 13 D
lasrsrou‘, es W—+x {’sd \ e
? ' — F X + 9
level 99 7 €o—R (FS9 dupot) s —
No
Kg: d.‘(—Fo(‘ l:=0,3=o
AN othersise ©
5.16

othenwise ©
Kyq, K9, Kio, i used for

1T Lwrormaﬁon.

LARC SCIENTIFIC COMPILER

An

L~—>KK

?

peelk at F59

nex}:_ grovp Yes

'LK?

[

none.

F549 Sr‘ou’p —=R

y

IV |

Aa

unbﬁdﬂ Uems

i

Y+ ©

~t

| mt L —"

Q—> L

o — Kg, Kt,o’k'z
M‘_' Ko

Phase V

5.16

F54 Jem (wnbpacked)

£ mmmmm

o| K addtess

b numeric?

\ICS

‘/es

A numevrie {

2

~No

—» FGI

D,“.SPF-

P+1i— P

CK:F’PB

EK‘.APd-

t+1

statement name.

— Fol
Ck'! P= - be

EK'APGL

(e

—» F&l on C,, ¢
\b'. mM
@-—b R+#£€MS P=%a:cxd -#:r each W
p+1i

LARCE SBCIENTIFIC CoMPILER Phase YV 5.17

Branch en L

A 28 &D Bc

1
Anyg ;m No ¥/|r:
oK grou_b?/

R — Ks Nes

33— Ko

- -1 —>m

Y

I
a nomeric. 2} > .
K41 @ @? Cm m:99
Yes

< =

BkA] 8L)

UK_. Ko

DVAR L]

LARC SCIENTIFIc ComPILER (Pkasev 5.18

Branch on t (COVL“'L;\oed)

BE
()

I b var,

G D)
+*

W=3¥alex—bd, Pt1
for each w

D8

L— i
KO—'Q_—.V
R —N —=W

2 table dem

LARC SCIENTIFIC. COMPILER

Phase ¥

enmbly

5.19

K55 grovh

OoO—c (nes.couvd-)

Form P dem

DE]

- Ctn—»

Form 7 list,

Foﬁ M

Subsert 'bt

®

(WJ+Y)

DR
O —r L
Zo'—’a
o—>rc

DU Y

5.22

word | O

DT

Form & list,

— > F&l on S.SS:
P tfem

FS6 dem

nowe

word! o

>
=

|

Form

Subscrdt

SVUBSCRIPT

O—= A&

LARc SCIENMTIFIC COoMPILER

Phase Y

100000 —» .
+O —» SW
0 —> tw

Asgn

—» Félon Cic b

® L[r']

!

Tnit,

242
o— A

|

5.20

1’_" k\o

—> FGl on C !
(2’5() P(&S k or)

_.@

Z+2
L_,e—uk.

—®

—~—» Fol onC

Ax P w»

LARC SCIENTIFIC COMPILER Phase V 5.21

ASGN INI‘I‘IALI?.EI

~No =
b nom@;__
+
Jes l
Tc
.9 No —» Fol on Gt
d nomeric .
@ w
Yes
] IE IF I
—‘.Félonbg(: A“‘M(b"'d) Swio * ‘
Ax(old k) (old md) —
—» F6l own K'9' = #
Kq r
— Féi on ck—\‘
. A |
@ TH ¥
' —» FGlon Cp Fo—tuw
P+1 C—okKy
Subrodtine
www

Combines u}:t'e 3 4'd§3'd‘ W
.F«.‘e,lds ‘wh one word

Sobroustine GCET R

ze2 s

A+ T+ (b-d)

Unkadcs ubf% 3 4-di5‘d‘ w

frelds and forms Table 3 '

Table 3 Ttem

w
FSquem # W

& .F.xed point add o':erah'on
[P+1] next A- r‘eg‘ns”er name

LARC SCIENTI\FIC COMPILER

Dk

— FGl o Dt
Sfa\‘emcnj' name

4

DA re

—» FGl on Dm :
AX KK, (88 c oo)

D
@—‘ Er ++9

Phase V 5.22
Kg + Ky ™ v
Y ‘
fc/looo; —
[_c/aooaj—-—-» c
—| r+e
Dikd)
Kio—@
| —» F&! o K‘S:
s
D
bre — Fol
—> Fll on E: Ciw | F P (RBe0O)
BT &])K [~3
P+ 1 .

fc/tooo 3—-’ <

[C/loao] -_— C

W

6.0
PHASE VI

PURPOSE

Phase VI reduces the space and time required by the object program by marking arith-
metic computations which occur more than once as redundant. Phase VII can then gen-
erate code to compute just once, quantities which are used more than once. These
quantities are called "common subexpressions' hereafter, and are of the form ABC
where A is an arithmetic operation or : or , and B and C are operands (or other

common subexpressions).

Phase VI also performs what arithmetic it can, preventing generation of unnecessary

code and loss of time in the object program.

The marking of subexpressions takes place throughout each l‘:lock of code (where a
block of code is that object code between two successive points to which transfers
can be made). Phase VI does no flow analysis of the program, as such an analysis
would be costly in compiling time; hence if a subexpression is required in more than

one block, it will be recomputed in each.

PROCESSING

A "block™ extends from one block header to the next. Each block of the program is pro-

cessed in turn. When there are no more blocks, Phase VI is through.
The following items are recognized as block headers:
Referenced statement names.

Arithmetic function statements,

Items indictating presence of SAL code.

P opo

Statement names generated by Phases IV and V before the first executable

statement of the program and at the beginning of each loop.

6.1

The First Pass

The first pass of each block differs from the later passes in these two ways.

1. Items from Files 60 and 61 are input and merged during the pass. There-

after the block is held in memory.

2. Subexpressions with known or computable values are replaced by con-
stants representing those values. (The constants may then become the
operands of other known or. computable subexpressions, until all such

expressions are eliminated).

A, +, -, *, /, ** operations are performed on single-precision con-
stant operands. (If a contingency occurs, an error item is filed

in F92).

B. Known values are substituted as shown, where X represents a

variable or function, and the constants are single-precision.

1. 0 for: X*0, 0*X, 0/X, 0%*X.
/f v»'.f,l‘l‘,/ :&‘ . :
S
2. 1 for: X/X, 1*¥X, X**(,
3. X for: X+0, 0+X, X*1, 1*X, X/1.
4, X for: Y(0) where X is not a function.

5. X for: FLOAT (X) (The mode of X made correct).

6. 1 for: X/0 (an error item is filed).

6.2

The mode word of the result is marked 1 (integer), 2 (floating), or 3 (double-precision)

as the greatest mode word of the three terms.

Example: The expression
X =3 (N*Y) + (1-N)*Z + 3.14155265 ** 2

reduces to X =3Y + 2.6£960438 when PARAMETER N =1 is given
X =37 + 9.86960438 when PARAMETER N = 0 is given

Four instructions of code are generated.

Every Pass

During each pass the program sets up a table containing the relative memory locations
of the operation and two operands of each subexpression in the block. The operations
recognized are the arithmetic ones and colon and comma. The operands are constants,
variables, functions,or:(on the:second and succeeding passes) marked subexpressions.
The operands of commutative operations are arranged in ascending order (thus A*B and

B*A are treated as identical}.

The table is sorted and then scanned. During the scan the second and third words of

each operation are modified as follows.
1. The u digit of the mode word.

A, Marked 5 if the subexpression is not common. This mark pre-

vents later passes from '"processing the subexpression).

B. Marked 1 throughout first major sequence number in which common

subexpression occurs.

6.3

Marked 2 thereafter.
2. The f digits of the mode word.
Marked with the ""name'" (0000-9999) of the subexpression.
3. The third word.
Contains the total number of occurrences in every case.

The next pass then begins. It will seek redundancies only among subexpressions con-

taining smaller marked subexpressions. When none exist, the block is output to File 7.

Quiput Processing

On output, operations marked 5 are remarked 0.

Operations marked 1 or 2 are examined carefully. If one of these contains as an operation
and a small subexpression which occurs the same number of times, the smaller oper-

ation is remarked 0.

The operations comma, colon (preceding a subscripted and variable preceding zero) ,
are special cases., They are always re-marked 0, since nothing is to be gained in the
object code by treating them as subexpressions. For example, in the statement

X = ABCF (A, B+C) * ABCF 15A , B+ C) * DEFF (A, B+ C)

the subexpression B + C is not re-marked even though it occurs as often as the larger

A, B+ C; because it occurs more often than ABCF (A, B+ C)).

Wher the last blocik is output, Phase VI returns to the control prograrm.

LARC OBCIENTIFIC COMPILER 'PLaS¢VT

6.4
FoRM TABLE OF CoMmMmOnt 30Ud EXPRESSIONMS
FormTAg 1
SE
I~
O—%O(,ﬂ,a,é,jﬁ GI 2
O —= KK \
[SEN 4
L—e=LA
E)Jenat F92
Open F To =
.
CRNBYP O
Foemtag 1 "W T
<
P4
1
2 « L8
M C. tem —o F’?O1 L—sl
i
Y —
[' ('cz
—_ B (‘ S
Close F92 : =L
Close. FY%o 2
L— L

LARS gCiENT Fic comPier _Phase VI 6.5

FORM TARLE OF Common~ SUR-EXPRESSIONS (Cont) aas
FOR ”‘6 .

+ B—> A

° (B SPconshar

| S~
SE ‘modec) > ‘
®_..M0de.bm e e

<

4‘ﬁ-@
ForMmMA 1

~o
A comolahive ? F—>

<E 1o \,es L 16
— LB
LA L W~ U 4 —— LP:
L.MA'X L » L.Pl

]

)
K+ | R @
LMAX “(..| — L&
Foem-rﬂsi 1o <
FORMTASL
)

FORMT™AR 1

Sf

[i]

S vaﬁle. P recision

%
4

= Double Precf sion

FormM+A&, &

LARCE SBCIENTIFIC COMPILER Pkase, | 6.6

EXECUTE OFERATIONS WITH DETERMINATE RESLLTS. Ex g F

(#)

seb conbingency

trap b Sc
1
C&r’amb\ on A) Contb«swuj
] . . |
1—> 8 99 O —42
[
@“—‘ Sg ‘ Conlingency
Y
| kt’/L_ o8 |+—<99 043
"‘"_'"_" [}
@—-—————-— B+]
|
CONTINGERNCY re Slt
trab.
o= 1 ,
PQtU\'W t;:
fx){,u\l‘:oFerl'or‘,
(O)—E=] -
truacate Lr_
(:)-———» 6/c || boh
' wbegers.
found $
bxkkc |— troncare if - N) :
i —;—- botia Lv\tege.’s. s.P Swgs‘c P!‘ccqstow
.2 = double 'a"ec:(s'iou.
SEN®
regel U‘éb __._...._.-
FoRmMTARS Sa? |

reset [rap.

&

LARe.

QONEN T IFIC . COMPILER.

Phase VT

®
el
!

Attach 3¢ea|‘¢s\‘
mode [A, B, }

[TR

%)
O — b |~ B

A C

TC

. e FoRmTAR 2

SE
[~

< 1 x /

To e
o)

|
V@
—Crror . dlejal,

X e
G

- SE

C JFsemrAn 2

3t SE
\ & / FoemTae g

Make Mmode

—®

Plvah..»\s

dluision.

6.7
c —8 |
MRS
.P.Z.

LNRC ZervgNdTiFmie ComfiLERrR Plf\asa N 6.8

GET NEXT VTEM CETUX 1

GET™X 2

GITY
R T
GT®
YN
i GXTio
ew. — s’ . ﬁo
L—» LL

CET NEXT TTEM (mnt(nued)

LARC SCIENTIFIC CoOMPILER

Phase VT

GETNX 2

&
>
@ SPRT
]
© —p» DEGREE l
O —» L TEST
O —» K
214 — 3 Ve R DEG -1
4 || TesT
e ! feh »
)
DEG + DEGC >
Yo L+3 |je—(Dec:0
DEG-1
<
v GI3 ¢
* o
Gg L+ 3 L:LL
@ GETNX 2
Close:
IDb |ejvaL? e | Tgpe error, | FGo, Fol,
. F7o, F92
Nes
NoT OPERAND Commo ~ OTHER
PRocESSED SUBREXPRESS IOM © PERATION,

O PERATION

LaRe SaiemTific ComPIiLeER ?‘,\atw— |
MERGCGE SUOBROUTINE..

6.10

MERGE

Move 2o B
teu oracy itewn
(=3 Ol'agg
G :
ﬁlase MG 3 4
Jes Feo |
Move. Ss Gl
1<
and Fot B e borany
ttews sforage..
\ "NGo Mc4 o .
Read Fé& BfF oo e Joo - colu-l Read Feo
e Ssél e wmb $seo
Oper s ,
FéOdud Fe ‘ MG S -
Say. 8sE!) @ \ Seq. $86o
V — _Cf-' —p|Co
D EoF Qeed. Feo ‘60
. = R[WE 0
MG 1 1 k @ Ex\T @
& | | Read Fel
> s ssel
‘Se‘i,_ | —e Cl
i
oo — &
N\Gz L
S’eq_ 85¢0 —+ CO

LARC SCIENTIFIC COMPILER phase. | 6. 11

SoRT RouTINE

Ry Ty
InLtaLalize_ l
K—> M
SRS
Fotce M 5
be odd.
K- — L
| —e T
ses L7
SeR1 Ext7T3 /C:/ -
. Orapare
Sekup Trcples =m qugces ‘f
Aua Ugi _& uy
Y 3w T I | V= Q‘ =
s

LARC. SAlENTIEIC. COMPILER Phase VT 6.12
ComPbPAR.

ComPARISo SUBRROUTINE

IT!/—T
!+
w—I

SLb UI’ U |

< G)w\‘:am N.jld" >
(o‘aue«ds.

=

v v v

1
ELmiNATE"

LORC. SCIZNTIFIC CoMPILER Thase VI

QUi ~EXPRESSION

LmAX —T!
el LmA X

Ur, Ugp *+

5 — mark AI

CMA

EL3

3
-

NAME + 1

2, NAME —a Makic

| —e T

R

l, NAME —» MARK

E/_/M/l‘/l

6.13
EvimiNn 1

lLARC ScieNTIFIc ComPILER ?kese_vr 6.14

i 2

T—an~
FL—J

T—> (A7)

LARC BCIENTIFIC comPILER Thase VI

O—»L

LL+ 2

LL—» X
O —> Xt

X+2
o £
T—> X w4y

/

'__.@

FORMTABY

Branch on ol:.

7.0

PHASE VII - LSC

General Description

Prior to Phase VII, file 7 has been ordered according to sequence number. The items
contain complete mode words and other information necessary to the generation of
machine code. Phase VII then processes the items in file 7 in one forward pass,
generating "proto" instruction items for file 8. These instructions are complete

with operation code, dictionary reference for the symbolic names, and A-Register
assignments. These A-Register assignments are given assuming that an infinite
number of A-Registers exist. It is necessary then, for Phase VIII to reassign the
A-Register designations under the restriction of the number available. Other informa-
tion is passed on to Phase VIII such as "successor" items and "end of list" items.

The successor items give information about transfer points and the end of list items
mark the end of Input-Output caliling sequences. File 85 is also formed during Phase
VII and contains all items not in sequence with file 8. Thus only file 85 need be sorted
and merged with the larger file 8, which was produced in proper sequence. Examples
of file 85 items include library call items, and instructions necessary fcfr initializing

input data addresses for subroutine and function subprogram compilations.

7.1

Phase VII Generator

Phase VII generation is facilitated by an interpretive system which offers a certain convenience

when operating on Phase VII items.

A, Linkage to Generator

TR 7TGEN This instruction transfers to the interpretive mode and is fol-
lowed by SK instructions which give the parameters to be used.
The first instruction to be interpreted is the first word following

the last SK following the TR.

SK 0 PB This instruction's following a TR gives a parameter to the in-
terpreter. The parameter is a standard three-word Phase VII
item and the first word is in P + (B). If the location of the
TR is L and the location of the SK is L + i, the parameter is
transferred to in the interpretive mode as Pi (it is the i'th

parameter).

T 7TGEN This causes atransferto the interpretive mode. The next word
to be interpreted is the next word. (No parameters can be given

and the subroutine level is not changed.)

B. Linkage from Interpreter
TB 0 LOCB Transfer back to machine language. This interpreter instruction
causes the next instruction to be taken from LOC + (B) in machine

language.

C. Subroutine Linkage Within Interpreter

TR SUBR Transfer ahd return. This interpreter instruction causes the next
interpreter instruction to be taken from (SUBR). The subroutine
level is increased by 1. Parameters to the subroutine is given by
following SK instructions. Return is to the location following the

last SK instruction following the TR.

D.

7.2
SK 0 P This gives a parameter to the interpretive subroutine called by the
TR. If the SK is in the i'th word following the TR, the i'th para-
meter to the subroutine is the P'th parameter given to this program

(or subroutine).

Exit from subroutine. Reduce level by one and transfer back to that

level return.

Data Manipulation

Interpretive data manipulation instructions operate on fields of standard Phase VII items.

Phase VII items have the following format:

Word 1 S

Word 2 alblc|dle e ejulf £ f f

Word 3 x|ylz|T

S is the sign of the quantity referred to and tells whether it is the quantity or the nega-

tive of the quantity.
a,b, c,d, e, u, and f are the fields of the standard mode word as described elsewhere.
X, y, z, and T are fields defined by Phase VII and describe data in index registers.

x tells whether the quantity is single or double precision (x=0 implies single, x=1

implies double).

y tells whether the quantity is in a left or right-hand register or a pair (single or double)

of registers. y=0 implies left, y=1 implies right.

z tells whether the register currently contains the second or third operand and is a

specialized field used only by Phase VIIL.

7.3
T is the class of register, T=0, 1, 2, 3, or 4 for absolute, arithmetic, index (see

description of Phase VIII items).
Also word one, two or three can be referred to as an entire field by W1, W2, or W3.

In data manipulation, the field name is followed by the parameter number (as in Al, Y3,
or W22). Parameter number 0 implies the result which is an index word being con-
structed. This parameter has only one word, W3, and so has fields W30, X0, YO0, ZO,

and TO only. Parameters number 1 through 5 refer to parameters as indicated above.

M fP1 sz Move fP1 to sz,
S k ipP Store k (a constant) in {P.
C fP1 sz Compliment of R fP1 to sz. Compliment is

defined here as: 0 replaces 1 and 1 replaces

everything else.

Data Tests

TE fPl LOC sz Transfer to LOC is fP1 = sz. Either fP1 or
sz can be a constant < 10.

TG fP1 LOC sz Transfer to LOC if fP1 > sze Either fP1 or
fP2 can be a constant < 10.

TZ fP LOC Transfer to LOC if fP = 0.

Transfers

T LOC Transfers to LOC.

BIT 0 LOC B Transfers to LOC + (B)

Generate

TF k LOC 0 T Transfer to file. Transfer k items to file 8

starting at LOC with tracing digit T. (If the
tracing digit of items should be\T is 7, tracing
digit cannot be 7.) Description of items to be

generated appears as follows:

7.4
Items to be Generated

Items to be generated have the following form:
OP A M B T

Items will have the tracing digit specified by the TF instructions.
OP is the operation mode of the item

A is the A field of the item. A is either the absolute A field or PO,..., P5 for
Parameter 0 through 5.

B is the B field of the item. B is either the absolute B field or PO,..., P5 for
Parameter 0 through 5 or F, S, D, or B which specifies that the M field is a literal

and is fixed, single precision, double precision or B box respectively.

T describes the M field (unless B is F, S, D, or B in which case T is ignored) and
no T implies M is a parameter number (P0,..., P5).

T=R implies M is relative and T=A implies M is absolute.

T=ES or NES implies that an extensible or non-extensible successor is to be generated

for M. (See successor item generation.)

M is the M field. M is P0,.... P5or if T is R or A, M the relative or absolute

amount,

Example: Divide Parameter 2 by Parameter 3

Calling Sequence

TR 7GD
SK TEXP 7J loc of P1
SK TEXP 71 loc of P2
SK TEXP+7IL i loc of P3
/ >Vl
7GD TG B2 7GD1 1 . franaen
TG B3 7GD1 1
TR 7GFIF P2 and P3 are integers
SK 2 Fetch P2
TF 4 7GD2 Generate 7GD2

gy 7GDS8

7.5

7GD2 ME Bo (1. 0) S Make PO D. P.
DSE PO P3 Divide
CX PO 61 0 A Truncate
C PO 610 A
7GD1 TG B1 7GD3 B2 Maximum of B1, B2, B3 to Bl
M B2 Bl

7GD3 TG B1 7GD4 B3
M B3 Bl

7GD4 TG 3 7GD5 B1
S 1 X0 Make result D. P.
7GD5 TR TGFIF Fetch P2
SK 0 2
TE Bl 7GD6 3
TF 1 (DR PO P3) Generate S. P. Divide
T 7GDS8

7GD6 TE B3 7GD7 3

TF 1 (DSE PO P3) P2, D.P.,.P3S.P,
T 7GDS8
7TGD7 TF 1 (DD PO P3) P2 and P3 D. P.
7GDS8 M W30 W31 Move result to P1 index word

TE S2 7GD9 S3

S 1 S1 1—> S1 if S2 = 83
TB 1 771 Exit

7GD9 S 0 S1 0--> S1 if S2 = 83
TB 1 7721 Exit

This generator program uses subroutine 7GFIF which will fetch its 1st parameter and
make the result double precision (1—> X0) if it is double precision and expand the

result to double precision if X0=1 and the parameter is single precision.

7.6

PHASE VII - Successor Item Generation

1. Within a macro, the tracing mode designation on an instruction to be generated

controls the successor item generation. If the tracing mode designation is:

a.

ES, then an extensible successor item for the M address parameter

is generated and sent to file 8:

Word 1 S(exit) - 1 99999 00
Word 2 02000 00 s (cont)
Word 3 00000 00 000 00
Word 4

where S (exit) is the first five digits of the first word of the parameter item

and S(cont) is the first five digits of the third word of the parameter item.

NES, then a non-extensible successor item for the M address parameter

is generated and sent to file 8:

Word 1 S(exit) 99999 00
Word 2 02000 00 S(cont)
Word 3 00000 00000 01

Word 4

.7

Generation of Arithmetic Expressions

The portion of phase 7 that generates code for arithmatic expressions is divided into
three sections, 7TA, 7B and 7C. T7A converts the Lukasiewitz notation into a '"tree

notation," 7B determines the order of computation, and 7C generates the code.

L TA

Items are read in one at a time and sequence numbers are generated to sort
into tree notation. The sequence numbers are divided into two parts: the
high order part is a level number and the low order part is the ordinal num-
ber of the item within the expression. The level number of an item following
an operation is the level number of the preceding item plus one; and, if the
preceding number is an operand, the level number is equal to the highest

unmatched level number (and causes that level number to be matched).

If a common-subexpression is encountered, which is not a first occurence,

it is skipped over in 7A.

When open subroutines are encountered, they are converted to special opera-

tions; e. g., the Lukasiewitz string

: MAX , X Y (firom the source MAX (X, Y) is converted to

OP86 X Y where operation code 86 is the phase 7 code for MAX.

When closed subroutines are encountered, the ordinal parameter number is
inserted into the corresponding parameter item and the number of parameters

is inserted into the function's name item.

After all items have been read, they are sorted on the new sequence numbers.
Following the sort, both operands of an operation appear together and must be
related to the operand. The operation of two operands is always the closest
preceding operation. At this time, if the operation is "-", it is changed to

"+ and the second operand is made minus.

4

7.8

7B

This section determines order of computation (except as regards where a common
subexpression is computed within an expression). This is done by assigning "Q"

numbers to all items as follows:

The "Q" of all simple operands (operands which are not subexpressions) is
zero, and if operation j has operands i and i+l, then Qj =max (Qi’ Qi+1 +
S(Qi’ Qi+ 1)) where S(Qi’ Qi+1) is the Kronecker delta. The "Q'" of the lowest
level operation is usually the number of A registers required to compute the
expression, if the entire expression is single precision and has no first

.occurrence of common subexpressions.

The computational order is now determined by starting at the lowest level operation.
First, compute the operand with the higher "Q'" and repeat the step for the lowest
level operation in this subexpression, and repeat this step until an operation is
found where both of its operands have a "Q' of zero. Now this operand may be
computed. After this is computed, the "Q'" of this subexpression may be replaced
by zero and the process repeated for the other operand of the operation involving
this operand.

The above description would indicate that this is a two-pass process. Actually,
this is not the case, but it is easier to understand the process in this way. In the
implementation of the above algorithm, an associative list is built up at the same
time the "Q's'" are generated, which give the order of computation. If the
starting points for computing two subexpressions joined by an operation to form

a new subexpression are known, then the starting point for computing the new
subexpression is the same as the starting point for computing the operand with the
higher "Q'" (or the right-hand operand if they have equal Q's).

Symbolically, the actual algorithm employed is as follows:
If A is 2 subexpression, let
S(A) =the first operation in A to be computed .
L(A) =the last operation in A to be computed .

If Xand Y are two operations to be computed, let
Y =F(X) mean that Y is to be computed immediately after X.

I11.

7.9

If operation "A" joins the operands B and C, then there are two cases:

Case 1 Q(B) € Q(C) in which case
S(C) —> S(A)
S(B) —> F(L(C))
A —> F(L@®))
A — L(A)

Case 2 Q(B) > Q(C) in which case B and C are interchanged in the above.
Finally, max (Q(B), Q(C)) +8(Z(B), Q(C)) —> Q(4)
Consequently, the starting and ending points for two subexpressions
are known, the starting and ending points for the operation joining
them are determined, and as each operation (except the last or
lowest level one) has a follower (F), the computation order is

determined because F is determined for each operation.

To start the process is actually a separate case. If max (Q(B), Q(C))
=0, then

A —> S(A)

A — L(A)

When a common subexpression is encountered, its Q is set to zero.

7Cc_

Here the actual generation is done. If the lowest level operation is A and Z is the
next operation to be generated, then S(A) —> Z and thereafter F(Z) —> Z unless
one of the operands of an operation is a common subexpression in which case S(B)
-—> Z if B is the subexpression. If both operands are common sﬁbexpressions,

S of the right-hand operand goes to Z first.

After a common subexpression is generated, it is left in an A register (which may
require an F or FF to be generated) and the mode information, including tiie index
number is entered in a table. When a subexpression is already computed, instead
of S ‘6f that subexpression replacing Z in the above, the mode information is placed

in the item from the table and Z modified in the usual way (F(Z)—s 7.

7.10

Once a particular operation is to be generated, that operation is placed in an index

register, and a jump to the proper interpretive routine is made.

Sometimes the negative of an expression is computed instead of the expression
desired; i.e., consider the expression A-B+C, where A, B, and C are single

precision variables, the code generated will be:

F & B
M & C
N &£ A

leaving the negative of the expression desired in A register & . Therefore, all

items in 7C are signed and the sign of an operation (as well as the code generated)
is a function of the operation and the signs of its two operands. Although no extra
instruction can ever be generated in computing an expression in this way, the sign

of the resulting expression may be negative.

If a negative expression results in generating an arithmetic statement, a SN or
SSN will be used to store the result instead of a S or SS. However, if the ex-
pression results in generating an IF statement, an extra SN or SSN may be gene-
rated. Nevertheless, ending up with a negative expression means that at least

one instruction was saved in generating the expression.

7.11

Phase VII Sample Codes
Generation of object code for arithmetic combinations of quantities with different modes.

1. Addition and Subtraction: a+b

A, If the signs of a and b are the same, v = A and the operation gets the
same sign.
B. If only one of a and b are positive, V=N, let a be the positive one, and

b the negative one. The operation gets the opposite sign of the quantity in

the M address of the last instruction.

a in M store a in M store |a in A store a in A store
b in M store b in A store |b in M store b in A store

a single F o6 a A% B a V a b v a b

b single V &6 b

(op normal)

a single F 6 a SM 0 b+l |SM 0 a+l SM 0 atl

b single F B b F 6 a F B b SM 0 Db+l
SM 0 o6+1 SM 6+1 [SM 0 fB+1 VV a b
SM 0 p+1

(op double) Vv 6 8 VvV &6 b VvV a B

a single F 6 a F 6 a SM 0 a+l SM 0 a+l

b double SM 0 d+1 SM 0 d+1 [VV a b VV a b
VV 6 b VvV &6 b

a single F B b SM 0 b+1 |F B b SM 0 b+l

b single SM 0 pB+1 VV b a SM 0 pB+1 VV a b
VV b a VvV a 8

a double FF 6 a VV b a VvV a b VV a b

b double VvV 6 b {

IL.

Multiplication:

axb

A. If signs of a and b are the same, the operation is tagged positive.

B. I the signs of a and b differ, the operation is tagged negative.

a in M store
b in M store

a in M store
b in A store

a in A store
b in M store

a in A store
a in A store

7.12

a single F 6 a M b a M a b M a b

b single M 6 b

(op normal)

a single F 6 a MEDb a ME a b ME a b

b single ME 66 b

(op double)

a single F &6 a F &6 a S &6 6+1 S o6 6+1

b double S 6 6+1 [S 6 o6+1 PR 6+1 11 PR 6+1 11
PR 6+1 11 |PR 6+1 11 MMJé b MM&é b
MMJSé b MM b

a double F B b S B B+1 F B b S B B+l

b single S B pB+1 |PR B+1 11 S B p+1 | PR Bg+1 11
PR g+1 11 |[MMB a PR p+1 11 MMa B

a double FF 6 a MMb a MMa b MMa b

b double MMé b

II1.

Division: a/b

A, If signs of a and b are the same, the operation is tagged positive.

B. If the signs

of a and b differ, the operation is tagged negative.

7.13

a in M store
b in M store

a in M store
b in A store

a in A store
b in M store

a in A store
a in A store

a single F 6 a F 6 a DR a b DR a b
b single DR 6 b DR 6 b
(op normal)
a single F 6 a F 6 a SM 0 a+l SM 0 a+l
b single SM 0 6 SM 0 o6+1 DSEa b DSEa b
(op double) DSES6 b DSES6 b
a single F &6 a F 6 a SM 0 a+l SM 0 a+l
b double SM 0 6+1 |SM 0 6+1 DD a b DD a b
DD 6 b DD 6 b

a double FF 6 a FF 6 a DSEa b DSEa b
b single DSES b DSEé b
a double FF 6 a FF 6 a DD a b DD a b
b double DD 6 b DD 6 b

For integer divide use corresponding macro for "a single, b single,

op double' followed by:

CX
C

6 61
6 61

7.14

LIBRARY ROUTINES

Phase III detects occurrences of a reference to a sub-program (including library
routines) and transmits them to Phase IV. The list of subroutines generated by

Phase II allows the distinction of open subroutines.

Phase IV produces LIB items for F9. 4 as requested.

Phase VII marks a table of library routines over which it has control.

a. Introduced routines

b. Convertable routines

At the end of file 7, Phase VII sends LIB items for each marked entry in the table

to F9.4. They will be of the same form as those produced by Phase IV.

All references to subroutines will be given an address mode of 06.

Phase IX will produce LIB lines in SAL as specified by F9.4. The address mode

of 06 will force editing with a marker.

) —_— 7.15
LARC GCIEMTIFIC COMPILER Phase Vil

MAIN FLOW

Displey ++T++ . § dﬁsd' dislalaj.
Stoce crumpoot Transfer un loc. 10794
o — ik, SEQ

Resekc FTHR‘.J;’QANR'UST

O F 70 ~ reacgum

O’:::.v F80,85 .Fov‘ wgﬁwg.

J

% word fle To dem o ITEM:
WORD | sequence, Subseguence , TD Ena o} Fue 7o Einiis
WORD 2 mode wotal

/
Ttems gener‘el‘ed. -for‘ Fle T are
gequenccd. usLng "SEa"

Wi{% Yes o Subseqoence Q{l ITEM

3ame as SEQ —» Subsequence QF SEa

D4

LVes

Set FTHRU
Use transfer table wdexed by ID k&
de*‘eaméue (TeM @‘a& . I.‘F ID = \‘.L,
thew s.n:)M!)ol +rams~ferred kB (s
Nnamed ITDIL

L R

LARC SCIENTIFIC ComPILER Phage VT

)

RSLT —» PRSLT
EXP —» RSLT

'

r
ADJTR
tek

esel

A

Kesek ADIR
Feset Ceee so that
nexkt eufsressim s
COMPOQd uwnmthe £
half of the rasis"er q_JC‘an

last ex}:rc s€won.

)

e

7.16

LARC SCIENTIFIC ComPiLER Phase Vil 7.17
RSLT i3 ® be stored
w EXP
Rsut 1s Pl
EXP s P2
P3 is tenpor
Cegister PeraMd'er O
Y
la
Gons Eank Cererare®
) =)
~No
Y
i
COMmmon \,es O —
gubexhr,ession <
Tetimen 2) '
ecl ? - PI —» P3
?{
P2 es p‘
m"Qs f , s e Lk"eser ? Ck;o'\srahat. T 'sz P' —— P3 !
|
P?E' o Cewerate: ?
inleger? ek P3 el |
c P3 el j
Ves
e
/[mode Pl Onfel
’ (:’ pa>)™ (“’“r::"“;i L [eTAr
e , N
P No ,
i) Za:c;; 3 t{g £3 _______6;@ Cenerare:
: - . F P31l (-o)
\/eS r——
‘9‘ \;0 P Mak(P3
o
@w’ / "'Cg;h'ue? - couble
— w\ precision.
I ,‘ e
{Make_ Pl clovble ET; ' re"t‘zt;;;lw 7 o (ET [Cemesare .
A S S
precision. wle P3 L an o P3+1 l’m @

LARE SclENTIFIc compiLER Thase VI

7.18

Cererale: A
e P33 p2

Cemerate

< P33 P2

Cenerate:
<s P33

4

Y

<

——n

LARC SCIENTIFIC ComPilLER Phase VIl 7.19

Tnpot Lst “Jdem
{for variable X",

Ootput list ‘dem
Jor variable "X

Y

Gev\et’ére;
S | X o' §

erSsS 2 X o S
f x is double precision,

Cenerare:

F 1 X o §
or FF 2 % o 8§
'\f X is double Preél516b\

e

Here efrer COW\PU&'A& ardh-

melic fonchion (in ExP)

Cenerate:

F #41 &xP

Function

EXP
posihve ?

~o

l

Adouble pree.
o

Cenerale:

sN H # |

e dopble preec.
oP

e

ﬁl&fz aJ,t’ efr da'cuLakth

ex}:('evsﬂor\ and ADIR resek,

P!sccd n l‘eg'lsl’ef
wnchicaled by
cres?

Feleh QSLT.I'.V\'?:
r‘esnsl’er tdcatedl by
aRee.

Expana EXP o
clouble pf‘eélsiom,

‘ Cenerate
T]
. T | #oO

Cenersale
as~N #H1 #

<

LARC SCIENTIFIc compPiteR Phase VIf 7.20

Ena of File 7. :

L s %\% levgth of librany.
— L

If subrodline j has been

called , then ToLL; =0 Yeos
1

é@> Generate!
\’j : F resolt #1 !

\J
. + : s /Tsthis a
I¢L"'L =) : ‘ ' Subtouvline ?
f___ 1
Cenerate: , No
hg | #o
“: L+l — L
\
- Close Files 7,%,85
i 1—=c Display ~ - F--
/’E¢L2 L has address oj e 5 dgle d4$‘>|§3.
Table ki TOL3 of - E’fb"—'c%v\;if Mmawnm

Qeconclaries \Table has 1 '

eall nombers cz(sa'omder“ces + |
b be called)Last gLl 'O ; ‘ |
eu\rhj is @, — |
o—le =
Cenerate lbrary call,
¥ for F8s
wLB \ Y OO « « o 600
I¢L2‘_+k‘_’7"‘ WP — 000 ++ 12
O —» TAL lpn , W3 ToLg
K+l —> ke w4 O

@

LARC SCIENTIFIC COoMmPILER

Phase VI

7.21

/Suc.ee,SSor ‘Jem
-Frmw Phase T

Make 4. wora
O<P Svccesgonr
Uem zero and
ootput 4 worct
vrQ,W\ {'5 ?.,Ie 8

Continve “tem

generabion.

)
O — e

(ef‘asa!ouht.., 4’1&3)

Form F® conlinve Uem:
Wi S @ sS)
w2 ol coooe (dich re{)

w3 .
wq word 3 o.f tncomng Jem
Outpot 4 word comlinue

st

U’ew\ b F 8

Is a
subpf'osraw\, o
bewg Gom}a'dcd

2

Mes

TIsthisthe

Siest execulable

Un sc.»bs'crl'ahzd
variable rz,{? .

4

AL]

y
Al is the express -

ion an sisS
Su&wﬁiﬁ , and s
Plow-charted
separately. (The

resoll is 2fE L £xP)

l

LARC SCIENTIFIC CoMmPILER Phase Vil

S

Onsubscripfed
store ref.

\

L1 checks for
(mpLisl arrays
and is -Flow-
charted

separately.

L2 generates 8&IT
tnstrochionus £

Unsubscripted

' L‘Mrlaut {‘e.F,

L1

C

7 Subscripled
| inbot cef.

7.22

LARC SCIENTIFIc comPiLER PhaseVl 7.23

& =

A

Unsubécrl’afed Acdthmelic Al with o
ootpub n&F -Fuv\cﬁon. arsumewl'& N
\ A
L1 Sek ardhmelic —fz)v\c,h'ov\ Cenerate’
‘ T 4o sub.name,

—FLaa (ARF). Advance
assige nment awd

neraﬁ’e, reedl
ssign Lew\s {»’or .{’as\:
re84s ers o and #1,

be-ftme_ (*esusker #o

where sub.-name is
click. ref. from pot Uem

r Sub sc_m.]nt'ed

A

Y
A1l

L2

e

LARC SCIENTIFIC COMPILER Phasze Vi

Here_ -F:'r*
(va\i.nj O,r

[=¥5) P(‘OS ramn,

Cenerale 4Lwe<;k
asslﬁn and
a wtion Uen

«Fa% fast register
o

&

rﬂ

ere —%r Su,wHe_
conshant.

&9

&

/Tt\c ‘Fo"o:.ai 2
a&taressiws e o
be PlaCcd (720

ad jacenkt l‘esis\'ers.

l

reqister .
(ADTR)

S

7.24

LARC SCIENTIFIC COMPILER Phase Vil 7.25

I8 nexkt
dem subs. Lw}wf?
(x> = 27)

P‘ead wm D om Op, -
moole ooor‘d-(;Fr'd'ems’i t_nduf.__—

indo TTEM +(L+) ke TL | Fle ¥

C Yes Wag last
LA TL¥ D~ Lt=— tlem read -un an A Just id andh,
- o}.‘d’em? -Bmci‘lom. ’
l ~o
Reset ARF

Uze 17‘&«3—{’@ Tokle indexea
:bd ee (-From -Fws‘" dem

mode woc-d) t defermme|
olxr‘é\'on be.. ‘ @

Il ee cigLis arexy, symbol
;;Faug‘re:?edfs is EEXY

!
!
|
!
'

&

LARC SBCIENTIFIC ComPILER (Pkase_w

F P1L P2
—_—psINSTR.

-® @

S P11 P2
—s TNSTR.

@._

TLz Pl P2 © NES
—e» INSTR,

A P1 P2
—.INST‘Q.

&)

Generare TNSTR,

whece Pi, P2 are

Pef‘amef‘er‘s .F(‘om
I.'TE‘.M

&

AX P1 P2
—+ INSTR

&

7.26

LARC SCIENTIFIC COMPILER

Read in .’\ex«t
dem from FT
e TTEm+ TL

!

Cenerale TNSTR.

where PI,P2 are

par'aw\cfus .{?r‘om
ITTEM and

TTEM + ey I8

P2

@

gIT PL P2 © NES
—» INSTR.

End of

Fde 7

|
&)

Phase VII

7.27

S This dem 1's met

ter a Polisk

been processed.

4

Send out r‘eslsf‘ew
dG.Pb'V\l:rlon ‘Jem —Fo“
the reqister Jost
used Jor the Polisk

wdexin a’rr'mg.
O —> CRECG

reset RicH flag.

|
&)

LARC SCIENTIFIC COMPILER Phase VU

&

This Jemm precedes a
polish udexing string,
sncifﬁves unformation

s

~NX P11 P2
—» TNSTR

aboubt which _Fasl:
register 5 vse.

Place r'zsisl'er name
(fron 58 thewm) n GREG,
(Thus cavses ‘the—F:llon“ms
exbressicon b be
Computed there.)

Sek RicH flag.

&)

7.28

LARC SCIeNTIFIC ComPIiLER Phase VI

&

Beﬁ;nﬁms of end
of Ust Uem.

Is W
be, innu« 9
(Is 3rd wOrd
I\OV\-ae(‘o)

Yes

f
This s the stact
04 an arithmelic Ust
which has a loo',

Set Eowu -?l.ag
Cenerale trem for
F8 k cause sPor'ch
QF actmelic (‘eSts\"er,
f necessary

|

>

/'I'k'«sb is An end- Q{_
UsFidem « Snd. woral
is 2 for T/o lishs,

3 {’0" acdhmelic lists.

Y

Is T;u\
end o_F arhmelic\™e

7.29

st ?

X .
Resel EoL

outf»ot end o,(

Ushdem o F&

o{ LD
&ol

Cenerare :
T 9NTR & 9F I

Uren -Foc F8

S

LARC SCIENTIFIC CoMmPILER %seVli

Here {or all tnpot/outpot

 operstions e,

Cenerate the T/@ callng
Sequence.

lee = 17-28, 31-35,49-52 orGl

Ceanecate:

1Gez D vFrovw oPeral‘or' mode,
Loond. .
O —>

T& #o svbrodtime n8me.

"PAvse"

Cenerale
T w
where nrs the location
cqm: in crPALS of

control ﬂ(sfou

u STO Ph

\

Generale;

8w © Ping 09'

Ceerale:

™
‘\ia\ej't n |‘s"u1€ locéT\bn
SW‘d w CR3TO? °<f

e

7.30

LARC. SCIENTIFIc comPILER TPhase Vil 7.31

SENSE LIGHT (

=

ﬁs&@q n T m

Generale Cenerate: A
SF | e L Cenerate!
SF 2 TG O n
SF 3 SLy | 2 2Mm
SF 4
“This s o-“’ all

Sense LLSM—S @

&

Noe: Sense Lght is on

f fup flop L is reset.

LARC SCIENTIFIC COMPILER Phase YIT

IF (SENSE LieHT L) Ny n,

JHlI—=»)

J+2—]

7.32

\

IF (SENSE LIGHT{)

Cenerale!

SF L

IF (SENSE LICHTL)h,

Cenerate :

TF . HERE+3
SF (L

T n,

Cenerate non-
exltensible successon

) Cenerabe NES %r noy

TFECGNSE LIGHT L) Ny

TF L Ne
SF C

(Nes) for

IF (SENSE LIGHT L) N N2

Cenerale
TF L ny
SF [»
T n,

Cenerate NES for hy
and Es forn,,
unless n, is assigned

@ﬂ)'fesei: Friev Llag

=

Lare SclENTIFIc compPiLER. Phase VI 7.33

S

]/@;cb T8 n I{F (SENSE SWiTCH j) N, , hy
,, 1
Cenerate ! O —» L
T n (ES) ; L

TIs <
nzdr‘opout? -‘f_e___

No
i

L+ |— (

v
CRISWT + J
—» P

(crsswT has loe. Q-F-F.lrs\'
shorage loe, {'or Sense Suo\fékes)
Ceuerafe

Fd Pi
where ol 1s Fast reg‘as"ef'

C
L=o L=t L2 y =3
l Y ‘
Cenerate ! Cenerale: Cemnerale !
Tez o Np (NES) Tz o n, (NES) Tez « hy (NES)
T n, (€s)
Resgelr FTHRO

i {V +

LARC SCIENTIFIC COMPILER Phase Vil

yd
IF RSLT >0 G& Tg n

RILT—> 0t
Cenerate :

TEZ2 oLl n (~NES)

Al
&)

|{.I'.F PRSLT >RSLT, CHTEn

PRSLT—>o
RILT —»ol+1

Cenerate.

Ta ol rn (NES)
or TTe o« n (NES)
‘f éithes RSLT o

eSLT IS clouble

PPeC:lS.lOn.

G'_F RSLT=0O, G Tdn

i

R3LT— ok
Ceunerate:

Tz oLl n (~ES)

(:c; PRSLT= RILT, S b n

7.34

-~
IF RSLT <O, g T n

[

RS LT —» oL
Ganerate !
Tz o n (NES)

Igzr- PRSLT<RSLT, GG T n

]

PRSLT ~—» ol
RSLT —e oL+ 1

Cenecate!
TE o «n (NES)

is double Pl‘eds (on.

or TTE oL n (NES)
ether RITor PRSLT

1§

RELT—>
PRSLT—o o+l

7.35
LARC SCIENTIFIc ComPILER +hase NI

&

“TCBTS (n,,15...)0
I (Combpoted cd Td)

|

Genera\'e :
F ol <
ox & 6l -

AX & (88 © 9999 99999-k)
BIT ot HERE+2 + kR ol

T HERE+1 + R

R —

i
Gel nexkt e -From
Ful - L
e T (nr g+ tren) Enda} FikT fem
Generate ! ~ "2,
T AN (NES)
k—l—ele

IF

NES | Now extensible suecessor.

LARC scieEmTiElc ComPILER Phace VI

7.36

() hl,“2> VLS

J+\—0J

J+2—>j l

TG2

ha (:~t<:'—.:s)4

IF()>) “a

Tcz Mg (NES)
T2 Ny (NES)

IF ()"l)) ﬂ.z
Tez WNo (NES)
Tz n, (NES)

ES ' Exftensible soccessor J+4—
j=o J=i j=2 =S J=é J=7
1 Y]
alL doo}:ours TF()> Ua TF ()ny TF()n, g
(ecroc?) Tz Ng (NEs) TLE I, (NES) Tz Ny (NES)
TR N0 (NES)
¥ y

Y
F ()P\|)V\z) ‘43
TEZ
T

Mg (NES)
Ny (NES

:

n, No
asmsﬂccl

Nes

|
T n, (NES)

1
T n, (€S)

Kesek FTHRL

LARC BCIENTIFIC COMPILER (PMSLVH

7.37

(J_’F—' RSLT 20, G T "

RSLT —=

Cenerale:
ez o n (NES)
Ta& o n

S
=

e

€

T

F RSUTHo,GoTédn

FEF PRSLT 2 RSLT, @ T¥

PRSLT — oL
RSLT —» &+

Cenerale:
Te & n (NeS)
TE ® N
ocTTe ok N (NES)
TTE A n
either PRSLT or RSLT
s double precision.

1

RS LT —» oL

éemeral‘e
T= ol HEREAHI

T . n [NES)

=
=

F.Er—‘ PRSLT # RSLT, Cp b N

ReuT—> oL
Cenerale:,
TLZz oL n (NES)
TE oA N

€

FPQSL.(S RSLT,CGE T W

|
PRSLCT — oL
RSLT —o oL+
Cenerale!

TE ol HEREA+E

T N (NES)
or TE ol HERE+2

T + n [NES)
..Fe,mﬂaer PrgT or RSLT

s double prea Siown

|

RSLT —aplL
PRsL T —a2 O+

2

erckvﬁar]:w\

o am.
a?d on,so‘ascn
sl‘: Uem

Y

Ts teme "\ No
duweu; oned

Yes

1
ATis is an Unplick
arr'ag,

|86 o | affset
—_Z1

| |

T2 hskt
‘Udewm dooble \ No

Pf‘ecus«on .9

" |Ves

21 +Z&I— &\

A

Let nomkes Q_‘; Uens
M array be denoled
a, 4333 3435%
6 digils)
(&?;89_33 —>cZ
34354, —>C!
| —» blicoonls

LARC SCIENTIFIC comPiLerR +PhaseNTT 7.38

coonb"o = femr"n

Y

Cevesale | or
$ &IT uaste,
acco(‘dvawq o 8T
Couonk.

O —» Bot coont

f-b-&ii:Couwt

B coonls + 1

e

Form & - Box (es)
USng coonks and
oHseL, and 3ewai‘c
-fei‘ok Z,u,strud‘bus

for them.

Code genesaled.

‘E)(SM&Q‘C '
DIMENSION
DoOLBLE PRECISION

X)Y)z=l

F oo (1.0)

F p (88 oo 1 1)
S o X 6

giT B HERE -\

F P (6 o 1)
S ok N B

BT B HERE - |

F B (88 10 2 22)
F 5a (66 3 o o)
Sm o A+1

83 & z2 p

&T B HEee -1

BT A+l HERE - 2

X (l0)|0)) Y (to,10), & (10,201)

=

LARC. SCIENTIFIC. COMPILER M 7.3

Feteh Upper

v l, | ke
7ar PL W?’LJ:Y (e ,__._||I
VG F 4

Teteh UFpep $ Mateh.

Tero P P2 _':‘:_..f°—--ME PL (1.9)]
‘[es #° |
[me P2 (10)] L

1

Feteh.
N - , e
S
Q (&r=32 lce ¢ ey
No »
: : #0 +0
=0 =0
O — X
- O —Y
° ' O — Z
[F P P1] —=|
E,x[gemd.
ro : EME P ('oO)] } .=_O_.‘=||I
—(Y, | —> X
%o +o
[F P P17 | N =]
w3 —o W3(©c —+=,

LARC SCIENTIFIC COMPILER

~No
ég?)———-—(““’ c2ro VT wI[F P2]

Nes Yes
)
[s p2]
i
)
cazo\ e I oo
or e ?
Yes
s °P3
X

[Te #o f2]

ki

A2=:s> No
Yes

#1—> P1

|

Phase VIT 7.40
o c2=0 Yes
,\.02_:,9 or &2
~No
Yes fs 72 7
Mmotl—
1
A+i— A
] Y
c3:=0 Yes [s 3 tul
or &? ol — A
P2 —» 3T,
A+1L—
Ad-ct — L
O e LD
W+l —w
No |N°
[Y
LSk ———-- = m-1—

LARC. SCIENTIFIC CoOMPILER Phage VIl A 7.41

a=1i Yes
or>»?

~No

2 y
Move Uemto X,

O—» L
O —s
o —»
O — R
S BEQ
o —» Sg
O —» SSo

3 i

N End of
Nexkt d—em——’x“'_f‘ ‘ch .

4 L\ |
)=

Yes
S
=0 oo
Mpax™ ™M J——— Mag;]rlguds
>0

S: +H—S; 4,
M+l —» M
3L+|——"TM

LARC SCIENTIFIC CoMPILER

L —k
Sort kR 3 wora
Uems on S char (5,33)
Stasbing a& Xo
k-2 —k
R—1—»}

Phase Vil A 7.42

2

J=1—=

-y

26

R4

|—-¢eJ

b—ap

2s v
‘a"_" Pnﬂ)Sk§‘

J— Cp4y
R-2 — &

LARC SBCIENTIFIC COMPILER

"@»bscr' or

I‘zsul.ar netion

/F‘:Jnc‘ﬂon with

35

49 — ID;
6 —»= C:

2 —=d;

o—b; u.,ft

lio

Phase VT A

2

] argome,u.t

zo Y
Z0
‘FL+| —-13
>o
3i
<O
e —90
20
Fonction iz

f)f’e,ccdd.d, $~J X

32 y

X s

L+
$ii2-t0 = fu4n
10— Fi+

Sc+l — Sy
Si+1 —> Stas
L+l —= 38349
L+2 —» L

—> Xi42

lessthaw
oo arg.

next Yewe — X4y

7.43

LARC. SCIENTIFIC ComMPILER

Phase VT,

<O

Pk—’PC‘»

O—p Qiq |

Qe

Q{_‘—" Qg

L — ke
L+1—=h

7

P — F(Sk)

7.44

LARE [R[CIENTIFIC ComPiLER (Plr\ase,\!lld 7.45

O —>» L
O —» kR

Y

Jes 1
- .
cc+u) "'L&ﬂ'fy mo—h
~No

h+il—h >

#O ‘
1 =o/7 _¢. o> = [T ,
G ton W2 (omh)2l

I

- \e
CL’B—L" W = 2or g e © —h
~No
h+ 11— h -
‘ #o
=0 >0 =0 Y o *‘?L “"ﬁle
= : @@ | R+i—k
' .
Cenerate
F'\

L — L
———->-=o -—-———’-No Cenerare F l
+ Yes l
I

LARC SAQAcCciENTIFIC COMPILER

Phase YIl

GENERATOR.

(Twﬂ)rz@ @Rc«b@

7.46

Teen

se¢t L | sec t]
1 ——>J . .
L+t —e L -
I
2 echive address| sk digit of of:)
(s L)— P —
(L)=sk) YesoF (=1, :
L4l —s L A(c) ——> n
o JH —j
3 |4
® L5 G
xAL)— L _..@
TNeT
Sat 'tf‘ams—ru
Condition,
Fetch word contain- TnT Zeitt
! £P :
Ves E.ﬁracf_ﬁlejd 3 n— L=t—L
1p z10 Rght: actjost fickt, R —>i
-NO/ Rgt adjost k (fekd,) J —1_—
1 ﬁ,}’fckmrd contdining @
oA,
e es Extract foeld
36, <0 _..Wwﬁgf o, ——
No Rght adyust ke (field,)
; () (3
Fateh word contaumiing 1 7y @
Extract -F(tddz ‘7N$ 7NM
Ei::woridcwa‘tmj ,ﬁﬁ 7Ne _?f‘d‘;‘{s*' k £ makch &i’c?;’oord. e
ExCtract jield Fetel word. anitdning £ teld. . img $A
. lement w:':;\m E fh : E}J’okpword. ComfainA &)’ck word contain -
fotdeh word coufdnlv\g-rpg — S mg 72
Tingert -F\'eld Js'::‘rf ket woord Tnser € -Ftéfd.
Store word. bore word Store word .
n-—»

)

ond gk o
—

——

CENERATOR.

&)

-

LARC SCIENTIFIC. ComPILEL Phasge VI

| —» L

Sét B Box word .ﬁ;
nomber c,’l words n

T

&2

S'_" QM

Laond,

Store A l\eé«s"‘er

()
1

3 -,

Fix Litenal e
Store lieral

Store undex

wora.

7.47

& 9-@

Thserlt
undex

—®)

£—m

Store Wieral.

o)==

{

Mm2

S — @

Phase VIT 7.48

LARS SCiENTIFIC ComPiL

CENERATOR,

S 2-— ™ (arg.H)

Make address

- &SO‘UTQ - T -

S;?I cu\du‘ec'f wbl € Ss‘uﬁ'

Sore wdex. wod fot #o

ey Y Ot .8

Ou’f‘pu‘r S.

LAaRe |SCIENTIFIC COMPILER

ey ser't ,

Phase VT

Mgy
et L18 4 —» Qpm

Plog. — T

—_—e SEQ+|—» SEQ

MA

ée:r sube&P.
waex wword.

o
—@

Not

-Foovw\ .

Output & FES

Resel 85 flag.

7.49

L-H—-LI

LARC . SCIENTIFIC ComPILER ?kasz.\lll

Make result
thegev.

7.50
Make literat M akce lleral
2 dp 3 dp.

mm 2 3

IME 32

define result
teg = 3
Defome resoltt
s |
— resolt =™

7.51

LARC SCIENTIFIC COMPILER (PlﬂaSe.W
Move (8}, 82,83) — &I
Fetem P2
op double ? Ne op. yleger?) ————1DR P2 P3
Yes Nes
P2 dovble? F expaund
Mesg
?
@—N—o——‘ Dee P2 P3
YCS
i :
\(.
DD P2 Y - e::sav\s ? .__e.s_., + — £y
l.qo
— —>\
lbi'.m XVy) o TGADD XY
‘ »l‘es’l‘ore
[Tez A x+2]
' P2 aud P3 "\ No
wfeger 9 J—
LF P o.o]w._f.. P d.p. Yes [FF dl (o..o)_'] .
\
cx Sl Gl
Tedvd P2,P3 Make ob. dnk
fix P1 e_ola. gL

[Mad (K, V)}——=|7amey P, P3| —

—pP2 —» P2

|7eadd 71, P2

i

LARC SCIENTIFIC COMPILER Phase V1 - 7.52

Store
GEN one o‘f:
S a T
_ SN & T
gl ss a T
sswa-T
2 T —» 78T
ecen [Aax b U] T+ —T
[s bv]
P v —» IS8T
&t-%s‘-"?s"'
v+l — Y
3
CEN[F ot p <o
LS «x Y]
Y' —» ‘737
Y+l —> Y
| h 1
73T+1—»7ST
X

‘ ‘GEH[SKO?S'I’Ogj

LARC SCENTIFIC

ComPILER ?W’W

7.53

- +o ey
=0 ‘I-—
p—ZLs "
| P T
P "—'PI‘ _;-——-—— V :{"
*0 ‘
T (“0) #o L —>y
f— I [A | —» X so 1=V
=
FJ |

lllf‘

o

W32 —> W3

o ~—s Y o
F P P2

8.0
PHASE VIII

Phase VIII is concerned with the assignment of phyéical fast registers to the instructions
generated by Phase VII, In addition, movements to and from fast registers and memory cells
used for temporary storage are interpolated into the generated program. The phase is divided
into five subphases called VIIIa through VIIle, The various functions of these subphases are
described below,

PHASE VIIIa - Backward Scan

The output of Phase VII is in two files: File 8. 0 and File 8.5. File 8.0 is generated in order

on sequence number and contains the bulk of the generated code. File 8.5 is generated out

of sort and contains relatively few items (to wit: extensible successors produce by T commands,
library call items, and code used to initialize certain references to parameters in functions and

subroutines). File 8.5 is sorted by the control program prior to the inception of Phase VIII.

Phase VHIa reads Files 8.0 and 8. 5 backwards and merges them into descending sequence.
Library ¢all items from 8.5 are detected by the merge and written directly to File 9.4 so

that they do not enter into the remainder of Phase VIII processing.

The items from the merged file are now identified as representing instructions, continues,
successors, instruction literal flags, or end of list flags. Successors and the two flag items
are converted to their File 8.1 form and written out. The remainder of the Phase VIIIa pro-

cessing is done on instruction and continue items.

Continue items serve to identify block boundries and as such initialize certain cells and tables
which collect information about a block, Prior to this initialization, the information concern-
ing the previous block is written in File 3.1. In particular, the tables (DR and DIS) contain-
ing the distances between usa ges of symbolic registers are emptied, the table (MAP) marking
the preferential positions of indices (see VIIb for a description of preferential positions) is
cleared, and the cell containing the distance to the next TB (92) command is set to infinity
(99999). In addition, the register SQ, which represents the position of each command in the

block, is set to 99998.

8.1

Instructions have their symbolic registers processed. Each instruction contains a register
reference word for its A field and perhaps (if the address mode is less than 10) also one

for its B field, The register reference words have the form:

PRECISION TYPE OF - NAME OF REGISTER
NUMBER REGISTER

The precision number, P, identifies that portion of a symbolic register which is involved
with this particular reference. (A symbolic register may comprise several physical fast

registers.) The T field identifies the type of the register by:

T = Absolute reference
Arithmetic

Index

Common subexpression

Preassigned reference

T o N = O

Parameter reference

The N field is a five-digit number which identifies within a given type the particular register
involved. For T =1, 2, or 3, N is a symbolic reference to be assigned by Phase VIII. For
T =0 or 4, N specifies directly which register is to be used. For T =5, a memory cell is
actually specified which is to be used to hold an expression that is a parameter to a function

or subroutine.

Each instruction encountered is checked to see if it is one of the list TE, TG, TTE, or TTG.
If so, certain anomalies in the value of P produced by Phase VII are corrected. Also, a
check is made for the occurrence of a TB command so that steps may be taken to insure

that registers #01 through #04 are free when the TB occurs.

8.2

For each register reference word, a subroutine (8AT) is entered which attaches to the in-
struction item the distances (recorded in the DIS table) to the next occurrence of the register
and to thé last occurrence. Also, the current value of SQ is attached and placed into the

DIS table. Then SQ is decremented. With this information, Phase VIIIb can, during a for-
ward scan, determine the relative undesirability of destroying the contents of a physical

register by noting how soon it will be required in the computation.

PHASE VIIIb - Forward Scan

Phase VIIIb assigns a physical fast register for each symbolic fast register. The input is
File 8.1, which, if read backwards, contains the executable part of the program in "execu-

tion order".

For each item in File 8.1, the suffix word is read and a branch is made on the identification
to the proper routine to process that item. These individual routines read the remainder of

the item,

Instructions:

The "B" reference is processed first if one is present. If the address mode is 05, then the
"B'" reference becomes the address of the instruction with no indexing. In this case, the
"B'" reference is tested to determine if it represents a single-precision common subexpres-
sion which has been previously put into temporary storage. If so, the address of the instruc-

tion is replaced by the corresponding temporary storage reference.

If the address mode is not 05 and is less than 10, then the proper assignment is made by

the assign subroutine,

The instruction is checked to determine if it is an unindexed fetch command which immediately
follows a store command which referred to the same symbolic register. If so, a flag

(REGSYMO) is set for use by the assign subroutine,

8.3

Some special instructions identified by operation codes 44, 49, and 54 are called forced-
assign instructions. They refer to single, double, and quadruple precision registers re-
spectively. Their use is to force VIIIb to make a particular fast register assignment for

a given symbol rather than searching for an optimal one.

In this manner, for example, the result of the evaluation of an arithmetic statement function
is forced to appear in register #01. If a forced assignment instruction is detected, the Pi

switch is reset and the dictionary reference field of the instruction item is recorded.

The assign subroutine is entered with the parameters describing the "A" reference. Then

the File 90 form of the instruction is constructed.

If the item immediately prior to this instruction was an instruction literal item, the implied
continue item is written in File 90 and the instruction is written to File 94 once or twice

with any non-zero sequence numbers specified by the instruction literal.

If the GOOD flag was set non-zero by the assign routine or the Pi switch is reset, or if for
a F or FF instruction the "A" assignment equaled the "B" assignment, then the instruction

is not output and control returns for the next File 8.1 item.

The instruction assigned is checked to determine if it is a S command; if not, it is written
to File 9. 0 and control returns. If so, and it is not indexed, its address is saved to compare
with the next fetch command as described above. Also, checks are made to determine if the
instruction repfesents an index definition item or a beginning of list item (address mode equal

40 and 50 respectively).

In the former case, an index definition item is formed and written in File 8.4 (see VIIle
description). The inverse level number is taken from the item and stored in LEVEL. Now

if the dictionary reference field of the instruction item is not zero, it represents the sequence
number of a continue to which the defining command transfers (either a BIT or an A-TLZ pair).
This return poiﬁt for a loop then also represents a point where the index is defined, so a

second File 8. 4 définition item is produced using the sequence number. In addition,. it is

8.4
required that the index be available in the same register at the beginning of the loop as it
was at the BIT so that, if the second definition is reconverted to a store command by VIlle,
then a meaningful quantity will be stored for the first entrance into the loop. Thus, a File
8. 3 entry condition item (File 8. 3 continue item) is required. Since the serial number (see
discussion of treatment of continue items) of the reference continue is not known, a special
item identification of 2 is required so that VIIId can determine the position of that continue

in the object code by means of the sequence number alone.

In the latter case, the "A" reference is saved in LOCK which inhibits the assign routine
from using that particular register until released. This is necessitated for the List=
Expression items which contain explicit loops since, in this case, continue items will ap-
pear within the code generated for the list, and it is normally assumed that arithmetic

quantities (in this case the expression) are not preserved across a continue.

In either case, control returns immediately for a new item so that the instruction does

not appear in File 9. 0.

Continues:

The continue item serves to force the output of information collected since the last continue
and also to initialize the areas in which information will be collected starting with this
continue. The commands required to save and restore any fast registers beyond #04 which

are used by an arithmetic statement function are generated.

In particular, the code first reads the remainder of the continue item and checks to see if
it does not introduce a new block (the identification is negative); if so, the File 9. 0 form of

the continue is produced and written out. Control returns immediately for a new item.

If the Tau Switch is reset, the previous continue introduced an arithmetic statement function.

Subroutine X1 is entered to save and restore registers. Tau is then set.

The continue flag is then examined. The possible values are zero, one, and two, which
respectively indicate a normal (programmer referenced statement name), erasable (begin-

ning of SAL block), and arithmetic function continue.

8.5
If an arithmetic function is detected, the AFRST table is cleared and Tau reset. AFRST

will record registers used.

For arithmetic function and normal continues, the File 9. 0 item is written and the inverse

level (if non-zero) is saved in LEVEL.

Now for normal and erasable continues, the table of available arithmetic temporary storage,
ATSAT, cells is reset and the Epsilon switch tested. If set, this is the first continue en-

countered. The ENCT, EXCT, and HIST tables are cleared and Epsilon reset.

If reset, the File 8.2 continue item formed by the last continue is written out, the NI counter

advanced, and a File 8. 3 entry condition item is written for each non-zero entry in ENCT.

Again ENCT, EXCT, and HIST are cleared.

In any case, the next File 8.2 continue item is formed and saved, and, if this continue is

erasable, register #00 through #04 are marked as having been used.

Control returns for a new item.

Successors:

Successor items serve to detail the flow of control from one block to another. They are

processed as follows:

The successor item is read in, the NI counter advanced, and a File 8.2 successor
item is formed and written out. Then for each non-zero entry in EXCT, a File 8.3

exit condition item is written. Control is returned for a new item.

Index Map:
The index map contains a mark for each physical register preferred for symbolic index

quantities. These marks are used to initialize the register commitment table, RCT,
which aids the assign subroutine to select the optimal assignment for a given symbolic

register.

8.6
The index map is read in and its digits are stored one to the word in RCT. Also, the
storage history table, SHT, is marked as empty, and the register usage table, RUT, is

cleared.

Instruction Literal:

The instruction literal item signals that the next instruction is to be used as a literal.

The item is read in and saved and the IL switch is set on.

TB Distance:

The TB distance item specifies the distance to the next TB command. This information is
used to determine if, were a given symbolic register assigned in the range #00 through

#04, it would have to be moved before its last usage due to an interviewing subroutine call.

The TB distance item is read in and its value saved.

End of List:

The end of list item resets the LOCK and LIST cells. The use of these quantities is ex-

plained in the paragraphs entitled "instructions''.

The Assign Subroutine:

The assign subroutine determines which physical fast register to attach to a given sym-
bolic register. The parameters given the subroutine are the register reference word,
the position and number of the distances recorded by VIIIa and the current SQ for this
reference. These parameters are first listed to determine if the reference is absolute,
preassigned, or to a locked register. If so, the appropriate action is taken and the sub-

routine exited immediately. I not, the main body of the routine is entered.

The assign subroutine selects a physical register by examining each of the registers as
a possible assignment. Several numbers are calculated for each possible assignment

and are compared with the best assignment thus far found. I better, this assignment is
substituted for the "best so far' and the process continues. The criteria used, in order

of significance, are:

8.7

1. A penalty count representing roughly the number of additional instructions

introduced into the code by this assignment.

2, The inverse sum of distances to next usages of any quantities already is

the register.

3. The number of "index committed" registers used by the assignment.

4, The number of "arithmetic committed" registers used by the assignment.

5. The number of previously unused registers used by the assignment.

6. The size of the group of free registers in which the assignment appears.

7. The number of the physical register assigned.
Two of these criteria vectors are compared element by element until an inequality is
found; the assignment with the smaller element is considered best. The effect of a possible
assignment is kept in a set of tables called the action tables. Actually, two sets are main-

tained--one for the current assignment and one for the previous best assignment. These

tables are called T0 through T9 and contain the following information:

TO: The criteria vector described above.

T1: Any fetches which must be inserted into the program.

T2: Any stores which must be inserted into the program.

T3: New histories which must be inserted into the register usage table

T4: (see below). |

T5:

T6: Entries in the register usage table which are to be converted to second-
ary histories (see below).

T7: Entries in the register usage table which are to be deleted.

T8: Not used.
T9: ¢ TUsedto initialize the other tables.

8.8

The register usage table, RUT, is a matrix containing seven entries for each available
fast register. Entries in the RUT are divided into two classes: primary and secondary.
A primary entry is one which represents a quantity residing in that particular register.
A secondary entry is one which represents a future usage of a register. For example,

consider the code:

F £ x
ME £ Y

When assigning A for the F command, an entry is made in two successive rows of the
RUT. The first represents the register =4 containing an actual quantity and is primary.
The second represents the register o + 1 containing the second half of the product

x *y. Inthis manner, assignments may be made in the light of the commitment of a

register to a certain quantity even though that quantity does not yet reside in the register.

Attached to the RUT are two other matricescalled DIST and ULTD which contain the dis-
tance and uitimate distance respectively associated with the RUT entry. DIST is the SQ
of the next references to the quantity and ULTD is the SQ of the last such reference. A
fundamental rule of formation of the RUT is that it contains no conflicts. Two entries,

E,and E 97 conflict under the following conditions:
1

1. Both E 1 and E 9 primary.

Always a conflict.

2. E 1 primary and E 9 secondary.

A conflict provided that ULTD (El) > DIST (E 2).

3. Both E‘1 and E 9 secondary.
A conflict provided that DIST (B 1) < DIST (Ez) < ULTDCE 1 °T
DIST (Ez) < DIST (El) < ULTD (Ez).

In brief, a conflict exists when a register is simultaneously committed to two quantities,

either now or in the future.

8.9

The heart of the assign routine consists of three nested loops: the I, J, and K loops. ‘
The variable I specifies which of the physical registers is under consideration as the

assignment for the first segment of the symbolic register being assigned; the variable

J specifies which segment of the symbolic register is being treated; and the variable

K, which of the seven entries in the RUT is currently being tested for conflicts. Note

that the J loop is usually trivial, since symbolic registers are usually single precision.

When an entry in the RUT is examined for conflict with the symbolic register being
assigned, appropriate information is filed in the action tables under the assumption

that this is the physical register to be assigned. For example, if the entry contains a
common subexpression which has not been previously sent to temporary storage and the
current register being assigned is a secondary arithmetic quantity, then an entry is

made in T2 to specify that the common subexpression be stored and an entry in T6 to
specify the primary RUT entry be made secondary. I considering the RUT entry as
secondary stil} produces a conflict, an additional entry is made in T7 to specify that the
RUT entry be erased completely., If the common rule expression were a double-precision
register where other part was secondary, then that secondary usage is meaningless if

not associated with a near-by primary.

This example should serve to depict the sort of processing that occurs within the loops

of the assign routine.

After all possible assignments have been considered, the action tables representing
the optimal assignment are processed and the actions represented there are carried out;

i.e., the required instructions are introduced into the object code and the RUT is updated.
In addition, any empty positions in the entry condition table are updated. The exit condi-

tion table is always updated.

It should be noted that if it is specified that an index quantity be fetched, and the corres-
ponding ENCT position is blank, the fetch is not actually produced. Phase VIIId will
insure that the index quantity is present when the code is executed. - If not blank, an index

fetch request item is sent to File 8.4, and Phase Vlile produces the actual fetch command.

B

8.10
PHASE VIIc - Build Flow Tables

The duty of Phase VIIIc is to prepare a "flow-chart" of the problem being compiled. This

."flow-chart! consists of two tables called UV and P. The P table consists of one-word

entries of the following form:

SJS[SISIS OLE LlLlLILlL

An entry is made in the P table for each entry point (continue item) and each transfer
(successor item) in the object code. Two possible orderings of the continues and suces-

sors are discernable: Entry Order and Exit Order. In Entry Order, each continue is

~

followed by those successors which reference it. In Exit Order, each continue is followed

by those successors which leave the block initiated by the continue.

The P table is formed in Entry Order. The Exit Order is implied by the L field.
The L field contains the position, relative to the beginning of the P table, of the next
entry in Exit Order. Thus, the P table may be processed in either order--stepping
directly through or following the chain as specified by L. The S field is the major se-
quence number of the continue or successor item which produced the entry. The E

field is the extensibility flag copied from the successor item. It is zero for continues.

The UV table is merely a list of those positions in the P table which contain continue
entries, An additional entry is made in the UV table which references the first %(11 in

the P table not containing information.

An additional table called T is used to associate Exit Order with Entry Order. If an
item is in position i in Exit Order and position j in Entry Order, then the M portion
of Ti contains the value j. The T table also contains in position j the inverse level

(see Phase V description) of the j&' item in Entry Order.

8.11

The input to Phase VIlic is File 8.2. This file is arranged in Entry Order by sorting on
the first word and read into memory in its entirety. For each item read, the serial
field representing Exit Order is stored into the T table, the item rearranged so that it
may be sorted to Exit Order, and the position in the item in Entry Order is attached.
After the end of File 8.2 is reached, it is sorted to Exit Order and each item receives
the value of i from the one following it. This forms the L field described above.

The file is then returned to Entry Order and the P and UV tables are filed. All is
now ready for Phase VIIId.

PHASE VIIId - Index Analysis

Phase VIIId insures that index quantities needed at the beginning of a block are actually
present. When required, index fetch request items are manufactured and sent to File
8.4 for subsequent processing by Phase VIIle, Two sources of information are com-
bined to determine the fetches required: the "flow-chart" constructed by Phase VIIlc

and the Entry and Exit condition items developed by Phase VIIIb and recovered in File 8. 3.

File 8. 3 is sorted first on physical register and within physical register into Entry Order.
Each physical is treated separately, and the fetches required for it throughout the entire
program are determined before progressing to the next register. Information is read
from File 8. 3 in groups on the physical register. Groups not containing indexes are
ignored. It is stored into a precleared table in the position corresponding to its entry

order.

The serial number (NI counter) is used to reference the T table and thus determine the
proper positions. Since the serial is not known for special continued items, their se-
quence number is looked up in that part of the P table which corresponds to entries

in the UV table. If the position so located is empty, the item is simply stored there.
If it contains an arithmetic quantity, the special continue supercedes it. If, however,
another index is found, that index must necessarily be fetched. - A file 8.4 item is

produced before the special continue is stored.

8.12

After a group has been obtained, an iterative process is performed. The iteration is
continued until a maximum number of passes have occurred (as specified by CRNOOP
in the communication region) or until no further information can be obtained. Then a

final pass occurs which produces the actual fetch requests on the basis of the information

obtained.

The iteration process determines whether or not an index quantity can be guaranteed to
exist in the register when a block is entered. Such a guarantee is possible if all suc-
cessors referringta given continue are identical. If so, that continue is marked as con-
taining the index. If not, and all the successors which reference a given continue con-
tain the same index insofar as they contain anything, then that continue is unknown and no
updating occurs. If, however, two successors contain different quantities, then the con-
tinue is marked as ambiguous. Whenever information is gained by either discovering
than an index does indeed exist at a block entry or that the register is ambiguous, then
that information is passed on to these successors which are themselves unknown until

a successor is found. This "passing on'" of information is accomplished by processing the

items in Exit Order. Thus, the next pass may well yield information about other continues.

One refinement to the above process has been built in, I the successors entering a
block disagree only by virtue of some of them being unknown, and those which are un-
known are exits from the same block that they enter; i.e., represent simple loops, then

/ it may be assumed that the common known value is then available at the continue.

When the iteration terminates, each known continue is compared with the successors re-
ferring it. If they agree, no fetch is required. If none agree or if some do, and any of
those which do not are non-extensible, then a File 8. 4 fetch request is produced which
will cause the desired index to be fetched at the continue. If all of those successors
which disagree are extensible, then the File 8,4 fetch request is produced to fetch the
value at the successor. This scheme effects an excellent compromise between time and

space efficiency in the object code produced.

PHASE VIlie - Produce F and S Commands

Phase VIIle combines the index definition items produced by Phase VIIIb and the index
fetch items produced by both Phase VIIIb and Phase VIIId to produce fetch and store
commands, The input is from File 8,4 and the output is to File 9.4. File 8.4 is pre-
viously sorted on three characters (six digits) so that all references to a given symbolic
index register are brought together with the fwe«t‘ch request items preceding the definition

items,

Phase VIlle reads a group on six digits into the FETCH area. If the data obtained
represent definition items, they are discarded immediately, since no fetch requests are
present for that particular symbolic index register. Whenever a group of fetch requests
is found, the corresponding groupof index definition items is read into the STORE area.
The two words of each of the items in STORE are reversed so that the sequence number
of the d’_e;finition ’point is on the left and the entire group is sorted into ascending sequence

on the sequence number,
Now for each item in FETCH, the following operations occur:

1. The STORE area is scanned from the beginning until an entry is found whose sequence
number is greater than that of the fetch request. Then the previous definition is
flagged (by setting the three high-order digits of the symbolic index name to zero).

2. The level number of the definition so marked is compared to that of the fetch
request. If they are not equal, the remainder of the STORE area is scanned until
that definition item is found with the greatest sequence number such that the
level number is equal to that of the fetch request. I such an item exists, it also

is flagged as above.

3. A F command is formed from the fetch request item and written to File 9. 4.

After all the entries in FETCH have been processed, the STORE area is once again
scanned. For each entry which has been flagged, an S command is generated and written
to File 9.4. Control then reverts to the beginning and the next symbolic index register

is processed.

The F and S commands generated are given the sequence numbers supplied with the
File 8.4 items. The A register is likewise obtained. The M field is marked as
temporary storage. The particular temporary storagell is determined by a counter

which is advanced by one for each group of fetch requests processed.

The algorithm described here guarantees that only those definitions are converted to
S commands which are absolutely required for each F command to have a meaningful

operand.

8.15

PHASE VIII FILE FORMATS

File 8.0 Items

Instruction item

w1 [O [|

T Minor Sequence
L. Major Sequence

w2 | I i i | 1

Dictionary Reference, etc.
Address Mode

Operation Code
Item Identification

Register Reference Word - A field

w3 | I

\ A Register Name
, Register Mode

Precision Number

w4 [SN (N NSV AN SN NS NN S .

If the address mode is less than 10, the W4 is the register refererfée word for the
B field and has the same format as W3. I the address mode,,-ié 10 or greater, W4

contains the specific literal referenced and is formated appropriately for that literal.

8.16
The Address Modes are
00 Absolute Address
01 Self relative forward (HERE +)
02 Self relative backward (HERE -)
03 Symbolic
04 Temporary storage reference
05 Fast register reference
06 Symbol with same symbol as marker
07 Symbol with special marker
10
11 \
12
13
14
15 Literals - See Phase IX description
16
17
18
19
20
21

e g e

40 Register definition mode
50 Beginning of List mode

The Register Modes are

00 Absolute register reference

01 Index register

02 Arithmetic register

03 Common subexpression

04 Pre-assigned reference (with #)

05 Parameter storage reference

8. 17

The precision number describes which of the segments of a symbolic fast register is

active for t his particular reference.

follows:

The four possible segments are arranged as

-

D 2 > <

(%)

> <

Continue Item

w1

w2

w3

w4

00 0 0 O
I S | I

T Major Sequence

1 1 1 |

N
T l Continue Flag

Item identification (-1 if continue does not introduce a block)

| Y R N N IR I TR

0,0 .0 0,0 0 0 0

0 0

/|§ Inverse level number

Minor Sequence

Dictionary Reference

Unused

The Continue flags are 0 - Normal entry point

1 - Introduces Authentic Statement Function

2 - Introduces SAL block

8.18

Successor Item

{ 1 1 || | I
‘ T T Minor Sequence
Major Sequence

06.2)0,0 0 0 0
I Y

\ /l\ Major sequence of continue
L Ttem Identification item referenced

0|01010|0l0|010)0 0,0

PR N

’ I: Extensibility Flag

Unused

NN DU (SN NN N U N I A A

The Extensibility flags are - 0 - Non-extensible
1 - Extensible

A successor is extensible implies that Phase VIII may insert instructions at the
successor without disturbing the registers used in the code that immediately

follows and without invalidating any self-relative references.

Instruction Literal Item

' S R N O M O S O O i RN

T Minor Sequence
Major Sequence

w2

w3

w4

End of List Item

0

3

0

S R Rl ll B

| I |

/L—— Item Identification

| | L 19,9
i | L | 0 | 0
1 L1 L 11 1 190
Major Sequence
0 (41 ¢ ottt
N Item Identification

8.19

Dictionary reference: of
inserted continue

Sequence numbers of first
usage as a literal (if any).

Sequence number of second
usage as a literal (if any).

Minor Sequence

Unused

Unused

8. 20
File 8.5 Items

File 8.5 items have precisely the same format as file 8. 0 items with the exception that
library call items may occur in file 8.5, A library call item has "-0" for its item identifi-
cation. As library call items are only passed through Phase VIII without processing, no

detailed item format is given here.

File 8.1 Items

File 8.1 is essentially a variable length item file. The file routine is coerced into treating
variable length items by describing the file as consisting of one-word items and using the
17-word-read and n-word-write options. Its contents are essentially those of the merged
input from files 8. 0 and 8.5 with information added as developed by Phase VIIla. Each
item produced by Phase VIIIa is suffixed (not prefixed as file 8.1 is read backwards) by a
word containing the item identification and a count of the number of words (not including
this one) in the item. This suffix allows Phase VIIIb to read the remainder of the item in

one operation,

Instruction Item

/\/

Words W1 through W4 of File 8.0 SQ First "A" Last "B" Suffix
instruction items Word Reference Reference

The SQ word is

0401 v 1 11y

11
'Ij Current SQ for "B'" reference

T Current SQ for "A'" reference

The "A" and "B" reference words are

I T | L1 1 1
/I\ 1\ Distance to last reference
Distance to next reference
-1 implies that this reference is prior to the
register definition item (C.S. E. only)

8.21

The total item may contain up to four "A" reference words and four "B' reference

words.

The suffix is

IIIOIOvIIII

/[\ Word Count
Item Identification

Number of "A" reference words

Continue item

Sequence Numbers

0,1 L 1940 (1 N

' ‘ Dictionary Number
Continue Flag

Inverse Level Number

Suffix
OIOIOIOIO Oll 0|o|0|013’
Successor item
L1 1 | Cor o 190 Sequence Numbers
0,219,2,%° L1 1 |
d\ /]\ Sequence of Referenced Continue

Extensibility Flag

0 0 0 0 20 0 0 0 2 Suffix
| | |
Instruction literal item
——" i
Words W1 through W4 of Suffix

File 8. 0 instruction literal

The suffix is

OOOIOO

| 1

00|004

Index map item

W

— T TN T

Index

Each index map word records the usage of ten fast registers
and is of the form

Map

=

Words Suffix

The suffix is E

Preferred register flags

0 0 0 0 0

0 - not preferred
1 - preferred

8.22

8.23
TB distance item

OIOIOIOIOLOIO

A Distance to next TB command

0 000 0/0 5|00 001 Suffix

End of List item

The End of List item is merely a flag and carries information only by its presence.

Hence, only the suffix is required.

Suffix

0,0;0;0,0 0;6]0;,0;0,0,0

File 8, 2 Items

Continue item

L1 1 | l |
N / ' Level Number

‘ Serial Number
Item Identification
Major sequence of continue from File 8.0

I S I N B T
A A Serial Number
Major sequence of routine from File 8.0

Successor item

1
N Level Number

Serial Number
Major Sequence of continue referenced

L 1 1 I A I

/f\ Serial Number
Extensibility Flag

Sequence Number of successor from File 8.0

File 8. 3 Items

Entry Condition item

0
l L1 1 i 1

Serial Number
Item Identification

Sequence Number of continue
Fast Register assigned

I I I T | I |

Symbolic Name of Register
Condition 1 - index quantity

2 - arithmetic or C.S. E.

8.24

Note: for condition 2 the symbolic name is not required and is always made zero.

8.25
"Exit Condition item

1
L1 1
/ﬁ) Serial Number
Item Identification

Sequence Number of continue referenced
Fast Register assigned

A | | T |
/ N Symbolic Name of Register
Condition

Special Continue item

210 0,0 O
I O I | I

' A Item Identification
Sequence Number of continue referenced

Fast Register assigned

L1 1 1| 1 1 1

/[N Symbolic Name of Register
Condition

File 8. 4 items

Fetch Request item

| I I l l
Fast Register assigned
T Level
Item Identification
Symbolic Name of Register

Sequence Numbers

Index Definition item

1

|
A Fast Register assigned
Level

Item Identification

Symbolic Name of Register

8.26

LARC SQCIENTIFIC COMPILER

BackwArRd scAn

Set dla'3 nostic

Set 5D &
++ 8 +1

G?Atﬁd o ¥AcruUD

)

Open F80 F84To read back|

Exfend F9q.
Oben F81 k wede.

,

Read FSO | goe '

o I%0 I-l —bI&)"}
!

Read F&5 EoF —

- IFS - —» I 855

'Ll&

99990 — TBDIST

Wrde dom my

Continve 5 F€1

NRM4 = CRNOAR-T
ate

Phasze V111 A

ON

8. 27

LARC SCIENTIFIC ComPiLER ?kase.\/lll/-\ 8.28
BACK\WARD SC A,

¥

O —s MAP,
L= 9,99
| e
O — DR,
o —J
99998 —SQ

2)——

gAdDL < gAD3 -

TES —+ITEM[™ IZRO—ITEM|
$
Read FES | eor coF ||[Reac. FBo
4
- -] —e T 85, -1 —>I¥%o,
Close FB®o
Fe1 and FE5
]
& +
GO
Tz l
: gadq
)
2ranch oa LD
o.‘C TTEM

o O 4 s*r ucj'low
J LO CO»A.'tL nJ-e
S @ Suecessor

3 :@ Thstroction Literal
4 (_@ End of List.

LACC SCIENTIFIC COMmPILER Phase VI A 8.29
BACKWARD &CAN.

@ Soccessor Them. @ End-of - List Ttem.

Form F81 Suecessor l

(2 words +ID=2> Nf‘d'-e ID’é
+ F8l

Wrie t F81

TO Continve Ttem.

Form FEL1Gwtinve
(2 vords +ID=1)

!
Wrte 5 F81

Nc;fe: When ITem. &0
1 the continuve does not

Yos relohesewt an enliy
Is J.‘h:s;.\'co __e__;_® FOMt) Lot names an

T mstruocTion B be
1 modLF fecl,

C

crNoAR /107

-5 -
[T]
o"‘)

1

ITEMJ

"
0

L | —

MAP.Iﬁ"
\,—/ Kol — K

+
\
TTEM j + 10— TTEM; Kilo)=

. >
\

Wite TrEMBFRY > (7 N i+ — |

Nnwords +ID:=4 |

LARC SCIENTIFIC COMPILER hase Vil A 8. 30

BACKWARD SCAN.

T ns'tr ucﬁ@v\ I‘\'em .

ol oFF

¥ o~

Doesthe

tnetruchion defme

a festsfer {

CoEF = — |— regl'sfel' a

Nes
————tt

COEF = 4

Wrde TRADIST

4 — RM.ITEM

¥ F&l (|mr4+1'b
=5>

- @ —» TADIST,

O —> L
S—y

oFF

T (TTEM {45)

L+1— L

+ — CEF

l.
J —e TEMPI
Sg —» RASTo [
sSq -1 —» SQ

>

LARC SCIENTIFIC ComPILER ?"\ase. Vil A 8. 31
BACKWARD SCAN

@ TheTroclion Literal Ttem,
m l

Form MNOW word, 'FOM Form F81 ‘tnshruetion

RasTo and bfl' Literal Lrem,

Torm IDuord {4*0»«

TEMPI and

. Y Wrte 1o F84
‘ w::‘feF‘ITEM (4 ord s + D =5>
s Fol l

@)

LARE SciEmTImic comPlLER Phase VI A

A V\asze, !‘eéa sfeﬁ
Mode. .

Absolite

BACK WARD SC A,

A—mﬂz\méﬁ c

Thder
2

_@

c. s E

4 P/‘(,AS signed

Parannelen.

P

L=

L= (QestSrUnBaM)MOaL(CRNQA&-‘#)

——u

::L‘
Q

(< H

®

)

‘P I‘efaw‘e takle searh
al‘jume,u}: ,Fop Mt Ny

Segmenks c.F regt e

LARS SCIENTIFIc. CoMmPILER P"\aS,LVIUA 8. 33
BAckWARD <CAN.

5

‘ WideT8s I5

——— @Uomeﬂ' -ﬁ(le 9.4

4 Read FB5 EoF
wk I

#n — | —p T 884 l

JT+1— T

' -y
J:N

le.
APFL:‘ CbEP s
at&:rwowk and
acem. DR7F

<o

Is op. o,p

~No .
< W(‘:\f(‘e ettor be: Mahkgd? v
message '
N4 L — N "TABLE cAPACITY
ExceedEN"

1+ |
P: Frecision Nuabke @ @ =
QF r:sx‘s“er.

S R N F e
Nl iy

—_— =3 COEF

Fla feeld
oLt

LARC. SCIENTIFIC CoMPILER ‘Phasze VIl 8 8. 34

T

Seb duM’o Ln‘kaas-c
and -FLask ++8+2

QO —» NI
O —-ENTRY +1
O —» LENEL
996——»!49**\&.@
499@T‘EMC¢NT
O —>IL
Set v, £, T
Torm é—&ox words,

+
¥

Reset p
© —» 2PRST (T)
Jor T=0,...,~NR-1

Tritialize Toand Ty

Hackwads,

and Fo B worde

|
)

FORWARD 3ScAN.

Readh "I DENT
—Fnom. Fei

|

Form &-8ox
word. B read.

varwable lemgﬁx.

‘dem.

1

Rranch on
M,Fm'cohén

EOF

I.DENT

A |zd Nl

A: Nomber QP A soﬁmeyj’s
-YO' instruetion Tems,

ID! Itewr W

iestion.

N b Number 0_‘ Dords in Uem.

¥ .Y

[| Y |
@ »® L o4 ® ® o®
DOOOOE

Tnaghuetion
Continue
Soccessar
Tastroctlon Lferml
Twdex Map

T& Distonce.

LARE QCIENTIFIC COMPILER

PhamW}T B

l

FORWIARLD

ol TRy

Re acl tns ’fmc“Tmn

E)"\(')n \ = 8.”

Tealealiee

TOrm NUMA,

DonT Tkl e

O e INS8E R

NUMB

LQC AN,

e .

NomA ¢

NOoMB g

FS A

Nomber o{“ A Se‘3mé}Js

Nom ber of 6 S:ZSM@V(K

PsT~A &nd PST R
-F(‘om TDENT

(Ky‘*ue WC

Y

Is L;V\S{'ruc‘\'{ Qv

a reteh (¢ 5)7

[[

TG g

€S Sek o '

Qwne

EFFeCT
| -t ARM

P —

qu oo

e §+x

ANem = O Asggﬁm,wﬁ A
] ASA\:‘jV\,U-\S 6
& ASS 5V\U~3

) (Cefeence
aliteral)

rgsfs_l’er)

: f__.@ (Olher)

Y “ (Ce f crewee s

2 —» AbM

para. cefer)
By, A

8. 35

fosition u’ [wh A saﬂmeuii
Foschion 0.} st B sa\,CjN\c.«‘.t',

LARC

SCcle~NTIFIc. COMPILER

P‘\BS&W)

8. 36

847

FORWARD SCAN.

I the

No /B regiher single

Pheaision S not
altered 2

Yes

Ts the
Ne recigte.r

ardhmetc of a

Yes

NoT Se areh SHT

THERE

_&w & r\.gsi.sfer

THERE

Form EFFECT

-@r &- V&-Fefewxce.

B4]

SHT entry

'\’-aw\c

| T W .

©4—» Addtess mode
Cell markced ya. SHT

!

— DREF

Eni‘efc, »..SJ'L\,
Parame:i‘e;s —fw

&- refe rence

No

_ Sﬁmev.t
O Now-udex

- Twdex

Mode B refer &
farameter Storage.

Ts B- FQAFU'&AQQ.
distance o ?

{Hssisf\ment —pREFS

Mes

| xa (

| o/
Py
[l
b
N

—O —» REFB

’

LARC CIENTIFIC. COMPILER Phase Vil & 8.37

FORWARD ScCA

+
O — TL

r B a
absolule zere ?

NS L.'I'T‘Z;\o =
\{gs ;-/
>

1

RECSYMITINSTR) Z TNSLIT > AREAS

= Wede AREA To FO4

RiSc

| —» REGSYMo

Y
BISA |w———| O RECSYMo
\
O —» ABM
EFCT op =NsTR,
—p EFFECT

INSLIT,— AREA,

Ts low

order du.SC‘l’) Ves - Kesel Write AREA ® F 94
EFFECT a 4 ? 0
&iSD .

No) ‘

DREF. TNSTR,) Torm Foo COV\'}_CHUQ.\."'QM

—> FA —PFOM INSLTIT i TTEM
JEIS]

Enter ¢ witth ?aramefers 1

‘F°" A- "’fe"me Write TTEM B F90

AequnMeMI —s REFA

AREA +| —» AREA

4

Form F9o wnstruction
Tom un AREA from TNSTR
pEFA awnd REFH,

|

l

LARC SCIENT IFIC ComPILER thase V&

O — RE.GS\NVH

>
<=
Rest TSer
L |
S

R2ic

REFA REFB

TsTNSTR "\ o
a store . —

unshruction?
Nes
[

-—
—3

&2\8

INSTR, —* REGS\IM,

|REF=F\ | — REGSYM

FORWARD ScAan.

R2Ig

Ia

Form. F89 wadex
witon Uem
‘v RQST

i
A.INSTR 3= LENEL

Wrde RasT 5 FBq

8.38

Torm Second. undex
defunition ifenn va. RRST
Sequence. wA
TnsTR, with & level

op LEVEL — |

]

Wrde RasT 5 Feq

fore FE3 SFCC"LGL
conbvmve dem . RQST

\

Wrte Rast K F&q

Write AREA K F%o

B21H

“Is address

>
mode & 4O < begqinnim o{?
et

Double
prcdkswm?

&2iIA

a Suxs[e- Frec'»siov\

REFA —»

Lpe o
EEFA —>
\Ics Lok o
e
821 ReFA+I|

LARC SCIENTIFIC COMPILEL Phase VIl 8
ForwWARD QCcA~N

Contiinve Tlem,

Reacl continue Clear AFesT.
. . E@C ,
dem Lo eNTNU L=1,..s,CRNOAR

-Fwowv F 3l

Y Reset 1

<
CNTNU‘ 1O ’

Major Sequence

QF CNTNU ——n
Sa~NCE

>

St Form Foo countinuae
Posek Jeml 't AREA

X (AFRST SAncE

3 F
CraTru) Wrdte AReA & F90

L

Y
= -= D

e S

|

Trest Covdl'mue,

#Les.

) Normal
. A.CNTNU —» Ls\/s_ﬂ
1 @ Erasable !

2 ‘ Am‘kma ic Tonclion 2+ Resel

LARC. SCIENTIFIC COMPILER. Phase Vill & 8.40

FORWARD SCAN.

S

Il s+~ | —e ATSAT, Fform F82 cowlinve
Cmtyennnyto Fo v ENTRY

Wede enTRY T F82

1 2oococo —=
NI+ | —s NI ENC_TL) E.XC.TL
O —> .T_ l; = O LI TN 4

ENTRY éud ENcT

Form FP3 conlimve
JQM. m R@sT .Frow\ ' @ @

) Resek €

Wrde RQST Kk FP3 1

TO —e ENCST

; L,
BeSu) EXCT) HISTL

)
i) . L:o’. .-, CRNOA’Q-l

O —>» HISTI
I+ —I

LARC SCIENTIFIC COMPILER Phase VIIT & 8.41
FoRWARD ScAan.

Soccessor Ltem. Trdex M&F JTtem.

Read Successor Read. ndex map coF
‘Yem onte SuecsrR ‘L— demiwmbs TTEM
from FeL Prom Fet

NI+ 11— NT o—=1
o— K
b7c -
Form F82 successor '
w RQasT
dem o—»7

i 7D

Wride RasT B F82 '

l l Tth.digit of TTEM,(

L < (T: crmoAR

o—TI
]
I+1—1
&7E _
T :crnoAR Y2 T wfo— sk
] /
form F®3 soccessor <
- dem un RasT | ° QUTJ *
)
T+] ~—>T J= O «~«, CRNOAR-1
" K= O) e~~,76
Wrde RasT K Fg3 <
— (7. 1o
Yoy

)

LARE SCIENT\Fic ComPiLER. Phase VI 8
FORWARD SCA.

820 IV\STFUJ:OVL L‘d’e.ral. Ttem.

Read thstruetion Uderal

dem -Fl‘om Feo Uik Eor _@

INSLET

T

l— 1L

T& Distance Ttem.

|

Read T8 dist. cor u
e wo TeDIST 6lo

NLH’\ QF"LOV\. i

99 —> Loa, ,Loek,

9900. 99 — LIST

Eder Error Rodtue:

8.42

LARC SCIENTIFIC CoOMPILER f‘anase, Vilg 8.43

FORWARD ScAant

'T\f\e A&SL\(J’V\ gub POU-\—L‘,V\Q,

Save rameters C3 <ot ?\2 S Qati
NUuMR, FASTNR RRW "
: Co -)" (PSTNR T)
and o
i
I+1—1I
O—Cood
<
. N
e%@"‘u 4@ < Obtaln N T:NUMR
o.F RELY 20 SSSLf)nMew ->—
> ce
c2 9 ! 55 f, p
' EXVT TNPE =({ =0 Lndex
%5, Maode 2 4 = | <o Accthmelic

Nofe : Asssammevd' Is
r\eﬁa‘h\/& %p absolote
r‘e—fere,v\ces and Posi_h\;e

- 4
LAST = CRNOAR + NumR - |
EFFECT =

T ~(AsSieN
-rOr' "+ r‘e'Ferev\cas EFFECT X110 ASS\E P'J)

Ci

Use LOCK %,,‘

asét.sr\mew\'
y
EX\T
O —» RASE
0o —> AUTER
999 — TO:)Tol'
o — To., o0k
0o —b To& Iz o

Set W

Y

= RES = (mo ({QN—?)

_l-‘—-t

'— 8 'Jg+L
L= '/noa) e

I =RI = o©
C =999
Reset 2

Py &
L = RT
Jg= 1

LAaRe ScIENTIFIe compiLeRr. Phase VIITa 8.44
 FORWARD ScAN
Y .
O —s FREE _ -
Reset & —~
A N> | > o,
N = e
) :
Reset W -
?e&d' Cb fe Set U | Reset
ps | SeF on | St
RT = RT+4 - NumR = RT
TT=7-RT
TOo4g = © = P68
Niz© 1

J@FQEE
Sek o

LARC SCIENTIFIC COMPILER, Phase VI 8.45

FoRWARD ScAN.

Resak
N_c_te'. “The oloer‘sﬁom "CounNT" ¢
Shecifes the «folto-,oi,w\j- Cpen

subroutine.

"9 x CounT" FreScr7d°e,s that
the sobrootine be uncluded Tocce.

CooNT [T

1 —= o,

LARC. SciEN

TIFIC COMPLLER,

Phase VI8 8.46

RI —TO Ni+8+7

FORWARD <ScAaN.

|

RI+41—> RJ
N+ — N

JT3+ == 1T

NitNumR

Ls &&$ Yes

Pf”w

.——Cf

| —= PRIME

=(PRiME 1O

-l —=TO G1+8+7

I

Pi4

— 1| 4 xcounT

' _ Reselc _re
e = (RJT : Locks ﬁesu., 3’=
S —e N

LARC 5(’,|ENT[F|Q_OOMPU.E_& pkasg_ VIIT] 8.47

FORWARD ScAN

-7~ N\ Pe

J
%c:r :

+ =

i o a ©
=y

2X COONT;

LARC. QCIENTIFIC CoMmMPILER.

1 8.48

FoRrRwWARD QaN.

O —» RUTJ',K,
HlSTRJ.-l—-b I-HSTR;

Pn

= RRT —>ULTD
Ni+8 , \TK

| —e NF

LARC ScIES~NTIFRIC COMPILER Phase VIIT 8 8.49

FORWARD =ScA

—

Note; Som is kept

L res'ns*‘er z2 Contribute DISTy
© Sum

Y

Nes @‘m&

L4

N Lnsert (d_))
tn 16
3 DIBA Y
\
= l COONT
3)
DGS |
Ts EQT(S)K,) ~No
anIndex ?
{Y DOA Nes
]
2XCOUNT
CounT

©

LARC. QOIENTIFIC. ComPiLer. Phase Vil g 8.50

FoORWARD ScAN.

7 I seal (3, m)}----

)
— (J')KD

+

Fo |

THERE -3%%77
‘ —fqr ~N

|
|
|
'
|
|
|
I
|
|
NOT THERE |
]
|
|
|
|
|
|
|

F3s]
Thset N
b T Y

=

SLEq 2 [F------

Reset § @

F2

LARE. SCIENTIFIC ComPILER Thase NIlI&

| > PRUME O

.
<

RRNItg \ <
sulr)Kl

>

-

1 Di3

IQRTNH-R‘ <
. D|ST¢}K_

>
D3

GCovitrdoute D‘ST\EK
E Som.

|
O,

Tnsert (I k)
T 7

ExaT

Q,

FORWARD <cAN.

z2

is Q)TJ‘) v

ar\.ﬂ/\Mej'l'cal 2

Search SHT THERE

-Pol‘ RUTJ)K

=1

NOT THERE

CoOONT

.It'\wt Kj) RUTSJK

T2

l

ExaT

ExiT
2

8.51

8.52

LARC. SCIENTIFIC COMPILER Phase VB

FORWARD ScAn

- Torm T1 enh Ny
m RT auwd
RRTNI

enc

~ TnserC e,.d:r.d
v T4

LARC. SCIENTIFIC. COMPILER Phase VI8 8.53

FORWARD IJeA~

C—> T g
Sum —= TOg4p
FREE —» TO o, ¢

O —> TOg4a ,TO-ug, | C&tS

}
J=0
s &0 \ _
~+ a1 8O
i >
dnsert
RQINI — TS L= &+ComTT, _
RRT 14qg = T T TOgtqgar
) NI+ o, =ToL +
Hs
(%) |
J+1—J
|

R+ ALTER —e B

o -~ ALTER —> ALUTER

L41—» C
J'fl"b\'j

Restlc

LARC SCIENTIFIC CoMPILER ?kasa. Vill &

< M ackure new
RI:LAST c g for
cCouNT _‘Eoe“"me

'Optarer+i V=

: 999

+
IV

|

FORWARD

R1

Sean

II""?—-D IT

Resek T9

—®

Wrte error

ossuble

not

message
' A’sna'bvm-wc .

_Ti@=
p;ny
#

ctd-

L=o0
T |l
Dz"“ermdv:.e, the

(’e,jtsfe,r J B be
erased fromn
T e+l

H\STJ - | — l-HSTJ-
o —» QUTT.,?
C+1—=L

@M?)é '

>

I 1o

8. 54

LARC. SeiEmTIFIc ComPiLER Phase VIl

8.55

FORWARD 3CAN

T RoT cell "\ Yes
re.fvuced_ an
wmdex ?

No

X2

)

INSSE @ +1—>INSSEQ)
Form F9o afore. command]
AF‘OM I~ SSEQ K [l.
and "'eMPorar cell

Wete sto e

k Foo

IuA

form SHT ev\,l’rj And
store un SHT S HTN

SHTN +1—2 SHT™

Searcin SH'-T r THERE
quaiity K be fekhed|— =
NOT THERE
I8A
Search RUT for NOT THERE
ﬁua«ﬁl’j R be 7&3}@1«@1 Bl
THERE ‘
T2 E Is qua)
ched =
[TNSSE@ + 1— TNSSEQ Egﬁﬁr p
Form EESISQJ' =S ex?
&3!5“?) F.ej'ok -Pl‘owu
Tig+L ans
INGSEQ
Wrie Feleh
E Foo

[

Eegisl’er fetehs = j ‘

20000
— ENC"I'J

I
1

LARC. QQrie~NTIFIc CoOMP (LER. Phasge VIR

' TIs amm:{
_No Pefon e

PPQéJS cn 2

ForwARD Rafwd

Ts RUTN Ne | Resek

Prinary >
Nes
y

C\—- { T2

L 7:’\-/
+
[T Resel
1

O —» RUTY

D

ecremenll corres’m
HIST wd .

2

-—

> T34

RAEGR

8.56

LARC. QCIENTIFIC COMPILER %sz.\/lll%

U
z

FORWARD ScAaN

xr3zm

8,57

TNSSEQ +41 —>INSSER
Form FR84g .felbl'\ Fque.s“'

_Frow\, INSSEQ.)TI&_H;)

TNSSEQ@ +1 — INSSEQ
vToPM N\emord t"o Eesn‘s*‘er
Feleh -Frorv\ INSSEQ
SHT av\d TI B+ L

y
Wide o F#4

M. T B+)
—> ENcTJ‘
and EXCT]

Wrde Teleh
kB Foo

)(3

l

Delete corres Fov\dimﬁ
SHT enlny

LARC SCIENTIFIC. COMPILER. Phase VIR 8.58

FoRWARD ScA

2 —» RCT
TO gL+

KCI)namen.Fw\d-c&l

K= 200000

LARE R[CIENTIFIC COMPILER Thase VIR

FORWARD ScfA

f,\ Selo e

lekxzt

#+O — AFRST

TO g+l+7

8.59

Ts tth d\fjpk' S_F
gFFeeT a |?

No

Form DonT Takle

evd’hd ffbm TOG_H:_‘_.?

li

Flej e,nrﬁ:! L

Twnsert i DoNT

DONTHN 4+ 4 = Do~NT™N

DoNTN

T7A

s <
L S NumR a

=

Retrieve
ASSlGr\l P"'\ -+ To 6.17

-Fgr assg nme~t

Y

Tob -— CGood

LARC SWCIENTIFIC. COMPILER, Phase VITa 8.60

FoRwARD =cA~

| Subfou‘}‘;ue ,: save
‘ @ and C$"’Ore, .Fast

r eattrers -Fr ardhmelic
‘F.)V\c'h.éus of

Torm | [= <ubprograms.
L= Ist RUT 'Foéfh.'ow L=5 ’° 3

P\ossfHe associele o,‘ e"Té.rg.
Jelasksuch 4+ 1
N= C

Is PUTN
an ESSOctd’e 94:

... 9
[Ty’ Form F8d feleh request
Yes for # L Wil ~AMER
| aSnd s fied vence
] S'Dr\e:‘ibersqq
exiT/
: Write o Fe4q
:
L
SQBJ?J Torm oot responald
€°Q+LJ’\2- d L - 'ch
[
|
i ,
Wrde & Feq
SEa

X18

‘ | -,

(v)= |
2 < . : 2_
<'7 ———————(L :CRNOAR
ExT,

LARC. [CIENTIFIC. COMPILER ?‘f\ase_llllls

8. 61
FORLIIARD AN
Resal TEMeNT + 4 i)se
—> TEMCNT TEMCNT
| <
> o
ATSATEE——— L+ —(| : @ HAL
+
J‘ ’ gubf‘ou'h,ne }% Qla'l'eiw _ﬂf\e name
-0
O-F a Tevaorarj S}'Ofasc ‘oca‘ﬁom.

Jtl—y

Close -PLIe,s
FgI1, F82, F¥3
and Fgo

i

Ee:fore. cliag noshic
QV\,'U Aund , |——’JH"GL“3"T
Flash —- 8-3 g-ﬁ ATSAT.
‘ £xT, ' - k.
Sort Fe2 . Sobrodtine "S{.har
Bnd FE3 a fenporany Storage
l loc atlon. as e3a£w

avalatle.
+o pkase__ Nille

LARC SCIENTIFIC CompPiLEr PhaseVlllc 8. 62
BuiLD FLowW TABLES
et diagnoshc Sort st
e.v\,tl‘:’ and dlsybl%~ Mhﬂ order
++ 8+ 3 ‘
Q—b A
o— K
SHSNO ’
‘s]
‘ No /TsS+— a
O};em FE2 —'< =
& read. GOJM;
\es
/
K+l— K <§€>

&= I+1—1I 1
; (\ _

Re - arcan, =
Read. T 82 U’ew\) atta 'I) e |
—oF ad store at St Write error mesg,
o
ot P = Mable size exceeded
Close F82
/
SLert 8§ K
ext orden
\
LINK. ., §
O —» L l
D o Phase YIII D
LNK. Sz <
I+1—T

LARC VCIENTIFIC. COMPILER T’kase_ ViI\|D 8.63

TrNoex Anawnysis

[el dxagr\ogﬁc., enfrj
And dlSFlej ++8+4

|
Sek FF2

Open F82 Lk read.

| ;
EoF form FETCH (lom
Reao FP3 | AREA (Id=o) for e(Lv (W)

i Rt

I

\
[Wide easT ks £

CRNOOP — PASSES
Clear @ Table

Sek FFI anal FF3 4 -
Sk REG »F(‘omlham e _ f

g-*l-ore A‘QEA \)\4 g“”ore A’QEP U‘\.f

' AREA
:: C (T (Serial, AREA)) @ (LN (<))
1 cs
Resekt FF 3

] :

kK= © Qeaol 'Lfem ‘FFOM Fg3 ‘ Eof
Ce
|
&e isfu N
C-E)M};ere Saguences = QMF reg ke | hew e
AREA 1 P(un(K)) "“”‘bf'(ia":;‘w —» AREA

LARC SCIENTIFIC ComPILER. Phase VIIID 8. 64

TADEx A~nAwySIS

k= o '
PASSES = PASSES -~ |

Resel F Fo.
Q and FfFy

R@%@t FF‘
[k FRg =

i
Ot —\ Unknows -
(Tt a@ (T

LIndex
®

LAaRe SciENTIFIC. COMPILER Phase VI 8. 65

IT~DEx ANALYSIS

Tl —> L |

I =
V UNK’\ONW
(Geste ())= T41—+T
Ohher
'
[_:3‘
J=TI+1
P
P -
J44—J (= — @c—(s)
"#
Other Marke E(7)as
= T:UV@ C—l—ést G(j)) - awdmsuogs.
U,\k”\@tﬁf\
=)
N

(’Test‘ G(ID—U—A@\-
ey

et FF,

M= Link. P(m)

Q |-

LARC SBCIENTIFIC COMPH_E_R %s@. VD

Q1 l

| T= ov(K)

TaDEX Anawysis

s

'LINK. P (T —T

C—l—es-‘- G’(\TDM G(I)-—-—»G(J)

erw

&(T) :@ =

Form FETeH Uem

(T_P: o) _F)r c@)

wn RQST

Wede RQST B F&g

g I
Ts P(3 Nes
markeo\)) cC+l—C
exfensible ?
~o

Re&Qx FFo

a Rl

|
J+i—7T

@ =
‘ 2

LARC QcCIENTIRIC. COMPILER Pkése VIIID

IT~DEx ANALySIS

Torm FETCH Jem

(zD=0) for & (T)

n RasT

i .
Wete RasT Kk F§4 |

Resetc

Close F82 and F8Y

Resel FFp

|

tlash ——% -5
Restore. d.(a3mos+v¢,
ew'h‘a.

l

SoRkT Fgg

#

To Phase VINE

8.67

LARC SCIENTIFIC CoMmPILER. “Phase VIlIE

Sekb dxas
Flash ++8+S

OFM FEq K read,
Yy =0

Mé+l¢ ev\,‘h\\.j .

Rcad a grovp on
sfer” name and

) 4F/'OM = @4
e FETeH

EoF

8.68

PeoduceE F & 8 CoMMANDS

Cloze F%4

)

|3 (zp.FeTen o

1
~Number of s dems

—a N

EoF

Read a grouopon
reqister r\ame_ and
) 'F'OM Feg
wmb STORE
(M \d'em‘i)
|
L= 0O
w

RQVQPSL order Q_F
rords . each

‘dem in STORE

Ltl—e L

and F94

Sek b
5 sort STORE ow
SQQUMCC number

sott control table

Compare

LARE S8CIENTIFIc ComPiLER. Phase VILIE

COMFS"Q— levels

PeoducE F @ & CommANDS

®

FETCH(L): STORE(])

N
'

Torm S commandch

‘F(‘ow STORE (jj) vsig

v rf NS O

'1’e~s1>orard cell.

Mark., STorE (k)

/

Torm F Command.

‘onm FETCH (t) Vstng

V- AQr name O

Temporary cell.

!

Wrde 3 F'94

L+1

-

J
JIO
®

—_ L
. <
Lo

2

Wede B F94
T le
J+1—=

8.69

Yy+1—V

Restore dt,asmosﬁo evd‘rj.
Flagh ~-9--
Reset all F's.

l

Rejb“ ~k Control routine.

9.0
PHASE IX

GENERAL DESCRIPTION

Phase IX is the editing phase of I.SC; it is divided into two parts, Phase IXa
generates error messages from probable source program errors detected by
Phases I through XIII. These errors are filed as two word error items in File 92
and the messages are written in File 93. Phase IXb produces the SAL lines from
the items in File 90 and File 94 and merges them with the original source state-
ments and error messages, File 93, to create the object program, File 10. The
dictionary, File 91, is available throughout Phase IX to provide the parameters for
the error messages and the names to replace numeric dictionary references in

instruction items,

When the object program has been completely generated, Phase IX writes
LSCOMPILED on the typewriter, reinitializes the communication region, and re-
turns to the control program. Refreshing the communication region permits succ-

essive compilations without an external restart of LSC.

o]
=t

PHASE IXa

. Phase IXa writes an LSC error diagnostic message in File 93 for each probable
source program error detected by Phase I through XIII. These detected errors

were written in File 92 as two word items. The first word contains, the phase and
error number, the sequence number to be assigned to the error message and an
indication that the message does or does not contain a parameter. The second word
will contain the parameter or the dictionary reference of the parameter. The error
message skeletons which are assembled into Phase IX are located by phase and error
number; a % character within the skeleton indicated the position for the parameter, if
any. Phase IXa will delete all blanks following the parameter name since the
skeleton has the proper number of blanks to obtain the desired spacing. The item

written in File 93 is as follows:

Sequence F - ER Diagnostic message

w1 w2 w3 Wil

Detailed descriptions of file 91 and 92 are appended to this section of the manual.

9.2

PHASE IXb

GENERAL DESCRIPTION

After Phase IXa, File 93 and File 94 are sorted (independently) on sequence.

File 93 contains the source program statements, ALPH lines generated by Phase I
fromFormat statements and Hollerith arguments, and the error messages genei'-
ated by Phase IXa. File 90 and File 94 contains pre-SAL items generated by
Phases IV and XIII; these items are to be edited into SAL lines and merged with
File 93 according to the assigned sequence numbers to form File 10, the object

program,
OUTPUT OPTIONS

File 10 is written on drum in an area specified by the communication region. The
output may also be printed under user option by presetting of two other words in the

communication region as follows:

1. CRHSP = 0; no printing

2. CRHSP # 0 and CROUT = 0; output on on-line high speed print num-
ber one

3. CRHSP # 0 and CROUT # 0; output on the uniservo spécified by

CROUT for off-line listing
DESCRIPTION OF FILE 10

The first line of the object program is a SAL LABEL line. The user may select any
name which is acceptable to SAL for his program as long as the first character is
alphabetic (to avoid possible conflict with LSC generated symbols). When compiling
a SUBROUTINE or FUNCTION, the name of the subprogram will be the symbol on
the LABEL line of File 10. For main programs, the symbol will be LSCODE unless

9.3

the first line of the soﬁrce program is a SAL LABEL line; in this case, the name on
the LABEL line will be the name of the object program. A directory may also be
specified by the user for inclusion in LSC compiled programs, except for SUB-
ROUTINE and FUNCTION. I a directory is to be specified it must appear immedia~
tely after the LABEL line, if any, in the source program and conform to SAL
specifications, particularly (for recognition by LSC) beginning with DIRECTORY and
terminating with ENDIRECTORY. The directory is merely copied by LSC without
attempting to detect errors within or initiated by the included directory. In the

absence of a directory, the standard SAL directory will be used by the assembler.

For main programs, the next line 10 will be a transfer to the first executable in-
struction compiled unless the source program contained SAL coding before the
first LSC statement which generated executable code. In the later case, the trans-

fer will be to the first SAL statement.

For SUBROUTINE and FUNCTION subprograms, the LABEL is immediately
followed by the VARIABLES line (s). The "variables' will be 9C¢M, 9TBL, 9STB
and all requiried I/O programs, math, library routines, all referenced external
functions. These "program variables' should generate LIB instructions for a main
program by the operation program. There is no analgous transfer instruction as in
main programs, since entry to subprograms is accomplished with a TB instruction
. to the name. These leading lines are followed by the merged original source state-
ments, comments, and LSC generated instructions and diagnostic messages. The

origin of these lines is indicated in columns 1 to 6 of File 10.

Columns 123456 origin
F source program LSC statement
C source program comment
S source program SAL line
F - ER LSC error diagnostic message

(blank) LSC generated line

|

9.4

Each printed line of the object program will contain a % sign followed by the line's

twelve digit sequence number; this number is not included in File 10 on drum.

Following the END statement LSC writes an END OF TAPE line in File 10 to
signal to SAL the end of the program to be assembled.

A description of and corresponding examples for File 94 and File 90 items appear

below.

NAME GENERATION

LSC renames source program names only when they might be internally doubly
defined or incompatible with SAL requirements. There are three categories which

are renamed.

1. Numeric statement names are appended with L. (e.g., 17 becomes
17L),
2. Special SAL lexicon names (HERE, SAME, SEGii) are prefixed with

9, (e.g., SEG 48 becomes 9SEG48),

3. References to the name of a FUNCTION are treated as references to
the name prefixed by 8. (e.g.) FUNCTION PIE (A, PP, LE), ..

could generate:

PIE F #05 A
A #05 PP
A #05 LE
S #05 8PIE

FuneTY rAL d/ .

9.5

There are six categories of names that are generated by LSC. All of them have a

numeric as the first character. These categories are:

1. COMMON storage is reserved via the symbol 9COM which is itself

defined in one of two ways:

A. If CRCOMM = 0 then: $STOR 9COM: N

B. If CRCOMM = 0 then: DEF 9COM: (CRCOMM)
C. If the program is a SUBPROGRAM : 9 COM is not defined.
2. Subscripted variables are located relative to 9COM or 9DAT by

defining them equal to a symbol generated from their sequence
number appended with A. e.g., DEF JEAN: 18A - 6 and DEF
18A: 9DAT + 147

3. Generated continues (statement names) are formed by appending X

to the sequence of the item to which the name should be attached.

4, Temporary storage locations necessitated by the generated code
are named according to type of quantity being stored and a sequence

number (denoted as ijk): The types of storage are:

A. Index $9Xijk
B. Parameter $9Pijk
C. Arithmetic $9Tijk
D. Subprogram $9Mijk or

$9Mijk; 2

9.6

Generated instruction literals are named 9ITijk.

e.g., column: 12 17 18 19 60
F #13 9ITO012
9IT012 K TG #21 JEAN

A dictionary reference (i.e., name) is created for each argument of
a SUBROUTINE, FUNCTION, or ARITHMETIC STATEMENT FUN-
TION immediately after the name of the j)rogram. This name is gen-
erated from the dictionary entry number appended by AR.

e.g., SUBROUTINE KSFO(AARON, DON, JIM)

File 91 entry name
number

93 KSFO

94 94AR

95 95AR

96 96AR

9.7
FILE 91 DICTIONARY FILE

File 91 consists of one word items containing one of the following:

1. 12 digits of alphanumeric information representing a given name

(left adjusted).

2. The low order part of a double precision numeric quantity in
floating point.
3. - Z AAAAA Ogggsg

Z =0 for positive AAAAA
Z =1 for negative AAAAA

A A A A A represents a numeric quantity to be added or subtracted
(according to Z) from the alphanumeric symbol located in File 91.by
(e888)
The (f f f f) digits of the mode word of an item, which has a dictionary reference,
will locate one of the above three words. I the sign is '"-", then type (3.) above

will apply.

FORMATION OF FILE 91:

At the start of each compilation DREF is set equal to 1, prior to filing a word in
File 91. The program uses the contents of DREF for the dictionary reference
digits (f f f f) in the mode word. The FILE program then advances DREF when the

word is filed.

Phase I files names of library programs, 1I/0 subroutines, the low order part of
any double precision number, and the generated name of the Hollerith arguments

of a CALL statement in File 91. Phase III files a name (in the dictionary) for each

|

9.8

group hence all references to the same name will have the same value (f f f) in
their mdde words. Phase V generates a word for subscripted references to
variables (format 3, above) whenever there is a numeriTc quantity (- I AAAAA)
to be added to a symbol for instruction generation. In this case Phase V replaces
the references to the name with reference to the word contaiﬁing the increment

and the original File 91 reference. °.
FILE 92 ERROR ITEMS FILE

Each LSC phase will write any detected error as a two word item in File 92, These

items will generate error messages in File 93 during Phase IXa.

File 92 Item Format

Word 1 Word 2
P E A B S w
2 3 1 1 5

Number of the phase that produces error item.
Error item number

Sequence number of the item that generates the error.

Parameter for error messages (if there is one).

> E 2 HE9

Determines mode of W as follows:

A Mode of W

0 alphanumeric (left adjusted)
1 numeric; use W as name dictionary
reference to get error message parameter

)

B: Degrees of fatality of error.

B=0, not so serious

B=1, serious source program error

5.9

The error messages themselves are in sort on the phase and error number

(P and E), they have the following form:

P E C (Message) % (rest of Message)
Wi W2 W10

The entire item has 10 words.

Cc=0, there is no parameter

Cc=1, there is a parameter

The "%" character is in the position in the message where the parameter is

to be placed (if there is one).

LARe SCiENTIFIC COMPILER ' Phase VX 9.10

SToRAGE RESERVATION AND DEFINITION ITEMS,
The ‘File lo Uems generafed by these file 94 Uems are best descitbed by exambles

of the original Uems and the gemeraked SAL lines.
Assume thet o Pootnm O.F the d.‘td'tonsr:’ (—Fde 91)is

Ento! nomber Name.
89 Tim
o %) WES
Sl JACK
o KEN
93 808
o TED
95 ERV
96 035697932385
97 PI
Id F9q em Flo tem
Wi Sequence
w2 o Qo2 € : -
o2 DEF Jim £9A [
w3 o ©O89 1 T
w4 2] o6
Wi Squence
we |lo oco3 DEF 89A | ODAT + 14
03 "
w3 jlo ©%9 1
wq o ol 4
Wi Sequence
o4 .
w2 |lo oco4 DEF 90A ! 9com + 17
oS
W3 o 090 ']
‘ w4 O — o7

LARC SCIENTIFI ComPILER Phase X 9.11

STORAGE. RESERVATION AND DEFINITION ITEWMS (coufu'w.d)

ID

06

oY

oS

o9

Filo udem
DEF Jack i 9DAT + 19
4 I
DEF KEN ! 9com + 23

: |

$sToR. 9DAT ; 83

F94 uUem

Wi Sequence

w2 || o 006
W3 |ljo ©9)

wWq || o o019

Wi Se_que/v\ce

w2 ||© oov

W3 il e o092

wg |l o o023
Wi o 0900
we |lo oo®
W3 |[|O (o)
wqg || o o83
Wi Sequence

w2 || o co9

w3 [|o © 94
w4 oIy
Wi o OB OO0
W2 o oilo
w3 ||l o o
wWq il o o7

DEF T 17
]
V) U (crcomm #o) DEF 9com ! 20000
(20000 Jor examHe)

W) U (creomm= o) $Tor Scom y 17

!

|

|

. ID

l

LARE SCIENTIFIC. ComPILER Phase X 9.12
STORAGE RESERVATON AND DEANITION TEMs (conlinved)
Fo9q Uem Flo tem
. col.2. T % 19
Wi Sequence ERV k - 123
w2illaled ece o©coo 95 ’
W3 |l -0 oua‘3 | I
wq il o —— o
Wi sequence WES 3 (0112358132 (o9))
w2lla2cdeee Ovo9o _______f
w3 S8 1123 §8132
w9 || o o
W sequence (2 K @..3.4:592@5»3979
W2ijladcd eee coo97 | 1 3&585(0‘))
wWillos 1 314 159 265 T
we |l oz 5 897 932 385

@ (Lux“aaﬂ (‘equezt)

Generale !

(33.1\50]) (Marke-’)
Lrad cos

cds

08U

(ockpot ifem I3 Fio)

LARC SCIENTIFIC. COMPILER "_'_)h._ﬂ:s-z_ |X_

9.13

Tustrochon T tewms

Instt’u(;l'\-ow dems on File 9C and 94 ace. »AFouF werd J.}Ms .,iu,ﬂt ihe f.ro'lo._;,}yj 3ey\gra[_ _Fprmak

Wi &queu\ce_

W2 coo ¢ |

L tstrochion e

, & l‘tf"ls"‘er

A f‘esl:d’er

OP'Uah'on, code

> ke acl.ug d.\gl,l’
T= O == no trael-«:, di,sd'
T=7 =% nditecl addessiug
T # 0,7 =P the inclicated (Jls'd’

1

Dichoa(x:’ ?szPEMces , ef'c,.,
accmlluj 16 address mode.
{ co == B is absolule

ot =3 8 is relalive (ie. Ho4)
co == A 18 absolule

g

o1 => A is relolive (e, #AA)

. Adcldess mode <o b o7, 16 K 2)

, Luderal , J L (Second (hC.hOV\aﬂj

lwq .’e.-ferznce_, ~-ror Adelress mode o'()

The —fo”o‘,almj 2eambles assume that a t\,orﬁov\ o{ the dictionary (F'Lk 91) is

ENTRY ~NAM F_-
196 TRuCIKK
\F7 NI 7
149 . cos
149 EBR
150 FLo
151 » COVVO VOOOCO
152 —lollovooid?

Lagre SciemTiFie comPiceER Phase X o 14

INSTRUCTION ITEMS

Aadiress Mode F90 o F99 ‘tem Flo Uem.

absolule Wi Sequence
wello 93 0o 0o ocoood SLT 234461
W3llo oo oo oo 2d4¢i
wqg|l o o

relative adl Sequence

—fcrwat‘d Wefjo 70 9 <o ooool TE @ #o006 HERE +2
Wille ol o1 vo O OOV 2
wqll o O

relalive i Sequemnce

bad<ward [W2jjo 8o 12 o0 ©oocol BIT w12 HERE -7
W3llc 02 <1 oo ool
wq |l o O

Sc\.,mb,oﬁc wi Sequence
w27 4% of 22 cocol FF #0F TrRuck 12
willo ©3 ot oo 00146
W4 it o o

330'\50’;(’/ wi SBeqoence
W2flc 23 ¢33 ©3 ooool M o3 HIT-Woo Wo:
wWillo o©3 co ol coi47
wql| © o

S‘ﬂMLo\Z(-, wi Sequemce
w2lle 90 ©o o1 ooool T 20019 x HoO)
w3l o o©3 co ol 20014
Wil © O

‘LARC

SCIENTIFIC. CoOMPvww. ER

INSTROCTION TTEMS (Conlt'uuul)

Adcdess

LQM'DOFSQJ

(, P aramele r)

-t,emkorerj

EQM ':-O l‘en:’
(arcthmelic)

_tgm}:orarg
(arcthmelic)

-rast ﬁzglsl'ef‘.

:rast t‘ej'tsfer

mMmode

F90 or F94 ilew

Wi Seguence

wW2ille 40 16 o©oO0 O OO |
Wl Ho ©g O O oo
W4g |l o o
Wi 3I2guence

W2 [lo 43 ic Ok COLOO|
W3 o oq o0 ©00 o211}
wWq || © o
Wi Sequence

W2ilo 40 ©9 oo o©00Qol
Wille ©4 oo o©o 3Boose
wq ll o o
Wi S|eguence

W2 lle 48 ©4 ©co ocool
Willo o©gq o co dossi
wqil o- o}
wi Segoence

w2llo 32 11 o COOOI
w3illo os oi Qo0 ODOTO
"wq O e S— SIS 4 1
Wi Sequence

W2jlo ol ©9 o7 ocoooi
Willlo o8 ol Lo]] oV vOoC
WYl o - o

9.15

F10 “Lkzan .

S #16
F lo
§ ©4
FF #o9
DR #
AX #H9

$ro

$ o121

goms2

$omssiy 2

99907

#7

O6

LARC SCIENTIFIc. ComPiLEr Phasge TX

9.16
INSTRUCTION I TEMS (cont'uwec\)
Address mode F9o or =94 ‘Jem Fio dem
marker & Symbo’ Wi Sequence
w2 || 92 o©o0 oo COOO | T8 # oo cPs
W3 llo 0 of oo ocolgv®
w9 |lo ' o
marker 3 s..dmbo| Wi Sequence ‘
W2 o 91 oo ©0S o©oool ™= £88 & FLo ot
w3 o o7 oo O coi49
w4 o cools50
loatuhﬂ Wi Sequence
iheral W2 ||lo 02 o6 <o oocol A #oe (o.314159(01)
W3 llo 17 ©f o©0o o©ooooo
wg [los 13 14 159 ooo
double Pl‘eéls'ton \ad | Squence
Likeral W2 ||[© 16 o0 ©° oocol NN B oo (~o.. 12395(-08)
(W3 jlo 1g 2 o©o oolS)
Wqg ||-42 1 2345 oooo
{’L'xed Wi Sequence
Likeral w2 |[|o o 14 oo oOoocol Ax ¥4 (1)
w3 o |9 ©I ©o ooovo
w4 Pe) OoFI
8 Box Wi Sequesnce
likeral W2 Jle 45 ©9 oo oooo! F o9 (88 co3 oco3sl
W3 ||l 20 0o oo Ooooo 00882)
W4 || 003 0ozl co 8F2

LARCE. SCHIENTIFIC COMPILER "Pl'\é\'se-ﬁ(9.17

INSTRUcCTION LTEMS (CO"‘E“"“Q“)

Adciress mode F90 or F9q Uewm Fio iem.

wstrockion Wi Rgyuence |

l—.“-l?fé\l._ W2 llo g3 20 9o oOoool F 20 kKoiTi23 {
W3llo &i 0OV 00 O OoOdo ‘ |
wq || o o

(T"\e. ne<l item wdl be 3iuen the
name c_:_". Hus ttteral..)

ne<t ‘tewm W S2gquence
we]| 5 ©° ©9 °F 2999 K9IT123 Sk ©9 TRUC
Wllle ©3 co oo o0ooiqée og 5 |
wq || © o
l
&Mbo?a(\j Wi Bequence “
(Cmdu) w2 lle 43 19 oo ©oceocol Fo#g 159)(79 1

W3 |l ©oqg ol co 20079 1
w4 || ©: o

STATEMNMENT

LARC.

QEIENTIFIC COMPILER

Thase 1X

NOYME, TTEMS

Wi Saguence

we jjo o
w3 || © ool23
wq |l o o
Wi Jequemnce

w2 o
W3 023579
w4)

9.18

Name wdl hz, the Cowt-%t‘s Q“ H?\s’f,.\--.
1234 ev\’Dj o the dlc\’ionar:j_ Fle Ol

Nawme wdl be

A}

.

23579 X

LARC SClENTIFIC ComMmPILER.

Open Aud read FII
(dicrionary)

y

NMes

Phase X

End of o 9003 t‘cﬁonerg Bo
fe ? long for auailable

1. Close F92 (error lrewas).

o Of’e“ F92 -for i‘e&:lw\e,

3. Exteud F93 for wribing.

“~do ERRORS"
e
— F93 98

S’e:iumc — word |

2. "F-_m“—. word 2

3, Error messaqe —

wordk B theo 11

F93

Readk F92 Urem.

Ev\o_o_#\ Yes

\

No /. Dots message
Contain a
porameber ?

Yes '

Is parew.e\‘u
tw 248 sord o

Gd: Peraud.‘er
-FooM dfc,h:owal‘j .

F92 irem ?

Ves

Qc'alace each %% Ju etror

message b peraw\el'er worol,

LARe SCIenTIFIC ComPILER “Phase. X

@gq

1. Close FO3 -’-’on uor‘\,tiv\s.'

2. Sort F93

3. Opem F90, F9), F93 for
reaclung. .

4. Opew “Flo «(or wrltuxg.

5)52k ’ Sek whp encl of fule

Conditions F90, F94

resek

s) HO O

l. (crrAgL) —> oL
2. et wp [LABEL olatstotel]
as fist F93 ‘rem

l‘f, one is being comptled.

(no durectory)

(crLaeL) = LScodE or the name
f a SuarRouTMNE ‘of r-‘uaic‘nou'

|| Octpot LageL ana
DREcTORY limes b fe 10

|

SUBROLTINE =+
FONCTION

as next F93 ilem.

, Qeed —Ft'l'st' ‘Uewm /Fbow\,

F9o aud F94

1

9.20

Sekwp [T (crs)] (T'a"“‘f" b forst)
executable statemenl

960TH1

LARC SCIENTIFIC COMPILER

output NE — Fio

read. next

F94 item

“NariAeLes™

read nesdc
F93 cleua

outpot F93
ilem —> FiLe 10

Phase X

9.21

"End OF TAPE®

—s FIO

LSCOMPILED on
LQPMLEI’.

L

Reimitiliglize

mmounacabion,

M_gion .

|
|

LARC S[CIENTIFIC ComPILER

O — char. count
q —» word covnt.

Phase X

Conkbumuation merk |

(5= i

“ 9COM“ ——

(Coku!: limc.)
to ol N

FOq rlem

1. word 3 of F9q ilems
—+ variable line.
2, 9 —» vanable lime
3. char count + # char.

B Cakﬂf. CM.

I b - Faa

Converls Lne
o o

)

9.22

(9*5

nal end o
VARIRBLES

LARC. SCIAENTIFIC. ComfiLeER

Phase 1X

9.23

% —> col. 19 of LinE

|

LINE —» FlO

(N\uU:L’a‘c o:mtinws)

-fbr same line

d\
>

<

]

I, Convest DREF B A N

" | 2. Appench X

(2oouqx)

Ceb nawne -F(‘OM
Adichion ary,

name —» col. 12 B l?
o_ﬁ LINE

9BoTH

(—l'o Se,t next u.vtstruc,h'ow U’e:w\)

LARC SCIiENTIFIC COMPILER

(Imstrucﬁon J'em)

9801>

AA —o LINE —,

goic

¢

' ?l\ase.v

Blawk —» LINE

Preokswss Moaddness
Bn wmskruckiow
Qleral ?

1. Name c,‘, Literal —o aal,lz—ol']
K —s coll8.

9oic (Generate ™M address - next Page,)

S

Blank —s LINE

y . LA‘—V\&-
Y —

| ©O —p WINE

=
-1-:7 e

bo—r LINE (mdirect address)

=+

(B ootput Line B F'O)

exé\MHe,

23461

HERE+ 2

HERE - 177

TROUCK
HIY7 - oo
20014 X

$9 PO
$oT21

3979
3§ Ims2

$9mssiy 2

o7

Cos 3 cos

Ese & FLo

LARC SCIENTIFIC CoMPILER

Phase TX

Oolc

NoN - LITERALS

(6(‘anc1'\ on M mode ID)

LITERALS

(o _Floating _

b

8 double - preasion -

absolufe . ,
Sﬂl{’- relafive + Mg,
el pelafise — Moo
sSymbolic - ®
Temborany (M o Ja—r
fast tegister (M os)

macker & symbol)

o6

k655>-&uA

& Box

Mo, ustrodtion

marcker & Symbol

Mo.(

901D

9.25

exé\MHe.

(o2 (-ox))

(0. 314159 (o))

(0. 12346 (-08))

(81)

(86 6003 ©o3)
00832)

9xT1 23

Q01D

LARC SCIENTIFIC COMPILER ’Pkas'e_' 9.26

CRHSP ;o

+

Rw‘;gsa‘.
Pk Fl1o on Nﬂk SP&A
printer or s'uq.[f«d Uniservo

(no Powd.'wug)
Ca.uiu\g Seguence:

T8 Ho FiILE + F1O

Has last No

wa\kig ted ?

Ves

Pt‘imh,'n Y T U I —

Mose lo wordg B prut

buffer; conver E;Ms any

u“‘:o‘wxauc charactrers
e ~

Cowvesrl quuemce_ nomber
o ol Move & & 13

word af buffer.

Set w}.—» H<P
Summary oiders,

H) Loc
T6 #o O PTNTL
@d_'brvx
Set wp RBpe sSummary
lorders forlape

specfied by cReOT

v

Isgoe Summary
orders.

	cover 0001.tif
	note 0001.tif
	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif
	p 0039.tif
	p 0040.tif
	p 0041.tif
	p 0042.tif
	p 0043.tif
	p 0044.tif
	p 0045.tif
	p 0046.tif
	p 0047.tif
	p 0048.tif
	p 0049.tif
	p 0050.tif
	p 0051.tif
	p 0052.tif
	p 0053.tif
	p 0054.tif
	p 0055.tif
	p 0056.tif
	p 0057.tif
	p 0058.tif
	p 0059.tif
	p 0060.tif
	p 0061.tif
	p 0062.tif
	p 0063.tif
	p 0064.tif
	p 0065.tif
	p 0066.tif
	p 0067.tif
	p 0068.tif
	p 0069.tif
	p 0070.tif
	p 0071.tif
	p 0072.tif
	p 0073.tif
	p 0074.tif
	p 0075.tif
	p 0076.tif
	p 0077.tif
	p 0078.tif
	p 0079.tif
	p 0080.tif
	p 0081.tif
	p 0082.tif
	p 0083.tif
	p 0084.tif
	p 0085.tif
	p 0086.tif
	p 0087.tif
	p 0088.tif
	p 0089.tif
	p 0090.tif
	p 0091.tif
	p 0092.tif
	p 0093.tif
	p 0094.tif
	p 0095.tif
	p 0096.tif
	p 0097.tif
	p 0098.tif
	p 0099.tif
	p 0100.tif
	p 0101.tif
	p 0102.tif
	p 0103.tif
	p 0104.tif
	p 0105.tif
	p 0106.tif
	p 0107.tif
	p 0108.tif
	p 0109.tif
	p 0110.tif
	p 0111.tif
	p 0112.tif
	p 0113.tif
	p 0114.tif
	p 0115.tif
	p 0116.tif
	p 0117.tif
	p 0118.tif
	p 0119.tif
	p 0120.tif
	p 0121.tif
	p 0122.tif
	p 0123.tif
	p 0124.tif
	p 0125.tif
	p 0126.tif
	p 0127.tif
	p 0128.tif
	p 0129.tif
	p 0130.tif
	p 0131.tif
	p 0132.tif
	p 0133.tif
	p 0134.tif
	p 0135.tif
	p 0136.tif
	p 0137.tif
	p 0138.tif
	p 0139.tif
	p 0140.tif
	p 0141.tif
	p 0142.tif
	p 0143.tif
	p 0144.tif
	p 0145.tif
	p 0146.tif
	p 0147.tif
	p 0148.tif
	p 0149.tif
	p 0150.tif
	p 0151.tif
	p 0152.tif
	p 0153.tif
	p 0154.tif
	p 0155.tif
	p 0156.tif
	p 0157.tif
	p 0158.tif
	p 0159.tif
	p 0160.tif
	p 0161.tif
	p 0162.tif
	p 0163.tif
	p 0164.tif
	p 0165.tif
	p 0166.tif
	p 0167.tif
	p 0168.tif
	p 0169.tif
	p 0170.tif
	p 0171.tif
	p 0172.tif
	p 0173.tif
	p 0174.tif
	p 0175.tif
	p 0176.tif
	p 0177.tif
	p 0178.tif
	p 0179.tif
	p 0180.tif
	p 0181.tif
	p 0182.tif
	p 0183.tif
	p 0184.tif
	p 0185.tif
	p 0186.tif
	p 0187.tif
	p 0188.tif
	p 0189.tif
	p 0190.tif
	p 0191.tif
	p 0192.tif
	p 0193.tif
	p 0194.tif
	p 0195.tif
	p 0196.tif
	p 0197.tif
	p 0198.tif
	p 0199.tif
	p 0200.tif
	p 0201.tif
	p 0202.tif
	p 0203.tif
	p 0204.tif
	p 0205.tif
	p 0206.tif
	p 0207.tif
	p 0208.tif
	p 0209.tif
	p 0210.tif
	p 0211.tif
	p 0212.tif
	p 0213.tif
	p 0214.tif
	p 0215.tif
	p 0216.tif
	p 0217.tif
	p 0218.tif
	p 0219.tif
	p 0220.tif
	p 0221.tif
	p 0222.tif
	p 0223.tif
	p 0224.tif
	p 0225.tif
	p 0226.tif
	p 0227.tif
	p 0228.tif
	p 0229.tif
	p 0230.tif
	p 0231.tif
	p 0232.tif
	p 0233.tif
	p 0234.tif
	p 0235.tif
	p 0236.tif
	p 0237.tif
	p 0238.tif
	p 0239.tif
	p 0240.tif
	p 0241.tif
	p 0242.tif
	p 0243.tif
	p 0244.tif
	p 0245.tif
	p 0246.tif
	p 0247.tif
	p 0248.tif
	p 0249.tif
	p 0250.tif
	p 0251.tif
	p 0252.tif
	p 0253.tif
	p 0254.tif
	p 0255.tif
	p 0256.tif
	p 0257.tif
	p 0258.tif
	p 0259.tif
	p 0260.tif
	p 0261.tif
	p 0262.tif
	p 0263.tif
	p 0264.tif
	p 0265.tif
	p 0266.tif
	p 0267.tif
	p 0268.tif
	p 0269.tif
	p 0270.tif
	p 0271.tif
	p 0272.tif
	p 0273.tif
	p 0274.tif
	p 0275.tif
	p 0276.tif
	p 0277.tif
	p 0278.tif
	p 0279.tif
	p 0280.tif
	p 0281.tif
	p 0282.tif
	p 0283.tif
	p 0284.tif
	p 0285.tif
	p 0286.tif
	p 0287.tif
	p 0288.tif
	p 0289.tif
	p 0290.tif
	p 0291.tif
	p 0292.tif
	p 0293.tif
	p 0294.tif
	p 0295.tif
	p 0296.tif
	p 0297.tif
	p 0298.tif
	p 0299.tif
	p 0300.tif
	p 0301.tif
	p 0302.tif
	p 0303.tif
	p 0304.tif
	p 0305.tif
	p 0306.tif
	p 0307.tif
	p 0308.tif
	p 0309.tif
	p 0310.tif
	p 0311.tif
	p 0312.tif
	p 0313.tif
	p 0314.tif
	p 0315.tif
	p 0316.tif
	p 0317.tif
	p 0318.tif
	p 0319.tif
	p 0320.tif
	p 0321.tif
	p 0322.tif
	p 0323.tif
	p 0324.tif
	p 0325.tif
	p 0326.tif
	p 0327.tif
	p 0328.tif
	p 0329.tif
	p 0330.tif
	p 0331.tif
	p 0332.tif
	p 0333.tif
	p 0334.tif
	p 0335.tif
	p 0336.tif
	p 0337.tif
	p 0338.tif
	p 0339.tif
	p 0340.tif
	p 0341.tif
	p 0342.tif
	p 0343.tif
	p 0344.tif
	p 0345.tif
	p 0346.tif
	p 0347.tif
	p 0348.tif
	p 0349.tif
	p 0350.tif
	p 0351.tif
	p 0352.tif
	p 0353.tif
	p 0354.tif
	p 0355.tif
	p 0356.tif
	p 0357.tif
	p 0358.tif
	p 0359.tif
	p 0360.tif
	p 0361.tif
	p 0362.tif
	p 0363.tif
	p 0364.tif
	p 0365.tif
	p 0366.tif
	p 0367.tif
	p 0368.tif
	p 0369.tif
	p 0370.tif
	p 0371.tif
	p 0372.tif
	Binder5.pdf
	q 0001.tif
	q 0002.tif
	q 0003.tif
	q 0004.tif
	q 0005.tif
	q 0006.tif
	q 0007.tif
	q 0008.tif
	q 0009.tif
	q 0010.tif
	q 0011.tif
	q 0012.tif
	q 0013.tif
	q 0014.tif
	q 0015.tif
	q 0016.tif
	q 0017.tif
	q 0018.tif
	q 0019.tif
	q 0020.tif
	q 0021.tif
	q 0022.tif
	q 0023.tif
	q 0024.tif
	q 0025.tif
	q 0026.tif
	q 0027.tif
	q 0028.tif
	q 0029.tif
	q 0030.tif
	q 0031.tif
	q 0032.tif
	q 0033.tif
	q 0034.tif
	q 0035.tif
	q 0036.tif
	q 0037.tif
	q 0038.tif
	q 0039.tif
	q 0040.tif
	q 0041.tif
	q 0042.tif
	q 0043.tif
	q 0044.tif
	q 0045.tif
	q 0046.tif
	q 0047.tif
	q 0048.tif
	q 0049.tif
	q 0050.tif
	q 0051.tif
	q 0052.tif
	q 0053.tif
	q 0054.tif
	q 0055.tif
	q 0056.tif
	q 0057.tif
	q 0058.tif
	q 0059.tif
	q 0060.tif
	q 0061.tif
	q 0062.tif
	q 0063.tif
	q 0064.tif
	q 0065.tif
	q 0066.tif
	q 0067.tif
	q 0068.tif
	q 0069.tif
	q 0070.tif
	q 0071.tif
	q 0072.tif
	q 0073.tif
	q 0074.tif
	q 0075.tif
	q 0076.tif
	q 0077.tif
	q 0078.tif
	q 0079.tif
	q 0080.tif
	q 0081.tif
	q 0082.tif
	q 0083.tif
	q 0084.tif
	q 0085.tif
	q 0086.tif
	q 0087.tif
	q 0088.tif
	q 0089.tif
	q 0090.tif
	q 0091.tif
	q 0092.tif
	q 0093.tif
	q 0094.tif
	q 0095.tif
	q 0096.tif
	q 0097.tif
	q 0098.tif
	q 0099.tif

