PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

Ext:

Our Ref:
Your Ref:
Date:

ATOMIC WEAPONS RESEARCH ESTABLISHMENT
Building E3
Aldermaston, Reading, RG7 4PR

Telephone Tadiey 4111 (STD 073 66 4111)
Telex 848104/5

7818
SScM 92/7/76

29th July 1976

Professor Donald E. Knuth
Computer Science Department

Stanford University,
Stanford, California 94305

Dear :Z%¢,
2

I don't mind at all your requests for historical material: in some
cases I can satisfy you.

I am sending you by surface mail the code listing of the S2 compiler
and two copies of the Users' Manual which describes what the compiler could
do. This compiler was probably the first to exploit a large immediate access
store on a computer, in order to get high compilation speed. As you will see
from the acknowledgements in the Users' Manual it was a team effort in which
the now fashionable "Head Programmer Team" system was used. Many of the
implementation features are described in Hopgood's book "Compiling Techniques"
published by MacDonald-Elvisier. Hopgood was one of the constructors of the
compiler.

As you are interested in historical material I am also sending you the
Users' Manual for a compiler contemporaneous with Fortran I which I distributed
through SHARE in 1958. It is possible that some of the concepts in that system
have historical significance, for example, it contains an elementary form of the
"picture" concept of COBOL. It is interesting to recall that in 1958 one could
distribute a compiler to a users' cooperative. This compiler was used by those
SHARE members who had too few magnetic tapes to run IBM's Fortran system.
I believe it persisted in use in some American IBM 704 installations well into
the '60s under some other name, having been taken over by a group of three or
four installations. This is really only rumour to me so I cannot give you any
supporting evidence.

Yours sincerely,

”

%44

Alick E, Glennie

| AR

M
} Ac¢
L
Aty
Wl
W1
Rrc | foe
i
1 Afe

A

A

F2

ST

Q 2
W‘%m)ﬁi; ww// bo Amt_ i
E

i
|
|
1

|

'/ ‘/e/‘
| ALC_ ofetfnas
W MEnTor) . A 41
SECTIN Lol

’I wft \TJ

ide

o

IMPUT oYY

y= AT+ D)
= sQeT(Moh X) + $X X X
[F_(X-Yo0) IS fosiTIVF Go
puTPAT (PRINT, F1, T, X)
G0 LPboa
OUTIUT (PRWT, F2,)
(EIN o

>
o=
?

S BIE
T0
PUT
LA oF
Fod AT

A(I) e P8 A W PR W D% B 0 B, G F

/

bRl & ;i

Ag

%c
1§¢
f6¢
fic
BN ST

FoiM by
I, Alz) = Too LARGE
‘w ((,Mos 12, A)
do Lwf I* 10, b
sy
coMf] L

sA L L but the NC pagane Db w0 f?uuy,

A) ll' 4 :
opmimile fi/ /////é y,/"/ v ;_{,;»'71 uf j 1A & /LV/J Y /‘ 43 -Lg,;/"4
2 /

“7 04 '64// fe j ’w

v
"J 1[/ Wl/ /,('4',41;4/'“,v‘[’/‘.“‘,u’,f/"":"!: !

Lo

LE

(A

L1 g /. i
,,-//"‘/;7{!/(\}//(/,/ I \,}54' /M;f‘//; o

13 /‘/fﬁl”,;)g)y?

The ABC automatic coding system - AB C.

Miss <J. Elliott and A. E. Glennie.
June 2nd., 1958,

Atomic Weapons Research Establishment,
Aldermaston, Berkshire, England.

This system generalises the SAP symbolic code for
writing programmes for the IBM 704, The system will
accept programmes written in a mathematical notation or
in the normal SAP code, or in a mixture of the two.

The system includes an extensive library of pre-
written subroutines for the evaluation of functions and
for many other programme operations.

The system itself requires a 704 with a minimum of
8192 core storages and 3 tape units, but will write pro-
grammes for any 704. The UA SAP assembly programme is
used as the last phase in the production of a programme.

-De
Table of Corntents
1,0 Introduction.
2.0 General description of the ABC system.
3.0 The ABC notation.
3,1 Symbols and their definition.
3.2 Arrays and subscripts.

3.3 Mathematical formulae,

3.31 Variables.

3.32 Constants.,
Expressions.
Order of operations.
Fixed point arithmetic.
Floating point arithmetic.
Mixed arithmetic.
Bracketed algebraic expressions.
The Modulus symbol MOD.

3.4 Functions,
3.41 Rule for unbracketed arguments.
3.42 Iterated functions,
3.43 Subscripting,

3.5 Operations.

3.6 Translation directives.

POO OO
80)0)0(0@0)
ONOOHPW

3,7 Control statements in the form of English sentences.
3.71 Unconditional transfer.
3.72 Conditional transfers.
3.73 Sections,
3,74 Imperatives.
3.7% Formats.
3.76 Directory of English words,
3.77 Glossary of English senternces.

3.8 Sequencing in ABC programmes.

3.9 Constructing an ABC programme.
3.91 Example, '

-3-
Table of_Contents (Cont.)
Appendix 1.
Al. Summary of the ABC notation.
Appendix 2.
A2, Input-Output Operations.
A2,1 Input.
A2.2 Output.
A2,3 Format
A2,4 Format generation.
A2.5 The operation FORM,
Appendix 3.
A3. The library list of Functions and Operations.
A3.1 Functions,
A3.11 Trigonometric functions.
A3.12 Inverse trigonometric functions.
A3.13 Exponential and Hyperbolic functions.
A3.14 Other functions.
A3.2 QOperations.
A3.21 Algebraic functional operations.
A3.22 Operations on arrays.
A3.23 Operations on collections.
A3.24 Mathematical processes.
Appendix 4.
A4, Operating notes for the ABC system.
Appendix 5,

A5, Extending the ABC library.

1.0 Introduction.

The notation normally used in coding for the IBM 704
(the SAP symbolic code) involves writing down each ele-
mentary order of the programme, i.e. each machine order.
This makes the coding notation completely general, in the
sense that it can be used to write any possible programme.

But programmes usually have some basis in mathe-
matics or data processing, and it is convenient if the
code includes the commonly used mathematical operations.
The ABC automatic coding system augments the normal language
with mathematical notation for formulae evaluation and cer-
tain functions. English descriptive phrases specify
organisation.

The principal routine of the ABC system is a trans-
lator whose function is to translate from the special ABC
notation into the SAP symbolic notation. Any SAP language
presented to the translator is transmitted unchanged.

The translation process includes the generation from
the ABC library of any subroutines which have been re-
‘quested. When the translation is completed, an assembly
process begins, using UA SAP 1 and 2. cwmvvuy '

The hasic form of input to the ABC programme is the
normal SAP card form. Locatian symbols may be puriched in
columns 1-6. Any of the normal operations may be
punched in columns 8-10, in which case columns 12-72 will
be treated in the nommal SAP manner. If the pseudo-
operation ABC is punched in columns 8-10 the contents of
columns 12-72 are treated as a statement requiring trans-
lation by the ABC translator. An ABC statement may not
exceed the capacity of one card.

-5«
2.0 General description of the ABC system.

The ABC system consists of four parts, which exist
on tape 1 in the following order:-

(1) A card to tape conversion programme.
This transcribes a programme from cards to tape 4.
If tape 4 has been prepared on off-line equip-
ment, this section must be by«passed.

(2) The ABC translator.
This accepts input data from tape 4 in SAP or
ABC form. It transcribes the SAP data to tape 3
without change and translates the ABC notation
to SAP sgmbolic notation, which is then written
on tape 3.
If any subroutines are required from the system
library, they will be punched out by the ABC
translator to absolute positions from the highest
address of core storage downwards. Arn upper one-
card loader precedes these subroutines.

(3) The Library section.
This consists of a large number of useful sub-
routines.

(4) The Assembly programmes.
When the ABC translator has completed its action,
tape 3 will contain a SAP symbollic programme,
part of which may be original SAP coding and part
a translation to SAP symbolic of the ABC notation.
The assembly process then provides the absolute
binary programme, apart from the blnary sub-
routines already provided by the translator from
the library section.

The whole process of translation and assembly is a
three-pass process. The first pass is the ABC tao SAP
translation and the other two passes are those of the
UA SAP assembly,

A listing of the programme may be obtained in the
usual manner.° It will not include the routines obtained
from the library section. The original ABC statements
will be printed as remarks by the assembly programme, the
SAP instructions produced b{ each ABC card being listed in
the normal manner, A symbol table may also be produced if
required.

3.0 THE ABC NOTATION.

3.1 Symbols and their definition.

A symbol is a combination of any number of alphabetic
or numeric characters (not special characters) of which
the first, and at least one of the last 6 if more than 6
are used, must be alphabetic, If more than 6 characters
are used, only the last 6 will be regarded as a symbol.

In the ABC notation symbols have several uses; they
may be the names of variables, functions, arrays or
operations. In order that the translator may be able to
recognise the different uses of symbols, certain definitions
must be made about them. These definitions are made by
DEFINITION cards.

A symbol for which no definition is made is the name
of a single variable in the floating point mode.

(1) Fixed point variables.
Fixed point variables take integer values of
magnitude less than 2097152 and appear in the
registers of the machine with the binary point
at the extreme right.
To define a single variable or an array to be
in the fixed point mode, write

ABC INTEGER I

This defines I as a fixed point variable, or a
set of fixed point varlables if I is the name
of an array.

It is poss¥ble to define several varliables on
the same card.

€s9.

ABC INTEGERS I J K IZ

which defines I, J, K and IZ as fixed point
variables.

(the symbols in the definition may be separated
by blank characters or single commas.

(2)

(3)

(4)

-7-

Functions.

In the ABC notation two sorts of functional
operation occur; these are called FUNCTIONS
and OPERATIONS.

Functions are defined as functions of a single
algebraic variable.

i.e. with the form F(x). .
Operations are functions of more than one
variable, which may be of more general type.
To define a symbol as a function name, write

ABC FUNCTION SIN

As with the definition of integers it is pbs-
sible to define many symbols as functlon names
on the same card.

Operations.
A symbol is defined as an operation name by the

notation
ABC OPERATION OP3
which defines OP3 as an operation.

Externals.

We now introduce the concept of externally de-
fined symbols. These are symbols whase ultimate
absolute location in storage is to be allocated
by the programmer and not by the ABC translator.
A variable not defined as an external will be
allocated storage space by the translataor,.
Similarly a function or operation not defined
as an ex¥ernal is assumed to be a subroutine of
the system library and the translator will
allocate storage for it gnd issue an absolute
binary programme for it (if 1t exists on the
library tape).

A variable defined as an external must be
allocated storage by SAP coding; a function

or operation which 1s defined as an external
must have programme pravided by SAP coding or
by other means.

The notation for definitions is

ABC EXTERNAL A B C

-8-

As with the definitions for integers, functions
and operations several symbols may be defined
on the same card. '

(5) Arrays.

- The ABC notation allows the use of one-dimensional
arrays. In order that storage may be allocated
to an array it is necessary to specify the number
of elements in the array. This is done by using
the definition card

ABC DIMENSION A 10

In this example the array A is defined to be of
10 elements, which are arrazed in storage in
locations A-1, A-2,..., A-10. Thus the arra

is stored backwards in storage, the most suitable
arrangement for use with the 704 index registers.
Every symbol specifying an array requires a
dimension statement.

Note that in contrast to the other definitions,
oniz one definition of dimension may be made per
card.

The definition statements must appear in the programme
before symbols to which they refer are used. Indeed it
will be conyenient to collect them at the beginning of the
programme, where they form a glossary of the symbols used.

The same symbol may appear in several definition
statementss for example if it is to be defined as an
externally defined arraI of fixed poirnt numbers, it will
appear in three definitlon statements.

Example of a glossary of definition statements:-

ABC INTEGERS, A, B, C, D
ABC FUNCTIONS SIN, COS

ABC OPERATIONS INPUT, OUTPUT
_ABC EXTERNAL X

ABC DIMENSION X, 25

these define A, B, C, D as integers; SIN and COS as
functions and so on,

-9-

3.2 Arrays and Subscripts.

The ABC notation allows the use of one-dimensional
arrays. As explained previously, any name used for an
array must be defined in a DIMENSION statement.

An element of an array may be used as a variable in
arithmetical formulae if it is written in the form X(I).
where X is an array name and I is a subscript expression.
This is the only legal way in which an array name can
appear in arithmetical formulae; the subscript is
obligatory.

There are two methods of subscripting, the ABC and
SAP methods. The former is for normal use when the
system is used as an automatic coder, the latter is for
use when SAP coding is used to control the counting and
ABC notation for writing the arithmetical formulae.

The ABC subscript forms are X(I), X(C), X(I+C),
X(I-C) where I is a fixed point variable and C is a con-
stant integer.

The SAP subscript form is X(A,B) where A is absolute
or symbolic and may be preceded by + or -, and B is
absolute and may be one of 1, 2 or 4. The comma is
obligatory.

g The table below shows the translations into SAP
code.

Subscripted variable A,T,D field of translated order

X c; X-C
X(I - *X,IR
X{I+C *X-C,IR
X(I-C *X+C,IR
X(A,B X+A,B
* When the evaluation of a formula with array elements

is done, an index register is filled with the variable part
of the subscript by the order LXA I,IR where IR is 1 or 2.
The compiled programme will use the ciirrent value of the’
‘subscript in all circumstances.

-10-
Examples of formulae with subscripted temms:-

ABC DIMENSION X 25
ABC DIMENSION Y 25
ABC INTEGERS I,J,K
ABC X(I —x(J)+Y(K)
ABC Yt3
ABC X(K+1)-Y(J 1 heY(JTH+1)

The last example may be written as X(K+1)= (J-1)y(T+1)

-11-
3.3 Mathematical formulae.

In this section we consider the formulae which may
be written in ABC notation, At first, only formulae
involving the operations of addition, subtraction,
multiplication and division will be described.

The general foxm is
X=E

where X is a single variable or element of an array and

E is an expression of variables, array elements or con-
stants formed by using the elementary arithmetic opera-
tions., This formula means "replace the yalue of X by the
value of E",

.3.31 Variables.

These are denoted by symbols, and may be fixed
or floating point according to the definitions made.

'3.32 Constants.

Two forms of constant are possible, decimal
constants and integers. Decimal constants are written
with a decimal point (e.g. 1., 1.2) and integer constants
are written without it.

Decimal constants are always stored in the
floating point mode, but integer constants may be either
'$ode, the choice being made by the translator according

o context.

Decimal expanents such as are used by SAP
(e.g. 1.2E-3) are not permitted by the ABC programme.

3.33 Expressions.

The expressions on the right hand sides of
formulae are formed from variables, constants and the
+, -,/ and * signs, Brackets may also be used. The
multiplication and addition signs may be omitted as in

normal mathematics provided the symbols are distinct.

For example the formula A=+B may be written
as A=B because the = sign separates the symbols A and B.

-12-

As examples of multiplication by implication
consider A=3B (equivalent to A=3xB) and A=B C (equivalent
to A=BxC). In the first case 3B is not a symbol, by
definition, and it is recognised by the translator as a
product. In the second case the factors B and C are
separated by a blank and are therefore not the single
symbol BC. Here multiplication is inferred.

The second case becomes more realistic when the
second factor is an expression in brackets as in the
examples:-~

A=B(A+B) and A=(A+B)(A-B)

Provided all t symbols e s ated by blapnks, signs
or brackets,all th ual issigns d X
are permis€ible.

3.34 Order_ of operations.

In the evaluation of expressions the multi-
plications and divisions will be done before the additions

and subtractions.

There is a convention about the use of the
division operation. The division sign / applies only to
the term to its right and the expression is evaluated as
ig /X were equivalent to multiplication by the reciprocal
of X.

Any other meaning can be established by using
brackets (which indeed should be used in all cases of
possible ambiguity).

For example A+BxC/DxE-Al is evaluated as A+(BxCxE/D)-A1

3.3% Fixed point arithmetic.

Any expression containing only fixed point
variables and integer constants is a purelI fixed point
expression and will be evaluated entirely in fixed
point arithmetic.

This has one result which should not be over-
looked; 1in any division operation the quotient is an integer.

-13-
Consider the formula

X=A/B where A and B are fixed point, and X is a floating
point variable.

The expression A/B is purely fixed point and is therefore
evaluated as the integral part of A/B.

Where an expression contains repeated factors
and divisors such as the expression AxBxC/D/E the numerator
and denominator are formed before division. In this example
the expression is evaluated as (AxBxC)/(DxE).

Where a fixed point expression contains no
division operations, there is no ambiguity.

3.36 Floating point arithmetic.

Any expression which contains no fixed point
variables is a purely floating point expression, and will
be evaluated in floating point arithmetic.

3.37 Mixed arithmetic.

A mixed expression contains both floating point
and fixed point variables, and is a permissible expression
in ABC notation. The evaluation of a mixed expression is
made partly with fixed point arithmetic and partly with
floating point arithmetic. As with fixed point arithmetic,
a difficulty of interpretation occurs with division
involving fIxed point numbers.

Any term of the form AxAxA/A/A, where A stands
for a fixed point variable, integer constant or bracketed
expression of these things, will be evaluated in fixed
point arithmetic. If any of the factors are decimal con-
stants or floating point numbers, then the term will be
evaluated in floating point arithmetic.

The preceding paragraphs relate to the arithmetic
used 1n evaluating the right hand side of the formulae.
The result of the evaluation will be converted to fixed
of floating point form according to the mode of the left
hand side of the formulae (if it is not in the correct mode
already).

-14-
Examples:-

In the following examples we use I, J, K and L
for fixed point variables, X, ¥ and Z for floating point
variables.

(1) x=I The fixed point variable I is
converted to floating point
and the result stored as X.

(2) 1I=x The integral part of X is con-
verted to fixed point and
stored as I.

(3) Xx=2v+3z This is a purelz floating
polnt formula, the constants
2 and 3 being converted to
floating point constants by
the translator.

(4) x=2/3 As in the previous example,
this is entirely floating
point arithmetic.

(8) x=z/1 Mixed arithmetic; +the divisor
is first converted ta floating
‘point and the division made in
floating polnt arithmetic.

(6) x=1/1 In this example the right hand
side is pure fixed point and
the division is perfermed in
fixed point arithmetic. Then
the integral part of the
quotient is converted to
floating point and stored as X.

(7) x=31/1 or 3xI/J., This has a fixed
polrnt expression on the right
and so X equals the integral
part of 3I/J.,

(8) x=3.,01/1 or 3,0x1/J. This is a mixed
expression evaluated in floating
‘point arithmetic. X now takes
the value 3I/7.

-15-
3.38 Bracketed algebraic expressions.

In any formula, the expression on the right may
contain algebraic brackets, as in the example

X=z-21/,22-21) .

The contents of a bracket form an expression which may be
pure fixed point, pure floating point, or mixed. The
result of evaluating a bracket is a fixed point number
only if the expression in the bracket is pure fixed point,
otherwise the result is a floating point number. The
mode of the result of evaluating a bracket will affect the
mode of any expression containing the bracket, just as if
it were a single variable.

3.39 The Modulus symbol MOD.

The symbol MOD is reseryed for the function of
taking the absolute value of a wvariable. Thus if X is a
variable or the result of evaluating an algebraic bracket
then MOD X means use the modulus {or absolute value) of X
in the formula. The word MOD, which applies only to the
*varia?le to its right, must be separated from the variable.
Exanmple:-

MOD XxY means (MOD X)uY; the other possible
meaning is obtained by the expression MOD(XxY).

The symbol "MOD" does not affect the mode of arithmetic
in arnty way.

-16-
3.4 Functions.,

In the ABC notation, functions are defined as funpc-
tions of one variable; all other functional operations
fall into the class of "operations™.

As already explained, all names of functions must
be defined in a "FUNCTION" definition. Functions in the
ABC notation operate in floating point arithmetic only
and consequently their presence in an otherwise purely
fixed point expression will convert it into a mixed
expression.

The ABC notation for functions is the usual mathe-
matical notation., For example, if COS is defined as a
fugction name the permitted basic notations are COS(X)
and COS X.

In the second notation some care is necessary. For
instance, the symbols for the function and its argument
must be separate. Also, if there are further terms to
the right of X ambiquity may arise. This is best shown
by examples.

CcoSs X is equivalent to COS xg
COS+X | Ccos (X
COS-X cos (-X)
COS X+Y CoS (X)+
COS XxY COS (XxY

3.41 Rule for unbracketed arquments.

The argument of a function extends from the
first variable after the function name to the first + or
- sign encountered or to the end of the expression.

3.42 Iterated functions.

Functions may be iterated, as in the expression
cos(cos(x)), and if the bracketed notation is used this is
peffectly tlear. If no brackets are used apply the above
rule.

Thus COS XxCOS COS XxY/Z+W means COS(X»COS(COS(XxY/Z)))+W

-17-

Normally examples as extreme as this will not be con-
structed, a more realistic example being LOG COS(X+Y).

If there is doubt about the meaning of an expression it
can always be clarified by the use of brackets or several
simpler formulae.

3.43 Subscripting.

The arguments of functions may be subscripted
in either the ABC or SAP form. However, index register 4
is used for entering all library subroutines. Therefore,
if SAP coding has been used the contents of index
register 4 are lost after the use of a function subroutine.

-18-

3.9% Operations.

In the ABC notation Operations are generalised
functions. Theg appear in the form OP(A,B,C,...). The
arguments must be separated from each other by commas and
must be enclosed in brackets, as shown. Some operations
may appear as components of mathematical formulae or
English sentences, others must appear alone. The definition
of each individual operation in the library list shows
clearly to which class it belongs.

The arguments of operations may be of several types:-
(1) cConstants.

(2) Algebraic variables which are used as input
to the operation.

(3) Algebraic variables which are computed by the
aperation.

(4) Array names.

(5) Symbols denoting programme locations, such as
error returns and subroutines for calculating
auxiliary expressions.

(Dgtailed definitions of the operations used in the examples
below will be found in Appendix 3).

Types 1 and 2 m z be preceded by a + or - sign.
e.g. Z=POWER(X,-2.)

"An arithmetical expression may be used instead of a
single argument of types 1 er 2, prdvided the expression
is enclosed in brackets.

eogo'1=MAx1f(2J~1),-(3K/2))

Arquments of types 2 and 3 may be subscripted with
SAP subscripts, prdvgded that index register 4 is not
used, since its contents are lost on entering the sub-
routine. ;

e.qg. POLY1(6,%{-2,1),Y(1,2),2)

-19-

Arquments of types 2 and 3 may use constant ABC
subscripts without restriction.

e.g. MAX3(J,A,B(2),c(3),....)

Arguments of type 2 may be subscripted with variable
ABC subscripts provIded the argument and its subscript are
enclosed by a ?air of brackets)

e.q. MAX3(J,A,(B(1)),(B(3)),....,C)

There are two exceptions to this condition:-

i) If the last argument of an operation is sub-
scripted, it and any other argument using the
same subscript ?eed not be enclo?ed in brackets.
e.g. MAX3(J,X,Y(1),(z2(J3)),....,2(1))

ii) Brackets are not necessary for any of the sub-
scripted arguments of the operatiaon QUTPUT.
e.g. OUTPUT{PRINT,F,A(I),B(J),e...,C)

Arguments of type 3 (with the exception of subscripted
‘arguments of .the operation INPUT) may not use variable ABC
subscripts.

- Arguments of type 5 (excepting formats generated by
the format generator) must be defined as external symbols.
If this is not done duplicated symbols will appear in the
final assembly. ,

Index registers 1 and 2 are preserved throughout an
operation provided that any subscripts used are SAP sub-
- scripts. If ABC subscripts are used no guarantee can be
.given about the contents of index registers.

The programmer is responsible far ensuring the correct
use of the arguments of an operatlion, for ensuring that
algebraic variables or constants are in the correct mode,
and that other symbols are of the correct type.

=20~
3.6 Translation directives.
END

The SAP pseudo-operation END will occur in every ABC
programme as the last statement of all. It states where
the programme is to begin computing, It is also necessary
to the ABC translator as an end signal, saying that the
translation phase is finished, and the assembly phase (if
required) may begin.

COMPILE

This command is given at the end of the programme,
immediately before the END card. It causes the translator
to perform the following actions:-

(a) Place the constants and working space at the
end of the programme, followed by

(b) The formats generated by the format generator,

(c) The variables and arrays for which the trans~
lator is to provide storage.

(d) Causes the 704 to punch a one card upper
loader, foliowed by the subroutines for func-
tions and operations. ‘

The absolute locations for these subroutines
are noted on tape 3, by the emission of SAP
pseudo-operations in the form "NAME SYN
Absolute location", '

WORKINGSPACE
This ABC pseudo-operation may be used to allocate a
symbolic name to the block of constants etc. emitted by
the translator. For this purpose use the statement
ABC WORKINGSPACE "Required name™®
It is not normally necessary to use this facility,

as a name is automatically provided by the translator -
the symbol 0000() . The pseudo-operation WORKINGSPACE

-21-

is available so that the ABC system may be used to generate
symbolic library programmes. It brings the working space
symbol under the control of the user. If a WORKINGSPACE
statement is used it should be placed at the beginning of
the programme with the definition statements, before any
arithmetical formulae.

-22-

3.7 Control statements in the form of English sentences.

The ABC programme contains a directory of English
words which enables it to translate certain English sen=
tences into 704 instructions. Only those words included
in the directory (a list of which is given at the end of
this section) are considered meaningful by the programme.
Any other words will be ignored unless they are the names
of symbolic locations, variables, etc. If the programme
considers all the meaningful words in a sentence and finds
that they do not translate into permissible machine in-
structions the entire sentence will be ignored.

There are several classes of sentence, the largest
being control transfer sentences.

3.71 Unconditional transfer.
GO TO A

"A" must be a symbolic location defined some-
where in the programme or a decimal integer.

(The latter case is only likely to be useful
when the location of a piece of programme is known to the
programmer, €.g., the loader, or a piece of programme pre-
ceded by an ORG card.)

It is important to note that in all control
transfer sentences the place to which control is to be
transferred must be the last word in the sentence.

3.72 Conditional transfers.
IF IT IS POSITIVE GO TO A

"IT" always refers to the last variable com-
puted. The word "IF" must be the first in the sentence.

If the variable to be tested is not the last
one computed the sentence may be written:-

IF (B) IS POSITIVE GO TO A

The variable to be tested must be enclosed in
brackets. It may consist of a single variable, as above,

- 23

an arithmetical expression of several variables or func-
tions, or a single operation.

(A function is a library subroutine with only
one argument, an operation is a library subroutine with
more than one argument.)

e.g., IF 2A-B sxnrcg IS POSITIVE GO TO D
IF (MAX1(A,B)) IS POSITIVE GO TO D

Conditional transfers may also be made if the
variable is negative or zero.

e.g., IF IT IS NEGATIVE GO TO A
IF (B) IS ZERO GO TO A

It should be remembered that in the 704 zero
may be either positive or negative (depending on the
order in which the operations from which it resulted were
carried out) and therefore if zero, positive and negative
values are all to be distinguished the test for zero must
be performed first.

The flow of the programme may also be control-
led by the status of certain triggers in the machine.

e.g., IF THE ACCUMULATOR OVERFLOW INDICATOR IS ON GO TO A
IF THE QUOTIENT OVERFLOWS GO TO B
IF THE DIVIDE CHECK INDICATOR IS OFF GO TO C

These three sentences turn off the indicator referred to
when it is tested.

The sentence:-
IF THE MQ OVERFLOW INDICATOR IS OFF GO TO G
is not permitted.
It may be stated here that the terms
POSITIVE, PLUS, DOWN, ON
are considered synonymous, while the terms
NEGATIVE, MINUS, UP, OFF

are considered to have the opposite meaning.

-24..

Furthermore it will be noted that the "posi-
tive" words do not apoear in the directory. The ABC pro-
gramme works on the supposition that if one of the
"negative" words does nct appear in an "IF" sentence
then the sentence has a “positive" meaning.

The word "MOT" may appear in an "IF" sentence
in order to reverse ‘{he meaning.

e.g., NOT NEGATIVE means POSITIVE
NOT ON means OFF

Hyphenated words are not permitted. Therefore NOT ZERO
represe¢ints "non-zero".

The set of 4 sense lights provide another means
of contrelling the flow of the programme. They may be
turned on or off at will and their status may be tested.
The testing instruction turns off the light tested. The
lights may be turned off singly or as a set.

Examples of sentences involving sense lights
are as follows:-

TURN SENSE LIGHT 1 ON

TURN SENSE LIGHT 2 OFF

TURN OFF THE SENSE LIGHTS

IF SENSE LIGHT 3 IS ON GO TO G
IF SENSE LIGHT 4 IS OFF GO TO H

It will be noted that the word "LIGHT" does not appear in
the directory, but in sentences involving sense lights it
must always be placed between the word "SENSE" and the
number of the light.

N The path of the programme may be controlled
externally by the setting of the sense switches on the
console,

e.g., IF SENSE SWITCH 5 IS DOWN GO TO D
’ IF SENSE SWITCH 6 IS UP GO TO E

Any English sentence may have a symbolic
location.

e.g., START ABC TURN SENSE LIGHT 1 ON

- 25—

A further type of conditional transfer is the
"BRANCH" sentence.

e.g., BRANCH A,B,C,D

Control 15 transferred to B if A is 0 or 1l

" " C " A] 2

" " " L] D L] A " 3
" " not transferred " A " greater
than 3

The number of places to which control may be conditionally
transferred is only restricted by the size of the card.
Note that A must be an integer. If it is a subscripted
variable it must be enclosed in brackets. No "meaningless"
words are permitted in a "BRANCH" sentence, since all
words other than BRANCH are treated as symbolic locations
to which a transfer may be made.

3.73 Sections.

If portions of the programme require to be used
in more than one place they may be written as normal
closed subroutines. The ABC programme will produce a
c¢losed subroutine if the required computation is preceded
by a card punched:-

SECTION XYZ
(Where XYZ is the name of the subroutine, i.e., the sym-
bolic location of its first instruction. The name of the
subroutine must be punched as the last word in the sen-

tence, it may also be punched in the symbolic location
field if desired.)

and followed by a card punched:-
END OF SECTION XYz
(where XYZ must be the last word on the card).
In order to use such a subroutine a card punched
DO SECTION XYZ

must be placed at the required position in the programme.

-6 -
After performing the operations specified in

the subroutine control will be returned to the instruc-
tion following the "DO" sentence.

The "DO" sentence need not include the word
"SECTION". It may not include any extra words, except
in the case described below.

A SECTION may be performed a certain number
of times before the programme proceeds to the next in-
struction.

e.g., DO SECTION XYZ J = A,B,C

means that
the 1st time XYZ will be performed with the variable

J=A
LU 2nd " " " " " " LLJ "
J=A+B
" 3rd " " " " 1] " " "
J=A+2B
" r‘éh " "w " " " " 1L ° "
J=A+(r-1)B=C

The programme then proceeds to the next instruction.

Care must be taken to see that the binary
equivalent of A plus an integral multiple of the binary
equivalent of B is exactly equal to the binary equivalent
of C (no difficulty arises in the case of integers). The
modes of the variables must be compatible. If J is an
integer variable and any of A,B,C are constants they must
be integers. If J is a floating point variable A;B,C may
be written as integers. J may not be a subscripted
variable, and A;B,C may only be subscripted if they are
enclosed in brackets, e.g., (A(I)).

5.74 Imperatives.
' PAUSE

will cause the machine to halt. Pressing the START button
causes the programme to resume at the next instruction.

If this is written
BAUSE A

-27-

where A is a decimal integer, the binary equivalent of
A will be in the address field of the storage register
when the machine halts. No other words may be included
in a "PAUSE" sentence.

The instruction
STOP

will cause the machine to halt in such a way that the
programme cannot continue. It is intended as a final
stop for a programme.

Most input-output operations are performed
by a library subroutines but the following simple tape
operations can be translated from English sentences:-

REWIND TAPE 6
BACKSPACE TAPE 4
WRITE END OF FILE ON TAPE 2

The numbers of the tapes may of course vary
from 1-10. The tape number must be the last word in the
sentence. It may not be a variable.

3.75 Formats.

A further word included in the directory is
"FORMAT", which is used in connection with the decimal
output operations "OUTPUT" and "OUT" in the library,
in order to specify the layout of the printing, BCD tape
writing, or punching,

Since FORMAT is closely related to the opera-
tions OUTPUT and OUT the description of its use has been
placed in Appendix 3 together with the description of
these operations.

3.76 Directoxyof English words.

BACKSPACE BRANCH CHECK DIVIDE
DO END FILE FORMAT
GO IF LIGHTS LITES
MINUS MQ NEGATIVE NOT
OFF OVERFLOW OVERFLOWS PAUSE
QUOTIENT REWIND SECTION SENSE

STOP SWITCH UP ZERO

-28-

The words LIGHTS and LITES are synonymous, as
also are OVERFLOW and OVERFLOWS, and MINUS, NEGATIVE, OFF,

and UP.
Any words which do not appear in the directory
may be placed in a sentence to improve its readability,

provided they do not violate the restrictions placed on
certain sentences.

In addition, any comments required may be
punched in columns 12-72 of cards with the SAP pseudo-
operation "REM"., They will be listed but will not affect
the programme in any way.

Sentences may be reduced until they contain only
the necessary word from the directory.

Thus
IF OVERFLOW GO A
has the same meaning as
IF THE ACCUMULATOR OVERFLOWS GO TO A.
IF MQ OVERFLOW GO B
is equivalent to

IF THE QUOTIENT OVERFLOW INDICATOR IS ON GO TO B.

IF GO C
means IF THE ACCUMULATOR IS POSITIVE GO TO C
or IF IT IS POSITIVE GO TO C.

3.77 Glossary of Englis ntenc

This glossary is merely a guide to the type of
English sentence which may be written. It is not intended
to be a fully comprehensive list.

GO TO A
IF IT IS POSITIVE GO TO A

IF (B) IS NEGATIVE GO TO A

IF (A-B SIN C) IS ZERO GO TO D

IF THE AC OVERFLOW INDICATOR IS ON GO TO D

-29-

IF THE DIVIDE CHECK INDICATOR IS OFF GO TO E
TURN SENSE LIGHT 1 ON

TURN OFF THE SENSE LIGHTS

IF SENSE LIGHT 2 IS ON GO TO A
IF SENSE SWITCH 3 IS UP GO TO A
BRANCH A,B,C,D, ...

SECTION XYZ

END OF SECTION XYZ

DO SECTION XYZ

DO XYZ J=A,B,C

PAUSE A

STOP

REWIND TAPE 6

BACKSPACE TAPE 4

WRITE END OF FILE ON TAPE 2
FORMAT

-30—
3.8 Sequencing in ABC programmes.

The programme starts at the formula named on the END
card. If the END card does not name a formula and no SAP
origin card precedes the first active formula, the pro-
gramme will start at the first formula.

The formulae of the programme are evaluated in the
order written, except when a control transfer instruction
is encountered. The following list describes the sequen-
cing of the various types of statements:-

(In ?ormal sequencing, control proceeds to the next instruc-
tion

%1; Arithmetical formulae Normal sequencing.

2) Unconditional transfer Sequencing begins at the
named formula.

(3) Conditional transfer If the condition is satis-

fied, sequencing begins
at the named formula.
Otherwise normal sequen-
cing.

(4) English imperatives Normal sequencing, except
of course STOP.
(5) DO statements Normal sequencing after

action of the named sec-
tion, and possible

repeats.
gég SECTION Normal sequencing.
7) END OF SECTION Control returns to the for-

mula from which the SEC-
TION was entered.

(8) Operations Normal sequencing. Where
one of the arguments is
a formula symbol, control
will be transferred to
that formula.

Definition statements and statements for the FORMAT genera-
tor are to be ignored in consideration of sequencing.

-31 -
3.9 Constructing an ABC programme.
Storage used in ABC programmes:-

An origin card in SAP form may be used to specify the
first location used in storing an ABC programme. If no
origin is specified then storage begins at location O.

The storage used then runs upwards from this location, un-
less further origin cards in SAP form are used. This
applies to the programmes translated from statements and
to locations of variables for which the ABC translator
allocates storage. Subroutines for functions and opera-
tions drawn from the ABC library occupy the upper end of
the store, together with the one card loader.

The storage structure is then:-

0 Programme generated by the translator.
Constants and working space allocated by the trans-
lator.

Format statements generated by the ABC translator.
Single variables.
Arrays.
Subroutines from the ABC library.
-1 ABC upper one card loader.

This is the storage structure if no SAP origins are
used. SAP origin cards may be used to allocate the pro-
gramme proper to any location required, and to split it
into sections. The section containing the constants,
working space, formats, variables and arrays forms one
continuous block which may not be divided. It is pos-
sible to control the allocation of storage for variables
and arrays by defining them as EXTERNALS and arranging
locations for them by SAP pseudo-operations. For single
variables use a BSS pseudo-operation (e.g., X BSS 1)3
for arrays use a BES pseudo-operation with the appropri-
ate dimension (e.g., A BES 8).

3.91 Example.

Example of a simple ABC programme. Details of
the Input-Output g;erations and format generation will be
found in Appendix 3.

and sin X.

-32-
To read a number X from a card and to print X

ABC FUNCTION SIN
ABC OPERATIONS INPUT OUTPUT
ABC INPUT (CARDS,X)
ABC Z=SIN X
ABC OUTPUT (PRINT,A,X,Z)

A ABC FORMAT —

X=. - F Z=. o P

Notes:-

(a)
(b)

(c)

(e)

(blank card)
ABC STOP
ABC COMPILE
END

The first two cards define the functions and
operations.

A format is generated from the two cards fol-
lowing the ABC pseudo-operation "FORMAT"., As
written above, the printed output will contain
some Hollerith characters as well as the
values of X and sin X. A typical result might
be X= 1.200000 Z= 0.9320390

The card input data is X, which may be punched
in any position on the card. It must be a
floating point number, but the number of digits
punched is at the disposal of the puncher, thus
it could be punched as 1.2 in this example.

The last two cards are the essential COMPILE
and END operations.

The storage used by the programme will be in
two parts. In the lower positions in store,
from location Q0 onwards, will be the programme,
the constants (if any) and working space, the
format, the variables. At the upper end of
storage will be the loader and the subroutines
SIN, INPUT and OUTPUT. Certain dependent sub-
routines of INPUT and OUTPUT will also appear
there.

-33-
Appendix 1

A1. Summary of the ABC notation.

(1) Definition statements.

INTEGER A
INTEGERS A B C

FUNCTION A
FUNCTIONS A B C

OPERATION A
OPERATIONS A B C

EXTERNAL A
EXTERNALS A B C

DIMENSION A,N

(The singular and plural forms of the first
four definition statement types are completely
identical in function. The translator does
not insist on grammatical correctness.

(2) Arithmetical Formulae.

The general form is L = E where L is a single
variable or element of an array, and E is an
expression of variables, array elements or
constants. The expression may contain the
operations +,-,%x and / together with MOD and
any named functions.

(3) Functions and Operations.

Functions are functions of one algebraic varia-
ble, and are computed in the floating point
mode. Operations have more than one argument :
these arguments may be constants, variables,
array names or symbolic locations of parts of
the programme. Operation statements are of the
form L = OP(A,B,C,....) with the left hand side
optional.

(4)

(5)

-34-
Control statements.

These control the flow of the programme. They
may be imperatives, or conditional transfers
depending upon the various indicators which
can be tested.

Translation directives.

These are statements directing the translation
programme only. They have no corresponding
orders in the object programme.

END tells the ABC translator that
the translation phase is
finished, and tells the assembly
programme to produce a transfer
card. '

COMPILE generates the library functions,
collects the working space block
and allots storage.

WORKINGSPACE A allots the symbol A to head the
working space block.

-35-
Appendix 2

A2. Input-Output Operations.

Among the many operations available in the ABC sys-
tem perhaps the most important are_ those dealing with
input and output, and with conversion between the decimal

and binary scales.

A2.1 Input.

There are two operations for input, named
INPUT and IN. Both take decimal data from cards (or
tape written in the BCD mode), convert it to binary form
and then place it in the core storage. The operation
INPUT handles single items of data, the operation IN
handles the input of one dimensional arrays.

The operation
INPUT (CARDS,A,B,C,...)

will read cards and transmit the numbers from them to the
locations A,B,C, etc.

The operation _
IN (CARDS,N,A)

will read N numbers ‘from cards and transmit them in order
to the locations A-1, A-2, etc., i.e., to the locations
occupled by the array A.

If the data exists on BCD tape, written either
by off-line equipment or by the 704 under control of the
output operations, the following forms of the operations,
are used:-

INPUT (TAPE M,A,B,C,...)
IN (TAPE M,N,A)

where M is an unsigned integer constant or an integer
variable. M may take the values 1 to 10 inclusive.

- 36-

INPUT is an exception to the rules regarding
subscripting of operation arguments, in that no res-
triction is placed on any of its arguments other than
that giving the tape number.

Rules for card punching:-
(1) Columns 1-72 may be punched.

(2) The numbers to be transmitted do not con-
tain any blank characters, and must be
separated from each other by single commas
and/or one or more blank characters.

(3) The mode of the numbers is determined by
the punching, and must be matched with the

mode of the variables listed in the opera-
tion. Signs are indicated by a + or - sign
preceding the number or exponent. It is not
necessary to use the + sign, Fixed point
integers are punched without a decimal point
or exponent. They must not exceed 34359738367
in magnitude. Floating point numbers are
punched with a decimal point and/or a decimal
exponent preceded by an "E", If the decimal
point does not appear it is assumed to be at
the right hand end. If the character "E" does
not appear the decimal point is assumed to be
zero. Thus 12,345, +12,345E1, 1234.5E-2, and
12345E-3 are all equivalent representations of
the same floating point number.

(4) If no digit appears between two commas,
the card is read as if there were a zero
between them.

(5) If the first punch on a card is a comma a
zero is assumed to precede it. Similarly,
if the last punch on a card is a comma a
zero is assumed to follow it.

(6) A blank card is read as a single number
zero.

The input conversion programme is adapted from
UA DBC 1 and will consequently accept numbers with binary
scale factors for conversion to fixed point binary quan-
tities (see specification of UA DBC 1).

-37=
Notes :=-

The numbers are read in order from left
to right across the cards, and as many cards
are read as are required to transmit all the
numbers listed in the operation. If any num-
bers remain on the last card to be read, after
the specified numbers have been transmitted,
these will be lost: they are not read by the
next input operation,; which commences to read
a new card.

(If the input is from tape, the remarks
made about cards apply to records on the tape.)

If an end of file condition is met during
input operations. a stop occurs with the octal
number 70004 in the address field of the storage
register. If the START button is pressed, the
end of file condition will be ignored.

If in tape input operations an RTT failure
occurs, two attempts will be made to read the
record, and a subsequent failure will cause a
stop with the octal number 70002 in the address
field of the storage register. Press "START"
to accept the record.

-38-
A2.2 Qutput.

As with input, there are two output operations.
These are named OUTPUT and OUT, dealing with single items
of output and one-dimensional arrays respectively.

The operation
OUTPUT (PRINT,F,A,B,C,.0.)

will print the numbers A,B,C etc. according to the format
statement F. If it is desired to print Hollerith infor-
mation only the operation is written OUTPUT (PRINT,F).

The operation
OUT (PRINT,F,N,A)

will print the N elements of the array A, namely A(1),
A(2), etc.

If the output is required on cards or tape,
the word PRINT should be replaced by the word CARDS or
the words TAPE M, where M is an unsigned integer con-
stant or an integer variable. M may take the values 1
to 10 inclusive.

If the operations OUTPUT or OUT are used to
punch cards, the cards punched are entirely suitable
for use with the input routines.

OUTPUT is an exception to the rules regarding
subscripting of operation arguments in that no restriction
is placed on any of its arguments other than that giving
the tape number,

A2.3 Format.

To control the arrangement of the output, a
format is used. Since the output conversion routine is
adopted from UA BDC 1, formats may be written in SAP
coding as specified for that routine (a restriction has
been removed from that routine so that entirely Hollerith

..39.-

formats and formats ending in Hollerith characters are
now permitted), i.e., if the format symbol is F then
the coding is

F TRA BLOCK

followed by BCD cards giving the required format- Such
formats may be placed only where they are not reached
by the sequencing of the programme. A suitable place
is immediately before the word COMPILE. In addition,
the symbol F must be defined as EXTERNAL.

However, the ABC translator includes a Format
Generator for which the desired arrangement may be mapped
on cards. This provides a simple and foolproof method
of obtaining the required SAP formats.

-40 -

A2.4 Format Generation.

To generate a format, place the word "FORMAT"
in the statement field of an ABC card. "FORMAT" cards
may be placed anywhere in the programme, since the ABC
translator will place the resultant format among the
constants at the end of the programme. No extra words
are allowed on a "FORMAT" card, except in the case speci-
fied below.

A "FORMAT" card must have a symbolic location
so that it can be called for by name when required. It
must be followed by 2 cards giving the lay-out for a line
of printing. The columns 1-72 on the first card and the
columns 1-48 on the second card each represent a type
position on the printer.

Any Hollerith characters to be printed should
be punched on these cards in the desired positions. The
character "." should not be used as a Hollerith character,
as it is used by the Format Generator to fix the position
of the numbers to be printed. A format may consist
entirely of Hollerith characters if desired.

Three basic types of conversion are possible
with the output operations:-

Integral binary to integral decimal denoted by "I"
Floating binary to fixed decimal " R S
. Floating binary to floating decimal " " WEXPNT"

When printed, negative numbers are preceded by a "-" sign.
Positive numbers remain unsigned.

To fix the position of a number for printing,
a "." should be punched in the sign position of the maxi-
mum possible number to be printed (this will of course be
determined by the programmer). A "." should also be
punched in the desired position of the decimal point if
the conversjon is from floating binary, and finally one
of "I", "F" of "E" should be punched in the last position
to be occupied by the number. "E" must always be followed
by "XPNT" in order to ensure that sufficient space is left
for printing the exponent. "E" conversion produces the
number in the form O.xxx...

-41-

e.g., to print the numbers -9865 765.354 0.37995E-02

the card would be punched . I . . F .. EXPNT
in the desired positions.

A scale factor may be employed with the float-
ing point numbers. If a digit is punched before’ the
decimal point it is assumed to be a positive scale fac-
tor, and if after the decimal point a negative scale
factor. Scale factors are restricted to one decimal
digit. "E" conversion may only have positive scale fac-
tors. The scale factor is assumed to be zero if no
value has been given, but once a value is given it will
hold for all "F" and "E" conversion until a new one is
given. Thus, if the above format were changed to

. I . J2F .1, EXPNT
the numbers would be printed _gges 7.654 3,79953E-02

If the format specifies how to print only n
numbers and the output routine is requested to print more
than n numbers then additional lines with the identieal
lay-out will be printed, until all the numbers have been
printed.

It may be desired to print a set of numbers with
a different lay-out for each line. In this case the word
"FORMAT" on the ABC card should be followed by a number
saying how many different lines are to be specified, and
the "FORMAT" card should be followed by this number of
pairs of cards giving the different lay-outs. 1In this
case also, if the number of numbers to be printed exceeds
the number catered for in the format then the format
will be repeated until all the numbers have been printed.

If a block format having the first lines of
some special formats and all remaining lines of the same
format is desired, the second card of the last lay-out
pair should have something punched in at least one of
the columns 89-72, which are normally blank.

The above instructions are given for printing.
They are also applicable to BCD tape-writing and to card
punching, although in the latter case columns 1-48 of
the second card of the lay-out pair will always be blank.

| -42-
A2.5 The operation FORM.

It is possible, by the use of the operation
FORM to alter a format specification during the opera-
tion of the object programme. The operation is written

FORM (CARDS,F)
or FORM (TAPE M,F) where F is the format symbol.

The FOfMM routine reads in the new UA BDC 1 type format
written in SAP code) from the standard BCD card form
i.e.; col. 12 gives the number of BCD words on the

card - it is blank if there are 10 words - while cols.

13-72 inclusive are used for the BCD words).

If more than one BCD card is used all cards
except the last should have a punch in at least one of
the cols. 1-6.

It is not essential to punch 'BCD' in cols.
8-11. The 'TRA BLOCK' instruction will be left unchanged
at the beginning of the format.

It is important to realize that the new format
must not be longer than the old, otherwise it may over-
write other useful information.

As with INPUT and IN, if an end of file con-
dition is met while FORM is operating a stop occurs
with the octal number 70004 in the address field of the
storage register, If the START button is pressed the
end of file condition will be ignored.

If an RTT failure occurs while FORM is read-
ing from tape, two attempts will be made to read the
record and a subsequent failure will cause a stop with
the octal number 70003 in the address field of the
storage register. If the START button is pressed the
record will be accepted and computation will continue.

-43-

Appendix 3
A3. T ibrar Functions and O ati .

The list of ABC library routines available for use
at the present time is given below. Additions may be made
at a later date. -

A3.1 Functions.

There are no error stops in the function sub-
routines. When a function subroutine is given an argu-
ment for which it is unable to compute a correct valge
it returns a value whose modulus is the maximum (2127-1)
or minimum (0) which may be stored in the 704. Details
are given with the definitions below. Let x be the ar-

gument of functions, x is always a floating point number.

A3.11 Trigono?etric functions. (Arguments in
radians

SIN,COS, TAN,COSEC, SEC,COT

Notes:- SIN If x > 289 zero is returned,
COS is computed as SIN (x + w/2).
TAN If |x| > 286 m zero is returned.
COSEC,SEC and COT are computed as the
reciprocals (using RECIP) of SIN,COS
and TAN respectively.

A3.12 Inverse Trigonometric functions.
ASIN, ACOS,ATAN

Notes:- ASIN If |x| > 1 it is assumed to be 1.
Function values lie in the 1st and
4th quadrants.

ACOS If |x| > 1 it is assumed to be 1.
Function values lie in the 1st and
2nd quadrants.

ATAN Results take the sign of x.

A3.13 Exponential and Hyperbolic functions.
EXP,SINH,COSH,TANH,COSECH;SECH,COTH

Notes:- EXP

SINH

COSH

COSECH,

-44-

If x > 87.3 the value (2%27-1) is
returned.

If x < -87.3 the value zero is
returned.

For arguments outside the range
-87.3 to 87.3 the modulus of the
value returned is (2127-1),

As for SINH.

SECH and COTH are computed as the

reciprocals (using RECIP) of SINH,COSH
and TANH respectively.

A3.14 Other functions.

LOG
SQRT
GAMMA
RECIP

INTEGP
FRACTP
RANDOM

Natural logarithm, using Ix | as
argument. Log(0) is -(2127-1).
Square root, using |x| as argument.
Gamma function., If x is a negative
integer or if x > 30, the value
(2327.49) is returned.

Reciprocal. If |x| < 27127 the
modulus of the value returned is
(2127_1) .

Integral part.

Fractional part.

Pseudo~-random number generator. This
generates a sequence of random num-
bers, equiprobable in 0,1 in the
floating point mode. The starting
pattern for the sequence genera-
tion is that of the modulus of the
original value of the argument.

For uses after the first, the argu-
ment ceases to have meaning, and
has no effect.

-45-

A3.2 Operations.

For the purpose of definition, we use the

following notation:-

INENIN

> >

> P>

V,W,X,Y,Z denote floating point variables.
I denotes an integer variable
A,B,C, denote variables which may be either

floating point or fixed point but
must all be of the same type in any
one operation.

N denotes an integer count,

S denotes. a symbolic location.

Any quantity which acquires a new value as the

result of an operation will be underlined thus:- X.

Operations may be divided into various classes:-

A3.21 Algebraic functional operations, i.e.,
functions of two algebraic variables.

PWR (X,I) z=xt,

POWER (X,Y) Z = (mod X)".

MODULO (X, Y) Z =X - Y » integral part of X/.
If the values of X and Y differ so
widely that X/Y is outside the range
of numbers which may be computed in
the 704, or if Y is zero, a stop
will occur, with the octal number
70001 in the address field of the
storage register, Pressing the
START button causes the programme to
continue, but an erroneous value will
be accepted as the required value.

SIGNsB,C; A = (sign C) » mod B.

MAX1(B,C A : éhe larger (algebraically) of B
an .

MIN1(B,C) A = the smaller (algebraically) of
B and C.

MAXM1 %B,C' A = the larger of mod B and mod C.

MINM1(B,C, A = the smaller of mod B and mod C.

A3.22 Operations on Arrays.

MAX2(N,B) A = the largest (algebraically) of
the N elements of the array B.

MIN2(N,B) A = the smallest (algebraically) of

the N elements of the array B.

MAXM2 (N, B)
MINM2(N, B)

(1S T B
I

SUMSQS (N, X)
RADIUS (N, X

N
I}

SORTA(N,B)
SORTD(N, B)

SORTPA (N, A, B)

SORTPD (N,A,B)

SET1(N,A,B)
EXCHNG(N, A, B)

TRANSF (N,A,B)

PUNCH (N, A, B)

-46-

A = the largest of the moduli of
the N elements of the array B.

A = the smallest of the moduli of
the N elements of the array B,

A = the sum of the squares of the

N elements of the array X.

A = the square root of the sum of
the squares of the N elements of
the array X.

The N elements of the array B are
sorted in ascending order. The
smallest becomes B(1).

The N elements of the array B are
sorted in descending erder. The
largest becomes B(1).

The N elements of the array A and
the N elements of the array B are
considered to be related pairs of
values. The elements of the array
A are sorted in ascending order,
and the elements of the array B

are sorted to correspond, so that
each element of A retains its ori-
ginal partner in B,

Parallel sorting, as in SORTPA, but
the array A is sorted in descending
order.

The N elements of the array A are
set to the value B.

The N elements of the array A are
interchanged with the N elements of
the array B.

The N elements of the array B are
set to the same values as the N ele-
ments of the array A.

The N elements of the array A are
puncned onto standard binary cards
(with word count, loading address and
checksum) suitable for reloading in-
to the machine. B is the name of
the array into which the elements
will be read on reloading. If B = A
the operation must be written
PUNCH(N,A,A).

-47-

MAX4(N,A,I1,B) A = the largest (algebraically) of

the N elements of the array B.

I = the subscript of this element.
MIN4(N,A,I,B) A = the smallest (algebraically) of

the N elements of the array B.

I = the subscript of this element.
MAXM4 (N, A,1,B) A = the largest of the moduli of

the N elements of the array B.

I = the subscript of this element.
MINM4(N,A,I,B) A = the smallest of the moduli of

the N elements of the array B.

I = the subscript of thiselement.
POLY1(Nh§,Y,Z) Computation of polynomial of order

N. Z is an array of order (N + 1). ..

X =2Z(1) +Z(2) 2 Y + coeeot Z(N+H)

A3.23 Operations_on gollections.

MAX3(N,A,B,C,..) A .= the largest (algebraically) of

the N quantities B,C, ...,
MIN3(N,A,B,C,..) A = the smallest (algebraically) of

, the N quantities B,C, ...
MAXM3(N,A¢B,C, +s) A = the largest of the moduli of
the N quantities B,C, ...,
MINM3(N,A,B,C,.0) A = the smallest of the moduli of
the N quantities B,C,....
POLY2(N,Z,X,V,W, .« Y) Z = polynomial of degree N, with ar-
- gument X and coefficients V,X,...Y.
= VWX +e e veeoostYuXN,
SET2(N,A,B, +++,C) The N variables A,B,... are set to
the value C.

Note:-

All function arguments and those arguments of opera-
tions which are single variables and are not underlined,
may be constants if desired. Indeed, the integer count
N will in most cases be a constant. If it is a variable
it may take any integer value less than or equal to the
number of arguments for which the count 1s used. For
example, the operation MAX3(N,A,B,C,D,E) may be used for
N = 4 or less. In the case of arrays N must be less than
or equal to the dimension of the array. In the operation
SET2, N is used to select the value to which the preceding
N variables are to be set. Thus in normal use the opera-
tion SET2 has a total of (N+2) arguments. '

A3.24

-48-

Mathematical processes.

(a) Quadrature. 5-point Gaussian
integration. Let the integrand be
calculated by a closed subroutine or
SECTION, and let the name of the sec-
tion be 5. It calculates X = F(X).
the integrand, taking its argument

as X and replacing it by the corres-
ponding function value. Then the
operation

GAUSS (X,Y,Z,S)

performs the definite integration
between the limits Y and Z. Note
that S is a symbolic location argu-
ment and must therefore be defined
as EXTERNAL. 2

Example. To find fve-xocos x2dx

Y
(1) Definitions.

ABC EXTERNAL S
ABC FUNCTIONS EXP COS
ABC OPERATION GAUSS

(2) Calculation of the integral.
ABC GAUSS(X,Y,Z,S)

(3) Calculation of the integrand, (to
be placed outside the sequencing
of the main programme
S ABC SECTION 5

ABC X = (EXP-X)COS XxX
ABC END OF SECTION S

The variable X has the value of the
integral after the operation.

49~

(b) Finding a zero of a function., If
a function is defined by a closed sub-
toutine or section as in the previous
example, and Y is an estimate of the
root required, then the operation for
improving the estimate of the root is

ROOT (X,Y,W,V,S)

This will place the improved estimate
of the root of the function in X. S
is the name of the section to calculate
the function., W is the step interval.
If the initial estimate of the root is
Y, then the function is calculated at
Y and YW. Thereafter the argument X
is stepped towards the root at inter-
val W until the root is bracketed.
Then iterative linear interpolation is
used until the value of the function
falls below V in magnitude, or until
two successive iterates agree.

Example. To find a root of the equation
x%-2x=5 = 0, using x = 2 as a first
approximation.

(1) Definitions.

ABC EXTERNAL S
ABC OPERATION ROOT

(2) Refinement of the root.
ABC ROOT (X,2.0,0.1,0.000001,S)
(3) cCalculation of the function.

S ABC SECTION S
ABC X = X(XxX-2)-5
ABC END OF SECTION S

We have chosen the stop to be 0.01 and
the convergence number to be 0,000001.
The estimate must be written as 2.0,
since a floating point constant is
required.

-50-

(c) To advance by one step the inte-
gration of n simultaneous ordinary
differential equations of the first
order,

g‘}i; fi(Y1’Y23-~0~Yn)s i=12,..e0n

i.e., to calculate the values of the
variables y3 when x is increased by h.

A form of the Runge-Kutta method is
used, and the operation is written

RUKU(Y,Z,W,V,N,S)

where V is the interval of integration.

N is the number of equations to
be solved.

Y is the name of the array of
order N containing the starting
values YirY2seosYp o After the
operation, Y will 'contain the
new Vilues Of Yl,yz,otcy .

S is the location of an auQiliary
routine which must be supplied
by the programmer to calculate
the values of the functions
fi,f2,...fn (finding the current
values of the arguments
yl,yz, oooy in the array Y)
and place them in the array 2,
which must of course be of
order N,

W is the name of an array of order
N which is used by the routine
to hold rounding-off errors,
which are taken into account on
the next step in order to pre-
vent their rapid accumulation.
The array W must be cleared at
the beginning of each integra-
tion and at the beginning of
each range in which V assumes a
different value.

51

The truncation error in one step is
0(V®). For a small set of well- behaved

equations it is approximately 1072v°,

If V is not an exact binary number and
x appears explicitly in the functions
fi’ there is a definite numerical ad-

vantage to be gained by treating x as
another dependent variable and generating
it by integration of the equation x' = 1.

If V is an exact binary number and x
appears explicitly in the functions
fi' and is not generated as a dependent

variable, the values x, x+W,x+¥V,x+V
must be supplied to the zuxiliary routine
at the four stages of eath step.

An example of a complete programme using
RUKU is given below:-

Given the equations y' = -z and z' =y
with the initial conditions y(0) = 1
and z2(0) = O, to print out the values
of X4Yéz at X = Oé .0 correct to 7
decimal places. It will be noted that
the required interval is small enough
to ensure the required accuracy.)

ABC OPERATIONS RUKU OUT SET1
ABC DIMENSION Y 3

ABC DIMENSION Z 3

ABC DIMENSION W 3

ABC EXTERNAL S

ABC Y(1) =0
ABC Y(2) = 1.
ABC Y¥(3) =0

ABC SET1(3,W,0)

ABC OUT PRINT B;3,Y)

ABC FORMAT
F o o F o o F
(blank card) ‘

-52-

DO SECTION D I = 1,1,100
STOP

SECTION D

RUKU (Y,Z,W, .01,3,S)

OUT (PRINT, B, 3,Y)

END OF SECTION D
SECTION S

Z(1 1.

Z(2 - Y(3)
z(3 Y(2)

END OF SECTION S
COMPILE

C

wunn

-53-

There 1s a set of four operations which will transfer
binary information to or from drums, tapes or cards. The
operations READ and WRITE will transfer collections of
single items, while the operations READA and WRITEA will
transfer arrays. .

READ(CARDS,A,B,...) will read one card and transfer
not more tnan 24 separate binary
items to the locations A,B,...

READA (CARDS,N,A) will read N items from binary
cards and transfer them to the
array A. (More than one card
will be read if N is greater
than 24)

READ(DRUM M,L,A,B,...) -will read binary information from
drum M, commencing at drum location
L, and store it in locations A,B,...

READA (DRUM M,L,N,é) will read N consecutive words from
drm M, commencing at drum location
T., and store them in the array A.

No checking is done by these operations when reading from
cards or drums.

READ(TAPE M,A,B,...) will read one record of binary
information from tape M and store
the words in the locations A,B,...
A READ(TAPE M) may be given without
a list of locations, in which case
the programme will skip over a
record or end of file mark.
If the 1list is longer than the
record, the programme will stop
with the octal number 70005 in the

address field of the storage register.

The obJject programme redundancy
checks the tape reading. If a
record fails twice the programme
stops with the octal number 70006
in the address field of the storage
register. Pressing the START

~54~

button causes the information read

on the second attempt to be accepted.
If an end of file mark is encountered
the object programme will stop with
the octal number 70007 in the

address field of the storage register.
Pressing the START button causes

the programme to read the next record.

READA (TAPE M,N,A) will read N items from tape M and
store them in the array A. The
stops in the object programme are
effectively the same as for READ,
except that the numbers in the
storage register are 70010,70011
and 70012 respectively.

The operations WRITE and WRITEA are used in the same
manner as READ and READA to transfer information to cards,
drums and tapes. No checking is done by WRITE and WRITEA.

..55..

Set a machine tape to logical tape 1.

Put sense switch 6 up.

Ready the card deck AB C 000-881 in the card reader.
Press CLEAR and LOAD CARDS,

The ABC system will then be copied from the cards onto
tape 1, which will be rewound, and the TO4 will stop at
location O.

?2-922!.éQ-éEQ-&!EE.@-EQEQ-QEEQ-QQQEBQE-EEEE-
Set the existing ABC system tape to tape 9.

Set a machine tape to tape 1.

Put sense switch 6 down.

Ready the card deck AB CC 00-76 in the card reader.
Press CLEAR and LOAD CARDS.

The ABC system will then be copled from tape 9 to tape 1,
both tapes will be rewound, and the programme will end
with a LOAD CARDS simulator.

IQ-99@2&12-5-2!25!&@@2.ElEE-EDE-AEE-QZQEQ--
Load the ABC system tape as tape 1.

If off-line printing of the assembly is required, set a
machine tape to logical tape 2.

Set a machine tape to logical tape 3.

If the symbolic deck to be compiled has been written on
tape, load this tape as logical tape 4. If the symbolic
deck is to be read from cards set a machine tape to
logical tape 4.

Sense switches 1-5 are used for the SAP assembly, therefore
their settings are as follows-

1 Up and 2 Up Input to both passes of the assembly
programme 1s always from tape 3.

3 Up Suppress on-line printing.
3 Down Output is printed on-line.

~56-

4 vp Any on-line printing is single
spaced.

4 Down Any on-line printing is double
spaced.

5 Up Logical tape 2 18 written during

the second pass of the assembly
programme, in order to permit
later off-line printing.

5 Down Suppress preparation of tape 2.
The setting of sense switch 6 i1s not relevant to the

assembly programme since a separate library tape is not
permitted by the ABC system. It i8 therefore used to

diszinguish between input from cards or tape to the ABC
system.

6 Up Input 1s from tape 4.
6 Down Input is from cards read on-line.

Control panel requirements are as for UA SAP.

Ready the following card deck in the card reader and
press CLEAR and LOAD CARDS.

1) Primary control card ABC PRI.
2) Secondary control card ABC SEC.

3) Deck to be compiled (ending in COMPILE and END cards)
if it is to be read on-line.

4) Symbol table from previous assembly (if any).

5) Correction-transfer card for SAPl.
ABC NST if symbol table is not required.
ABC ST if symbol table i1s required.

6) Two blank cards.

Items 2-5 are repeated if more than one compilation 1is to
be done. If several programmes are to be compiled
successively they may be written on the same input tape,
the last one being followed by an End of File mark.

57~

After all compilation and assembly is completed the ABC
programme ends with a LOAD CARDS simulator.

The deck of cards produced by the ABC system consists
of the following-

1) The ABC upper one-card loader.
This loader will accept absolute binary cards only.
The checksum stop is at location -2. If 912 is
punched the checksum will be ignored.

2) Any library routines requested.
3) The cards punched by the assembly programme.

If the symbol table is not punched by the assembly programme
the above deck is completely ready for loading into the

704 as an operational programme. If the symbol table is
punched, it and the two- blank cards following it must be
removed from the deck before it 1s loaded.

~58-

A5. Extending the ABC_library.

Library routines are stored on the system tape in the
form of cloced relocatable subroutines (starting at origin
0) -~ the system tape being ccpled originally from
relocatable cards.

A routine may use other library routines as subroutines.
If the routine is a function routine the argument of the
furiction is found in the AC when the routine 1s entered.
Index register 4 is used to enter subroutines, as in
normal practice. If the routine is an operation routine,
the arrangement of the arguments is best explained by an
example -

MAX3(4,A,-B(I),-C,D(I)) ie translated by the ABC programme to

LXaA I,1

CLA D,1

CLS C

CLS B,1

CLA A _
CLA Location of 4
TSX MAX3,4

Thus index register 4 can be used for collecting the
various arguments of an operation.

Index registers 1 and 2 must be preserved by library
routines. It should be borne in mind that the arguments
may be indexed and may be positive or negative, so the
entire instruction must be studled by a library routine
when collecting the arguments. A convention that if an
operation has more than two arguments the place where the
result 1s to be stored is inserted as an additional
argument has been followed in the set of library routines
issued with the ABC system.

Each library routine has a serial number, which is
used by the library-writing routine and the ABC translator
if the routine 1s called for as a subroutine of another.
Most library routines have names (a symbol of 6 or less
characters), which are used by the translator when searching

-59-

for a routine which has been defined as a FUNCTION or
OPERATION and not as an EXTERNAL. Those library routines
which have no name are used only as subroutines of other
routines and have no use on their own.

Each library routine has associated with it a
relocatable index card which is assembled in the following
manner -

ORG O

BCD OONAME

HTR a,0,b

HTR Q,0,4d or MZE ¢,0,d } 9 possible references

HTR e,0,f to other routines may fill
the rest of the card.

i.e. Name at righthand end of BCD word, preceded by zeros.
a = number of locations used by the routine.
b = serial number of the routine.
f = gserial number of subroutine referred to.
d = address referred to in the subroutine.
e = position of reference.
¢ = second position of reference (if 1t exists). Use
MZE for a second reference.

A library routine must consist of only one continuous
block of information completely filling the number of
locations specified (i.e. no BSS or BES pseudo-ops are
allowed).

Library routines must be arranged on the system tape
in such a way that a routine using another routine as a
subroutine appears before 1t on the tape. The serial number
order of the routines has no significance in this respect -
serial numbers were allocated to routines as they were
written. In the card deck AB C 000-881, the columns 76
and 77 are used to hold the library serial number of the
routine to which the card belongs. These columns are
blank on cards which are not part of the library. A 1list
of the present order of routines is appended, and -an
updated 1ist can be obtained by using the library-printing
programme AB CL PR 00-30 if routines are added to the
library. This list treats each library routine in the
order in which they appear on the tape, printing the
serial number, name, and the serial numbers of the 9
possible subroutines referred to.

«00=

The library is written on the system tape in the
order - ' ,

All index cards.
A blank card (AB C 427 in the current AB C deck).
Index card plus programme cards for each routine in turn.
End of file mark (produced by a blank card - AB C 732
in the current AB C deck).

Thus two copies of each index card are required. The same
library writing programme is incorporated in the decks

AB C 000-881 and AB CC 00-76, AB CC 37 = AB C 427 and

AB CC 38 = AB C 732. 1If sense switch 6 is up the entire
library may be copied from cards to tape 1. If sense switch
6 1s down the library will be copied from tape 9 to tape 1,
with modifications indicated by control cards inserted
before the two blank cards mentioned above.

If a routine is to be removed from the library, a
control card should be punched with its serial number in
9LA, and the 9RS bit punched. If a routine 1s to be
added to the library, 9LA of the control card should be
punched with the serial number of the routine it is to
follow, and the 9R1 bit should be punched.

Thus if an amended version is to replace a routine
already on the tape the control card should have its
serial number in 9LA, and 9RS and 9R1 should be punchead.
If more than one routine is to be added in the same place,
one control card will suffice, if it is punched in 9R
1,2,3... - one column for each routine to be added.

When considering the serial number of a routine to
be followed by an addition it should be borme in mind that
the programme regards as the previous serlial number that
of the last routine processed - therefore it may be the last
one copied from tape, the last one removed from tape, or
the last one added to the tape. If additions are to be
made at the beginning of the tape, leave the serial number
blank on the control card. If several additions are to
be made, the order of the routines with which they are
connected must of course be considered when collecting
the control cards.

-61~-

When using AB CC to alter the library the order of
the cards is as follows -

AB CC 00-36

Control card repeats i1f more than

Index card(s) of addition(s) one control card.

AB CC 37 .

control card repeats if more than

Index card plus programme cards one control card.
for each addition

AB CC 38

AB CC 39-76

Thus two copies of each control card are required in addition
to two copies of each index card.

The routines with serial numbers 2,3,4,33,47 and 48
are single location routines used as COMMON storage by the
gther routines - they are not necessarily consecutive

ocations.

The two library routines INP1 (serial 68) and RTX
(serial 69) are versions of the routines NY INP1l and
UA CSH2 respectively, which may be used with their normal
SAP calling sequences, apart from the fact that the end
of file or error returns have been incorporated in the
routines and therefore the calling sequences only use
2 locations instead of 3.

To_print_the library list.

Set the ABC system tape to logical tape 1.

Ready the card deck AB CL PR 00-30 in the card reader.
Press CLEAR and LOAD CARDS.

The programme will then print the library list (Share 1
printer panel), rewind the system tape and stop at
location 253.

~62~

00000000%000009000000000000000030000000000

O : o0
ooooooofnﬁov‘“oomﬂwoooooooo0000000.@”0% COO0OMOODOO
ouooooo'nwoaoo&@oao'meo0000000000%“%-&!-“.“030000
0”0”000”%0““0““&030&0&000000000&.’3%”2”30000
O”O”mmOWﬁOMOMQpQDuoaO&O&OO0000000.@3%““33.4. 3%000

Dz T OWVWYWO-ND MAOMNHMNOAOO0OOO0O00 0 O0OQNUTNNMNNMNO

o O < & 1]
T ITRRVRRVR2B523VE

o

o

63 6

o 000000002%2%3232“330

i
O
0& C Ottt AN NN NINO

S m B paxb . 2 382

gg2 5 Ex Eeegmed. Humme, sgh mc
mmmmmmommommwmmommmommmwmmwmmmmmummmumms i
2O SR R A S BE RN R RS AR NN AR ST DY AR

CO00000000000VV000000000000000V0O0000O0O0O0O0O00000
CO0000000000000000000000000000O0000O0O0O0O000000
OO0O000CO000000000000000O0FOCO0000000000000000000
O03““00000000000000003“00000000000000000000
COXFO000O0OMOO0O0O000000O0MITOO00000V0000O0O000000000
COMMMMOOOMOOO0O000000O0ONMOOO00O0O00O0CO0O0000000000
COMMMMOOONOMMMNMOOOOINANNOOOOOO0O0000000000O0000

OCONNANNNOMNOMNMMNMMNMMMIINANNOOOO00000000000000000

ANANNNNNNAUNNNNNNNUNAUANNNMNAUNOOOOOO0O00000000000000

mmm v, . 385E%es Wm

32 SORTPD
31 SORTPA
30 SORTD
29 SORTA
28 FRACTP
27 INTEGP
MODULO
23 SIGN
MINM2
13 MAXM2
12 MIN2

gz POLY1

m

.l—

34 SET1

65123&.7890

36 TRANSF
22 MINMY4
21 MAXMY4
20 MIN4
ﬁ MAXH4

1

25 POLY2

33 0
70 RANDOM

71 GAUSS

15 MAX3

~64-

Programme _stops.

AB C 000-88;.

7 Checksum failure. Reload the last 4 cards read and
press LOAD CARDS.

8 Checksum failure. Reload the last 6 cards read and
press LOAD CARDS.

15 Checksum fallure. Reload the last 3 cards read and
press LOAD CARDS.

24 Tape loader copied incorrectly onto tape. Press
START to try again.

53 Card checksum error. Press START to accept.

66 Checksum wrong on tape. Press START to try again.
100 Checksum wrong on tape. Press START to try again.
106 Machine failure or card deck in error.
107 Machine failure or card deck in error.

212 ILibrary card checksum failure. Press START to
continue (checksum is corrected on tape).

AB_CC_00-76.

- D G WD G GB G &b G0

17 ‘Tape checksum error. Press START to try again.

212 ILibrary card checksum fallure. Press START o
continue (checksum is corrected on tape).

240 Error - end of file while reading llbrary programme
from tape 9. Machine failure or tape 9 wrong.

313 Error - end of file on tape 9 before AB CC 37 and 38
are read. Alterations probably in wrong order.

327 Checksum failure while reading library programme from
tape 9. Serial number is in MQ address, loading
address in MQ decrement, checksum in AC. Press
START to continue.

-65-

335 Checksum failure while reading library index card
from tape 9. Serial is in MQ address, checksum in
AC. Press START to continue.

444 Blank card image on tape 9 before AB CC 37 is read.
Alterations probably in wrong order.

The stops in the assembly part of the system are the usual
ones for UA SAP.

66 Checksum error on tape loader. Press LOAD TAPE to
try again.

7 Checksum error during reading of system tape. Press
START to try again.

106 Checksum error during reading of system tape. Press
START to try again.

237 Illegal punch on symbolic card. Load corrected card
and press START to continue.

773 Number of (brackets on a card is not equal to the
number of) brackets.

6512 Function or operation name without argument.

13016
13021 Errors in format lay=-out.
13123
13175

15724 Checksum failure while reading library records.
Press START to try again. If repeated fallures,
system tape i1s faulty and should be rewritten.

Any other stops which occur will be due to machine
faults or incorrect notation on ABC cards. Two courses
of action are possible if such a stop occurs -

1) Transfer manually to location 13623. This will cause
the card which 1is giving trouble to be ignored by the
ABC system, which will proceed to translate the next
card. After the assembly process is completed, a study
of the listing will show which card was in error, and it
should be possible to correct the binary deck by patching.

-66-

Abandon the translation process and print out the
contents of tape 3 either off-line or with an off-line
simulator. Tape 3 contains the symbolic deck which
the ABC system has prepared for input to the assembly
programme, and the last REM card on the 1ist will show
which card is in error.

Addendum.

Modes _of certain operations.

Operations such as MAX1(A,B) may be used with the
arguments either in fixed or floating point mode (but not
both at once). -

When such an operation has fixed point arguments it
will have a fixed point result and this must be signified
in the notation by placing a $ symbol before the name of
the operation. For example, if B and C are fixed point
variables we must write $MAX1(B,C) whenever we wish to use
this (and other similar operations) in the fixed point mode.

	cover 0001.tif
	letter 0001.tif
	note 0001.tif
	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif
	p 0039.tif
	p 0040.tif
	p 0041.tif
	p 0042.tif
	p 0043.tif
	p 0044.tif
	p 0045.tif
	p 0046.tif
	p 0047.tif
	p 0048.tif
	p 0049.tif
	p 0050.tif
	p 0051.tif
	p 0052.tif
	p 0053.tif
	p 0054.tif
	p 0055.tif
	p 0056.tif
	p 0057.tif
	p 0058.tif
	p 0059.tif
	p 0060.tif
	p 0061.tif
	p 0062.tif
	p 0063.tif
	p 0064.tif
	p 0065.tif
	p 0066.tif
	p 0067.tif
	p 0068.tif

