PRELIMINARY REPORT

Programming Research Group
Applied Science Division
International Business Machines Corporation

November 10, 1954

Specifications for
The IBM Mathematical FORraula TRANslating System,
FORTRAN

Copyright, 1954, by International Business Machines Corporation
580 Madison Avenue, QPWWYQ}_‘}{,ZZ, New York T

e

« o

PRELIMINARY REPORT

Specifications for the IBM Mathematical FORmula TRANslating System,
FORTRAN |

The IBM Mathematical Formula Translating System or briefly, FORTRAN, will
comprise a large set of programs to enable the IBM 704 to accept a concise
formulation of a problem in terms of a mathematical notation and to produce
suzomatically a high speed 704 program for the solution of the problem. The
1ozic of the 704 is such that, for the first time, programming techniques have
becn devised which can be applied by an automatic coding system in such a way '
that an automatically coded problem, which has been concisely stated in a
language which does not resemble a machine language, will be executed in
about the same time that would be required had the problem be en laboriously
nand coded. Heretofore, systems which have sought to reduce the job of ‘
coding and debugging problems have offered the choice of easy coding and slow

O

execution or laborious coding and fast execution.

It is felt that FORTRAN offers as convenient a language for stating problems

¢or machine solution as is now known. Studies have indicated that a hand coded -
program for a problem will usually contain at least 5 times as many characters
2nd sometimes 20 times as many characters as the problem statement in
FORTRAN language. Furthermore, after an hour course in FORTRAN

rotation, the average programmer can fully understand the steps of a

srocedure stated in FORTRAN language without any additional comments.

Refore considering the way in which a problem may be presented for automatic
coding by the FORTRAN system, it might be well to consider some of the
advantages of such a system. Basically, of course, the reason for the
existence of high speed computers is the fact that they make possible the
solution of problems in a much shorter time and at much less cost than

would otherwise be required. The time and cost required for the solution

of a problem on a high speed calculator fall roughly into 4 catagories:

1. Analysis and Programming
2. Coding ,

3. Debugging

4, Machine Solution

'aster and more capacious machines will considerably reduce the cost and
time required for item 4 but so far the advent of new machines seems to

nave done little to reduce either the cost or time required for items 1,2,

and 3. 1t seems to be quite generally true that the personnel costs of a
computing installation are at least as great as the machine cost, Further-
more, it is reasonable to assume that personnel cost for coding and debugging
constitute considerably more than half the total personnel cost. Finally, at
installations which have relatively few long term problems, as much as 1/2
of the machine cost is devoted to debugging. Therefore, ina erude fashion

1

one can say that out of every dollar spent to solve an average problem on a
high speed computer, less than 25 cents is spent for analysis and programmins,
more than 25 cents is spent for personncl coding and debugging cost, about

25 cents for machine debugging cost, and about 25 cents for machine running

cost.

Since FORTRAN should virtually eliminate coding and debugging, it should

be possible to olve problems for less than half the cost that would be re-
quired without such a system. Furthermore, since it will be possible to
“avote nearly all usable machine time to problem solution instead of only half
:rie usable machine time, the output of a given machine should be almost
doubled. Also, of course, the toial elapsed time for the solution of a problem
" should be a small fraction of the time required w1thout FORTRAN since the
time required for coding and debugging is usually more than 3/4 the total

- elapsed time. Not only does FORTRAN greatly reduce the.initial investment
in producing a program, but it will reduce even more the cost of repro-
gramming problems for future IBM calculators, since each such calculator
should have a system similar to FORTRAN accompanying it which could
translate the statement of the problem in a 1anguage very much like FORTRAN
to its.own code.

In addition to FORTRAN'Ss great po:entialities for economy, such a system
will make experimental investigation of various mathematical models and
numerical methods more feasible and convenient both in human and economic
terms. Also, FORTRAN may apply complex, lengthy techniques in coding

a problem which the human coder would have neither the time nor inclination
to derive or apgly. 'Thus, in many cases, FORTRAN may actually produce

a better program tnan.the normal human coder would be apt to produce.

Finally, the amount of knowledge necessary to utilize the 704 effectively

by weans of TORTRAN is far less than the knowledge required to make
effective use of the 704 by direct coding. Information concerning how to

use subprograms, what machine instructions are available, how to

optimize a sequence of calculations, and concerning a large number of other
coding techniques, is built into the FORTRAN system and it is not necessary
for the programmer to be familiar with this information. Infact, a great
deal of the information the programmer needs to know about the FORTRAN
sysiem is already embodied in his knowledge of mathe.aatics. Thus it will
be possible to make the full capabilities of the 704 available to a much wider
range of people than would otherwise be possible without expensive and time
consuming training programs

In summary, then, a system such as FORTRAN has the following potential-
ities :

Great economy of time and money.
.. Feasibility of more mathematical experiments.

Ability to apply complex, lengthy techniques in coding a
~ problem.

O DD

4. Ability to make the 704 avilable to more people with more
convenience and less training.

Before beginning a description of the FORTRAN system, it should be noted
that the following description is intended only to indicate present plans. Al-
though the methods by which FORTRAN will operate are well understood,
future developments in programming FORTRAN may necessitate certain minor
changes in the system as it is presented below.

The following is a description of the admissible symbols and combinations of
. symbols in the FORTRAN language and how to use it:

1. CONSTANTS

A. FIXED POINT (INTEGERS)

i) General Form:

1 to 5 sequential decimal digits optionally preceded by a plus or |
minus sign ‘

ii) Examples:
3
+1
- 34500
3, FLOATING POINT

i) General Form:

Any‘s'equence.of decimal digits with a decimal poinf preceding or
intervening between any 2 digits or following a sequence of digits,
-all of this optionally preceded by a plus or minus sign.

038

The number must be less than 1 in absolute vaiue and

greater than 1038 15 absolute value.

".ii) Examples:

2. VARIABLES

A, FIXED POINT VARIABLES

i) General Form:

A sequence of 1 or 2 alphabetic or numeric characters the first
one of which is one of the following: i, j, k,1,m,n

il) Examples:
i, ia, ii, ij, il

B. FLOATING POINT VARIABLES

i) General Form:

A sequence of 1 or 2 alphabetic or numeric characters where the
first character is an alphabetic character, not one of the following:

i, j, k,], m, n
ii) Examples:
a, aa, ab, ai, al

3. OPERATIONS

A, UNARY OPERATIONS (OPERATING ON A SINGLE VARIABLE OR
EXPRESSION) :

i) + Take the value of the following constant, variable or expression.

ii) - 'Iake the negative of the value of the followmg constant varlabxe
or expressmn T

- B. BINARY OPERATIONS

) + Add the constant, variable or expression preceding to the
constant, variable or expressmn following.

ii) - Subtract

i) x Multiply

iv) / Divide. Note that a/b/c=(a/b)/c
b

v) xx Exponentiation. axxb=a

4. FUNCTIONS

No specific list of functions is given since there is no limit on the number
of possible functions. Functions must be single-valued.

A.

GENERAL FORM:

Three or more alphabetic or numeric characters (beginning with én
alphabetic character) followed by a left parenthesis followed by 1st
argumernt followed by a right parenthesis or by a comma followed

by 2nd argument followed by a right parenthesis or by a comma
followed by 3rd argument, etc. ,

B. EXAMPLES:

i) sin(a)

ii) sqrt(a+b) : means Ya+b

iii) factl(m+n) : means (m+n) !

ot s e——

iv) sqrt(sin(axx2)) . : means JEin('az)

v) max(a, b,c,d,e) : means select the largest of the quantities

a,b,c,qd,e.

INFORMAL DESCRIPTION:

Any sequence of variables and functions separated by operation
~symbols and parentheses which forms a meaningful mathematical
-expression in the'normal way. - Note that every adjacent pair of
variables or functions must be separated by an operation symbol.

FORMAL DESCRIPTION:

By repeated use of the following rules, all legal expressions may

be derived and all expressions so derived are legal provided they
have less than 750 characters.

i) Any constant or variable is an expression.

il) ¥ E is an expression not of the form +F or -F, then +E and -E

iii)

arc expressions,

If xxx denotes a function of n arguments, and if E,, E,...E are
expressions, then in general xxx (E1,Eg,...,Ep) " is “an = ex-
pression. Although functions may have this general form, certain
functions will place restrictions on the form of permissible
arguments.

iv)

v)

vi)

If E is an expression, so is (E)

If E and F are expressions where F is not of the form +G or -G
and o is one of the permissible binary operations, then EoF is
an expression.

If E and F are expressions, so is ExxF

C. EXAMPLES:

i)

11)
11i)

iv)

vi)

vii)

a/b/c Note that this is equivalent to (é/ b)/c
a/bxc Note that this is equivalent to (a/b)xc
a/(b+c)xd Note that this is equivalent to (a/(b+c))xd

a+sin(bxc /(d+(e+(f+g)))xcos(b))xbxx2 Note the use of redundant
parentheses in this example to indicate the desired order of
computation.

2.xr Ncte that the decimal point is used to denote that 2 is
retained in floating point form.

1.53x10xx-14 denotes 1.53 x 10”14

m/n

When the order of binary ope.ations in an expression is not
completely specified by parentheses, the order of precedence is
understood to be as follows:

1; addition - subtréction'
' 2. multiplication - d1v1smn
3. exponentiation

" . For example, the expression

a+b/c+dxx2xf-g
will be taken to mean
(a)+(b/c)+ (@%x0)- (g) -

Multipliéation and division will have no fixed relationship of

precedence, except in the sense of example ii above.

D. FIXED POINT EXPRESSIONS, FLOATING POIN‘I‘ EXPRESSIONS,
MIXED EXPRESSIONS '

i) Fixed point expres$sions are expressions containing only fixed point
constants and variables. :

a) Al fixed point sxpressions will be evaluated by fixed point
irtorer arithmetic. - Thus, the value of i+m/n will be
i+ iie integral part (unrounded) of m+n). =~ T —

e e T -
e ™

ii) Floating point expressions are expressions containing only {loating
point constants and variables with the exception of fixed point
arguments of certain functions and fixed point variables or
constants following the operation xx. '

a) Floating point expressions will be evaluated using {loating
point arithmetic. It may be necessary in certain cases to use
redundant paresntheses to indicate a particular sequence in
which the operations should be performed in order to avoid
obtaining intermediate results in the evaluation of the ex-
pression which might lie outside of the range 10'3 , 1038'

iii) A mixed expression is any expression not belonging to one of the

two above catezories.

a) The type of aritametic employed in evaluating a mixed ex-
pression is described below in the section headed:
ARITHMETIC FORMULAS.

E. VERIFICATION OF CORRECT USE OF PARENTHESES

In complicated expressions involving the use of many parentheses,

it is very easy to omit closing some parentheses. Therefore, in
such cases, it is suggested that the programmer use the following
procedure to make sure that the parentheses in an expression
indicate the sequence of operatio.:s he desires. Working from left
to right, number each parenthesis, right or left, as follows: Number
the first parenthesis "1", label each left parenthesis with an integer
"one larger than the number of the parenthesis immediately to the left
of it. Label each right parenthesis with an integer one less than the
number of the parenthesis immediately to the left of it. Having done
this, the mate of any left parenthesis labeled "n" will be the first
right parenthesis to the right of it labeled n-1. It should bz noted
that these numbers are not partof the FORTRAN language and should
not be entered in the expression. -

6. SUBSCRIPTS AND SUBSCRIPT EXPRESSIONS:

Subscripts and subscript expressions described below must have non-
negative, non-zero values at all times.

A, SUBSCRIPIS

- B.

A subscript is any fixéd point variable or constant.
A SUBSCRIPT EXPRESSION

A subscript expression is a fixed point expression of not more than 3
terms where all but one term is a single fixed point variable or
constant and one term may be a product of two subscripts. All but
one of the variables in a subscript expression must be designated as
relative constants (see section, RELATIVE CONSTANTS, under
SPECIFICATION SENTENCES). Parentheses are not permitted in
Subscript expressions. .

i) _l_?,“xamples:'
whefe j ahd n are relative constants: . . °
a) i+l
b) i+j
C) nxi+j

..d) 2xn-i
e) 100-nxj

7. SUBSCRIPTED VARIABLES

A.

U

. EXAMPLES:
\

iv) a(3xi+n,m) : means a

A subscripted variable is a variable (fixed point or floating poin
followed by a left parenthesis followed by one, two, or three subscripts
or subscript expressions (where each subscript or subscript ex-
pression except the last is followed by a comma) all followed by a

- right parenthesis.

Each subscriﬁt or the elements of each subscript expression may be
subscripted fixed point variables.

Subscripted variables may be used in an expression in the same
manner as ordinary variables.

No subscript or element of a subscript expression which is a

subscript of a fixed point variable which, in turn, is the subscript
of another variable may have a subscript.

i) a(i) | T
i) a(i,)

iii) afi, i, k)

3xi+n, m

8

8.

vi) n(i,j) T

vii)' a(i@g)) : "mea\né_gi"f“

viii) 1(j(k))
ix) a(n(i,j), m(k, 1)) : means ani,j'mk,l
x) a(@3xi(j)+2, k) .
xi) a(l)

xii) afi, i+1,1)

xiii) a(3,j)

xiv) a(5,7, 15)

ARITHMETIC FORMULAS

A. An arithmetic formula is a variable (subscripted, or not), followed
by an equals sign, followed by an expression.

B. It should be noted that the equals sign in an arithmetic formula has
the significance of "replace". In effect, therefore, the meaning of
an arithmetic formula is as follows: Evaluate the expression on the
right and substitute this value as the value of the variable on the left.

C. If the variable on the left of an arithmetic formula is a fixed point
variable and the expression on the right is a mixed expression, then
the value of each floating point constant and variable in the mixed
expression, with the possible exception of arguments of certain
functions, will be truncated to integers. The value cf any floating
point valued function will also be converted to an integer and the
entire expression will be evaluated by fixed point integer arithmetic.
Similarly, if the variable on the left of an arithmetic formula is a
floating point variable, and the expression on the right is a mixed
expression, the values of fixed point constants and variables will be
represented as floating point numbers and the expression will be
evaluated with floating peint arithmetic.

D. If the variable on the left of an arithmetic formula is a fixed point
variable 2nd the expression on the right is a floating point expregsion,
the expression will be evaluated with flcatihg point arithmetic and
the result truncated to an integer. Similarly, if the va.lable on the
left of an arithmetic formula is a floating point variable and the

expression on the right is a fixed point expression, the expression

N

w1ll be evalua 'red Uuln” mt€ ger amthmctm and the result substltuted
in floating point form for the value of the variable on the left.

E EXAMPLES
i) a(l, J)_sqrt(bfi)xx2+sm(c(j)x(g+cos(h/(p+q/ (I‘S-S)))))) means:

PO R e i

a, J-\/bé +sm(c x(g+cos(h/(prq/(r+s)))))

ii) a(i,j) = ixj

iil) i=i+15 means : increase value of i-by 15 or {ine1)_ (), 45
iv) a=b
v) n()=a{)+b(x17.3—— - — -

vii) (1) a(i)+5:-1 x‘su‘ffx' 1,20, b(i,)xc()) This formula means increase
the value of a, ﬁpy__,the followmg quantity:

5.1xZ b xc
j=1 23

viii) a=a+i
ix) i=axb+n/(m+c)
9. FORMULA NUMBERS

Each FORTRAN formula may have an integer associated with it called
the formula number. If a formula has a formula number, the formula
number is written to the left of the formula. The formula number must
be less than 100,000. If a formula is to be referred to by a control
formula as described below, it must be assigned a formula number
which is different from the formula number of every other formula.
With this exception, the choice of formula number for a formula is
completely arbitrary.

A. EXAMPLE
i) 12 a=b
10. CONTROL FORMULAS

A sequence of arithmetic formulas indicate that the operatlons implied

by the first formula should be carried out and then the operations ind dicated
by the second one, etec. Certain formulas called control formulas are
provided to alter this sequence of operations in various ways.

10

In giving the general form of the control formulas pbeiow, iower case
letters and various symbols such as comma, equals sign and parentheses
will be given in the way which they must appear in the particular formula.
Capital letters will be used to represent a class of symbols which may
appear at a g'ven point in a formula. Square brackets are used to enclose
symbols which may optionally appear ‘n the formula. '

. A. DO-FORMULAS

i)

Informal Description

Do-formulas specify a sequence of formulas to be repeated
a number of times for different values of a specified subcript
and the formula to be executed next after the reguir_ed number

of repetitions. Thus the formula.

do- 10, 14, 50 i=4, 20, 2

will cause the sequence of formulas beginning with the formula
numbered 10 and ending with the formula numtered 14 to be
executed 9 times, the first time with i=4, the second time with '
i= @, the third time with i=8, etc. and the last time with i=20.
Formula 50 will be executed after formula 14 when i=20;~ Thus _
the first number after the.equals-sign-is the initial value of the
subscript, .the next number the final value or upper bound for the
subscript, and the third number is the increment tobe applied

“each time. 'The increment need not be given when it is 1.

Furthermore, since it frequently happens that a do-formula
immediately precedes the sequence of formulas to be repeated
and that the formula to be executed after the proper number of
repetitions irnmediately follows the repeated sequence, it is not
necessary in such a case to specify the first formula of the
sequence or the formula to be executed after the appropriate
repetitions of the sequence. Thus the formula:

do 17 1i=1, 20
causes the formulas immediately following itself up to and
including the formula numbered 17 to be repeated in sequence
90 times for i=1, i=2, ... i=20, after which the formula
following the formula numbered 27 will be executed.

Formal Description

General form:
doF, F, F 3=N, N[, NJ
or:

11

iii)

iv)

vi)

doF S=N, N[, N]

where:

F is a formula number o o

S is a.,_s_ubscript Ce Vel C,{/‘:/j’,«.)
N is a fixed point constant, a subscript, or a subscript expression.

Range of a Do-Formula

The range of do-formula A which specifies one formula number
is the sequence of formulas immediately following do-formula A
up to and including the formula whose number is specified
except those formulas in the ranges of do formulas which are

in the range of do-formula A. The range of a do-formula B, -
which specifies three formula numbers, is'the sequence of for-
mulas beginning with the formula having the first formula
number specified and ending with the formula having the second
formula number specified except those formulas which are in
the ranges of do formulas in the range of do-formula B.

a) Example

1 do4 j=1;10
9 do3 i=1,10
3 a(i,j) =ixr

4 b{) =sum(i, 1, 10, a(i, j))

In the above example, the range of do-formula number 1
includes formula 2 and formula 4 only.

Extended Range of a Do-formula

The extended range of -a do-formula A comprises the formulas
in the range of do-formula A plus the formulas in the ranges of
do formulas in the range of do-formula A. -

Control Formulas in the Range of a Do-Formula

If a control formula is in the range of a do-formula A and
refers control to do-formula A, the next formula to be
executed after the control formula will be the first formula
in the range of do-formila A after the subscript specified
by do-formula A has been incremented once.

Execution of a Do-Formula

The execution of a do-formula A consists of the following steps: .

12

a) Begin exe(,utlon of the uequence of Iormulas in the range
of do- formula A,

b) If the last formula in the range of do-formula A or a
control formula referring control to do-formula A is
encountered before a control formula referring to a
formula not in the range of do-formula A, increment
the specified subscript by the appropriate increment
and if the resulting value is not larger than the upper
bound specified for the subscript, begin step A again,
if this value is larger than the specified upper bound,
execute the formula having the third formula number
specified in do-formula A. If do-formula A specifies
only one formula number, execute the formula follcwing
the last formula in the range of do-formula ‘A. The
execution of a do-formula is considered complete only
when the formulas in its range have been repeated the
approprlate number of times or when a control formula
in the range of the do-formula is encountered which’
refers to a formula not in the range of the do-formula.

vii) Restrictions on the Range of a Do-Forraula

a) The third formula number specified by a do-formula A
may not refer to a formula in the range of do-formula
B unless do-formula A is itself in the range of do-
formula B. A similar restriction applies to formula-
numbers specified by if-formulas and go to—formulas

described below.

b) If do-formula A and do-formula B are such that neither
lies in the range of the other and if S is the sequence of
formulas comprising the range of do-formula A and if
S' is the sequence of formulas comprising the range of
do~formula B, then either S must be wholly included in
S' or S' must be wholly included in 8, if 8 and S' have
any formula in common. ..

B. IF-FORMULAS S e

i) Informal Description———""""—" -

If-formulas enable one to state an inequality or equality
condition and indicate that one formula should be executed
next if the condition is satisfied and to indicate a second
formula to be executed next if the condition is not satisfied.

il) Formal Description

13

Genéral Form: - :
If (NSNF, F
 Wherer -

N may be a single floating pdint variable or constant or a
< subscript or a subscript expression.
S may be one of the following symbols:

\AVAN

‘Fisa formula number.
Thus the svmbols w1t} in the parentheses 1nd1cate an equahty
or inequality. The first formula number indicates the formula
to:be executed next if the equality.or inequality is satisfied

and the second formula number indicates the formula to be -
executed next if the equality or inequality is not satisfied.

iii) Example
I (nxi>=k+1)3, 9.

. ' . > .
This formula means "If nxi = k+1, execute formula 3 next,
otherwise execute formula 9 next".

C. GO TO-FORMULAS

i) General Form

GotoF

where I is a formula number inchcatmg the formula to be
executed next.

D, STOP-FORMULAS

i) General Form

Stop
When such a formula is executed, the machine wili stop, I

the start button is depressed following execution of a stop-
formula, the formula following will be executed next.

E. RELABEL-FORMULAS
14

i)* Informal Descrintion

Relabel-formulas enable the programmer to cyclically

relabel the elements 'n a vector, the rows or columns of

a matrix, the rows or columns or planes of a three dimensional
array. For example in a 4 by 4 matrix, he may wish to
operate on rows 2 and 3, record rows 1 and 2 on auxiliary
storage, replace rows 1 and 2 by new information, operate
onrows 4 and 1, record rows 3 and 4 and replace them by

new information, operate on rows 2 and 3, etc. If, after
replacing the information in rows 1 and 2 with new information,
he relabels the.rows as follows he can then use the same formulas
to carry out the second set of operations that he used to carry

out the first; :

Old row 3 becomes new row 1
Old row 4 becomes new row 2
Old row ‘1 becomes new row 3
Old row 2 becomes new row 4

- Using this type of relabeling, the sequence bf opei‘ations R .
indicated ahove becomes simply the repetition of the following . .
steps:

Operate on rows 2 and 3

Record rows 1 and 2

Replace rows 1 and 2 with new information
Relabel

ii) Formal Description

General Form:
Relabel V

where V may be any subscripted variable all but one of
whose subscripts is the integer 1 and whose remaining
subscript is either a constant or a single fixed point
variable. The subscript which is not 1 indicates which
element, row or column, row, column or plane is to
become the new first element, first row or first column,
first row or first column or first plane.

iii) Examples:
a) "Relabel a(3)" has the following significance where a
is a vector of 7 elements. A reference to a(l) after

the execution of this formula is equivalent to a reference
to a(3) before the execution of this formula. Similarly, the

15

new a(2) corresponds to the old a(4), the new a(3) to the
old a(5), the new a(4) to the old a(6), the new a(5) to the
old a(7), the new «(6) to the old a(l1), the new a(7) to the
old a(2). : .

b) "Relabel a(l,n, 1)" has the following meaning where "a"
is a 3 by 4 by 5 array and where n has the value 3, the
old a(i, 3, j) become the new a(i, 1, j) for all values of 1
and j and finally the old a(i, 2, j) become the new a(i, 4, J)
for all values of i and J. :

INPUT-OUTPUT FORMULAS

. Input-output formulas enable the programmer to specify that
information should be brought into the 704 from cards or input tapes
or information should be printed or punched or written on cutput tapes.
Since the number of variables which may be referred to at any moment
in a calculation is limited by the extent of high speed storage, it may
be necessary to record the values of certain variables in auxiliary
storage and at other times to assign new values to certain variables

- corresponding to information in auxiliary storage. Input-output
formulas are provided for this purpose also. Capital letters appearing
in the formula descriptions below will again be used to indicate the
class of symbols which may appear in the corresponding position in
the formula. A .

A. DESCRIPTION OF SEQUENCE OF AN ORDERED ARRAY

‘In specifying that the elements of a 1, 2, or 3 dimensional array
of data should be recorded in auxiliary storage or in specifying
that the elements of a 1, 2, or 3 dimensional array should be
assigned values corresponding to certain quantities in auxiliary
storage, it is necessary that a certain sequence of the elements in
the array be either understood or specified. This sequence is that
in which elements will be recorded or brought from auxiliary
storage. If no sequence is specified, the sequence will be
understood to be a4, a,...a_in the case of vectors or a,,, 254+
g n 117 “21
anl, a12, 322, o amn in the case of 2 dimensional arrays or
aqq1 a211. .o anll’ 8181 3221, co an21' S anml’ a112’ Bgqge e

anmk in the case of three dimensional arrays,

When no sequence is specified for a given array which is to te
recorded on or read from auxiliary storage, it will be understood
that the entire array is to be recorded on or read from auxiliary
storage.

i) Informal Description

16

A specification of sequence for a one dimensional array a(i)
might be "i=1,7". 'This indicates the sequence CPPE-TYRERR-Y T

A specification of sequence for a two dimensional array af(i, j)
might be j=4,8, i={, 10,2. This indicates the sequence

89,42 34 4 %5 47" P10,4’ 2,5 P4,5" %6,5'" " 710,5°" "
210. 8" Note'that a third quantity specified after the range of a
)

given subscript indicates an increment and if a third quantity is
not specified the increment is taken to be one.

In general, the subscript specified first in a specification of
sequence is varied least frequently, the subscript specified
second is varied more frequently and the third subscript
specified is varied most frequently. If a specification of
sequence is given, each subscript of the array with its
appropriate range and possible increment must be listed in

the appropriate order. : - ‘

ii) Formal Description

A description of sequence for a one dimensional array has = -
the following form:

-

= N, N[,N]

A description of sequence for a two dimensional array has
the following form: : ,

S=N, N[,N], S=N, N[,N]

A description of sequence for a three dimensional array has
the following form: ‘ '

S=N, N[aNJ) S=N, N[’ N]a S=N, N[’ N]
where: |
S may be a subscript which appears as a subscript of the array
whose sequence is being specified
N may be a subscript or subscript expression
Note that square brackets enclose symbols which are optional.
LIST OF QUANTITIES

1) Formal Description

A list of quantities has the following form:

v Vv, V, ...]

s 17

where V may be:
1. a single variable or constant
9. a subscripted variable
‘3. ‘a left parenthesis followed by one or more
subscripted arrays (each except the last
followed by a comma) followed by a
sperification of sequence followed by a

P cr 2 NRSLS,
ﬁ) Exér'np'les:}

o) 8, (o6, c0,9) 1, 2, i=1,3), ¢, &
"ihe above list of quahtities specif.;es the folléwing sequence:
a, b(1, 1), (1, 1), b(2,1), ¢,1), b3, D, e(3,1), b(l,2);
(1, 2), bl2,2), c(2,2), b,2), 'c(:s_;"é), 4, e

b) &, {b(1,1), c), d(i, 1) i=1,3), e(1,1)
The above %ist of quantities spe‘c;ﬁes the following sequence:
a, b(1, 1), c(D), d(1, 1), b(1,2), c(@), (2,1, b(1,3), ¢,
a@, 1), e(l, 1) |

C. CARD READING FTORMULAE

i) General Form:
read L

where L may be list of quantities. However, none of the
quantities in the list may be constants.

a) Example |
read n, (a{i,j) j=1,20, i=5, 10), b(i)
This formula indicates that the sequence of variables n,

ay j's and bi's should be assigned the sequence of values
’
coming from the card reader in a one-to-one fashion.

D. CARD PUNCHING FORMULAS

—

{) General Form ————

punch L
where L is a list of quantities

ii) Card Punching Formulas indicate a sequence of quantities
to be punched on cards. .

E., PRINT FORMULAS

i) General Form:

print L.~
wheré L is a list of quantities
F. TAPE READING FORMULAS

{) General Form:

 read tape (N) L
or:
read input tape (N) L

where N is a tape number or fixed point variable and L is a list
of quantities and no quantity is a constant. ‘

G. TAPE WRITING FORMULAS

i) Geheral Form:

write tape (N) L
or:
write output tape (N) L

where N is a tape number or a fixed point variable and L isa -
list of quantities,

H., ADDITIONAL FORMULAS FOR MANIPULATING TAPE

i) General Form:

_ end file (N)
— _ rewind (N)

— backspace (N)

TTe——

19 e

L

i) General Form:

‘where N may be é'ta:pe number or a fixed point variable,
DRUM READING FORMULAS

i) General Form:

read drum (N, M) L

where N is a drum number or fixed point variable and M 1s a
drum location or fixed point variable and L, is a list of quantities,
The drum location is an integer between 1 and 2048. The effect

" of this formula is to cause the quantities on the given drum
beginning at the given drum location and in the consecutively
numbered drum locations following to become the values of
the quantities specified in the hst of quantities in high speed
storage. .

DRUM WRITING FORMULAS .

write drum (N, M) L

where N is a drum number or fixed point variable and M is a
drum location or fixed point varlable and L is a list of
quantities. :

RESTRICTION ON LISTS OF QUANTITIES IN DRUM READING AND
WRITING FORMULAS

If a specification of sequence is given with any array specified in
a list of quantities in a drum reading or writing formula, the
subscripts appearing in such a specification of sequence must
appear in the opposite order from the subscripts associated with the
array and only the last subscript may have an arhitrary range.
Subscripts other than the last must have ranges specified
beginning with 1 and ending with the maximum value possible

for that subscript. None of the subscripts in the specification

of sequence may have increments other than 1. Only one array
may appear with a specification of sequence in a single pair of-
parentheses.

i) Examples: e

e

The following list of quantities may correctly be specified by
drum reading or writing formulas:

a, {b(1,3,k) k=7, 10 j=1, 50, %=1, 50)

20

 where 50 is the maximum possible value for i and j. N
The following list of quantities may not be correctly specified
by a drum reading or writing formula: :

a0 s, ,m, $60)

(a(i, 3, §=1,80, i=1,50, k=1,50)" — .

e .

19. SPECIFICATION SENTENCES

‘In addition to the problem formulation in terms of FORTRAN formulas,
certain additional information is either necessary or desirable to

enable the FORTRAN system to produce an eificient program.
Specification sentences provide the means of supplying such information
to the FORTRAN system. : S '

A, DIMENSION SENTENCES

The maximuim possible dimensions of each 1, 2 or 3 dimensional
array referred to in any formula in the problem formulation must

. be specifically given. Thus if a(i, j, k) is specified as a 5 x 10 x 20
array, then at no time when a reference to a(i, j, k) is made should
i exceed 5, or j exceed 10, or k exceed 20. Having so specified
a(i, j, k), it is nevertheless possible to regard a(i, j, k) as representing
a 4 x 4 x 4 array in a particular instance. This type of situation
will obtain where the dimensions of an array are input parameters.

i) General Form:

" Dimension V[, V,V,...]

where V is a subscripted variable whose subscripts are fixed
point constants. Thus a(10, 11, 12) occurring in a dimension
sentence indicates that the maximum dimensions of the array a
are 10 x 11 x 12. :

' Note that dimension sentences specifying the dimensions of all
arrays appearing in a propblem formulation must be given.

B. EQUIVALENCE SENTENCES

In certain cases, it may be possible for the FORTRAN system to
assign the same storage location to several variables, For the
purpose of defining when this is possible, we shall say that a
variable appears in a formula in a type 1 position i the exzecution
of the formula could not possibly alter the value of the variable
and we shall say that a variable appears in a formula in a type 2
position if the execution of the formula could result in changing
the value of the variable. Thus a variable appears in a type 1

21

position if: ‘ o T B

1) it is onthe rlgnt bme of an arlthmetlc formula

) itis a Schrlpt of a variable on the left suie of an
arithmetic formula,

3) it appeai's in an output formula.

4). it appears in a do-formula but not as the subscript to
be varied.

5) it appears in én "if" or a "z0 to" formula.
And similarly, a varxable appears in a type 2 posnlon].f
1) 1t is the varlable on the left side of an arlthmetlc formula
2) 1t appears in an input formula. | N
3) it appear's as the subscript to be varied in a do-formula.

Thus a set of variables may be assignedthe same storage location.
if for any two variables a and b in the set, a type 2 appearance of a
followed by a type 1 appéarance of b always means there is an
intervening type 2 appearance of b, where the order of appearance
is the order of execution of the formulas Under the same con
ditions it is also possible to allot overlapping storage space to the
elements of two different arrays. Equivalence sentences specify
sets of variables and arrays such that all variables or arrays in
the same set may be assigned the same storage area.

i) General Form:

Equiralence (V, V[, V, V... N[, (V,V[,V,V,...]),...]

where V is a variable symbol. The variable symbol may ve™
either one associated with a simple variable or one associated
with an array. Thus, to indicate that the variable g, the array
b(i, j) and the array c(i, j, k) can be assigned overlapping storaze
space, one includes in a dimension sentence the set (a, b, c).

If the product of the maximum dimensions of c(i; j, k) is greater
than the product of the maximum dimensions of b(i, j), the
inclusion of the above set in an equivalence sentence means

that the storage space allotted to b(i, j) will be included in the”
storage space allotted to c(i, i k) and that the storige spacs
allotted to a will be included in that allotted to b{i;ii. ,z;;tv'fi;'

-—

C. FREQUENCY SENTENCES
22

Frequency sentences enablé the programmer to provide the
FORTRAN system with information concerning estimates of the
frequency with which certain portions of the program will be
executed. Thus the programmer may indicate that he expects the
condition specified by an if-formula to be sutisfied 10, 000 times
and that the condition will not be satisfied 400 times during the
execution of the program. If the if-formula has formula number
3, this estimate would be stated in a frequency sentence as follows:

PRty
P

(3, 10000, 400)

- Similarly, if a do-formula has a variable range for the subscript
that is to be varied, the programmer may specify that on the
average he expects the do-formula to call for, say, 200 repetitions.
If the do~-formula has the formula number 17, the programmer
‘ would 1nd1cate th1s estlmate as follows

(17 200)

as part of a frequency sentence, and flnally lf a go to-formula has
_a fixed point variable. included.in it, the programmer may give
estimates of the frequency with whlch the fixed point variable
will assume the various possible values. If the go to-formula has
the formula number 2 and reads "go to n" and if n may take on the
values 14, 15 and 18, then the estimate (2, 13, 100, 14, 10, 15,
1000) indicates that he expects n to take on the value 13, 100 times,
the value 14, 10 times and the value 14, 1000 times. The above
three types of estimates, one for if-formulas, one for do-formulas
and one for go to-formulas are the only permissible types of
estimates which can appear in a frequency sentence.

i) General Form:

Frequency E[,E,E...]
where E is an estimate of any of the three types described above.

RELATIVE CONSTANT SENTENCES

In certain cases it will be possible for the FORTRAN system to
produce a more efficient program for a problem if it is supplied
information specifying those fixed point variables whose values
change very infrequently on a relative basis. Relative constant
sentences offer the programmer the opportunity of providing this
information to the FORTRAN system.

i) Genersal Form:
Relative constants N[, N, N, ...]
23

where N is a fixed point variable. Thus the sentence,
Relative constants'i, n
_where i is a single fixed point variable and n(j) is a fixed point.
vector, indicate that the value of i and the vatues of n(1),n(2);...

change very infrequeritly.

13. PROBLEM PREPARATION

Problem preparation for automatic coding by the FORTRAN system
consists of the following steps: =~ - :

A. PROGRAMMING

. The formulas specifying the problem are written in the form.given
above. Note that the exact-symbol-used for writing, say, multiply; "
is arbitrary provided the proper Hollerith code for multiply is

punched in the formula cards. - In addition to the formulas specifying .
the problem, dimension sentences giving the maximum dimensions
of all arrays in the problem and possibly other specification
sentences must be written in the form described above.

B. DATA PREPARATION

Input data, referred to by card reading formulas or read input
tape formulas in the problem, should be written on standard forms
suitable for key-punching in standard card forms associated with
card reading formulas and read input tape formulas.

C, CHECK OF DATA STORAGE SPACE REQUIR-ED

The data storage required for a given problem if no equivalence
sentences are specified, is computed as the number of single
variables and constants plus the sum of the products of the
maximum dimensions of each array referred to in the problem.

In computing data storage space, it is only necessary to count one
space for a sequence of constants separated by arithmetic
operations. If equivalence formulas are given, the amount of
storage space required is the number of constants plus the number
of single variables not appearing in an equivalence gentence plus
the sum of the products of the maximum dimensions of arrays not
appearing in equivalence sentences plus the sum of the products of
the maximum dimensions of the largest array appearing in each
set in an equivalence sentence plus the number of the sets,
containing only single variables, which appear in equivalence
sentences. The data storage space required for a program must
be less than a certain amount which will depend on the total high
speed storage space of the machine on which the problem is to be

24

run. The amount of storage space that would be available in any
machine with 4096 words will be at least 3, 000 units. Problems
must be planned in such a way that the data storage space
required is less than the appropriate amount. '

“KEY PUNCHING

The formulas specifying the problem are punched on cards in the
exact form in which they are written. There will be space for
approximately 65 characters on each card. There will be-a..__
space on each card for a formula number which will be left blank\
if the formula hasmonumber assigned. Large formulas may
extend over many cards... An indication on each card will indicate

- whether or not the information on the card is'a continuation of a .
" formula on a preceding card. Spaces (denoted by blank columns

on a card) are ignored by the FORTRAN system. This means
that, if desired, the key puncher can space between symbols

in exactly the way they are written, or not, without disturbing the
meaning of the formula. ‘Specification sentences are also punched
in a manner similar to that of formulas. Note again thatdimension
sentences must be punched for any problem making reference to
arrays. Data cards are punched in the appropriate form to be
accepted by card reading formulas or to prepare tapes which are
10 be read by input tape reading formulas.

PREPARATION OF CARD DECKS AND INPUT TAPES
The FORTRAN system offers two options:

1) punching of binary program deck for the problem or preparation
of similar program tape and printing of program.

2) iramediate execution of problem.,

If the user of the system selects option 1, he should prepare a
deck of cards in the following order: all specification sentence
cards followed by formula cards in the correct order followed by
a specially punched card indicating the end of the FORTRAN-
formulas for the problem. If the user selects option 2, he shouid
prepare the same deck as above and, in addition, a deck of data
cards for each input tape (mployed in the problem and for the
card reader, if employed.

Having prepared the above decks of cards, he should then prepare
the appropriate input tapes, if any, on auxiliary card to tape
equipment. He may further elect to enter the FORTRAN formula
deck directly from the 704 card reader or to prepare an input tape
from this formula deck and enter the formulas in the 704 from this

input tape.

25

F. AUTOMATIC PROLLEM CODING OF PROBLEM BY 1HE FORTRAN
SYSTEM - : oo
If the user has selected option 1 (to obtain the binary cards
representing his program or a tape representing his p"rogram),
he should siinpjy, load the FORTRAN system from its.tape and
place the deck ¢f FORTRAN formulas in the card reader or the
corresponding tape on a tape unit. He should then set a sense
switch indicatipg th&the has elected option 1. He should set
another switch indicating that the program should either be
punched on binary cards or that it should be written on magnetic
tape. Pressing the start button will then cause the FORTRAN
system té write the required program, check it, and-either
punch it on binary cards or write it on tape and prepare an
output tape which can'be used to print the prograth on duxiliary
tape-ta-printer equipraent. (Installations not haging auxiliary
tape-to-prifiter devices may arrange to Have the program printed
directly). s Wy . ' ‘Y{g’

er vy '

If the user selects option 2 (immediateqexecution), ke should put
the appropriate input iapes on the appropriate tape Units and
the appropriate card deck, if any, jn the card readexry V/hen the
FORTRAN system is leaded and the appropriate switches set and
the start button press=d, the FOR'IRA&\I system yxill,. write the
required program and cause its execution to hegin immediately

y

]

thereafter. e of .: 3 ti}gi .6
14, FUTURE ADDITIONS TO THE FORTRAN SYSTE%?I-.{}., AR

The language of FORTRAN formulas and sgntejcgs degcrided above

is to be regarded only as the basic FORTRAN lanjuage. "The' FORTRAN
system will be constructed mn a manner to make the addigion f new
formulas, new sentences and new functions as easy ag possibler

It is expected that the FORTRAN language will be continually enriched
by such additions to make it mgre economical, more convenient and
more efficient. Some of the possibilities for* future additions to
FORTRAN are listed below: -

A. A VARIETY OF NEW INPUT-OUTDPUT FORMULAS WHICH W OULD
ENABLE THE PROGRAMMER TO SPECIFY VARICUS FORMATS
FOR CARDS, PRINTING, INPUT TAPES AND OUTPUT TAPES

B, POSSIBLE ADDITIONAL ‘CONTROL FORMULAS _

e
ST ———

i) Begin Complex Arlthmetlc “ ——

——

' ii) End Complex Arithmetic

{ii) “Begin Double Precision Arithmetic -

26

iv)

vi)

vii)

viii)

ix)

X)

POSSIBLE ADDITIONAL FUNCTIONS

End Double Precision Arithmetic
Begih Matrix Arithmetic
End Matrix Arithmetic

Sort the Vectors on Tape Number N using the kth element of
each vector as indicative information -

Solve the following N simultaneous equations

Solve the following system of ordinary first order differential
eguations

Find the vector x(i) which maximizes the linear functionf | |
and satisfies the following linear inqua.l_ities '

”

There will, of course, eventually be a large list of arithmetic
functions available to the FORTRAN system. The following
items indicate certain slightly unusual types of functions.

i)

ii)

iii)

iv)

General Function:

Such a function would enable a programmer to avoid rewriting

a set of formulas describing a function peculiar to his problem
but which occurs frequently in his problem. Such a function
would enable the programmer to specify the formula numbers oI
the formulas describing his function and the arguments to be
used in a given instance. The value of the function would be

the value of the right hand expression of the last specified
formula in the function description, having substituted the
specified arguments for the original arguments appearing in

the formula description of the function. :

Definite Integral

Such a function would enable the programmer to specify the
independent variable, the limits of integration and the expression
to be integrated.

§_qmmation

This function would enable the programmer to specify the
index of summation, the limits of summation and the expression
to be summed.

Table Lookup

o
)

This .function'would enable the programmer to specify the table
number and the argument (or arguments if the particular function
was bivariate).

DESIRABLE TECHNIOUES TO USE TN PROGRAMMING A PROBLEM
10 BE CODED BY FORTRAN - '

Although the FORTRAN system is being designed to produce a correct
program from a correct meaningful set of FORTRAN formulas and
although the programmer will invariably discover many possible
formulations of the same problera, the use of certain techniques will,
of course, result in more efficient 704 programs. ‘ ’

A. REPRESENTALION OF COMPLICATED EXPRESSIONS

In translating a single arithmetic formula;the FORTRAN system
will permute the operations indicated in the expression-on the right
wherever this is permissible in order to minimize the number of
STORE instructions which will be required in the resulting 704
program. Thus a x b x ¢ /d/e would be permuted to a/dxb/exc. .
However, any order of computation which is specified by use of
parenthesis will be followed. Furthermore, if certain portions

of an expression are identical to certain other portions of the same
expression (all in the same formula), the system will recognize
this and avoid duplicale calculations. To enable the FORTRAN
system 10 recognize dupiications of various subexpressions in an.
expression on the right side of an arithmetic formula, it will only
be necessary Lo enclose duplicated subexpressions where they
appear as part of a term in the expression. Where duplicated
subexpressions occur as complele terms, it will not be necessary
to ericlose the term in parentheses. Furthermore, if the duplicated
subexpression is a function which appears in several places with
the same argumernt, il will not be necessary to enclose the function
iri parentheses even though it may be a portion of a term. Thus
the following expression:

a x b x ¢ x(a xbxe+excos(a))/ (axbxe+fxcos(a)) +sqrt (axbxe+fxcos(a))
may be writien in the following form lo avoid duplic'ate calculations:
((asxb)xc)x((axb)xc+excos(a;)/ ((axb)xe+fxcos(a)) + sqrt((axb)xenufxcos(a))
In general then, if a complicaled expression is involved in & problem,
it is best not to introduce new dependent variables to represent
portions of the complicated expression and then to represent the
complicated expression as an expression involving the new dependent

variables. Adherence to this principle allows the FORTRAN system
to carry out the maximum amount of optimization.

28

B: FORMATION OF LOOPS

In specifying operations on sequential items in ordered arrays,

" it is best to use do-formulas wherever possible since such formulas '

present the control information which the system needs in forming
loops in a consolidated form. The use of formulas such as_

—

e 9

,Z/"“‘ o . . ’
i=1i+1

if (i>n) nl, n2

may result in some unnecessary instructions in the resulting
program if such instructions are used to form loops which could
be otherwise formed by the use of do-formulas.

~ DEBUGGING - o | | |
' “No special provisions have been included in the FORTRAN system -

for locating errors in formulas. After some experience has been
gained in the use of the system, it will be possible. to write a .
program to locate the most common of the frequently occurring
errors in a formula program. Since FORTRAN formules are
fairly readable, it should be possible to check their correctness

by independently recreating the specifications for the problem irom
its FORTRAN formulation. In this way it should be possible to
write correct formula programs from which the FORTRAN system
will of course produce correct 704 programs.

PROGRAM CHECKS -

There are no automatic provisions in the FORTRAN system for
ineluding chocks on correct machine operation in an automatically
coded prozram unless the checks are provided for in the original
formula program. Since FORTRAN-written 704 progreams will be
written 1n aceordance with certain uniform principles, it should
be relatively simple for an operator experienced with FORTRAN=-
written programs to determine what has happened in & program
afte? a machine fallure.

29

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif

