ALGEBRAIC FORMULATION OF FLOW DIAGRAMB*

By

Edward A. Voorhees

University of California
Los Alamos Scientific Leboratory
Los Alamos, New Mexico

June 20, 1957

*
This work performed under the auspices of the U. S. Atomic Energy
Commission

-1-

(W

)

D

I. INTRODUCTION

Discussions involving the subject of defining problems for inter-
pretation and coding by known automatic-codiﬁé systems generally suggest
that the techniques for stating the control (or logic) of the problem
are frequently difficult to understand and difficult to use. It seems
that the difficulty is one of discovering a suitable language with
which to define problem control. In programming a problem for hand
coding, the familiar flow diagram has been successfully used (when
needed) to define the control of the problem. Such flow diagrams (as
we draw them) cannot be presented directly to present-day computers.

It is the purpose of this paper to propose a flow diagrem representation

using simple algebraic language which can be directly entered into the

computer.

IT. DESCRIPTION

Assume we have a flow-diagram drawn such that it could be used
to hand-code the problem for any stored-program computer. Suppose we
remove from the boxes all equations, statements of input-output tasks
and other statements not directly related to the control and logic of
the problem, and list them (with identification) elsewhere as reference
material. We do not include in this list statements and questions per-
taining to loops, numerical conditions, switch and trigger conditionms,

etc. What remains, therefore, is a statement (part-picture) of the

control for the problem. We will attempt to translate this control
statement into a control statement which can be easily written and entered

-

into & computing machine.

In order to illustrate the above discussion and extend the idea
further, let us consider an elementary example. Suppose in a problem

we wished to compute

1 a (if2<0)
S = 2{% X, + qor
i Y (1221 20)

The corresponding flow diagram might be drawn as:

s yes

-—==-3»4 0—»S FH»{10—++1 S+xi-—S =1 - 11 ¢i=O?—>SZO? = S+ > 5 -
no ‘?o
S+a-»S

The result of doing what was indicated in the previous paragraph would

be:
es yes
-+ E, F{10=1 I E, o 1-lsi [107 !»l sw07 [E, -
o 5]
- 2 '
By >
where El : S5 =0

E2 : S = xi + S

E, ¢+ S=S+0D

3

E,‘L ¢t S =S +a

Let us now make a distinction between loop ranges (such as the i-loop

in the above example) and conditions for execution of equations (such

-3-

as the S test above). Suppose we define

I, : 1=1, 10,1 (meaning i takes successively the values

1
1 through 10 in increments of 1,)

and cl : S20,

Then our example can be completely defined as follows:

Example 1
Control Equations
E2 : S =58+ Xy
Il ¢t i=1, 10, 1 E3 : S=S+0b
L > L d —
Cl : 520 Eh : S =S +a

where Cl here is understood to mean "execute E3 if C1 is satisfied and
execute Eh if C1 is not satisfied." An alternative form which could be
used is ClE3 + CiEh’ provided it is known that when E3 is executed Eh is
not also executed (as would be the case if AZ:Xi =1land b = -2). Ci is
used to mean the negation of the condition Cl’ Clearly, the C' convention
is not essential since, 02 ¢ S5<0 could be used instead. The meaning of
IlEe is evident and will be defined more generally below.

Let us now define some control statement symbols. These defini-
tions make no restrictions on the characters with regard to their use in

equation writing since control statements are assumed to be handled sepa-

rately from equations,

E (assumed to have‘a subscript) represents a single equation, or
a continuous and closed set of equations (whenever one is done,
all are done), or an input-output task, or a program stop, etc.,
or any other statement (or closed set of statements) not direct-

ly related to problem control.

(assumed to have a subscript) represents a single condition.

IQ

Several conventions have been developed using C's. They will
be defined later. C's are assumed to be used for stating all
conditions, except those inherent in range statements such as
end-of-loop tests. C-type conditions include numerical condi-
tions, logical conditions, console switch conditions, trigger

conditions, etc. (A more-generalized C is under development.)

*
Any letter except C, E, S, T, or G (assumed to have a subscript)

represents a single range statement. I1 in the example repre-

sents the range statement i =1, 10, 1.

(assumed to have a subscript) represents a control statement.

(1]

It allows the problem control to be expressed in many control

statements which are in turn connected by a single master control

statement.

*The letters G (and G') are used in a special convention which may or may
not be a desirable extension of the proposal. They do not seem to be
essential, but probably provide simplifications in using the system. They
will be described at the end of the paper.

T (assumed to have a subscript) represents a code which is
entered by basic linkage. This concept as well as the tech-
nique for function subroutines will not be discussed further

in this summary.

The plus sigh, +, is used to indicate "execute the following
term" as, for example, E, + E2 means "execute El’ then execute

"
E2' E1 and E2

are terms, of the control statement E1 + E2‘
The parentheses, (), are used for the phrasing or grouping of
terms, for indicating ranges, and for special purposes to be

described. The expression (E1 + E2) is a single term.
The comma (,) is used in special conventions.

The plus sign, + , in addition to the use described sbove is
used to indicate "logical OR." This is a permissible logical

connective only when used between C!s,

The product dot, . , is used to indicate "logical AND." This is

a permissible logical connective only when used between C?s.

The meanings of some basic combinations of symbols used in control
statements are given below. Each combination is a single term. The parti-

cular cholice of subscripts has no implication.

1. IJEk means: Calculate Ek loopwise for the values of

i indicated in the definition of Ij‘

6=

2. IJ(....)
3. | %
c,(....)

3.‘ Ci(EJ’Ek

b, | BCy

(....)cj’

5. Ik(Ei)CJ

means:

means:

means:

means:

means:

Calculate the terms within the paren-
theses loopwise for the values of i

indicated in the definition of Ij‘

Calculate EJ (or the terms within the
parentheses) only if the condition c,

is satisfied.

Calculate what precedes the comma if
Ci is satisfied and calculate what

¥*
follows the comma if C1 is not satisfied.

Calculate E (or the terms within the
parentheses), test CJ and if CJ is not
satisfied, calculate Ek again, test CJ’
etc., and continue iterating until Cj is

satisfied.

After each cycle of the IkEi loop, test

CJ and if satisfied, leave the loop and
calculate the term following this term.

If Cj is not satisfied, do the next cycle
of the IkEj loop, test CJ, etc. Exit from
the IkEi loop is made as in 1 unless it is

made earlies due to CJ satisfaction.

*
ci(EJ’Ek) may be substituted for CJ in the following expressions. This
usage permits sub-conditional calculations to take place before the

described C control is executed.

-7-

6. (Ik + ;[... + Iq)EJ
means: IkEj + ;[EJ + eos + Iqu' Presumably
the factored rnotation would produce a

spacewise better code.

Additional basic combinations have been defined but since they

are not completely general in nature they will not be included.

Some combinations of interest which follow from the basic combina-

tions described above are:

L

(a) CJ(IkEi) means: Calculate the loop, L E,, only if CJ

is satisfled. This is a consequence of

3 and 1.

(b) Ik(CjEi) means: For each cycle of the Ik(...) loop,

is satisfied,

calculate E, only if C

i J
otherwise start the next cycle. See

2 and 3.

(c) Ik(Eicj) means: For each cycle of the Ik("‘) loop,
iterate Ei until Cj is satisfied. See
2 and L.

(a) (IkEi)Cj means: Calculate the L E, loop, test Cj and if
not satisfied, calculate the IkEi loop

again, test Cj’ etc. See k4.

-8-

(e) Ik(JiEf) means: Calculate the JiEI loop for the values
of i indicated in the definition of Ik“
This indicates a loop within a loop.
The extension to more loops is obvious.

See 2.

In all of the above combinations, any E could be replaced by any
control statement enclosed in parentheses. This was indicated in 3 and 4
and can be observed to be the only difference between 1 and 2.

Furthermore, in all of the combinations involving a C, the C
could be replaced by a "C-statement."” A "C-statement" consists of Cts
(only) connected by logical AND's and OR's and is totally enclosed by
parentheses. As an example, let us write one of the many generalizations

of 5.

' .
51, Ik(Ei)(cj +Cp+ eee + Cp) means: After each cycle of the L E,
loop, test the "C-statement" and
if any one of the C's is satisfied,

exit from the loop, etc.

Iet us now illustrate some of the preceding ideas with another
example., Assume we wish to solve the Laplace equation for a 10 x 10 mesh
with x = 1 on the boundaries, we might start with x = O in the interior.

Then:

Example 2

CONTROL .
Il(JlEl) + 12(J2E2) + (E3 + I2(J2Eh))cl + E5
<
I, : 1=1,10,1 C; : C - 0.001¥0
Jy: J=1,10,1
I,: 1=2,9,1
Jdyt J=2,9,1
EQUATIONS
E1 s xi,j =1
E2 H xi,J =0
E3 et C=0
E, : E= (xi-l,j X5t Xg 51 * xi,j+1)/h
C=C+ ’E - xi,JI
=E
*1,3
E_ : STOP
5 T

The first two terms of the control statement set up the mesh
(using a crude technique), the third term represents the main calculation,
and the fourth term stops the problem after the iteration is complete,

By adding the four additional range statements,

=10~

I3 e i=1

Ih : 1 =10

J3 : J=1 .
Jh : J =10,

the mesh setup can be improved (from a time standpoint) by replacing

the first two terms of the control statement by the three terms,
(J3 + Ju)(IlEl) + (13 + Ih)(JlEl) + I(IE,).
III. AN OPTIONAL CONVENTION

An additional set of symbols which possibly offer some
advantages but which do not seem to be essential or necessary and
vhich probably introduce some undesirable flexibilities have been
introduced.

This convention is designed to facilitate transfer of control.
It has been an interesting observation while testing the system
how rarely this convention has been a convenience and still more rarely
a necessity. The symbol G (with a subscript) denotes a transfer to G*
(with the same subscript). There may be a many-tb-one correspondence
between G and G'. The two following control statements define the same
calculation:

(a) clE1 + Ez + (E1 + E2)02 + E3

(v) Cl(G]'_El) +E, + C3G, + E3

-1l-

IV. CONCLUSION

It is not the intention of the author to imply that the system
Just described is complete and fully developed for immediate use in an
automatic coding system. We have, however, tested the system on several
large problems and have yet to find any programming sequence which cannot
be handled. For some situations we have created additional conventions
(not defined in this summary) for brevity and elegance. We plan to

examine many more problems.

The author would like to thank Mr. Bengt Carlson for his comments
and encouragement and Mr. Carl R. Blancett for his generous work in testing

the system on problems and for his helpful suggestions.

-12-

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif

