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FOREWORD 

The following programming examples are intended to illustrate the use of 7030 instruc- 
tions as active tools in problem solving, It i s  believed that the serious reader,  equipped 
with the 7030 Reference Manual (A22-6530) and a description of the STRAP assembler 
(say the Reference Manual, 704-709-7090 Programming Package for the IBM 7030 Data 
Processing System (C22-6531)) , can obtain a dynamic knowledge of 7030 programming 
without extensive outside help. 

Experience in computer programming, while certainly an asset, is not taken for 
granted. 

The subject matter is divided into four main sections: 
1. Instruction Arithmetic Unit Instructions , 
2. Variable Field Length Instructions, 
3. Floating-point Arithmetic, 
4. Special Problems. 

No attempt i s  made to cover the entire instruction set, to define every term o r  to 
explain every programming step. There are however, a number of comments to assist 
the reader over rough spots or points of ambiguity. Frequently programming alterna- 
tives are brought to the attention of the reader to eniphasize the fact that there are many 
ways of doing the same problem. Efficiency in computer problem solving involves the 
balancing of the following factors: 

1. Accuracy of results, 
2. Analysis effort, 
3. Programming time, 
4. Debugging time, 
5. Production run time, 
6, Effectiveness in repeated use of program (possibly by a stranger). 

The relative merits of these factors vary from problem to problem, individual to  
individual and organization to organization. 

In the design of the programming examples a seventh factor, pedagogical value, 
has received the primary stress, and no claim i s  made €or efficiency in te rms  of the 
other six, 
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IBM 7030 PROGRAMMING EXAMPLES 

1 INSTRUCTION ARITHMETIC UNIT INSTRUCTIONS 

PROBLEM 1.1 TRANSMITTAL OF TWO FULL WORDS 

Copy the contents of full words located in DOG, DOG +I. 0 into full words located in 
CAT, CAT + 1.0 respectively. 

Method 1. U s e  the immediate transmit instructions. 
TI, 2, DOG, CAT 

TBI, 2, DOG +1.0, CAT + 1.0 

-- 
or 

Comments: (a) No more than 16 full words can be transmitted by TI o r  TBI. If 16 
words are to be transmitted the J fields could be filled by either 16 o r  0 in STRAP coding, 
(b) If the f fsourceff  and rrsinkff areas overlap, to insure that all the source words are 
transmitted properly, use TBI if CAT >DOG; use TI if CAT <DOG. In the following 
we shall assume no overlap. 

Method 2. U s e  an index register to control the number of words transmitted. 

T,  $1, DOG, CAT 

-- 
LCI, $1, 2.0 

Comments: (a) A s  many as 218 (262,144) words can be specified this way. 
(b) The programmer should be cautioned that direct transmit type operations with J 
field referring to an index register with a zero count field means the maximum count 
possible. 

Method 3 .  U s e  index instructions. 
LX, $1, DOG 
SX, $1, CAT 
LX, $1, DOG + 1 . 0  
SX, $1, CAT + 1.0 

Comments: (a) Although data transmission is not the primary function of index 
registers,  the two ftunusedff bits (bits 27 and 28) of each index register have been made 
available for this. (b) Two other ways are available: VFL load-store type operations 
and floating point (unnormalized) LWF-store. The latter is efficient but may turn on the 
$XPFP indicator. Further a tfminus zeroff exponent will be changed into a ffplus zero" 
exponent. 

PROBLEM 1.2 INTERCHANGE OF TWO WORD-PAIRS 

Interchange the contents of full words DOG, DOG + 1.0 with full words CAT, CAT 
+ 1.0. 

Method 1. U s e  immediate swap instructions. 
SWAPI, 2, DOG, CAT 

SWAPBI, 2, DOG + 1 . 0 ,  CAT + 1.0  
or 
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Comments: (a) The swapping of each word-pair involves two memory fetches fol- 
The J field in swap instructions is lowed by two stored into the f'fetchff locations. 

treated in exactly the same way as in transmit instructions. 
(b) 

Method 2. U s e  index instructions. 
LX, $0, DOG 
LX, $1, DOG + 1.0 
LX, $2, CAT 
LX, $3, CAT + 1.0  
SX, $0, CAT 
SX, $1, CAT + 1.0 
SX, $2, DOG 
SX, $3, DOG + 1.0 

Comments: (a) Extensive use of this type of coding is clearly limited by the en- 
tailing tedium. Other alternatives a r e  again, VFL and. floating-point LWF-stores. 
(b) 
indexing. In address modification a zero I field specifies no modification, 

$0 may be used for any index purpose except address modification and progressive 

PROBLEM 1.3  CYCLIC PERMUTATION OF A GROUP OF FULL WORDS 

Givenquantities A ,  B, C ,  D, E ,  F, G,  H, I, in full words DOG throughDOG + 8.0.  
Cyclically permute the information such that the new contents will  be in the sequence 
DEFGHIABC. 

Method 1. TI, 3, DOG, 17.0 'store A,B,C,  in $1,$2,$3, respectively 
TI, 6 ,  DOG + 3.0, DOG 'DEF GHIGHI 
TI, 3, 17.0, DOG + 6.0 'DEF GHIABC 

Method 2 .  SWAPI, 8,  DOG, DOG + 1.0 
SWAPI, 8, DOG, DOG + 1.0 
SWAPI, 8, DOG, DOG + 1.0 

'cyclic left shift one unit 
'shift another unit 
'complete the 3 unit cyclic left shi€t 

Method 3. SWAPI, 3, DOG, DOG + 6 . 0  'place GHIDEFABC 
SWAPI, 3 ,  DOG, DOG + 3.0 Icomplete the permutation 

&Method 4. SWAPI, 6 ,  DOG, DOG + 3.0 

Comments: (a) In order to permute N consecutive full words (say DOG through 
DOG + N-1), cyclically left K places, if K is a divisor of N, the single instruction 

is adequate, If on the other hand N-K is a divisor of N, the situation is equivalent to 
that of cyclically permuting right N-K places, and a backward swap may be used: 

If neither K o r  N-K i s  a divisor of N, no single swap instruction will suffice. 

SWAPI, N-K, DOG, DOG + K 

SWAPBI, K ,  DOG + N-K-1 IN-K divides N 

Needless to say, if the number of full words to be swapped exceeds 16, the immed- 
iate swap instructions should be replaced by equivalent direct swap instructions. 
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PROBLEM 1 . 4  REPLACEMENT OF FULL WORDS BY ZEROS 

Replace the contents of full words DOG through DOG + 24.0 with zeros. 

Method 1. Set up a small loop using CB+ instructions. 
LX, $3, x w 3  

A z, DOG($3) 
CB+, $3, A 

B BEW, B 
XW3 XW, 0.0,  25, XW3 

Comments: (a) The address field of the BEW instructions and the refill field of 
the index word a re  being used for identification purposes. 
the numeric equivalent of B, being a branch address, is in the instruction counter. 
During and after the execution of the program, one can examine the refill field of $3 to 
find out the source of the index information. These identification tags can be useful 
debugging aids. It is good practice to use a decimal point in the value field of an 
index word. 

While the system is "waiting, 

(b) 

Method 2. LX, $3, XW3A -- 
z, 0($3) 

BEW, $ 
CB-, $3, $-0.32 

XW3A XW, DOG + 24.0, 25, $ 

Comments: (a) The use of $ to mean "the location of this very instruction" is an 
efficient symbolic programming device. Instruction insertion and/or deletion in the 
vicinity of a symbolic instruction containing $, however, has to be done with some care .  
For  instance, the insertion of a half word instruction between the Z and CB- instructions 
without corresponding change in the CB- instruction will cause branches to this new 
instruction rather than to the Z instruction. 

Method 3. During a transmit instruction execution, storing of the Kth "sinkff word 
precedes the fetch of the (K+l)th ?!source" word. This makes the following 
concise program possible. 
Z ,  DOG 
TI, 12 ,  DOG, DOG + 1 . 0  
TI, 12 ,  DOG, DOG + 13.0 

Comments: (a) The execution sequence is: 
Zeros - C (DOG) d C (DOG + 1.0) , 
C(DOG + l.O)-C(DOG + 2.0), etc. 

C(Q) means the contents of location Q. 
somewhat inefficient use of machine hardware. For instance, none of the memory fetches 
a re  really needed. 

(b) Programming convenience in this case means 

PROBLEM 1 . 5  REPLACEMENT OF ISOLATED FULL-WORD GROUPS BY ZEROS 

Replace the following full words by zeros: DOG through DOG + 24.0, CAT through 
CAT + 15.0. CHICK through CHICK + 34.0 
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Method 1. Use chain indexing. 

be 

PRNID, JOE BLOWE, DEPT. 333 
PUNID, J. BLOWE 
SLC, 1000.0 
LCI, $1, 3 . 0  
LX, $2, LINK 1 
z, O W )  

BEW, $ 

CBR+, $2, $-0.32 
CB, $1, $-1.0 

LINK 1 XW, DOG, 25, LINK 2 
LINK 2 XW, CAT, 16, LINK3 
LINK 3 XW, CHICK, 35, $ 

END, 1000.0 

Comments: (a) The PRNID, PUNID, SLC, and END pseudo-instructions should 
included in every program intended for assembly. They a r e  given here as an example 

of correct usage. 
refill feature in the 7030. 

(b) This is a simple demonstration of the utility of the automatic 

Method 2 .  U s e  chain indexing and an XF to terminate the sequence. 
LX, $2, LINK 1 
z, 0($2) 

BEW, $ 

CBR+, $2, $-0.32 
BZXF, $-1.0 

LINK 1 X W ,  DOG, 25, LINK 2 
LINK2 X W ,  CAT, 16, LINK3A 
LINK 3AXW, CHICK, 35, $, 4 

Comments: (a) The use of the index flag to terminate a sequence i s  especially 
important when the exact length of the indexing chain is unknown o r  variable. The num- 
ber in the fourth subfield in LINK 3A concerns the setting of bits 25, 26, 27 of the index 
word. The number 4 means that only bit 25 (XF) is a 1.  
of the index flag indicator is done prior to the refill. 

(b) Remember that the setting 

Method 3. U s e  transmit instructions. 
Z ,  DOG 
TI, 12, DOG, DOG + 1 . 0  
TI, 12, DOG, DOG + 1 3 . 0  
TI, 16, DOG, CAT 
TI, 12, DOG, CHICK 
TI, 12, DOG, CHICK + 1 2 . 0  
TI, 11, DOG, CHICK + 24.0 

Method 4. U s e  transmit and index refill. 
LX, $2, x w 2  
Z ,  CHICK 
T, $2, CHICK, CHICK + 1 . 0  

T, $2, CHICK, DOG 
TI, 16, CHICK, CAT 

R, $2 

, 
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XW2 X W ,  0.0,  34, XW2A 
XW2A XW, 0.0,  25, $ 

Comments: (a) The refill instruction operand is not limited to index registers. It 
is possible for example to write 

and after its execution XW2 will have the same contents as XW2A. 
R, XW2 

PROBIJEM 1.6 SUBTRACTION OF VALUE FIELDS 

Subtract the value field $1 from that of $14 and put the result in the value field of $14. 
It is permissible to destroy $1 in the process. 

-w 

Method 1. Change the sign bit of the value field of $1, then add value fields. 
BBN, 17.24, NEXT 

NEXT LVS, $14, $1, $14 

Comments: 

(b) 

(a) In the LVS instruction the index registers to be added together 
must all be different from each other. The J field, however, may refer to any index 
register. A "V+, $14, 17.0" could also be used as an instruction at location NEXT. 
(c) 
still makes the tentative assumption that the branch will be unsuccessiul while preparing 
the BBN instruction. Some time is lost if the assumption proves incorrect during exe- 
cution time. The program above is thereiore efficient if the bit 17.24 is probably 
zero. If this bit is probably 1 ,  BBN should be changed to BZBN. 
preparation of the following conditional branch instructions involves the tentative assump- 
tion that the branch will not be successful: 

The conditional branch i s  being used unconditionally. The computer nevertheless 

(d) 
(e) The machine 

All  BB type of instructions (no exceptions) 
All  branches on indicator bits except the following: 

XF (11.38) 
XCZ (11.48) 

XVZ (11.50) 
XVGZ (1 1.51) 

XE (1 1.53) 
XH (11.54) 

XVLZ (1 1.49) 

XI, (1 1. 52) 

Note that branches on index results o r  index register conditions do not involve tentative 
guesses. For  example, CBRII does not behave like a true conditional branch, (f) A 
more efficient way is to use the connective instruction CM1100(BU, l), 17.24 in place 
of the BBN instruction. 

PROBIJEM 1.7 INTERRUPTION MEASURE 

$IA contains the address 1000.0. It is desired that when a $TS interruption occurs 
the instruction counter contents should be stored in the first 19 bits of location 2000.0 
and the main program is to be continued. Write a code to  effect this. 

Method 1. SLC, 1000.0 + 4.0 
TSFIX SIC, 2000.0; BR, 0 
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Comments: 
start at 1004.0.  Since $TS i s  bit position 4 of the indicator register, a $TS interruption 
will lead to an automatic execution of the free instruction at C($IA) + 4. 0 = 1004.0.  
(b) 
hence the '!branch relative to zeror1 instruction will return to the main program. 
The interrupt system is not disabled during the execution of the "free instruction." In 
€act during the interruption only the $IF monitoring is relaxed temporarily to allow the 
fetching of the "free instruction. The SIC action is not performed unless the 
ensuing branch i s  successful, and even then it i s  performed after the execution of the 
branch. Instructions such as SIC, $+ 0.32;  B, ANYWH will lead to a branch to ANYWH 
if the branch i s  executed. The instruction counter will not have time to alter the branch 
address before execution. 

(a) The SLC pseudo-instruction indicates the instruction TSFIX i s  to 

The instruction counter i s  not changed during the execution of the "free instruction, 1 1  

(c) 

(d) 

PROBLEM 1 .8  SIMULATION OF RENAME INSTRUCTION 

Create the effect of the instruction RNX, $1, DOG ($3). Do not simulate the indicator 
settings . 
Method 1. 

RNAME SX, $2, X2 
SR, $0, 18.0 

STOX SX, $1, 0($2) 
LX, $2, x2 
LVE, $1, LOX 
LR, $0, 17.0 

LOX LX, $1, DOG($3) 
BEW, $ 

x2 xw, 0 

'save $2 

'restore $2 

Comments: (a) 
refill field of $0 i s  stored directly into the address field of STOX, and the use of $2 
would be avoided. This i s  not possible because in the SR operation, the refill field 
concerned i s  right appended by zero bits to  create a 25 bit value field. The latter is 
then stored. The STOX instruction would be seriously altered if a direct SR operation 
i s  used. 

It would seem that the SR instruction could be altered such that the 

PROBLEM 1 . 9  TRANSPOSITION OF A SQUARE MATRIX WITH FULL WORD 
ELEMENTS 

An N x N matrix has full word elements and i s  stored row-wise beginning at LOC. 
Create the transpose of this matrix and store it in the same area. 

Method 1. Interchange rows and columns starting from the north and west borders 
of the matrix. 

TPOSE 

SWAPI SWAPI, 1, 0($2), 0($3) 

LX, $2, X W 2 ;  SX, $2, XW22 
LX, $3, x w 3 ;  sx, $3, XW33 

V+ICR, $3, N 
CBR+, $2, SWAPI 
V+IC, $2, N+1. ; SX, $2, X W 2 2  
V+IC, $3, N+1.; SX, $3, XW33 
BZXCZ, SWAPI 
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BEW, $ 
x w 2  XW, LOC + l . ,  N-1, XW22 
xw3 X W ,  LOC + N ,  N-1, XW33 
xw22 X W ,  0 
xw33 xw, 0 
N SYN, 100.0 'if 100 x L O O  matrix 
LOC SYN, 32768.0 'if matrix s ta r t s  at 32768.0 

Comments: (a) The program is written in such a way as to be reusable. Otherwise 
the temporary index word storages XW22 and XW33 could be omitted by a slight change 
of t h e  program, (b) Relatively error-free instructions can be packed together in the 
same line. This enables the programmer to focus attention on the rest of the program 
during debugging. 

Method 2. Start from the upper and lower co-diagonals of the matrix and proceed 
through the exchange of the northeast-most and the southwest-most 
elements. 

TPOSE2 

SWAPI SWAPI, 1, 0($2), 0($3) 

LX, $2, XW2; SX, $2, XW22 
LX, $3, XW3; sx, $3, xw33 

V+ICR, $2, N+1. 
V+ICR, $3, N+1. 
BZXCZ, SWAPI 

V+IC, $3, N; SX, $3, XW33 
BZXCZ, SWAPI 

V+IC, $2, 1.0; sx, $2, xw22 

BEW, $ 
x w 2  X W ,  LOC+l., N-1, XW22 
xw3 XW, LOC+N, N-1, XW33 
m 2 2  X W , o  
xw33 X W ,  0 
:N SYN, 100. 
LOC SYN, 32768.0 

'size of matrix 
starting location 

t 
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2 VARIABLE FIELD LENGTH INSTRUCTIONS 

PROBLEM 2.1 CYCLIC BIT SHIFTING 

Cyclic left shift a full word in DOG by 7 bit positions. 

Method 1 

L(BU, 64-7), DOG+. 7, 7 
+(BU, 7), DOG 
ST(BU, 64), DOG 

'leave room for DOG thru DOG +O. 6 

PROBLEM 2.2 LENGTH OF AN UNKNOWN FILE 

Information of unknown length is written in consecutive 7-bit bytes beginning at INFO. 
Its end is signified by the first appearance of a special character consisting of seven 
binary 1's. Write a program to find the file length (including the special character) in 
bits, and put the answer in the value field of $1. 

Method 1. Byte-by-byte Compare. 

LVI, $1, 0.0 
LOAD L(BU, 7, €9, INFO ($1) 

K(BU, 7,8), ENDB 

BZAL, $+1.0 
B, LOAD 

V+, $1, SEVN 

BEW, $ 
ENDB DD(BU, 7,8), (2)1111111 'or decimal 127 
SEVN V F ,  0.07 

Comments: (a) The use of a number in its own natural radix is convenient and can 
be a powerful aid in debugging. 

Method 2. 

COMP 

Put end byte in $R with the compare and use progressive indexing. 

LV, $1, VFIELD 
LI(BU, 7), 127 
K(BU, 7) (V+I), 0.07($1) 
BAE, $+1.0 
B, COMP 
L(BU, 7) (V-I), INFO($l) 

'or (2) 1111 11 1 

BEW, $ 
VFIELD VF,  INFO 

Comments: (a) The last VFL instruction serves mainly to perform the (V-I) opera- 
tion, for an alternative technique see Method 3. Except for logical connectives, the 
result of a binary unsigned operation is independent of the byte size. The 7030 actually 

(b) 
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uses a byte size of 8 internally for speed. This is true even for the numeric portion 
of a binary signed operation. 

The byte size specification in an instruction is therefore important only for (1) 
decimal operations (signed or unsigned), 
and (3) logical connectives. 

(2) sign byte in binary signed operations 

Unless specified otherwise, STRAP assumes a byte size of 8 for all binary unsigned 
and logical operations, a byte size of 1 for all binary signed operations and a byte size 
of 4 for all decimal operations. 

(c) A numeric bit address is signified by the appearance of a ffpointff (whatever the 
radix). A number in the address field without the rfpointff is said to be an integer address. 
The latter is acceptable to STRAP, but STRAP must translate it into the equivalent 
numeric bit address before the program can be executed directly by the machine. 

The bit address equivalent of an integer address is determined by the environment, 
which defines a subfield. The integer address is treated as an integer of the subfield 
(e. g. , the non-zero bit of the integer 1 would occupy the rightmost position), then the 
left margin of the subfield is placed in juxtaposition with the leading bit of the address 
field, leading to a bit-address identification. 

Where the environment seems to suggest more than one subfield, the smallest sub- 
field is to be used. 

A VFL instruction normally implies a subfield of 24 bits. In the second instruction 
of the present program, the "immediateff nature, plus the field length suggests a smaller 
(7-bit) subfield. The latter is adopted during the STRAP assembly as the defining sub- 
field, and the bit address equivalent is therefore: 

0. ( 1 2 ~ * 2 - ~ * 2 ' ~ )  = 0. (127*217) 

= (127*211). 0 = 260096.0 

The convenience entailed by the use of integer addresses i s  apparent: 260096.0 is 
not only difficult to obtain, but does not contribute to understanding, 

Method 3 .  U s e  connective and branch on $RZ. -- 

LVE, $1, V F 1  
LI(BU, 7), (2)1111111 
CTOllO(V+I) (BU, 7), 0. 07($1) 
BRZ, $+1.0 
B, CONT 
V+, $1, VF1 

CONT 

BEW, $ 
VF1 SIC, INFO 

Comments: (a) The LVE instruction loads the magnitude of the dummy SIC in- 
struction. (b) CTOllO will lead to $RZ=l if the memory field and the accumulator 
field are equal, In reality the 7-bit memory field is left-appended with a zero bit and 
is connected with eight bits left of the offset. (c) The V+, $1, VF 1 instruction in 
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reality performs a subtract since bit 24 of the SIC instruction is  a 1. 
sive indexing secondary operation can precede the (dds). 

(d) The progres- 

PROBLEM 2.3 DELETION OF EVERY FIFTH BIT IN A FIELD 

Given a string of 60 bits starting at FIELD, delete every fifth bit starting at FIELD 
+ O .  04 and put the 48 bit result consecutively starting at FIEL. Assume that there is no 
overlap between (FIELD - FIELD +0.59) and (FIEL - FIEL +0.47). 

Method 1. Load 5 signed bits and store 4 unsigned bits at a time. 
LV, $2, VFIELD 
LX, $3, VFIEL 
L(B, 5, 1) (V+I), 0.05($2) 
ST(BU, 4) (V+IC), 0.04($3) 
BZXCZ, LOAD 

LOAD 

VFIELD V F ,  FIELD 
VFIEL XW, FIEL, 12 ,  $ 

Comments: (a) BZXCZ is not considered to be a conditional branch instruction 
since the instruction arithmetic unit knows the index conditions during decoding time. 

Method 2. Load 5 unsigned bits and store 4 bits with offset 1. 
LV, $2, VFIELD 
LX, $3, VFIEL 

LOADA L(BU, 5) (V+I), 0 

BZXCZ, LOADA 
ST(BU, 4) (V+IC)! 

BEW, $ 
VFIELD VF, FIELD 
VFIEL XW, FIEL, 12, $ 

. 
I 

05($2) 
0.04($3), 1 

Method 3. Other variations of the same theme. Instead of LOADA and 
above, one may write any of the following instruction pairs: 

L(BU, 4) (V+I), 0.05($2) 
ST(BU, 4) (V+IC), 0.04($3) 

L(B, 5, 2) (V+I), 0.05($2) 
or 

ST(B, 4 , l )  (V+IC), 0.04($3) 

LWF(B,5,4) (V+I), 0.05($2) 
ST(B, 4 , 3 )  (V+I), 0.04($3) 

or 

Method 4. Remembering decimal information is processed in 
bytes, it is  possible to write just two instructions to solve this 

LOADA +l. 0 

the accumulator in 4-bit 
problem under restr ic- 

tions stated below. The decimal load operation behaves like a decimal "add to  zero" 
operation. 

L(DU, 60, 5), FIELD -0.01 
ST(BU, 48), FIEL 

or 
LWF(D, 60, 5), FIELD -0.01 
ST(B, 48, 4), FIEL 
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Comments: (a) The lead bits in the 5-bit bytes a r e  deleted to five 4-bit bytes, 
(b) In the decimal load the 4-bit bytes will not be altered if they contain what appears 
to be decimal information. Otherwise, car ry  propagation and assimilation will occur. 
The byte (1 1 1 1)2, for  instance, will become (0101)2 with a carry to the higher byte. 
(c) The method fails if FIELD -0.01 happens to be in a protected memory area. To 
avoid this difficulty, use say, L(DU, 59, 5), FIELD instead. 

Method 5. LX, $1, XW1; LVI, $2, 56 -- 
L(BU, 60), FIELD 
ST(BU, 4) (V+I), 0.04($1), 0($2) 

BZXVLZ, STQRE 

STORE 
v-I, $2, 5 

BEW, $ 
xw1 X W ,  FIEL, 0, $ 

Comments: (a) The integer 5 in the V-I instruction means 5 units in the 19 bit 
address subfield of the instruction half-word, (b) This is an example of offset indexing. 

Method 6. U s e  logical connectives 
COO11 (BU, 60, 5), FIELD 'LF 
CMOlOl (BU, 48, 4), FIEL, 1 'SF 

'ic 

Comments: (a) The accumulator always uses 8-bit bytes. Each memory byte is 
left-appended by enough zeros to become 8-bit bytes for the connect operation. In the 
LF operation true memory bytes a r e  expanded to 8-bit bytes; in the SF operation the 
8-bit bytes are truncated to the specified byte size (in the dds). (b) For operations 
Cabcd, CMabcd, CTabcd (abcd can be any combination of 0's and 1's) the result of the 
operation can be seen from the truth table; 

1 I C  d 

Cabcd: 
CMabcd: result goes to memory 
CTabcd: result discarded 

result goes to the accumulator 

Where m refers to a memory bit and a refers  to an accumulator bit. 
If m=l  and a=O, for instance, the result would be c. If the instructions for  this 
case was C0010, c equals 1. 

(c) Valuable by-products of the connective operations a re ,  among others; 
$RZ"Is the result zero? Or ,  does the result contain no ones?" 
$AOC ?!How many ones a r e  there in the resul t??? 
$LZC ?Where is the leading one bit?" 

The CTabcd operation allows the user to examine these by-products without affecting 
the accumulator or  the memory, (d) The only acceptable entry mode for connective 
operations is BU. B, D, and DU a re  considered illegal by the STRAP assembler. 

PROBLEM 2.4 BIT REVERSAL 

The 64-bit full word starting at WORD contains a binary message which would be 
easily interpretable when every bit in the word is reversed (WORD +O. 63 becomes 
WORD i -0 .0 ,  etc.). Perform the bit reversal  and put the result in DROW. 
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Method 1. Load the entire word and store a bit at a time. 
TI, 1, WORD, $R 
LX, $1, xw1 
LX, $2, x w 2  
ST(BU, 1) (V+I), 0.1($1), O(@) 
CBH, $2, STOR 
BEW, $ 

STOR 

xw1 XW, DROW, 0, $ 
x w 2  xw, 0, 64, $ 

Comments: (a) An advance of a half-word in the $2 value field leads to  an effective 
offset change of one unit. 

Method 2. Load a bit at a time and store the entire word. 
LX, $1, xw1 
LX, $2, x w 2  
LF (BU, 1) (V+I), 0 1($1) , 0($2) LO 
CBH, $2, LO 
ST(BU, 64), DROW 
BEW, $ 

xw1 XW, WORD, 0, $ 
X W 2  xw, 0, 64, $ 

Comments: (a) VFL stores a r e  slower than VFL loads, and the present program 
is to be preferred over that in Method 1. 

PROBLEM 2 . 5 .  REMOVAL OF KEY WORDS 

Given a string of 100 6-bit bytes beginning at DATA, remove any 4 consecutive - 
bytes which match a given "key word" KEY. Pack the result starting 

Method 1. LX, $1, XW1; LX, $2, X W 2  

K(BU, 24), KEY 
BAE, AE 

LODE L(BU, 24) (V+I), 0.6($1) 

ST(BU,6) (VtI),  0.6($2), 18  

ST(BU, I S ) ,  0($2) 
CAB CB, $1, LODE 

'store remaining 3 

AE V+, $1, X18 'skip 3 more bytes 
'3 means 3 . 0  here 

BEW, $ 

c-I,  $1, 3 
B, LODE 

xw1 XW, DATA, 100-3, $ 
xw2 X W ,  ANSW, 0, $ 
X18 VF, 0.18 

at ANSW. 

bytes 

Comments: (a) The integer 3 in the C-I instruction means 3 units in a subfield of 
18 bits (size of count field). 
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PROBLEM 2.6 SORTING ON THE BASIS OF SUBFIELDS 

A 
(4 -bits) 

Given 16  consecutive fields beginning at DATA, each of the following appearance: 

B (20 bits) 

The four-bit subfield ??Af? may contain any integer number from 0 through 15. Assume 
all A subfields a r e  different in content, sor t  on the basis of A subfields and put the 
correspondent B subfields together in a string beginning at ANS. 

-- Method 1. Take advantage of the fact that there are exactly 16  A subfields and that 
these subfields have different contents, 

ASORT LX, $2, x w 2  
LOOP L(BU, 4) (V+I), 0. 04($2) 

*(BU, 24), VALF 
ST(B, 25, l), 17.0,  20 

ST(BU, 20), ANS($l) 
CB, $2, LOOP 

'answer at offset 20 
'store into index register value field 

L(BU, 20) (V+I), 0.20($2) 

BEW, $ 
x w 2  XW, DATA, 16, $ 
VALF VF, 20 
ANS DRZ(RU, 20), (16) 

Comments: (a) If the A fields a r e  not all different the s tores  will be incorrect. 

Method 2. A slight modification of Method 1. 
ASORT2 LX, $2, XW2A 
LOOP L(BU, 4), -0.4($2), 20 -t 2 

+(BU, 4), -0.4($2), 20 + 4 
ST(B, 25, l), 17 .0 ,  20 
L(BU, 20) (V+IC), 0.24($2) 
ST(BU, 20), ANS($l) 
BZXCZ, LOOP 

X W ,  DATA t 0.4, 16, $ 
BEW, $ 

XW2A 
ANS DRZ(BU, 20), (16) 

Comments: (a) The multiplication by 20 is replaced by judicious placement of data 
The following sets of instructions lead to the same in the load and add operations. 

results, and other variations are possible. 
(b) 

($2 has X in value field) 
L(BU, 4) (V+I), 0.04($2) . 
. 

L(BU, 20)(V+I), 0.20 ($) 
ST(BU, 20), ANS($l) 
CB, $2, LOOP 

($2 has X in value field) 
L(BU, 4) (V+I), 0.24($2) 

. . 
L(BU, 20), -0.20($2) 
ST(BU, 20) , ANS($l) 
CB, $2, LOOP 

($2 has X + 0.4 in value field) 
L(BU, 4), -0.04($2) . 

. . 
L(BU, 20) (V+IC), 0.24($2) 
ST(BU, 20), ANS($l) 
BZXCZ, LOOP 
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(c) 
thus, -A will be assembled as 2**18-A. 

Method 3. Repeated compares for minimum 

A negative numeric address is assembled by STRAP as its two's complement, 

VPC 
STIX 

KOMP 

AGAIN 

PACK 

F IXMIN 

XWl 
XWll 
x w 2  
XWlA 
VF1 
VF2 
ANS 

LX, $1, X w l ;  LX, $ 2 ,  x w 2  
B, STIX 
V+C, $1, VF1 
sx, $1, XWll  
L(BU, 24) 9 0($2) 
K(BU, 4) (V+ICR), 0.24($1), 20 
BAH, FIXMIN 
BZXCZ, KOMP 
SF (BU, 24) (V+IC) , 0.24($2) 
BZXCZ, VPC 
LX, $1, XWlA; LV, $ 2 ,  VF2 
L(BU, 20) (V+I) , 0.24($2) 
ST(BU, 20) (V+IC) , 0.20 ($1) 
BZXCZ, PACK 
BEW, $ 
LF (BU, 24), -0.24($1), 24 
SF(BU, 24), -0.24($1) 
LF(BU,24), 9.16 
B, AGAIN 
X W ,  DATA +0.24, 15, XWll 
X W ,  0 
X W ,  DATA, 14, $ 
XW, ANS, 16, $ 
VF, 0.24 
VF, DATA +O. 04 
DRZ(BU, 20), (16) 

'outer loop, restart with changed $1 
'save $1 contents for later refill use 
'load assumed minimuin 
'inner loop, test against assumed min 
'u sua11 y un suc ce s sf ul 

'store proven minimum 

'skip A field 
'store sorted B field 

'f ixup routine, load new minimum 
'store old guess in its place 
'position new min. in accumulator 
'return to inner loop 

'will be changed during computation 

Comments: (a) This method applies even if all the A fields a re  not different in 
content. (b) The original information will be permuted in the program. If this i s  
deemed undesirable, one could transmit the information to a temporary area and do 
the permutation there, leaving the original information unaltered. (c) The code is 
written under the reasonable assumption that the provisional minimum stands a good 
chance of being no larger than an average entry, F o r  the sake of clarity the 
packing of the sorted fields is done separately at the end. By using an extra index 
register this packing action can be performed whenever a new proven minimum is 
found . 

(d) 

Method 4. Repeated compares for  both maximum and minimum. 
LX, $1, xw1 
LX, $2, x w 2  
LX, $3, xw3;  sx, $3, xw33 

LODE L(BU, 24) 9 0($1) 
LF (BU 24), 0 ( $ 2 )  , 64 

BAH, SWICH 
KF(BU,4)(V+ICR), 0.24($3),20 
BAH, FIXMIN 

KF(BU,4), 0($2), 20 

'test against assumed minimum TEST 

L 
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W' 
AGAIN 

PACK 
LOAD2 

SWICH 

F JXMIN 

'new minimum 

FIXMAX 

'new maximum 

w 

xw1 
x w 2  
xw3 
xw33 
xw22 
xw11 
VF3 
ANS 

Comments: 
content. 

KF(BU, 4) -. 24($3) , 64+20 'test against assumed maximum 
BAL, FMMAX 
BZXCZ, $3, TEST 
ST(BU , 24) (V+I) , 0.24($1) 
ST(BU, 24) (V-I) , 0.24($2) , 64 

'store minimum 
'store maximum 

V+C, $3, VF3; CB, $3, LODE-1 
LV, $1, Xwll;LX, $2, XW22 
L(BU, 24)(V+I) , 0.24($1) 
ST(BU, ZO)(V+IC), 0, 20($2) 
BZXCZ, LOAD2 

SWAPP, 1, $L, $R 
By TEST 

BEW, $ 

LF(BU, 24), -0.24($3), 24 
ST(BU, 24), -0.24($3), 64 
ST(BU, 24), 9.40, 24 
B y  AGAIN 
LF(BU, 24), -0.24($3), 64+24 
ST(BU, 24) , -0.24($3), 64 
ST(BU, 24) , 8.40, 64+24 
B y  AGAIN 
X W ,  DATA, 16, $ 
X W ,  DATA +0.360, 0 ,  $ 
XW, DATA + 0.24, 14, XW33 
X W ,  0 
X W ,  ANS, 16, $ 
VF, DATA + . 4  
VF, 0.24 
DRZ(BU, 20), (16) 

(a) This method applies even if the A fields are not all different in 

PROBLEM 2 . 7  SORTING INTO RESERVED TABLE AREAS 

Given the same field description as in Problem 3 above, as well as reserved table 
area beginning at TABL 0,. . . , TABL 15, each of which is capable of holding the entire 
string (in this case 400 bits). Put the proper B fields in successive entry areas of the 
TABL. areas as dictated by the contents of the A fields. Assume the A fields are not 
all different. 

Method 1. 
LOAD 
-- 

x w 2  
MTABL 

LX, $2, X W 2  

LX, $1, $L 
L(BU, 4)(V+I), 0, 24($2), -18 

LVE, $3, MTABL($l) 
L(BU, 20),  -0.20($2) 
ST(BU, 20) (V+I) , 0.20($3) 
SVA, $3, MTABL($l) 
CB, $2, LOAD 
XW, DATA, 16, $ 
SIC , TABLO; SIC , TABL1; SIC , TABL2; SIC , TABL3 
SIC, TABL4; SIC, TABL5;SIf!, TABL6; SIC, TABL7 

'Master Table 
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SIC, TABL8; SIC, TABLS;SIC, TABL10; SIC, TABLll  
SIC, TABL12; SIC, TABL13; SIC, TABL14; SIC, TABL15 

b 

A B C  D E F G 

Comments: (a) The "master table" a rea  is updated constantly to avoid conflicts 
in the storing of entries with equal A fields. (b) The SIC operation by itself is meaning- 
less as an instruction, 
by LVE and SVA instructions. 

However, it specifies a 24-bit address, and this fact is noted 

PROBLEM 2.8 PURCHASING LIST ARITHMETIC 

A purchasing list consists of a string of fields, each of which has the following 
structure: 

Subfield A is an eight-bit byte consisting of 1's. 
Subfield B has two 8-bit bytes (item no, ). 
Subfield C has six 8-bit bytes (coded name of product). 
Subfield D has three 8-bit bytes, and contains the number of units of the product 
desired in decimal (DU, 24, 8). 
Subfield E has six 8-bit bytes, and contains the unit price in cents of the product 
in decimal (DU, 48,8). 
Subfield F has 12 8-bit bytes, and is blank (to be the total price field). 
Subfield G is an unknown number of &bit bytes. It contains the remarks concerning 
the product and/or the entire purchase. The first three 8-bit bytes of the subfield 
G in the last "product field" contains the 8-bit IQS expression END. None of the 
8-bit bytes in G are all 1's. 

If the complete string begins a t  LIST, write a program to fill in the total price for 
each product in (DU, "96", 8). F o r  simplicity of programming do repeated additions 
instead of decimal multiplications, Create the grand total also, and put it (DU, "128'', 
8) in the pseudo accumulator 13.0 through 14.0 ($RM and $FT). 

Method 1. z,  $FT 
LCON LX, $2, x w 2  
LCON LCV(DU, 24, 8)(V+I), 0.24+0.48($2), 128-18 $R cleared too 

LC, $1, $L; BXCZ, NEXT 

CB, $1, ADD 
ST(DU, 64, 8) (V+I), 0.64($2), 16 
ST(DU, 32, 8) (V+I), 0.32($2) 
M+(DU, 64, 4), $FT 
L(BU, 32), TESTW 
KF(BU, 24), 0($2), 8 
BAE, LAST 
KF (BU, 24) (V+I) , 0.8 ($2) 
BZAE, KOMF 
V+I, $2, 1.0 
B, LCON 

'binary count field 
ADD +(D, 48, 8), -0.48($2) 

NEXT 'store total into F 

'update grand total 

'test for end of string 

'test for beginning of new field 

'bypass 64 more bits to new D field 

KOMF 

MORE 
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V 

LAST L(DU, 64, 4), $FT 
ST(DU, 64, 8), $FT 
ST(DU, 64, 8), $RM, 64 
BEW, $ 

TESTW (IQsQ)DD@U,24,8),EWQ 'end mark for string 

xw2 XW, LIST+O.72, 0,  $ 
DD(BU, 8, 8), (2)11111111 'beginning mark for field 

Comments: (a) Decimal quantities with more than one digit must be converted into 
binary before a binary arithmetical operation (say index count down) is attempted. (b) 
It is convenient to load one test quantity to be compared against many. This eliminates 
a number of memory fetch operations. In the present program two kinds of tests are 
performed, but the test quantities can be made adjacent to each other, andloaded simul- 
taneously. Note the K F ' s  cannot be replaced by simple K operations. (c) Special 
devices a r e  used to deal with long field lengths. The 96-bit s tores  into F fields a r e  
performed in two separate instructions. The running grand total is kept in a packed 
(4-bit byte) form, to be expanded to f i l l  both $FT and $RM at the end of the program. 
(d) 
instructions. An exception is made for pseudo-instructions specifying alphabetic 
characters, since ''blank'' is a character in its own right. In TESTW, therefore, any 
characters following the third comma will be assembled as bona fide characters, and 
the usual typographic practice of leaving a blank after a comma will prove unwise. 

Normally the STRAP assembler ignores all blanks in instructions and pseudo- 

PROBLEM 2.9 EFFECTIVE ADDRESS CREATION 

Find the effective address of the instruction beginning at the 19-bit address INST 
without using the LVE instruction, Put the answer in the value field of $1. 

Method 1 
EFFADR 

sv 

NOX 
TEST 

F I) 
MPLUS 

NOTFP 

VFL 

NOTVF L 

L(BU, 32), INST 
KFI(BU, 4), ( 2 ) O O O O  
BAE, NOX 

SV, $0, 17.0 
B, TEST 
Z ,  17.0 
KFI(BU, 2), (2) 10,4 
BZAE, NOTFP 
-(BU, 32-18), $R. 32 + 0.18 
M+(B, 25, l), 17.0, 32-24 

ST(BU,4),SV+O. 19 

BEW, $ 
KFI(BU, 4), (2)1000, 4 
BZAE, NOTVFL 

B, MPLUS 
KFI(BU, 3), (2)100,4 
BAE, KTYPE 
KFI(BU, 9), (2)111000000,4 
BAE, KTYPE 
KFI(BU, 5), (2)10000, 4 
BAE, IMMED 
B, MPLUS 

-(BU, 32-24), $Re 32+0.24 

assume four-bit index field 
'assume indexing needed 
'store in J field of SV ins,truction 
'index value field now in $1 

'test if floating-point 

'floating-point measure 
'25-bit add 

'test if VFL left address 

'VFL measure 

'test if K type indexing, CB, BIND 

'test if K type indexing, BB 

'test if immediate indexing 

'otherwise 4 bit I field assumption valid 
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KTYPE ST(BU, l), KSV+0.22 
KSV SV, $0, 17.0 
KMINUS -(BU, 32-19), $R. 32+0.19 '1.9-bit address 

IMMED Z ,  17.0 
B, MPLUS 

B, KMINUS 

Comments: (a) The effective address is the algebraic sum of the (positive) numeric 
address and the value field of the specified index register. In an instruction the numeric 
address is abbreviated into the numeric address field. The size of the numeric address 
field is determined by bits .24 through . 27 of the instruction, 

1000 means a 24-bit numeric address field; 
XXlO means an 18-bit numeric address field; 
otherwise a 19-bit numeric address field i s  meant. 

The instruction may allow no indexing at all (immediate indexing instructions), may 
allow a one-bit K-type of indexing specification (CB, Bind, and BB) but generally allows 
a four-bit I-type indexing specification. 

If bits 23-27 have 10000: no indexing allowed; 
If bits 25-27 have 100: K-type (CB, Bind); 
If bits 19-27 have 111000000: K-type (BB); 
otherwise: I-type. 

(b) The reader should write down the bit combination of several instructions and follow 
the program closely. (c) In many instances the symbolic instructions should be written 
for the convenience of the programmer. In the instruction FP, the field length 32-18 is 
evidently 14, but clarity is gained by retaining the longer expression. The same is true 
for the address field of TEST. The extra assembly time is trivial. 

PROBLEM 2.10 FETCH (p,q)TH ELEMENT OF RECTANGULAR MATRIX 

Given a matrix A of size M x N (M rows and N columns), stored row-wise in consecu- 
tive full words beginning with All in location MTRIX. Given also are binary integers 
p, q in the leading 18 bits of $1 and $2. Put the element Apq in $R. 

Method 1 
LOCATE V-I, $1, 1.0 

L(BU, 18), 17.0 
*(BU, 18), ENN 
ST(BU, 25), $3, 20-7 
V+, $3, 18.0 
V+, $3, VF 
L(BU, 64), 0($3) 
BEW, $ 

ENN DD(BU, 18), N 
VF VF , MTRIX-1.0 

'p-1 generated 
'$1 
'result has 20 offset 
' (p-1) *N 
'(P-1) *N+q 

'N is assumed defined elsewhere 

Comments: (a) The element Apl is in MTRIX+(p-l)N. The element Apq is there- 
for  in MTRIX+(p-l)N+(q-1) or MTRIX-l+(p-l)N+q. 
the answer is placed in the cleared accumulator with offset 20. 

(b) After  a binary VFL multiply 
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PROBLEM 2.11 SIMULATION OF TWO-BIT ADDITION 

4 

If P, Q, R each define a two-bit non-overlapping field, using logical connectives only, 
create the lowest two bits of the sum C(P)+C(Q) and put it in $R. ( C(X) means contents 
of X). 

Method 1, C0011(BUY 2,2),  P 
C0110(BU, 2,2),  Q 
CMOlOl(BU, 2,2),  R 
COOOO(BU, 2,2),  $Z 
C0011(BU,2,2), P, 1 
C0001(BU,2,2), Q, 1 
CMOlIO(BU, 2,2),  R 

'or any other address 

Comments: (a) This is actually a small-scale simulation of the parallel addition 
in binary digital machines. 

PROBLEM 2.12 TRANSPOSITION OF RECTANGULAR MATRIX 

Given an MxN matrix of floating-point words starting at location MATRX, with the 
elements stored row-wise. Create the transpose of the matrix, also stored row-wise, 
occupying the same area. Keep the number of temporary storage locations small for 
this purpose, 

Analysis: Counting from the (1,l) element, if MATRX begins the storage area for a 
PxQ matrix, then we may say the location MATRX + L contains the (r, s)-element, if 

L=(r-l)*Q + (s-1) r (P,  s 5 Q "  

The transpose of an MxN matrix is an NxM matrix. The (i, j)-element of this NxM matrix 
is in location, say, MATRX + K 

K=(i-l)*M+(j-1) i S N ,  j S M  
The contents of this location, however, has to be fetched from the original MxN matrix, 
the (j  , i)-element. The fetch location is, say MATRX+KO, with 

K'=(j -1) *N+(i-1) 
= integer remainder of (K*N)/ (M*N-l), 

The algorithm is therefore to save one element (the lead element) from location 
MATRX+K, fill the latter with the contents of MATRX+K', then fill the latter with the 
contents of MATRX+K" etc. , until the fetch location is the same as that of the lead 
element. The last store is performed with the lead element to complete the permuta- 
tion cycle. A s  the cycle invariably has fewer elements than the matrix itself, care  must 
be exercised to avoid altering elements which ha,ve already been permuted. This can be 
cone by using flag bits as identification, at the same time insuring that the lead element 
of every cycle has the smallest (or alternatively largest) address possible. The method 
is essentially that of M. F. Berman, Journal of the Association for Computing Machinery, 
- 5,  383 (1958). 
(1959) ; G. Pall and E. Seiden, Mathematics of Computation, 14, 189 -192( 1960). 

For similar techniques see P. F. Windley, Computer Journal, 2, 47-48 

For square matrices each of the cycles have only one (diagonal) or two (off-diagonal) 
elements, and there exist methods much more efficient than the present one. Rectangu- 
lar matrices offer few direct hints about the nature of the cycles, except that the first 
and last elements are unaltered by the transposition process. 
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Method 1. U s e  V-flags for  permuted elements. Assume the matrix elements do not 
contain V-flags originally. Advantage is taken also of $VF interruption, 

TRANSP BD, $+0.32 'special interruption scheme 
LV, $1, 
V+I, $1, 37.0 
SVA, $1, SWAP2 
SWAPT, 1, 0($1), INST 
TI, 1, $IND+l. O,INST+l. 0 
CMllll(BU, l), $IND+l. 37 
BE, $+.32 

LI(BU, 18), M 
*I(BU, 18), N 

ST(BU, 25), 20.0, 20-7 
LC, $1, 20.0 
CB+, $1, BZBN 
B, BEW; CNOP; NOP 

TI, 1, MATRX($2), TEMP 

*I(BU, 18), N, 128-18 
/(BU, 18), 20.0,20 
L(BU, 18), $RM+. 60-. 18,128-18 

LWF (U) , MATRX($3) 
CM1111(BU, l), $SB+O. 7 
ST(U), MATRX($2) 
LX, $2, 19.0 
B, CYCLE 
TI, 1, TEMP, MATRX ($2) 

CB+, $1, BZBN 

TI, 1, INST+l. 0, $IND+l. 0 

'$IA assumed to have meaningful value 
'find $VF interrupt table address 
'insert address in exit instruction 
'swap old and new entries of interrupt table 
'save old $MASK 
'force $VF mask to be 1 
'end of interrupt measure 

LVI, $1, 0 

-I(BU,18), 1, 20 'M*N-l 
'at full-word position of $4 valuefield 
'copy into $1 count field 

'to insure CYCLE will start at full word 

'file away leading element of cycle 

'answer is at 20 offset 
'divide by M*N-1 
'location of new element 

'if operand has V-flag, interruption ensues 
'create V-flag 
'store into vacated location 
'new address modifier 
'endless loop dependent on $VF exit 
'transmit lead element of cycle. It has V-flag 

NUCYCL LX, $2, 17.0 

CYCLE L(U), 18.0 'location of old element 

LX, $3, $L 

ENDCYC 
BZBN BZBN, MATRX+O. 63($1), NUCYCL 

SWAP2 SWAPI, 1, 0, INST 

BEW BEW, $;CNOP 
INST B, ENDCYC; NOP 
TEMP DRZ(N), 1 
MATRX SYN(BU, 24), 1000.0 'user specified starting address 
M SYN, 20 'user specified, no. of rows 
N SYN, 5 'user specified, no. of columns 

'left -address to be inserted by SVA instruction 

'must begin at full word boundary, and does 

Comments: (a) To avoid conflicts, all but the leading members of each permuta- 
tion cycle are given a V-flag during the permutation, and the end of cycle is sensed by 
the fetching of an element already with a V-flag. The BZBN instruction tests elements 
of the entire matrix proceeding from the lowest addresses. If an element has a V-flag, 
it must have been an element of some previous permutation cycle. The flag is removed 
and test is made on the next element. If an element is encountered without a V-flag, 
it has not been in any permutation cycle before, and it must be the leading element of 
a new permutation cycle. The first and last elements of any rectangular matrix are 
not affected by permutations, The judicious use of interruption to exit from an 
otherwise endless loop can lead to much saving of programming and execution time. 

(b) 
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Usually, however, interruption should be done with the help of the master-control or 
other supervisory programs to insure that other interruptions are also handled properly. 
Here one entry of the interrupt table has been changed at the beginning and restored at 
the end. (e) There exist numerous ways to improve the present program. In 
particular the replacement of VF  L operations by proper floating-point counterparts 
may be recommended. 

a 
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3 FLOATING-POINT ARITHMETIC 

PROBLEM 3.1 SEPARATION INTO INTEGER AND FRACTION PARTS 

The floating-point number N in location DOG has a small ( 548)  exponent magnitude, 
Create two normalized floating-point numbers I, F in CAT, CAT+1 respectively such 
that: I = an integer; 

a n d I + F = N .  
IF1 < 1.0,  sign of F = sign of N; 

Method 1. DL(U), DOG 
D+(U), X48 
ST(N), CAT 
SLO(N), CAT + 1 . 0  
BEVY $ 

X48 DD(N), O.OX48 'binary exponent of 48 

Comments: (a) The number X48 forces the fraction of N to shift right the proper 
amount. Fo r  better understanding, the reader should illustrate the program for 
himself using, for example, N = 2.5. 
(N) modifier is needed only for arithmetical operations which may otherwise generate 
an unnormalized result. The (U) modifier means "do not perform normalization, f t  not 
"denormalize. I f  L(U) and ST(U), when applied to an operand which has already been 
normalized will leave the number still normalized. 

(b) 
(c) In dealing with normalized numbers, the 

PROBLEM 3.2 INTEGER PART OF FLOATING-POINT WORD 

The floating-point number N in location DOG is defined as in the previous problem. 
Put the lowest 18-bits of the VFL integer corresponding to I into the f i rs t  18-bits of 
the count field of $1. 

Method 1. DL(U), DOG 
D+(U), X48 
ST(BU, 18), 17.28, 68 
BEW, $ 

X48 DD(N), O.OX48 

'$1.28 is also acceptable 

PROBLEM 3.3 POLYNOMIAL EVALUATION 

Evaluate the polynomial 

20 

k=o 
P(x) = a p k  

where x is located in X, ak is located in A + K, K = 0.0(1.0)20.0. Store the result 
(single precision) in POLY. 
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-w 

Method 1. Term-by-term evaluation, 
POLYN L(U), A 

LW), x 
LX, $2, x w 2  

ST(N), POLY 

B, STOR 
LOAD W), XK 

*" x 

*(N) 9 A($2) 
STOR ST(U), XK 

+(N), POLY 
ST(U), POLY 
CB+, $2, LOAD 
BEW, $ 

x w 2  xw, 1.0,  20, $ 
XK DR" (1) 

'new power of x 

'new partial sum 

Comments: (a) This is a relatively inefficient way to evaluate a polynomial but 
the technique applies to any finite series.  

Method 2. U s e  the nesting technique. 
p(x) = (. . . ((a20 x + alg)x+. . .)x+ao. 
LX, $2, XWORD2 
L(N), A+20.0 

-_I__ 

MULTI *(N), x 
+" A($2) 

BEW, $ 

CB-, $2, MULTI 
ST(U), POLY 

XWORD2 X W ,  19.0, 20, $ 

Comments: (a) The nesting technique for polynomials is twice as fast, more 
accurate , and requires fewer instructions than the term-by-term method. 

Met'hod 3. U s e  nesting technique and double operations fo r  extra accuracy. 
LX, $2, x w 2  
L(N), A+20.0 

DMULT D*(N), x 
D+(N) Y A(@) 
SRD(N), 8 .0  

ST(U), POLY 
CB-, $2, DMULT 

BEW, $ 
x w 2  xw, 19.0 ,  20, $ 

L 

Comments: (a) The double operations are not much slower than the corresponding 
regular operation. 
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PROBLEM 3.4 MODIFIED TRAPEZOIDAL RULE 

Evaluate the integral 

J 
0 

by the modified trapezoidal rule 

P f (x)dx '2-y h [ f (a+h/2) + f (a+3h/2)+. . . + f (a+nh-h/2)] 
a 

where h = (b-a)/n. U s e  n = 20 for this purpose. 

LOOP 

STOR 

'or 128.0 

Method 1. Create a summing loop with the f (xk) evaluation inside the loop. 
MTZR LX, $1, xw1 

UU), €3 
-(N), A 
/w N 
ST(U), H 

+(N), A 
E-I(U), 1 

B, STOR 
L(U), TEMP 

ST(U), TEMP 
*(N), 8.0 

+(N), H 

*W), 8.0 
M+(N), ANS 
CB, $1, LOOP 
L(N), A N S  
"(N) Y H 

BEW, $ 
ST(N), A N S  

xw1 xw, 0.0, 20, $ 
A DD(N), 0.0 'lower limit 
B DD(N), 2.0 'upper 1 im it 
N DD(N), 20.0  'no. of strips 
ANS OWN), 0 
TEMP DR(N), (1) 
H DR(N), (1) 

'update temp 
'or $L 
'new integrand value 

Comments: (a) The E f I instructions may be used for multiplying the floating- 

For  a floating-point instruction the address 8.0 or $L 
point number in the accumulator by powers of 2. They are more efficient than multi- 
plications or divisions. 
means the leading 60 bits of the accumulator plus the lowest four-bits of $SB. 

(b) 

Method 2. Separate the function evaluation from the summing action in the loop. 
MTZRB LX, $1, xw1 

L(U)S €3 
-" A 
/W), N 
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c 

LOOP 

STOR 

RTURN 

ANS 
TEMP 
H 
FUNCT 

xw1 
A 
B 
N 

ST(U), H 

+(N) 9 A 
E -I(U), 1 

B, STOR 
L(U), TEMP 

ST(U), TEMP 
B, FUNCT 
M+(N) ANS 
CB, $1, LOOP 
L(N), ANS 

ST(N), ANS 

+(N) 9 

*(N), H 

BEW, $ 

DR(N)9 (1) 
DR" (1) 

0 

*(N), 8.0 
*(N), 8 .0  
B, RTURN 

DD(N), 0 .0  
DD(N), 2 . 0  
DD(N), 20.0 

xw, 0.0,  20, $ 

'new x 
'branch to f(x) evaluation 
'new partial sum 

'function evaluator 

'lower limit 
'upper limit 
'no. of s t r ips  

Comments: (a) The present program requires two additional branch instructions 
per loop, and is slower than that of Method 1. What it loses in speed is offset by the 
gain in clarity, however, and if a new integral is to be evaluated, only the lower portion 
of the program needs to  be replaced. 

PROBLEM 3 . 5  CONTINUED FRACTION EVALUATION 

Evaluate the continued fraction 

F = x  
1 - x 2  

2 
3 - x  

5 - x2 

7 -. 

Method 1. 
CONF L ( W  x 

*, x 
ST(U), TEMP 
LX, $2, x w 2  
L(U), NlJM 

LOOP R/N, TEMP 
ST, TEMPl  
L(U), NlJM 
-, TWO 
ST(U), NUM 
+, TEMPl 

' 2  

39 
-- X , with x = n/4 .  

'x**2 

'39 
'X *x/39 

'3 7-x*x/3 9 
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CB, $2, LOOP 

ST(U), TEMP2 
R/, x 

BEW, $ 
X DD(N) 9 $PI/4 
NUM DD(N), 39.0 
TWO DD(N), 2 . 0  
xw2 xw, 0 . 0 ,  19, x w 2  
TEMP DR(N), (3) 
TEMP1 SYN(N), TEMP+l. 0 
TEMP2 SYN(N), TEMP+:!. 0 

Comments: (a) The most efficient way to evaluate a continued fraction is to  start 
from below. (b) The R/N instruction should not be confused with R/(N). The reverse 
divide feature in the 7030 is convenient for continued fractions. 
is not explicitly given in an instruction, STRAP will insert the dds of the rightmost 
symbolic address. If the latter has no meaningful dds, the next-to-the-rightmost sym- 
bolic address will be used, etc. If the collection of symbolic addresses for the instruc- 
tion is exhausted without a proper dds having been found, STRAP will use the (N) modi- 
fier for instructions which are unambiguously floating-point in nature. The exception 
being E+I and variants which are assigned the (U) modifier. An operation which could 
be either VFL o r  floating-point is assumed VFL. 

(c) Where the dds 

PROBLEM 3.6 SCALAR PRODUCT OF VECTORS 

Find the following vector scalar product 

k=O 

where a1, i s  in A+K, bk in B+K, K=O. O ( l .  0)16.0. Put the result in C. n 

Method 1. U s e  

LOFT 

SXTEEN 

Comments: (a) The *+ operation yields a double-precision result. (b) The LFT 
operation is a "memory to memory" operation, since $ FT is a bona fide memory loca- 
tion. Since it does not involve the execution arithmetic unit and since the temporary 
indicator $MOP is turned on only for execution arithmetic -to -memory operations, 
$MOP is turned off by LFT. 
14.0 in memory) it is also made available in the lookahead to facilitate the *+ opera- 
tion. This "forwarding" operation allows the *+ operation to proceed before $FT is  
actually loaded, freeing the program from memory access delays due to the store and 

(c) While the LFT operand is on its way to  $FT (location 
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a subsequent fetch (for the *+). Forwarding is always done when information needed 
for the execution arithmetic unit is known to be available in the Lookahead. 

PROBLEM 3.7 CUBE ROOT 

Program to compute the cube root of a normalized floating-point number N by the 
following iteration formula: 

U s e  it to compute the cube root of 8, with XO = 2.5. Ten iterations will give full-length 
accuracy except for  the round-off e r ro r  in the last iteration. 

Method 1 
CBRT 

LOOP 

"W' 

x w 2  
HALF 
ANS 
TEMP 
XK 
EN 
GUESS 

L(U), EN 

+(N), EN 

LX, $2, xw2 

E -I, 1 

ST(U), TEMP 

L, GUESS 
ST, XK 
*, XK 
*, XK 
E + I ,  1 
+, EN 
R/, TEMP 
+, HALF 
*, XK 
CB, $2, LOOP 
ST, ANS 
BEW, $ 
xw, 0.0,  10 ,  xw2 

DWN) 9 (1) 
DRW) 9 (2) 

DD(N), 0.5 

SYN (N), TEMP + 1 . 0  
DD(N), 8 . 0  
DD(N), 2.5 

!3N/2 stored in TEMP 

'2X *dc 3 + N 

hew XK created 

c 

Comments: (a) This is a third order process: if Xk has a relative e r rorG , one 
3 iteration later Xk+l has a relative e r ro r  of C s  , Here C=2/3. See E. G. Kogbetliantz, 

IBM. Journal of Research and Development, 2, 147-152 (1959). 

PROBLEM 3.8 NORMALIZED FLOATING-POINT VECTORS FROM VFL DATA 

Given a string of 25 fields beginning at STRNG. Each field contains an integer with 
Change each number Nk into a the description (D, 48, 6). Wr i t e  a program to: 

normalized floating-point number Fk. (b) 
the square root. 
FLOAT+24.0. 
bers  should now be unity (barring a small round-off e r ror ) ,  The vector composed of the 

(a) 
Create the sum of squares of Fk, then take 

(c) Divide each Fk by the square root, and store in FLOAT through 
The sum of the squares of the resultant set of floating-point num- (d) 
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set is said to be normalized. Notevector normalization is not related to the machine 
hardware normalized floating-point arithmetic. 

Method 1 
NORMV 

LOOP 
EPLUS 

LOOP2 

xw1 
xw2 
SUM 
ROOT 

C omment s : 

'$2 will be refilled on exit 

Z ,  SUM 
LX, $1, xw1 
LX, $2, x w 2  
LCV(V+I)@, 48,6), 0.48($1), 68 
E+I, 48 'number is now unnormalized FP integer 
ST" 0($2) 
*" $L 
+, SUM 
ST(U), SUM 
CBR+, $2, LOOP 
SRT, ROOT 

/, ROOT 
LIN) 9 0($2) 

ST(U), 0($2) 

BEW, $ 
CB+, $2, LOOP2 

XW, STRNG, 25, $ 
XW, FLOAT, 25, $ 
DRZ(N), (1) 
D R W ) ,  (1) 

(a) A word full of zero bits is being used as the "zeroth partial sum. 
Note that a sequence of zero bits is only an "order of magnitude" zero, not a "true zero. If 
A true zero can be approximated by a number with what looks like a very large negative 
exponent. An order of magnitude zero has a meaningful exponent, and can be interpreted 
a s  a number with no significant fraction digits. In addition-type operations, an order of 
magnitude zero, by virtue of its exponent, may force the fraction of a nonzero number 
to shift towards the right before the addition. In the present case the nonzeros all have 
larger exponents and the use of order of magnitude zero to start a sum will not lead to 
difficulties. (b) The EPLUS instruction could be removed from the loop without caus- 
ing any damage; the e r r o r s  introduced would exactly cancel in the normalization process. 
(c) 
the machine, 
zero bits, 

The leading instruction is not really needed unless the program is to be reused in 
(d) The DRZ pseudo-operation leads to the reservation of strings of 

PROBLEM 3 . 9  DOUBLE-PRECISION COMPARE 

The accumulator contains a double precision floating-point quantity. Another double 
precision floating-point quantity is stored in two full words, with the more significant 
part in M1, l ess  significant part in M1+1. Compare the two double precision quantities 
and set the appropriate indicators $AE, $AL and $AH. 

Method 1. Full-scale double-precision subtract followed by a test on the result. 
MKOMP ST(U), A1 ' save accumulator 

SLO (U), A l + l .  
DL(U), A l + l .  'double -pr eci sion subtract 
D-(N), M1+1. 
D+(N), A 1  
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D-(N), M1 
L(BU, 3),  $RLZ 
ST(BU, 3) ,  $AL 
DL(U), Al+1. 
D+(U), A1 
BEW, $ 

A1 DR(U), (2) 

l$RLZ, $RZ, $RGZ fetched 
I$AL, $AE, $AH stored 
'restore accumulator 

Comments: (a) The temptation is strong to compare the high order par ts  first, 
and accept the indicator settings unless equality is indicated, and in the latter compare 
the lower order parts. This is not correct because the compare instruction is based 
on a floating subtract operation rather than a bit-by-bit comparison. Fo r  example: 
if (Al, Al+1) and (Ml, M1+1) have 

11 +I o l +  I and 
I I 1 1  I 

respectively 

then a comparison between A1 and M1 leads to $AE.=l (the first 48 fraction bits of the 
subtraction result being zero). A straightforward compare of the second order parts 
will lead to the erroneous conclusion that (Al, Al+l . )  is larger than (Ml, M1+1.), 
whereas in reality (Al, Al+1. ) represents 

* 2E but (Ml, M1+1.) represents the larger quantity 

(1/2) * Z E + l  = 1*2E the difference being noticeable at the fiftieth bit. 
Aside from the above considerations the program presented does not use conditional (b) 

branches, eliminating the need for wrong branch recovery. 
is applicable even if the lower order parts a r e  slightly off standard (say with an expo - 
nent only 46 units lower than the higher order counterparts). 

(e) The present program 

Method 2. Compare high order parts. If they compare "equal, perform the double 
precision subtraction to ascertain the result. 

DKOMP2 ST(U), A1 save accumulator 
SLO(U), Al+L 
K(U)3 'single precision compare 
BAE, DPSUB lusually unsuccessful 

END BEW, $ lend of program 
DPSUB DL(U), Al+l.  lfull-scale double precision subtract 

D-(N), M1+1. 
D+(N), A1 

L(BU, 3),  $RLZ 
ST(BU, 3) , $AL 
DL(U), Al+1. 'restore accumulator 
D+(U), A1 
B, END 

D-(N), 
I$RLZ, $RZ, $RGZ fetched 
$AL, $AE, $AH stored 

AI  DR(U), (2) 

Comments: (a) The present program is free of the objections outlined in Method 1. 
It is fast if the higher order parts decide the outcome (as is usually the case). Very 
effective for normalized double-precision numbers, it ma.y yield erroneous answers if 
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(Ml ,  M1+1.) E 111----- 

(b) Even for a program with many different branches, it is convenient to end at the 
same place as a debugging aid. Any other instruction counter setting at the termina- 
tion of computation will then be an e r r o r  signal. 

E-48 I------ lI+ 

PROBLEM 3.10 INTEGER PART OF Log2N 

N is a positive floating number in DOG, and log2N can be written as an integer plus 
a positive fraction. Find the integer and put its magnitude in the first 18-bits of the 
value field of $1, and the sign in the sign position of the value field of $1. Assume no 
exponent flag. 

Analysis: If N = 2 4  , 1 / 2 I @  < 1 
Then log2N = 4 + log2 p -1s log2 /I < 0 

= 4-1 + (1 + log2P ) 

evidently4 -1 expressed as a 18-bit VFL integer, is the desired quantity. 

Method 1. L(N), DOG 
E-I, 1 
L(B, 12, l), 8.0 ,  6 
ST(B, 25, I), $1 
BEW, $ 
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4 SPECIAL PROBLEMS 

PROBLEM 4.1 VFL FRACTION SQUARE-ROOT 

a 

Given a 64-bit binary unsigned VFL fraction in FRAC, extract the square root and 
put it in the 64-bit field beginning at ROOT, 

Analysis: By the Newtonian process of extracting the square root x of the number N, 

Xk + 1 = X k +  N/xk)/2 
If xk has a relative e r r o r  of E, namely 

xk = xt ( l+€) ;  xt = true x 
then Xk+1 = x t ( 1 + c 2 / 2 + 0 ( e 3 ) )  

Thus if we a r e  able to find a guess which has a relative error of 2-32, one iteration 
later the relative e r r o r  would be reduced to 2-65. 

The 64-bit fraction is equivalent to a floating-point number with zero exponent, 
If this latter is manufactured and normalized, the SRT instruction can be used to give 
a relative e r r o r  less than 2-47, which is more than adequate for OUT initial guess. 
The subsequent iteration is done in double precision, with the second order part of the 
initial guess understood to  be zero. 

Method 1 
SQRT L(BU, 64), FRAC, 52 

BRZ, STOR 

SRT(U), GUESS 
D/(N), GUESS 
ST(U), QUOT 

/(N), GUESS 

D+" 0 

DL(U), $RM 

D+(U), QUOT 
D+(N), GUESS 
E-I(U), 1 

STOR ST(BU, 64), ROOT, 52 
D+(U), 0 

BEW, $ 
GUESS DRW) 9 (1) 
QUOT DR(U) 9 (1) 
FRAC DR(U)9 (1) 

'looks like FP number 

'normalized long fraction 
'first guess 

'first order quotient 

'obtain second order quotient 
'double length quotient 

'divide by two 
'shift until exponent zero 

'to be supplied 

Comments: (a) Had the original fraction not been prenormalized, it may contain 
a number of leading zeros, The relative e r r o r  of the square root of the first 48 bits 
may no longer be the guaranteed 2-47, but may be as large as 1 (when the first 48 bits 
are all zeros). (b) The result is not rounded, as rounding will create an overflow in 
the exceptional case when FRAC is almost 1 .0 .  
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PROBLEM 4.2 DOUBLE-PRECISION BINARY TO DECIMAL CONVERSION 

Given a 96-bit binary fraction beginning at BFRAC, transform it into a 112-bit deci- 
mal fraction beginning at DFRAC. 

Analysis: The binary fraction F can be recoded in terms of any integer radix R: 
Do 

F = a+ R - ~  ; R = integer, o = a+ 5 R-1. 
k = l  

The problem is to find the amkls up to, say, k = m. Now 

-1 -k 
RF =a-1 + a-kR = a-1 .f F1 , 

k = 2  

The integers 
quantities still, 

...... 

a-k can be extracted after each binary multiplication. They a r e  binary 
but can be recoded in te rms  of known conventions. Fm can be used to 

create a rounded result, but is more often ignored. 

For  our problem let R=lOI4. This is the largest power of 1 0  expressible by 48 bits, 
and will contribute to the speed of conversion, The binary multiplcation will be that 
between a single precision number R and a multiple precision quantity FL. 

The a-k's will have no more than 48 bits, and can be converted into decimal by the 
CONVERT type instructions. The recoded a-k will each have no more than 56 bits. 
Since 2*56=112, we need only the first two "super digits. 

Method 1 
DFCONV L(BU, 48), BFRAC +0.48,68 'second order part 

RADIX 

*(U), RADIX 
L(BU, 48), $L +0.12, 20 
LFT(BU, 48), BFRAC 
*+(U), RADIX 
ST(BU, 48), BUFFER + O .  12,20 
CV(BU, 48) 
ST(DU, 56), DFRAC 
L(U), BUFFER 
*(U), RADIX 
CV(BU, 48) 
ST(DU, 56),  DFRAC +0.56 
BEW, $;CNOP 
DD(BU,12), 0 
DD(BU, 48), (8)2657142036440000 '10**14 

'third order result ignored 

'there wil l  be forwarding 
'save second order part 
'convert f irst  super digit, zero offset 

'next item begins at full word 
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DD(BU,4), 0 
BUFFER DD(BU, 64), 0 
BFRAC DR(BU,48), (2) 
DFRAC DR(DU,56), (2) 

'data to be supplied 

Comments: (a) a 96-bit binary number contains information actually equivalent to 
116.25 bits of a decimal number. Only 112 bits are neededfor the problem as stated. 
(b) In an n-fold precision calculation, (n+l) st order quantities frequently (though not 
always) have little effect, and can beignored. Here the neglected third order quantity 
is nowhere larger than 2-95. The 64 bits beginning at RADIX is being used a s  an 
unnormalized floating-point number with plus zero exponent. 

(c) 

PROBLEM 4.3 BIT IMAGE OF A SEQUENCE OF NUMBERS 

Given 64 numbers in successive full words beginning at NUMB. Many of these are 
floating-point zeros, but some are not. Create a full word beginning at BIMAGE in 
which successive bits reflect the condition of the successive words, such that a zero 
number will be represented by a zero bit image and a nonzero will have a 1 bit a s  
image. 

Method 1. LX, $1, xw1 
LX, $2, x w 2  
Z ,  BIMAGE 

BZRZ, FIX 
LIT L(U) 9 NUMB($1) 

V+, $2, BIT 
CAB CB+, $1, LU 

F I X  CM1111(BU, 1) (V+I), 0.1($2) 
B, CAB 

BIT VF, 0.1 
XW1 XW, 0.0, 64, $ 
x w 2  XW, BIMAGE, 0, $ 

BEW, $ 

'assume most a r e  zeros 

'usually unsuccessful 
'increase by one bit 

Comments: (a) The bit image is very useful in, say, sparse  matrix multiplication. 
The bit image of each vector involved can be created, and the nontrivial multiplications 
needed between any two such vectors can be tested via the logical connective "and," 
and the subsequent querying of $AOC and $LZC. 

PROBLEM 4.4 COMPRESSION OF SPARSE VECTOR 

Given a sparse  vector of N components stored in consecutive floating-point words 
beginning at SVEC. It has a bit image stored in consecutive bits beginning at the full 
word beginning at BIMAGE. Compress the vector into the smallest possible storage 
space on the basis of this bit image, and put the result in consecutive words beginning 
at SVEC also. 

Method 1. LX, $1, xw1; LX, $3, x w 3  
LVNI, $2, 1 .0  
B, CONN 

ST(U) , SVEC($3) 
L O W  LWF(U), SVEC ($2) 

37 



CONN 

END 

xw1 
xw3 

V+IC, $3, 1 . 0  
C0011(BU, 1) (V+IC), 0.01($1) 
BXCZ, END 

BZRZ, LOWF 
B, CONN 
Z ,  SVEC($3) 
CB+, $3, END 

V+I, $2, 1 .0  

BEW, $ 
XW, BIMAGE, N+1, $ 
XW, 0.0,  N, $ 

'zero unused region 

PROBLEM 4.5 SCALAR PRODUCT OF COMPRESSED SPARSE VECTORS 

X and Y are two N-dimensional sparse  vectors, N(64, with the non-zero components 
stored in consecutive floating-point words beginning at XVEC and YVEC respectively, 
and bit images stored at XBMAGE and YBMAGE respectively. Find the scalar product 
of these two vectors. 

Analysis: In the scalar product 
N 

(X,Y) = XkYk. 
k = 1  

the multiplication need be performed only when xk and yk are both non-zero. This in- 
formation may be obtained with a connect operation on the bit images of the two vectors. 
The $AOC will yield the number of multiplications to be performed and the $LZC will 
give information about the subscript K for a needed multiplication. 

Method 1. 

LOOP 

LOF 

TI, 3, 17 .0 ,  SAVEX 
L(BU, N), XBMAGE 
C0001(BU, N), YBMAGE 
ST(BU, N), KEYVEC 
L(BU,7), $AOC, 64+18 
LX, $3, 8.0 
DL(U), ZERO;ST(U), PRODT 
BXCZ, FIN 
B,  L0F;CNOP 
CMOOOO(BU, O),KEYVEC+O. 1,0($1) 'field length indexing 
CTOOll(BU,N),KEYVEC 'test loft zeros 
LF(BU,25),$LZC-O. 2,128-25 
LV, $1, 8.0 
CT0011(BU, 0),  XBMAGE, 0($1) 
LV, $2,7.32 
V+, $2, 18.0 
CTOOll (BU, 0) , YBMAGE, 0($1) 
LV, $3, 7.32 
v+c, $3, 1 9 . 0  'YVEC modifier 
L(U), PRODT 
LFT(U) , XVEC ($2) 

ST(U) PRODT 
BZXCZ, LOOP 

'save $1, $2, $3 

'1 bit if both items non-zero 

'I$AOC in $3 count field 

'low order part  untouched 
IC (LZC)at field length position 
'field length indexing 

'XVEC modifier properly positioned 
'field length indexing 

'restore high order part  
'computation part 

*+(N) Y YVEC($3) 
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FIN TI, 3, SAVEX, 17.0 

ZERO DD(N), 0 
PRODT DRZ(N), (5) 
KEYVEC SYN(N) , PRODT+l. 0 
SAVEX SYN(N) , PRODT+2. 0 

BEW, $ 
' restore $1, $2, $3 
'answer in acc, as well as PRODT 

Comments: (a) If half of the elements of each vector are zero, then statistically 
speaking only one quarter of the multiplications need to be performed. Thus the loop 
in the present program can take four times as long as the corresponding loop in the 
straightforward multiplication method, and still be efficient for sparse vectors and 
sparse matrices. The second I field in a VFL instruction can be used to index 
the field length and byte size besides the offset. Bits in the half-word position in the 
index value field influence the offset direct1 bits in 26 times full word position in- 

length directly. Note that $LZC is given at the bit level and $AOC is given at the half- 
word level, necessitating a small amount of adjustment. 

(b) 

fluence the byte size directly, and bits in 2 B9 times full word position influence the field 

PROBLEM 4.6 TRANSPOSITION OF AN 8 x 8 BIT MATRIX 

Given an 8x8 matrix whose elements a r e  bits stored consecutively and row-wise 
starting at BMATX8. Create the transpose and store the latter in the same area.  

Method 1, Bit-by-bit operation 

BMX8T 

LOF 

X W 2  
x w 3  
x w 2 2  
xw33 
V F  
LOC 
N 

LX, $2, xw2;  sx, $2, x w 2 2  
LX, $3, xw3;  sx, $3, xw33 
LF(BU, l), 0,0($3), 64 
LF(BU, l), 0. 0($2) 
SF(BU, l)(V+ICR),O. 1($2),64 
SF (BUY 1) (V+ICR) , N($3) 
BZXCZ,LOF 
V+C , $2 , VF; SX, $2 , XW22 
Vi€, $3, VF; SX, $3,XW33 
BZXCZ, LOF 
BEW, $ 
XW , LOC +O. 1 , N-1, X W 2 2  
XW, LOC+O.N,N-1, XW33 
xw, 0 
xw, 0 
VF , 0.1+0. N 
SYN, BMATX8 
SYN, 8 

Comments: (a) The program is written to accommodate an NxN bit matrix beginning 
at L0C. The SYN pseudo-instructions define LOC as BMATX8 and N to be 8. BMATX8 
is assumed to be defined elsewhere in the symbolic program. 0 ,  N is  equivalent to 
0.8, since N is 8. 

(b) 
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Method 2. Take advantage of the special properties of connective operations. 
BMX8T2 LX, $ l , X W l  

LVI, $2,8 -1 
LI(BU, 1) , 0 
B,CNNECT 

'7 half -words 
'zero accumulator 

VMI v-I, $2, 1 'reduce offset by 1 
CNNECT CO 11l(BU,8,1)(V+IC),O. 8($1),0($2) 

BZXCZ,VMI 
ST(BU, 64), BMATX8 
BEW, $ 

xw1 XW,BMATX8,8,$ 

Comments: (a) This is a much more efficient program. Instead of transporting 
2*64 bits one at a time, 8-bits are loaded with each connect instruction and the entire 
transposed matrix is stored in one instruction. The indexing here is less involved also. 
The price one pays is the lack of generality--for a square matrix of size greater than 
8x8 the coding would have to be considerably different. 

Method 3. Same technique as above, but coded to accommodate all NxN matrices with 
NS8.  

LX,$l,XWl 
LVI, $2,N-1 
LI(BU, 1) , 0 
B,CNNECT 

VMI v-I, $2,1 'reduce offset by 1 
CNNECT COlll(BU,N,1)(V+IC),O.N($1), 0($2) 

BZXCZ,VMI 
SF (BU, N*N, N) , LOC 
BEW, $ 

xw1 XW, LOC, N, $ 
LOC SYN, BMATX8 !or any location desired 
N SYN,8 'or any integer not exceeding 8 

Comments: (a) The store field instruction will  not be assembled correctly by STRAP I, 
because of the multiplication in the data description field. STRAP I1 will do it properly. 

PROBLEM 4.7 TRANSPOSITION OF A 64 x 64 BIT MATRIX 

Given a 64x64 matrix whose elements are bits stored consecutively and row-wise 
starting at BMX64. Create the transpose and store it in the same area.  

---- Method 1. Bit-by-bit operation, Same as Method 1 of previous program with LOC 
and N redefined to be BMX64 and 64 respectively. 

--- Method 2. U s e  logical connectives, The matrix is partitioned into 8x8 submatrices 
or blocks and each is transposed separately. 

BMX64T LX,$l,XWl;SX,$l,XWll;SX, $1,XW111 'row block index 
LX, $2, XWB;SX, $2,XW22, SX, $2, XW222 !column block index 
LX,$3,XW3 !offset index 
LX,$4,XW4;SX,$4,XW44 'block counter 
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W 

DIAG 
DIAG1 

DIAG2 

OFDIAG 

OFDIA1 

OF'DIA2 

NEWROW 

BEW 
VF P8 
V:F 8 P  
V:F 8P8 
XW1 
x w 2  
xw3 
xw4 
XWll 
xw22 
m 4 4  
XWl l l  
xw222 
LOC 

LI(BU, 1) , 0 
COlll(BU, 8,1)(V+ICR), 0.64($1), 7($3) 
V-ICR,$3,1 
BZXC Z, DIAGl 
ST(BU , 8,8) (V+ICR) , 0.64($1), 64-8($3) 
V-ICR, $3,8 
BZXCZ,DIAGZ 
CBZR, $4, BEW 
V+, $1 ,VFP8;SX, $1, XWl l l  
V+, $2,VF8P;SX,$2,XW222 
LI(BU, 1) , 0 
CO111(BU, 8,1)(V+ICR), 0.64($1), 74$3) 

'clear accumulator 
'loop for diagonal block 
'lower offset by 1 
'until block completed 
'store diagonal block row-wise 

'until block stored 
'branch if last diagonal block complete 
'loop for off diagonal block pair 

'row block treatment 
CO111(BU, 8 , l )  (V+ICR), 0.64($2), 64+7($3) 'column block treatment 
V-ICR, $ 3 , 1  lower off set 
BZXCZ, OFDIAl 
ST(BU, 8,8)(V+ICR), 0.64($2), 64-8($3) 
ST(BU, 8,8)(V+ICR), 0.64($1), 128-8($3) 

BZXC Z ,  OFDIA2 
CBR, $4, OFDIAG 
LX,$l, xwll 
V+, $1, VF 8P8 

'until block pair complete 
'store into column block area 
'store into row block area 

'until block pair stored 
'until one row, one column complete 
'procedure for new row 

V-ICR, $3,8 

sx, $1,XW11;SX,$1,XW111 
LX, $2, xw22 

sx,$2,xw22;sx,$2,xw222 
C-I,$4,1;SX,$4,XW44 

BEW, $ 

V+, $2, VF8P8 

B,DIAG 

VF,O. 8 
VF,8.O 
VF,8.8 
XW, LOC, 8, XWl l l  
XW, LOC, 7, xw222 
xw, 0,8, $ 
XW, 0,8, XW44 
xw, 0 
xw, 0 
xw,o 'to contain block counter 
XW, 0 
x w , o  
SYN,BMX64 

'to contain row information 
'to contain column information 

'to contain row block information 
'to contain column block information 

Comments: (a) The matrix is (mentally) partitioned into 64 square submatrices, 
or blocks, each of size 8x8. The (I, J)-block of the transposed matrix is the transpose 
of the (J, I) -block of the original matrix. (b) 
destroyed in the program. XW11, XW22, and XW44 a r e  changed upon the completion of 
permutation of a row of blocks with a column of blocks, XWl l l  and XW222 a r e  changed 
upon the completion of permutation of each pair of blocks, o r  that of a diagonal block. 

XW1, XW2, XW3, and XW4 a r e  not 

W 
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PROBLEM 4.8 PRODUCT OF SQUARE MATRICES 

NxN full-word floating-point matrices L, R are stored row-wise beginning at LMTRIX 
and RMTRIX respectively. Create P=L*R and store it row-wise beginning at PMTRIX. 

Method 1. 

SIX 
LU 
LIFT 

VPI 

x w 2  
x w 3  
x w 4  
xw22 
ZERO 

U s e  $2 for left matrix elements, $3 for right matrix elements and $4 for 
product matrix elements. 
product matrix, 

TI, 3,  XW2, $2 

DL(U), ZERO 
LFT(U) 9 0($2) 'main loop 

V+I, $3, N 
CBR+, $2, LIFT 
SRD (N) 9 0 ($4) 
V+I,$4,1.0 

BZXCZ,LU 
V+I, $2, N 
CB,$4,SIX;BEW,$ 
XW, LMTRIX, N, XW22 
XW,  RMTRIX, N, $ 
X W ,  PMTRIX, N,  $ 
xw, 0 
DD(N) Y 0 

Program generates successive rows of the 

'load three index registers 
sx, $2, xw22 

*+W) 9 0($3) 
'advance $3 to next row 
'advance $2 to next element 
'new product matrix element 

V-ICR, $3, N*N-l. 0 
Towards new product element of same row 
'procedure for new row 

Comments: (a) STRAP I does not perform multiplication of addresses, but 
STRAP I1 will do it properly. XW2, XW3, and XW4 are not destroyed and the 
program can be used repeatedly without re-assembly or reloading into the machine. 

(b) 

PROBLEM 4.9 COSINE OF 2 T X  

Given a number - 1/8 L.x f 1/8 in the accumulator. Create cos 2 r x in the accumu- 
lator. 

Analysis: Since - If/4= 2 fx &lf/4, the series 

U 

k = O  2K ! 

is rapidly convergent. If the series is truncated at some point, the absolute error 8 
is estimated by the magnitude of the first omitted term. Further,  since cos 2 7f x > 
cos T/4>0.7,  the relative e r ro r  defined by E ,  is less than or 
equal to 1.438. true answer 

= absolute e r ro r  

If the last term included has 2K=16, the relative e r r o r  estimate is less than 0.3 x 
well within the round-off e r ro r  due to arithmetical operations using a 48-bit 

fraction field length. 
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Method 1 
CQSF 
-- 

DMULT 

EM1 

TPI 
x w 2  
CONST 

WON 
TEMP 

'2*$PI 
'square 

*(N), TPI 

SRD(N), TEMP 

D*N(N) , CONST($2) 

D*(N), TEMP 

D*(N) Y $L 

LX, $2, x w 2  

D+(N), WON 

CB+, $2, DMULT 
E-I, 1 
D-(N), WON 
SRDN, $L 

DD(N), 2*$PI 

DD(N), 1/16*1/15, 1/14*1/13, 1/12*1/11, 1/10*1/9 
DD(N), 1/8*1/7, 1/6*1/5, 1/4*1/3 

BEW, $ 

xw, 0 ,  7, $ 

DWN), 1, 0 
DR(N)Y (1) 

Comments: (a) 
gain a little speed. By a redefinition of the constants the multiplication by 2*$PI 
could be eliminated, but then instruction EM1 would have to be replaced by a full-scale 
multiply operation. The nesting technique used tends to keep the round off e r ro r  
to a minimum. (d) 
halved by using 1/2n! as the constants. 

Instruction EM1 is used in lieu of a multiplication by 1/2*1/1 to 
(b) 

(c) 
The number (2) of multiplication operations in the loop can be 

Method 2. Since cos 2A = 2cos2A-1, it is possible to reduce the number of terms in 
the series by evaluating cos YT x first. Examination shows that te rms  up 
to K = 12 would be adequate. 

COSF2 D*(N), $L 
SRD(N), TEMP 
LX, $2, xw22 

IIMULT D*N(N) , KONST($2) 
D+(N), WON 
D*(N), TEMP 
CB+, $2, DMULT 
D*N(N) , KONST($2) 
D+(N), WON 
D*(N) Y $L 
E+L (U), 1 

SRD(N), $L 
BEW, $ 

xw22 xw, 0 ,  5, $ 

D-(N), WON 

KONST DD(N) , $PI/12*$PI/11 , $PI/lO*$PI/9 
DD(N) , $PI/8*$PI/7, $PI/6*$PI/5 
DD(N), $PI/4*$PI/3, $PI/2*$PI 

WON DD(N), 1 . 0  
TEMP DRW) 9 (1) 

'create cos 2A 

V 
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Comments: (a) The e r r o r  situation is somewhat worsened in the present method. 
Suppose cos A has been evaluated with absolute e r ro r  & then 

COS A = (COS A)true +6, , 1; 

2COS2A-1=2(COS 'A)true -1+4S1, COS A 
The total absolute error is therefore 

B =  4 6, cos A or  481 roughly. 
The relative e r ro r  can be examined in the same light. 

PROBLEM 4.10 NATURAL LOGARITHM 

A positive single-precision normalized floating-point number x is in the accumulator. 
Replace it by lnx. Assume zero exponent flag for x. 

Analysis: x = F*ZE = \Tz-- F*ZEw1j2 

lnx = (E-l/Z)lnZ+ln (m F) 
2k+1 00 

k=O \nF +1 k=O 
In @F =2E(!!!!) /(2k+l) = 22 r, (Z2)k/2K+1 

2 
Since Z2 = ( - 'Ivz ) lies approximately in (0, 1/36), the series i s  rapidly converg- 
ent . F +I/- 

Replacing the upper limit by Kmax=8 the absolute truncation e r r o r  in the determination 
of In E F  would be much less than Z-48. If the (E-l/2)ln2 term dominates in lnx, the 
relative truncation e r ro r  would also be much less than 2-48, and further improvement 
in this direction cannot be seen in the single precision fraction. 

If on the other hand, (E-1/2) ln2 does not dominate the result, I E-1/2 I itself must 
be small. But it can be no smaller than 1 /2 ,  since E i s  an integer, Therefore, the 
worst that can happen is when E=O, F N ~ .  In this case one can show the e r ro r  cannot 
be improved without knowledge of the fraction part  of x beyond 48 bits. 

Method 1. 
LNX 

ADD 

ST(U), TEMP 

ST(U) TEMP+l 

/(N), TEMP+l 
ST(U), TEMP+l 

ST(U), TEMP+Z 

D*(N), CONST($l) 

F+(N), Q 

F-(N), Q 

*(N), $L 

LX, $1, xw1 

D+(N), CONST+l. 0($1) 
D*(N), TEMP+2 
CB+, $1, ADD 
D+(N), CONST+l. 0($1) 
*(N), TEMP+l 
E+I, 1 
ST(U), TEMP+2 
L(B,12,1), TEMP, 69 

' F + ~ / R T Z  

IF- l/RT2 
'Z  created 

'Z**2 

Iexponent treatment 
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-I(BU, l), 1, 68 
D*(N), FLN2 '2E-1 times ln2 
D+(N) TEMP+2 
BEW, $ 

Q DD(N) 1/1.41421356205080 ?1/RT2 

CONST DD(N), 1/17, 1/15, 1/13, 1/11, 1/9,1/7,1/5,1/3,1 
F LN2 DD(N), $NX47 '$N*2**47 

xw1 xw, 0, 7, $ 

TEMP DRZ(N), (3) 

Comments: (a) In function evaluation an understanding of the properties of the 
function and the format of the numbers used frequently leads to great improvement in 
speed and accuracy, as shown by this example. The truncated Taylor ser ies  in 
Z can be replaced by a polynomial with fewer terms but comparable accuracy, The 
coeflicients of the optimal polynomial(s) for the evaluation of functions can be computed 
by an iterative process, or can be excellently approximated by appealing to the properties 
of the orthogonal Chebyshev polynomials. See, for example, C. Lanczos, Applied 
Analysis (Prentice-Hall, 1956) Ch. VII; F.D. Murnahan and J. W. Wrench Jr.,Mathe- 
matical Tables and Other Aids to Computation, 8, 185(1959). 
by (2k+l), multiplication by the inverse is used for speed. (d) In FLN2,X47 means 
replace the exponent field by +47. 
normally would have an exponent of zero, and $NX47 is the same as*$N*2**47. This 
would not be true has $N a magnitude of, say, 1.5. 

(b) 

(c) Instead of divisions 

In the present case,  $N, having the magnitude of 0.7, 

PROBLEM 4.11 EXPONENTIAL OF x 

Given a normalized floating-point number x in the accumulator. Find ex. , put it in 
the accumulator and branch to 1.0($15). If ex cannot be found or stored, branch to 0.0 
($15). Alteration of $L, $R, $SB, $LCZ, $AOC and $14 is permitted, 

Analysis: If 1x1 > 1024 ln2, ex = 2x/1n2 ca,nnot be stored as a regular floating- 
point number. A 0.0($15) return with the exponent flag on is sufficient. Otherwise the 
following algorithm can be used: 

terms beyond k = 15 can be safely neglected. 

It is also possible to reduce the range of the argument in the ser ies  to improve 
convergence. For  instance: 

(Gln2) 
- >: k! - 2G,G1n2 

k = O  

and terms beyond k = 12 can be neglected. The subsequent squaring lead to a round off 
error twice as large as before, however, 
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Method 1. 
EXP 

DPLUS 

EXITl 

KOMP 
RLN2 
E l l  
LN2X 
XW14 
C ONST 

TEMEX 
TEMPF 

KMG(N), KOMP 
BAH, EXITl 
D*(N), RLN2 1/LN2 
D+(U), E l l  
ST(B, 12, l), TEMEX, 128-12-11 
SHFL, 11 

LX, $14, XW14 
ST(U), TEMPF 
D*(N), CONST($14) 
D+(N) , CONST+l. 0($14) 
D*(N), TEMPF 
CB+, $14, DPLUS 
D+(N), CONST($14) 
E+(N), TEMEX 
B, l.O($15) 

'1 as exponent 

*(N), LN2X 'LN2X-11 

C0011(BU, l), 10.4,128-11 
LA(U), $L 
C1111(BU,l) $L, 127 
B, 0.0($15) 
DD(N), 1024*$N 

DD(N), OX11 
DD(N), $NX-11 

DD(N), 1/13076743680000,1/87178291200 
DD(N), 1/6227020800, 1/479001600, 1/39916800 
DD(N), 1/3628800, 1/362880, 1/40320, 1/5040, 1/720 
DD(N), 1/120, 1/24, 1/6, 1 /2 ,  1 

OWN), 1/$N 

xw, 0,145 $ 

DR" (1) 
DR" (1) 

'normal return 
'exponent sign 
'remove sign 
'insert exponent flag 

Comments: (a) There are numerous ways to improve the speed of the program. 
The multiplications by 1 /2  and 1, for instance, can be replaced by more efficient 
devices. The creation of Fln2 also would not be needed if (ln2) /k! are used instead 
of l/k! as coefficients, (b) The present program is  actually written as a subroutine, 
assuming the convention of 1. 0($15) normal return and 0.0($15) e r ro r  return. Aside 
from $L, $R, $SB, $14, and $15, none of the other internal registers is altered during 
exit, The memory requirement is also modest, Further,  the program can be used 
again and again to evaluate the exponential of whatever floating-point number is given in 
the accumulator, 

k 

PROBLEM 4.12 TRANSCENDENTAL FUNCTION EVALUATION 

Assume the existence of the previous exp (x) program. Compute 

and put the answer in the accumulator as a floating-point number. 
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Method 1. LN(N), EKS 
LVI, $15, $+1.0; B, EXP 
B, ERR; NOP 

RTURN ST(U), TEMP 
LVI, $15, $+1.0; B, EXP 
B, ERR; NOP 
*(N), EKS 
E+I(U) , 1 
ST(U), TEMP+1 
LN(U), TEMP 
+(N), WON 

R/(N), TEMP+l 
SRT(N), $L 

BEW, $ 
ERR BEW, $ 
EKS DD(N), $PI 
TEMP DR" (2) 
WON DD(N), 1 .0  

'normal exit 
!error  exit 

Comments: (a) The present program is designed to demonstrate the usefulness of 
subroutines for repeated usage. (b) The accepted. way to enter the subroutine SR (say) 
i s  to  write 

LVI, $15, $+1.0 (or LVI, $1.5, $+2) 
before branching into SR. In STRAP I1 a pseudo-instruction 

LINK (no address needed) 
is available for this purpose. 
cast into conventional subroutine form also, if ever needed, 
requires the EXP subroutine, and therefore is usually assembled together with the 
latter, Fortunately there is no multiply defined symbol to produce difficulties and no 
conflict in the use of special regis ters  and $14, $15. A good subroutine should keep the 
number of symbols small, and the "tailingff feature available in STRAP can be used by 
the user of the subroutine to  avoid memory conflict. 

(c) It is obvious that the present progra~m can be re- 
(d) The present program 

PROBLEM 4.13 NUMERICAL INTEGRATION 

Provide a subroutine to handle the numerical integration of any function over any 
finite interval. U s e  it to evaluate: I 

2 x eemX /- dx 
1 

I =  ( 

Analysis: (a) For  standard intervals, say (p, q),  an n-point numerical integration 
quadrature formula is the approximation 

n 

P 

w(z)F(z) dz /v 

i = l  

w 

with prescribed 
are evenly spaced over the interval. 

{ Wi} and (zi}. In the well-known Newton-Cotes quadratures the Zi'S 
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In the case of the highly accurate Gaussian quadratures the Z i ' S  a r e  the zeros of the 
nth degree orthogonal polynomial Pn(Z), where 

q 

1 w(z) Pn(z) Pm(z) dz = 0, n # m. 

P 

The n-point Gaussian quadrature will yield an exact answer (barring round-off e r ror )  
if F(z) is a polynomial of degree no higher than 2n-1. For  other integrands the approx- 
imation is, in general, quite excellent. The most commonly used Gaussian quadrature 
is the Legendre -Gauss quadrature with 

For  even n the formula becomes 
(p,q) = (-1, +1) and w(z) = 1. 

For finite limits (a,b) other than (-1, +l), we have i" f(x) dx = s f(sz+t) dz = s F(z)dz 
a -1 -1 

n/2 
/u s > wi E (szi + t) + f(-szi + t;3 ; 

i = l  
where s = (b-a) / (q-p) = (b - a) /2, t = a - SP = (b + a) /2. 

(b) 
number of Z i t s .  It is thus desirable to have available an integrand evaluation subroutine, 
written in a standard format. The integration subroutine does not need to know the 
integrand subroutine in detail, only its address and calling sequence. It is conceivable 
that the integrand subroutine also requires other subroutines, but this would not be the 
direct concern of the integration subroutine itself. 
for the 8-point Legendre-Gauss integration subroutine LEGQ8 are therefore reasonable: 

The integration subroutine has to be able to obtain f(Szi + t) and f ( - S Z i  + t) for a 

(c) The following specifications 

The main program branches to the integration subroutine by the standard LINK 
entry, in the following format: 

The leading 19 bits of the ensuing full word must contain the address of the 
subroutine for the evaluation of the integrand. 
The next full word (i. e. , 1.0($15)) must contain the floating-point lower limit A. 
The next full word (2.0($15)) must contain the floating-point upper limit B. 
If an e r ro r  occurs in the integration program, a return should be made to 
3.0($15). 
If the evaluation is successful, the approximate value of the integral must be 
in the accumulator during the normal return, The normal return address is 
4.0($15). 
All  internal registers except $L, $R, $SB, $RM, $FT, $TR, $LZC, $AOC, and 
$14 are to be restored during exit, as is desirable for all subroutines. Further, 
LEGQ8 must allow for the fact that the integrand evaluation subroutine will use 
these special registers without restoring, 
arrangement of the symbolic program is something like the following: 
Idenfication for assembly program and WLC . 
A main program which makes use of LEGQ8. 
LEGQ8, which makes use of a subroutine, say SUBR. 

LVI, $15, $+l.O;B, LEGQ8 
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4) SUBR, which happens to require the subroutine EXP. 
5) EXP, which is self-sufficient. 
6) Indication to  end assembly and indication of the first instruction to be executed. 

All pieces should be made available and assembled together by the STRAP assembler. 

Method 1 
Wain program for numerical integration. Answer shouldhe in ANS. 
Main LVI, $15, $+1.0; By LEGQ8 

SIC, SUBR; NOP 
DD(N), 0 .0  'lower limit 
DD(N), 1 .0  'upper limit 
BEW, $; NOP 'error  measure 
ST(U), ANS; BEW, $ 'normal end of program 

ANS DRZ(U), (1) 
'8-point Legendre -Gauss integration subroutine 
'integrand evaluation subroutine with 1. ($15) return must be provided by user ,  with 

effective address at 0. ($15) , lower limit must be at 1. ($15) and upper limit at 
2. ($15) , both as floating-point numbers. 

'the integration subroutine will return normally at 4. ($15), with answer in $L. 
'error  return is 3. ($15). 
LEGQ8 SX, $2, LEGQ82;SX, $15, LEGQ8F 

LVE,$2,0. ($15) 
SVA, $2, LEGQ8A 
SVA, $2, LEGQ8B 
DUN) Y 1 ($15) 
D-(N), 2. ($15) 

D+(N) 9 2. ($15) 

E-I(U), 1 
SRD(N) , LEGQ8P 

SRD(N) , LEGQ8Q 
LX, $2, LEGQ8I;L(U), LEGQ8Z 
ST(U) LEGQ8S;ST(U) LEGQ8T 

LFT(U), LEGQ8P 
*N+(N), LEGQ8X($2) 
LVI, $15, $ + L O  

LEGQ8L DL(U) , LEGQ8Q 

LEGQ8A By $ 
By LEGQ8E;NOP 
ST(N) , LEGQ8R 
DL(U) , LEGQ8Q 
LFT(U), LEGQ8P 
*+(N) , LEGQ8X($2) 
LVI, $15, $+1.0 

By LEGQ8E;NOP 
+(N), LEGQ8R 
D*(N) , LEGQ8W($Z) 
D+(N) , LEGQ8T 
D+(N) , LEGQ8S 
ST(N) , LEGQ8S 
SLO(U) , LEGQ8T 

LEGQ8B B, $ 

'a-b 
'-@-a) /2 

'branch address changeable 
'error  
'normal return from integrand subroutine 

'-@-a) z/2 + @+a) /2 

'branch address changeable 
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LEGQ8E 

LEGQ82 
LEGQ8F 
LEGQ8Z 
LEGQ8I 
LEGQ8R 
LEGQ8S 
LEGQ8T 
LEGQ8P 
LEGQ8Q 
LEGQ8X 

LEGQ8W 

'normal return to main program 

CB+, $2, LEGQ8L 
*N(N), LEGQ8P 
LX, $2, LEGQ82 
LX, $15, LEGQ8F 
B, 4.0($15) 
LX, $2, LEGQ8Z 
LX, $15, LEGQ8F 
B, 3.0($15) 
xw, 0 
xw, 0 
DD(N), 0 .0  
xw, 0,4,$ 
DR" (3) 
SYN(N), LEGQ8R+l.O 
SYN(N), LEGQ8R+2.0 
DR(N), (1) 
DR(N)Y (1) 
DD(N), ,96028 98564 97536, ,79666 64774 13627 
DD(N), .52553 24099 16329, .18343 46434 95650 
DD(N), .lo122 85362 90376, ,22238 10344 53374 
DD(N), .31370 66458 77887, .36268 37833 78362 

'changeable 
'changeable 

'end of LEGQ8 subroutine 
'SUBR is a bona fide subroutine with 0($15) e r ro r  exit and normal return 1.0($15). 
SUBR 

RTURN 

ERR 
WON 
SAVE15 
SAVEX 
TEMP 

SX, $15, SAVE15 
ST(N), SAVEX 
LN(N), SAVEX 
LVI, $15, $+1. O;B, EXP 
B, ERR; NOP 
ST(U), TEMP 
LVI, $15, $+l.O;B, EXP 
B, ERR; NOP 
*(N), SAVEX 
E+I(U), 1 

LN(U), TEMP 
+(N), WON 

R/(N), SAVEX 
LX, $15, SAVE15; B, 1.0($15) 
LX,$15, SAVE15; B, 0.0($15) 
DD(N), 1.0 
xw, 0 
DR" (1) 
DR" (1) 

'go to EXP subroutine 

'go to EXP subroutine 

ST(U), SAVEX 'Z*X*e**e**-X 

'square root of 1-e**-x 

'normal return 
'error return 

SRT(N), $L 

'EXP subroutine 
(identical with a previous program) 

Comments: (a) The instruction execution should begin with MAIN, which triggers 
all other programs. (b) The seemingly elaborate way of doing the problem is actually 

50 



very easy to use, particularly if most of the subroutines are available. (c) For multiple 
integration the same integration subroutine can be assembled at different locations and 
one can be made subservient to the other. For  example: 

B 
= f(x)dx 

A 
and one of the integration subroutines is used to provide f(x). (a) Barring round-off 
e r ro r s ,  the 8-point Legendre-Gauss integration subroutine will yield exact results if 
f(x) is a polynomial in x of 15th degree or less. Otherwise the approximation amounts 
to an exact integration of a finite expansion of f(x) in te rms  of the orthogonal Legendre 
polynomials Pk(X) up to and including k=7. (e) A discussion of e r r o r s  in numerical 
integration is outside the scope of this work. It suffices to  say that in case of suspicion 
of inaccuracy, the domain can be subdivided, and the numerical quadrature can be used 
for each subinterval to improve accuracy. This necessitates only a trivial change in 
the main program. 

. 
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AI PROBLEM SOLVING BY 7030 STRAP PROGRAMMING 
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A2. CHECK LIST FOR PROGRAM BEFORE ASSEMBLY 

c 

A 2 . 1  General Format 

Check for presence of PRNID, PUNlD, SLC, and END. Make sure that the address 
of SLC is a true bit address with a decimal point. 

A 2 . 2  Symbol Definition 

Are  there undefined symbols ? Circularly defined symbols ? Multiply dsfined 
symbols ? 

A2.3  Instruction Format 

Every operation field should be separated from the address field by a comma. 
Look for missing right parentheses. 
Look for missing quotation mark at  the beginning of comment field. 

A2.4 Nature of Instructions 

Check integers to make sure they are not bit addresses with missing decimal point. 

Half-word instructions cannot be addressed down to the bit level. Check particularly 
the address fields of V+, V+I, and floating-point operations. 

Check VFL instructions for field length264 or  byte sizep8. 

Check TI, SWAPI, etc. ,  for count exceeding 16. 

The address field of immediate index arithmetic instructions cannot be indexed; 
the a.ddress field of CB, Bind and BB can only be indexed by $1. VFL immediate 
instructions cannot use progressive indexing. 

Make sure that J fields are supplied in the following operations: CB, V+, and VtI. 

A2. S Loops and Paths 

Visually trace through all the possible paths in the program. 

Trace the entry into, and exit from loops. 

If a loop is closed by a CB, make sure the index register IIJ1' has a valid (non-zero) 
count field at the beginning. 

Termination of a loop by BAE or BZAE after a floating-point compare is a danger- 
ous practice, because of unforeseen roundoffs. 
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A 2 . 6  Proofreading 

3 
4 

After the program has been keypunched, produce a 407 listing and check the over-all 
alignment, particularly the location of the NAME fields. Proofread carefully, look for 
missing cards,  mispunches, and off-punches. 

M "E- 3 C 
4 D 

Character Code for  Symbolic Decks 

~~ 

H Y 
9 9 R Z 

Also; i s  defined to be equivalent to an (11, 0) double punch. On 407 listings this 
double punch i s  usually considered to be 0. On assembly listings the semicolon i s  re- 
placed by a skip of the printer to the next line. On the keypunched card it looks like 
the Greek letter 8 (theta). 
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A 3  7030 SPECIAL REGISTERS (LOCATIONS 0. THROUGH 31) 
(SHADED AREAS CONTAIN ZERO BITS) 

(PI I. 

10 14 I8 112 116 120 124 128 132 136 140 144 148 152 156 160 I 

'9  28 I I55 
S I T  I STC (TIME CLOCK) (READ ONLY) I X  CORES 

4. 

w 

I MEMORY SMB (MAINTENANCE BITS WHEN MACHINE IS IN MAINTENANCE MODE. ALSO WIAL CONTROL WRD FOR IPL. OTHERWISE BEHAVES LIKE SZ) MANUAL K E ~ S  I 

SBC (BOUNDARY CONTROL) 
17 32 
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REGISTER 

8. 
I 
I 
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S L  (LEFT HALF OF ACCUMULATOR) REGISTER 
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I 
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(R 1 
.o-.I9 12. 
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r 

20 I 47 
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I 
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I 

I 
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I MEMORY I 
I 

SFT (FACTOR REGISTER) 

I 
I 
I 

MEMORY 
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SO TO $15. 

I I8 46 
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A4. OPERAND ADDRESSING IN 7030 PROGRAMMING 

A4.1 Addressing Down to the Bit Level 

The 7030 computer owes much of its power and programming convenience to the fact 
that it permits addressing down to  the bit level. This facility is particularly evident 
in the variable field length instructions, but exists throughout the instruction set to a 
lesser degree. 

It is therefore advantageous for the new 7030 programmer to familiarize himself 
with a general scheme for addressing fields and subfields. This slcheme will also lend 
understanding to the more conventional types of operand addressbg. 

It is expedient to visualize consecutive full words in the addressable 7030 memory 
as lying end to end, starting with the full word bearing the lowest (word-) address on 
the extreme left. Further, if each bit is imagined to have a unit width, then any oper- 
and in a 7030 instruction can be represented in this continuous a r ray  by a string of 
consecutive bits characterizable by the extent of the interval (the field length) and the 
location of the leading bit. 

The field length is usually understood in the instruction, but is explicitly given in 
variable field length instructions. In the latter case the manner of subdivision (the byte 
size) is also explicitly given. 

A4.2 The Bit Address 

The concepts of bit distance and bit position will be useful in the ensuing discussion. 

A given bit is said to be at bit distance k relative to a reference bit if it is k units to 
the right of the reference bit, If the reference bit is the leading (i. e , ,  leftmost) bit of 
a string, and if the bit in question forms part of the string, it is said to occupy the& 
position k within the string. It is evident that the leading bit of a string is at bit distance 
zero relative to itself, and occupies bit position zero within the string. See FigureA4-1. 

With the concept of bit distance established, it is now possible to locate any bit in 
the memory by its distance relative to, say, the leading bit of a reference full word. 
In other words, a bit address can be defined as a pair of integers, the one on the left 
giving the location of a full word, and the one on the right providing a bit distance from 
the leading bit of the full word. 

Frequently when bit addresses are presented for human scrutiny, a "point" is used 
to separate the integers to enhance legibility, and leading zero bits are often suppressed. 

Unless the choice of the reference full word is standardized, several different bit 
addresses may refer to the same bit. This is actually desirable in programming, the 
extra degree of freedom often can serve as a mnemonic aid. 
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If the reference full word is so chosen that it contains the bit in question, the bit 
distance becomes the bit position within the full word. The resultant unambiguous nota- 
tion shall be called the standard bit address. Since the 7030 full word has a 64 address- 
able bits, the standard bit address is characterized by a bit distance part no higher than 
63 e 

The 7030 is designed to accommodate a maximum of 218 full words each of 26 pro- 
grammable bits, and 18+6 = 24 bits suffice for the standard binary bit address. Its 
octal equivalent has 6+2 = 8 octal digits, each of which corresponds to 3 consecutive bits. 
The bit configuration is less explicit when other number radices a r e  employed. 

w 

The standard bit address bears  a strong relationship to machine function. For  in- 
stance, within the machine, references to the main memory and the index memory are 
always in te rms  of full words. The bit position part of the standard bit address is used 
to select a field contained in one or two consecutive full words. 

The following are examples of bit addresses and standard bit addresses in decimal 
and octal radices. The last two entries in each line below are standard bit addresses. 
Note the flpointft is not used as the conventional separator between integer and fraction, 
and 3 . 4  = 3 . 0 4  # 3.40.  See Figure A4-2. 

(32657.400)lo = (77621.620)s = (77627.20)s = (32663.16)lo (bit 16 of word 32663). 

(1.8160)10 = (1.17740)s = (200.40)s = (128.32)1o,(leading bit in second half of word 128). 

A4.3  The Numeric Address Field in an Instruction 

In the 7030 an operand is located by the standard bit address of the leading bit. The 
nature of the instructions, however , imposes certain restrictions on the operands such 
that their standard binary bit addresses frequently contain at least a predictable number 
of trailing zeros. For  example, floating-point operands must begin at a full word bound- 
ary, and the last 6 bits in the standard binary bit address therefore must be zero. Sim- 
ilarly a branch address must refer to the beginning of a full word or a half word, and 
the last 5 bits in the standard bit address are zeros. The number of trailing zero bits 
in variable field length instructions is, however , not predictable. 

T o  enhance the information content of 7030 instructions, the predictable trailing zero 
bits are omitted from the instruction numeric address field, leaving more room for the 
operation code. 

The numeric address field in an instruction is therefore an abbreviation of the full- 
scale (24 bit) numeric address. The size of the numeric address field is dependent on 
the instruction class, as seen from bits 24 through 27 of the half-word containing the 
address in question : (X stands for any value). 

U' 
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I 

Distance relative to reference bit  labelled R 
for bit  labelled A = 6 bits 
for bit  labelled B = 30 bits 
for bit  labelled C = -7 bits 
for bit  R itself = Obits 

(Assumed positive, and i f  in- 
dexing i s  specified, algebraically 
add propar index field) 

FIGURE A4-1, B I T  DISTANCE 

/beginning of &-bit full word of address 25. 

b i t  address for b i t  labelled A i s  25.7)10 =_ 24.71) etc. 
b i t  address for bit  labelled B i s  25. 13)10 - 24-77);;: etc. 
b i t  address for bit  labelled R i s  25.0)10 = 24.64)10, etc. 
b i t  address for bit  labelled C i s  (in decimal) 

25.0 - .3 = 24.0 + (.64 - .3) = 24.61 = 23.125,etc. 

FIGURE A4-2. BIT ADDRESS 

I Meaningful execution binary bit  address (in standard binary b i t  address form) 
(24 bits) I 

FIGURE A4-3. FROM NUMERIC ADDRESS FIELD TO EXECUTION ADDRESS 
(DIAGRAMMATIC) 



(Bits 24 through 27) 

1000 24 bits (left address of full word instruction) 
XXlO 18 bits (floating-point address; right address of T ,  SWAP) 
Others 19 bits (mainly instruction arithmetic unit instructions) 

The full-scale numeric address can be formed by right-appending a sufficient number 
of zero bits to the numeric address field. Being an unsigned quantity, it is considered 
positive whenever a sign is called for. 

A4.4 Indexing 

Most numeric addresses referred to by 7030 instructions could be modified through 
indexing to produce effective addresses. Further,  in variable field length (VFL) instruc- 
tions the field length, byte size and offset could also be indexed producing the corres-  
ponding effective quantities, A discussion of VFL indexing will be deferred to the next 
section. 

A (non-VFL) instruction may occupy a half word or  two consecutive half words. Each 
half word is indexed separately. The most common type of indexing is the I-type, in 
which the last four bits (the I-field) af the half word provides indexing information. In 
K-type indexing, as in CB, Bind and second half of BB instructions, the last bit (the 
K-field) provides indexing information. A zero I- o r  K-field specifies no indexing. 
Otherwise the numeric contents of the fields indicate the index register to be used in 
indexing. The index register $13, for instance, is designated by an I-field contents of 
13. K-type indexing therefore implies either no indexing at all, o r  indexing by means 
of $1. No indexing is permitted for immediate index arithmetic instructions. 

If no indexing is called for ,  the 24 bit unabbreviated numeric address, affixed with a 
trailing zero sign bit, becomes the (25-bit) effective address. In the case of indexing, 
the effective address is created by adding the (positive) numeric address to the proper 
index value field. Overflow beyond the leading bit position is ignored. 

The actual address meaningful to the execution of the instruction is never the full 
effective address. The sign bit is invariably ignored, and only the leading 18, 19 or 
24 bits are meaningful. The number of meaningful bits is usually the same as the size 
of the numeric address field, although for LX, SX, Z ,  R ,  R C Z ,  T and SWAP only the 
leading 18 bits in each half word are meaningful. 

In the machine there is no execution address per se; the trailing bits of the effective 
address are simply ignored, From a programming point of view it may be convenient 
to define an execution address as the 24-bit quantity formed from the effective address 
by first ignoring the sign bit then replacing the low order bits (if any) by zeros. 

The entire process from numeric address field to execution address is summarized 
in Figure A4-3. 

It is noteworthy that the low order non-zero bits in a specified index field may in- 
fluence the higher order bits of the effective address and hence the execution address. 
This occurs only when the index value field is negative; the indexing action is then a 
subt r a c ti on. 
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A4.5 Indexing VFL Instructions 

In variable field length instructions (including logical connective instructions), every 
instruction occupies two half-words, each with its own I-field. The use of the first (left) 
I-field is dependent on the P-field (bits 32-34) in the second half-word, and the second 
I-field is used to create effective offset, effective byte size and effective field length. 

The numeric address field, as revealed by bits 24-27 of the VFL instruction, has 24 
bits, Normal indexing by the f i rs t  I-field is specified if P contains ( 0 0 0 ) ~  (direct ad- 
dressing) o r  (100) (immediate addressing). Otherwise progressive indexing is specfied: 

000 direct addressing (standard indexing) 
001 V+I (progressive indexing) 
010 V +IC (progressive indexing) 
011 V +IC R (pr ogr es s ive indexing) 
100 immediate addressing (standard indexing) 
101 V-I (progressive indexing) 
110 V-IC (progressive indexing) 
111 V-ICR ( progressive indexing) 

In progressive indexing, the effective address, hence the execution address is 
completely furnished by the specified index value field. The numeric address field 
plays no role for operand designation, but instead is used to increment (+) or  decrement 
(-) the designated index value field algebraically, in anticipation of the next application. 
The counting and refilling (on zero count) processes can be induced by proper specifica- 
tion. Progressive indexing with a zero I-field is not admissible. 

An instruction with progressive indexing thus behaves like two consecutive instruc- 
tions. The first is an arithmetical-logical instruction with effective address created 
with a zero numeric address. The second is not unlike an immediate index arithmetic 
instruction, with the numeric address modifying the specified value field. Note, how- 
ever, that in regular immediate index arithmetic instructions, the numeric address field 
is at the half word level, i. e. , has only 19 bits. In progressive indexing the index value 
field is modified down to the bit level. Further, the index register needs only to be 
specified once. 

Example: The instruction 

CT1101(BU, 25,3)(V+IC), 10.57($2) 

behaves like the collection 

CTllOl(BU, 25,3), 0($2) 
(V+IC), $2,10.57 

Another unusual feature in VFL instructions is the indexing of the second half-word. 
In STRAP coding the second I-field is placed immediately after the offset, although in 
general the field length and byte-size can be modified besides the offset. 

The procedure is extemely similar to conventional address modification. The bits 
24-27 of the second half-word specifies a 19-bit numeric "address" field. The latter 
is extracted, assumed positive, appended by zeros, and added to the prescribed index 
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v a h e  field to produce effective field length, byte-size and offset. There are two simple 
departures from conventional indexing: 

a. The P-field is pre-copied into a special register , and is therefore unaffected 
by indexing. The "originalt1 P-field, however , does participate in the indexing action 
and can affect the field length, byte-size and offset if the specified index register is 
negative and large in magnitude. 

b. The indexing of the second half-word precedes any index modification by pro- 
gressive indexing. Thus if both the first and second I-fields refer to the same index 
register in an instruction with progressive indexing, the unmodified index value field 
will  be used not only as the effective address,  but also as the modifier of the second 
half -word. 

A4,, 6 Immediate Addressing, and Direct Addressing 

The most common mode of operand specification by an instruction is the direct 
addressing scheme, in which the execution address refers to the leading bit of the 
operand. In branch type instructions the branch address refers to  the leading bit of 
the loading half-word of a new instruction sequence. 

In the 7030, information transmittal to and from the main memory or  index register 
memory is in te rms  of full words, and the leading 18 bits of the execution address have 
particular significance. Bit position information is used for field selection in the arith- 
metical details. Fo r  VFL instructions the operand may overstep the memory word 
boundary. This is automatically detected from field length specification during the initial 
decoding, and the transmittal of two full words will be effected. 

If the instruction specifies immediate addressing, the execution address is used as the 
operand itself, and no memory data fetch is required. This feature is available in many 
index arithmetic and VFL instructions not involving storing into memory. In the 7030, 
immediate index arithmetic instructions do not possess indexable addresses; and while 
the VFL immediate address is indexable in the normal manner, progressive indexing 
with immediate addresses is not prescribed. This last is due to the fact that immediate 
VFL instruction require one ((100)~) configuration of the P-field, and a progressive 
indexing instruction requires another. 

A4.7 Indirect Addressing, LVE, EX and EXIC 

Indirect addressing is characterized by the fact that the execution address of an in- 
struction may refer not to an operand, but to another address which enables the ultimate 
location of the operand. An instruction with this property is a link in the operand loca- 
tionfng chain. 

It is possible to systematize the three modes of addressing in the 7030 in the following 
manner: 

a. An instruction or operand will be collectively designated as levels. 

b. The levels are given a level count, The original instruction could be called 
the zeroth level. 
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c. The level may contain the operand, and be the terminal level in the chain; 
or it may contain the execution address of the (k+l)st level and be a propagation 
level. 

d. In immediate addressing, the zeroth level is the terminal level: the execu- 
tion address serves  a s  the operand, the address of this operand is the address of 
this zeroth level. 

e. In the case of direct addressing the 1st level is the terminal level. The 
execution address of the original instruction refers  to the operand. 

f .  In the case of indirect addressing, there may be any number of propagation 
levels each of which is identifiable by the computer. The terminal level is char- 
acterized by the fact that it is a non-propagational member of the sequence of 
levels. 

In the 7030, three instructions a r e  capable of indirect addressing: 

a. Load value effective (LVE). The operand is the terminal level effective 
address, to be loaded into the value field of the index register (specified by the J- 
field) of the original instruction possibly for future address modification. Any LVE 
instruction, regardless of J-field, may serve a s  propagation level. 

b. Execute (EX) and execute indirect and count (EXIC). The operand at the 
terminal level is an instruction to be executed in its entirety without changing of 
the instruction counter, The control of the machine is thus lent to the terminal 
level. The level immediately referred to by an EXIC level is automatically a 
propagation level, and in addition the numeric address field is increased by an 
amount equal to the length of the next level (treated as an instruction), whether the 
latter is a propagation level or not. Any EX or EXIC instruction may serve as 
propagation level. 

To avoid unending chaining of propagation levels, the following provision is made. 
Whenever the instruction counter is found to have been unchanged for longer than one 
millisecond (corresponding to several hundred propagation levels), the remaining part 
of the LVE, EX and EXIC instructions will not be performed, and the $USA indicator 
(unending sequence of addresses) will be turned on. 

For EX and EXIC there is the additional danger of loss of program control. This is 
resolved by the following devices: 

a. If the execution of the instruction at the terminal level tends to alter the 
instruction counter contents (as in a successful branch), the $EXE indicator 
(execution exception) will be turned on. 

b. Except for the fetching of the first pseudo-instruction counter level in EXIC, 
which is subject to the usual restrictions, the interruption system will be active 
for the duration of the EX and EXIC chain, whether the disabling of the interruption 
system has been prescribed or not. All  interruptible conditions will cause an 
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interruption when the chain is completed (i. e. , when the terminal level instruction is 
executed) , terminated or suppressed. The temporary enabling of the interruption sys- 
tem means that, among other things, address monitoring is in full force, and interrup- 
tions can be caused by $EXE and $USA indicators. 

Subfield Size 

A4.8 Addressing in §TRAP Coding 

Any of the following may appear in the address field of a STRAP-coded instruction: 

a. A standard bit address (A. B , B S 63) 
b. any bit address (C. D , D need not be less than 64) 
c. an integer 
d. symbolization of any of the above 
e. simple functions of any of the above 

During the assembly process whatever is in the address field is converted into standard 
form suitable for the numeric address field of the (binary) machine instruction. The 
existence of a variety of formats is clearly a burden for the assembler. It is also a 
great convenience for the programmer 

The STRAP assembler normally assumes a decimal radix. Any radices up to 16 are 
permitted by specification in STRAP 11. For  STRAP I the allowable radices are 2 through 
10, and 16. 

A4.8.1 Integer Addresses 

The bit address equivalent of an integer address is decided by the environment, which 
defines a subfield. The integer address is treated as an integer of the subfield (e.g. , 
the non-zero bit for the integer 1 would occupy the rightrnost position of the subfield). 
Then the left margin of the subfield is placed in juxtaposition with the leading bit of the 
address field, leading to a bit address identification. 

Where the environment seems to suggest more than one subfield, as is frequently 
so  in immediate type instructions, the smallest one is to be adopted. 

Floating point 
VFL 
most others 
VI? L immediate 
E k I, SHF 
immediate index arith 

Examples 

at most 18 bits 
at most 24 bits 
at most 19 bits 
at most the field length 
11 bits +sign 
at most the size of the field in question in the index register 

SRT(N), 215 is equivalent to SRT(N) , 218.0 
M f 1 (BUY 63, 8 ) ,17  M+l  (BU, 63 ,8) ,  0 .17  
CBRH, $4,28 is equivalent to CBRH, $4 ,14 .0  
C6, $3,13 C +, $3 , 6 a 32 
E -(N),17 is equivalent to E -(N), 1 7 . 6  
*I (BU,7 ,8) ,  127 *I (BU,7,8)  ,260096.0 ((127.0). 211=260096. 0) 

is equivalent to 

is equivalent to 

is equivalent to 
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SHFR, 2 
V+I, $3,13  
C-I, $3,13  

is equivalent to SHF, 320.0 ((5. 0)26 = 320.0).  
is equivalent to V+I, $3 ,6 .32  (25 > 19) 
is equivalent to C-I, $3 ,13 .0  (18< 19) 

It is readily seen that integer addresses are extremely convenient for immediate 
instructions, where the bit address equivalents are not only hard to obtain, but has no 
mnemonic value whatever. In most floating-point instructions integer addresses and bit 
addresses are almost identical in appearance , and the former could be considered as an 
abbreviation of the latter. For  other instructions integer addresses may be confused with 
bit addresses with a missing llpoint, l 1  and their use may complicate the debugging process. 

Note that all integers in STRAP coding a re  considered to be integers of some subfield. 
Integer addresses are distinguished only by the fact that more than one subfield is usually 
present. The use of integers in the specification of count fields, offset fields, etc. , is 
usually straighforward. In !‘parenthetical integer entry” the subfield size is explicitly 
given, and the information “OR!’ed in. 

A 4 . 8 . 2  Address Symbolization and Functions of Addresses 

Either a bit address, or an integer, can be symbolized, i. e. , represented by a col- 
lection of alphanumeric character s. 

Simple functions of bit addresses , integers, symbolized bit addresses and symbolized 
integers can represent an address. The latter can also be symbolized. This process 
may be repeated a number of times in STRAP coding. 

Some restrictions are given below: 

a. In STRAP I no multiplication or division can be performed on any address 
or symbolization thereof. This restriction is lifted in STRAP 11. 

b. Any symbol must ultimately be definable in terms of bit address equivalents. 

c. A flpointll placed in front of or behind a symbolized integer converts it into 
a bit address; a ltpointll placed in front or behind a symbolized bit address, how- 
ever, has no effect on the latter. 

E.g., If M has been defined as 5 ,  and JOE has been defined as 817.35, then 
. M  = 0 . 5  
M. = 5 . 0  . JOE = JOE. = 817.35 
M. M = 5 . 5  
JOE, JOE = 817.35 + 817.35 = 1634.70 

d. During the assembly if the evaluation of the bit address equivalent of an 
address yields a negative answer, it is replaced by its two’s complement, which 
amounts to replacing the %it address!! -N by 262144.0 -N. 

A 4 . 8 . 3  Associated Properties of a Symbolized Address 

Aside from being a valuable mnemonic aid, symbolic addresses can supply missing 
data. During STRAP assembly if the information regarding data description of the 
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operation code of an instruction is inadequate , the assembler may examine the defining 
statement (s) for the symbolic address to f i l l  in the details. If several symbolic addresses 
are present, the r ightmost is examined first, 

E.  g. 

Leads to +(D, 27,6) , DOG + CAT 
+, DOG + CAT 

CAT DD(D, 27,6), 32 
DOG DD@U,12,7), 738 

If the rightmost symbolic address possesses no meaningful data description , the 
next-to-the-rightmost symbolic address will be used, and so on. If all symbolic 
addresses are exhausted without a proper data description, STRAP will make the 
following plausible guesses to produce a reasonable program. 

a. E f I, E f SHFR, SHFL: assumed umormalized. 
b. Other unambiguously floating-point instructions: assumed normalized. 
c. If instruction can be interpreted as either VFL or floating-point, it will be 

d. All  VFL immediate instructions: assumed (BU, 24,8) .  
e. All  other VFL instructions: assumed (BU, 64,8) .  

aswumed to  be VFL. 
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A5. MACHINE HANDLING OF FLOATING POINT EXPONENT FLAGS IN THE 7030 

A5.1 Exceptional F loating-Point Quantities 

Exponent overflow and underflow occur only infrequently in most floating-point 
computations. In machines of earlier design the "overflowed!' and %.nderflowedft 
numbers have the appearance of normal quantities, and further operations tend to  lead 
to untraceable contamination of the results. The conventional way of circumventing this 
difficulty is to test for the exceptional events from time to time. 

Some machines now have a "floating t rap mode" feature which automatically interrupts 
the normal instruction sequencing immediately after an exceptional event, without the 
need for test instructions, A wide choice of interrupt conditions (XPFP, XPO, XPH, 
XPL, XPU) is available on the 7030, enabling a firm control on the quantities used in 
floating-point instructions. Interruption feature, however, tends to treat exceptional 
events equally and is not capable of knowing the consequences of these events without 
elaborate programming. 

On the other hand, if the tloverflowedff or flunderflowedrf quantities, which are 
responsible for the exceptional events, are themselves clearly labelled, if the numbers 
contaminated by these labelled numbers a r e  also labelled in a consistent manner, it 
would be possible to perform an entire computation without any test instruction nor 
interruption. In this scheme, drastic action would be not needed unless part of the re- 
sults bear the !'exceptional quantity" label. 

In the 7030 the exceptional number is labelled by a ffltl bit occupying the leftmost 
(exponent flag) position of the exponent field. An exceptional number therefore appears 
to be a number with an extremely large exponent magnitude. The consistent rules 
governing the generation, propagation and disappearance of the exponent flag a re  rem- 
iniscent of algebraic operations involving infinite and infinitesimal quantities. 

In the following EF represents the exponent flag, ES the exponent sign. 

EF = 1 signifies a very large floating point exponent magnitude. If E F  = 1, ES = 0, 
the magnitude of the floating point number is extremely large ( r_ 21023 - 10308), and 
may be symbolized by 00 (XFP case). 

If E F  = 1, ES = 1, the magnitude of the floating point number is extremely small, 
and may be symbolized by G (XFN case). 

If EF = 0, the number is said to be normal, and will be represented by the symbol 
N. 

The sign bit @it 60) of the floating point number retains its normal meaning in all 
cases. 

The following scheme is designed to disallow the loss of EF bit due to irretrievable 
overflows. 
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A5.2 Generation of Exceptional Quantities 

Symbol 

In floating point operations involving normal numbers only, EF behaves like an ex- 
tension of the regular 10-bit exponent magnitude field, and will be turned on in the result 
if the expected answer has an exponent either greater than 1024 or less  than -1024. An 
exponent overflow is said to have occurred in the former case, rendering $XPO = 1. In 
the latter case an exponent underflow is said to have occurred, and $XPU will be set to 
1. In D/, $RU may be set to  1. In either case, an exponent flag is said to be generated. 

EF ES 

Other operations will proceed normally for all generated EF cases  except in the 
following situations which might otherwise generate exponent overflow beyond EF; 

a. Multiplications which lead to generated 8 results priQr to any normalization. 
The normalization and noisy mode, if stated, will be suppressed. E+, E+I instruc- 
tions behave like multiplications. 

b. Divisions where prenormalization of the two operands yields an N and a 
generated G . The quotient fraction is developed normally, but the quotient exponent 
will be either that of E: (case of small dividend), or that of 1/8 (case of small divisor). 

The following table gives the conditions and the apparent range of normal a s  well as 
exceptional numbers, when EF is imagined to be an extension of the exponent magnitude 
field. 

Condition of 
FP Number 

XFP, + 
Normal, + 
XFN,  f 

Normal, - 
XFN, - 

XFP, - 

+ m  
+ N  
+ e  
- 6  
- N  
-00 

Fraction Apparent Range for I- Sign Normalized Fraction 

A 5 . 3  Exceptional Number Arithmetic 

In floating-point arithmetic involving numbers with EF = 1 the mathematical laws 
concerning extremely large and extremely small numbers apply where the results are 
unambiguous. If the outcome is indeterminate in a s t r ic t  mathematical sense, the 
ambiguity is resolved in the machine by the choice of 00, producing the most alarming 
situation possible: 

m + m  = O O ;  00 * (f 00) = f 00; OO/ (f N) = f 00; 
m k N  =a; a3 *(f N) = zk 00; m/ (f 8) = f 00; 
m f 8  =m; 8 * ( A N )  = &E:; 8 / ( f a O ) = f 8 ;  

vi5 = 00; 
fl = e  

G A N  = N ;  G *(&e) = zt6; G / ( k N ) = & 8 ;  
8+6 = (&)E:; k N / m  = & e ;  

AN/€! = & G O ;  
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The following are resolved ambiguous cases: 

For  details, see A5.8. Note that normal answers a r e  obtained only by special E: + N 
operations, and exponent overflows beyond the EF position which may yield harmless- 
looking results are prevented from occurring. 

A5.4 Propagation of Exponent Flag 

In operations other than K, KMG, KMGR, and KR, if both the result and at least one 
of the operands are in the 00 range, an "exponent flag positive" condition is said to have 
been propagated, and $XPFP is set to 1. The propagation of 8 conditions does not lead 
to special indicator settings. 

A5.5 Comparison Involving Exceptional Quantities 

All  00 are treated as equal in magnitude in K, KMG, and KR; all G are likewise 
treated as equal in magnitude. 

A5.6 Approximation of the True Floating Point Zero 

The t rue floating point zero i s  approximated by an 8 * If a floating point zero is 
requested of STRAP, what appears to be 0 * 2-1024 will result f rom the compiling. 

A5.7 The "Zero Multiply" Indicator 

$ZM cannot be turned on if the result of the multiplication is 8 with zero fraction. 

A5.8 Summary of Floating Point Arithmetic with Exceptional Operands 
(Only Exponents are Shown in Equations Below.) 

A5.8.1 Addition, Subtraction, Load, Store, and SLO. (Result may be N) 

Fraction arithmetic: suppressed. Normalization and noisy mode: allowed only if 
pre-normalized answer is normal. 

#Whichever has the higher exponent; o r  if the exponents are equal, whichever 
is from the accumulator. 

F+ behaves like NOP for accumulator being 00 or 8, since the memory fraction 
is given the accumulator exponent. 
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A5.8.2 Multiplication, E+ and E+I, (Results Always a, or 8.) 

Fraction arithmetic: allowed to proceed, Normalization and noisy mode: suppressed. 

# In *+, where accumulator does not contain operands, whichever is from 
memory; otherwise whichever is from the accumulator. 

A5.8.3 Division (Result Always m or 8 . ) 

Fraction arithmetic: allowed to proceed. Normalization and noisy mode: suppressed. 
Operations involving 8 or  00 will be treated as unnormalized. Remainder: Exponent 
same as that of dividend, no normalization allowed. 

A5.8.4 Square Root. (Result Always 00 or  8 .) 

Fraction arithmetic: allowed to proceed. Normalization and noisy mode: suppressed, 

A5.8.5 Shift Fraction 

Gand 00 behave normally, since the exponent is unaltered. 

a 
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A6. NOISY MODE IN 7030 PROGRAMMING 

A6.1 Purpose of Noisy Mode 

The purpose of the noisy mode is to allow the 7030 to perform its own e r r o r  analysis 
in the crucial a rea  of significance loss in normalized floating-point arithmetic. 

Essentially the same computing algorithm for the solution of a problem can be 
pursued twice on the machine, once in "normalr1 mode and once in noisy mode. During 
the computation the low order fraction bits are affected differently in each case, the 
difference being particularly noticeable on normalizing left shifts. When the results 
a r e  contrasted with each other, if the relative discrepancy is 2-n, then probably the 
"normal" result has a relative e r r o r  of 2k-n9 the odds being something like 2k to 1 in 
favor of this interpretation (and against fortuitous agreement). 

In the 7030 the noisy mode is activated only when the indicator bit $NM equals 1, and 
only for normalized floating-point operations, When normalization i s  suppressed due to 
exponent flag conditions (see A6.6), noisy mode will be inoperative. For convenience, 
we shall speak of the influence due to noisy mode a s  noise. 

A6.2 First Order Noise 

An operand may be right-appended by 48 identical bits at the beginning of an opera- 
tion, to produce a double-length fraction. We  may call these "dff bits. 

d = 1 if and only if 

a. normalized operation is specified (and not suppressed). 

c. the operand is one of the following: 
b. $NM .=1; 

1) an operand in (single) LOAD type instruction: L, LWF, LFT; 
2) an operand in ST instruction (NOT SRD nor SLO); 
3) the divisor in /, R/, and D/; 
4) the dividend in / and R/; 
5) the unshifted operand prior to arithmetic action in the following single 

operations: +, M+, +MG, M+MG;K, KMG, KMGR, KR. 

d = 0 otherwise. 

The unshifted operand in operations described in (5) is the operand with the higher 
exponent, or if the exponents are equal, the operand from the accumulator. 

The d bits, being second order quantities, may influence the first order part (first 
48 bits) of the result fraction through post-normalization and/or arithmetic action. 
The minimum noticeable relative e r ro r  due to d bits is T**; the maximum is just be- 
low l /2. 



We shall speak of first order noise a s  one which can create a minimum noticeable 
relative e r r o r  in the first order part (the first 48 bits) of the result fraction, and de- 
fine second order noise as one which creates a minimum noticeable relative e r r o r  in 
the second order part (the second 48 bits) of the (double-length) result fraction. In the 
7030 computer the d bits produce only first order noise. 

A6.3 Second Order Noise 

When a double-length fraction undergoes left shift (in, for  example, post-normaliza- 
tion), the positions left vacant are filled in by another kind of identical bits. We shall 
call them lldgll bits. 

d2 = 1 if and only if 

a. normalized operation is specified (and not suppressed); 
b. $NM =l. 

d2 = 0 otherwise. 

In all operations save one, the d2 bits produce only second order noise. In the cases 
where d and d2 are both present, the result fraction is invariably truncated to 48 bits, 
revealing only the effect due to  d bits. 

It must be noted that second order noise is not necessarily small. The largest possi- 
ble relative e r ro r  caused by it is the same as that for first order noise, namely just 
below 1/2. This occurs when a 96-bit fraction before post-normalization has all bits 
equal to zero except the last bit. Ninety-five d2 bits will be shifted in. 

A6.4 Machine Instruction and Noisy Mode 

A6.7 shows the pertinent noisy mode features of floating-point operations. 

It is noteworthy that all but one double operations possess second order noise. The 
exception is D/, which has first order noise through divisor preshifting. On the other 
hand, the “single1‘ operation * possess only second order noise. The operation *+ has a 
second order noise if the preceding LFT operation did not introduce first order noise. 

SRD and SRT are noiseless operations, 

7 

In SLO the low order fraction is left-appended by 48 high order zero bits to produce 
a 96 bit fraction. This latter is then shifted left at least 48 places, shifting in dg bits. 
Second order noise on the second order fraction thus behaves like first order noise on 
an ordinary (single) fraction, 

Noise in /, R/, and D/ is introduced in both the divisor (always by d bits) and the 
dividend (d bits for  /, R/; dg bits for D/). The quotient never needs further normalizing 
left shifts and the normalization of the remainder is noiseless. First order noise in D/ 
is desirable if the quotient is to be single precision (say after a rounding operation), but 
not if truly double precision quotient is required. 
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It is possible to  produce noisy resul ts  without any normalizing left-shifts not only 
from divide-type operations, but in ADD-type operations as well. The 48 d bits may 
simply create a car ry  into bit 47 of the fraction during the addition process. 

A6.5 Programming Significance 

All  digital computers have a finite word-length, In normalized floating -point opera- 
tions the post-normalizing left shifts introduce bits through the right-boundary of the 
fraction. With few exceptions (some to be mentioned below), the programmer has no 
idea what these bits ought to be, and he is unwilling to or has no way to find out. 

Shifting in all 1% as in noisy operations, very probably introduces e r rors .  It is 
almost equally probable that e r r o r s  of a similar magnitude are introduced by the 
alternative strategy of shifting in zeros. In either case bias is introduced. 

The purpose of the noisy mode is to bias the results in a manner as opposite to 
''normalf1 as possible for the digits known to have no numerical significance,yet without 
destroying the digits valid for the particular machine instruction. 

In computations involving integers and simple numbers, extremely frequently the 
result fraction is known to be exact, to be followed by an infinite number of zero bits. 
It should be evident that such exact answers can be corrupted by noisy mode. $NM 
should be off, o r  unnormalized operations should be prescribed. 

In programmed double-and multiple-precision arithmetic, the addressed operand 
may have one or  more well-defined lower order part. The use of noisy mode amounts 
to a redefinition of the lower order part, and extreme caution has to be applied, except 
perhaps in dealing with the lowest-order fraction. 

In programmed double-precision arithmetic second order noise is always permissible, 
but first order noise should affect only the less significant part of the fraction. The use 
of LFT(N) as a prelude to *+, and D/(N) for unnormalized first order operands thus 
should be discouraged; it is much safer to employ the unnormalized counterparts to  
these operations, It is easy to  introduce second order noise through other operations 
in the instruction sequence. 

Under special circumstances, normal and noisy compare type operations may yield 
different indicator settings (sometimes even for the same two numbers). The user of 
floating point compare operations should know always that, except for the "exact" oper- 
ations he is comparing numbers affected by e r ro r s ,  and due allowance must be made 
for this, whether noisy mode is used o r  not. 

A6.6 Suppression of Normalization 

In the great majority of cases normalization, if specified in an instruction, will 
proceed, The exceptions occur only because of the appearance of exponent flag. 

Normalization (and therefore noisy mode) will be suppressed in the following cases: 

I 

a. For  instructions involving only one operand, if the operand prior to the 
normalizing shift is either an 03 (XFP case) or  an 8 (XFN case). 
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b. For instruction with two operands, neither of them are a> o r  G : 

1) instructions of * type, if the product before normalization is an 8 . 
2) instructions of / type, if the operands after prenormalization contain 

one 8 and one N (i. e. , no exponent flag). 
noisy mode in any way.) 

(This case does not influence 

The suppression of normalization in this category is to prevent the loss of EF due 
to double underflow. 

e. For instructions with two operands, at least one of which is either 00 or  
8 : if the result is not an N before the post-normalization. The result is an N 
only in the case of 8 3- N, and normalization here,  if specified, will proceed. 

w 

3 
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A6.7  Summary of Behavior of Normalized Floating Point Instructions in Noisy Mode 

Add Type Operations 

+, M+, +MG,M+MG 

L, LWF 
ST 
K, KMG, KMGR , KR 

LFT 
SRD 
SLO 

Multiply, Divide & 
- Root 

* 
/, R/ 

SRT 

Double Operations 

D+, D+MG,F+ 
DL, DLWF 
D*, *+ 
D/ 

Others 

E+, E+I 
SHF 

Right-Appendage 
by 48 d Bits 
:prior to any f) 

yes, on unshifted 

Yes 
Yes 
yes, on unshifted 

Yes 
no 
no 

operand 

operand 

no 
yes, both divisor 

and dividend 

no 

no 
no 
no 
yes, on divisor 

preshift 

Post -Shifting 
into Bit 95 by 
d2 Bits 

no 
no 
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yes (no effect) 

yes(no effect) 
yes (no effect) 
(no post -shifting) 

yes (no effect) 
yes (no effect) 
yes, before any 

shifting 

Yes 
yes (no effect on 

operands. No 
post -left -shift 
for  quotient e ) 

yes (no effect) 

Yes 
Yes 
Yes 
yes, on dividend 

preshift. No 
post -left -shift 
for  quotient. 
Yes (no effect) 
on divisor pre  
shift. 

Yes 
no 

rder  of Noise 
nd Other 
omments 

. Has  bearing on*+. 
loiseless 

Joi seless 

! 
! 
! -. No additional noise 

introduced in re- 
mainer normaliza- 
tion. 

2 
Noiseless 
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A7. MAJOR UNITS IN THE 7030 

A7.1 Core Storage 

"V 

Six units of 16K extended words each for the Los Alamos configuration. Each ex- 
tended word contains a fu l l  word with 64 information bits, plus 8 error-check bits, 

Controlled by the storage bus control unit (SBC) which aside from initiating all 
accesses to main memory, also monitors the submitted addresses for "address invalid" 
condition. The SBC has direct contact with the following units: storage units, exchange, 
disk synchronizer kookahead and I-unit. 

A7 . 2 Instruction Arithmetic Unit (I-unit) 

Contains the instruction counter (IC), the 16 index registers ($0-$15), the time 
clock ($TC) and interval timer ($IT), the "originals" of the index condition indicators 
($XF, $XVLZ, $ W Z ,  $XLGZ, $XCZ, $XL, $XE, $XH), and many registers,  circuits 
needed for efficient decoding and execution of instructions. 

Generates all instruction fetch requests on the basis of IC contents. 

Develops effective addresses by adding the pertinent index value to the numerical 
address of an instruction. 

Generates arithmetic unit operand requests for Lookahead. 

:Partially decodes arithmetic unit instructions and converts the latter into information 
suitable for Lookahead processing, This information is then loaded into Lookahead. 

Decodes and executes all index arithmetic instructions as well as the following: Z ,  R, 
RCZ, EX, EXIC, T ,  SWAP, except that stores are performed with the help of Lookahead. 
If non-I-unit operands are required for I-unit instructions, they will be fetched from the 
SBC o r  the Lookahead. 

Decodes and executes the following f?.mcondi.tionallf branch instructions: B, BE, BD, 
BR, BEW, CB, CBR and Bind for the index condition indicators. The complete execu- 
tion of BB and Bind for non-index conditions, however, requires the assistance of the 
Lookahead and the arithmetic unit . 

Submits indicator conditions for the following indicators to Lookahead for updating 
of the indicator register: $IT, $OP , $AD, (from SBC) $DS, $DF , $IF + index indi- 
cators. These indicators plus a "conditional machine check" may lead to interruption 
during the updating, Other I-unit generated indicators such as $IK, $TS are gated 
directly to the indicator register. 

Updates $TC and $IT every 1/1024 sec. 
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A7.3 Lookahead (LA) 

pr-- 

Contains four buffer levels, an address register (LMR) and five counters IAUC 
(I-unit) , OCC (operand check), TBC (transfer bus into arithmetic unit), ABC (arithmetic 
bus and interruption system) and SCC (store check). 

When LAUC refers to a level, that level may accept I-unit loading, although the re- 
quired operand may come later from SBC. 

During OCC time the operand from SBC may be checked for  e r ro r .  
During TBC time the level contents may be shipped into arithmetic unit. 
Iluring ABC time the interruption system is updated, and if no interruption, signal 

During SCC time the store operand (if any) is checked and sent to SBC on the basis 
is given to arithmetic unit for execution of instruction just loaded. 

of the contents of LAAR. 

Provides interlocks , plus close contact with the interruption system to ensure smooth, 
autonomous and error-free operations of the various units in the computer. 

A7.4 Interrupt System 

Contains the indicator register ($IND) , the mask register ($MASK), also $CA and 
$CPU. Has direct connections with I-unit, LA, arithmetic unit and the exchange units 
to receive updated indicator information. 

Interruption occurs if 
a. system is enabled 
b. a masked indicator bit is a 1 

Interruption sequence 
a. The leftmost masked indicator bit position (say 0. K) is noted, 
b. I-unit is house-cleaned except the index storage. 
c. LA house-cleaning is performed. Recovery information is shipped back 

to the I-unit. This includes all index register recovery information and the 
lfinterruptedll IC value. 

d. Contents of $LA is fetched and added to K. 0. 
e. Instruction beginning at the address C($IA) + M, 0 is fetched from SBC 

without disturbing $IF indicator. 
f. The "free" instruction is performed with all masked interruption conditions 

enforced. This instruction may or  may not alter IC in I-unit. 
g. I-unit fetches new instructions on the basis of IC. Resumption of normal 

operation. 

A7 5 Execution Arithmetic Unit 

Contains a parallel. arithmetic unit (PAU) for floating-point fraction operations as 
well as all executed *, /, *+, and binary-decimal conversions. 

Contains a serial arithmetic unit (SAU) for variable field length operations (except 
*, / $  *+ and conversions), also for floating-point exponent arithmetic. 
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Receives instructions and operands from LA during TBC time for decoding and 
execution. 

Submits store operands to LA, arithmetic indicator bits to  the interruption system 
during ABC time. 

Contains the following registers: 
Accumulator ($L, $R) and sign byte register ($SB) 
Buffer registers C ,  D 
PAU buffer register F 
Left zero counter ($LZC) and all ones counter ($AO@) 

A7.6 Exchange 

Contains 32 channels (32-63) for simultaneous 1-0 processing. Through adapters 
each channel can be connected to 8 tape units or with one non-tape 1-0 unit. Each 
channel is represented by one control word and two data words in the exchange storage. 
The channels communicate with the exchange storage through a channel scanner. 

Contains a main memory address register (MMAR) and a buffer register to com- 
municate with the SBC. 

Contains an interruption address register (IAR) which indicates the channel address 
for the channel which has created an interrupt condition. Contains triggers t o  indicate 
the reason for interrupt: EOP, UK, EK, EE and CS. These triggers and IAR contents 
are set until the interruption system accepts the conditions. When IAR is busy other 
channels cannot use it to cause other interrupts. 

Accepts 1-0 instructions from LA (two levels per instruction). 

Fetches and stores control words and data words directly from SBC subject to 
$AD restrictions, but not $DF and $DS as these are performed by the I-unit. 

Communicates with 1-0 units (through adapters andchannel scanner) in 8-bit bytes, 

Has its own clocking circuit (0.1 us/cycles) and ECC check bit generator-comparer. 
Maximum word rate is 1 extended word/lOus for the entire exchange. 

A7.7 Disk Synchronizer 

Contains 32 channels (0-31) only one of which can be in operation at any given time. 
Contains enough storage for one control word and one data word. Each channel can be 
attached to one disk unit. 

Disk word rate is one extended word/8 ps. No direct chaining of 1-0 control words 
is permitted. Otherwise the disk synchronizer functions in much the same way as the 
exchange. 
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A8. LIST OF IMPORTANT REGISTERS IN THE 7030 

A 8 . 1  I-Unit 

w' 

VY (64 bits + check bits) 
2Y (64 bits + check bits) 

Z (64 bits + check bits) 
XS (17 words, each with 64 

X (64 bits + check bits) 
X-adder (32 + check bits) 
W (18 bits + check bit) 

Instruction buffer (even-addressed full words) 
Instruction buff e r (odd -addr es s ed full words) 

Instruction preparation and execution register 
Index storage (contains locations 1.0,  16.0-31.0) 

Iqdex data register (buffer register for  XS) 
Index adder (capable of 24-bit additions) 
Work register serving miscellaneous functions in 

(LVS address decoding; second operand address in VFL; refill and interruption 

(Both 1Y and 2U may be used as I-unit operand buffer) 

bits + check bits) 

I-unit 

address; count for T and SWAP) 
IC (19 bits + check bits) 
P (3 bits) 

GLAR 

Originals of $XF, $XVLZ, $XVZ, $XVGZ, $XCZ, $XL, $XE, $XH. 

Instruct ion counter 
(For the storage of P field when decoding VFL 

instructions) 
A left zeros counter for  LVS instruction execution 

(llgeometric load address register"). 

A8.2 I-Checker (Shared Between I-unit and Lookahead) 

A8.3 Lookahead (LA) 

Lookahead buffer levels, each has 

Operand field (64 bits + checks) 
Indicator bit field (15 bits) 

Op code field (10 bits + check) 

Instruction counter field 
(19 bits + checks) 

Plus 
* these 

bits 

LAAR Lookahead address register (18 + check) 
"LAAR Busy1' bit 
If Store executed" bit 
"Forward cycle required" bit 
IC buffer (19 + checks) 

1. 

e 

NOOP 
WBC 
LAOP 
IC 
INT 
LC 
LF 
FF 
DISC 

no-op bit 
word boundary crossover bit 
LA op code bit 
In s t r uc t ion counter bit 
Internal fetch bit 
Level checked bit 
Level filled bit 
"Forward fromt1 bit 
Disconnect bit 

Couiters: IAUC (Instruction-arithmetic unit counter). For  LA loading from I-unit. 
OCC 
TBC 
ABC 

SCC 

(Operand check counter). Fo r  check of opnd arrived from SBC. 
(Transfer bus counter). For loading of arithmetic. unit. 
(Arithmetic bus counter). For interrupt system updating, internal 

(Store check counter). For storing into main core storage. 
opnd fetch. 
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A8.4 Interruption System 

$IND Indicator register (64 bits) 
$MASK Mask register (28 bits) 
$CPU 
$CA 
Left zeros counter to handle interrupts. 

Other CPU (19 bits + check bits) 
Channel address register (7 bits + check) 

A8.5 Arithmetic Unit 

$L, $R 
$SB 
C,D 
$LZC 
$AOC 
SAU Serial arithmetic unit 

SAU decoder 
SAU arithmetic-logical unit 

PAU decoder 
PAU arithmetic-logical unit: 

Accumulator (each 64 + check bits) 
Sign byte register (8 bits + check) 
Operand buffer register (each 64 + check bits) 
Left zeros counter (7 bits + check) 
All  ones counter (7 bits + check) 

PAU Parallel arithmetic unit 

PAU adder 
PAU multiplier 
(PAU) F-register (104 bits + check bits) 

A8.6 Exchange 

EM 
EMAR 

MMAR 

Exchange storage (256 extended words each of 72 bits + 4 check bits) 
Exchange memory address register (7 bits + check) 
Word register (communicates with EM) (76 bits) 
Main memory address register (18 + check bits). For  dealing with 

Buffer register (72 bits). To handle traffic with SBC 
Interrupt address register (7 + check). Contains address of 

interrupting channel 
Interrupt triggers for 5 exchange interrupt conditions. 
"Interrupt wait" bit to indicate if IAR is busy 
Channel scanner for  dealing with individual channels. 
ECC generator and comparing circuits. 

SBC 

IAR 

J 
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