

A

Reference Manual

IBM 7030 Data Processing System

Program mi rig Exa rn ples

V

Minor Revision (January 1962)
This edition, Form C22-6578-1, is a minor revision of the
preceding edition but does not obsolete Form C22-6578.
Principal changes in this edition are:

Page Subject
14 Problem 2.3, Method 2
28 Problem 3.4, Method 1
29 Problem 3.4, Method 2
33 Problem 3.9, Method 2
42 Problem 4.9
44 Problem 4.10, Method 1
45 Problem 4.10, Method 1
58 Figure A4-2
76 T h e 7030 Central. . . (Figure)

L

d

@ 1961 by International Business Machines Corporation

CONTENTS

w

A

.

INSTRUCTION ARITHMETIC UNIT INSTRUCTIONS .
Problem 1.1 Transmittal of Two Full Words .
Problem 1.2 Interchange of Two Word-Pairs .
Problem 1.3
Problem 1.4 Replacement of Full Words by Zeros .
Problem 1.5
Problem 1.6 Subtraction of Value Fields .
Problem 1.7 Interruption Measure .
Problem 1.8
Problem 1.9

Cyclic Permutation of a Group of Full Words

Replacement of Isolated Full-Word Groups by Zeros

,

Simulation of Rename Instruction
Transposition of a Square Matrix with Full-Word Elements .

VARIABLE FIELD LENGTH INSTRUCTIONS
Problem 2 .1 Cyclic Bit Shifting .
Problem 2.2 Length of an Unknown File ,
Problem 2.3 Deletion of Every Fifth Bit in a Field
Problem 2.4 Bit Reversal .
Problem 2.5 Removal of Key Words
Problem 2.6 Sorting on the Basis of Subfields .
Problem 2.7 Sorting into Reserved Table Areas
Problem 2.8 Purchasing List Arithmetic .
Problem 2.9 Effective Address Creation .
Problem 2.10 Fetch@, q)th Element of Rectangular Matrix
Problem 2.11 Simulation of Two-Bit Addition .
Problem 2.12 Transposition of Rectangular Matrix

.

.
FLOATING-POINT ARITHMETIC .
Problem 3.1 Separation into Integer and Fraction Parts
Problem 3.2 Integer Part of Floating-Point Word .
Problem 3.3 Polynomial Evaluation .
Problem 3.4 Modified Trapezoidal Rule .
Problem 3.5 Continued Fraction Evaluation .
Problem 3.6 Scalar Product of Vectors .
Problem 3.7 Cube Root

,

Problem 3.8 Normalized Floating-point Vectors from VFL Data .
Problem 3.9 Double-Precision Compare
Problem 3.10 Integer Part of Log2N .
SPECIAL PROBLEMS .
Problem 4,l VFL Fraction Square-Root .
Problem 4.2
Problem 4.3 Bit Image of a Sequence of Numbers .
Problem 4.4 Compression of Sparse Vector .
Problem 4.5 Scalar Product of Compressed Sparse Vectors
Problem 4.6 Transposition of an 8 x 8 Bit Matrix
Problem 4.7 Transposition of a 64 x 64 Bit Matrix
Problem 4.8 Product of Square Matrices
Problem 4.9 Cosine of 2 T x .
Problem 4.10 Natural Logarithm .
Problem 4.11 Exponential of x .
Problem 4.12 Transcendental Function Evaluation
Problem 4,13 Numerical Integration

Double-Precision Binary to Decimal Conversion

. .

APPENDICES
AI Problem Solving by STRAP Programming .
A2 Check List for Program Before Assembly .
A3
A4 Operand Addressing in 7030 Programming .
A5
A6 Noisy Mode in 7030 Programming .
A7 Major Units in the 7030 ,
A8

Special Addressable Registers (0 through 31)

Machine Handling of Floating Point Exponent Flags in the 7030

List of Important Registers in the 7030

5
5
5
6
7
7
9
9

10
10

12
12
12
14
15
16
17
19
20
21
22
23
23

26
26
26
26
28
29
30
31
31
32
34

35
35
36
37
37
38
39
40
42
42
44
45
46
47

52
53
55
56
66
70
75
79

FOREWORD

The following programming examples are intended to illustrate the use of 7030 instruc-
tions as active tools in problem solving, It i s believed that the serious reader, equipped
with the 7030 Reference Manual (A22-6530) and a description of the STRAP assembler
(say the Reference Manual, 704-709-7090 Programming Package for the IBM 7030 Data
Processing System (C22-6531)) , can obtain a dynamic knowledge of 7030 programming
without extensive outside help.

Experience in computer programming, while certainly an asset, is not taken for
granted.

The subject matter is divided into four main sections:
1. Instruction Arithmetic Unit Instructions ,
2. Variable Field Length Instructions,
3. Floating-point Arithmetic,
4. Special Problems.

No attempt i s made to cover the entire instruction set, to define every term o r to
explain every programming step. There are however, a number of comments to assist
the reader over rough spots or points of ambiguity. Frequently programming alterna-
tives are brought to the attention of the reader to eniphasize the fact that there are many
ways of doing the same problem. Efficiency in computer problem solving involves the
balancing of the following factors:

1. Accuracy of results,
2. Analysis effort,
3. Programming time,
4. Debugging time,
5. Production run time,
6, Effectiveness in repeated use of program (possibly by a stranger).

The relative merits of these factors vary from problem to problem, individual to
individual and organization to organization.

In the design of the programming examples a seventh factor, pedagogical value,
has received the primary stress, and no claim i s made €or efficiency in te rms of the
other six,

i

IBM 7030 PROGRAMMING EXAMPLES

1 INSTRUCTION ARITHMETIC UNIT INSTRUCTIONS

PROBLEM 1.1 TRANSMITTAL OF TWO FULL WORDS

Copy the contents of full words located in DOG, DOG +I. 0 into full words located in
CAT, CAT + 1.0 respectively.

Method 1. U s e the immediate transmit instructions.
TI, 2, DOG, CAT

TBI, 2, DOG +1.0, CAT + 1.0

--
or

Comments: (a) No more than 16 full words can be transmitted by TI o r TBI. If 16
words are to be transmitted the J fields could be filled by either 16 o r 0 in STRAP coding,
(b) If the f fsourceff and rrsinkff areas overlap, to insure that all the source words are
transmitted properly, use TBI if CAT >DOG; use TI if CAT <DOG. In the following
we shall assume no overlap.

Method 2. U s e an index register to control the number of words transmitted.

T, $1, DOG, CAT

--
LCI, $1, 2.0

Comments: (a) A s many as 218 (262,144) words can be specified this way.
(b) The programmer should be cautioned that direct transmit type operations with J
field referring to an index register with a zero count field means the maximum count
possible.

Method 3 . U s e index instructions.
LX, $1, DOG
SX, $1, CAT
LX, $1, DOG + 1 . 0
SX, $1, CAT + 1.0

Comments: (a) Although data transmission is not the primary function of index
registers, the two ftunusedff bits (bits 27 and 28) of each index register have been made
available for this. (b) Two other ways are available: VFL load-store type operations
and floating point (unnormalized) LWF-store. The latter is efficient but may turn on the
$XPFP indicator. Further a tfminus zeroff exponent will be changed into a ffplus zero"
exponent.

PROBLEM 1.2 INTERCHANGE OF TWO WORD-PAIRS

Interchange the contents of full words DOG, DOG + 1.0 with full words CAT, CAT
+ 1.0.

Method 1. U s e immediate swap instructions.
SWAPI, 2, DOG, CAT

SWAPBI, 2, DOG + 1 . 0 , CAT + 1.0
or

5

Comments: (a) The swapping of each word-pair involves two memory fetches fol-
The J field in swap instructions is lowed by two stored into the f'fetchff locations.

treated in exactly the same way as in transmit instructions.
(b)

Method 2. U s e index instructions.
LX, $0, DOG
LX, $1, DOG + 1.0
LX, $2, CAT
LX, $3, CAT + 1.0
SX, $0, CAT
SX, $1, CAT + 1.0
SX, $2, DOG
SX, $3, DOG + 1.0

Comments: (a) Extensive use of this type of coding is clearly limited by the en-
tailing tedium. Other alternatives a r e again, VFL and. floating-point LWF-stores.
(b)
indexing. In address modification a zero I field specifies no modification,

$0 may be used for any index purpose except address modification and progressive

PROBLEM 1.3 CYCLIC PERMUTATION OF A GROUP OF FULL WORDS

Givenquantities A , B, C , D, E , F, G, H, I, in full words DOG throughDOG + 8.0.
Cyclically permute the information such that the new contents will be in the sequence
DEFGHIABC.

Method 1. TI, 3, DOG, 17.0 'store A,B,C, in $1,$2,$3, respectively
TI, 6 , DOG + 3.0, DOG 'DEF GHIGHI
TI, 3, 17.0, DOG + 6.0 'DEF GHIABC

Method 2 . SWAPI, 8, DOG, DOG + 1.0
SWAPI, 8, DOG, DOG + 1.0
SWAPI, 8, DOG, DOG + 1.0

'cyclic left shift one unit
'shift another unit
'complete the 3 unit cyclic left shi€t

Method 3. SWAPI, 3, DOG, DOG + 6 . 0 'place GHIDEFABC
SWAPI, 3 , DOG, DOG + 3.0 Icomplete the permutation

&Method 4. SWAPI, 6 , DOG, DOG + 3.0

Comments: (a) In order to permute N consecutive full words (say DOG through
DOG + N-1), cyclically left K places, if K is a divisor of N, the single instruction

is adequate, If on the other hand N-K is a divisor of N, the situation is equivalent to
that of cyclically permuting right N-K places, and a backward swap may be used:

If neither K o r N-K i s a divisor of N, no single swap instruction will suffice.

SWAPI, N-K, DOG, DOG + K

SWAPBI, K , DOG + N-K-1 IN-K divides N

Needless to say, if the number of full words to be swapped exceeds 16, the immed-
iate swap instructions should be replaced by equivalent direct swap instructions.

6

PROBLEM 1 . 4 REPLACEMENT OF FULL WORDS BY ZEROS

Replace the contents of full words DOG through DOG + 24.0 with zeros.

Method 1. Set up a small loop using CB+ instructions.
LX, $3, x w 3

A z, DOG($3)
CB+, $3, A

B BEW, B
XW3 XW, 0.0, 25, XW3

Comments: (a) The address field of the BEW instructions and the refill field of
the index word a re being used for identification purposes.
the numeric equivalent of B, being a branch address, is in the instruction counter.
During and after the execution of the program, one can examine the refill field of $3 to
find out the source of the index information. These identification tags can be useful
debugging aids. It is good practice to use a decimal point in the value field of an
index word.

While the system is "waiting,

(b)

Method 2. LX, $3, XW3A --
z, 0($3)

BEW, $
CB-, $3, $-0.32

XW3A XW, DOG + 24.0, 25, $

Comments: (a) The use of $ to mean "the location of this very instruction" is an
efficient symbolic programming device. Instruction insertion and/or deletion in the
vicinity of a symbolic instruction containing $, however, has to be done with some care .
For instance, the insertion of a half word instruction between the Z and CB- instructions
without corresponding change in the CB- instruction will cause branches to this new
instruction rather than to the Z instruction.

Method 3. During a transmit instruction execution, storing of the Kth "sinkff word
precedes the fetch of the (K+l)th ?!source" word. This makes the following
concise program possible.
Z , DOG
TI, 12 , DOG, DOG + 1 . 0
TI, 12 , DOG, DOG + 13.0

Comments: (a) The execution sequence is:
Zeros - C (DOG) d C (DOG + 1.0) ,
C(DOG + l.O)-C(DOG + 2.0), etc.

C(Q) means the contents of location Q.
somewhat inefficient use of machine hardware. For instance, none of the memory fetches
a re really needed.

(b) Programming convenience in this case means

PROBLEM 1 . 5 REPLACEMENT OF ISOLATED FULL-WORD GROUPS BY ZEROS

Replace the following full words by zeros: DOG through DOG + 24.0, CAT through
CAT + 15.0. CHICK through CHICK + 34.0

7

Method 1. Use chain indexing.

be

PRNID, JOE BLOWE, DEPT. 333
PUNID, J. BLOWE
SLC, 1000.0
LCI, $1, 3 . 0
LX, $2, LINK 1
z, O W)

BEW, $

CBR+, $2, $-0.32
CB, $1, $-1.0

LINK 1 XW, DOG, 25, LINK 2
LINK 2 XW, CAT, 16, LINK3
LINK 3 XW, CHICK, 35, $

END, 1000.0

Comments: (a) The PRNID, PUNID, SLC, and END pseudo-instructions should
included in every program intended for assembly. They a r e given here as an example

of correct usage.
refill feature in the 7030.

(b) This is a simple demonstration of the utility of the automatic

Method 2 . U s e chain indexing and an XF to terminate the sequence.
LX, $2, LINK 1
z, 0($2)

BEW, $

CBR+, $2, $-0.32
BZXF, $-1.0

LINK 1 X W , DOG, 25, LINK 2
LINK2 X W , CAT, 16, LINK3A
LINK 3AXW, CHICK, 35, $, 4

Comments: (a) The use of the index flag to terminate a sequence i s especially
important when the exact length of the indexing chain is unknown o r variable. The num-
ber in the fourth subfield in LINK 3A concerns the setting of bits 25, 26, 27 of the index
word. The number 4 means that only bit 25 (XF) is a 1.
of the index flag indicator is done prior to the refill.

(b) Remember that the setting

Method 3. U s e transmit instructions.
Z , DOG
TI, 12, DOG, DOG + 1 . 0
TI, 12, DOG, DOG + 1 3 . 0
TI, 16, DOG, CAT
TI, 12, DOG, CHICK
TI, 12, DOG, CHICK + 1 2 . 0
TI, 11, DOG, CHICK + 24.0

Method 4. U s e transmit and index refill.
LX, $2, x w 2
Z , CHICK
T, $2, CHICK, CHICK + 1 . 0

T, $2, CHICK, DOG
TI, 16, CHICK, CAT

R, $2

,

8

XW2 X W , 0.0, 34, XW2A
XW2A XW, 0.0, 25, $

Comments: (a) The refill instruction operand is not limited to index registers. It
is possible for example to write

and after its execution XW2 will have the same contents as XW2A.
R, XW2

PROBIJEM 1.6 SUBTRACTION OF VALUE FIELDS

Subtract the value field $1 from that of $14 and put the result in the value field of $14.
It is permissible to destroy $1 in the process.

-w

Method 1. Change the sign bit of the value field of $1, then add value fields.
BBN, 17.24, NEXT

NEXT LVS, $14, $1, $14

Comments:

(b)

(a) In the LVS instruction the index registers to be added together
must all be different from each other. The J field, however, may refer to any index
register. A "V+, $14, 17.0" could also be used as an instruction at location NEXT.
(c)
still makes the tentative assumption that the branch will be unsuccessiul while preparing
the BBN instruction. Some time is lost if the assumption proves incorrect during exe-
cution time. The program above is thereiore efficient if the bit 17.24 is probably
zero. If this bit is probably 1 , BBN should be changed to BZBN.
preparation of the following conditional branch instructions involves the tentative assump-
tion that the branch will not be successful:

The conditional branch i s being used unconditionally. The computer nevertheless

(d)
(e) The machine

All BB type of instructions (no exceptions)
All branches on indicator bits except the following:

XF (11.38)
XCZ (11.48)

XVZ (11.50)
XVGZ (1 1.51)

XE (1 1.53)
XH (11.54)

XVLZ (1 1.49)

XI, (1 1. 52)

Note that branches on index results o r index register conditions do not involve tentative
guesses. For example, CBRII does not behave like a true conditional branch, (f) A
more efficient way is to use the connective instruction CM1100(BU, l), 17.24 in place
of the BBN instruction.

PROBIJEM 1.7 INTERRUPTION MEASURE

$IA contains the address 1000.0. It is desired that when a $TS interruption occurs
the instruction counter contents should be stored in the first 19 bits of location 2000.0
and the main program is to be continued. Write a code to effect this.

Method 1. SLC, 1000.0 + 4.0
TSFIX SIC, 2000.0; BR, 0

9

Comments:
start at 1004.0. Since $TS i s bit position 4 of the indicator register, a $TS interruption
will lead to an automatic execution of the free instruction at C($IA) + 4. 0 = 1004.0.
(b)
hence the '!branch relative to zeror1 instruction will return to the main program.
The interrupt system is not disabled during the execution of the "free instruction." In
€act during the interruption only the $IF monitoring is relaxed temporarily to allow the
fetching of the "free instruction. The SIC action is not performed unless the
ensuing branch i s successful, and even then it i s performed after the execution of the
branch. Instructions such as SIC, $+ 0.32; B, ANYWH will lead to a branch to ANYWH
if the branch i s executed. The instruction counter will not have time to alter the branch
address before execution.

(a) The SLC pseudo-instruction indicates the instruction TSFIX i s to

The instruction counter i s not changed during the execution of the "free instruction, 1 1

(c)

(d)

PROBLEM 1 .8 SIMULATION OF RENAME INSTRUCTION

Create the effect of the instruction RNX, $1, DOG ($3). Do not simulate the indicator
settings .
Method 1.

RNAME SX, $2, X2
SR, $0, 18.0

STOX SX, $1, 0($2)
LX, $2, x2
LVE, $1, LOX
LR, $0, 17.0

LOX LX, $1, DOG($3)
BEW, $

x2 xw, 0

'save $2

'restore $2

Comments: (a)
refill field of $0 i s stored directly into the address field of STOX, and the use of $2
would be avoided. This i s not possible because in the SR operation, the refill field
concerned i s right appended by zero bits to create a 25 bit value field. The latter is
then stored. The STOX instruction would be seriously altered if a direct SR operation
i s used.

It would seem that the SR instruction could be altered such that the

PROBLEM 1 . 9 TRANSPOSITION OF A SQUARE MATRIX WITH FULL WORD
ELEMENTS

An N x N matrix has full word elements and i s stored row-wise beginning at LOC.
Create the transpose of this matrix and store it in the same area.

Method 1. Interchange rows and columns starting from the north and west borders
of the matrix.

TPOSE

SWAPI SWAPI, 1, 0($2), 0($3)

LX, $2, X W 2 ; SX, $2, XW22
LX, $3, x w 3 ; sx, $3, XW33

V+ICR, $3, N
CBR+, $2, SWAPI
V+IC, $2, N+1. ; SX, $2, X W 2 2
V+IC, $3, N+1.; SX, $3, XW33
BZXCZ, SWAPI

10

BEW, $
x w 2 XW, LOC + l . , N-1, XW22
xw3 X W , LOC + N , N-1, XW33
xw22 X W , 0
xw33 xw, 0
N SYN, 100.0 'if 100 x L O O matrix
LOC SYN, 32768.0 'if matrix s ta r t s at 32768.0

Comments: (a) The program is written in such a way as to be reusable. Otherwise
the temporary index word storages XW22 and XW33 could be omitted by a slight change
of t h e program, (b) Relatively error-free instructions can be packed together in the
same line. This enables the programmer to focus attention on the rest of the program
during debugging.

Method 2. Start from the upper and lower co-diagonals of the matrix and proceed
through the exchange of the northeast-most and the southwest-most
elements.

TPOSE2

SWAPI SWAPI, 1, 0($2), 0($3)

LX, $2, XW2; SX, $2, XW22
LX, $3, XW3; sx, $3, xw33

V+ICR, $2, N+1.
V+ICR, $3, N+1.
BZXCZ, SWAPI

V+IC, $3, N; SX, $3, XW33
BZXCZ, SWAPI

V+IC, $2, 1.0; sx, $2, xw22

BEW, $
x w 2 X W , LOC+l., N-1, XW22
xw3 XW, LOC+N, N-1, XW33
m 2 2 X W , o
xw33 X W , 0
:N SYN, 100.
LOC SYN, 32768.0

'size of matrix
starting location

t

11

2 VARIABLE FIELD LENGTH INSTRUCTIONS

PROBLEM 2.1 CYCLIC BIT SHIFTING

Cyclic left shift a full word in DOG by 7 bit positions.

Method 1

L(BU, 64-7), DOG+. 7, 7
+(BU, 7), DOG
ST(BU, 64), DOG

'leave room for DOG thru DOG +O. 6

PROBLEM 2.2 LENGTH OF AN UNKNOWN FILE

Information of unknown length is written in consecutive 7-bit bytes beginning at INFO.
Its end is signified by the first appearance of a special character consisting of seven
binary 1's. Write a program to find the file length (including the special character) in
bits, and put the answer in the value field of $1.

Method 1. Byte-by-byte Compare.

LVI, $1, 0.0
LOAD L(BU, 7, €9, INFO ($1)

K(BU, 7,8), ENDB

BZAL, $+1.0
B, LOAD

V+, $1, SEVN

BEW, $
ENDB DD(BU, 7,8), (2)1111111 'or decimal 127
SEVN V F , 0.07

Comments: (a) The use of a number in its own natural radix is convenient and can
be a powerful aid in debugging.

Method 2.

COMP

Put end byte in $R with the compare and use progressive indexing.

LV, $1, VFIELD
LI(BU, 7), 127
K(BU, 7) (V+I), 0.07($1)
BAE, $+1.0
B, COMP
L(BU, 7) (V-I), INFO($l)

'or (2) 1111 11 1

BEW, $
VFIELD VF, INFO

Comments: (a) The last VFL instruction serves mainly to perform the (V-I) opera-
tion, for an alternative technique see Method 3. Except for logical connectives, the
result of a binary unsigned operation is independent of the byte size. The 7030 actually

(b)

12

uses a byte size of 8 internally for speed. This is true even for the numeric portion
of a binary signed operation.

The byte size specification in an instruction is therefore important only for (1)
decimal operations (signed or unsigned),
and (3) logical connectives.

(2) sign byte in binary signed operations

Unless specified otherwise, STRAP assumes a byte size of 8 for all binary unsigned
and logical operations, a byte size of 1 for all binary signed operations and a byte size
of 4 for all decimal operations.

(c) A numeric bit address is signified by the appearance of a ffpointff (whatever the
radix). A number in the address field without the rfpointff is said to be an integer address.
The latter is acceptable to STRAP, but STRAP must translate it into the equivalent
numeric bit address before the program can be executed directly by the machine.

The bit address equivalent of an integer address is determined by the environment,
which defines a subfield. The integer address is treated as an integer of the subfield
(e. g. , the non-zero bit of the integer 1 would occupy the rightmost position), then the
left margin of the subfield is placed in juxtaposition with the leading bit of the address
field, leading to a bit-address identification.

Where the environment seems to suggest more than one subfield, the smallest sub-
field is to be used.

A VFL instruction normally implies a subfield of 24 bits. In the second instruction
of the present program, the "immediateff nature, plus the field length suggests a smaller
(7-bit) subfield. The latter is adopted during the STRAP assembly as the defining sub-
field, and the bit address equivalent is therefore:

0. (1 2 ~ * 2 - ~ * 2 ' ~) = 0. (127*217)

= (127*211). 0 = 260096.0

The convenience entailed by the use of integer addresses i s apparent: 260096.0 is
not only difficult to obtain, but does not contribute to understanding,

Method 3 . U s e connective and branch on $RZ. --

LVE, $1, V F 1
LI(BU, 7), (2)1111111
CTOllO(V+I) (BU, 7), 0. 07($1)
BRZ, $+1.0
B, CONT
V+, $1, VF1

CONT

BEW, $
VF1 SIC, INFO

Comments: (a) The LVE instruction loads the magnitude of the dummy SIC in-
struction. (b) CTOllO will lead to $RZ=l if the memory field and the accumulator
field are equal, In reality the 7-bit memory field is left-appended with a zero bit and
is connected with eight bits left of the offset. (c) The V+, $1, VF 1 instruction in

13

reality performs a subtract since bit 24 of the SIC instruction is a 1.
sive indexing secondary operation can precede the (dds).

(d) The progres-

PROBLEM 2.3 DELETION OF EVERY FIFTH BIT IN A FIELD

Given a string of 60 bits starting at FIELD, delete every fifth bit starting at FIELD
+ O . 04 and put the 48 bit result consecutively starting at FIEL. Assume that there is no
overlap between (FIELD - FIELD +0.59) and (FIEL - FIEL +0.47).

Method 1. Load 5 signed bits and store 4 unsigned bits at a time.
LV, $2, VFIELD
LX, $3, VFIEL
L(B, 5, 1) (V+I), 0.05($2)
ST(BU, 4) (V+IC), 0.04($3)
BZXCZ, LOAD

LOAD

VFIELD V F , FIELD
VFIEL XW, FIEL, 12 , $

Comments: (a) BZXCZ is not considered to be a conditional branch instruction
since the instruction arithmetic unit knows the index conditions during decoding time.

Method 2. Load 5 unsigned bits and store 4 bits with offset 1.
LV, $2, VFIELD
LX, $3, VFIEL

LOADA L(BU, 5) (V+I), 0

BZXCZ, LOADA
ST(BU, 4) (V+IC)!

BEW, $
VFIELD VF, FIELD
VFIEL XW, FIEL, 12, $

.
I

05($2)
0.04($3), 1

Method 3. Other variations of the same theme. Instead of LOADA and
above, one may write any of the following instruction pairs:

L(BU, 4) (V+I), 0.05($2)
ST(BU, 4) (V+IC), 0.04($3)

L(B, 5, 2) (V+I), 0.05($2)
or

ST(B, 4 , l) (V+IC), 0.04($3)

LWF(B,5,4) (V+I), 0.05($2)
ST(B, 4 , 3) (V+I), 0.04($3)

or

Method 4. Remembering decimal information is processed in
bytes, it is possible to write just two instructions to solve this

LOADA +l. 0

the accumulator in 4-bit
problem under restr ic-

tions stated below. The decimal load operation behaves like a decimal "add to zero"
operation.

L(DU, 60, 5), FIELD -0.01
ST(BU, 48), FIEL

or
LWF(D, 60, 5), FIELD -0.01
ST(B, 48, 4), FIEL

14

Comments: (a) The lead bits in the 5-bit bytes a r e deleted to five 4-bit bytes,
(b) In the decimal load the 4-bit bytes will not be altered if they contain what appears
to be decimal information. Otherwise, car ry propagation and assimilation will occur.
The byte (1 1 1 1)2, for instance, will become (0101)2 with a carry to the higher byte.
(c) The method fails if FIELD -0.01 happens to be in a protected memory area. To
avoid this difficulty, use say, L(DU, 59, 5), FIELD instead.

Method 5. LX, $1, XW1; LVI, $2, 56 --
L(BU, 60), FIELD
ST(BU, 4) (V+I), 0.04($1), 0($2)

BZXVLZ, STQRE

STORE
v-I, $2, 5

BEW, $
xw1 X W , FIEL, 0, $

Comments: (a) The integer 5 in the V-I instruction means 5 units in the 19 bit
address subfield of the instruction half-word, (b) This is an example of offset indexing.

Method 6. U s e logical connectives
COO11 (BU, 60, 5), FIELD 'LF
CMOlOl (BU, 48, 4), FIEL, 1 'SF

'ic

Comments: (a) The accumulator always uses 8-bit bytes. Each memory byte is
left-appended by enough zeros to become 8-bit bytes for the connect operation. In the
LF operation true memory bytes a r e expanded to 8-bit bytes; in the SF operation the
8-bit bytes are truncated to the specified byte size (in the dds). (b) For operations
Cabcd, CMabcd, CTabcd (abcd can be any combination of 0's and 1's) the result of the
operation can be seen from the truth table;

1 I C d

Cabcd:
CMabcd: result goes to memory
CTabcd: result discarded

result goes to the accumulator

Where m refers to a memory bit and a refers to an accumulator bit.
If m=l and a=O, for instance, the result would be c. If the instructions for this
case was C0010, c equals 1.

(c) Valuable by-products of the connective operations a re , among others;
$RZ"Is the result zero? Or , does the result contain no ones?"
$AOC ?!How many ones a r e there in the resul t???
$LZC ?Where is the leading one bit?"

The CTabcd operation allows the user to examine these by-products without affecting
the accumulator or the memory, (d) The only acceptable entry mode for connective
operations is BU. B, D, and DU a re considered illegal by the STRAP assembler.

PROBLEM 2.4 BIT REVERSAL

The 64-bit full word starting at WORD contains a binary message which would be
easily interpretable when every bit in the word is reversed (WORD +O. 63 becomes
WORD i -0 .0 , etc.). Perform the bit reversal and put the result in DROW.

15

Method 1. Load the entire word and store a bit at a time.
TI, 1, WORD, $R
LX, $1, xw1
LX, $2, x w 2
ST(BU, 1) (V+I), 0.1($1), O(@)
CBH, $2, STOR
BEW, $

STOR

xw1 XW, DROW, 0, $
x w 2 xw, 0, 64, $

Comments: (a) An advance of a half-word in the $2 value field leads to an effective
offset change of one unit.

Method 2. Load a bit at a time and store the entire word.
LX, $1, xw1
LX, $2, x w 2
LF (BU, 1) (V+I), 0 1($1) , 0($2) LO
CBH, $2, LO
ST(BU, 64), DROW
BEW, $

xw1 XW, WORD, 0, $
X W 2 xw, 0, 64, $

Comments: (a) VFL stores a r e slower than VFL loads, and the present program
is to be preferred over that in Method 1.

PROBLEM 2 . 5 . REMOVAL OF KEY WORDS

Given a string of 100 6-bit bytes beginning at DATA, remove any 4 consecutive -
bytes which match a given "key word" KEY. Pack the result starting

Method 1. LX, $1, XW1; LX, $2, X W 2

K(BU, 24), KEY
BAE, AE

LODE L(BU, 24) (V+I), 0.6($1)

ST(BU,6) (VtI), 0.6($2), 18

ST(BU, I S) , 0($2)
CAB CB, $1, LODE

'store remaining 3

AE V+, $1, X18 'skip 3 more bytes
'3 means 3 . 0 here

BEW, $

c-I, $1, 3
B, LODE

xw1 XW, DATA, 100-3, $
xw2 X W , ANSW, 0, $
X18 VF, 0.18

at ANSW.

bytes

Comments: (a) The integer 3 in the C-I instruction means 3 units in a subfield of
18 bits (size of count field).

16

PROBLEM 2.6 SORTING ON THE BASIS OF SUBFIELDS

A
(4 -bits)

Given 16 consecutive fields beginning at DATA, each of the following appearance:

B (20 bits)

The four-bit subfield ??Af? may contain any integer number from 0 through 15. Assume
all A subfields a r e different in content, sor t on the basis of A subfields and put the
correspondent B subfields together in a string beginning at ANS.

-- Method 1. Take advantage of the fact that there are exactly 16 A subfields and that
these subfields have different contents,

ASORT LX, $2, x w 2
LOOP L(BU, 4) (V+I), 0. 04($2)

*(BU, 24), VALF
ST(B, 25, l), 17.0, 20

ST(BU, 20), ANS($l)
CB, $2, LOOP

'answer at offset 20
'store into index register value field

L(BU, 20) (V+I), 0.20($2)

BEW, $
x w 2 XW, DATA, 16, $
VALF VF, 20
ANS DRZ(RU, 20), (16)

Comments: (a) If the A fields a r e not all different the s tores will be incorrect.

Method 2. A slight modification of Method 1.
ASORT2 LX, $2, XW2A
LOOP L(BU, 4), -0.4($2), 20 -t 2

+(BU, 4), -0.4($2), 20 + 4
ST(B, 25, l), 17 .0 , 20
L(BU, 20) (V+IC), 0.24($2)
ST(BU, 20), ANS($l)
BZXCZ, LOOP

X W , DATA t 0.4, 16, $
BEW, $

XW2A
ANS DRZ(BU, 20), (16)

Comments: (a) The multiplication by 20 is replaced by judicious placement of data
The following sets of instructions lead to the same in the load and add operations.

results, and other variations are possible.
(b)

($2 has X in value field)
L(BU, 4) (V+I), 0.04($2) .
.

L(BU, 20)(V+I), 0.20 ($)
ST(BU, 20), ANS($l)
CB, $2, LOOP

($2 has X in value field)
L(BU, 4) (V+I), 0.24($2)

. .
L(BU, 20), -0.20($2)
ST(BU, 20) , ANS($l)
CB, $2, LOOP

($2 has X + 0.4 in value field)
L(BU, 4), -0.04($2) .

. .
L(BU, 20) (V+IC), 0.24($2)
ST(BU, 20), ANS($l)
BZXCZ, LOOP

17

(c)
thus, -A will be assembled as 2**18-A.

Method 3. Repeated compares for minimum

A negative numeric address is assembled by STRAP as its two's complement,

VPC
STIX

KOMP

AGAIN

PACK

F IXMIN

XWl
XWll
x w 2
XWlA
VF1
VF2
ANS

LX, $1, X w l ; LX, $ 2 , x w 2
B, STIX
V+C, $1, VF1
sx, $1, XWll
L(BU, 24) 9 0($2)
K(BU, 4) (V+ICR), 0.24($1), 20
BAH, FIXMIN
BZXCZ, KOMP
SF (BU, 24) (V+IC) , 0.24($2)
BZXCZ, VPC
LX, $1, XWlA; LV, $ 2 , VF2
L(BU, 20) (V+I) , 0.24($2)
ST(BU, 20) (V+IC) , 0.20 ($1)
BZXCZ, PACK
BEW, $
LF (BU, 24), -0.24($1), 24
SF(BU, 24), -0.24($1)
LF(BU,24), 9.16
B, AGAIN
X W , DATA +0.24, 15, XWll
X W , 0
X W , DATA, 14, $
XW, ANS, 16, $
VF, 0.24
VF, DATA +O. 04
DRZ(BU, 20), (16)

'outer loop, restart with changed $1
'save $1 contents for later refill use
'load assumed minimuin
'inner loop, test against assumed min
'u sua11 y un suc ce s sf ul

'store proven minimum

'skip A field
'store sorted B field

'f ixup routine, load new minimum
'store old guess in its place
'position new min. in accumulator
'return to inner loop

'will be changed during computation

Comments: (a) This method applies even if all the A fields a re not different in
content. (b) The original information will be permuted in the program. If this i s
deemed undesirable, one could transmit the information to a temporary area and do
the permutation there, leaving the original information unaltered. (c) The code is
written under the reasonable assumption that the provisional minimum stands a good
chance of being no larger than an average entry, F o r the sake of clarity the
packing of the sorted fields is done separately at the end. By using an extra index
register this packing action can be performed whenever a new proven minimum is
found .

(d)

Method 4. Repeated compares for both maximum and minimum.
LX, $1, xw1
LX, $2, x w 2
LX, $3, xw3; sx, $3, xw33

LODE L(BU, 24) 9 0($1)
LF (BU 24), 0 ($ 2) , 64

BAH, SWICH
KF(BU,4)(V+ICR), 0.24($3),20
BAH, FIXMIN

KF(BU,4), 0($2), 20

'test against assumed minimum TEST

L

18

W'
AGAIN

PACK
LOAD2

SWICH

F JXMIN

'new minimum

FIXMAX

'new maximum

w

xw1
x w 2
xw3
xw33
xw22
xw11
VF3
ANS

Comments:
content.

KF(BU, 4) -. 24($3) , 64+20 'test against assumed maximum
BAL, FMMAX
BZXCZ, $3, TEST
ST(BU , 24) (V+I) , 0.24($1)
ST(BU, 24) (V-I) , 0.24($2) , 64

'store minimum
'store maximum

V+C, $3, VF3; CB, $3, LODE-1
LV, $1, Xwll;LX, $2, XW22
L(BU, 24)(V+I) , 0.24($1)
ST(BU, ZO)(V+IC), 0, 20($2)
BZXCZ, LOAD2

SWAPP, 1, $L, $R
By TEST

BEW, $

LF(BU, 24), -0.24($3), 24
ST(BU, 24), -0.24($3), 64
ST(BU, 24), 9.40, 24
B y AGAIN
LF(BU, 24), -0.24($3), 64+24
ST(BU, 24) , -0.24($3), 64
ST(BU, 24) , 8.40, 64+24
B y AGAIN
X W , DATA, 16, $
X W , DATA +0.360, 0 , $
XW, DATA + 0.24, 14, XW33
X W , 0
X W , ANS, 16, $
VF, DATA + . 4
VF, 0.24
DRZ(BU, 20), (16)

(a) This method applies even if the A fields are not all different in

PROBLEM 2 . 7 SORTING INTO RESERVED TABLE AREAS

Given the same field description as in Problem 3 above, as well as reserved table
area beginning at TABL 0,. . . , TABL 15, each of which is capable of holding the entire
string (in this case 400 bits). Put the proper B fields in successive entry areas of the
TABL. areas as dictated by the contents of the A fields. Assume the A fields are not
all different.

Method 1.
LOAD
--

x w 2
MTABL

LX, $2, X W 2

LX, $1, $L
L(BU, 4)(V+I), 0, 24($2), -18

LVE, $3, MTABL($l)
L(BU, 20), -0.20($2)
ST(BU, 20) (V+I) , 0.20($3)
SVA, $3, MTABL($l)
CB, $2, LOAD
XW, DATA, 16, $
SIC , TABLO; SIC , TABL1; SIC , TABL2; SIC , TABL3
SIC, TABL4; SIC, TABL5;SIf!, TABL6; SIC, TABL7

'Master Table

19

SIC, TABL8; SIC, TABLS;SIC, TABL10; SIC, TABLll
SIC, TABL12; SIC, TABL13; SIC, TABL14; SIC, TABL15

b

A B C D E F G

Comments: (a) The "master table" a rea is updated constantly to avoid conflicts
in the storing of entries with equal A fields. (b) The SIC operation by itself is meaning-
less as an instruction,
by LVE and SVA instructions.

However, it specifies a 24-bit address, and this fact is noted

PROBLEM 2.8 PURCHASING LIST ARITHMETIC

A purchasing list consists of a string of fields, each of which has the following
structure:

Subfield A is an eight-bit byte consisting of 1's.
Subfield B has two 8-bit bytes (item no,).
Subfield C has six 8-bit bytes (coded name of product).
Subfield D has three 8-bit bytes, and contains the number of units of the product
desired in decimal (DU, 24, 8).
Subfield E has six 8-bit bytes, and contains the unit price in cents of the product
in decimal (DU, 48,8).
Subfield F has 12 8-bit bytes, and is blank (to be the total price field).
Subfield G is an unknown number of &bit bytes. It contains the remarks concerning
the product and/or the entire purchase. The first three 8-bit bytes of the subfield
G in the last "product field" contains the 8-bit IQS expression END. None of the
8-bit bytes in G are all 1's.

If the complete string begins a t LIST, write a program to fill in the total price for
each product in (DU, "96", 8). F o r simplicity of programming do repeated additions
instead of decimal multiplications, Create the grand total also, and put it (DU, "128'',
8) in the pseudo accumulator 13.0 through 14.0 ($RM and $FT).

Method 1. z, $FT
LCON LX, $2, x w 2
LCON LCV(DU, 24, 8)(V+I), 0.24+0.48($2), 128-18 $R cleared too

LC, $1, $L; BXCZ, NEXT

CB, $1, ADD
ST(DU, 64, 8) (V+I), 0.64($2), 16
ST(DU, 32, 8) (V+I), 0.32($2)
M+(DU, 64, 4), $FT
L(BU, 32), TESTW
KF(BU, 24), 0($2), 8
BAE, LAST
KF (BU, 24) (V+I) , 0.8 ($2)
BZAE, KOMF
V+I, $2, 1.0
B, LCON

'binary count field
ADD +(D, 48, 8), -0.48($2)

NEXT 'store total into F

'update grand total

'test for end of string

'test for beginning of new field

'bypass 64 more bits to new D field

KOMF

MORE

20

V

LAST L(DU, 64, 4), $FT
ST(DU, 64, 8), $FT
ST(DU, 64, 8), $RM, 64
BEW, $

TESTW (IQsQ)DD@U,24,8),EWQ 'end mark for string

xw2 XW, LIST+O.72, 0, $
DD(BU, 8, 8), (2)11111111 'beginning mark for field

Comments: (a) Decimal quantities with more than one digit must be converted into
binary before a binary arithmetical operation (say index count down) is attempted. (b)
It is convenient to load one test quantity to be compared against many. This eliminates
a number of memory fetch operations. In the present program two kinds of tests are
performed, but the test quantities can be made adjacent to each other, andloaded simul-
taneously. Note the K F ' s cannot be replaced by simple K operations. (c) Special
devices a r e used to deal with long field lengths. The 96-bit s tores into F fields a r e
performed in two separate instructions. The running grand total is kept in a packed
(4-bit byte) form, to be expanded to f i l l both $FT and $RM at the end of the program.
(d)
instructions. An exception is made for pseudo-instructions specifying alphabetic
characters, since ''blank'' is a character in its own right. In TESTW, therefore, any
characters following the third comma will be assembled as bona fide characters, and
the usual typographic practice of leaving a blank after a comma will prove unwise.

Normally the STRAP assembler ignores all blanks in instructions and pseudo-

PROBLEM 2.9 EFFECTIVE ADDRESS CREATION

Find the effective address of the instruction beginning at the 19-bit address INST
without using the LVE instruction, Put the answer in the value field of $1.

Method 1
EFFADR

sv

NOX
TEST

F I)
MPLUS

NOTFP

VFL

NOTVF L

L(BU, 32), INST
KFI(BU, 4), (2) O O O O
BAE, NOX

SV, $0, 17.0
B, TEST
Z , 17.0
KFI(BU, 2), (2) 10,4
BZAE, NOTFP
-(BU, 32-18), $R. 32 + 0.18
M+(B, 25, l), 17.0, 32-24

ST(BU,4),SV+O. 19

BEW, $
KFI(BU, 4), (2)1000, 4
BZAE, NOTVFL

B, MPLUS
KFI(BU, 3), (2)100,4
BAE, KTYPE
KFI(BU, 9), (2)111000000,4
BAE, KTYPE
KFI(BU, 5), (2)10000, 4
BAE, IMMED
B, MPLUS

-(BU, 32-24), $Re 32+0.24

assume four-bit index field
'assume indexing needed
'store in J field of SV ins,truction
'index value field now in $1

'test if floating-point

'floating-point measure
'25-bit add

'test if VFL left address

'VFL measure

'test if K type indexing, CB, BIND

'test if K type indexing, BB

'test if immediate indexing

'otherwise 4 bit I field assumption valid

2 1

KTYPE ST(BU, l), KSV+0.22
KSV SV, $0, 17.0
KMINUS -(BU, 32-19), $R. 32+0.19 '1.9-bit address

IMMED Z , 17.0
B, MPLUS

B, KMINUS

Comments: (a) The effective address is the algebraic sum of the (positive) numeric
address and the value field of the specified index register. In an instruction the numeric
address is abbreviated into the numeric address field. The size of the numeric address
field is determined by bits .24 through . 27 of the instruction,

1000 means a 24-bit numeric address field;
XXlO means an 18-bit numeric address field;
otherwise a 19-bit numeric address field i s meant.

The instruction may allow no indexing at all (immediate indexing instructions), may
allow a one-bit K-type of indexing specification (CB, Bind, and BB) but generally allows
a four-bit I-type indexing specification.

If bits 23-27 have 10000: no indexing allowed;
If bits 25-27 have 100: K-type (CB, Bind);
If bits 19-27 have 111000000: K-type (BB);
otherwise: I-type.

(b) The reader should write down the bit combination of several instructions and follow
the program closely. (c) In many instances the symbolic instructions should be written
for the convenience of the programmer. In the instruction FP, the field length 32-18 is
evidently 14, but clarity is gained by retaining the longer expression. The same is true
for the address field of TEST. The extra assembly time is trivial.

PROBLEM 2.10 FETCH (p,q)TH ELEMENT OF RECTANGULAR MATRIX

Given a matrix A of size M x N (M rows and N columns), stored row-wise in consecu-
tive full words beginning with All in location MTRIX. Given also are binary integers
p, q in the leading 18 bits of $1 and $2. Put the element Apq in $R.

Method 1
LOCATE V-I, $1, 1.0

L(BU, 18), 17.0
*(BU, 18), ENN
ST(BU, 25), $3, 20-7
V+, $3, 18.0
V+, $3, VF
L(BU, 64), 0($3)
BEW, $

ENN DD(BU, 18), N
VF VF , MTRIX-1.0

'p-1 generated
'$1
'result has 20 offset
' (p-1) *N
'(P-1) *N+q

'N is assumed defined elsewhere

Comments: (a) The element Apl is in MTRIX+(p-l)N. The element Apq is there-
for in MTRIX+(p-l)N+(q-1) or MTRIX-l+(p-l)N+q.
the answer is placed in the cleared accumulator with offset 20.

(b) After a binary VFL multiply

22

PROBLEM 2.11 SIMULATION OF TWO-BIT ADDITION

4

If P, Q, R each define a two-bit non-overlapping field, using logical connectives only,
create the lowest two bits of the sum C(P)+C(Q) and put it in $R. (C(X) means contents
of X).

Method 1, C0011(BUY 2,2), P
C0110(BU, 2,2), Q
CMOlOl(BU, 2,2), R
COOOO(BU, 2,2), $Z
C0011(BU,2,2), P, 1
C0001(BU,2,2), Q, 1
CMOlIO(BU, 2,2), R

'or any other address

Comments: (a) This is actually a small-scale simulation of the parallel addition
in binary digital machines.

PROBLEM 2.12 TRANSPOSITION OF RECTANGULAR MATRIX

Given an MxN matrix of floating-point words starting at location MATRX, with the
elements stored row-wise. Create the transpose of the matrix, also stored row-wise,
occupying the same area. Keep the number of temporary storage locations small for
this purpose,

Analysis: Counting from the (1,l) element, if MATRX begins the storage area for a
PxQ matrix, then we may say the location MATRX + L contains the (r, s)-element, if

L=(r-l)*Q + (s-1) r (P, s 5 Q "

The transpose of an MxN matrix is an NxM matrix. The (i, j)-element of this NxM matrix
is in location, say, MATRX + K

K=(i-l)*M+(j-1) i S N , j S M
The contents of this location, however, has to be fetched from the original MxN matrix,
the (j , i)-element. The fetch location is, say MATRX+KO, with

K'=(j -1) *N+(i-1)
= integer remainder of (K*N)/ (M*N-l),

The algorithm is therefore to save one element (the lead element) from location
MATRX+K, fill the latter with the contents of MATRX+K', then fill the latter with the
contents of MATRX+K" etc. , until the fetch location is the same as that of the lead
element. The last store is performed with the lead element to complete the permuta-
tion cycle. A s the cycle invariably has fewer elements than the matrix itself, care must
be exercised to avoid altering elements which ha,ve already been permuted. This can be
cone by using flag bits as identification, at the same time insuring that the lead element
of every cycle has the smallest (or alternatively largest) address possible. The method
is essentially that of M. F. Berman, Journal of the Association for Computing Machinery,
- 5, 383 (1958).
(1959) ; G. Pall and E. Seiden, Mathematics of Computation, 14, 189 -192(1960).

For similar techniques see P. F. Windley, Computer Journal, 2, 47-48

For square matrices each of the cycles have only one (diagonal) or two (off-diagonal)
elements, and there exist methods much more efficient than the present one. Rectangu-
lar matrices offer few direct hints about the nature of the cycles, except that the first
and last elements are unaltered by the transposition process.

23

Method 1. U s e V-flags for permuted elements. Assume the matrix elements do not
contain V-flags originally. Advantage is taken also of $VF interruption,

TRANSP BD, $+0.32 'special interruption scheme
LV, $1,
V+I, $1, 37.0
SVA, $1, SWAP2
SWAPT, 1, 0($1), INST
TI, 1, $IND+l. O,INST+l. 0
CMllll(BU, l), $IND+l. 37
BE, $+.32

LI(BU, 18), M
*I(BU, 18), N

ST(BU, 25), 20.0, 20-7
LC, $1, 20.0
CB+, $1, BZBN
B, BEW; CNOP; NOP

TI, 1, MATRX($2), TEMP

*I(BU, 18), N, 128-18
/(BU, 18), 20.0,20
L(BU, 18), $RM+. 60-. 18,128-18

LWF (U) , MATRX($3)
CM1111(BU, l), $SB+O. 7
ST(U), MATRX($2)
LX, $2, 19.0
B, CYCLE
TI, 1, TEMP, MATRX ($2)

CB+, $1, BZBN

TI, 1, INST+l. 0, $IND+l. 0

'$IA assumed to have meaningful value
'find $VF interrupt table address
'insert address in exit instruction
'swap old and new entries of interrupt table
'save old $MASK
'force $VF mask to be 1
'end of interrupt measure

LVI, $1, 0

-I(BU,18), 1, 20 'M*N-l
'at full-word position of $4 valuefield
'copy into $1 count field

'to insure CYCLE will start at full word

'file away leading element of cycle

'answer is at 20 offset
'divide by M*N-1
'location of new element

'if operand has V-flag, interruption ensues
'create V-flag
'store into vacated location
'new address modifier
'endless loop dependent on $VF exit
'transmit lead element of cycle. It has V-flag

NUCYCL LX, $2, 17.0

CYCLE L(U), 18.0 'location of old element

LX, $3, $L

ENDCYC
BZBN BZBN, MATRX+O. 63($1), NUCYCL

SWAP2 SWAPI, 1, 0, INST

BEW BEW, $;CNOP
INST B, ENDCYC; NOP
TEMP DRZ(N), 1
MATRX SYN(BU, 24), 1000.0 'user specified starting address
M SYN, 20 'user specified, no. of rows
N SYN, 5 'user specified, no. of columns

'left -address to be inserted by SVA instruction

'must begin at full word boundary, and does

Comments: (a) To avoid conflicts, all but the leading members of each permuta-
tion cycle are given a V-flag during the permutation, and the end of cycle is sensed by
the fetching of an element already with a V-flag. The BZBN instruction tests elements
of the entire matrix proceeding from the lowest addresses. If an element has a V-flag,
it must have been an element of some previous permutation cycle. The flag is removed
and test is made on the next element. If an element is encountered without a V-flag,
it has not been in any permutation cycle before, and it must be the leading element of
a new permutation cycle. The first and last elements of any rectangular matrix are
not affected by permutations, The judicious use of interruption to exit from an
otherwise endless loop can lead to much saving of programming and execution time.

(b)

24

Usually, however, interruption should be done with the help of the master-control or
other supervisory programs to insure that other interruptions are also handled properly.
Here one entry of the interrupt table has been changed at the beginning and restored at
the end. (e) There exist numerous ways to improve the present program. In
particular the replacement of VF L operations by proper floating-point counterparts
may be recommended.

a

25

3 FLOATING-POINT ARITHMETIC

PROBLEM 3.1 SEPARATION INTO INTEGER AND FRACTION PARTS

The floating-point number N in location DOG has a small (548) exponent magnitude,
Create two normalized floating-point numbers I, F in CAT, CAT+1 respectively such
that: I = an integer;

a n d I + F = N .
IF1 < 1.0, sign of F = sign of N;

Method 1. DL(U), DOG
D+(U), X48
ST(N), CAT
SLO(N), CAT + 1 . 0
BEVY $

X48 DD(N), O.OX48 'binary exponent of 48

Comments: (a) The number X48 forces the fraction of N to shift right the proper
amount. Fo r better understanding, the reader should illustrate the program for
himself using, for example, N = 2.5.
(N) modifier is needed only for arithmetical operations which may otherwise generate
an unnormalized result. The (U) modifier means "do not perform normalization, f t not
"denormalize. I f L(U) and ST(U), when applied to an operand which has already been
normalized will leave the number still normalized.

(b)
(c) In dealing with normalized numbers, the

PROBLEM 3.2 INTEGER PART OF FLOATING-POINT WORD

The floating-point number N in location DOG is defined as in the previous problem.
Put the lowest 18-bits of the VFL integer corresponding to I into the f i rs t 18-bits of
the count field of $1.

Method 1. DL(U), DOG
D+(U), X48
ST(BU, 18), 17.28, 68
BEW, $

X48 DD(N), O.OX48

'$1.28 is also acceptable

PROBLEM 3.3 POLYNOMIAL EVALUATION

Evaluate the polynomial

20

k=o
P(x) = a p k

where x is located in X, ak is located in A + K, K = 0.0(1.0)20.0. Store the result
(single precision) in POLY.

26

-w

Method 1. Term-by-term evaluation,
POLYN L(U), A

LW), x
LX, $2, x w 2

ST(N), POLY

B, STOR
LOAD W), XK

*" x

*(N) 9 A($2)
STOR ST(U), XK

+(N), POLY
ST(U), POLY
CB+, $2, LOAD
BEW, $

x w 2 xw, 1.0, 20, $
XK DR" (1)

'new power of x

'new partial sum

Comments: (a) This is a relatively inefficient way to evaluate a polynomial but
the technique applies to any finite series.

Method 2. U s e the nesting technique.
p(x) = (. . . ((a20 x + alg)x+. . .)x+ao.
LX, $2, XWORD2
L(N), A+20.0

-_I__

MULTI *(N), x
+" A($2)

BEW, $

CB-, $2, MULTI
ST(U), POLY

XWORD2 X W , 19.0, 20, $

Comments: (a) The nesting technique for polynomials is twice as fast, more
accurate , and requires fewer instructions than the term-by-term method.

Met'hod 3. U s e nesting technique and double operations fo r extra accuracy.
LX, $2, x w 2
L(N), A+20.0

DMULT D*(N), x
D+(N) Y A(@)
SRD(N), 8 .0

ST(U), POLY
CB-, $2, DMULT

BEW, $
x w 2 xw, 19.0 , 20, $

L

Comments: (a) The double operations are not much slower than the corresponding
regular operation.

27

PROBLEM 3.4 MODIFIED TRAPEZOIDAL RULE

Evaluate the integral

J
0

by the modified trapezoidal rule

P f (x)dx '2-y h [f (a+h/2) + f (a+3h/2)+. . . + f (a+nh-h/2)]
a

where h = (b-a)/n. U s e n = 20 for this purpose.

LOOP

STOR

'or 128.0

Method 1. Create a summing loop with the f (xk) evaluation inside the loop.
MTZR LX, $1, xw1

UU), €3
-(N), A
/w N
ST(U), H

+(N), A
E-I(U), 1

B, STOR
L(U), TEMP

ST(U), TEMP
*(N), 8.0

+(N), H

*W), 8.0
M+(N), ANS
CB, $1, LOOP
L(N), A N S
"(N) Y H

BEW, $
ST(N), A N S

xw1 xw, 0.0, 20, $
A DD(N), 0.0 'lower limit
B DD(N), 2.0 'upper 1 im it
N DD(N), 20.0 'no. of strips
ANS OWN), 0
TEMP DR(N), (1)
H DR(N), (1)

'update temp
'or $L
'new integrand value

Comments: (a) The E f I instructions may be used for multiplying the floating-

For a floating-point instruction the address 8.0 or $L
point number in the accumulator by powers of 2. They are more efficient than multi-
plications or divisions.
means the leading 60 bits of the accumulator plus the lowest four-bits of $SB.

(b)

Method 2. Separate the function evaluation from the summing action in the loop.
MTZRB LX, $1, xw1

L(U)S €3
-" A
/W), N

28

c

LOOP

STOR

RTURN

ANS
TEMP
H
FUNCT

xw1
A
B
N

ST(U), H

+(N) 9 A
E -I(U), 1

B, STOR
L(U), TEMP

ST(U), TEMP
B, FUNCT
M+(N) ANS
CB, $1, LOOP
L(N), ANS

ST(N), ANS

+(N) 9

*(N), H

BEW, $

DR(N)9 (1)
DR" (1)

0

*(N), 8.0
*(N), 8 .0
B, RTURN

DD(N), 0 .0
DD(N), 2 . 0
DD(N), 20.0

xw, 0.0, 20, $

'new x
'branch to f(x) evaluation
'new partial sum

'function evaluator

'lower limit
'upper limit
'no. of s t r ips

Comments: (a) The present program requires two additional branch instructions
per loop, and is slower than that of Method 1. What it loses in speed is offset by the
gain in clarity, however, and if a new integral is to be evaluated, only the lower portion
of the program needs to be replaced.

PROBLEM 3 . 5 CONTINUED FRACTION EVALUATION

Evaluate the continued fraction

F = x
1 - x 2

2
3 - x

5 - x2

7 -.

Method 1.
CONF L (W x

*, x
ST(U), TEMP
LX, $2, x w 2
L(U), NlJM

LOOP R/N, TEMP
ST, TEMPl
L(U), NlJM
-, TWO
ST(U), NUM
+, TEMPl

' 2

39
-- X , with x = n/4 .

'x**2

'39
'X *x/39

'3 7-x*x/3 9

29

CB, $2, LOOP

ST(U), TEMP2
R/, x

BEW, $
X DD(N) 9 $PI/4
NUM DD(N), 39.0
TWO DD(N), 2 . 0
xw2 xw, 0 . 0 , 19, x w 2
TEMP DR(N), (3)
TEMP1 SYN(N), TEMP+l. 0
TEMP2 SYN(N), TEMP+:!. 0

Comments: (a) The most efficient way to evaluate a continued fraction is to start
from below. (b) The R/N instruction should not be confused with R/(N). The reverse
divide feature in the 7030 is convenient for continued fractions.
is not explicitly given in an instruction, STRAP will insert the dds of the rightmost
symbolic address. If the latter has no meaningful dds, the next-to-the-rightmost sym-
bolic address will be used, etc. If the collection of symbolic addresses for the instruc-
tion is exhausted without a proper dds having been found, STRAP will use the (N) modi-
fier for instructions which are unambiguously floating-point in nature. The exception
being E+I and variants which are assigned the (U) modifier. An operation which could
be either VFL o r floating-point is assumed VFL.

(c) Where the dds

PROBLEM 3.6 SCALAR PRODUCT OF VECTORS

Find the following vector scalar product

k=O

where a1, i s in A+K, bk in B+K, K=O. O (l . 0)16.0. Put the result in C. n

Method 1. U s e

LOFT

SXTEEN

Comments: (a) The *+ operation yields a double-precision result. (b) The LFT
operation is a "memory to memory" operation, since $ FT is a bona fide memory loca-
tion. Since it does not involve the execution arithmetic unit and since the temporary
indicator $MOP is turned on only for execution arithmetic -to -memory operations,
$MOP is turned off by LFT.
14.0 in memory) it is also made available in the lookahead to facilitate the *+ opera-
tion. This "forwarding" operation allows the *+ operation to proceed before $FT is
actually loaded, freeing the program from memory access delays due to the store and

(c) While the LFT operand is on its way to $FT (location

30

a subsequent fetch (for the *+). Forwarding is always done when information needed
for the execution arithmetic unit is known to be available in the Lookahead.

PROBLEM 3.7 CUBE ROOT

Program to compute the cube root of a normalized floating-point number N by the
following iteration formula:

U s e it to compute the cube root of 8, with XO = 2.5. Ten iterations will give full-length
accuracy except for the round-off e r ro r in the last iteration.

Method 1
CBRT

LOOP

"W'

x w 2
HALF
ANS
TEMP
XK
EN
GUESS

L(U), EN

+(N), EN

LX, $2, xw2

E -I, 1

ST(U), TEMP

L, GUESS
ST, XK
*, XK
*, XK
E + I , 1
+, EN
R/, TEMP
+, HALF
*, XK
CB, $2, LOOP
ST, ANS
BEW, $
xw, 0.0, 10 , xw2

DWN) 9 (1)
DRW) 9 (2)

DD(N), 0.5

SYN (N), TEMP + 1 . 0
DD(N), 8 . 0
DD(N), 2.5

!3N/2 stored in TEMP

'2X *dc 3 + N

hew XK created

c

Comments: (a) This is a third order process: if Xk has a relative e r rorG , one
3 iteration later Xk+l has a relative e r ro r of C s , Here C=2/3. See E. G. Kogbetliantz,

IBM. Journal of Research and Development, 2, 147-152 (1959).

PROBLEM 3.8 NORMALIZED FLOATING-POINT VECTORS FROM VFL DATA

Given a string of 25 fields beginning at STRNG. Each field contains an integer with
Change each number Nk into a the description (D, 48, 6). Wr i t e a program to:

normalized floating-point number Fk. (b)
the square root.
FLOAT+24.0.
bers should now be unity (barring a small round-off e r ror) , The vector composed of the

(a)
Create the sum of squares of Fk, then take

(c) Divide each Fk by the square root, and store in FLOAT through
The sum of the squares of the resultant set of floating-point num- (d)

31

set is said to be normalized. Notevector normalization is not related to the machine
hardware normalized floating-point arithmetic.

Method 1
NORMV

LOOP
EPLUS

LOOP2

xw1
xw2
SUM
ROOT

C omment s :

'$2 will be refilled on exit

Z , SUM
LX, $1, xw1
LX, $2, x w 2
LCV(V+I)@, 48,6), 0.48($1), 68
E+I, 48 'number is now unnormalized FP integer
ST" 0($2)
*" $L
+, SUM
ST(U), SUM
CBR+, $2, LOOP
SRT, ROOT

/, ROOT
LIN) 9 0($2)

ST(U), 0($2)

BEW, $
CB+, $2, LOOP2

XW, STRNG, 25, $
XW, FLOAT, 25, $
DRZ(N), (1)
D R W) , (1)

(a) A word full of zero bits is being used as the "zeroth partial sum.
Note that a sequence of zero bits is only an "order of magnitude" zero, not a "true zero. If
A true zero can be approximated by a number with what looks like a very large negative
exponent. An order of magnitude zero has a meaningful exponent, and can be interpreted
a s a number with no significant fraction digits. In addition-type operations, an order of
magnitude zero, by virtue of its exponent, may force the fraction of a nonzero number
to shift towards the right before the addition. In the present case the nonzeros all have
larger exponents and the use of order of magnitude zero to start a sum will not lead to
difficulties. (b) The EPLUS instruction could be removed from the loop without caus-
ing any damage; the e r r o r s introduced would exactly cancel in the normalization process.
(c)
the machine,
zero bits,

The leading instruction is not really needed unless the program is to be reused in
(d) The DRZ pseudo-operation leads to the reservation of strings of

PROBLEM 3 . 9 DOUBLE-PRECISION COMPARE

The accumulator contains a double precision floating-point quantity. Another double
precision floating-point quantity is stored in two full words, with the more significant
part in M1, l ess significant part in M1+1. Compare the two double precision quantities
and set the appropriate indicators $AE, $AL and $AH.

Method 1. Full-scale double-precision subtract followed by a test on the result.
MKOMP ST(U), A1 ' save accumulator

SLO (U), A l + l .
DL(U), A l + l . 'double -pr eci sion subtract
D-(N), M1+1.
D+(N), A 1

32

D-(N), M1
L(BU, 3), $RLZ
ST(BU, 3) , $AL
DL(U), Al+1.
D+(U), A1
BEW, $

A1 DR(U), (2)

l$RLZ, $RZ, $RGZ fetched
I$AL, $AE, $AH stored
'restore accumulator

Comments: (a) The temptation is strong to compare the high order par ts first,
and accept the indicator settings unless equality is indicated, and in the latter compare
the lower order parts. This is not correct because the compare instruction is based
on a floating subtract operation rather than a bit-by-bit comparison. Fo r example:
if (Al, Al+1) and (Ml, M1+1) have

11 +I o l + I and
I I 1 1 I

respectively

then a comparison between A1 and M1 leads to $AE.=l (the first 48 fraction bits of the
subtraction result being zero). A straightforward compare of the second order parts
will lead to the erroneous conclusion that (Al, Al+l .) is larger than (Ml, M1+1.),
whereas in reality (Al, Al+1.) represents

* 2E but (Ml, M1+1.) represents the larger quantity

(1/2) * Z E + l = 1*2E the difference being noticeable at the fiftieth bit.
Aside from the above considerations the program presented does not use conditional (b)

branches, eliminating the need for wrong branch recovery.
is applicable even if the lower order parts a r e slightly off standard (say with an expo -
nent only 46 units lower than the higher order counterparts).

(e) The present program

Method 2. Compare high order parts. If they compare "equal, perform the double
precision subtraction to ascertain the result.

DKOMP2 ST(U), A1 save accumulator
SLO(U), Al+L
K(U)3 'single precision compare
BAE, DPSUB lusually unsuccessful

END BEW, $ lend of program
DPSUB DL(U), Al+l. lfull-scale double precision subtract

D-(N), M1+1.
D+(N), A1

L(BU, 3), $RLZ
ST(BU, 3) , $AL
DL(U), Al+1. 'restore accumulator
D+(U), A1
B, END

D-(N),
I$RLZ, $RZ, $RGZ fetched
$AL, $AE, $AH stored

AI DR(U), (2)

Comments: (a) The present program is free of the objections outlined in Method 1.
It is fast if the higher order parts decide the outcome (as is usually the case). Very
effective for normalized double-precision numbers, it ma.y yield erroneous answers if

33

(Ml , M1+1.) E 111-----

(b) Even for a program with many different branches, it is convenient to end at the
same place as a debugging aid. Any other instruction counter setting at the termina-
tion of computation will then be an e r r o r signal.

E-48 I------ lI+

PROBLEM 3.10 INTEGER PART OF Log2N

N is a positive floating number in DOG, and log2N can be written as an integer plus
a positive fraction. Find the integer and put its magnitude in the first 18-bits of the
value field of $1, and the sign in the sign position of the value field of $1. Assume no
exponent flag.

Analysis: If N = 2 4 , 1 / 2 I @ < 1
Then log2N = 4 + log2 p -1s log2 /I < 0

= 4-1 + (1 + log2P)

evidently4 -1 expressed as a 18-bit VFL integer, is the desired quantity.

Method 1. L(N), DOG
E-I, 1
L(B, 12, l), 8.0 , 6
ST(B, 25, I), $1
BEW, $

34

4 SPECIAL PROBLEMS

PROBLEM 4.1 VFL FRACTION SQUARE-ROOT

a

Given a 64-bit binary unsigned VFL fraction in FRAC, extract the square root and
put it in the 64-bit field beginning at ROOT,

Analysis: By the Newtonian process of extracting the square root x of the number N,

Xk + 1 = X k + N/xk)/2
If xk has a relative e r r o r of E, namely

xk = xt (l+€) ; xt = true x
then Xk+1 = x t (1 + c 2 / 2 + 0 (e 3))

Thus if we a r e able to find a guess which has a relative error of 2-32, one iteration
later the relative e r r o r would be reduced to 2-65.

The 64-bit fraction is equivalent to a floating-point number with zero exponent,
If this latter is manufactured and normalized, the SRT instruction can be used to give
a relative e r r o r less than 2-47, which is more than adequate for OUT initial guess.
The subsequent iteration is done in double precision, with the second order part of the
initial guess understood to be zero.

Method 1
SQRT L(BU, 64), FRAC, 52

BRZ, STOR

SRT(U), GUESS
D/(N), GUESS
ST(U), QUOT

/(N), GUESS

D+" 0

DL(U), $RM

D+(U), QUOT
D+(N), GUESS
E-I(U), 1

STOR ST(BU, 64), ROOT, 52
D+(U), 0

BEW, $
GUESS DRW) 9 (1)
QUOT DR(U) 9 (1)
FRAC DR(U)9 (1)

'looks like FP number

'normalized long fraction
'first guess

'first order quotient

'obtain second order quotient
'double length quotient

'divide by two
'shift until exponent zero

'to be supplied

Comments: (a) Had the original fraction not been prenormalized, it may contain
a number of leading zeros, The relative e r r o r of the square root of the first 48 bits
may no longer be the guaranteed 2-47, but may be as large as 1 (when the first 48 bits
are all zeros). (b) The result is not rounded, as rounding will create an overflow in
the exceptional case when FRAC is almost 1 .0 .

35

PROBLEM 4.2 DOUBLE-PRECISION BINARY TO DECIMAL CONVERSION

Given a 96-bit binary fraction beginning at BFRAC, transform it into a 112-bit deci-
mal fraction beginning at DFRAC.

Analysis: The binary fraction F can be recoded in terms of any integer radix R:
Do

F = a+ R - ~ ; R = integer, o = a+ 5 R-1.
k = l

The problem is to find the amkls up to, say, k = m. Now

-1 -k
RF =a-1 + a-kR = a-1 .f F1 ,

k = 2

The integers
quantities still,

......

a-k can be extracted after each binary multiplication. They a r e binary
but can be recoded in te rms of known conventions. Fm can be used to

create a rounded result, but is more often ignored.

For our problem let R=lOI4. This is the largest power of 1 0 expressible by 48 bits,
and will contribute to the speed of conversion, The binary multiplcation will be that
between a single precision number R and a multiple precision quantity FL.

The a-k's will have no more than 48 bits, and can be converted into decimal by the
CONVERT type instructions. The recoded a-k will each have no more than 56 bits.
Since 2*56=112, we need only the first two "super digits.

Method 1
DFCONV L(BU, 48), BFRAC +0.48,68 'second order part

RADIX

*(U), RADIX
L(BU, 48), $L +0.12, 20
LFT(BU, 48), BFRAC
*+(U), RADIX
ST(BU, 48), BUFFER + O . 12,20
CV(BU, 48)
ST(DU, 56), DFRAC
L(U), BUFFER
*(U), RADIX
CV(BU, 48)
ST(DU, 56), DFRAC +0.56
BEW, $;CNOP
DD(BU,12), 0
DD(BU, 48), (8)2657142036440000 '10**14

'third order result ignored

'there wil l be forwarding
'save second order part
'convert f irst super digit, zero offset

'next item begins at full word

36

DD(BU,4), 0
BUFFER DD(BU, 64), 0
BFRAC DR(BU,48), (2)
DFRAC DR(DU,56), (2)

'data to be supplied

Comments: (a) a 96-bit binary number contains information actually equivalent to
116.25 bits of a decimal number. Only 112 bits are neededfor the problem as stated.
(b) In an n-fold precision calculation, (n+l) st order quantities frequently (though not
always) have little effect, and can beignored. Here the neglected third order quantity
is nowhere larger than 2-95. The 64 bits beginning at RADIX is being used a s an
unnormalized floating-point number with plus zero exponent.

(c)

PROBLEM 4.3 BIT IMAGE OF A SEQUENCE OF NUMBERS

Given 64 numbers in successive full words beginning at NUMB. Many of these are
floating-point zeros, but some are not. Create a full word beginning at BIMAGE in
which successive bits reflect the condition of the successive words, such that a zero
number will be represented by a zero bit image and a nonzero will have a 1 bit a s
image.

Method 1. LX, $1, xw1
LX, $2, x w 2
Z , BIMAGE

BZRZ, FIX
LIT L(U) 9 NUMB($1)

V+, $2, BIT
CAB CB+, $1, LU

F I X CM1111(BU, 1) (V+I), 0.1($2)
B, CAB

BIT VF, 0.1
XW1 XW, 0.0, 64, $
x w 2 XW, BIMAGE, 0, $

BEW, $

'assume most a r e zeros

'usually unsuccessful
'increase by one bit

Comments: (a) The bit image is very useful in, say, sparse matrix multiplication.
The bit image of each vector involved can be created, and the nontrivial multiplications
needed between any two such vectors can be tested via the logical connective "and,"
and the subsequent querying of $AOC and $LZC.

PROBLEM 4.4 COMPRESSION OF SPARSE VECTOR

Given a sparse vector of N components stored in consecutive floating-point words
beginning at SVEC. It has a bit image stored in consecutive bits beginning at the full
word beginning at BIMAGE. Compress the vector into the smallest possible storage
space on the basis of this bit image, and put the result in consecutive words beginning
at SVEC also.

Method 1. LX, $1, xw1; LX, $3, x w 3
LVNI, $2, 1 .0
B, CONN

ST(U) , SVEC($3)
L O W LWF(U), SVEC ($2)

37

CONN

END

xw1
xw3

V+IC, $3, 1 . 0
C0011(BU, 1) (V+IC), 0.01($1)
BXCZ, END

BZRZ, LOWF
B, CONN
Z , SVEC($3)
CB+, $3, END

V+I, $2, 1 .0

BEW, $
XW, BIMAGE, N+1, $
XW, 0.0, N, $

'zero unused region

PROBLEM 4.5 SCALAR PRODUCT OF COMPRESSED SPARSE VECTORS

X and Y are two N-dimensional sparse vectors, N(64, with the non-zero components
stored in consecutive floating-point words beginning at XVEC and YVEC respectively,
and bit images stored at XBMAGE and YBMAGE respectively. Find the scalar product
of these two vectors.

Analysis: In the scalar product
N

(X,Y) = XkYk.
k = 1

the multiplication need be performed only when xk and yk are both non-zero. This in-
formation may be obtained with a connect operation on the bit images of the two vectors.
The $AOC will yield the number of multiplications to be performed and the $LZC will
give information about the subscript K for a needed multiplication.

Method 1.

LOOP

LOF

TI, 3, 17 .0 , SAVEX
L(BU, N), XBMAGE
C0001(BU, N), YBMAGE
ST(BU, N), KEYVEC
L(BU,7), $AOC, 64+18
LX, $3, 8.0
DL(U), ZERO;ST(U), PRODT
BXCZ, FIN
B, L0F;CNOP
CMOOOO(BU, O),KEYVEC+O. 1,0($1) 'field length indexing
CTOOll(BU,N),KEYVEC 'test loft zeros
LF(BU,25),$LZC-O. 2,128-25
LV, $1, 8.0
CT0011(BU, 0), XBMAGE, 0($1)
LV, $2,7.32
V+, $2, 18.0
CTOOll (BU, 0) , YBMAGE, 0($1)
LV, $3, 7.32
v+c, $3, 1 9 . 0 'YVEC modifier
L(U), PRODT
LFT(U) , XVEC ($2)

ST(U) PRODT
BZXCZ, LOOP

'save $1, $2, $3

'1 bit if both items non-zero

'I$AOC in $3 count field

'low order part untouched
IC (LZC)at field length position
'field length indexing

'XVEC modifier properly positioned
'field length indexing

'restore high order part
'computation part

*+(N) Y YVEC($3)

38

.

FIN TI, 3, SAVEX, 17.0

ZERO DD(N), 0
PRODT DRZ(N), (5)
KEYVEC SYN(N) , PRODT+l. 0
SAVEX SYN(N) , PRODT+2. 0

BEW, $
' restore $1, $2, $3
'answer in acc, as well as PRODT

Comments: (a) If half of the elements of each vector are zero, then statistically
speaking only one quarter of the multiplications need to be performed. Thus the loop
in the present program can take four times as long as the corresponding loop in the
straightforward multiplication method, and still be efficient for sparse vectors and
sparse matrices. The second I field in a VFL instruction can be used to index
the field length and byte size besides the offset. Bits in the half-word position in the
index value field influence the offset direct1 bits in 26 times full word position in-

length directly. Note that $LZC is given at the bit level and $AOC is given at the half-
word level, necessitating a small amount of adjustment.

(b)

fluence the byte size directly, and bits in 2 B9 times full word position influence the field

PROBLEM 4.6 TRANSPOSITION OF AN 8 x 8 BIT MATRIX

Given an 8x8 matrix whose elements a r e bits stored consecutively and row-wise
starting at BMATX8. Create the transpose and store the latter in the same area.

Method 1, Bit-by-bit operation

BMX8T

LOF

X W 2
x w 3
x w 2 2
xw33
V F
LOC
N

LX, $2, xw2; sx, $2, x w 2 2
LX, $3, xw3; sx, $3, xw33
LF(BU, l), 0,0($3), 64
LF(BU, l), 0. 0($2)
SF(BU, l)(V+ICR),O. 1($2),64
SF (BUY 1) (V+ICR) , N($3)
BZXCZ,LOF
V+C , $2 , VF; SX, $2 , XW22
Vi€, $3, VF; SX, $3,XW33
BZXCZ, LOF
BEW, $
XW , LOC +O. 1 , N-1, X W 2 2
XW, LOC+O.N,N-1, XW33
xw, 0
xw, 0
VF , 0.1+0. N
SYN, BMATX8
SYN, 8

Comments: (a) The program is written to accommodate an NxN bit matrix beginning
at L0C. The SYN pseudo-instructions define LOC as BMATX8 and N to be 8. BMATX8
is assumed to be defined elsewhere in the symbolic program. 0 , N is equivalent to
0.8, since N is 8.

(b)

39

Method 2. Take advantage of the special properties of connective operations.
BMX8T2 LX, $ l , X W l

LVI, $2,8 -1
LI(BU, 1) , 0
B,CNNECT

'7 half -words
'zero accumulator

VMI v-I, $2, 1 'reduce offset by 1
CNNECT CO 11l(BU,8,1)(V+IC),O. 8($1),0($2)

BZXCZ,VMI
ST(BU, 64), BMATX8
BEW, $

xw1 XW,BMATX8,8,$

Comments: (a) This is a much more efficient program. Instead of transporting
2*64 bits one at a time, 8-bits are loaded with each connect instruction and the entire
transposed matrix is stored in one instruction. The indexing here is less involved also.
The price one pays is the lack of generality--for a square matrix of size greater than
8x8 the coding would have to be considerably different.

Method 3. Same technique as above, but coded to accommodate all NxN matrices with
NS8.

LX,$l,XWl
LVI, $2,N-1
LI(BU, 1) , 0
B,CNNECT

VMI v-I, $2,1 'reduce offset by 1
CNNECT COlll(BU,N,1)(V+IC),O.N($1), 0($2)

BZXCZ,VMI
SF (BU, N*N, N) , LOC
BEW, $

xw1 XW, LOC, N, $
LOC SYN, BMATX8 !or any location desired
N SYN,8 'or any integer not exceeding 8

Comments: (a) The store field instruction will not be assembled correctly by STRAP I,
because of the multiplication in the data description field. STRAP I1 will do it properly.

PROBLEM 4.7 TRANSPOSITION OF A 64 x 64 BIT MATRIX

Given a 64x64 matrix whose elements are bits stored consecutively and row-wise
starting at BMX64. Create the transpose and store it in the same area.

---- Method 1. Bit-by-bit operation, Same as Method 1 of previous program with LOC
and N redefined to be BMX64 and 64 respectively.

--- Method 2. U s e logical connectives, The matrix is partitioned into 8x8 submatrices
or blocks and each is transposed separately.

BMX64T LX,$l,XWl;SX,$l,XWll;SX, $1,XW111 'row block index
LX, $2, XWB;SX, $2,XW22, SX, $2, XW222 !column block index
LX,$3,XW3 !offset index
LX,$4,XW4;SX,$4,XW44 'block counter

40

W

DIAG
DIAG1

DIAG2

OFDIAG

OFDIA1

OF'DIA2

NEWROW

BEW
VF P8
V:F 8 P
V:F 8P8
XW1
x w 2
xw3
xw4
XWll
xw22
m 4 4
XWl l l
xw222
LOC

LI(BU, 1) , 0
COlll(BU, 8,1)(V+ICR), 0.64($1), 7($3)
V-ICR,$3,1
BZXC Z, DIAGl
ST(BU , 8,8) (V+ICR) , 0.64($1), 64-8($3)
V-ICR, $3,8
BZXCZ,DIAGZ
CBZR, $4, BEW
V+, $1 ,VFP8;SX, $1, XWl l l
V+, $2,VF8P;SX,$2,XW222
LI(BU, 1) , 0
CO111(BU, 8,1)(V+ICR), 0.64($1), 74$3)

'clear accumulator
'loop for diagonal block
'lower offset by 1
'until block completed
'store diagonal block row-wise

'until block stored
'branch if last diagonal block complete
'loop for off diagonal block pair

'row block treatment
CO111(BU, 8 , l) (V+ICR), 0.64($2), 64+7($3) 'column block treatment
V-ICR, $ 3 , 1 lower off set
BZXCZ, OFDIAl
ST(BU, 8,8)(V+ICR), 0.64($2), 64-8($3)
ST(BU, 8,8)(V+ICR), 0.64($1), 128-8($3)

BZXC Z , OFDIA2
CBR, $4, OFDIAG
LX,$l, xwll
V+, $1, VF 8P8

'until block pair complete
'store into column block area
'store into row block area

'until block pair stored
'until one row, one column complete
'procedure for new row

V-ICR, $3,8

sx, $1,XW11;SX,$1,XW111
LX, $2, xw22

sx,$2,xw22;sx,$2,xw222
C-I,$4,1;SX,$4,XW44

BEW, $

V+, $2, VF8P8

B,DIAG

VF,O. 8
VF,8.O
VF,8.8
XW, LOC, 8, XWl l l
XW, LOC, 7, xw222
xw, 0,8, $
XW, 0,8, XW44
xw, 0
xw, 0
xw,o 'to contain block counter
XW, 0
x w , o
SYN,BMX64

'to contain row information
'to contain column information

'to contain row block information
'to contain column block information

Comments: (a) The matrix is (mentally) partitioned into 64 square submatrices,
or blocks, each of size 8x8. The (I, J)-block of the transposed matrix is the transpose
of the (J, I) -block of the original matrix. (b)
destroyed in the program. XW11, XW22, and XW44 a r e changed upon the completion of
permutation of a row of blocks with a column of blocks, XWl l l and XW222 a r e changed
upon the completion of permutation of each pair of blocks, o r that of a diagonal block.

XW1, XW2, XW3, and XW4 a r e not

W
41

PROBLEM 4.8 PRODUCT OF SQUARE MATRICES

NxN full-word floating-point matrices L, R are stored row-wise beginning at LMTRIX
and RMTRIX respectively. Create P=L*R and store it row-wise beginning at PMTRIX.

Method 1.

SIX
LU
LIFT

VPI

x w 2
x w 3
x w 4
xw22
ZERO

U s e $2 for left matrix elements, $3 for right matrix elements and $4 for
product matrix elements.
product matrix,

TI, 3, XW2, $2

DL(U), ZERO
LFT(U) 9 0($2) 'main loop

V+I, $3, N
CBR+, $2, LIFT
SRD (N) 9 0 ($4)
V+I,$4,1.0

BZXCZ,LU
V+I, $2, N
CB,$4,SIX;BEW,$
XW, LMTRIX, N, XW22
XW, RMTRIX, N, $
X W , PMTRIX, N, $
xw, 0
DD(N) Y 0

Program generates successive rows of the

'load three index registers
sx, $2, xw22

*+W) 9 0($3)
'advance $3 to next row
'advance $2 to next element
'new product matrix element

V-ICR, $3, N*N-l. 0
Towards new product element of same row
'procedure for new row

Comments: (a) STRAP I does not perform multiplication of addresses, but
STRAP I1 will do it properly. XW2, XW3, and XW4 are not destroyed and the
program can be used repeatedly without re-assembly or reloading into the machine.

(b)

PROBLEM 4.9 COSINE OF 2 T X

Given a number - 1/8 L.x f 1/8 in the accumulator. Create cos 2 r x in the accumu-
lator.

Analysis: Since - If/4= 2 fx &lf/4, the series

U

k = O 2K !

is rapidly convergent. If the series is truncated at some point, the absolute error 8
is estimated by the magnitude of the first omitted term. Further, since cos 2 7f x >
cos T/4>0.7, the relative e r ro r defined by E , is less than or
equal to 1.438. true answer

= absolute e r ro r

If the last term included has 2K=16, the relative e r r o r estimate is less than 0.3 x
well within the round-off e r ro r due to arithmetical operations using a 48-bit

fraction field length.

42

w

.

Method 1
CQSF
--

DMULT

EM1

TPI
x w 2
CONST

WON
TEMP

'2*$PI
'square

*(N), TPI

SRD(N), TEMP

D*N(N) , CONST($2)

D*(N), TEMP

D*(N) Y $L

LX, $2, x w 2

D+(N), WON

CB+, $2, DMULT
E-I, 1
D-(N), WON
SRDN, $L

DD(N), 2*$PI

DD(N), 1/16*1/15, 1/14*1/13, 1/12*1/11, 1/10*1/9
DD(N), 1/8*1/7, 1/6*1/5, 1/4*1/3

BEW, $

xw, 0 , 7, $

DWN), 1, 0
DR(N)Y (1)

Comments: (a)
gain a little speed. By a redefinition of the constants the multiplication by 2*$PI
could be eliminated, but then instruction EM1 would have to be replaced by a full-scale
multiply operation. The nesting technique used tends to keep the round off e r ro r
to a minimum. (d)
halved by using 1/2n! as the constants.

Instruction EM1 is used in lieu of a multiplication by 1/2*1/1 to
(b)

(c)
The number (2) of multiplication operations in the loop can be

Method 2. Since cos 2A = 2cos2A-1, it is possible to reduce the number of terms in
the series by evaluating cos YT x first. Examination shows that te rms up
to K = 12 would be adequate.

COSF2 D*(N), $L
SRD(N), TEMP
LX, $2, xw22

IIMULT D*N(N) , KONST($2)
D+(N), WON
D*(N), TEMP
CB+, $2, DMULT
D*N(N) , KONST($2)
D+(N), WON
D*(N) Y $L
E+L (U), 1

SRD(N), $L
BEW, $

xw22 xw, 0 , 5, $

D-(N), WON

KONST DD(N) , $PI/12*$PI/11 , $PI/lO*$PI/9
DD(N) , $PI/8*$PI/7, $PI/6*$PI/5
DD(N), $PI/4*$PI/3, $PI/2*$PI

WON DD(N), 1 . 0
TEMP DRW) 9 (1)

'create cos 2A

V
43

Comments: (a) The e r r o r situation is somewhat worsened in the present method.
Suppose cos A has been evaluated with absolute e r ro r & then

COS A = (COS A)true +6, , 1;

2COS2A-1=2(COS 'A)true -1+4S1, COS A
The total absolute error is therefore

B = 4 6, cos A or 481 roughly.
The relative e r ro r can be examined in the same light.

PROBLEM 4.10 NATURAL LOGARITHM

A positive single-precision normalized floating-point number x is in the accumulator.
Replace it by lnx. Assume zero exponent flag for x.

Analysis: x = F*ZE = \Tz-- F*ZEw1j2

lnx = (E-l/Z)lnZ+ln (m F)
2k+1 00

k=O \nF +1 k=O
In @F =2E(!!!!) /(2k+l) = 22 r, (Z2)k/2K+1

2
Since Z2 = (- 'Ivz) lies approximately in (0, 1/36), the series i s rapidly converg-
ent . F +I/-

Replacing the upper limit by Kmax=8 the absolute truncation e r r o r in the determination
of In E F would be much less than Z-48. If the (E-l/2)ln2 term dominates in lnx, the
relative truncation e r ro r would also be much less than 2-48, and further improvement
in this direction cannot be seen in the single precision fraction.

If on the other hand, (E-1/2) ln2 does not dominate the result, I E-1/2 I itself must
be small. But it can be no smaller than 1 /2 , since E i s an integer, Therefore, the
worst that can happen is when E=O, F N ~ . In this case one can show the e r ro r cannot
be improved without knowledge of the fraction part of x beyond 48 bits.

Method 1.
LNX

ADD

ST(U), TEMP

ST(U) TEMP+l

/(N), TEMP+l
ST(U), TEMP+l

ST(U), TEMP+Z

D*(N), CONST($l)

F+(N), Q

F-(N), Q

*(N), $L

LX, $1, xw1

D+(N), CONST+l. 0($1)
D*(N), TEMP+2
CB+, $1, ADD
D+(N), CONST+l. 0($1)
*(N), TEMP+l
E+I, 1
ST(U), TEMP+2
L(B,12,1), TEMP, 69

' F + ~ / R T Z

IF- l/RT2
'Z created

'Z**2

Iexponent treatment

44

.

-I(BU, l), 1, 68
D*(N), FLN2 '2E-1 times ln2
D+(N) TEMP+2
BEW, $

Q DD(N) 1/1.41421356205080 ?1/RT2

CONST DD(N), 1/17, 1/15, 1/13, 1/11, 1/9,1/7,1/5,1/3,1
F LN2 DD(N), $NX47 '$N*2**47

xw1 xw, 0, 7, $

TEMP DRZ(N), (3)

Comments: (a) In function evaluation an understanding of the properties of the
function and the format of the numbers used frequently leads to great improvement in
speed and accuracy, as shown by this example. The truncated Taylor ser ies in
Z can be replaced by a polynomial with fewer terms but comparable accuracy, The
coeflicients of the optimal polynomial(s) for the evaluation of functions can be computed
by an iterative process, or can be excellently approximated by appealing to the properties
of the orthogonal Chebyshev polynomials. See, for example, C. Lanczos, Applied
Analysis (Prentice-Hall, 1956) Ch. VII; F.D. Murnahan and J. W. Wrench Jr.,Mathe-
matical Tables and Other Aids to Computation, 8, 185(1959).
by (2k+l), multiplication by the inverse is used for speed. (d) In FLN2,X47 means
replace the exponent field by +47.
normally would have an exponent of zero, and $NX47 is the same as*$N*2**47. This
would not be true has $N a magnitude of, say, 1.5.

(b)

(c) Instead of divisions

In the present case, $N, having the magnitude of 0.7,

PROBLEM 4.11 EXPONENTIAL OF x

Given a normalized floating-point number x in the accumulator. Find ex. , put it in
the accumulator and branch to 1.0($15). If ex cannot be found or stored, branch to 0.0
($15). Alteration of $L, $R, $SB, $LCZ, $AOC and $14 is permitted,

Analysis: If 1x1 > 1024 ln2, ex = 2x/1n2 ca,nnot be stored as a regular floating-
point number. A 0.0($15) return with the exponent flag on is sufficient. Otherwise the
following algorithm can be used:

terms beyond k = 15 can be safely neglected.

It is also possible to reduce the range of the argument in the ser ies to improve
convergence. For instance:

(Gln2)
- >: k! - 2G,G1n2

k = O

and terms beyond k = 12 can be neglected. The subsequent squaring lead to a round off
error twice as large as before, however,

45

Method 1.
EXP

DPLUS

EXITl

KOMP
RLN2
E l l
LN2X
XW14
C ONST

TEMEX
TEMPF

KMG(N), KOMP
BAH, EXITl
D*(N), RLN2 1/LN2
D+(U), E l l
ST(B, 12, l), TEMEX, 128-12-11
SHFL, 11

LX, $14, XW14
ST(U), TEMPF
D*(N), CONST($14)
D+(N) , CONST+l. 0($14)
D*(N), TEMPF
CB+, $14, DPLUS
D+(N), CONST($14)
E+(N), TEMEX
B, l.O($15)

'1 as exponent

*(N), LN2X 'LN2X-11

C0011(BU, l), 10.4,128-11
LA(U), $L
C1111(BU,l) $L, 127
B, 0.0($15)
DD(N), 1024*$N

DD(N), OX11
DD(N), $NX-11

DD(N), 1/13076743680000,1/87178291200
DD(N), 1/6227020800, 1/479001600, 1/39916800
DD(N), 1/3628800, 1/362880, 1/40320, 1/5040, 1/720
DD(N), 1/120, 1/24, 1/6, 1 /2 , 1

OWN), 1/$N

xw, 0,145 $

DR" (1)
DR" (1)

'normal return
'exponent sign
'remove sign
'insert exponent flag

Comments: (a) There are numerous ways to improve the speed of the program.
The multiplications by 1 /2 and 1, for instance, can be replaced by more efficient
devices. The creation of Fln2 also would not be needed if (ln2) /k! are used instead
of l/k! as coefficients, (b) The present program is actually written as a subroutine,
assuming the convention of 1. 0($15) normal return and 0.0($15) e r ro r return. Aside
from $L, $R, $SB, $14, and $15, none of the other internal registers is altered during
exit, The memory requirement is also modest, Further, the program can be used
again and again to evaluate the exponential of whatever floating-point number is given in
the accumulator,

k

PROBLEM 4.12 TRANSCENDENTAL FUNCTION EVALUATION

Assume the existence of the previous exp (x) program. Compute

and put the answer in the accumulator as a floating-point number.

46

.

c

Method 1. LN(N), EKS
LVI, $15, $+1.0; B, EXP
B, ERR; NOP

RTURN ST(U), TEMP
LVI, $15, $+1.0; B, EXP
B, ERR; NOP
*(N), EKS
E+I(U) , 1
ST(U), TEMP+1
LN(U), TEMP
+(N), WON

R/(N), TEMP+l
SRT(N), $L

BEW, $
ERR BEW, $
EKS DD(N), $PI
TEMP DR" (2)
WON DD(N), 1 .0

'normal exit
!error exit

Comments: (a) The present program is designed to demonstrate the usefulness of
subroutines for repeated usage. (b) The accepted. way to enter the subroutine SR (say)
i s to write

LVI, $15, $+1.0 (or LVI, $1.5, $+2)
before branching into SR. In STRAP I1 a pseudo-instruction

LINK (no address needed)
is available for this purpose.
cast into conventional subroutine form also, if ever needed,
requires the EXP subroutine, and therefore is usually assembled together with the
latter, Fortunately there is no multiply defined symbol to produce difficulties and no
conflict in the use of special regis ters and $14, $15. A good subroutine should keep the
number of symbols small, and the "tailingff feature available in STRAP can be used by
the user of the subroutine to avoid memory conflict.

(c) It is obvious that the present progra~m can be re-
(d) The present program

PROBLEM 4.13 NUMERICAL INTEGRATION

Provide a subroutine to handle the numerical integration of any function over any
finite interval. U s e it to evaluate: I

2 x eemX /- dx
1

I = (

Analysis: (a) For standard intervals, say (p, q), an n-point numerical integration
quadrature formula is the approximation

n

P

w(z)F(z) dz /v

i = l

w

with prescribed
are evenly spaced over the interval.

{ Wi} and (zi}. In the well-known Newton-Cotes quadratures the Zi'S

47

In the case of the highly accurate Gaussian quadratures the Z i ' S a r e the zeros of the
nth degree orthogonal polynomial Pn(Z), where

q

1 w(z) Pn(z) Pm(z) dz = 0, n # m.

P

The n-point Gaussian quadrature will yield an exact answer (barring round-off e r ror)
if F(z) is a polynomial of degree no higher than 2n-1. For other integrands the approx-
imation is, in general, quite excellent. The most commonly used Gaussian quadrature
is the Legendre -Gauss quadrature with

For even n the formula becomes
(p,q) = (-1, +1) and w(z) = 1.

For finite limits (a,b) other than (-1, +l), we have i" f(x) dx = s f(sz+t) dz = s F(z)dz
a -1 -1

n/2
/u s > wi E (szi + t) + f(-szi + t;3 ;

i = l
where s = (b-a) / (q-p) = (b - a) /2, t = a - SP = (b + a) /2.

(b)
number of Z i t s . It is thus desirable to have available an integrand evaluation subroutine,
written in a standard format. The integration subroutine does not need to know the
integrand subroutine in detail, only its address and calling sequence. It is conceivable
that the integrand subroutine also requires other subroutines, but this would not be the
direct concern of the integration subroutine itself.
for the 8-point Legendre-Gauss integration subroutine LEGQ8 are therefore reasonable:

The integration subroutine has to be able to obtain f(Szi + t) and f (- S Z i + t) for a

(c) The following specifications

The main program branches to the integration subroutine by the standard LINK
entry, in the following format:

The leading 19 bits of the ensuing full word must contain the address of the
subroutine for the evaluation of the integrand.
The next full word (i. e. , 1.0($15)) must contain the floating-point lower limit A.
The next full word (2.0($15)) must contain the floating-point upper limit B.
If an e r ro r occurs in the integration program, a return should be made to
3.0($15).
If the evaluation is successful, the approximate value of the integral must be
in the accumulator during the normal return, The normal return address is
4.0($15).
All internal registers except $L, $R, $SB, $RM, $FT, $TR, $LZC, $AOC, and
$14 are to be restored during exit, as is desirable for all subroutines. Further,
LEGQ8 must allow for the fact that the integrand evaluation subroutine will use
these special registers without restoring,
arrangement of the symbolic program is something like the following:
Idenfication for assembly program and WLC .
A main program which makes use of LEGQ8.
LEGQ8, which makes use of a subroutine, say SUBR.

LVI, $15, $+l.O;B, LEGQ8

48

a,-

.

4) SUBR, which happens to require the subroutine EXP.
5) EXP, which is self-sufficient.
6) Indication to end assembly and indication of the first instruction to be executed.

All pieces should be made available and assembled together by the STRAP assembler.

Method 1
Wain program for numerical integration. Answer shouldhe in ANS.
Main LVI, $15, $+1.0; By LEGQ8

SIC, SUBR; NOP
DD(N), 0 .0 'lower limit
DD(N), 1 .0 'upper limit
BEW, $; NOP 'error measure
ST(U), ANS; BEW, $ 'normal end of program

ANS DRZ(U), (1)
'8-point Legendre -Gauss integration subroutine
'integrand evaluation subroutine with 1. ($15) return must be provided by user , with

effective address at 0. ($15) , lower limit must be at 1. ($15) and upper limit at
2. ($15) , both as floating-point numbers.

'the integration subroutine will return normally at 4. ($15), with answer in $L.
'error return is 3. ($15).
LEGQ8 SX, $2, LEGQ82;SX, $15, LEGQ8F

LVE,$2,0. ($15)
SVA, $2, LEGQ8A
SVA, $2, LEGQ8B
DUN) Y 1 ($15)
D-(N), 2. ($15)

D+(N) 9 2. ($15)

E-I(U), 1
SRD(N) , LEGQ8P

SRD(N) , LEGQ8Q
LX, $2, LEGQ8I;L(U), LEGQ8Z
ST(U) LEGQ8S;ST(U) LEGQ8T

LFT(U), LEGQ8P
*N+(N), LEGQ8X($2)
LVI, $15, $ + L O

LEGQ8L DL(U) , LEGQ8Q

LEGQ8A By $
By LEGQ8E;NOP
ST(N) , LEGQ8R
DL(U) , LEGQ8Q
LFT(U), LEGQ8P
*+(N) , LEGQ8X($2)
LVI, $15, $+1.0

By LEGQ8E;NOP
+(N), LEGQ8R
D*(N) , LEGQ8W($Z)
D+(N) , LEGQ8T
D+(N) , LEGQ8S
ST(N) , LEGQ8S
SLO(U) , LEGQ8T

LEGQ8B B, $

'a-b
'-@-a) /2

'branch address changeable
'error
'normal return from integrand subroutine

'-@-a) z/2 + @+a) /2

'branch address changeable

49

LEGQ8E

LEGQ82
LEGQ8F
LEGQ8Z
LEGQ8I
LEGQ8R
LEGQ8S
LEGQ8T
LEGQ8P
LEGQ8Q
LEGQ8X

LEGQ8W

'normal return to main program

CB+, $2, LEGQ8L
*N(N), LEGQ8P
LX, $2, LEGQ82
LX, $15, LEGQ8F
B, 4.0($15)
LX, $2, LEGQ8Z
LX, $15, LEGQ8F
B, 3.0($15)
xw, 0
xw, 0
DD(N), 0 .0
xw, 0,4,$
DR" (3)
SYN(N), LEGQ8R+l.O
SYN(N), LEGQ8R+2.0
DR(N), (1)
DR(N)Y (1)
DD(N), ,96028 98564 97536, ,79666 64774 13627
DD(N), .52553 24099 16329, .18343 46434 95650
DD(N), .lo122 85362 90376, ,22238 10344 53374
DD(N), .31370 66458 77887, .36268 37833 78362

'changeable
'changeable

'end of LEGQ8 subroutine
'SUBR is a bona fide subroutine with 0($15) e r ro r exit and normal return 1.0($15).
SUBR

RTURN

ERR
WON
SAVE15
SAVEX
TEMP

SX, $15, SAVE15
ST(N), SAVEX
LN(N), SAVEX
LVI, $15, $+1. O;B, EXP
B, ERR; NOP
ST(U), TEMP
LVI, $15, $+l.O;B, EXP
B, ERR; NOP
*(N), SAVEX
E+I(U), 1

LN(U), TEMP
+(N), WON

R/(N), SAVEX
LX, $15, SAVE15; B, 1.0($15)
LX,$15, SAVE15; B, 0.0($15)
DD(N), 1.0
xw, 0
DR" (1)
DR" (1)

'go to EXP subroutine

'go to EXP subroutine

ST(U), SAVEX 'Z*X*e**e**-X

'square root of 1-e**-x

'normal return
'error return

SRT(N), $L

'EXP subroutine
(identical with a previous program)

Comments: (a) The instruction execution should begin with MAIN, which triggers
all other programs. (b) The seemingly elaborate way of doing the problem is actually

50

very easy to use, particularly if most of the subroutines are available. (c) For multiple
integration the same integration subroutine can be assembled at different locations and
one can be made subservient to the other. For example:

B
= f(x)dx

A
and one of the integration subroutines is used to provide f(x). (a) Barring round-off
e r ro r s , the 8-point Legendre-Gauss integration subroutine will yield exact results if
f(x) is a polynomial in x of 15th degree or less. Otherwise the approximation amounts
to an exact integration of a finite expansion of f(x) in te rms of the orthogonal Legendre
polynomials Pk(X) up to and including k=7. (e) A discussion of e r r o r s in numerical
integration is outside the scope of this work. It suffices to say that in case of suspicion
of inaccuracy, the domain can be subdivided, and the numerical quadrature can be used
for each subinterval to improve accuracy. This necessitates only a trivial change in
the main program.

.

51

AI PROBLEM SOLVING BY 7030 STRAP PROGRAMMING

,

(YES)

3
P
E
m

dl H
a
8

Y

5
z

!$
a
w"
m

v)

w a

8
i
5 w
a I (ANY UNTESTED

PATHS ?)

ABSTRACTION AND ANALYSIS

FLOWCHARTING, PROGRAMMING

(NO)

FINAL RUN (PRODUCTION RUN)
I

@ STRAPCODE I - CORRECTION,

f IMPROVEMENT

(DOES ANSWER

I L-1 (WILLIT WORK?)

(PROBABLY) I KEYPUNCHING

KEYPUNCHED

ERROR
(CORRECTLY

PUNCHED ?)
L- . ~.

(YES)

ASSEMBLY ON 7030 OR OTHER MACHINES

LOADER.MCP I r IFEW) 1 I .. - __.
GEAR NEXT RUN TO NEW - 1
AREA PARTIAL EXECUTION OF PROGRAM ON

7030 OR 7030 SIMULATOR
OUTPUT= PRINT OUT,
PUNCHED cARDS,ETc

(HIGHLY UN-
SATISFACTORY 1 (SATISFACTORY?)

(ALMOST CORRECT)
(YES)

+
(STOP)

A2. CHECK LIST FOR PROGRAM BEFORE ASSEMBLY

c

A 2 . 1 General Format

Check for presence of PRNID, PUNlD, SLC, and END. Make sure that the address
of SLC is a true bit address with a decimal point.

A 2 . 2 Symbol Definition

Are there undefined symbols ? Circularly defined symbols ? Multiply dsfined
symbols ?

A2.3 Instruction Format

Every operation field should be separated from the address field by a comma.
Look for missing right parentheses.
Look for missing quotation mark at the beginning of comment field.

A2.4 Nature of Instructions

Check integers to make sure they are not bit addresses with missing decimal point.

Half-word instructions cannot be addressed down to the bit level. Check particularly
the address fields of V+, V+I, and floating-point operations.

Check VFL instructions for field length264 or byte sizep8.

Check TI, SWAPI, etc. , for count exceeding 16.

The address field of immediate index arithmetic instructions cannot be indexed;
the a.ddress field of CB, Bind and BB can only be indexed by $1. VFL immediate
instructions cannot use progressive indexing.

Make sure that J fields are supplied in the following operations: CB, V+, and VtI.

A2. S Loops and Paths

Visually trace through all the possible paths in the program.

Trace the entry into, and exit from loops.

If a loop is closed by a CB, make sure the index register IIJ1' has a valid (non-zero)
count field at the beginning.

Termination of a loop by BAE or BZAE after a floating-point compare is a danger-
ous practice, because of unforeseen roundoffs.

53

A 2 . 6 Proofreading

3
4

After the program has been keypunched, produce a 407 listing and check the over-all
alignment, particularly the location of the NAME fields. Proofread carefully, look for
missing cards, mispunches, and off-punches.

M "E- 3 C
4 D

Character Code for Symbolic Decks

~~

H Y
9 9 R Z

Also; i s defined to be equivalent to an (11, 0) double punch. On 407 listings this
double punch i s usually considered to be 0. On assembly listings the semicolon i s re-
placed by a skip of the printer to the next line. On the keypunched card it looks like
the Greek letter 8 (theta).

54

A 3 7030 SPECIAL REGISTERS (LOCATIONS 0. THROUGH 31)
(SHADED AREAS CONTAIN ZERO BITS)

(PI I.

10 14 I8 112 116 120 124 128 132 136 140 144 148 152 156 160 I

'9 28 I I55
S I T I STC (TIME CLOCK) (READ ONLY) I X CORES

4.

w

I MEMORY SMB (MAINTENANCE BITS WHEN MACHINE IS IN MAINTENANCE MODE. ALSO WIAL CONTROL WRD FOR IPL. OTHERWISE BEHAVES LIKE SZ) MANUAL K E ~ S I

SBC (BOUNDARY CONTROL)
17 32

REGISTER SLB (LOWER BOUNDARY ADDR

6. REGISTER SCPU (ACTS LIKE SZ IF NO OTHER

REGISTER

8.
I
I
I

S L (LEFT HALF OF ACCUMULATOR) REGISTER

9.

REGISTER IO. SSB
ZYXWS v u v
S IND (INDICATOR REGISTER)

I
SR (RIGHT HALF OF ACCUMULATOR) I

I
REG1 STER

(R 1
.o-.I9 12.
.48 -.63

r

20 I 47
b REGISTER 1's b SMASK (MASK REGISTERJ MAY BE SET FOR INTERRUPT) 4 0's 4

I

13.
I

I
SRM (REMAINDER REGISTER) I MEMORY

14.

(PI: PROTECTED REGARDLESS OF BOUNDARY SPECIFICATIONS. (R): READ ONLY:

I MEMORY I
I

SFT (FACTOR REGISTER)

I
I
I

MEMORY

16. TO 31.
SO TO $15.

I I8 46

1
I X CORES VALUE I COUNT REFILL

A4. OPERAND ADDRESSING IN 7030 PROGRAMMING

A4.1 Addressing Down to the Bit Level

The 7030 computer owes much of its power and programming convenience to the fact
that it permits addressing down to the bit level. This facility is particularly evident
in the variable field length instructions, but exists throughout the instruction set to a
lesser degree.

It is therefore advantageous for the new 7030 programmer to familiarize himself
with a general scheme for addressing fields and subfields. This slcheme will also lend
understanding to the more conventional types of operand addressbg.

It is expedient to visualize consecutive full words in the addressable 7030 memory
as lying end to end, starting with the full word bearing the lowest (word-) address on
the extreme left. Further, if each bit is imagined to have a unit width, then any oper-
and in a 7030 instruction can be represented in this continuous a r ray by a string of
consecutive bits characterizable by the extent of the interval (the field length) and the
location of the leading bit.

The field length is usually understood in the instruction, but is explicitly given in
variable field length instructions. In the latter case the manner of subdivision (the byte
size) is also explicitly given.

A4.2 The Bit Address

The concepts of bit distance and bit position will be useful in the ensuing discussion.

A given bit is said to be at bit distance k relative to a reference bit if it is k units to
the right of the reference bit, If the reference bit is the leading (i. e , , leftmost) bit of
a string, and if the bit in question forms part of the string, it is said to occupy the&
position k within the string. It is evident that the leading bit of a string is at bit distance
zero relative to itself, and occupies bit position zero within the string. See FigureA4-1.

With the concept of bit distance established, it is now possible to locate any bit in
the memory by its distance relative to, say, the leading bit of a reference full word.
In other words, a bit address can be defined as a pair of integers, the one on the left
giving the location of a full word, and the one on the right providing a bit distance from
the leading bit of the full word.

Frequently when bit addresses are presented for human scrutiny, a "point" is used
to separate the integers to enhance legibility, and leading zero bits are often suppressed.

Unless the choice of the reference full word is standardized, several different bit
addresses may refer to the same bit. This is actually desirable in programming, the
extra degree of freedom often can serve as a mnemonic aid.

56

W

If the reference full word is so chosen that it contains the bit in question, the bit
distance becomes the bit position within the full word. The resultant unambiguous nota-
tion shall be called the standard bit address. Since the 7030 full word has a 64 address-
able bits, the standard bit address is characterized by a bit distance part no higher than
63 e

The 7030 is designed to accommodate a maximum of 218 full words each of 26 pro-
grammable bits, and 18+6 = 24 bits suffice for the standard binary bit address. Its
octal equivalent has 6+2 = 8 octal digits, each of which corresponds to 3 consecutive bits.
The bit configuration is less explicit when other number radices a r e employed.

w

The standard bit address bears a strong relationship to machine function. For in-
stance, within the machine, references to the main memory and the index memory are
always in te rms of full words. The bit position part of the standard bit address is used
to select a field contained in one or two consecutive full words.

The following are examples of bit addresses and standard bit addresses in decimal
and octal radices. The last two entries in each line below are standard bit addresses.
Note the flpointft is not used as the conventional separator between integer and fraction,
and 3 . 4 = 3 . 0 4 # 3.40. See Figure A4-2.

(32657.400)lo = (77621.620)s = (77627.20)s = (32663.16)lo (bit 16 of word 32663).

(1.8160)10 = (1.17740)s = (200.40)s = (128.32)1o,(leading bit in second half of word 128).

A4.3 The Numeric Address Field in an Instruction

In the 7030 an operand is located by the standard bit address of the leading bit. The
nature of the instructions, however , imposes certain restrictions on the operands such
that their standard binary bit addresses frequently contain at least a predictable number
of trailing zeros. For example, floating-point operands must begin at a full word bound-
ary, and the last 6 bits in the standard binary bit address therefore must be zero. Sim-
ilarly a branch address must refer to the beginning of a full word or a half word, and
the last 5 bits in the standard bit address are zeros. The number of trailing zero bits
in variable field length instructions is, however , not predictable.

T o enhance the information content of 7030 instructions, the predictable trailing zero
bits are omitted from the instruction numeric address field, leaving more room for the
operation code.

The numeric address field in an instruction is therefore an abbreviation of the full-
scale (24 bit) numeric address. The size of the numeric address field is dependent on
the instruction class, as seen from bits 24 through 27 of the half-word containing the
address in question : (X stands for any value).

U'
57

I ,

) I I I I I I.1 I I I I I I R I I I I I I A I I I I I I I I 1 I I Dl I I 11 I I I I I B I I I I I I I I I

I

Distance relative to reference bit labelled R
for bit labelled A = 6 bits
for bit labelled B = 30 bits
for bit labelled C = -7 bits
for bit R itself = Obits

(Assumed positive, and i f in-
dexing i s specified, algebraically
add propar index field)

FIGURE A4-1, B I T DISTANCE

/beginning of &-bit full word of address 25.

b i t address for b i t labelled A i s 25.7)10 =_ 24.71) etc.
b i t address for bit labelled B i s 25. 13)10 - 24-77);;: etc.
b i t address for bit labelled R i s 25.0)10 = 24.64)10, etc.
b i t address for bit labelled C i s (in decimal)

25.0 - .3 = 24.0 + (.64 - .3) = 24.61 = 23.125,etc.

FIGURE A4-2. BIT ADDRESS

I Meaningful execution binary bit address (in standard binary b i t address form)
(24 bits) I

FIGURE A4-3. FROM NUMERIC ADDRESS FIELD TO EXECUTION ADDRESS
(DIAGRAMMATIC)

(Bits 24 through 27)

1000 24 bits (left address of full word instruction)
XXlO 18 bits (floating-point address; right address of T , SWAP)
Others 19 bits (mainly instruction arithmetic unit instructions)

The full-scale numeric address can be formed by right-appending a sufficient number
of zero bits to the numeric address field. Being an unsigned quantity, it is considered
positive whenever a sign is called for.

A4.4 Indexing

Most numeric addresses referred to by 7030 instructions could be modified through
indexing to produce effective addresses. Further, in variable field length (VFL) instruc-
tions the field length, byte size and offset could also be indexed producing the corres-
ponding effective quantities, A discussion of VFL indexing will be deferred to the next
section.

A (non-VFL) instruction may occupy a half word or two consecutive half words. Each
half word is indexed separately. The most common type of indexing is the I-type, in
which the last four bits (the I-field) af the half word provides indexing information. In
K-type indexing, as in CB, Bind and second half of BB instructions, the last bit (the
K-field) provides indexing information. A zero I- o r K-field specifies no indexing.
Otherwise the numeric contents of the fields indicate the index register to be used in
indexing. The index register $13, for instance, is designated by an I-field contents of
13. K-type indexing therefore implies either no indexing at all, o r indexing by means
of $1. No indexing is permitted for immediate index arithmetic instructions.

If no indexing is called for , the 24 bit unabbreviated numeric address, affixed with a
trailing zero sign bit, becomes the (25-bit) effective address. In the case of indexing,
the effective address is created by adding the (positive) numeric address to the proper
index value field. Overflow beyond the leading bit position is ignored.

The actual address meaningful to the execution of the instruction is never the full
effective address. The sign bit is invariably ignored, and only the leading 18, 19 or
24 bits are meaningful. The number of meaningful bits is usually the same as the size
of the numeric address field, although for LX, SX, Z , R , R C Z , T and SWAP only the
leading 18 bits in each half word are meaningful.

In the machine there is no execution address per se; the trailing bits of the effective
address are simply ignored, From a programming point of view it may be convenient
to define an execution address as the 24-bit quantity formed from the effective address
by first ignoring the sign bit then replacing the low order bits (if any) by zeros.

The entire process from numeric address field to execution address is summarized
in Figure A4-3.

It is noteworthy that the low order non-zero bits in a specified index field may in-
fluence the higher order bits of the effective address and hence the execution address.
This occurs only when the index value field is negative; the indexing action is then a
subt r a c ti on.

59

A4.5 Indexing VFL Instructions

In variable field length instructions (including logical connective instructions), every
instruction occupies two half-words, each with its own I-field. The use of the first (left)
I-field is dependent on the P-field (bits 32-34) in the second half-word, and the second
I-field is used to create effective offset, effective byte size and effective field length.

The numeric address field, as revealed by bits 24-27 of the VFL instruction, has 24
bits, Normal indexing by the f i rs t I-field is specified if P contains (0 0 0) ~ (direct ad-
dressing) o r (100) (immediate addressing). Otherwise progressive indexing is specfied:

000 direct addressing (standard indexing)
001 V+I (progressive indexing)
010 V +IC (progressive indexing)
011 V +IC R (pr ogr es s ive indexing)
100 immediate addressing (standard indexing)
101 V-I (progressive indexing)
110 V-IC (progressive indexing)
111 V-ICR (progressive indexing)

In progressive indexing, the effective address, hence the execution address is
completely furnished by the specified index value field. The numeric address field
plays no role for operand designation, but instead is used to increment (+) or decrement
(-) the designated index value field algebraically, in anticipation of the next application.
The counting and refilling (on zero count) processes can be induced by proper specifica-
tion. Progressive indexing with a zero I-field is not admissible.

An instruction with progressive indexing thus behaves like two consecutive instruc-
tions. The first is an arithmetical-logical instruction with effective address created
with a zero numeric address. The second is not unlike an immediate index arithmetic
instruction, with the numeric address modifying the specified value field. Note, how-
ever, that in regular immediate index arithmetic instructions, the numeric address field
is at the half word level, i. e. , has only 19 bits. In progressive indexing the index value
field is modified down to the bit level. Further, the index register needs only to be
specified once.

Example: The instruction

CT1101(BU, 25,3)(V+IC), 10.57($2)

behaves like the collection

CTllOl(BU, 25,3), 0($2)
(V+IC), $2,10.57

Another unusual feature in VFL instructions is the indexing of the second half-word.
In STRAP coding the second I-field is placed immediately after the offset, although in
general the field length and byte-size can be modified besides the offset.

The procedure is extemely similar to conventional address modification. The bits
24-27 of the second half-word specifies a 19-bit numeric "address" field. The latter
is extracted, assumed positive, appended by zeros, and added to the prescribed index

60

L

w

v a h e field to produce effective field length, byte-size and offset. There are two simple
departures from conventional indexing:

a. The P-field is pre-copied into a special register , and is therefore unaffected
by indexing. The "originalt1 P-field, however , does participate in the indexing action
and can affect the field length, byte-size and offset if the specified index register is
negative and large in magnitude.

b. The indexing of the second half-word precedes any index modification by pro-
gressive indexing. Thus if both the first and second I-fields refer to the same index
register in an instruction with progressive indexing, the unmodified index value field
will be used not only as the effective address, but also as the modifier of the second
half -word.

A4,, 6 Immediate Addressing, and Direct Addressing

The most common mode of operand specification by an instruction is the direct
addressing scheme, in which the execution address refers to the leading bit of the
operand. In branch type instructions the branch address refers to the leading bit of
the loading half-word of a new instruction sequence.

In the 7030, information transmittal to and from the main memory or index register
memory is in te rms of full words, and the leading 18 bits of the execution address have
particular significance. Bit position information is used for field selection in the arith-
metical details. Fo r VFL instructions the operand may overstep the memory word
boundary. This is automatically detected from field length specification during the initial
decoding, and the transmittal of two full words will be effected.

If the instruction specifies immediate addressing, the execution address is used as the
operand itself, and no memory data fetch is required. This feature is available in many
index arithmetic and VFL instructions not involving storing into memory. In the 7030,
immediate index arithmetic instructions do not possess indexable addresses; and while
the VFL immediate address is indexable in the normal manner, progressive indexing
with immediate addresses is not prescribed. This last is due to the fact that immediate
VFL instruction require one ((100)~) configuration of the P-field, and a progressive
indexing instruction requires another.

A4.7 Indirect Addressing, LVE, EX and EXIC

Indirect addressing is characterized by the fact that the execution address of an in-
struction may refer not to an operand, but to another address which enables the ultimate
location of the operand. An instruction with this property is a link in the operand loca-
tionfng chain.

It is possible to systematize the three modes of addressing in the 7030 in the following
manner:

a. An instruction or operand will be collectively designated as levels.

b. The levels are given a level count, The original instruction could be called
the zeroth level.

61

c. The level may contain the operand, and be the terminal level in the chain;
or it may contain the execution address of the (k+l)st level and be a propagation
level.

d. In immediate addressing, the zeroth level is the terminal level: the execu-
tion address serves a s the operand, the address of this operand is the address of
this zeroth level.

e. In the case of direct addressing the 1st level is the terminal level. The
execution address of the original instruction refers to the operand.

f . In the case of indirect addressing, there may be any number of propagation
levels each of which is identifiable by the computer. The terminal level is char-
acterized by the fact that it is a non-propagational member of the sequence of
levels.

In the 7030, three instructions a r e capable of indirect addressing:

a. Load value effective (LVE). The operand is the terminal level effective
address, to be loaded into the value field of the index register (specified by the J-
field) of the original instruction possibly for future address modification. Any LVE
instruction, regardless of J-field, may serve a s propagation level.

b. Execute (EX) and execute indirect and count (EXIC). The operand at the
terminal level is an instruction to be executed in its entirety without changing of
the instruction counter, The control of the machine is thus lent to the terminal
level. The level immediately referred to by an EXIC level is automatically a
propagation level, and in addition the numeric address field is increased by an
amount equal to the length of the next level (treated as an instruction), whether the
latter is a propagation level or not. Any EX or EXIC instruction may serve as
propagation level.

To avoid unending chaining of propagation levels, the following provision is made.
Whenever the instruction counter is found to have been unchanged for longer than one
millisecond (corresponding to several hundred propagation levels), the remaining part
of the LVE, EX and EXIC instructions will not be performed, and the $USA indicator
(unending sequence of addresses) will be turned on.

For EX and EXIC there is the additional danger of loss of program control. This is
resolved by the following devices:

a. If the execution of the instruction at the terminal level tends to alter the
instruction counter contents (as in a successful branch), the $EXE indicator
(execution exception) will be turned on.

b. Except for the fetching of the first pseudo-instruction counter level in EXIC,
which is subject to the usual restrictions, the interruption system will be active
for the duration of the EX and EXIC chain, whether the disabling of the interruption
system has been prescribed or not. All interruptible conditions will cause an

62

V

- Instruction

interruption when the chain is completed (i. e. , when the terminal level instruction is
executed) , terminated or suppressed. The temporary enabling of the interruption sys-
tem means that, among other things, address monitoring is in full force, and interrup-
tions can be caused by $EXE and $USA indicators.

Subfield Size

A4.8 Addressing in §TRAP Coding

Any of the following may appear in the address field of a STRAP-coded instruction:

a. A standard bit address (A. B , B S 63)
b. any bit address (C. D , D need not be less than 64)
c. an integer
d. symbolization of any of the above
e. simple functions of any of the above

During the assembly process whatever is in the address field is converted into standard
form suitable for the numeric address field of the (binary) machine instruction. The
existence of a variety of formats is clearly a burden for the assembler. It is also a
great convenience for the programmer

The STRAP assembler normally assumes a decimal radix. Any radices up to 16 are
permitted by specification in STRAP 11. For STRAP I the allowable radices are 2 through
10, and 16.

A4.8.1 Integer Addresses

The bit address equivalent of an integer address is decided by the environment, which
defines a subfield. The integer address is treated as an integer of the subfield (e.g. ,
the non-zero bit for the integer 1 would occupy the rightrnost position of the subfield).
Then the left margin of the subfield is placed in juxtaposition with the leading bit of the
address field, leading to a bit address identification.

Where the environment seems to suggest more than one subfield, as is frequently
so in immediate type instructions, the smallest one is to be adopted.

Floating point
VFL
most others
VI? L immediate
E k I, SHF
immediate index arith

Examples

at most 18 bits
at most 24 bits
at most 19 bits
at most the field length
11 bits +sign
at most the size of the field in question in the index register

SRT(N), 215 is equivalent to SRT(N) , 218.0
M f 1 (BUY 63, 8) ,17 M+l (BU, 63 ,8) , 0 .17
CBRH, $4,28 is equivalent to CBRH, $4 ,14 .0
C6, $3,13 C +, $3 , 6 a 32
E -(N),17 is equivalent to E -(N), 1 7 . 6
*I (BU,7 ,8) , 127 *I (BU,7,8) ,260096.0 ((127.0). 211=260096. 0)

is equivalent to

is equivalent to

is equivalent to

63

SHFR, 2
V+I, $3,13
C-I, $3,13

is equivalent to SHF, 320.0 ((5. 0)26 = 320.0).
is equivalent to V+I, $3 ,6 .32 (25 > 19)
is equivalent to C-I, $3 ,13 .0 (18< 19)

It is readily seen that integer addresses are extremely convenient for immediate
instructions, where the bit address equivalents are not only hard to obtain, but has no
mnemonic value whatever. In most floating-point instructions integer addresses and bit
addresses are almost identical in appearance , and the former could be considered as an
abbreviation of the latter. For other instructions integer addresses may be confused with
bit addresses with a missing llpoint, l 1 and their use may complicate the debugging process.

Note that all integers in STRAP coding a re considered to be integers of some subfield.
Integer addresses are distinguished only by the fact that more than one subfield is usually
present. The use of integers in the specification of count fields, offset fields, etc. , is
usually straighforward. In !‘parenthetical integer entry” the subfield size is explicitly
given, and the information “OR!’ed in.

A 4 . 8 . 2 Address Symbolization and Functions of Addresses

Either a bit address, or an integer, can be symbolized, i. e. , represented by a col-
lection of alphanumeric character s.

Simple functions of bit addresses , integers, symbolized bit addresses and symbolized
integers can represent an address. The latter can also be symbolized. This process
may be repeated a number of times in STRAP coding.

Some restrictions are given below:

a. In STRAP I no multiplication or division can be performed on any address
or symbolization thereof. This restriction is lifted in STRAP 11.

b. Any symbol must ultimately be definable in terms of bit address equivalents.

c. A flpointll placed in front of or behind a symbolized integer converts it into
a bit address; a ltpointll placed in front or behind a symbolized bit address, how-
ever, has no effect on the latter.

E.g., If M has been defined as 5 , and JOE has been defined as 817.35, then
. M = 0 . 5
M. = 5 . 0 . JOE = JOE. = 817.35
M. M = 5 . 5
JOE, JOE = 817.35 + 817.35 = 1634.70

d. During the assembly if the evaluation of the bit address equivalent of an
address yields a negative answer, it is replaced by its two’s complement, which
amounts to replacing the %it address!! -N by 262144.0 -N.

A 4 . 8 . 3 Associated Properties of a Symbolized Address

Aside from being a valuable mnemonic aid, symbolic addresses can supply missing
data. During STRAP assembly if the information regarding data description of the

64

operation code of an instruction is inadequate , the assembler may examine the defining
statement (s) for the symbolic address to f i l l in the details. If several symbolic addresses
are present, the r ightmost is examined first,

E. g.

Leads to +(D, 27,6) , DOG + CAT
+, DOG + CAT

CAT DD(D, 27,6), 32
DOG DD@U,12,7), 738

If the rightmost symbolic address possesses no meaningful data description , the
next-to-the-rightmost symbolic address will be used, and so on. If all symbolic
addresses are exhausted without a proper data description, STRAP will make the
following plausible guesses to produce a reasonable program.

a. E f I, E f SHFR, SHFL: assumed umormalized.
b. Other unambiguously floating-point instructions: assumed normalized.
c. If instruction can be interpreted as either VFL or floating-point, it will be

d. All VFL immediate instructions: assumed (BU, 24,8) .
e. All other VFL instructions: assumed (BU, 64,8) .

aswumed to be VFL.

65

A5. MACHINE HANDLING OF FLOATING POINT EXPONENT FLAGS IN THE 7030

A5.1 Exceptional F loating-Point Quantities

Exponent overflow and underflow occur only infrequently in most floating-point
computations. In machines of earlier design the "overflowed!' and %.nderflowedft
numbers have the appearance of normal quantities, and further operations tend to lead
to untraceable contamination of the results. The conventional way of circumventing this
difficulty is to test for the exceptional events from time to time.

Some machines now have a "floating t rap mode" feature which automatically interrupts
the normal instruction sequencing immediately after an exceptional event, without the
need for test instructions, A wide choice of interrupt conditions (XPFP, XPO, XPH,
XPL, XPU) is available on the 7030, enabling a firm control on the quantities used in
floating-point instructions. Interruption feature, however, tends to treat exceptional
events equally and is not capable of knowing the consequences of these events without
elaborate programming.

On the other hand, if the tloverflowedff or flunderflowedrf quantities, which are
responsible for the exceptional events, are themselves clearly labelled, if the numbers
contaminated by these labelled numbers a r e also labelled in a consistent manner, it
would be possible to perform an entire computation without any test instruction nor
interruption. In this scheme, drastic action would be not needed unless part of the re-
sults bear the !'exceptional quantity" label.

In the 7030 the exceptional number is labelled by a ffltl bit occupying the leftmost
(exponent flag) position of the exponent field. An exceptional number therefore appears
to be a number with an extremely large exponent magnitude. The consistent rules
governing the generation, propagation and disappearance of the exponent flag a re rem-
iniscent of algebraic operations involving infinite and infinitesimal quantities.

In the following EF represents the exponent flag, ES the exponent sign.

EF = 1 signifies a very large floating point exponent magnitude. If E F = 1, ES = 0,
the magnitude of the floating point number is extremely large (r_ 21023 - 10308), and
may be symbolized by 00 (XFP case).

If E F = 1, ES = 1, the magnitude of the floating point number is extremely small,
and may be symbolized by G (XFN case).

If EF = 0, the number is said to be normal, and will be represented by the symbol
N.

The sign bit @it 60) of the floating point number retains its normal meaning in all
cases.

The following scheme is designed to disallow the loss of EF bit due to irretrievable
overflows.

66

A5.2 Generation of Exceptional Quantities

Symbol

In floating point operations involving normal numbers only, EF behaves like an ex-
tension of the regular 10-bit exponent magnitude field, and will be turned on in the result
if the expected answer has an exponent either greater than 1024 or less than -1024. An
exponent overflow is said to have occurred in the former case, rendering $XPO = 1. In
the latter case an exponent underflow is said to have occurred, and $XPU will be set to
1. In D/, $RU may be set to 1. In either case, an exponent flag is said to be generated.

EF ES

Other operations will proceed normally for all generated EF cases except in the
following situations which might otherwise generate exponent overflow beyond EF;

a. Multiplications which lead to generated 8 results priQr to any normalization.
The normalization and noisy mode, if stated, will be suppressed. E+, E+I instruc-
tions behave like multiplications.

b. Divisions where prenormalization of the two operands yields an N and a
generated G . The quotient fraction is developed normally, but the quotient exponent
will be either that of E: (case of small dividend), or that of 1/8 (case of small divisor).

The following table gives the conditions and the apparent range of normal a s well as
exceptional numbers, when EF is imagined to be an extension of the exponent magnitude
field.

Condition of
FP Number

XFP, +
Normal, +
XFN, f

Normal, -
XFN, -

XFP, -

+ m
+ N
+ e
- 6
- N
-00

Fraction Apparent Range for I- Sign Normalized Fraction

A 5 . 3 Exceptional Number Arithmetic

In floating-point arithmetic involving numbers with EF = 1 the mathematical laws
concerning extremely large and extremely small numbers apply where the results are
unambiguous. If the outcome is indeterminate in a s t r ic t mathematical sense, the
ambiguity is resolved in the machine by the choice of 00, producing the most alarming
situation possible:

m + m = O O ; 00 * (f 00) = f 00; OO/ (f N) = f 00;
m k N =a; a3 *(f N) = zk 00; m/ (f 8) = f 00;
m f 8 =m; 8 * (A N) = &E:; 8 / (f a O) = f 8 ;

vi5 = 00;
fl = e

G A N = N ; G *(&e) = zt6; G / (k N) = & 8 ;
8+6 = (&)E:; k N / m = & e ;

AN/€! = & G O ;

67

The following are resolved ambiguous cases:

For details, see A5.8. Note that normal answers a r e obtained only by special E: + N
operations, and exponent overflows beyond the EF position which may yield harmless-
looking results are prevented from occurring.

A5.4 Propagation of Exponent Flag

In operations other than K, KMG, KMGR, and KR, if both the result and at least one
of the operands are in the 00 range, an "exponent flag positive" condition is said to have
been propagated, and $XPFP is set to 1. The propagation of 8 conditions does not lead
to special indicator settings.

A5.5 Comparison Involving Exceptional Quantities

All 00 are treated as equal in magnitude in K, KMG, and KR; all G are likewise
treated as equal in magnitude.

A5.6 Approximation of the True Floating Point Zero

The t rue floating point zero i s approximated by an 8 * If a floating point zero is
requested of STRAP, what appears to be 0 * 2-1024 will result f rom the compiling.

A5.7 The "Zero Multiply" Indicator

$ZM cannot be turned on if the result of the multiplication is 8 with zero fraction.

A5.8 Summary of Floating Point Arithmetic with Exceptional Operands
(Only Exponents are Shown in Equations Below.)

A5.8.1 Addition, Subtraction, Load, Store, and SLO. (Result may be N)

Fraction arithmetic: suppressed. Normalization and noisy mode: allowed only if
pre-normalized answer is normal.

#Whichever has the higher exponent; o r if the exponents are equal, whichever
is from the accumulator.

F+ behaves like NOP for accumulator being 00 or 8, since the memory fraction
is given the accumulator exponent.

68

LW-

V

A5.8.2 Multiplication, E+ and E+I, (Results Always a, or 8.)

Fraction arithmetic: allowed to proceed, Normalization and noisy mode: suppressed.

In *+, where accumulator does not contain operands, whichever is from
memory; otherwise whichever is from the accumulator.

A5.8.3 Division (Result Always m or 8 .)

Fraction arithmetic: allowed to proceed. Normalization and noisy mode: suppressed.
Operations involving 8 or 00 will be treated as unnormalized. Remainder: Exponent
same as that of dividend, no normalization allowed.

A5.8.4 Square Root. (Result Always 00 or 8 .)

Fraction arithmetic: allowed to proceed. Normalization and noisy mode: suppressed,

A5.8.5 Shift Fraction

Gand 00 behave normally, since the exponent is unaltered.

a

69

A6. NOISY MODE IN 7030 PROGRAMMING

A6.1 Purpose of Noisy Mode

The purpose of the noisy mode is to allow the 7030 to perform its own e r r o r analysis
in the crucial a rea of significance loss in normalized floating-point arithmetic.

Essentially the same computing algorithm for the solution of a problem can be
pursued twice on the machine, once in "normalr1 mode and once in noisy mode. During
the computation the low order fraction bits are affected differently in each case, the
difference being particularly noticeable on normalizing left shifts. When the results
a r e contrasted with each other, if the relative discrepancy is 2-n, then probably the
"normal" result has a relative e r r o r of 2k-n9 the odds being something like 2k to 1 in
favor of this interpretation (and against fortuitous agreement).

In the 7030 the noisy mode is activated only when the indicator bit $NM equals 1, and
only for normalized floating-point operations, When normalization i s suppressed due to
exponent flag conditions (see A6.6), noisy mode will be inoperative. For convenience,
we shall speak of the influence due to noisy mode a s noise.

A6.2 First Order Noise

An operand may be right-appended by 48 identical bits at the beginning of an opera-
tion, to produce a double-length fraction. We may call these "dff bits.

d = 1 if and only if

a. normalized operation is specified (and not suppressed).

c. the operand is one of the following:
b. $NM .=1;

1) an operand in (single) LOAD type instruction: L, LWF, LFT;
2) an operand in ST instruction (NOT SRD nor SLO);
3) the divisor in /, R/, and D/;
4) the dividend in / and R/;
5) the unshifted operand prior to arithmetic action in the following single

operations: +, M+, +MG, M+MG;K, KMG, KMGR, KR.

d = 0 otherwise.

The unshifted operand in operations described in (5) is the operand with the higher
exponent, or if the exponents are equal, the operand from the accumulator.

The d bits, being second order quantities, may influence the first order part (first
48 bits) of the result fraction through post-normalization and/or arithmetic action.
The minimum noticeable relative e r ro r due to d bits is T**; the maximum is just be-
low l /2.

We shall speak of first order noise a s one which can create a minimum noticeable
relative e r r o r in the first order part (the first 48 bits) of the result fraction, and de-
fine second order noise as one which creates a minimum noticeable relative e r r o r in
the second order part (the second 48 bits) of the (double-length) result fraction. In the
7030 computer the d bits produce only first order noise.

A6.3 Second Order Noise

When a double-length fraction undergoes left shift (in, for example, post-normaliza-
tion), the positions left vacant are filled in by another kind of identical bits. We shall
call them lldgll bits.

d2 = 1 if and only if

a. normalized operation is specified (and not suppressed);
b. $NM =l.

d2 = 0 otherwise.

In all operations save one, the d2 bits produce only second order noise. In the cases
where d and d2 are both present, the result fraction is invariably truncated to 48 bits,
revealing only the effect due to d bits.

It must be noted that second order noise is not necessarily small. The largest possi-
ble relative e r ro r caused by it is the same as that for first order noise, namely just
below 1/2. This occurs when a 96-bit fraction before post-normalization has all bits
equal to zero except the last bit. Ninety-five d2 bits will be shifted in.

A6.4 Machine Instruction and Noisy Mode

A6.7 shows the pertinent noisy mode features of floating-point operations.

It is noteworthy that all but one double operations possess second order noise. The
exception is D/, which has first order noise through divisor preshifting. On the other
hand, the “single1‘ operation * possess only second order noise. The operation *+ has a
second order noise if the preceding LFT operation did not introduce first order noise.

SRD and SRT are noiseless operations,

7

In SLO the low order fraction is left-appended by 48 high order zero bits to produce
a 96 bit fraction. This latter is then shifted left at least 48 places, shifting in dg bits.
Second order noise on the second order fraction thus behaves like first order noise on
an ordinary (single) fraction,

Noise in /, R/, and D/ is introduced in both the divisor (always by d bits) and the
dividend (d bits for /, R/; dg bits for D/). The quotient never needs further normalizing
left shifts and the normalization of the remainder is noiseless. First order noise in D/
is desirable if the quotient is to be single precision (say after a rounding operation), but
not if truly double precision quotient is required.

71

It is possible to produce noisy resul ts without any normalizing left-shifts not only
from divide-type operations, but in ADD-type operations as well. The 48 d bits may
simply create a car ry into bit 47 of the fraction during the addition process.

A6.5 Programming Significance

All digital computers have a finite word-length, In normalized floating -point opera-
tions the post-normalizing left shifts introduce bits through the right-boundary of the
fraction. With few exceptions (some to be mentioned below), the programmer has no
idea what these bits ought to be, and he is unwilling to or has no way to find out.

Shifting in all 1% as in noisy operations, very probably introduces e r rors . It is
almost equally probable that e r r o r s of a similar magnitude are introduced by the
alternative strategy of shifting in zeros. In either case bias is introduced.

The purpose of the noisy mode is to bias the results in a manner as opposite to
''normalf1 as possible for the digits known to have no numerical significance,yet without
destroying the digits valid for the particular machine instruction.

In computations involving integers and simple numbers, extremely frequently the
result fraction is known to be exact, to be followed by an infinite number of zero bits.
It should be evident that such exact answers can be corrupted by noisy mode. $NM
should be off, o r unnormalized operations should be prescribed.

In programmed double-and multiple-precision arithmetic, the addressed operand
may have one or more well-defined lower order part. The use of noisy mode amounts
to a redefinition of the lower order part, and extreme caution has to be applied, except
perhaps in dealing with the lowest-order fraction.

In programmed double-precision arithmetic second order noise is always permissible,
but first order noise should affect only the less significant part of the fraction. The use
of LFT(N) as a prelude to *+, and D/(N) for unnormalized first order operands thus
should be discouraged; it is much safer to employ the unnormalized counterparts to
these operations, It is easy to introduce second order noise through other operations
in the instruction sequence.

Under special circumstances, normal and noisy compare type operations may yield
different indicator settings (sometimes even for the same two numbers). The user of
floating point compare operations should know always that, except for the "exact" oper-
ations he is comparing numbers affected by e r ro r s , and due allowance must be made
for this, whether noisy mode is used o r not.

A6.6 Suppression of Normalization

In the great majority of cases normalization, if specified in an instruction, will
proceed, The exceptions occur only because of the appearance of exponent flag.

Normalization (and therefore noisy mode) will be suppressed in the following cases:

I

a. For instructions involving only one operand, if the operand prior to the
normalizing shift is either an 03 (XFP case) or an 8 (XFN case).

72

-w

b. For instruction with two operands, neither of them are a> o r G :

1) instructions of * type, if the product before normalization is an 8 .
2) instructions of / type, if the operands after prenormalization contain

one 8 and one N (i. e. , no exponent flag).
noisy mode in any way.)

(This case does not influence

The suppression of normalization in this category is to prevent the loss of EF due
to double underflow.

e. For instructions with two operands, at least one of which is either 00 or
8 : if the result is not an N before the post-normalization. The result is an N
only in the case of 8 3- N, and normalization here, if specified, will proceed.

w

3

73

A6.7 Summary of Behavior of Normalized Floating Point Instructions in Noisy Mode

Add Type Operations

+, M+, +MG,M+MG

L, LWF
ST
K, KMG, KMGR , KR

LFT
SRD
SLO

Multiply, Divide &
- Root

*
/, R/

SRT

Double Operations

D+, D+MG,F+
DL, DLWF
D*, *+
D/

Others

E+, E+I
SHF

Right-Appendage
by 48 d Bits
:prior to any f)

yes, on unshifted

Yes
Yes
yes, on unshifted

Yes
no
no

operand

operand

no
yes, both divisor

and dividend

no

no
no
no
yes, on divisor

preshift

Post -Shifting
into Bit 95 by
d2 Bits

no
no

74

yes (no effect)

yes(no effect)
yes (no effect)
(no post -shifting)

yes (no effect)
yes (no effect)
yes, before any

shifting

Yes
yes (no effect on

operands. No
post -left -shift
for quotient e)

yes (no effect)

Yes
Yes
Yes
yes, on dividend

preshift. No
post -left -shift
for quotient.
Yes (no effect)
on divisor pre
shift.

Yes
no

rder of Noise
nd Other
omments

. Has bearing on*+.
loiseless

Joi seless

!
!
! -. No additional noise

introduced in re-
mainer normaliza-
tion.

2
Noiseless

W

A7. MAJOR UNITS IN THE 7030

A7.1 Core Storage

"V

Six units of 16K extended words each for the Los Alamos configuration. Each ex-
tended word contains a fu l l word with 64 information bits, plus 8 error-check bits,

Controlled by the storage bus control unit (SBC) which aside from initiating all
accesses to main memory, also monitors the submitted addresses for "address invalid"
condition. The SBC has direct contact with the following units: storage units, exchange,
disk synchronizer kookahead and I-unit.

A7 . 2 Instruction Arithmetic Unit (I-unit)

Contains the instruction counter (IC), the 16 index registers ($0-$15), the time
clock ($TC) and interval timer ($IT), the "originals" of the index condition indicators
($XF, $XVLZ, $ W Z , $XLGZ, $XCZ, $XL, $XE, $XH), and many registers, circuits
needed for efficient decoding and execution of instructions.

Generates all instruction fetch requests on the basis of IC contents.

Develops effective addresses by adding the pertinent index value to the numerical
address of an instruction.

Generates arithmetic unit operand requests for Lookahead.

:Partially decodes arithmetic unit instructions and converts the latter into information
suitable for Lookahead processing, This information is then loaded into Lookahead.

Decodes and executes all index arithmetic instructions as well as the following: Z , R,
RCZ, EX, EXIC, T , SWAP, except that stores are performed with the help of Lookahead.
If non-I-unit operands are required for I-unit instructions, they will be fetched from the
SBC o r the Lookahead.

Decodes and executes the following f?.mcondi.tionallf branch instructions: B, BE, BD,
BR, BEW, CB, CBR and Bind for the index condition indicators. The complete execu-
tion of BB and Bind for non-index conditions, however, requires the assistance of the
Lookahead and the arithmetic unit .

Submits indicator conditions for the following indicators to Lookahead for updating
of the indicator register: $IT, $OP , $AD, (from SBC) $DS, $DF , $IF + index indi-
cators. These indicators plus a "conditional machine check" may lead to interruption
during the updating, Other I-unit generated indicators such as $IK, $TS are gated
directly to the indicator register.

Updates $TC and $IT every 1/1024 sec.

75

xs
SIT, BTC,
60 through

$15)

I
I
I
I I
1

I I 1
I ' I
I 1

I I I
1 1 ;

1Y L. R
1

A

Fetch request for instruction, !/

2Y L . R

(From (From
R) , L)

w - P ,

y + Service Request

X-
GLAR -

S BC

X
Adder

A
(I-Unit)

+ Service Request - -

(IAUC)
B

I- LA- =I Chkr

I t
l e o o

. 2
LAAR

OCC)

- .A0

.A 1

.A2 -

.A3

IC Buffer-

(Lookahead)

I

I
I
I

I
Decoder I SAU

$ LZC
C D - - $AOC -
$L . $R ,$SB ,

I

I
I

I F -

Decoder I PAU

(Arith Unit)

- $lND
[=(To Exchange)

$MASK dcpu -(To Disk Synchronizer)

I + $CPUS
(Interrupt System)

THE 7030 CENTRAL PROCESSING UNIT

A7.3 Lookahead (LA)

pr--

Contains four buffer levels, an address register (LMR) and five counters IAUC
(I-unit) , OCC (operand check), TBC (transfer bus into arithmetic unit), ABC (arithmetic
bus and interruption system) and SCC (store check).

When LAUC refers to a level, that level may accept I-unit loading, although the re-
quired operand may come later from SBC.

During OCC time the operand from SBC may be checked for e r ro r .
During TBC time the level contents may be shipped into arithmetic unit.
Iluring ABC time the interruption system is updated, and if no interruption, signal

During SCC time the store operand (if any) is checked and sent to SBC on the basis
is given to arithmetic unit for execution of instruction just loaded.

of the contents of LAAR.

Provides interlocks , plus close contact with the interruption system to ensure smooth,
autonomous and error-free operations of the various units in the computer.

A7.4 Interrupt System

Contains the indicator register ($IND) , the mask register ($MASK), also $CA and
$CPU. Has direct connections with I-unit, LA, arithmetic unit and the exchange units
to receive updated indicator information.

Interruption occurs if
a. system is enabled
b. a masked indicator bit is a 1

Interruption sequence
a. The leftmost masked indicator bit position (say 0. K) is noted,
b. I-unit is house-cleaned except the index storage.
c. LA house-cleaning is performed. Recovery information is shipped back

to the I-unit. This includes all index register recovery information and the
lfinterruptedll IC value.

d. Contents of $LA is fetched and added to K. 0.
e. Instruction beginning at the address C($IA) + M, 0 is fetched from SBC

without disturbing $IF indicator.
f. The "free" instruction is performed with all masked interruption conditions

enforced. This instruction may or may not alter IC in I-unit.
g. I-unit fetches new instructions on the basis of IC. Resumption of normal

operation.

A7 5 Execution Arithmetic Unit

Contains a parallel. arithmetic unit (PAU) for floating-point fraction operations as
well as all executed *, /, *+, and binary-decimal conversions.

Contains a serial arithmetic unit (SAU) for variable field length operations (except
*, / $ *+ and conversions), also for floating-point exponent arithmetic.

77

Receives instructions and operands from LA during TBC time for decoding and
execution.

Submits store operands to LA, arithmetic indicator bits to the interruption system
during ABC time.

Contains the following registers:
Accumulator ($L, $R) and sign byte register ($SB)
Buffer registers C , D
PAU buffer register F
Left zero counter ($LZC) and all ones counter ($AO@)

A7.6 Exchange

Contains 32 channels (32-63) for simultaneous 1-0 processing. Through adapters
each channel can be connected to 8 tape units or with one non-tape 1-0 unit. Each
channel is represented by one control word and two data words in the exchange storage.
The channels communicate with the exchange storage through a channel scanner.

Contains a main memory address register (MMAR) and a buffer register to com-
municate with the SBC.

Contains an interruption address register (IAR) which indicates the channel address
for the channel which has created an interrupt condition. Contains triggers t o indicate
the reason for interrupt: EOP, UK, EK, EE and CS. These triggers and IAR contents
are set until the interruption system accepts the conditions. When IAR is busy other
channels cannot use it to cause other interrupts.

Accepts 1-0 instructions from LA (two levels per instruction).

Fetches and stores control words and data words directly from SBC subject to
$AD restrictions, but not $DF and $DS as these are performed by the I-unit.

Communicates with 1-0 units (through adapters andchannel scanner) in 8-bit bytes,

Has its own clocking circuit (0.1 us/cycles) and ECC check bit generator-comparer.
Maximum word rate is 1 extended word/lOus for the entire exchange.

A7.7 Disk Synchronizer

Contains 32 channels (0-31) only one of which can be in operation at any given time.
Contains enough storage for one control word and one data word. Each channel can be
attached to one disk unit.

Disk word rate is one extended word/8 ps. No direct chaining of 1-0 control words
is permitted. Otherwise the disk synchronizer functions in much the same way as the
exchange.

78

W'

A8. LIST OF IMPORTANT REGISTERS IN THE 7030

A 8 . 1 I-Unit

w'

VY (64 bits + check bits)
2Y (64 bits + check bits)

Z (64 bits + check bits)
XS (17 words, each with 64

X (64 bits + check bits)
X-adder (32 + check bits)
W (18 bits + check bit)

Instruction buffer (even-addressed full words)
Instruction buff e r (odd -addr es s ed full words)

Instruction preparation and execution register
Index storage (contains locations 1.0, 16.0-31.0)

Iqdex data register (buffer register for XS)
Index adder (capable of 24-bit additions)
Work register serving miscellaneous functions in

(LVS address decoding; second operand address in VFL; refill and interruption

(Both 1Y and 2U may be used as I-unit operand buffer)

bits + check bits)

I-unit

address; count for T and SWAP)
IC (19 bits + check bits)
P (3 bits)

GLAR

Originals of $XF, $XVLZ, $XVZ, $XVGZ, $XCZ, $XL, $XE, $XH.

Instruct ion counter
(For the storage of P field when decoding VFL

instructions)
A left zeros counter for LVS instruction execution

(llgeometric load address register").

A8.2 I-Checker (Shared Between I-unit and Lookahead)

A8.3 Lookahead (LA)

Lookahead buffer levels, each has

Operand field (64 bits + checks)
Indicator bit field (15 bits)

Op code field (10 bits + check)

Instruction counter field
(19 bits + checks)

Plus
* these

bits

LAAR Lookahead address register (18 + check)
"LAAR Busy1' bit
If Store executed" bit
"Forward cycle required" bit
IC buffer (19 + checks)

1.

e

NOOP
WBC
LAOP
IC
INT
LC
LF
FF
DISC

no-op bit
word boundary crossover bit
LA op code bit
In s t r uc t ion counter bit
Internal fetch bit
Level checked bit
Level filled bit
"Forward fromt1 bit
Disconnect bit

Couiters: IAUC (Instruction-arithmetic unit counter). For LA loading from I-unit.
OCC
TBC
ABC

SCC

(Operand check counter). Fo r check of opnd arrived from SBC.
(Transfer bus counter). For loading of arithmetic. unit.
(Arithmetic bus counter). For interrupt system updating, internal

(Store check counter). For storing into main core storage.
opnd fetch.

79

A8.4 Interruption System

$IND Indicator register (64 bits)
$MASK Mask register (28 bits)
$CPU
$CA
Left zeros counter to handle interrupts.

Other CPU (19 bits + check bits)
Channel address register (7 bits + check)

A8.5 Arithmetic Unit

$L, $R
$SB
C,D
$LZC
$AOC
SAU Serial arithmetic unit

SAU decoder
SAU arithmetic-logical unit

PAU decoder
PAU arithmetic-logical unit:

Accumulator (each 64 + check bits)
Sign byte register (8 bits + check)
Operand buffer register (each 64 + check bits)
Left zeros counter (7 bits + check)
All ones counter (7 bits + check)

PAU Parallel arithmetic unit

PAU adder
PAU multiplier
(PAU) F-register (104 bits + check bits)

A8.6 Exchange

EM
EMAR

MMAR

Exchange storage (256 extended words each of 72 bits + 4 check bits)
Exchange memory address register (7 bits + check)
Word register (communicates with EM) (76 bits)
Main memory address register (18 + check bits). For dealing with

Buffer register (72 bits). To handle traffic with SBC
Interrupt address register (7 + check). Contains address of

interrupting channel
Interrupt triggers for 5 exchange interrupt conditions.
"Interrupt wait" bit to indicate if IAR is busy
Channel scanner for dealing with individual channels.
ECC generator and comparing circuits.

SBC

IAR

J

80

2/ 62: 2M-A G -84

