

EBm Reference Manual

704-709-7090 Programming Package

for the IBM 7030 Data Processing System

The program descriptions in this manual are considered pre-
liminary and subject to future revision. Revisions will reflect
changes in the programs and correction and clarification of de-
tails.

Strap-1 was produced by the Los Alamos Scientific Laboratory.
The chapter describing Strap-1 was prepared by IBM, but in-
cludes many descriptions and examples supplied by Los Alamos
personnel. The Simulator programs and write-up were pro-
duced by IBM.

Neither IBM nor Los Alamos guarantee the accuracy of the
Strap-1 and Simulator programs. Furthermore, neither IBM
nor Los Alamos assume any responsibility for e r r o r s resulting
from the use of these programs.

@ 1960 by International Business Machines Corporation

CONTENTS

STRAP-1 5

STRAPCODINGFORM 5
EXPRESSIONOFMACHINEINSTRUCTIONS 6
Symbolic Instruction Formats 6
Data Description (dds) 8
Mnemonics 9
Numbers and Symbols 9
Arithmetic Expressions 11
System Symbols 14
Variable-in-Number Field Format 16

PSEUDO-OPERATIONS 17
Pseudo-Operations that Create Storage Elements 17
Entry Mode in Data Definition Statements 19
The Form of D in a Data Definition Statement 23
Pseudo-Operations that Define Symbols 30
Pseudo-Operations that Give Directions to the Compiler 32

IBM 7030 SIMULATION SYSTEM 38

PROGRAMMER'S NOTES 38
Setting Up Input for Strap-1 39
Strap-1 Binary Output 39
Card Formats Accepted by the Simulator Loader 41
Preparing a Binary Deck for the Simulator 42
Input-Output Usage 43
Breakpoint Check-Out 44

OPERATOR'S NOTES 47
Copying Tape with the System Tape Editor 47

Simulating a 7030 Program 49
Summary of Sense Switch Settings 53
Summary of Stops 54

Assembly Using Strap-1 48

APPENDIX A; Strap-1 Mnemonics 56
APPENDIXB; Strap-1 Pseudo-Operations 59
APPENDIX C; Symbolic Descriptions and Mnemonics for lBM 7030 . biu
APPENDIX D; E r r o r Marks 68

S T R A P - 1

STRAP-1 is a symbolic programming system for the IBM 7030 which utilizes a 704 with
32,768 word capacity for assembly. It is a planned predecessor of Strap-2, a more
elaborate programming system for the 7030 which is to use the 7030 instead of the 704
for assembly. Because Strap-1 is a planned subset of Strap-2, the specifications de-
fined here are applicable to both Strap-l and Strap-2,

Strap-1 specifications are divided into three categories: Category 1 pertains to the
Strap coding form. In this category a form i s defined that conveniently allows for the
expression of both machine instructions and pseudo-instructions that direct the assem-
bler itself, Category 2 pertains to the expression of symbolic machine instructions.
In this category, definitions are made covering symbolic instruction formats, the fields
which make them up, and the various mnemonics, classes of symbols, and numbers
that may be used in fields. Category 3 pertains to the expression of the compiler's
pseudo-instructions. In this category pseudo-instruction mnemonics, formats, and
addresses are defined.

STRAP CODING FORM

The coding form is directly related to the instruction card form. Both have 80
columns and are divided into 4 fields. These four fields and their respective positions
are:

1
C L A S S

2 9
N A M E

I O 72
S T A T E M E N T

13 a0
I D E N T I F I C A T I O N

STRAP CODING FORM

The purpose of each field is:
1. Class (1 column): to identify the card format (binary, decimal, symbolic,

etc.).
2. Name (8 columns): to identify the statement.
3. Statement (63 columns): to express a machine instruction or a pseudo-

instruction.
4. Identification (8 columns): to identify the card.

Card identification (columns 73-80) is reproduced on the listing, but does not contribute
any information to the assembly program for translating instructions.

5

EXPRESSION OF MACHINE INSTRUCTIONS

Machine instructions a r e written symbolically on the coding form described previously.
They a r e usually entered one per line, according to a prescribed format that varies with
the type of instruction operation. The instructions are written with fixed mnemonic
operation codes.

Symbolic instructions a re divided into fields (operation, address, offset, etc.) by
commas, These fields may be stated within the general symbolic forms of the system,
and, when so stated, constitute symbolic expressions. The order and manner in which
such symbolic expressions a r e written in specifying the elements of any particular in-
struction a r e dictated by the symbolic instruction format; that is, a general type that
provides for the expression of a whole class of particular machine instructions. Major
fields may be further divided into subfields or modified by expressions contained in
parentheses, such as index register specifications, secondary operations in progres-
sive indexing, and so on.

1. A 11-0 double punch (;) is used to imply the end of a statement, so that multiple
statements may be written per line. The number of instructions that may be written on
one line is limited only by the number of columns available in the statement field of the
card. The symbol in the name field of a card having more than one instruction in the
statement' field is associated with the first instruction only. The remaining instructions
are treated as if they appeared on separate cards having blank name fields.

2. A single instruction cannot be continued from one card to another.

3. A comment may follow any instruction. A comment is initiated by the symbol
(an 8-4 double punch) and is terminated either by the end of the card or by a ; . Thus,
the character ; may never be used in a comment. A
whole card to be treated a s a comment; it will be printed on the listing but will not
otherwise affect the assembly.

in the name field causes the

SYMBOLIC INSTRUCTION FORMATS

Symbolic instructions a re entered in the statement field. Within this field, variable
length operation codes and address expressions a r e separated by commas and form ,

subfields. A variable length modifier to either an operation or an address i s enclosed
in parentheses and attached to the modified subfield. Blanks have no meaning in any
field except to indicate the spacing desired on the printed output listing. Blank cards
a re ignored. The twelve symbolic instruction formats for Strap-1 are:

Format Type Operation
1.
2.
3.
4.
5.
6.
7.
8.

Floating point
Miscellaneous , unconditional branch, SIC
Direct index arithmetic
Immediate index arithmetic
Count and branch
Indicator branch
VFL arithmetic, connect, convert
Progressive indexing

6

1

Format Type Ope rat ion
Swap, transmit full words 9. op, J, A18(I),A118(I') _ -

10. op, A24(I)tB19(K) Branch on bit
11. OP1 (OPz), A7(I), CW1 *(I1) Input -output
12. LVS, J, A, A' , A", A"', Load value with sum

Definitions of the above format symbols are:

1.
2,

3.
4.
5.

6.

7.
8.
9.

10.
11.
12.
13.

An
B19
r

K

OF7
dds
J

A7
cw18
LVS
primes

Primary instruction operation.
A secondary operation permitted only in progressive indexing

An 'hfl -bit data address.
A 19 -bit branch address.
A 4-bit ihdex address where (0) signifies no indexing and (1.)

and input -output.

to (15.) signifies indexing by the corresponding index
register.

tion by index register 1 (l.)are the only possibilities.
A 1-bit index address where no modification (0) o r modifica-

A 7-bit offset field.
Data description (see "Data Descriptionr1).
A 4-bit index address that refers to an index register as an

A 7-bit input-output channel address.
An 18-bit control word address.
Refers to one specific operation: Load Value with Sum
Used to distinguish otherwise identical fields in a format.

operand. Here (0) refers to index register 0, word 16.

There is a general right-to-left drop-out order for all fields separated by commas.
For example, a VFL instruction (format 7 above), for which the offset and its index
modifier are zero, i s written:

The comma is the major separator for the symbolic instruction types. If there a r e less
than the maximum number of major symbolic fields in a given instruction expression
(as indicated by the comma count), the instruction is compiled as if the missing fields .
contained zeros and had been added at the end of the statement. Such fields, whose
contents a r e implied in a standard way by the omission of any explicit specification, are
called null fields,
(indicated under "Data Description") of those subfields of a data description which ex-
press inode and byte size. Within a major field, a parenthesized subfield may be made
null by omission. Thus, in the VFL example above, if the main index designation were
to be zero but the offset and its index modifier (which in the hardware also modifies
field length and byte size) were both to be one, the instruction could be written:

A null field is always compiled as a zero, with the exception

OP, A, l(1.)

A major field may be null, even though other non-null fields follow it. Such is the case
if nothing but the comma denoting the field termination is written. Thus, in the example
just shown, if the offset and its modifier were both to be one but the principal address
a d its modifier were both to be zero, the instruction could be written:

7

DATA DESCRIPTION (dds)

The small letters "ddsfV enclosed in parentheses in the special instruction formats
stand for the data description field. This field i s established by specifying:

1, M use mode
2. L field length, and
3. BS byte size

These three entries appear in the above order within parentheses and are separated by
commas, thus: (My L, BS).

A data description given with any of the four data entry or data reservation pseudo-
operations (DD, DDI, SYN, and DR) i s attached to the symbol in the name field, and is
automatically invoked whenever that symbol appears in the principal address field of an
instruction. When a string of symbols is added in an address field, the last symbol
written is the one whose data properties control those of the instructions. When the
data description i s specified explicitly as a modifier to the operation code in the two
machine instruction formats where it applies (VFL and floating point), i t overrules any
other data description derived from a symbolic address. Thus, in straightforward
coding, it i s unnecessary to write a data description in machine operations.

A description of the method by which a data description may be attached to the symbol
that names a piece of data i s given under "Data Definition. V t

There are seven fixed use mode designators:
1. N Normalized Floating Point
2. U Unnormalized Floating Point
3. €3 Binary
4. BU Binary Unsigned
5. D Decimal
6. DU Decimal Unsigned
7, P Properties Mode

The mnemonic r?Ptr in the mode field of a data description has the following meaning:

(P, RIVER)

implies in an instruction that the data description associated with the symbol RIVER
is to be invoked as if it had been written out explicitly. Thus, in an instruction, the
dds of RIVER overrules anything implied by the symbol in the major address field.
The P mode can be used only with legal machine instructions, never with a pseudo-
operation.

Within a data description fie1d;the usual right-to-left drop-out order and null field
conventions hold (except, as indicated, that the mode field may not be null), so that a
data description may appear in any of the following four forms:

(M)
(M? L) Byte size is null
(M, , BS) Field length is null

Field length and byte size are null

(MY L, BS)

8

If the field length is null, a field length of 0 (effectively 64, except in the case of
immediate VFL operations, where it is 24) is compiled. If the byte size is null, the
compiled byte size is a function of the mode:

Mode Standard Bvte Size
D or DU
B
BU
N or U

4
1
8

Fixed format of 64 bits; field length
and byte size not appropriate.

Cases can arise from programmer e r r o r s in which a data description and an opera-
tion are not mutually consistent. In this case, the operation overrules. If there is no
way to obtain a data description from either the symbolic address o r an explicit data
description field, three cases arise:

1. The operation symbol can stand for either floating point o r VFL operations
(+, - 9 *, /). The operation is assembled as a VFL operation with data description
(BU, 64, 8).

2. The operation symbol can stand for a VFL operation only (M+l). It i s assigned
a data description (BU, 64, 8). If VFL immediate, (BUY 24, 8) is assigned.

3. The operation can stand for a floating point operation only (-A, *NA). The oper-
ation is assembled a s normalized floating point, except for E+ l and its modified
forms, which are made unnormalized unless overruled.

Aner ro r mark will be printed on the listing in any of these cases.
e r r o r flag "Mff in Appendix D.)

(See description of

MNEMONICS

A complete list of all machine mnemonics is included in Appendix A. Both operation
codes and system symbols are included in the list,

A complete list of Strap-1 pseudo-operation mnemonics is given in Appendix B.

NUMBERS AND SYMBOLS

Two different number systems, in general, run through the Strap-1 language: the
ordinary system of real numbers, and a bit-address numbering system. The ordinary
real numbers are restricted in all non-data fields to being integers. Real numbers that
are not integers may be entered as data, but they may not take part in arithmetic ex-
pressions nor may they be symbolized, so that the general forms of the language are
actually limited to integers and bit addresses.

A bit address i s a style of writing a machine address; it consists of a pair of integers
separated by a period, The integer to the left of the period specifies a word address,
and the integer to the right of the period specifies a bit address. Thus, 6.32 is the
decimal equivalent of either a 19- or 24-bit binary address specifying bit 32 of storage
location 6--the bit preceded by exactly six and one-half storage words. (Note that only
the presence of the period distinguishes a bit address from an integer.)

Example: 505,17 = 500.337 = 0.32337

9

A s the name "bit address" implies, the two integers are converted to and carried as
24-bit binary integers, such as a r e appropriate to the address fields of VFL instructions.
When used in the address field of an instruction for which a shorter address is appro-
priate, a bit address is truncated to the correct length and inserted. The location
counter contains a bit address. There is no limit on the size of the pair of inte ers in
a bit address except that 64 x word address portion + bit address portion = (2 E4 .

Thus, the address designation A(1) has two possible meanings:
1. If I is a bit address, then it designates an index word and is compiled in the

so-called I field.
2. If I is an integer, then an address equal to A plus I t imes the field length of A

is compiled.

A symbol is any sequence of six or fewer alphabetic and numeric characters con-

1. It contains only alphameric characters.
2. Its first character is specifically alphabetic.
3. It appears in the name field of an instruction, by virtue of which it is "defined"

and is assigned a value that is either a 24-bit binary address o r an integer, or
occasionally both.

forming to the following conditions:

A given symbol may appear in the name field only once, The name of an ordinary
machine instruction or data entry pseudo-operation is set equal to the value of the
assembly program location counter at the point of its appearance in the code.

Symbols that identify storage elements in the object program a r e automatically
assigned bit addresses that locate these storage elements. A symbol may, however, be
given the value of an integer through the use of a "synonym" pseudo-operation. Thus,
in general, both bit addresses and integers may be symbolized. The te rm "integer"
i s used to denote either an integral number or a symbol that takes on an integral value.

Symbols that name instructions themselves are automatically assigned data descrip-
tions. Specifically, instruction-naming symbols a r e given field lengths equal to the
lengths of the particular instructions named (either 32 or 64), and are defined as un-
signed binary with byte size 8.

A programmer symbolized field is a field that may contain programmer symbols
and/or system symbols. Of the fields shown in the instruction formats, all may con-
tain programmer symbols except the operation field and the mode field of a data
de s c r iption

Integers in programmer symbolized fields a re always converted to binary. They
a r e limited in length to the length of the field in which they a r e to be inserted. An
integer larger than 24 bits cannot be symbolized.

Bit addresses and symbols for bit addresses are intended primarily for use in
address fields of machine instructions. Integers and symbols for integers a r e intended
primarily for use in fields for which they seem more appropriate: counts, shifts,
field length, byte size, and so on.

10

ARITHMETIC EXPRESSIONS

Arithmetic expressions in Strap-1 may be composed of addition and/or subtraction
of any combination of symbols, integers, and bit addresses. Although integers and bit
addresses are generally used in different fields, algebraic addition of the two types of
numbers is defined; the result is a function of the type of field into which the sum is
to be inserted.

Integers add into all fields as integers; that is, the units digit adds into the low-
order position of the field. Symbols for both bit addresses and integers are signed
numbers, The number of additive operands in an arithmetic expression is limited only
by the space available on the card.

Example: SAM- JOE+ FRED- 72.386+5,

This example, where SAM and JOE are defined as bit addresses and FRED is an integer,
is, ingeneral, a legal address. The data description of the final symbol, FRED, applies
to the whole combination,

If the field for which the address is intended i s signed (for example, the value field
of XW o r VF), the sign will be placed in the correct bit and the true value will be
co mp i led .

If the final result is negative and the n-bit field for which it i s intended is unsigned,
a 2 's complement is formed and inserted, except in the case of EXT (L, L') where(L1
andIL1(are used. For example, in the case of the 7-bit offset field of a symbolic in-
struction, negative numbers may be used to describe the low-order position of the data
field in relation to the left rather than the right end of the accumulator. Thus, the 128
bits of the accumulator, proceding from left to right, bear the offset addresses f7127,
126,. . . .l, O f f o r , alternatively, of ??-l, -2,. . . . -127, -128. IT The programmer is re-
minded that a 2 's complement must be used with care on the 7030 in order not to cause
the address invalid indicator to be turned on.

A positive result is inserted as a true value.

Either an integer o r a bit address, or a combination of the two, may appear in any
programmer symbolized field with five restrictions :

1.
2.

3.

4.

5.

The fTI1f or "Kff index field must contain at least one bit address term.
The entries in an a r r ay specification must not contain any bit address terms.
In EXT (L, L'),(L, L') is not considered an array specification (See "Pseudo-
operations that Direct the Compiler" for a discussion of DR and the specifica-
tions of arrays) ,
A period may not appear in the field of a parenthetical integer entry. A bit
address appearing in such a field i s treated as a 24-bit integer. Fo r example,
V+I, (. 18) 4.32 is not allowed, but V+I, (. 18)9 is.
No arithmetic may appear in the name field, which i s reserved entirely for the
definition of symbols. Only one symbol per statement maybe defined in this manner.
Arithmetic expressions may not appear in the operation code part of the opera-
tion field, the mode subfield of the data description field or any entry mode
field. These exceptions are reserved for designations whose meanings to the
compiler are absolute and may not be symbolized.

11

Rules for Combining Integers and Bit Addresses

Rule: No truncation

The following rules describe the method by which bit addresses and integers a r e

1. The numbers are shifted with respect to each other by the proper amount. See
the following diagram.

2. The numbers are assumed to be signed 24-bit integers before the operation.
Addition is algebraic.

3. The result is complemented if necessary.
4. The result is truncated if necessary.
5. The result i s inserted into the correct position in the operation word,

truncated and added:

24 bits 1

Although the diagrams show the final sum truncated to the appropriate length, the
bits are not actually discarded unless they fall outside the address field of the instruc-
tion. Some operations do not use all of the space available in their address fields
(transmit, input-output select), and in these cases bits may be placed in the unused
portions,

v

a 24-bit field
counts bits

An e r r o r indication is given if non-zero bits are discarded when truncation occurs
(see explanation of "Vf* e r r o r flag in Appendix D), except in the case of index fields
where a ?'1" bit in the fifth position from the right(in the t'16f7 position) is discarded
without e r r o r indication.

24 bits

24 bits
I

Truncation occurs for particular fields in the following manner:

Rule: Leftmost 5 24 bits
bits and right-:-----
most 5 bits 1'5 bits1 19 bits

L----

1.

2.

3.

--__
5 bit;
----I

A24 Bit Address

Rule: Leftmost 6 and 24 bits
rightmost 6 bitsi------ I 6 bits 18 bits are truncated

6 bit;

---,,-I

A19 Half-Word Address 1 19 bits 5 bits

I 18 bits 16 bits A18 Full-Word Address

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

12

4.

5.

6.

7 .

8.

OF7 Offset

All* Signed 11-Bit Address I 24 bits 1

24 bits I

Rule: Leftmost 13 bits I 24 bits I

18 bits

a r e truncated from ,
the sum, Rightmost
11 bits plus sign are
placed in leftmost 1 2
bits of address field
of shift and Add Immediate
to Exponent instructions

Note: Integer counts number of bits in shift o r
number of bits to be added to exponent of
floating point word

I L -- -- - 13 - - bits'-] - -

6 bits

and rightmost G

Rule: Leftmost 17 bits of 24 bits I

24 bits

- - - - - - - - - - - - - - -
17 bits wl sum a r e truncated

Note: Integers count number 1
of bits of offset

Bit address 1.32 = .96 = integer 96

FL6 Field Length

Rule: Leftmost 18 bits
of sum a r e truncated

Note: Integers count length
of field in bits

Bit address 1 . 0 = .64 = 0 not

BS3 Byte Size

Rule: Leftmost 2 1 bits
of sum are truncated

Note: Integers count byte
size in bits

. 8 = 8 = 0 not e r ro r marked

I, J 4-Bit Index Fields

Rule:

Note:

24 bits

I 24 bits

e r ro r marked

1 24 bits I
I 24 bits I
1

I 2 1 bits 13 bits I

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

13

9. K Single Bit Index Field 1 18 bits I 6 bits Bit Address Term

and rightmost 6 24 bits

Rule:

Note:

Integer Term

10. A7 1-0 Left Effective Address 19 bits 5 bits

SYSTEM SYMBOLS

Bit Address Term

System symbols a r e symbols whose values a r e fixed in the compiler. They are
identified in programmer symbolized fields by the appearance of the special prefix
character $ (which, as one of the non-alphameric characters, can never appear in a
programmer symbol) , followed by five o r fewer alphabetic or numeric characters.
System symbols may appear in arithmetic expressions in programmer symbolized
fields where, in cases where restrictions apply, they can be considered the same as
numeric entries because their values are immediately available to the compiler.

Leftmost 17 and

All system symbols that represent the addresses of special registers in storage
($AOC, the All Ones Counter) or special bits in storage ($LC, the Lost Carry indicator)
a r e bit addresses. All others a r e integers or real numbers.

24 bits Integer Term

The appearance of the $ character alone makes for a special system symbol that
provides a standardized substitute in place of a name for the current statement. That
i s , the character $ is a bit address which, in any particular statement where it appears,
functions as if it had been defined by being written in the name field of that statement,
Because it represents the value of the location counter when the instruction is encounter-
ed by the compiler (if the instruction actually compiles space in the program), the
appearance of the $ as follows:

B, $-2.

means "Branch to the instruction which begins two full words before this branch in-
struction. ? ? In another illustration:

B, $+. 32

the meaning is "Branch to the next instruction. I t , effectively a ??no operation. f f

Another special use of the $ character i s to prefix any operation code in this manner;
This directs the compiler to suppress any e r ro r indications that arise in con- $OP.

nection with the compilation of this statement.

14

The system symbols are:

1. Index Registers

$0 through $15, identical to $XO through $X15, represent index registers 0 through
1 5 , addresses 1 6 . 0 through 31 .0 in storage. For example, $5 (or $X5) will be cor-
rectly replaced by the index field 5 if it appears in an I or J field, or by the address
21 .0 if it appears in an address field.

2. Special Registers

The mnemonics for the system symbols that stand for special registers in the 7030
a r e listed below with the bit address and name for each.

Bit Address Mne m oni c
0.0
1 . 0
1 . 2 8
2 .0
3 . 0
3.32
3 .57
4 .32
5.12
6. 0
7. 17
7.44
8 . 0
9 . 0

10.0
1 1 . 0
12 .20
13 .0
1 4 . 0
15.0

Name
Word number zero
Interval t imer
Time clock
Interrupti on addr e s s
Upper boundary
Lower boundary
Boundary control
Maintenance bits
Channel address
Other CPU
Left zeros count
Al l ones count
Left half of accumulator
Right half of accumulator
Sign byte
Indicator register
Mask
Remainder register
Factor register
T ran s it re gi s t e r

3. Indicator Bits

The symbol for any indicator bit may be prefixed with a dollar sign and placed in a
programmer symbolized field, where it will represent the correct bit address in word
11. Note that when the indicator symbols are inserted in the "branch on indicator"
instructions, the dollar sign prefix i s omitted. System symbols for indicator bits a r e
listed in Appendix A.

4. Input-Output Addresses

Since the actual numeric addresses which are to identify particular 1-0 units and
channels may be chosen arbitrarily, system symbols that represent integers are pro-
vided for use in addressing 1-0 equipment. The numeric values of members of this
set of system symbols, unlike the values of all other system symbols, may vary from

15

one installation to another in order that RDR, for example, may represent the card
reader channel address independently of what that address, in any particular installa-
tion, may be. 1-0 system symbols are:

Symbol Meaning
$PCH Punch (Channel Address)
$PRT Printer (Channel Addr e s s)
$RDR Reader (Channel Addre s s)
$DISK Disk Unit (Channel Address)

Note: The a r c s of a disk may be addressed
by any legal symbolic integer expression
evaluated modulo 212 to assure a valid
a r c address.

$CNSL Console (Channel or Unit Address)
$TCl,TC2,. . $TCK Tape Channels 0 , 1,. . . , K

If more than one punch, printer, console o r any other input-output unit is attached to
the machine, the same numbering system used in channel and tape addresses is adopted,
where $CONSL=$CONSLO, and so on. Thus, one may have $PRTO, $PRT1, $PRT2,
etc.

At each installation's option, some system symbols representing equipment not
included in the particular system at hand may elicit e r r o r flags in the listings.

5. Mathematical Constants

Four mathematical constants, useful in many scientific and engineering problems,
can be represented by system symbols, The four system symbols and their real
number values are:

Symbol Mathematical Constant
$E e
$M k 1 0 e
$N loge2
$PI ??-

These four symbols can be used only in the data field of a DD statement using normal-
ized floating-point mode. All of the system symbols in classes 1, 2, and 3 are bit
addresses and a r e assigned standard data descriptions with mode binary unsigned, byte
size 8, and a field length equal to the length of the register (or bit, in which case BS=l).

VARIABLE -IN-NUMBER FIELD .FORMAT

The Load Value with Sum (LVS) instruction may be written with a variable number
of address fields, each of which actually picks out a single bit position within the LVS
address field itself. For an LVS order, each address field may specify one of index
registers 0 through 15. These fields are evaluated exactly as if they were regular
index designator fields, so that index addresses may be specified in t e rms of either
bit addresses or integers in the usual manner.

16

PSEUDO-OPERATIONS

In this section are itemized a number of operation codes provided for purposes of
defining data and controlling and directing the assembly process itself. Because these
codes do not directly produce machine instructions in the object program, the functions
which they do trigger are referred to as "pseudo-operations.

The pseudo-operations are grouped according to class. There a r e two main classes
of pseudo- operations:

1. Those that create storage elements.
2. Those that control the assembly process.

a. Those that define symbols by assigning values that appear in the
variable fields.

b. Those that give directions to the compiler.

The name field of all pseudo-operations that neither create storage elements nor
define symbols is ignored, with the exception of CNOP (see "Pseudo-Operations that
Direct the Compiler").

PSEUDO-OPERATIONS THAT CREATE STORAGE ELEMENTS

The following provide the basic means for defining and entering generalized data in
the Strap-1 language:

Mnemonic
1. DD

Name Usage
''DATA DEFINITION" (EM) DD (dds), D, D', D", . . .

Where the bracketed dds is a
data description prescribing the
meaning of all succeeding numbers (D).
The numbers D are compiled in
consecutive fields and any symbol
appearing in the name field of the
DD statement applies to the first
such field.

The use of the pseudo-operation DD enables the programmer to enter data into a pro-
gram in a variety of forms, Among the possibilities that exist are:

a. Decimal to floating binary conversion, either normalized or unnormalized.
b. Conversion of decimal fraction to binary fraction in fixed point.
c. Integer to integer conversion from any of the radices 2 through 1 0 and 1 6

to a radix of either 2 or 10.
d. Conversion of alphabetic information to binary coded form.

In the general form illustrated above, the field symbolized by (EM) represents the
entry mode, a field which supplies information about the form in which data appear
on the card (see "Entry Mode in Data Definition Statements").

The data description (dds) i s identical in form and content to that described under
"Data Description;" that is, to the data description that may be used when writing an
individual instruction (except that the rlPrt mode is not permitted in this o r any other
pseudo-operation). Thus, a data description may be given with a number at the point of
definition of the number itself, o r may be given at the point of reference as part of an

17

instruction referring to the number. The relationship between these two different points
of possible definition is as follows:

When the data description is given by a DD statement(or other data defining operation),
the description is invoked whenever the symbol appearing in the name field of the DD
statement is used in the principal address field of an instruction, The instruction mode
and--in the case of a VFL order--the field length and byte size are supplied by this data
description, which is logically affixed to the name of the DD statement.

Such a description set down at the point of symbol definition i s overruled by a descrip-
tion appearing in an instruction referring to the symbol. Whenever an overruling de-
scription appears in the data description field of an instruction, the entire description
which was given at the point of definition of the address symbol i s overruled, Thus,
the statement:

O P (BU), JOE

causes the binary and unsigned modifiers to be compiled along with animplicitly defined
field length of 64 and a byte size of 8, regardless of the description occurring in the
statement in which JOE appeared in the name field. Overruling is strictly local and
applies only to the instruction at hand.

If symbols are used in defining either the field length o r byte size subfields of a DD
statement's data description, the symbols must be fully defined when the compiler en-
counters the DD statement on the second pass. This requirement is not imposed on the
data description of an instruction because, in that instance, no assignment of storage
space is dependent on the contents of the subfields.

The address fields,D, D1, D", etc. are all equivalent t o each other. They are
compiled sequentially as separate pieces of data, each having the data description speci-
fied, but the name specified in the name field is attached only to the f i rs t piece of data,
The effect produced is exactly the same as if the entry mode, operation, and data
description were repeated on separate cards with only one D field per card and blank
name fields. If one wishes to name the separate entries D, D f , D r y , etc. , it is neces-
sary to punch each one on a separate card with its own name.

Programmer symbols may not appear in the main body of a D field; various letters in
the main body of a D field have fixed meanings not subject to programmer control.

2. xw "INDEX WORD" XW, VALUE, COUNT, REFILL, FLAG

The location counter is rounded to the next full word. The contents of the four
symbolic fields following the operation are converted and compiled in aa index word
format. FLAG denotes the machine field comprised of bits 25, 26, and 27. An ex-
pression in the flag field of an XW statement is therefore evaluated modulo z 3 . The
octal integer 4 written in the flag field turns on the index flag in the index word being
compiled.

NOTE: Bit 24 of the word format is taken to be the VALUE sign position, A nega-
tive sign is interpreted in two's complement form in theusualway for all other fields,

3. VF "VALUE FIELD" VF, VALUE

The location counter is rounded to the next half word. The contents of VALUE are
compiled as a 24-bit plus sign quantity in positions 0-24 of the next half word. The
location counter stands at bit 25 at the end of the operation.

18

4. CF "COUNT FIELD'? C F , COUNT

The location counter is rounded to the next half word. The contents of the count
field are compiled as an 18-bit integer in positions 0-17.
at.bit 18 at the end of the operation.

The location counter stands

5. RF "REFILL FIELD" RF, REFILL

This pseudo-operation is the same as CF, except Refill i s substituted for Count.

NOTE: The last four operations (the index word pseudo-operations) defined above
are given data descriptions by the compiler, as though they had been defined by DD
statements. Specifically, the index elements created by these orders have had the
following data descriptions affixed automatically, and cannot be overruled in the
pseudo -ope rat ion statement :

Ope rat ion
xw
VF
C F or RF

6. CW '?CONTROL WORD" CW(OP), ADDRESS, COUNT,
CHAIN ADDRESS

The pseudo-operation CW employs a special symbolic format as illustrated above
and defined initially under '!Symbolic Instruction Formats. I ' A set of secondary oper-
ations is provided-- whose members are expressed as parenthesized secondary oper-
ations in the manner of (OP) above--for the purpose of providing mnemonics for control
word functions:

CR f'Count Within Record"
CCR "Chain Counts Within Record"
CD "Count Disregarding Record"
CDSC "Count Disregarding Record,

Skip, and Chain"
SCR flSkip, Count Within Record"
SCCR "Skip, Chain Counts Within

SCD "Skip, Count, Disregarding

SCDSC "Skip, Count, Disregarding

Record"

Record"

Record, Skip and Chain"

Multiple Bit
0
0
1

1
0

0

1

1

Chain Bit
0
1
0

1
0

1

0

1

Skip Flag
0
0
0

0
1

1

1

1

The location counter i s rounded up to insure that the control word compiled will be-
gin at a full word address. CW is assigned a data description of (BU, 64, 8).

ENTRY MODE IN DATA DEFINITION STATEMENTS

The data description field represents a kind of generalized use mode for the data,
in that properties specified in this field are translated into bits and numbers that are
compiled into machine instructions referring to the data. A corresponding field called

19

the entry mode is available to specify properties which describe the source language
information and its form, but which a r e not themselves compiled into the object pro-
gram.

The entry mode may be employed in one of three ways.

Statement Entry Mode (EM) DD (dds), D, DI, D",. . .
An entry mode may be used to specify the properties of all data in a DD o r DDI

statement, When used in this fashion, it is enclosed in parentheses and appears before
the DD o r DDI operation code in the operation field. The mode is more general in form
in its usage in connection with the data of a DD or DDI statement, as it may in this
instance--but only in this instance--designate that alphabetic information is to be com-
piled. The two entry modes that may only appear as statement entry modes--that is,
immediately before the operation code (of a DD o r DDI statement)--are:

(Ax) Alphabetic Conversion (AQ) DD (BUY 60, 6) , DO NOT PANIC Q

The card code characters beginning with the one after the comma which terminates
the operation field a r e converted to IBM tape BCD until the character "xfv is reached.
The end-of-statement character is not itself compiled. (Note that tape BCD is different
from internal 704 BCD.) Blanks occurring within the field to be converted are retained
and stored correctly. The characters a r e counted by Strap-1 and the location counter
is properly advanced.

The byte size of converted characters may range from 1 through 1 2 in a DD state-
ment, o r 4 through 12 in a DDI statement, and is specified by the dds. Leading zeros
a r e inserted for each byte where BS > 6 ; leading bits a r e truncated from eachbyte where
BS <6. The byte size compiled in an operation referring to the data is set to either the
specified byte size or 8, whichever is smaller.

The statement terminating character r r ~ l v may be any legal card code character
except:

)

; (11-0)
(8-4)

blank

Only one D field is allowed per statement.

(IQSx) Inquiry Station Conversion

The IQS entry mode operates in exactly the same fashion as the alphabetic entry
mode, except that card code characters a r e converted to the 7-bit inquiry station code.
Therefore, leading zeros a r e inserted where BS > 7, and leading bits a r e truncated
where BS (7.

Although the IQS code includes a large number of special characters, Strap-1 is
limited to those which can be entered by means of IBM off-line card and tape equipment.

20

Statement or Field Entry Modes

Some entry modes may be used either to specify the properties of all fields of a
statement or to specify the properties of a specific field or fields in a statement. State-
ment entry modes and field entry modes may both appeal- in the same statement, When
contradictory properties (for instance, two different radices) a r e implied by the state-
ment and field entry modes, the field entry mode overrules for the case of the particular
field on hand. Entry modes may not appear in a manner that causes parentheses within
parentheses.

(Fn): The entry mode (Fn) implies that the data which follow a r e written in the
decimal radix, a r e to be converted to binary, and may include a decimal fraction por-
tion that is to be converted to a binary fraction of length n bits.

The "n" symbolizes a decimal integer that specifies the number of fractional bits
desired to the right of the binary point when the number or numbers which follow are
converted. (Fn) appears in DD or DDI binary mode statements only,

Radix Specifications: In any programmer symbolized field not enclosed by paren-
theses, numerical integers and bit addresses may be written in any radix from 2 through
10, or 16, The radix is specified by enclosing the appropriate integer, written in deci-
mal, in parentheses at some appropriate point in the subfield. (Usually, but not always
the radix specifier is the first item to appear in the subfield.) The radix applies to the
entire subfield unless it i s reset before reaching the end, If no radix is specified, the
base 10 is assumed. If used a s a statement entry mode, the radix specified applies to
the entire statement unless individual fields contain their own radix specifier , in which
case the field entry mode overrules the statement entry mode for that field only,

In the case of data entry, the radix specifier can be used with integers only; a
decimal point or floating point notation implies a radix of 10. The entry mode radix
specifies the radix in which an integer i s written on the card, but says nothing about
the one to which it is converted.

Some examples of the use of the radix specifier are:

1. (8)573 - 34+50 (all numbers a r e in octal)
2.
3.

(2) 11011011100011.111100 (bit address written in binary)
(5) SAM - 342 (the symbol SAM is not affected by the radix, having been

previously converted to binary. The integer 342 is written
in the number system of the base 5.)

4. (8)7436. (10)60+9 (the full word portion of this bit address is written in octal,
whereas the bit address portion and the integer 9 a r e written
in decimal.)

5. (2)DD(B, 16 , 8), (10)-972, 111011110 (the f i rs t D field i s written in decimal,
the second one is in binary)

Field Entry Mode--Parenthetical Integer Entry

Y

One entry mode in Strap-1 may never appear a s a statement entry mode. By means
of the parenthetical integer entry, any integer or pattern of bits may be stored in any
position of an instruction o r data entry field. The general format for this entry mode
is:

(a n) An+l

21

The symbol . n represents the bit address of the rightmost bit of the field into which
the-integer is to be entered. The integer An+1 is formed as an unsigned n+l-bit field
and added into the addressed instruction o r data field by means of a logical OR into the
leftmost n+l bits.

The parenthetical integer entry i s made by means of a logical OR s o that it may be
combined with other fields of the statement or other parenthetical OR fields. The f i rs t
bit of the statement is counted as bit 0. Although the parenthetical field may cross field
lines within a statement, it may not cross statement lines. Thus, if the bit address is
specified as !I. nf l , the parenthetical expression has a field length of n+l and is evaluated
modulo Zn+'. All parenthetical fields are regarded as unsigned, so that a negative
number i s compiled as the complement, r e Z n + l , of the magnitude of the number.

This entry mode cannot be used in pseudo-operations that give instructions to the
compiler (SLC, END).
storage.
symbolized field (or in place of such a field) which is not enclosed in parentheses. Thus,
F L and BS may not contain a parenthetical entry.

This mode must appear in a statement that compiles space in
It is a modification that may be appended to a n y D field or to any programmer

In the case of an instruction, the position of the entry i s determined by counting the
bits of the whole instruction field, no matter in which subfield the integer entry may be
appended. For example, in a VFL instruction SO modified, OP, A24(I)(. n)An+l, OF7
is exactly the equivalent of OP, A24(I), OF7(.n)An+1. In the case of a DD pseudo-
operation, the position of the parenthetical field is determined by counting bits of the D
field in which it appears; i. e. , from the previous comma forward. In any case, the
integer entry must follow all other information in the field or subfield in which it appears,
except for another parenthetical entry.

Although one entry could be made to serve in any single instruction, it is more con-
venient to write several different integer entry specifications when one wishes to place
numbers in various positions in an instruction. Therefore, no limit is set on the number
of consecutive entries which can be written together, except as imposed by the length
of the statement field on the card.

Because the parenthetical entry i s not permitted to cross statement lines, I ! . nrl
must be less than or equal to 31 in a half word instruction, and less than or equal to 63
in a full word instruction.

Example: E+I, (. 8) 41 The integer 41 will be converted to binary and OR'ed
into the leftmost 9 bits of the E+I instruction.

Radix designators a r e permitted in parenthetical OR fields, separated by commas
from the bit address designation, and the two may be in any order. Thus, (. 32,8) or
(8, .32) signifies an octal field to be terminated at bit 32.

Parenthetical expressions may contain anything that goes in a normal address field
(except periods), but may not have other information such as real numbers or alphabetic
characters which a r e permitted in a DD or DDI statement. A data description associated
with a symbol appearing in a parenthetical field has no effect in this usage of the symbol.
A l l numbers appearing in a parenthetical field a r e converted to an internal binary for-
mat, never to decimal or floating point,

22

Example:
1.
2.

(. 50,8)17 - JOE + (10)4203(4, .22) - 33303(. 60)1030
(7)(. 30)1265(. 20)(10)138 - (6)43 (. 10)553

Note that the radix does not have to be specified with the .n, If no radix is specified,
the current operative radix is continued; i t is not reset to 10, It is understood to be 10
if no radix has been previously specified in the field to which the general parenthetical
integer entry is appended.

The radices which apply in the above examples are:

Example Number Radix
1 17 8

JOE
4203
33303
1030
1265
138
43
553

does not apply
10
4
4
7

1 0
6
6

All numbers that appear within parentheses are interpreted a s decimal numbers.

THE FORM OF D IN A DATA DEFINITION STATEMENT

All data fall under the category of one of the six use modes of the data description
field: N, U, B, BUY D, DU. The numbers D, D 1 , D",. , . a r e expressed in the general
form:

f X X ... x.x...x
Decimal numbers a r e a special case; they may be written in fixed or floating point

form, with or without a decimal point. The general form is:

f XX.. . X.X. XEfYYY

In this form E means that the number which precedes it is multiplied b 10 raised to
the power which follows it. That is, 572.34E - 57 means 572.34 x
facilities for specifying an exponent "Eil' a r e provided in the sense that the decimal
point in the number itself also indicates a decimal exponent. If no decimal point is
written, the number is assumed to be an integer. Thus, par ts of the general form that
a r e not necessary for writing a number may be omitted.

Overlapping

a. fXXX integer
b. fXXX.XX decimal fraction
c. fXXXEkYYY integer t imes power of 1 0
d. fXXX. XXEhYYY decimal fraction t imes power of 1 0

A plus sign is understood if no sign i s specified. The decimal point may be in any
position in the number. The portion of the number above symbolized by X is limited
in length to 15 digits; that symbolized by Y is restricted to a length of 3 digits (recall
that floating point numbers in the 7030 are limited to a range of 10308 to

23

Data entries may have other quantities following them which are identified and sep-
arated from the main number by declension characters. The declension characters,
which are used for the insertion of specific fields, are:

1. Sign Byte Entry--Si

The letter S i s used to enter information into the sign byte of data. The letter i
represents an octal integer which i s evaluated and OR'ed in with any sign byte previously
calculated. Thus, if either the sign of the main number o r i implies a negative sign bit
in the sign byte, the sign byte sign position is made negative.

The sign byte generated depends on the byte size in accordance with the following
table:

Byte Size Sign Byte
1 S
2 ST
3 STU Z = zone bit
4 STUV S = sign bit
5 ZSTUV
6 ZZSTUV ") flag bits
7 ZZZSTUV V
8 Z Z Z Z STUV

In a data definition statement where byte size 1 i s specified, using sign byte entry S1
yields a negative sign, whereas if byte size 4 had been specified, S10 would yield a
negative sign with zero flag bits.

2. Exponent Entry--Xi

The letter rrX7r may be used to enter any arbitrary information into the exponent of a
floating point word. The decimal integer i is compiled as the machine exponent of a
floating point number.
completely eradicated by the replacement process.

It overrules and replaces the computed exponent, which is

Rules for Entering Data

The legal formats for entering data can be classified according to the use mode
written in the data description field of the DD statement. In general, an element listed
in the general format may be omitted if it is not needed to specify the data.

The data entries in a DD statement are restricted to real numbers. Bit addresses
are not permitted. Integers are allowed as a special case of real numbers, but they
may not be symbolized.

Floating point data are always compiled in addressable full-words; the location
counter is rounded up, if necessary, to the next full-word address in order to accom-
plish this. This is an example of a general Strap-1 principle: a machine format that
ordinarily depends in use on the fact that the 24-bit address of the lead bit ends in a
string of zeros of some definite length causes the compiler to round the location counter
appropriately . Thus:

1. Instructions always start at either half- o r full-word bit addresses.
2. Indexing full- and half-word storage formats are forced to begin at full- and

half -word addresses, respectively.

24

3. A floating point data block being reserved through use of a DR operation code
(defined in "Pseudo-Operations That Direct the Compiler") is forced to begin at
a full-word address. Moreover, when a field from an instruction format requires
the truncation of the rightmost bits before compilation, a warning indication is
given if significant bits are truncated (which can occur if an instruction addresses
a format other than its natural one; e. g . , if a floating point instruction addresses
a VF L data element).

Normalized Floating Point

Format: Name I DD(N), fxx' xx. x' xxEhyyySn

The decimal number is converted to a normalized floating binary number consisting
of an 11-bit signed exponent, a 48-bit fraction, and a 4-bit sign byte. If no sign byte
has been entered by means of an S, the sign preceding the number is used with the flag
bits set to zero. If a different binary exponent is desired, it can be entered following
an X, a s follows:

Format: Name DD(N), fxx'

Examples :
a. DD(N), 54.73 E 4

54.73 x l o 4 is converted
the flag bits are zero (i,

xx. x' xxEkyyySnXzzz

to floating binary. The sign bit is zero (= plus), and
e. entire sign byte is zero).

b. DD(N), -54.73 E 4, or DD(N), 54.73 E 4 S 1 0
In this case the sign bit is set to one (negative) and the flag bits a r e zero.

The sign bit is one, since the number is negative, and flag bits T and V a re
one. U is zero.

This example illustrates the multiple entry feature. This single DD state-
ment compiles four 64-bit floating point words and advances the location
count e r according 1 y .

C. DD(N), -54.73 E 4 S 5

d. DD(N), 1, 3E-5, -45.7, 12 S 17

In normalized floating point a special feature is available for use in any D field,
making the entry of rational fractions and certain irrational numbers much easier.
Arithmetic involving several numbers may be written using the standard Fortran sym-
bols. Strap-1 will perform the arithmetic and compile a single normalized constant.
The operations available are:
division (/); only relatively simple expressions a r e allowed--that is, they must con-
tain no parentheses.
of multiplications and divisions they a re done in order from left to right), and then
the additions and subtractions. The arithmetic is done among absolute constants, and
a sign byte may be used at the end. It will be OR'ed in with the final result.

addition (+) subtraction (-), multiplication (*) , and

Multiplications and divisions a re performed first (in a series

Examples:
a. DD(N), 1/3, 472*351, 4-7*5/21 S 4

Note: Sign byte entered in last D field.

25

27.9 b. DD(N), 27.9/31.4/12/14 E 5, 4+3*7/5*6
The number produced in the first case is: 31. 12 14 105

3 x 7 ~ 6
5

in the second: 4 +

C. DD(N), 1/7 - 3/11 + 1.4321 E - 2, .12 + 1/144

A s an extra convenience, certain system symbols are defined by which constants
involving irrational numbers can be entered. They are:

1. $PI 77
2. $E e
3. $M
4. $N

Thus, one can enter a number such a s 4 P x by writing:

DD(N), 4 * $PI * 1E - 7.

Note that in Strap-1 this arithmetic feature is available with the normalized floating
point mode only.

Unnormalized Floating Point

Format: Name I (Fn)DD(U) , f xx' * x. x* xEhyyySn Xztn
or DD(U) , (Fn) f xx* xx. x' xEkyyySnXm, (Fn)kxx* etc.

The number is converted to binary with the correct number of binary fractional
places as specified by the (Fn) entry mode, and a correct exponent is computed and
entered. This exponent is overruled and replaced by that following the X if X is used
(necessary only if , for some reason, the programmer desires an incorrect exponent).
The entry mode (Fn) can come before the DD, in which case it applies to all D fields
of the statement, or it may form the first element.of a D field, in which case it over-
rules one given before the DD.
order may be interchanged.
case. Omitting X simply allows the correct exponent to remain a s computed. Leaving
out the sign, decimal point, or E is permitted as in normalized numbers.

Either the X o r the S or both may be omitted o r their
Omitting S has the same effect here as in the normalized

Examples :
a. DD(U), (F21) - 343.7, (F10) 432

Two numbers a r e compiled. In the first, 343 i s converted as an integer and
. 7 is converted to a 21-bit fraction. They are joined and placed in the right-
most bits of the fraction portion of the floating point word, and the correct
exponent (in this case 27) and sign are supplied. In the second D field, 432
is converted to a binary integer. Because ten fractional bits are specified,
but no decimal fraction is written, the ten rightmost bits of the fraction field
are set to zero and the number is entered with i ts rightmost bit in position
50.

The (F15) applies to both D fields. In the second, the computed exponent is
overruled by the specified one and the number is made negative by means of
the specified sign byte.

b. (F15)DD(U), 767.52, 767.52 X-12 S11

26

C. (F15)DD(U), 767.52, (F20) 767.52 S11 X-12, 398
This example i s identical to example b except that in the second field the
operation entry mode (F15) is overruled by a field entry mode (F20), and
the order of S and X is interchanged, which makes no difference.
applies to 398, however.

(F15) still

If the entry mode is omitted, two cases arise:

1) If the number entered is an integer, (FO) is understood.
2) If the number entered i s a decimal fraction, it is converted to a normalized floating
point number, but will be used a s though unnormalized.

Examples:
a. DD(U), 17, 17X-35

In the f i rs t case 17 is converted to binary and placed in the fraction with its
rightmost bit in position 60 and an exponent of 48 supplied. In the second
field the same thing i s done except that the exponent i s set to -35.

b. DD(U), 17.5
In this example 17.5 i s converted to normalized floating binary and stored
as such. However, instructions whose normalization bits depend on the
symbol in the name field of this pseudo-operation will have them set to
unnormalized.

Note: 17 E 5
17 E-5
17.5 E 5

is an integer and will be recognized as such.
is a decimal fraction and will be normalized.
is an integer but will be treated as a fraction and normalized.
Thus, a normalized integer can be assigned use mode
%nnormalized. I t

An integer greater than 248 is stored a s a normalized number.

Binary Signed VFL

Formats: (Fn)DD(B, FL, BS), f xx- O X . x' .xEfyy Sn
DD(B, FL, BS), (Fn) - - txx" 'x .x '* 'xE~yy Sn
(R)DD(B, F L Y BS), ~ X X " ' X X Sn
DD(B, FL, BS), (R) fxx xx Sn

A data definition of binary signed data may have either (Fn) o r (R) entry modes,
but not both at the same time.
decimal radix, whereas (R) implies that the number following it is an integer. An
integer subject to a radix entry mode must be written without the aid of E because E is
not defined for a radix other than 10. A decimal fraction must have a controlling (Fn)
entry mode. There is no obvious way to convert to a fixed point number without speci-
fying the binary scaling. In the data description either the field length or byte size o r
both may be omitted. The implied field length in this case is 64; the implied byte size
is 1. The sign byte need not be specified unless the programmer desires to have flag
or zone bits different from zero. Note that the sign bit position changes for a byte size
less than 4. To make a number negative, specify the sign byte as:

(Fn) implies that the data following it are written in a

BS =1, S1
BS = 2, S2
BS = 3 , S4
BS =4, S10

27

If a number has no entry mode at all , it must be a decimal integer, but may in this
case be written with the aid of the E notation.

Examples :
a. (F7)DD(B, , 4) , .005E3S13, -17, 143 .2Sl1 , (8) 77760, 777

Implied field length i s 64. Octal specification in the fourth D field overrules
IF"\ written before DTZ hiif (Fr7\sti11 annling +n 777

multiply an integer by positive powers of 10.
omitted, the implied values are F L = 64, and BS = 4.

If either the field length or byte size i s

Examples:
a. DD(D), -9534812, +173E5, 18E10S13

Field length = 64; byte size = 4. A 4-bit sign byte is formed, Decimal-
to -decimal conversion.

Byte size = 4.

Field length = 64. Decimal-to-decimal conversion. Four binary zeros
a r e inserted in the zone positions of each byte.

b. (2)DD(D, 20), 111010001101S7

c. DD(D, , 8) , 43233
Binary-to-decimal conversion.

Decimal Unsigned VFL

Formats: (R)DD(DU, FL, BS), xx' * * xx
DD(DU, F L Y BS), (R) xx"'xx
DD(DU, FL, BS), xx'"xxxEyyy
(Az)DD(DU, F L Y BS) , alphabetic information to f f z f f
(IQSz)DD(DU, FL, BS), alphabetic information to f f z f f

The numerical conversion i s just a s in decimal signed mode except for the omission
of the sign byte. Alphabetic conversion is exactly as in the binary unsigned mode, ex-
cept that instructions referring to these data are compiled as decimal operations, Fo r
alphabetic entry, implied field length is equal to byte size.

Examples:
a. DD(DU), 8430051, (8) 77241, 82E10

Field length = 64; byte size = 4.
4 n octal-to-decimal conversion is inserted between two decimal-to-decimal
conversions.

Field length = 8.
b. (IQS3)DD(DU, , 8), PUSH PANIC BUTTON 3

Summary of Rules for DD Statements

Entry Mode Appropriate U s e Modes
Fn U, B, BU
R
A

B, BUY D, DU
BU, DU

Note: U s e mode N should have no entry mode.

Special Field Entry Appropriate U s e Modes
S N, u, BY D
X N, u

The floating decimal notation, using E to designate multiplication by powers of 10,
is appropriate to all modes although it i s always restricted to a decimal radix, and in
the decimal use modes, i s restricted to increasing the magnitude of decimal integers.

29

If the field length is omitted from the dds, it will be assigned a value of 64, except
in the case of alphabetic entry where it is set equal to the byte size. The maximum
permissible field length for a DD statement i s 64.

The following examples illustrate the use of general parenthetical integer entry
with DD:

a. DD(N), 572(. 59)1, 347.89312(. 63, 2)1011
In the second case the sign byte i s specified by means of (. n) entry.

The address SAM + 4 is placed in the first part of the 64-bit field,
followed by the converted number -35.7.

707 is written in octal, 34 in decimal.

b. DD(B), (F9) -35.7(. 24) SAM + 4

c. (8)DD(BU), 4762(. 10)707(10, .20)34

PSEUDO-OPERATIONS THAT DEFINE SYMBOLS

Almost all pseudo-operations (excluding SLC, CNOP, etc.) define symbols in the
standard manner--any symbol appearing in the name field i s assigned the current value
of the location counter. Grouped under the present category of pseudo-operations a r e
those that define symbols in other than the usual manner.

1. DDI "DATA DEFINITION IMMEDIATE"

This pseudo-operation i s identical to DD except for the following points:
a. Like SYN (see below) it i s purely definitive in character.
b. Only one major field may follow the operation field of the statement.
e. If no field length is specified, a field length of 24 i s implied.
d. If the length of a string of alphabetic characters exceeds the field length,

the excessive low-order characters a r e lost and an e r r o r indication i s
given.

e. The compiled field--less than or equal to 24 bits in length--is inserted in
a 24-bit field within the symbol table and left justified.

f . A general parenthetical integer entry may not be appended to the end of the
data field.

g. Neither of the floating point modes can be used.

If a DDI has a field length of less than 24, the number that it defines will appear in
the leftmost portion of the address of the operation when it i s compiled in an immediate
operation. Unused bits in the right end of the address field will be zero, but they may
be loaded by means of a parenthetical integer entry in the operation itself. If the ad-
d re s s field of an immediate operation contains arithmetic among symbols or symbols
and integers, the arithmetic will be done in binary, regardless of how the symbols are
defined or what the mode of the operation is. Al l numeric entries in such an address
field a r e handled exactly a s other addresses and a r e converted to binary, never to
decimal. Therefore, the only way to get a decimal number into the address field of an
immediate operation without writing it in the 7030 BCD code explicitly i s to symbolize
it and use DDI. Care should be exercised in address arithmetic among signed numbers,
because the sign byte i s compiled as such and does not participate in the arithmetic as
a sign.

30

Example A:
Name Statement
JOE
SAM
BILL

DDI (DU), 9478
DDI (DU, 12), 342
DDI (DU, 24), 1 2
LI, JOE
+I, SAM
-I, SAM+BILL

The preceding sequence i s an example of slightly unconventional coding to illustrate
what i s possible. JOE has a field length of 24 implied. Al l three symbols have a byte
size of 4. The address SAMtBILL i s added in binary, but because the addresses do
not overlap, they produce a legal decimal number, 342012. The result i s 9478 + 342
- 342012 -332192.

Example B:
Name
ALF
JIM
RIP

St at e me nt

SYN(B, 24), 389

LI, ALF
+I, JIM
+I, JIM+RIP

DDI(B), -142

SYN(B, 24), -210

In this sequence the sum -142 + 389 + 389 -210 = 426 is obtained. Because JIM and
RIP a r e defined by SYN cards, the address arithmetic JIM + RIP i s done correctly,
yielding an answer of 179. If they had been defined by DDI statements, the address
arithmetic JIM + RIP would have produced a result of -599.

When compiling addresses for immediate operations, Strap-1 assumes that a symbol
defined by DDI has a sign byte if one i s needed. It assumes that a symbol defined in
any other way does not have a sign byte and compiles one having flag and zone bits equal
to zero and byte size as specified in the dds. Address arithmetic between a symbol de-
fined by DDI and anything else i s marked as a possible e r r o r (see r t + r t errcor flag in
Appendix D), although it i s performed as shown above.

2. SYN ttSYNONYMtt A I SYN (dds), Y

The operation SYN i s used to define a symbol in t e rms of an integer, a bit address,
or a combination of the two. A symbolic expression representing either an integer o r
a bit address may also be used, with the restriction--as with SLC--that the expression
be fully defined (although this may possibly mean as late a s pass 3 of Strap-1).

When one writes:
AI SYN(dds), Y

the meaning of the newly defined symbol A i s that whenever A i s written in the program,
the effect is the same as if Y had been written. The meaning of SYN is always one of
exact substitution. Thus, data properties (dds) associated with Y and i ts bit address
o r integer classification a r e transferred to A.

31

SYN statements are permitted to have their own data description field. If, however,
no data description is given, the data properties of the final symbol not in parentheses
are transferred to the name.
are also transferred to the symbol in the name field. Refer to the discussion of the DR
pseudo-operation (I1Pseudo-Operations that Direct the Compiler") for an explanation of
the use of SYN and multidimensional arrays.

If this symbol has multidimensional properties, they

Consider the following example of the use of SYN and the data properties of the final
symbol:

Name Statement
SAM SYN(N) , 1000.0
FLAG SYN(BU, 3, 8) , .61

(intervening code)
L, SAM +FLAG

The Load instruction loads only the flag from the floating point word SAM preparatory
to some VFL arithmetic o r tests on the flag.

The difficulty of evaluating addresses on SYN cards imposes certain minor restric-
tions on the order in which SYN cards may occur. In general, if a SYN card address
contains one o r more location counter dependent symbols, both the SYN card and the
instructions defining these location counter dependent symbols should occur before any
SLC with an address involving the name of the SYN card. The integer portion of any
symbol must be completely defined by a chain of SYN?s or DDI's. The bit address por-
tion may be completely defined by a chain of SYN's, o r by a chain leading to a symbol
that is defined by the location counter as a name of an instruction o r data.

PSEUDO-OPERATIONS THAT GIVE DIRECTIONS TO THE COMPILER

1. SLC "SET LOCATION COUNTER'? A I SLC, Y

This pseudo-operation resets the location counter to the value of the address Y.
The next instruction will be compiled at this address, subject to rounding upward con-
ventions. For example, a floating point instruction will be located at the nearest full-
word address. If Y i s not a full-word address, the location counter will be rounded up
to the nearest one.

Y must contain a bit address expression whose value is positive. Y may be any legal
symbolic expression, but it must be evaluable by the time it is encountered in pass 2 of
Strap-1; thus, the restriction on SYN cards mentioned above.

An integer that appears in the variable field of an SLC instruction is added in as a
24-bit address field; i. e., as an integral number of bits, and an e r r o r warning may be
given (see description of e r r o r flag 'lLt? in Appendix D).

Any symbol A appearing in the name field is ignored.

Note: In normal operation, cards are read in sequence, and the number of bits
needed for each instruction or piece of data i s added to an assembly location
counter in order that each instruction o r data entry may be assigned an address.
A principle of rounding upward i s followed, guaranteeing that an instruction,

32

value, count, o r refill will begin exactly on a half-word address, and that
index words, control words, and floating point data will begin only at full-
word addresses. The SLC pseudo-operation provides a means of setting
the assembly location counter to any value at any point in the code, and thus
gives the programmer complete control over the location of his code. Fol-
lowing an SLC, the location counter is advanced once more in normal fashion
until another SLC card resets it.

2. END A I E N D , Y

A card with the operation code END signals the end of an assembly, and is usually
included as the last card of each symbolic program deck. A branch card i s then punched
with the b i m r y output deck with an address Y, so that the instruction located at Y will
be the first program order executed.

The END statement also functions as an origin setting statement for the storage
assignments given to all symbols that are undefined. A symbol is undefined if it never
appears in the name field of any statement. All occurrences of such a symbol are
flagged as possible e r ro r s . The symbol is assigned a full storage word in the block
whose origin i s equal to the value of the location counter when the END statement is
encountered (possibly rounded up to obtain an integral full-word address), and the
symbol is given a normalized floating point data description.

If an END card is missing and an end-of-file i s encountered, the end of the assembly
i s clearly indicated and Strap-1 supplies an END card. That is , a branch card with a
blank address field i s punched, If the programmer wishes to punch a branch address
on this same card, care must be taken to correct the check sum before attempting to
load the program.

Any symbol A in the name field is ignored.

3. CNOP "CONDITIONAL NO OPERATION" AI CNOP,

The pseudo-operation CNOP is used to insure that the instruction or data immediately
following the CNOP will be assigned a full-word address by the compiler:

When a CNOP is encountered, the location counter i s immediately rounded up to the
next half-word address. Then the compiler examines the location counter. If it already
stands at a full-word address, the CNOP is ignored.
is set to a half-word address, the machine instruction NOP is compiled.
the effect of advancing the location counter 32 bits o r one half-word to the next full-
word address.

If, however, the location counter
This has

Any symbol A appearing in the name field is assigned a full-word address when the
CNOP is ignored, o r a half-word address when a NOP is compiled.

4. TLB "TERMINATE LOADING AND BRANCH'' TLB, Y

The pseudo-operation !?Terminate Loading and Branch" is similar to an END state-
ment with one major distinction: TLB does not stop the assembly process.
TLB may be assembled at any point in a symbolic deck where a transition card i s
desired. The branch card thus produced will interrupt the loader when encountered in

Therefore,

33

a binary deck and transfer control to the instruction at location Y. The remainder of
the program is loaded under program control.

6. DR "DATA RESERVATION" A

5. EXT 'EXTRA C T ' I A 1 EXT(1, J) STATEMENT

DR(ddS)? (N)

The tfExtractf ' pseudo-operation has the following meaning:
F i rs t , Statement is compiled as i s any legal machine instruction. Then the field

beginning at I and ending at J is extracted and compiled in the position in the code
where the EXT occurs. The symbol A appearing in the name field i s assigned a data
description (BU, J-I + 1, 8) and is attached to the quantity compiled. The te rms I and
J may contain any number of symbolic integers, butanybit addresses contained in the
terms must not depend on the location counter, o r else these bit addresses must be
defined by a preceding card.

If EXT is used to specify the extraction of anything beyond the range of the single
statement that follows it, up to 64 zeros will be added.

Example: EXT(18, 47) + (By 18, 7) , 73 .16

First the full-word instruction + (B, 18, 7) , 7 3 . 1 6 i s formed. Then bits 18 through

The loca-
47 (the first bit in the instruction is numbered 0 according to 7030 custom) are extracted
and placed in the program being compiled. The dds (BU, 30, 8) is formed.
tion counter is advanced 30 bits.

Note: Statement must be a legal machine instruction, not a pseudo-operation.

A DR reserves space for data. The operation causes N fields of the kind described
in the data description to be reserved; that is , the instruction location counter is
skipped forward a quantity in bits equal to the product of N and the field length specified
in the dds.
reserved, as is the dds. Therefore, whenever A appears as the principal address in
an instruction, this dds i s invoked in the same manner as with a DD or DDI statement.
Thus:

Any symbol A appearing in the name field is attached to the first field

JOE DR(BU, 8, 8) , (10)

reserves ten 8-bit fields (skips the location counter forward 80 bits), The dds (BUY 8,
8) is attached to JOE. JOE is attached to the first 8-bit field reserved.

DR also provides a convenient method of defining multidimensional a r rays of data
and of addressing individual elements of arrays so defined. All indexing required for
the manipulation of the array must be handled by the programmer.

The statement:

A DR(dds), (L, L', L", . . . , Lr)

reserves space for an L x L' x Lfl x.. . Lr a r r a y of data fields. The location counter
is skipped forward a number of bits equal to the field length (specified in the dds)
multiplied by the product of the dimensions of the array. (If the dds specifies the
floating point mode, the correct number of full-words is reserved, beginning a t a
full-word boundary.)

34

Any symbol A appearing in the name field is attached to the first element of the
array, and the dds is attached to the symbol in the normal fashion. Thus, in an instruc-
tion, a specific element of the a r ray may be addressed by writing:

Note that the first element of the a r r a y has the address:

A (O,O,O ,..., 0)

and the last element is located at:

A (L-1, L1-1, L"-l , . . . , Lr-l)

The address of an arbitrary element in the a r ray may be computed by means of the
formula:

Address of A(q,ql ,qtf , . . . ,qr) = Address of A(O,O, 0 , . . . ,O) +FLx(qtqlLtqftLLt
tq'"LL'L"+. . .)

where F L is the field length of an element in the array. An ar ray address computed
in this manner may be used in any programmer symbolized field not in parentheses,
except a general parenthetical integer entry. The dimension of a DR statement must
be evaluated by the end of pass 1. Therefore, the dimension and the field length of a
DR must not be location counter dependent symbols; they may be defined by a chain
of SYN's ending in an integer.

A fifteen dimensional a r ray i s the largest that can be specified in Strap-1.

L, L ' , L1l , etc. , must be integers in symbolic or numeric form. Referring to
llNumber and Symbols, l 1 to apply index register I to the second element of a one
dimensional a r r a y A , write:

where I must be a bit address.

SYN must be used to define a symbol as an interior element of a multidimensional
a r r a y and have the dimensional addressing properties carried along. F w example:

Name Statement
A DR(N) Y (W 2 0)
B SYN, A(5,5)

In the above example, the rectangular a r ray goes from A(0,O) to A(9,19); B goes from
B(-5,-5) to B(4,14); A and B use identical storage. Thus, A(0,O) - B(-5, -5); A(1,O)
- B(-4, -5); A(1 , l) - B(-4, -4); etc.

7. DRZ "DATA RESERVATION AND SET TO ZEROf1 A I DRZ(dds), (N)

DRZ operation is exactly the same fashion as DR with one exception: the fields
reserved are all set to zero.

8. PRNS "PRINT SINGLE-SPACED" PRNS

This pseudo-operation causes the assembly listing to be printed with single spacing.
Double spacing is the normal mode unless PRNS is written.

35

9. PRND "PRINT DOUBLE-SPACED" PRND

This pseudo-operation restores printing to the normal double spacing condition after
the use of a PRNS.

10. PUNFUL "PUNCH F U L L CARDS" PUNFUL

Full cards (80 columns) are punched, without check sum, FWA, ID, and so on.

"PUNCH NORMALLY" PUNNOR 11. PUNNOR

This pseudo-operation restores normal punching after the use of a PUNFUL.

12. SKIP "SKIP PAPER" SKIP, i

If i = 0, the assembly listing will restore the paper immediately. If i # 0, one
half-page will be skipped.

13. PUNID "PUNCH ID" PUNID, XXXXXXXX

The first 8 characters following the comma are punched in columns 73-80 of each
card in the binary deck produced by the assembly program. Thus, a PUNID card should
be used to identify each assembly. The X's may be any legal card code characters.

14. PRNID "PRINT ID'? PRNID, COMMENT

When PRNID i s encountered, the entire contents of this card are immediately printed
on-line and on the output tape as well. PRNID provides a means of heading the assembly
listing with such information as the problem name, programmer, and so on.

15. SEM "SUPPRESS ERROR MARKS" SEM, A, B y C

The operation code SEM, followed by a blank address field, causes all e r r o r marks
detected in the statements that follow the SEM statement to be suppressed in the listing.
Any particular e r ro r flag or group of flags may be suppressed by writing the letters or
characters identifying the flags in the address field, separated by commas. Thus:

suppresses e r r o r flags Q and T only. The only restriction in the use of SEM is that
flags J and K, plus any flags that represent punching e r r o r s (such as l ?) f y) , can never be
suppressed either by supplying an SEM statement with a blank address field or by indi-
vidually addressing these flags.

16. REM "RESUME ERROR MARKS" REM, A , B , C

An REM restores normal e r r o r marking on the listing after an SEM has been used.
The ability to specify individual e r ro r flags (with the same restrictions) is also avail-
able with REM. Thus, following the statement SEM, Q , T the pseudo-operation REM, Q
restores e r r o r flagging involving flag Q only, while flag T remains suppressed.

36

17. TAIL "TAIL" TAIL, CHARACTER

The statement TAIL, X causes a block of statements to have the symbol X appended
as a suffix to each symbol appearing in each statement of the "tailed'! block. The block
i s ended by the next Tail statement or by an Untail statement. (Untail is equivalent to
a Tail statement with a null field.)

In Strap-1 the symbol X may be any single alphabetic o r numeric character. In
Strap-2 the tail symbol may be any legal symbol,

If a basic symbol is defined two or more times in different blocks, then "within
block" references may be made. References from one block to another must use the
mechanism:

OP, JOE$X

where the desired JOE is defined in the block tailed by X, and is defined there only
once. Also permitted is:

OP, JOE$

which references a JOE defined in an untailed block of code. An untailed block behaves
exactly like a block tailed by a blank.

37

IBM 7 0 3 0 S I M U L A T I O N S Y S T E M

THE IBM 7030 Programming Package tape is available for use on the IBM 704, 709, and
7090 Data Processing Systems. This tape contains two programs: LASL Strap-1 for
assemblies, and the 7030 Simulation System for program checking. Strap-1 is discussed
here only as it relates to the operation of the 7030 Simulation System.

The IBM 7030 Simulation System is a binary interpretive simulator , written to assist
in checking out 7030 programs before the system is available for use. It consists of:

Loader
7030 Simulator
Trace - with breakpoint facilities
Dump - with breakpoint facilities and multiple formats

Checked simulated programs will not necessarily run unchanged on the 7030, espe-
cially in the input-output area, Input-output is unusual in that almost all operations are
executed, but in a limited fashion. Fo r example, only 72 columns of an 80-column card
a r e read on-line. No attempt is made to simulate input-output timing; therefore, input-
output appears to be instantaneous since, after a select i s given, the input-output i s per-
formed and the indicators are turned on before the next instruction i s executed.

The restrictions of the 7030 Simulation System are:
1.

2.
3.
4.

5.

6.
7.
8.
9 0.

The computer system to be used in simulation must have 32,768-word core
storage capacity. The 7030 system simulated will have 8,192-word core
storage capacity, one 256-arc disk unit, and three magnetic tape channels.
The program uses (40000-77777)8.
No attempt is made to simulate timing o r ECC mode.
Simulation of input -output does not include console , operator -initiated channel
signals, IQS and certain other physical features.
Clocks will not function.
is executed (709, 7090 only).
No interrupts will be taken for indicators 0 , 1, 2, 4, 5.
High density is not simulated.
Tape records a r e limited to one thousand 7030 words.
Backspace file will be simulated on the 704 only if the instruction is available
on the particular 704 being used.

Information in 1 . 0 . -1.32 will be lost when a dump

The remainder of this chapter i s separated into two sections: operator's notes and
programmer s notes. Programmers should read both sections carefully.

PROGRAMMER'S NOTES

This section contains information which is useful to the programmer in preparing a
deck to be used by the simulator. These specifications for card formats, composition
of the input deck, output formats, breakpoint dumps and traces, etc. should be thoroughly
understood before any attempt is made to simulate a 7030 program. Users of the system
have made many suggestions to help eliminate some of the most common e r r o r s that
might occur before programmers become familiar with the system; these suggestions
are included in this manual.

38

SETTING U P INPUT FOR STRAP-1

When preparing a symbolic deck for assembly by Strap-1 , the following conventions
should be obeyed:

1. A PRNID card should be included for identification of the printed output. This
procedure i s a courtesy to the operator.

2. A PUNID card should be included for identification of the binary cards produced
by Strap-1, and for the separation of these decks. This is important!

3. Normally, the SLC address should have a decimal point. If no point is written,
the address becomes a bit address. Thus, if a programmer wishes to begin his program
at location 100, but writes ffSLC, l o o f v , Strap-1 interprets the address to be 100 bits or
location 1.44, which is an illegal address for an SLC statement.

4. All 1-0 units should be symbolically addressed, since the units available will vary
from installation to installation.

5. In contrast to earlier IBM Systems , the 7030 will have no Clear key on the console.
Therefore, it is normally preferable to use DRZ rather than DR when the programmer
wishes to reserve storage. Note that DRZ yields the same size of binary deck as DR.

6. Most programs are terminated with a BEW, A. Observe two cautions here:
a. "Avv should not be zero, o r an invalid address interrupt will occur.
b. If any indicators that are masked on have been turned on earlier in the pro-

gram while in the disabled state, an interrupt will occur when the BEW i s
encountered .

In any event, an interrupt table should always be supplied by the programmer
even if it contains only NOPIS.

STRAP - 1 BINARY OUT PUT

Output cards have been designed according to the requirements of the supervisor,
All cards contain a code column indicating the type of card, a 12-bit check-sum, an ID
column for installation bookkeeping, and a sequence number which i s used to keep the
cards in the deck in order.

Origin Card

The origin card contains an origin address, a bit count, a secondary bit count with
two control bits, and up to 23 half-words of data. The data areenteredaccordingto the
origin address and the bit count. The secondary bit count i s used to determine the
number of bits to be skipped o r set to zero (determined by the first control bit) before o r
after (determined by the second controlbit) the data are entered. The card format i s as
follows:

Bits Assigned
1.0 - 1.11
2.0 - 2.11
3.0 - 3.11
4.0 - 4.11

U s e
Code column (origin card 1 . 9 , 1 .10 , 1.11 punches)
Identification column (binary)
Sequence number (binary)
Check sum

39

Bits Assigned
5. 0
5 . 1

5.2 - 5.11

6. 0 - 7.11
8 .0 - 9.11

10.0 -10.7
10.8 -71.11
72. 0 -80.11

U s e
A 1 bit control; 0 i f skipping, 1 if setting t o zero
A 1 bit control; 0 if skipping or zeroing is done be-
fore card contents are loaded, a l if after
A 10-bit count of the number of bits to be loaded from
the card
A 24-bit address designating a new origin
A 24-bit address designating the number of bits to be
skipped or set to zero
Not used
Up to 736 information bits (23 half-words)
A 9-column field ignored by the loader; may be used
for card code identification and sequencing

Flow Card

A flow card contains 25 half-words of data which are to be loaded according to the
loader's location counter, i .e . , in sequence with data of the previous card loaded. The
card format is as follows:

Bits Assigned
1 . 0 - 1.11
2.0 - 2.11
3.0 - 3.11
4 . 0 - 4.11
5.0 - 5.3
5 . 4 -71.11

72.0 -80.11

U s e -
Code column (flow card 1.9, 1.11 punches)
Identification number (binary)
Sequence number (binary)
Check sum
Not presently used
25 half-words of binary information
A 9-column field ignored by the loader; may be
used for card code identification and sequencing

Branch Card

A branch card contains an address to which the loader transfers control, i. e. , resets
the location counter. If no address is specified, control i s transferred to the address
of the first origin card.

Note that 7030 programs cannot be loaded into registers below (40)8 o r into locations
above (17777)8. Upon recognition of a branch card, the loader sets to zero that portion
of 7030 memory which lies outside of the area used by the program (that is, the part
defined by the upper and lower boundaries).

The format of the branch card i s as follows:

Bits Assigned
1 . 0 - 1.11
2.0 - 5.11
6. 0 - 7.11

U s e
Code column (branch card--1.8, 1 . 9 , 1.11 punches)
Not presently used
24 -bit transfer addres s

40

.CARD FORMATS ACCEPTED BY THE SIMULATOR LOADER

IBM 7030 programs being run on the simulator may be loaded through either the on-
line card reader or tape. The loader will load five types of cards.

Standard 7030 Cards

These cards are the origin, flow and branch cards produced by the Strap-1 assembly
program,

C Cards

Up to four corrections are permitted per octal-hex correction card. An origin need
be specified only on the f i rs t correction card if subsequent correction cards are to be
loaded sequentially. Any number of corrections from 1-4 may be loaded from a single
card. Any correction may be ignored without repunching the entire card on which it
appears, by punching a 1 in the columnwhere the period appears. The loading addresses
are stepped even when corrections a r e ignored, so that corrections following an ignored
correction are loaded correctly. All four corrections on a card may be ignored, if
desired ,

C cards are punched in the following format:

Col 1
Col 2-9

C
Location of the first correction to be loaded. This i s punched

in the form (xxxxxx.x)8.
Each half-word i s in the form xxxxxx. xxbHH
where x = octal digit

b =blank
H = hex character

Col 12-23
Col 28-39
Col44-55 Half -w or d
C O ~ 60-71 Half -word

P Cards

Patch cards allow the programmer to introduce patches in his program. These cards
will cause the instruction at location X (specified in columns 2-9) to be changGd to a B,Y
if it i s a half-word instruction o r NOP; B, Y if it i s a full-word instruction. The instruc-
tion formerly at X will be loaded at the first available location at the end of the program
(Y) followed by the contents of the P card. A branch back to x+. 32 o r x+l. 0 will be in-
serted after the contents of the P card. P cards may be followed only by other P cards
or a branch card. Note: P cards must be included when setting the boundary address
registers.
gram checking purposes. (See "Breakpoint Check-Out. If) For a fuller description of
this use, see the sections describing the dump and trace programs in the simulator.

P cards may also be used to introduce breakpoint dumps and t races for pro-

The format for a P card is:

Col 1 P
Col 2-9 Location of the last instruction (must be a half-word o r the first

half of a full-word instruction) which i s to be executed prior
to the patch. The format for this location is the same as in
a C card,

41

C O ~ 12-23 Half -word 1
Col 28-39
Col44-55 Format the same as in a C card

Half -word
Half-word

Col 60-71 Half -word)

T Card

A "T" punched in column 1 of a card tells the loader that the card following the T
card is out of sequence and therefore the sequence counter should be reset. Thus, if
two programs are put together separated by a T card, the sequence e r r o r between the
last card of the first deck and the f i r s t card of the second deck will be ignored.

The T card need not immediately precede the card that will be out of sequence, as
long as any cards that appear between the T card and the out-of-sequence card do not
affect the sequence counter (e .g . , C card, P card). Of course, a T card cannot follow
P cards, since nothing but branch cards or more P cards may follow a P card.

N Card

An"N" punched in column 1 of a card tells the loader that the information punched in
columns 2-72 of the same card i s to be printed out under the control of SSW 1 and SSW
2. (See "Operator's Notes.

It is strongly recommended that an N card containing identifying information be placed
in front of every binary deck; all dumps and t races produced by the 7030 Simulation
System will then be headed by a line of identification.

PREPARING A BINARY DECK FOR THE SIMULATOR

The input deck for the 7030 simulator should be carefully set up by the programmer
to insure that the operator can run the job with the fewest complications.

The Input Deck

An N card should be the first card of every binary deck. A s previously explained,
the N card should be used to identify the output, and should contain at the very least the
name of the programmer.

Next should come the binary cards with C and P cards, inserted in that order, before
the branch card. The positioning of P cards is important (see "P Cards") and if this
order i s violated, a great deal of set-up time is wasted by the operator,

Information to the Operator

The timing of the simulator makes it imperative that certain information be given
to the operator les t i tbe all but impossible for him to run any program correctly.

Some estimate of timing in minutes (assuming the average execution time of an in-
struction to be 1 0 ms) must be supplied with each binary deck to be simulated.

The address of the expected BEW instruction which is being used as the final stop
must be supplied. The operator does not want the location of the BEW instruction.

. 42

Information on the number of breakpoint dumps and traces the programmer expects
to be taken will be helpful also. In addition, 7030 tape channel and unit numbers, as
well as the disk tape number, should be given to the operator in terms of the physical
unit numbers as they appear in the table in ??Input-Output Usage.

INPUT-OUTPUT USAGE

Seven 1-0 channels are provided; the assignments are as follows:

Octal
0 . 0

20.0
20.4
21.0
21.4
22.0
22.4
23. 0

7030 Channel No. 704 Unit
0 . 0 Disk [Tape 10(A)]

16.0
16.32
17. 0
17.32
18. 0
18.32
19.0

Tapes 4 and 5 (A)
Tapes 6 and 7 (A)
Tapes 8 and 9 (B)
Unused
Reader
Printer
Punch

The instantaneous nature of the simulated 1-0 should be kept clearly in mind when set-
ting up 1-0 interrupt handling routines.

Disk. A tape unit is used to simulate a partial disk containing 256 locatable a rc s ,
each a r c containing 1024 words for the 7030. Each a r c is separated by an end-of-file
on tape, so this tape must be prepared by the W r i t e Disk program (See ''Operator's
Note'?) and retained.

Tape. On channels 16.0, 16.32 or 17 .0 , units 0 or 1 may be located. Al l control
operations are accepted, but certain ones may be NOP'ed--namely, ECC, BSFL
(backspace file) on the 704; UNLD (Rewind and Unload) and any other control operation
which has no counterpart on the 704 o r 709. HD (KighDensity) is accepted, but low den-
sity is both written and read. Tape 9 is used as the system output tape, so it should be
used only when absolutely necessary, and the operator should be advised when it is to
be used.

Reader. Al l types of control operations are accepted when applied to the
reader.
treated as blank input.

Only 72 columns of data are read from any card. The last eight columns a r e

Printer, A l l types of control operations are accepted when applied to the printer, but
only 72 columns are written. The other 60 columns are treated as blanks, but the end
byte will terminate a line. Only single or double spacing, restoring, and space suppres-
sion are available. Any attempt to skip more than one line will be automatically treated
as a double space.

Punch. A s in the case of the reader, onlv 72 columns are available.

Console. No simulation has been attempted for the console other than the Initial
Program Load Mode.

43 .

Initial Program Load Mode. IPL may be simulated at any time, either while running
or when preparing to load, by depressing SSW 6 and entering the channel number in
octal in the console keys (then pressing Enter MQ on the 704).
furnished in the Operator's Notes.
last one and one-half words on each card as blank.

Explicit directions a r e
Note that IPL from the card reader will treat the

BREAKPOINT CHECK-OUT

To make the simulator usable for check-out of 7030programs, two auxiliary programs
are incorporated into the system--a dump and a trace, Because of the timing problem
involved in the operation of the simulator (each instruction simulated i s a loop), it is
difficult, if not impossible, for the operator to get any hint of improper operation of the
problem program, Therefore, all check-out features are controllable by the program-
mer as well as the operator.

The only information available to the operator at the end of a run of a problem pro-
gram i s the instruction counter, which can be found in the accumulator. Thus the pro-
grammer should use the breakpoint dumping and tracing features and relieve the oper-
ator of any check-out decisions.

The Trace Program

The t race program traces the execution of each 7030 instruction simulated and prints
the location of the instruction itself and its mnemonic, the contents of the effective ad-
dress , and any changes that have occurred in storage locations 0-31 as a result of this
instruction, Output may be obtained on tape 9(B) and on the on-line printer. Output is
under the control of a sense switch. (See "Operator's Notes. f7)

Trace Output Format

The first line of the printed output contains:

1.

2.
3.
4.

5.

The location counter, A $ will occur to the right of the locationofthe instruction
being interrupted. An * will occur to the right of the location of any Execute
instruction. In the latter case, the next instruction printed will be the instruc-
tion which is the object of the Execute instruction.
The instruction being traced, printed in the dump format (octal-hex).
The instruction mnemonic.
The contents of the effective address of the left address of the instruction. If
the instruction in question is a full-word instruction, two full words are displayed;
if a half-word instruction is being traced, only one full word is displayed. It
should be stressed that this feature is available a s an additional aid to the program-
mer. Under certain conditions, such as progressive indexing, the printed con-
tents of the effective address may not reflect the t rue contents of that location.
The state of the machine (enable o r disabled).

Subsequent lines contain:

6. The word ffPanelff followed by the hex address of one or more of the f i rs t 32 lo-
cations which were changed by the instruction being traced. The hex addresses
range from 00-OF, XO-XF.

44

7. The contents of this panel location in hex.
8. The contents of this panel location in the dump format (octal).

The indicator register (hex identification PANELOB) and the mask register are always
shown in binary; everything else i s in octal.

Breakpoint Trace

Breakpoint t races may be accomplished by means of introducing a half-word, via

xxxxxx. 24 OH (H indicates any hex character may be used to
a patch card, in the format

specify an index register.)

The operation code 24 i s recognized a s an invalid operation (but indicator O P i s not
turned on) and tracing will start immediately and will include this invalid instruction.
Tracing will continue until the location counter reaches the value specified by the effec-
tive address (using index register H) of this half-word.

Operation code 24 may also be a 64; in this case xxxxxx. 4 would be specified. A t
assembly time the necessary half-word may be compiled by a BE, A (. 21) 20 where A
i s the last location to be traced. Other instructions (BD, BEW) can also be used in
conjunction with the parenthetical integer entry mechanism to produce the invalid half -
word operation.

If the high-order octal character of the effective address i s a 4, 5, 6 , or 7, the left
half of the accumulator is printed in floating point format. Everything else is printed
in the normal trace format.

The Dump Program

The Dump program records the contents of core storage between specified locations
in mnemonic octal-hex, index word format or floating decimal on the printer and/or on
tape. The dump format desired, and the limits, may be specified either by control
cards o r by the entry keys on the console.

Control Cards

If control cards are read from the reader, the dump program will execute dumps a s
specified in 9-left of each control card which has been punched in the format:

9L decrement
9L address
9L tag

tag = 0
tag = 2
tag = 4

Starting address
Last location to be dumped
Format of dump
Mnemonic, octal hex
Index word
Floating decimal

Control cards will be read and dump requests will be processed until two cards a r e
encountered with identical information in 9L o r an end-of-file occurs on the reader.

45

Output For mats

Every dump contains the following information:

1. The location counter plus the f i rs t 15 panel locations.
2. The seven simulated 1-0 channels.
3. The contents of all the index registers in index format,
4. The dumps requested, four words per line. These dumps may appear in:

a. Octal-hex mnemonic format. A half-word i s split up in the following
fashion: the full word address in octal, a decimal point, the bit address in
octal, a blank, bits 24-31 in two hex characters (0-9, A-F). Mnemonics
may be modified (a maximum of six characters can be handled, so seven-
character mnemonics are abbreviated) and are printed on a separate line
below the half-word to which each refers.

b. Floating decimal. All words a r e printed with exponent and fraction (fraction
between 1, and 10.) in decimal with signs.

c. Index word. Al l words are split into four fields: value, flags, count
and refill. All fields are printed in octal.

Calling the Breakpoint Dump

A breakpoint dump may be requested by introducing a full word, via a patch card,
in the format:

xxxxxx. xx 8H yyyyyy. 24 OH(H indicates that any hex character may be used to
specify an index register)

This statement will be interpreted as an invalid operation, as in the trace. Dumping
will occur immediately in the format and between the limits specified by the effective
addresses of the two half-words.

The three dump formats are available under the control of the first octal character
of the second half-word: 0 gives octal-hex, 2 or 3 gives index word format, and 4, 5,
6, o r 7 gives floating decimal. This character is then discarded before setting the
dump limits. If an address greater than 8192 is given, 8192 is used with no e r r o r indi-
cat ion.

At assembly time, the appropriate illegal full-word operation may be entered by

SIC, A; BE, B(.21) 20

which will cause a dump between A and B to be executed. Other instructions may
be compiled to accomplish the same end.

46

OPERATOR'S NOTES

The following pages are intended to be a reference for the operator using the simu-
lation system. However, much of the information will be helpful to the programmer as
well, and will guide the programmer in the preparation of decks to be run by the oper-
ator.

The material supplied to the user will include:
1. Master tape, containing LASL Strap-1 and the 7030 Simulator.

2. Binary decks of the following auxiliary programs:
Write Disk
Call Strap
Column Binary Punch Simulator
System Tape Editor

Upon receipt of the binary master tape and the auxiliary program decks the installation
should:

1. Prepare an installation tape using Write Disk and System Tape Editor programs.
The tape thus produced becomes the installation master.

2. Copy the installation master using the System Tape Editor again. The tape
produced here should be used for the simulation work.

3. Iteturn the original master tape to IBM.

Corrections to the simulation system (as issued by IBM) may be inserted in the
System Tape Editor program and updated Installation Master and System tapes may be
generated as changes are received by the user.

COPYING TAPE WITH THE SYSTEM TAPE EDITOR

The System Tape Editor program i s used a s a system tape copier or as a means of
rewriting the 7030 Simulation System Tape while incorporating changes in t h i system
on the new tape produced.

Making Installation Master

1. Place the master tape on unit 2(A).
2. Place a working tape on l(A).
3. Place the system tape editor in the card reader. Press Load Cards.
4. The working tape i s now the installation master, Remove the master tape on 2(A)

and return to E M . Make another copy of the installation master and use this for
all simulation work.

Monthly Updating of Installation Master

1.
2,

Place the installation master on 2(A).
Place a working tape on l(A).

47

3. Place the System Tape Editor in the card reader.
lator behind any previous corrections to the simulator and then place all simulator
corrections behind the f i rs t transfer card. Place all corrections to Strap-1 behind
any previous corrections t o Strap-1 and then place all Strap-1 corrections behind
the second transfer card.
Tape 1 (A) becomes the updated tape.

Place any corrections to the simu-

4.

stops

HPR 77776

HPX 77775

HPR 77774

HPR 77773

HPR 77771

HPR 77770

E r r o r in reading simulator from the master tape. Reload to

(709 only) E r ro r in writing the simulator on tape 1. Dial

E r r o r in attempting to read Strap from the master tape. Re-

(709 only) E r r o r in writing tape 1. Dial another tape to 1 and

(704 only) E r ro r in writing tape 1. Dial another tape to 1

Final stop. Tape 1 should be file-protected at this point.

t ry again. If e r r o r occurs repeatedly, contact IBM.

another tape to 1 and t ry again.

load to t ry again or contact IBM.

t ry again.

and t ry again.

ASSEMBLY USING STRAP-1

Strap-1 allows the programmer to assemble 7030 programs on the IBM 704, 709 and
(On the 709 this 7090. The minimum system required i s 32K with five tapes available.

means two tapes on channel B and three on A.)

1. Mount the 7030 Simulation System tape on l (A) .
ords on this tape.

Strap-1 i s the third and fourth rec-

2. Dial an intermediate tape to 2(A). An intermediate tape must always be available
when using Strap-1.

3. Input
a . Mount the symbolic input tape on 8(B). Tape 8(B) is always required when

assembling on the 709.
b. Card input: place the cards in the on-line card reader immediately behind the

one-card Call-Strap program.

On the 709, cards are read onto tape 8 until an end-of-file on the card reader
i s reached. Processing then proceeds as though the input were from tape.

On the 704, cards a r e read onto tape 2 until an end-of-file on the reader i s
reached. Processing then proceeds as though input were from tape until an
end card i s reached. Then Strap returns to the card reader and attempts to
read the next deck.

4. output
a. Dial a tape to 3(A). This will be the binary output tape for off-line punching,

using the column binary attachment.
b. Dial a tape to 9(B). This will be the output tape prepared for off-line printing

under program control.

48

CHECK: System tape on 1(A) , imtermediate tape on 2(A), binary card output tape on
3(A) , symbolic input tape on 8(B), off-line printed output tape on 9 (B) , Call
Strap in the on-line reader with input cards (if any) behind it.

5.

6 .

7.

8.

9,

P r e s s Load Cards key.

If an e r r o r occurs, the sense lights tell what pass you a r e in when the stop occurred.
If sense lights 2 and/or 3 are on, the stop occurred after completion of pass 1 and
manual entry of TRA 1308 permits processing of subsequent jobs.

When an end-of-file occurs on tape 8(B), Strap returns to the card reader to look
for more cards. If there are no more cards the end-of-file condition (or, an im-
mediate end-of-file on the reader if there is card input) causes Strap-1 to print on
line "Strap-1 can't find any more assemblies.
point, more cards can be placed in the reader or a new tape 8(B) mounted.
press Start to continue.

Press Start for more. At this
Then

W r i t e an end-of-file on tape 3(A), and on tape 9(B), if desired.

Tape 3(A) may now be used as input directly to the simulator. However, this
practice should not normally be followed. If the column binary attachment is not
available on the off-line punch, it can be simulated on-line with only 72 columns
available. (See "Column Binary Punch Simulator. I?)

SIMULATING A 7030 PROGRAM

The 7030 Simulator requires a 32K system with at least one tape unit available.

1. Mount the 7030 Simulation Systemtape on 1(A). The f i rs t record on this tape i s
a short loader which loads the simulator.
ulator.

The second record is the entire sim-

2. Input
a. Tape, SSW3 down. Mount the column binary tape on 3(A) with an end-of-file

after the last program. A straight binary board should be used when pre-
paring the input off-line.

must be an origin, C y T , o r N card. Al l P cards must be placed immediately
before the branch card.
The only types of cards accepted as input by the simulator loader are origin,
flow, branch, N , T , C, and P cards.

b. Cards, SSW3 up. Place the cards in the on-line reader. The f i r s t card

c.

3. P r e s s the Load-Tape key to bring in the simulator and start the run.

4. No program may be loaded below (40)s or above (17777)s. The simulator loader
will load until a branch card i s encountered, unless one of the following stops
occurs. In all stops listed, the address shown is in octal as read from the ad-
d re s s field of the storage register on the console.

HPR 2 End-of-file encountered on either card reader or tape 3
(depending on the setting of SSW 3).
next record.

Press Start to read

49

HPR 3

HPR 4

HPR 5

Tape check after two attempts to read a record from input

Check-sum e r r o r in this record. Press Start to continue

No origin punched in first correction card encountered.

tape. Press Start to continue loading this record.

loading.

Pressing Start causes this card to be skipped.

Note that any of the following stops involving HPR 2xx means that an irreparable e r r o r
has occurred in the present job; pressing Start will load the next job.

HPR 200

HPR 201
HPR 202

HPR 203

HPR 204
HPR 205
HPR 206

HPR 207

HPR 210

Illegal type of card (not origin, flow, P, C).
to load next job.

ID mismatch,
Sequence out of order.

P re s s Start

Press Start to load next job.
Press Start to get next job. A

sequence e r r o r will often mean that the next card has a
sequence number of 1. This can occur legitimately, as
when a subroutine has been inserted in a problem program.
A T card may be used to eliminate the stop. However, if
a T card i s not used, pressing Start will cause the sub-
routine, and not the next job, to be loaded. This pro-
cedure may be used to load several segments of a single
job.

Press Start for next job,
P card followed by a card other than a P or branch card.

Origin too high.
Origin too low.
Too many bits to skip o r set to zero. Press Start to get

next job.
Attempting to load above limit for the simulated system.

Press Start to get next job.
First card in deck i s a flow card.

job.

Press Start for next job.
Press Start for next job.

Press Start to load next

5, To simulate the Initial Program Load Mode:
a. Put SSW 6 down.
b. Enter the channel number in octal in the console keys.
c. Press Load-Tape key.
d. When stop at HPR 17 occurs:

1) P r e s s Enter MQ with machine on Manual (704 only).
2) Reset keys. Set SSW 6 up.
3) Press Start.

Note that with initial program loading from the card reader, the last one and one-half
words will be loaded as zero.

e. Stop at HPR 1. Machine cannot perform the initial program load function
correctly. Check binary card and/or 1-0 unit,

6 . When the simulator encounters a BEW, it will stop with HPR 777778 in the
storage register and the contents of the instruction counter in the address field
of the accumulator, offset by two bits.

50

Example 1: At BEVJ , 2436.0s AC = 24360
Example 2: At BEW , 2436.48 AC = 24364

If the problem program i s caught in a BE, 0 loop at location 20.0, the BEW stop will
occur with 2008 in the AC.

7 . Dump
a.

b.
C.

Set sense switches:
ssw 1 up
SSW 1 down
ssw 2 up Printer output
SSW 2 down
ssw 4 up

SSW 4 down

With the simulator in storage, press Load Tape.
If a minus sign is entered in the MQ, the dump program will read control
cards from the reader and execute dumps as specified in 9-left of each
control card which has been punched in the format:

Tape 9(B) output
Suppress tape output

Suppress printer output
Load next program when Start is pressed after stop at

Return to current program when Start is pressed after last
HPR 30000.

dump request (HPR 30000).

9L decrement Starting add r e s s
9L address Last location to be dumped
9L tag Format of dump

tag = 0 Mnemonic, octal-hex
tag = 2 Index word
tag = 4 Floating decimal

Control cards will be read and dump requests will be processed; until two cards are
encountered with identical information in 9L or an end-of-file occurs on the reader.
Note: A control card with a blank 9L causes a complete storage dump to be performed.

d. If the MQ i s plus, dump limits and format requests will be obtained from the
entry keys on the console, again until two identical requests are made.
At HPR 20000:
1) 704: enter request on console keys, p re s s Enter MQ, then Start.
2) 709: enter request on console keys, press Start.

e. When all dump requests have been processed (HPR 30000 in the storage
register) or when a BEW stop occurs (HPR 77777 in the storage register) ,
two paths are available when Start i s pressed.
1) SSW 4 up: press Start to load next program.
2) SSW 4 down: p re s s Start to re-enter the program at the location contained

in the instruction counter.

When taking breakpoint dumps, the program is always re-entered when Start i s pressed,
regardless of the setting of SSW 4.

f . Breakpoint dumps are also available to the programmer.
Notes" for description and output formats.)

MPR 10001

(See "Programmer

g. stops
SSW 1 and SSW 2 a r e set to suppress all output for the dump

or trace program. Reset SSW 1 and 2 and p res s Start.

51

HPR 10002

HPR 20000

End-of-tape sensed on output tape. Dial a new tape 9(B)

Enter f i rs t dump request--or minus sign to read cards. On
and press Start.

704, p ress Enter MQ, then Start , to enter dump request
from console keys. On 709, reset console keys for next
request, then press Start.

p ress Start to load next program.
HPR 30000 If SSW 4 i s up and dump request i s the same as last one,

Note: A control card with a blank 9L or a zero in the console keys (press Start on the
704 only) causes a complete storage dump to be performed.

8. Trace
a. The t race program, like the dump program, i s under sense switch control.

Normally, the t race will be used on-line to determine the occurrence of loops
in a problem program.
ssw 1 up
SSW 1 down
ssw 2 up Printer output
SSW 2 down Suppress printer
ssw 5 up No tracing
SSW 5 down
Breakpoint tracing is also available. (See f fProgrammerfs Notes" for descrip
tion and output formats.) Breakpoint tracing i s independent of the setting of
ssw 5.

Tape 9(B) output
Suppress tape output

Trace all instructions
b.

9. Output-trace, dump, and N card output a r e all under the control of the same two
sense switches:

SSW 1 down Suppress tape 9 output
SSW 2 down Suppress printer output
SSW 1, 2 up Normal output
SSW 1 , 2 down Program stop. All output i s suppressed.

Off-line output i s printed using program control.
On-line output uses the SHARE 2 board in the printer.

10. Write Disk Program
a. The Write Disk program i s used to prepare a simulated disk on tape

10 (A).
b. Mount a rewound tape on 10(A).
c. Place the Write Disk program in the card reader and ready the reader.
d. P re s s Clear, then Load Cards.
e. A stop at HPR 0 , 7 i s the final stop.

11. Roll-back. A roll-back feature allows interruption and savings in the running
of the simulated program; later the program is rese t and the simulation con-
tinues from the point at which saving occurred.
a. Saving: Enter a 3 in the high-order octal digit in the console keys; depress

SSW 6; at stop reset SSW 6; p ress Enter MQ (704 only); p ress Start. The
7030 contents will be saved on tape 2(A).

52

b.

C.

Restoring: Enter a 7 in the high-order octal digit of the console keys; de-
press SSW 6; at the stop, reset SSW 6; p ress Enter MQ (704 only); p re s s
Start. The 7030 program will be read in from tape 2(A) and simulation will
proceed automatically.
stops
HPR 50000

HPR 50001

Er ro r in tape reading in roll-back. Press Start to backspace

E r r o r in tape writing in roll-back (709 only).
and t ry again.

to backspace and t ry again.
Press Start

12, To stop the simulation at any time, depress SSW 6 .
that when the simulator stops, it will have completed the simulation of the
instruction being processed when SSW 6 was depressed.

The user i s then assured

13. The Column Binary Punch Simulator is used to obtain Strap output from the on-line
punch at those installations not equipped with a column-binary attachment for
the off -line punch.
a.
b.

d.
C.

e .

At the conclusion of the Strap assembly, write an end-of-file on tape 3(A).
Load the column binary punch simulator in
P r e s s Clear, then Load Cards.
Strap column-binary cards will be punched
encountered on tape 3(A).

Note: Only columns 1-72 will be punched.

the card reader.

on-line until an end-of-file i s

This means that the ID columns
73-80 will be lost on normal Strap cards and one and one-half words
will be lost from PUNFUL cards.

stops
HPR 77767
HPR 77766

Redundancy e r r o r on tape 3(A).
End-of-file encountered on tape 3(A).

Press Start to t ry again.

S U M M A R Y OF SENSE SWITCH SETTINGS

ssw 1 up
SSW 1 down
ssw 2 up
SSW 2 down
ssw 3 up

SSW 3 down
ssw 4 up
SSW 4 down

ssw 5 up
SSW 5 down
SSW 6 up
SSW 6 down

(Dump) Tape 9(B) output.
(Dump) Suppress tape output.
(Dump) Printer output.
(Dump) Suppress printer output.
(Loader) Load 7030 binary cards , corrections cards and patch

(Loader) Loads the same as above, but from tape 3(A).
(Dump) Load next program after the last dump request o r BEW.
(Dump) Return to current prqgram after last dump request or

(Trace) No tracing.
(Trace) Trace all instructions.
(Simulator) Normal mode.
(Simulator) Initial program load mode.

cards from the on-line reader.

BEW.

53

SUMMARY OF STOPS

Loader

HPR 2

HPR 3

HPR 4
HPR 5

HPR 200

HPR 201
HPR 202
HPR 203

HPR 204
HPR 205
HPR 206
HPR 207

HPR 210

7030 Simulator

HPR 77777
HPR 17

HPR 1

HPR 50000

HPR 50001

Dump

HPR 10001

HPR 10002

HPR 20000
HPR 30000

Write Disk

HPRO, 7

End-of-file encountered on either card reader or tape 3 (depend-

Tape check after two attempts to read a record from input tape.

Check sum e r r o r in this record.
No origin punched in the f i rs t correction card encountered.

Pressing Start causes this card to be skipped.
Illegal type of card (not origin, flow, P, C).

next job.
ID mismatch. P res s Start to load next job.
Sequence out of order.
P card followed by a card other than a P or Branch card. Press

Origin too high.
Origin too low.
Too many bits to skip or set t o zero.
Attempting to load above limit for simulated machine.

F i r s t card in deck i s flow card.

ing on the setting of SSW 3). P r e s s Start to read next record.

Press Start to continue loading this record.
Press Start to continue loading.

Press Start to load

Press Start to get next job.

Start to get next job.
Press Start to get next job.
Press Start to get next job.

Press Start to get next job.
Press

Press Start to load next job,
Start to get next job.

A BEW instruction has been encountered.
Initial Program Load.

Machine cannot perform the initial program load function correctly;

Roll-back. E r ro r in tape reading in program; press Start to

Roll-back.

P r e s s Start to continue.
Press Enter MQ (704 only) to enter chan-

nel number, reset keys, and SSW 6 , press Start,

check binary card.

backspace and t ry again.

space and t r y again.
E r ro r in tape writing (709 only); p ress Start to back-

SSW 1 and 2 are set to suppress all output for the dump or t race
program. Reset SSW 1 and 2 and p res s Start.

End-of-tape sensed on output tape. Dial a new tape 9(B) and
press Start.

Enter f i r s t dump request in console keys.
Enter new dump request. If same as last request, and if SSW 4 i s

up, p ress Start to load next program.

Final stop.

54

Column Binary Punch Simulator

HPR 77767
HPR 77766

Redundancy e r r o r on tape 3(A).
End-of-file encountered on tape 3(A).

Press Start to t ry again.

System Tape Editor

HPR 77776

HPR 77775 (709 only) E r r o r in writing the simulator on tape 1. Dial another

HPR 77774

HPR 77773 (709 only) E r r o r in writing tape 1. Dial another tape to 1 and

HPR 77771 (704 only) E r r o r in writing tape 1. Dial another tape to 1 and

HPR 77770

Erro r in reading simulator from the master tape. Reload to t ry
again. If e r r o r ockurs repeatedly, contact IBM.

tape to 1 and t ry again.

t ry again or contact IBM.

t ry again,

t ry again.

E r ro r in attempting to read Strap from master tape. Reload to

Final stop. Tape 1 should be file-protected at this point.

55

APPENDIX A

STRAP-1 MNEMONICS

Assigned Strap-1 mnemonics, including both operation codes and
system symbols, a r e listed on the following pages.
in the Footnote column designate notes that follow the listing.
footnotes, in general , identify a particular c lass of operations that
may be expanded in a standard way to produce other operations.
Where footnotes specify how particular modified operation mne-
monics may be constructed, these mnemonics do not appear explicitly
in the listings.

The numbers
These

The following abbreviations, used in the Type column, identify
the symbolic instruction type.

Type

Mne-
monic

AD
AE
AH
AL
AOC
BC
BTR
CA
CB J
CNSL
CPUS
CPU
cs
DF
DISK
DS
DTR
E
EE
EK
EKJ
EOP
EPGK
EXE
F T
IA
IF
IK
IJ
IND
IQS
IR
IT
L
LB
LC
LS
LZC
M
MASK
MB
MK

VF L
Floating Point
System Symbol
Index
Count and Branch
Branches and Miscellaneous
Branch on Bit
Transmits
1-0 Select o r Control Word

Foot-
note -
2
2
2
2
1
1
2
1
2
1
1
2
2
2
1
2
2
12
2
2
2
2
2
2
1
1
2
2
2
1
1
2
1
1
1
2
2
1
12
1
1
2

Name -

Address Invalid
Accumulator Equal
Accumulator High
Accumulator Low
All Ones Count
Boundary Control
Binary Transit
Channel Address
Channel Busy Reject
Console
CPU Signal
Other CPU
Channel Signal
Data Fetch
Disk
Data Store
Decimal Transit
e
End Exception
Exchange Control Check
Exchange Check Reject
End of Operation
Exchange Program Check
-Execute Exception
Factor
Interruption Address
Instruction Fetch
Instruction Check
Instruction Reject
Indicators
Inquiry Station
Imaginary Root
Interval Timer
Left Half of Accumulator
Lower Boundary
Lost Car ry
Lost Significance
Left Zeros Count

Mask
Maintenance Bits
Machine Check

Log] oe

Word Bit
No, Address --
11 16
11 61
11 62
11 60
7 44-50
3 57
11 39
5 12-18
11 8

11 5
6 0-18
11 13
11 20

11 19
11 40

11 11
11 3
11 6
11 12
11 9
11 18
14 0-63
2 0-17
11 2 1
11 1
11 2
11 0-63

11 25
1 0-18
8 0-63
3 32-49
11 22
11 26
7 17-23

12 21-49
4 0 - 6 3
11 0

Mne- Foot-
Type monic Note -

$ MOP 2
$ N 12
$ N M 2
$ O P 2
$ PCH 1
$ P F 2
$ PGO...PG6 2
$ PI 12
$ PRT 1
$ PSH 2

$ R 1
$ RDR 1
$ RGZ 2
$ RLZ 2
$ RM 1
$ RN 2
$ RU 2
$ RZ 2
$ SB 1
$ TC 1
$ TCI...TCK

T F 2
TR 1
TS 2
TX 1

UB 1
U F 2
UK 2
UNRJ 2
USA 2

V F 2
xo 1
x1 1
x 2 1
x3 1
x 4 1
x 5 1
X6 1
x7 1
X8 1
x 9 1
x10 1
x11 1
x12 1
X13 1
X14 1
X15 1
xcz 2
XE 2
XF 2
x H 2
XL 2
XPFN 2
XPFP 2
XPH 2
XPL 2
XPO 2
XPU 2
XVGZ 2

XVLZ 2

XVZ 2
Z 1
ZD 2

Name -

To-Memory Operation

Noisy Mode
Operation Invalid
Punch
Partial Field
Program Indicators
7 l
Pr in te r
Preparatory Shift Greater

Right Half of Accumulator
Reader
Result Greater Than Zero
Result Less Than Zero
Remainder
Result Negative
Remainder Under flow
Result Zero
Sign Byte
Time Clock
Tape Channels 1.. . K
T Flag
Transit
Time Signal
Tape X (X is a numerical

designation)
Upper Boundary
U Flag
Unit Check
Unit Not Ready Reject
Unended Sequence of

V Flag
Index Zero
Index One
Index Two
Index Three
Index Four
Index Five
Index Six
Index Seven
Index Eight
Index Nine
Index Ten
Index Eleven
Index Twelve
Index Thirteen
Index Fourteen
Index Fifteen
Index Count Zero
Index Equal
Index Flag
Index High
Index Low
Exponent Flag Negative
Exponent Flag Positive
Exponent Range High
Exponent Range Low
Exponent Overflow
Exponent Underflow
Index Value Greater Than

Index Value Less Than

Index Value Zero
Word Number Zero

Loge 2

Than 48

Addresses

Zero

Zero

Word
No. -
11

11
11

11
11

11
9

11
11
13
11
11
11
10
1

11
15
11

3
11
11
11

11
11
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
11
11
11
11
11
11
11
11
11
11
11

11

11
11
0

Zero Divisor 11

Bit
Address

55

63
15

23
41-47

27
0-63

58
56
0-63
5 4
34
57
0-7
28-63

35
0-63
4

0-17
36
10
7

17
37
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
48
53
38
54
52
33
28
30
31
29
32

51

49
50
0-63
24

ALPHABETIC LIST OF OPERATIONS

Type

V
F
V
F
V
F
V
F
V
F
V
F
F
V
V
F
F
V
V
F
M
B
B
B
B
M
M
M
M
B
B
B
B
V
I
I
C
C
C
C
E
V
V
E
V
F
F
F
F
V
F
F
F
F
F
F
F
F
F
F
M
M
F
F
V
F

Mne- Foot-
monic n o t e

+ 3
+ 6
+MG 3
+MG 6

3
6

-MG 3
-MG 6
* 4
* 7
*+
*+
*A +
*I +
*N +
*N +
*NA +
*NI +
/ 4
/ 7
B
BB
BB 1
BBN
BB Z
BD
BE
BE W
BR
BZB
BZBl
BZBN
BZBZ
C 10
c + 1
c - 1
CB 8
CBR 8
CBZ 8
CBZR 8
ccw
CM 10
CT 10
CTL
cv 5
D + 6
D + MG 6
D - 6
D - M G 6
'DCV 5
DL 7
DLWF 7
D* 7
D/ 7
E + 6
E + AI
E + I
E - 6
E - AI
E - I
EX
EXIC
F + 6
F - 6
K 4
K 7

Name

Add
Add
Add to Magnitude
Add to Magnitude
Subtract
Subtract
Subtract from Magnitude
Subtract from Magnitude
Multiply
Multiply
Multiply and Add
Multiqly and Add
Multiply Absolute and Add
Multiply Immediate and Add
Multiply Negative and Add
Multiply Negative and Add
Multiply Negative Absolute and Add
Multiply Negative Immediate and Add
Divide
Divide
Branch
Branch on Bit
Branch on Bit and Set to One
Branch on Bit and Negate
Branch on Bit and Zero
Branch Disabled
Branch Enabled
Branch Enabled and Wait
Branch Relative
Branch on Zero Bit
Branch on Zero Bit and Set to One
Branch on Zero Bit and Negate
Branch on Zero Bit and Zero
Connect
Add Immediate to Count
Subtract Immediate from Count
Count and Branch
Count, Branch, and Refill
Count and Branch on Zero Count
Count, Branch on Zero Count, and Refill
copy Control Word
Connect to Memory
Connect for Test
Control
Convert
Add Double
Add Double to Magnitude
Subtract Double
Subtract Double from Magnitude
Convert Double
Load Double
Load Double with Flag
Multiply Double
Divide Double
Add to Exponent
Add Absolute Immediate to Exponent
Add Immediate to Exponent
Subtract From Exponent
Subtract Absolute Immediate from Exponent
Subtract Immediate from Exponent
Execute
Execute Indirect and Count
Add to Fraction
Subtract from Fraction
Compare
Compare

I
I
V
V
V
V
E
F
F
V
F
I
I
I
V
F
I
I
V
V
V
F
E
I
I
I
I
I
I
I
I
V
V
V
F
V
F
V
F
V
F
V
F
V
F
V
F
M
M
M
E
E
E
I
F
I
E
V
F
F
F
M
F
F
I
V
F

Mne- Foot-
monic n o t e

KC
KCI
K J 3 4
KF 4
KFE 4
KFR 4
KLN
KMG 7
KMGR 7
m 4
K R 7
Kv
KvI
KVNI
L 4
L 7
LC
LCI
LCV 4
LF
LFT 4
LFT 7
LOC
LR
LR I
LV
LVE
LVI
LVNI
LVS
Lx
LTRCV 4
LTRS 4
LWF 4
LWF 7
M + 3
M + 6
M + 1
M + A
M + M G 3
M + M G 6
M -
M -
M -1
M - A
M-MG 3
M-MG 6
NOP
R
RCZ
RD
REL
REW
RNX

sc
SEOP 11
SF
SHF 7
SHFL
SHFR
SIC
SLO 7
SNRT 6
SR
SRD 5
SRD 7

R/

Compare Count
Compare Count Immediate
Compare If Equal
Compare Field
Compare Field If Equal
Compare Field for Range
Check Light On
Com pare Magnitude
Compare Magnitude for Range
Compare for Range
Compare for Range
Compare Value
Compare Value Immediate
Compare Value Negative Immediate
Load
Load
Load Count
Load Count Immediate
Load Converted
Load Field
Load Factor
Load Factor
Locate (same as Select Unit)
Load Refill
Load Refill Immediate
Load Vilue
Load Value Effective
Load Value Immediate
Load Value Negative Immediate
Load Value with Sum
Load Index
Load Transit Converted
Load Transit and Set
Load with Flag
Load with Flag
Add to Memory
Add to Memory
Add One to Memory
Add to Absolute Memory
Add Magnitude to Memory
Add Magnitude to Memory
Subtract from Memory
Subtract from Memory
Subtract One from Memory
Subtract from Absolute Memory
Subtract Magnitude frQm Memory
Subtract Magnitude from Memory
No Operation
Refill
Refill on Count Zero
Read
Release
Rewind
Rename
Reciprocal Divide
Store Count
Suppress End of Operation
Store Field
Shift Fraction
Shift Fraction Left (same as SHFA)
Shift Fraction Right (same as SHFNA)
Store Instruction Counter If
Store Low Order
Store Negative Root
Store Refill
Store Rounded
Store Rounded

57

F
V
F
E
I
I
T
T
T
T
I
T
T
T
T
I
I
I
I
I
I
I
I
I
E
E
M

Mne- Foot-
manic note Name - A -

SRT 6
ST 5
ST 7
su
sv
SVA
SWAP
SWAP1
SWAPB
SWAPBI
sx
T
TI
TB
TBI
V +
V + I 9
v + c
V + CR
V + I C 9
V + ICR 9
v - I 9
v - I C 9
V - ICR 9
W
WEF
Z

Store Root
Store
Store
Select Unit (same as Locate)
Store Value
Store Value in Address
Swap
Swap Immediate
Swap Backward
Swap Backward Immediate
Store Index
Transmit
Transmit Immediate
Transmit Backward
Transmit Backward Immediate
Add to Value
Add Immediate to Value
Add to Value and Count
Add to Value, Count, and Refill
Add Immediate to Value and Count
Add Immediate to Value, Count, and Refill
Subtract Immediate from Value
Subtract Immediate from Value and Count
Subtract Immediate From Value, Count, and Refill
Write
Write End-of-File
Store Zero

FOOTNOTES

1.
by the character fl$lf whenever used.

This mnemonic is a system symbol. It must be prefixed

2 . This mnemonic is both an indicator mnemonic and a system
symbol. It must be prefixed by the It$ff whenever i t is used as a
system symbol in a symbolic field of some instruction.
mnemonic may also be used directly to express a Branch on
Indicator instruction by being substituted for the letter "1" in any
of the following four formats:

This

BI Branch on Indicator
BIZ
BZI Branch on Zero Indicator
BZIZ
The mnemonics BI, BIZ, BZI, BZIZ a r e not in themselves

Branch on Indicator and Zero

Branch on Zero Indicator and Zero

legal operation codes. Any of the integers 0 through 63 may also

be substituted for I if it i s desired to designate an indicator
numerically.

3.
invoke immediate addressing.

This operation code may be suffixed by the letter "I" to

4. This VFL operation code may have the following suffixes:

I Immediate
N Negative
NI Negative Immediate

5.
invoke the negative sign modifier.

This operation code may be suffixed by the letter "N" SO

6 .
letter l l A f T to invoke the absolute sign modifier.

This floating point operation code may be suffixed by the

7 .
suffixes:

This floating point operation code may have the following

N Negative
A Absolute
NA Negative Absolute

8. Count and Branch operation may have the following suffixes:

+ Add one to value

H Add half to value
Subtract one from value

9. This operation code may be used to indicate either an
immediate indexing operation or the secondary operation of any
VFL instruction.

10. This operation mnemonic specifies, potentially, 1 6 connect
instructions.
operation code to select a particular one of the 16 instructions.
This operation code is also subject to Footnote 3.

Four binary digits a r e written directly after the

11.
select o rde r s that a r e subject to end-of-operation interrupts.

This code may be used as a secondary operation with 1-0

12. These mnemonics a r e mathematical constants.

58

APPENDIX B

STRAP- 1 PSEUDO-OPER ATIONS

Mnemonic Name - Mnemonic Name

BS
C CR
CD
CDSC
C F
CNOP
CR
CRDRUN
cw
DD
DDI
DR
DR Z
ECC o r

END
ERG
EVEN
EXT
GONG
HD
KLN
LD
NOECC
ODDECC
ODDNE C
PRND

ODDECC

Backspace
Chain Counts Within Record
Count Disregarding Record
Count Disregarding Record, Skip, and Chain
Count Field
Conditional No Operation
Count Within Record
Card Run-Out
Control Word
Data Definition
Data Definition Immediate
Data Reservation
Data Reservation and Set to Zero

ECC(and odd parity for tape)
End
Erase Gap
Even Parity No ECC(tape only)
Extract
Sound Gong
High Density
Check Light On
Low Density
No ECC, Even Pari ty (tape only)
Odd Parity, ECC
Odd Parity, No ECC
Pr in t Double-spaced

PRNID
PRNS
PUNFUL
PUNID
PUNNOR
REM
REW
R F
R L F
R LN
SCCR
SCR
S CD
SCDSC
SEM
SKIP
s LC
S P
S P F L
SYN
TAIL
TILF
T LB
UNLOAD
VF
WEF
xw

Pr in t ID
Print Single-spaced
Punch Full Cards
Punch ID
Punch Normally
Resume E r r o r Marks
Rewind
Refill Field
Reserved Light Off
Reserved Light On
Skip, Chain Counts Within Record
Skip, Count Within Record
Skip, Count Disregarding Record
Skip, Count Disregarding Record, Skip and Chain
Suppress E r r o r Marks
Skip Paper
Set Location Counter
Space
Space File

Tail
Tape Indicator Light Off
Terminate Loading and Branch
Unload
Value Field
Write End-of-File
Index Word

Synonym

59

APPENDIX C

SYMBOLIC DESCRIPTIONS AND MNEMONICS FOR IBM 7030

The following l i s t of mnemonics may be used with Strap-1 and
Strap-2.
ass i s t the programmer.
defined a t the s t a r t of each section.
(%" and rlmrr for example) has a different definition for floating
point and for VFL.
A more detailed description of the operation is in the IBM 7030
Reference Manual, Form A22-6530.

A symbolic description of the mnemonic is given to
The operations symbols used a r e

Note that the same letter

Carefully read the definition for each se t .

A specific title for each mnemonic is not given in cases
where the mnemonic is derived from the basic operation by
changing the sign and absolute modifiers.

In the case of VFL operations, the unsigned modifier must
be implied by the data referred to o r be explicitly stated in a dds.

FLOATING POINT OPERATIONS

Notation for Symbolizing the Floating Point
Operations OP(dds), A18(I)

Accumulator Operands

a =

b =

ab =

e(a) =
f(a) =
s(a) =
SB(a) =

F1 (a) =

bits (0-59) of the accumulator, and the accumu-
lator sign, bit 4 of the sign byte register.

bits (60-107) of the accumulator, and the
accumulator sign.

bits (0-107) of the accumulator, and the accumu-
lator sign.

bits (0-11) of a.
bits (12-59) of a , and s(a).
bit 4 of the sign byte register.
bits 4-7 of the sign byte register.
bits 5-7 of the sign byte register.

c - r?? : $, I +

Storage Operands

m = bits (0-59) of the storage word, and its sign,

M = L(m) = the effective address.
e(m) = bits (0-11) of m.
f(m) = bits (12-59) of m , and s(m).
s(m) = bit 60 of the storage word.
SB(m) = bits (60-63) of the storage word.
F1 (m) = bits (61-63) of the storage word.

bit 60.

$FT = Factor operand; SB($FT) = bits (60-63) of $FT.
$RM = Remainder operand.

Add

+ a + m - a 1.-:
a-m - a 2.

+A a+lml - a 3.
- A a-lml - a

Add to Memory

M+ m+a- m 1.
M- m-a- m 2.
M+A Iml +a - m
M-A /mi-a - m

%e+e&+ b is unchanged.
Fl(a) is unchanged.

F1 (m) remain unchanged.
The entire accumulator and
SB(a) remain unchanged.

Add to Exponent

E+ e(ab)+e(m) - e(ab)
E - e (ab) -e (m) - e (ab)
E+ A e (ab)+ I e(m)l- e (ab)
E-A e(ab)-le(m)l- e(ab)

Add Immediate to Exponent

E+ I e (ab)+ e (M) --c e (ab)
E -I e(ab) -e(M) -t e(ab)
E+ AI e(ab)+ le(M)(+ e(ab)
E - A I e(ab)- le(M)I* e(ab)

Shift Fraction

SHF f(ab).2M - f(ab)
SHFN f(ab)*2-M-f(ab)
SHFA f(ab)-21Ml --(ab)
SHFNA f(ab)-2-IMI --(ab)
SHFL f(ab).21MI --(ab)
SHFR f(ab).2-lMl -f(ab)

Double Add

D+ ab+m -----ab
D- a b - m -ab
D+A ab+lml -ab
D- A ab- Iml -ab

Add to Magnitude

+MG R=la(+m
-MG R=lal- m

- MGA R=lal- Id
+ MGA R=lal+ Iml

Double Add to Magnitude

D+ MG
D- MG
D+ MGA R= labl+ Iml
D-MGA R=labl- Iml

R= lab1 + m
R= lab1 - m

Add Magnitude to Memory

M+MG R=m+lal
M-MG R=m-(al
M+ MGA R= Iml+ la1
M- MGA R=lml- la1

Mu1 tip1 y

* a - m -a
*N a * - m - a
*A a.Iml - a
*NA a.-ld- a

Add to Fraction
Double Multiply

F+ f(ab)+f(m) - f(ab) 1.
F- f(ab)-f(m) - f(ab)
F + A f(ab)+ If(m)l- f(ab)
F - A f(ab)- \f(m)l- f(ab) 2.

e(m) is ignored; the add is
performed with e(a) on both
operands.
The normalized mode operates
in the same way as in D+ .

D* a - m - a b
D*N a * - m - ab
D*A a. Iml - a b
D*NA a. - Iml- ab

1.
2.

1.

1.
2.
3.

4.

5.

1.

1.
2.

3.

1.
2.

3.

f(m) is ignored.
Strap-1 will assemble as un-
normalized unless the normal-
ized mode is requested by
referring to normalized data
or by using the dds = (N).

The unnormalized mode is
given unless overruled by
dds = (N).

Left shift if bit 11 of M = 0.
Right shift if bit 11 of M = 1.
The operation is not affected
by the normalized modifier.
The exponent is not adjusted
for the shift. e(a) is unchanged.
On a right shift, zeroes a r e
introduced in bit 12.

PSH indicator goes on if the
exponent difference exceeds 48.

R - a i f R 2-0 .
0 --(a) if R < 0 and e(a) i s
unchanged.
s(a) is unchanged in either case.

R-ab if R > + O .
0 - f(ab) if R < 0 and e(a)
is unchanged.
s(a) is unchanged in either case.

1. R -m if s(R)=s(m).
2. 0 .-t f(m) if s(R) # s(m). . '-6'

3. s(m) is unchanged in either case.

1 . v .
2. Tke i s e e t e b i s unchanged.

1. (108-127) of accumulator a r e
unchanged.

60

Multiply Factor and Add Store

*+ m. ($FT)+ ab -ab
*N+ -m. ($FT)+ab-ab
*A+ Iml- ($FT)+ ab -cab
*NA+ - Im(($FT)+ ab 4 a b

1. The contents of $FT remain
unchanged.

ST a - m 1. Fl(a)-Fl(m).
STN -a - m 2. a i s unchanged.
STA la1 - m
STNA - l a \ - m

.~

Divide Store Rounded

/ a/m -a
/N a/-m -a
/ A a/lml --+a
/NA a/-Iml-a

1. No remainder is generated,
2. Q u o t i e n t m m t u 46 bits.
3. Pre-normalization of the

1, ' 1

operands i- of the
normalization modifier.

4 .-+--+@- -v*ak%&&b is
unchanged.

SRD a - m 1. A one is added in bit (60)b
SRDN -a - m prior to the store: a and
SRDA la[- m (60)b a r e unchanged.
SRDNA -la1 - m 2. Fl(a)-Fl(m).

Store Low Order

SLO b - f(m) 1. e(a) - 48 - e(m).
SLON -b - f(m) 2. Fl(a)-Fl(m).

f(m) 3. e(a) is unchanged. SLOA lbl -
SLONA -1bl - f(m)

Reciprocal Divide

R/ m/a ------fa
R/N -m/a-a
R/A Iml/a -a

_I R/NA -Iml /a- a

1. Performed similarly to divide.
2 . 4 + - = + @ 4 ~ . t f t 9 ~ & b

is unchanged.
Compare

K a :m
KN a:-m
KA a:lml
KNA a:-lml

1. Indicators AL, AE, and AH are
set as follows:

AL is se t to one if a < m
AE is s e t to one if a = m
AH is set to one if a > m

2. Zero exponents of different sign
a r e considered equal.

3. If the exponent difference is 48
the l a r g e r of the numbers is per
sign and exponents regardless of
fractions.

Double Divide

D/ ab/m -ab
D/N ab/-m-----+ab
D/A ab/ Iml - ab
D/NA ab/- Iml -ab

1. Remainder in $RM.

3. No rounding.
r _. - 2. 0-b. '

Store Root

SRT ~~~----m
SNRT -0 -m
SRTA --m
SNRTA -p -m

1. ab and SB(a) a r e unchanged.
:: 5 g J ' -+ $ ' , Compare for Range

KR a:m
KRN a:-m
KRA a:lml
KRNA a:-lml

1. If AH is off prior to this op,

2. If AH is on:
no indicators will be changed.

AL is unchanged.
AE is s e t to one if a i m.
AH is set to one if a 2 m.

Load

L m-a
LN -m -a
LA Iml ---+a
LNA -1ml ----a

1. 0- Fl(a).

3.4%m=m&-=e€ b is unchanged.

Compare Magnitude

1. Same as Compare, except for
accumulator comparand.

KMG !a':m
KMGN ia':-m
KMGA !a':Im)
KMGNA ' a' :- Iml

Double Load

1. 0-b.
2. 0- F l (a) .

DL m-a
DLN -m - a
DLA' Iml - a
DLNA - (m (- a

Compare Magnitude for Range

KMGR a : m
KMGRN a : - m
KMGRA a : Iml
KMGRNAa :-lml

1. Same as Compare for Range,
except for accumulator
comparand.

Load with Flag Bits

LWF m - a
LWFN -m - a
LWFA Iml -a
LWFNA -1ml - a

VARIABLE FIELD LENGTH OPERATIONS

Double Load with Flag Bits
Notation for Symbolizing the Variable Field Length

Operations OP(dds) , A24 Q), OF7 (1') DLWF m -a
DLWFN -m -a
DLWFA lml- a
DLWFNA - Iml - a

1. 0-b.
2. F1 (m) - F1 (a).

Accumulator Operands

a = the accumulator operand whose:
1. Low order bit is defined by the offset;
2. Byte size is four for decimal ari thmetic, eight

for binary arithmetic;
3. Length includes all bits in the accumulator to the

left of the offset;

Load Factor

L F T m - $ F T
LFTN -m -$FT
LFTA Iml - $FT
LFTNA -1mI - $FT

1. ab and SB(a) a r e not changed.
2. s(m) - (60)$FT.
3. 0 -(61-63)$FT.

61

4. Sign is indicated by bit four of the sign byte
register. -

a = the accumulator operand, a, but without sign.
"20 = the accumulator operand, a, with offset = 20.

F'kL\ ~ < 3 1 : 5 $0,

=2f7 ~ +; ' - 3 6 5 3 Jb,;.
S t b a g e Operands

m = the
1.
2.

3.
4. -

m = t h e

storage operand whose:
High-order bit is defined by the bit address;
Byte size may be any number from one to eight,
but is assumed to be four in the insJruction lists

Length i s defined by the field length in the dds;
Sign is bit s in the sign byte.
storage operand in which a l l bytes a r e processed

below; (M U S T U E b " C 5 ' / > f <

as data; a positive sign is assumed.

The unsigned storage operand is designated by the dds.
Bits 7.17 and 7.18 are the leftmost two bits of $LZC.
$FT = Factor Operand; s($FT) = b i t 60; FL($FT) = bits

$TR = 64-bit Transit Register.
.(61-63).

Divide

/
/N

Lo ad

L
LN

a/m -a (I) 1. Divide takes place only in the
a / -m -a binary mode.

2. Decimal divide gives LTRS and
012 in bits 7.17 and 7.18.

3. The remainder is placed in $RM.
The remainder sign, (60) $RM,
is the same as the original s (a).
F1 ($RM) = 0.

4. Bits to the right of the offset
a r e cleared.

m -a (I) 1. 0-Fl(a).
* 2. The entire accumulator is -m

cleared before the load.

Load with Flag Bits

- a 0) 1. F1 (m) - F1 (a), LWF m
LWFN -m -a

Integer Operations

Operations which can have an immediate operand a r e followed
by (I), except for *+ .

Load Factor

L F T m - $FT (I) 1. 0-(61 - 63) $FT.
LFTN -m - $FT 2. The offset field is ignored.

Add

+ a+m- a 0 1.
a-m- a

7

Add To Memory

M+ m+a -m
M- m-a -m

Add to Magnitude

+MG R=a+m
-MG R=a-m

Add Magnitude To Memory

M+MG R=m+a
M-MG R=m-5

Multiply

* a20
a20

a - m -
*N a * - m -

Multiply Factor and Add

*+ m. ($FT)+a - a
*N-C -me ($FT)+a-- a

If the sign changes, bits to the
right of the offset a r e comple-
r 2nted. ~

F / < > \ 4 _7 C? ,?, c - & .I<# ' '

Load Transit and Set

- $TR (I) 1. Offset-$AOC. LTRS m
LTRSN -m - $TR 2. 112-bits 7.17 and 7.18.

3. Indicator $BTR = 1 and
$DTR = 0 if mode is B o r
BU .
Indicator $DTR = 1 and
$BTR = 0 if mode is D or
DU .

R--a if R -> 0.
0-entire accumulator if R < 0.
s(a) is not changed by these
operations.

Store

ST a - m 1.
STN -a - m 2.

R-m if s(R) = s(m).
0-m if s(R) f s(m).
s(m) is not changed.

Multiplication takes place only
if mode = B o r BU.
The decimal mode gives LTRS Store Rounded

and 00 to bits 7.17 and 7.18.
The leiggth of a o r m must be
5 48 bits in binary multiply.

The portion of the accumulator
not containing the product i s
s e t to zero.

Write: *I+
and *NI+ for an immediate
operand.
Multiplication takes place only
if mode = B o r BU.
Decimal mode gives LTRS and
l o 2 to bits 7.17 and 7.18.

SB(a) -SB(m).
If the byte size is grea te r
than four:
Binary: zone bits of the

sign byte register
a r e stored in SB(m).

Decima1:zone bits of the sign
byte register a r e
stored in each byte
of m.

SRD
SRDN Store operations, except for:

a. Binary: a one is added one bit to the right of
the offset, prior to the store.

b. Decimal: 0101 is added one byte to the right of
the offset, prior to the store.

c. The accumulator is unchanged, even if rounding
occurs.

These operations a r e the same as the corresponding

Add One to Memory

M + l m+l-m 1. The one is added to the low
M-1 m - 1 -m order byte.

2. The offset field is ignored.

62

Compare Connect for Test

K a:m
KN a:-m

Compare for Range

KR a:m
KRN a:-m

Compare If Equal

KE a :m
KEN a:-m

Compare Field

KF a :m
KFN a:-m

Compare Field for Range

KFR 2:m
KFRN a:-m

Compare Field If Equal

KFE Z:m
KFEN a:-m

(I) 1. The Compare operations
se t the AL, AE, and AH
indicators.

AL is se t to one if: a < m
AE i s s e t to one if: a = m
AH i s s e t to one if: a ,m

All bits to the left of the off-
s e t in the accumulator par-
ticipate in the compare.

2.

(I) 1. If the A H indicator i s off
prior to the operation, it
i s executed as a NOP.

AL is unchanged.
AE i s s e t to one if a < m
AH is-pne if a 2 m

2. If AH is on:

I) - . -

CTx x x x Result is not stored,

x1x2x3x4 is a four-bit binary configuration to describe the type of

Let: m = a bit from storage (may be an inserted leading zero if

a = a bit from the accumulator corresponding to m.

x1 = desired result if m = 0 and a = 0
x2 = desired result if m = 0 and a = 1
x3 = desired result if m = 1 and a = 0
x = desired result if m = 1 and a = 1

accumulator.

1 2 3 4

connective; it i s summarized:

the byte size i s less than 8).

accumulator byte s ize always = 8.
The

Example? ClOlO (BU, 64, 4), 0 will complement the entire 128-bit

Pseudo- Connectives

LF (Load Field) L F = COO11
SF (Store Field) SF = CMOlOl

(I) 1. If the AE indicator i s off, no
changes will occur. Immediate Connects

2. If the AE indicator is on, the
indicators a r e se t as in Compare,
K.

To indicate immediate addressing, write: Cklx2x3x4, CTblx2x3x4,
and LFI.

$AOC = All ones count register.
$LZC = Left zeros count register.

(I) 1.

2.

The indicators a r e se t as in
Compare.
The length of the accumulator
comparand is the same as the
length of the storage cornparand.
The matching bits of both operands
a r e compared.

After a connective operation the two regis ters , $AOC and $LZC
contain the indicated counts of the result. Because the result may not
occupy the entire accumulator, $AOC and $LZC may not give the total
count of ones and left zeros of the accumulator.
always give the correct count in CM or SF.

However, these counts

3.

Convert Instructions

Definitions:
aD = accumulator in decimal, four-bit bytes with specified offset.
“B = accumulator in binary with specified offset.
aBZ0 = accumulator in binary with offset = 20.
aB6% = accumulator in binary with offset = 68.
mB - storage operand in binary with specified byte size and field length.
mD = storage operand in decimal with specified byte size and field

$TR = 64-bit transit register with a sign byte in the rightmost four bits.

(I) 1.

2.

The accumulator comparand is the
same as in Compare Field, KF.
The indicators a r e se t as in
Compare Range, KR .

length.

(I) 1.

2.

The accumulator comparand is
the Same as in Compare Field, KF. is decimal; from binary to decimal if the given mode is binary.
The indicators a r e set as in
Compare If Equal, KE.

Note: The conversion goes: f rom decimal to binary if the mode given

Convert

aB68 if mode = D o r DU 1. In binary a
if mode = B or BU field O f 48 bits

“D c__c

Logical Connectives OP(dds), A24 (I), OF7 (I!) cv

i s used.

accumulator
to the left of
the offset is

Or “B68 __f “D

CVN -aD aB68 2. The entire
Note: If the operand from storage has a byte size (BS) less than eight,

B68 “D
then eight minus BS (8 - BS) leading zeros a r e added to each byte from
storage before the connect takes place. However, the storage operand
is not changed in Cxxxx o r CTxxxx.

o r -a

Double Convert used.
Connect to Accumulator

c x x x x Result- a
1 2 3 4

Connect to Memory

CMxl x2x3x4 Result-m

DCV a -a
B20

O r “B20 - “D

o r -“B20 - “D
DCVN -aD - “B20

1. In binary, a
field of 96 bits
i s used.

2. The entire
accumulator to
the left of the
offset is used.

63

Load Converted

LCV mD “B (r)

LCVN -mD a B (r)
o r mB “D

o r -mB “D

Load Transit Converted

LTRCV m D $TRB (I)
o r m g $TRD

LTRCVN -mD $TRB (I)
o r -mB $TRD

Progressive Indexing

1. s(m)-s(a)
2. 0-Fl(a)
3. The entire

accumulator i s
cleared before
the load.

1. The accumulator
and offset are
ignored.

2. 0-Fl($TR)
3. s(m)-s($TR)
4. The entire $TR is

cleared before the
load.

Any VFL o r Connective operation (when not immediate) may have a second
operation enclosed in parentheses.
V * IC. o r V * ICR.

The second operation may be V * I ,

Format: OP(OP2)(dds), A24 (J), OF7 (I!)

Notes: 1. The original value field of J is the effective address
of operation.

2. A24 i s the immediate operand specified by J in V f. I,
and s o on, and the value field of J is incremented by
* A24 according to f I. The incrementing takes place
subsequent to note 1.

3. J may be $XO.

SX J - m

sc c - V(m) 1. 0-(18 - 24) of m.
SR R - V(m) 1. 0-(18 - 24) of m.

SV v - V(m)

V+ V+V(m)- V 1. There i s no V - etc.

V+V(m)- V

(J) if C2 = 0

SVA V - V(m) 1.

LVE (M)n- V 1.

KV V:V(m) 1.
KC C:V(m)

V i s truncated to 18, 19, o r 24
bits, as is appropriate for the
instruction containing V(m).

(M) means contents of M
(M)I ” ‘ I (M)

1 1 1 1 (M)n-l (M)” ‘I

Indicators: XL, XE, XH a r e se t
by KV and KC.
the only output of KV and KC.

This setting i s

Used for saving and restoring
index regis ters .

LVS (special format): LVS, J, A I , ~ 2 , . . . , A ”

,?, V(Ai) - V(J)
1 = 1 of the index words.

1. The sum may include any subset

2. No indexing of the address field
is allowed.

INDEXING OPERATIONS
Immediate Index Arithmetic OP, J, A19

Notation for symbolizing the Indexing Operations

Index Word Operands

J = bits (0 - 63) of the index word.
V = bits (0 - 24) of J.
C = bits (28 - 45) of J.
R = bits (46 - 63) of J.

Storage Word Operands

m = bits (0 - 63) of a storage word.
V(m) = b i t s (0 - 24) of m if the second operand i s V.

(sign of V i s in bit 24)
V(m) = bits (0 - 17) of m if the second operand is C o r R.

Immediate Operands

m = b i t s (0 - 18) of the effective address if the second

m = b i t s (0 - 17) of the effective address if the second
operand i s V.

operand i s C or R.

Notes: 1. For clarity, the titles to the indexing and the branch
operations have been omitted.

2. The indicators XF, XCZ, XVLZ, XVZ, and XVGZ a r e
set by all of the direct and immediate index operations
except KV, KC, KVI, KVNI, and KCI. These indica-
t o r s a r e se t before the refill (if any) takes place.

KV, KC,. . . ,KCI set the index compare indicators
XL, XE, andXH.

Direct Index Arithmetic OP, J, A19 (I)

LX m - J 1. M = A19 (I)
L v V(m1-v 2. m = (M)
LC V(m)- C
LR V(m)- R modification

3. C2= The count field of J after

Notes: 1.

2.

LVNI
LVI
LCI
LRI

v +I
Y-I

V+IC {
v-IC {

V+ICR {

V-ICR {
c +I
c -I

None of the immediate index instructions allow for
indexing of the address . A19 is the effective address
and i s represented by A below.
The output of KVI, KVNI, and KCI is the setting of
indicators XL, XE, and XH.

-A -V 1. (19 - 24) of V are set to 0.
A -V 1. (19 - 24) of V are set to 0.
A -C
A -R

V+A-V 1. (19 - 24) of V are unchanged.
V-A - V (19 - 24) of V a r e unchanged. 1.

V+A - V
c-1 -c

1’. (19 - 24) of V are unchanged.

V-A - V
c-1 -c

1. (19 - 24) of V are unchanged.

V+A-V 1. (19 - 24) of V are unchanged,
c-1 -c2
(R) - (J) if C2 = 0

1. (19 - 24) of V are unchanged. V-A- V
c-1 -c2
(R) -(J) if C2 = 0

C+A - C2
C-A-Cz

KVI (0 - 18) of V:A 1.

KVNI (0 - 18) of V:A 1.

KCI C:A

(19 - 24) of V are compared
with zeros. .

(19 - 23) of V are compared
with zeros and (24) of V i s
compared with 1 (minus).

64

Count and Branch Operations OP, J, B19 (K)

CB C1 -1- c 2 1.
IC1 + 0.32 -IC if C2 = 0 2.
M -IC if c 2 # 0

3.

c 2 CBR C1 -1-
IC1 + 0.32 -IC and (R)--(J)

M - IC if c2 # O 4.
i f C 2 = 0

c 2 CBZ C1 -1-
IC1 + 0.32 -IC if C2 # 0
M -IC if C2 = 0

c 2 CBRZ C1 - 1 -

Note:

IC1 + 0.32-IC if Cg # 0
M -IC and (R)--(J)

i f C 2 = O

K maybe only 0 o r 1.
M=the effective ad-
d r e s s of B19 (K).
IC1 is the value of the
instruction counter
where the CB instruc-
tion is located.
C1 and C2 a r e the
count field of J before
and after the count
portion of the instruc-
tion, respectively .

In addition to the stated functions, the value field of J
may be modified by placing + , - , or H after the above
mnemonics. The modification of V takes place regard-
l e s s of C2 and before the refill (if any).

Example: In addition
we have:
CB
CB+

CBH
CB-

Unconditional Branch Operations :

- IC
ER {:+ICl + 0.32- IC

BE {,,le - IC

IC
BD {Esabie -
BEw - IC

to the given functions of CB,

leave V alone
V + l . O -v
v - 1 . 0 -v
V + 0.32-V

The unconditional branch
instructions are the only
branch instructions which
allow a 4 bit index field, I.
The conditional branch in-
structions may have only
a 1-bit index field, K.
IC1 i s the value of the in-
struction counter where the
instruction i s located (i. e . ,
the leftmost bit of the in-
struction).

NOP IC1 + 0.32- IC

Branch on Bit Operations: OP, A24 (I), B19 (K)

BB

B ZB

Note:

IC1 + 0.32 +IC if m l = 0
M2 -IC if m l = 1 2. M2=B19(K), the branch address .

1. ml =(A24(I)), the bitbeingtested.

3. K=O or 1; 1=0 -15.

IC1 + 0.32 -IC if m l = 1

M2 -IC if m l = 0

The BB and BZB may have a suffix, Z, 1, o r N, which,
respectively, will set ml to zero o r to one, o r negate it.
This function i s independent of the success of the branch.
Fo r example, the following branch on bit instructions are
permissible and perform the stated functions as well as:
BB BZB leave ml alone
BBZ BZBZ 0-ml
BB1 BZBl l -ml
BBN BZBN -ml-ml

Branch on Indicator Operations BIND, B19 (K)

BIND IC1 + 0.32-IC if ind. = 0
M -IC if ind. = 1

1. The indicators maynot
be set to 1 o r negated
with a BIND operation.

BZIND IC1 + 0.32-IC if ind. = 1
M -IC if ind. = 0

Notes: 1. The le t ters TND" in BIND are replaced by the appro-
priate indicator mnemonics as shown in note 2 below.

2. The above operations can have a suffix, Z, which will
cause the indicator being tested to be se t t o zero in-
dependently of the success of the branch. F o r example,
BZXPOZ will set indicator XPO to zero arbitrarily. We
may have: BXPO; BZXPO; BXPOZ; and BZXPOZ. The
following l is t includes all of the indicator mnemonics
which may be used in BIND, B19(K), and their bit ad-
dresses .

Mnemonic

MK
IK
IJ
EK

TS
c PU

EKJ
UNR J
CBJ

E PGK
UK
EE
E OP
cs

OP
AD
USA

EXE
DS
DF
IF

LC
PF
ZD

Name Bit Address

EQUIPMENT CHECK
Machine Check 11.0
Instruction Check 11.1
Instruction Reject 11.2
Exchange Control

11.3 Check

ATTENTION REQUEST
Time Signal 11.4
Other CPU 11.5

INPUT-OUTPUT REJECTS
Exchange Check Reject 11.6
Unit Not Ready Reject 11.7
Channel Busy Reject 11 .8

INPUT-OUTPUT STATUS
Exchange Program Check 11.9
Unit Check 11.10
End Exception 11.11
End of Operation 11.12
Channel Signal 11.13
(not available) 11.14

INSTRUCTION EXCEPTION
Operation Invalid 11.15
Address Invalid 11.16
Unended Sequence of

Addresses 11.17
Execute Exception 11.18
Data Store 11.19
Data Fetch 11.20
Instruction Fetch 11.21

RESULT EXCEPTION
Lost Carry 11.22
Partial Field 11.23
Zero Divisor 11.24

RESULT EXCEPTION-FLOATING POINT
IR Imaginary Root 11.25
LS Lost Significance 11.26
PSH Preparatory Shift

Greater than 48 11.27
XPFP Exponent Flag

Positive 11.28
XPO Exponent Over -

flow 11.29
XPH Exponent High 11.30
XPL Exponent Range

Low 11.31
XPU Exponent Under -

flow 11.32
XPFN Exponent Flag

RU Remainder Under-
Negative 11.33

fldw 11.34

65

Swap Forward FLAGGING
T F T Flag
UF U Flag
VF V Flag
XF Index Flag

11.35
11.36
11.37
11.38

TRANSIT OPERATIONS
BTR Binary Transi t 11.39
DTR Decimal Transi t 11.40

PROGRAMMER INDICATORS
PGO o r PG
PG1
PG2
PG3
PG4
PG5
PG6

xc z
XVLZ

XVZ
XVG Z

XL
XE
XH

MbP
RLZ
RZ
RGZ

RN
AL
AE
AH

NM

INDEX RESULT
Index Count Zero
Index Value Less than

Index Value Zero
Index Value Greater

Than Zero
Index Low
Index Equal
Index High

Zero

ARITHMETIC RESULT
To-Memory Operation
Result Less than Zero
Result Zero
Result Greater than

Zero
Result Negative
Accumulator Low
Accumulator Equal
Accumulator High

MODE
Noisy Mode

11.41
11.42
11.43
11.44
11.45
11.46
11.47

11.48

11.49
11.50

11.51
11.52
11.53
11.54

11.55
11.56
11.57

11.58
11.59
11.60
11.61
11.62

11.63

TRANSMIT OPERATIONS: OP, J, A18(I), A' (1')

Notes: 1.

2.

18

Full words a r e transmitted in all Transmit and Swap
instructions.
In the immediate operations, J i s the count of the
number of full words transmitted. J must be 5 16.
If J = 0, 16 words a r e transmitted.
In the others (the direct transmission) the count field
of J has the number of full words to be transmitted.

3.

Transmit Forward

T (M1) -(M2) 1. M1 is the effective address of
A, Q (1)

(Ml+l)-(M2+l) 2. M y i s the e€fective address of
etc. A' (1')

18

Transmit Forward Immediate

Transmit Backward

TB (MI) - (M2) 1. Both blocks a r e referred
to in a backward direction.

(Mi -1)- (M2 -1)
etc.

Transmit Backward Immediate

Swap Forward Immediate

Swap Backward

Swap Backward Immediate

SWAPBI (Mi) -(M2)

(M1-1) - (M2 -1)
etc.

MISCELLANEOUS OPERATIONS: OP, A19(I)

Store Instruction Counter If

SIC ICl+l. 0-(0-18) of 1. SIC; NOP will not
A19(I) if the following
half word branch in-
struction is executed.

s tore the IC.

Refill

(M) 1. RM=refill field of
word M

R (RM) -
Refill If Count Is Zero

RCZ (RM) - (MI

if C field of M = 0

Execute

(M) 1. The instruction located Execute - EX
a t M is executed.

2. Control then goes t o the
instruction following EX.

Execute Indirect and Count

EXIC Execute (M)' 1. The instruction whose
address i s located in M
is executed.

(M) + 1 - (M)

Store Zero

Z 0-- (M) 1. Full word of zeros .

INPUT-OUTPUT INSTRUCTIONS: OP, A ~ (I) , ~ ~ ~ (1 ')

Locate
A7 (I) represents a channel address; A18(I')
represents:

1. The address of one of several units attach-
ed t o channel A7(I); in this case LOC or
SU must be given before a RD or W ad-

An address on the disk specified by A7(I).
LOCSU.

Select Unit

su dressing this channel;
2.

66

Read

RD

Write

W

Release

RE L

CTL

A7(I) represents a channel address; a reading
operation in initiated for this channel (or for a
unit attached to this channel if more than one
unit i s available and has been readied by a LOC
instruction). A18(11) i s the address of a control
word.

Initiates a writing operation, Analogous to RD
except that the skip flag of the control word i s
ignored.

Immediately terminates any operation in progress
a t the unit specified in A7(I), the channel address ,
or in the last unit a t A7!I) selected by a LOC in-
struction, if A7(I) consists of more than one unit.

Copy Control Word

ccw The current control word corresponding to the
addressed channel A7(I) i s sent to A18(17).

LOCSEOP Same a s LOC, SU, RD, W, REL, CTL except
RDSEOP the SEOP bit in control word i s set to 1; thus,
WSEOP program interruption on completion of an oper-
RELSEOP ation is suppressed, provided no exception con-
CTLSEOP ditions, such as unit check and end exception,
SUSEOP a r e encountered.

Control

Initiates performance of certain functions a t the
channel indicated by A7(I), or at the las t unit
selected by a LOC instruction. The functions
a r e indicated:

General 1-0 Unit (Standard for A18 (I1))

AI8(It) = 0 Reserved light off
1 Reserved light on
2 Read-write check light on
4 ECC mode
5 NoECCmode

Card Reader and Card Punch
Standard, except A18(11) = 2 also causes a c a r d
to be offset in the stacker.

Tape Units
Standard, but in addition:
A18(I') = 4 ECC mode, odd parity

5
6
7 Rewind tape
8 Space block (record)
9 Backspace block (record)

No ECC mode, odd parity
No ECC mode, even parity

10 Space file
11 Backspace file
12
13 Erase long gap
14 High-density mode (556 bits/inch)
15 Low-density mode (200 bits/inch)

Write tape mark (E. 0. F. mark)

Inquiry Station, Pr inter , Console
Standard, except codes 4 and 5 a r e missing.
On console, A18(11) = 3 causes the gong to
sound.

67

APPENDIX D

ERROR MARKS

Strap-1 prints e r r o r marks in the rightmost columns of the assembly
listing, showing actual or probable coder and/or machine e r ro r s .
These e r r o r marks, the 26 letters of the alphabet and some special
characters (given a t the end of the l is t) , a r e explained below:

Q.

A.

B.

C.

D.

E.

F .

G.

H.

I.

J.

K.

L.

M.

N.

0.

P.

1.

2.
3.

1.

2.

3.

1.
2.

1.
2.

1.

2.

1.

2.
3 .
4.

1.

2.

No characters a r e given with an A or IQS entry mode in a DD

Too many address fields were given.
Symbol with XM has less than 2 dimensions.

statement.

Byte size of this instruction i s > 8 , and has been assembled

Byte s ize of a decimal instruction # 4, but has been left a t the

A or IQS byte size in IYD statement i s >12 , and has been

modulo 8.

specified value modulo 8.

assembled modulo 8.

Negative field (address, index, field length, and so on) has
been complemented. (This complementing takes place
pr ior to the truncation described under V, i s any.)

Data e r r o r in DD or DDI. (The data have been set to zero.)

Entry mode e r r o r in DD or DDI. (Entry mode (10) i s
assumed.)

Given field length i s > 64, and has been assembled modulo 64.
Field length of a VFL binary-multiply or binary-divide type

instruction is>48. It has been left a t the specified value
modulo 64.

A 'qgo-toft type instruction, such a s a branch or end card, has
a transfer address <32 and I index 0.

Card has an illegal name (a non-alphameric character i s
present; the character has been ignored).

A branch on indicator, with indicator numerically specified,
(The indicator has been com- has indicator number >63.

puted modulo 64.

Illegal punch on this card:
Illegal character in some field on this card (if an illegal
numeric occurs in a data field of radix 2 through 9, the field
i s set to zero; in a l l other cases,
printed as an e r r o r mark just to the right of any other e r r o r
marks pertaining to the field and i s ignored in computing the
value of the field.)

the illegal character i s

RTT e r r o r has been detected in reading tape 2 on this card.

The location counter i s out of range a s a result of this instruc-
tion. If (32, it has not been changed; if >777777. 778, it
has been taken modulo 1000000. O08.

An SLC address contains an integer.

Given mode i s not consistent with the given operation or vice-
versa , e . g . , M + 1 (N),. . . The mode, FL , and BS a r e
ignored.

No mode given with DD or DR--N i s assumed.
No mode given with DDI--(BU, 24, 8) i s assumed.
An operation which could be either VFL or floating point has

no overruling mode and a numeric address.
assumed.

VFL i s

E r r o r in integer i. e . , (, n) entry.

Offeset + field length - byte size (if signed) on this operation

Decimal offset i s not divisible by 4, but i s left unchanged.
i s > 128. None of the three quantities i s changed.

Conditional branch has K field > 1. (The given K field i s taken
modulo 2 .)

R.

S.

T.

U.

V.

W.

x.

Y.

Z.

)

+

6

*

1.

2. Illegal OP3 in CW. OP3 i s ignored.
3. Pseudo-operation has been specified in an EXT field. The

requested field has been set to 0.

Illegal OP1 o r OP2 in progressive indexing. In either case,
OP2 is ignored.

Radix i s out of range. R = 1 0 i s used.

Illegal operation after an SIC order. (Only half-word branch
orders a r e permitted.) (The operation has , however, been
assembled as requested.)

An index is given with LVS or an immediate index operation,
which a r e non-indexable.

VFL decimal multiply or divide has been specified. (There
a r e no such operations.) (The operation has been assembled
a s requested, but it acts a s an LFT order .)

1.

2.

Overflow in an address field; the field has been truncated if

A DD with entry mode A or IQS has a byte size which i s too
necessary to fit the number of bits available.

small, that i s , < 6 o r <8 respectively.

The operation specified here i s nonexistent. The full-word
instruction SIC, $15; BE, 0 has been inserted here.

1. An address field on this card cannot be completely evaluated
(due to a too-complicated chain of SYN cards, and s o on).
The computation has been completed a s f a r a s possible,.

2. A symbol specified on a PUNSYN card does not occur in the
program.

A symbol on this card contains more than six characters.
(Only the f i rs t six a r e used,)

1. No address or name field has been specified on a SYN or DDI
card, o r a SYN card i s not computable by pass 3.

2. Null J field on index operation.
3. Second half word address of an Input-Output op i s <32.
4. DR has null address. No space i s reserved; LCTR may be

rounded however.

No right parenthesis in a field; 2 or more left parentheses
before f i rs t right parenthesis.

Arithmetic has been used in the address field of a VFL im-
mediate operation (not allowed); or , a symbol defined by
a DDI has been used in an ari thmetic expression in a VFL
immediate address field. (The arithmetic was performed
in binary, unsigned.)

A symbol on this card has six characters and cannot be tailed.

An undefined symbol has occurred on the card.

3THER Characters other than the e r r o r marks listed above may be
printed in the rightmost columns of the assembly listing a s
an indication that these characters were used in fields where
they a r e not legal. For example, if the letter "G" were used
in a hexadecimal data field, "G" would appear as an e r r o r
mark at the right of the listing.

Note: The print-out of all except certain non-coder e r r o r marks
(namely, K and J) can be suppressed by prefixing the O P field with
the symbol $. If duplicate e r r o r marks appear, more than one e r r o r
of the same type has been made. Individual e r r o r marks A , B, C, . . .
may be suppressed by the use of the instruction SEM, A , B, C,
All may be suppressed by SEM alone. Any of the suppressed e r r o r
marks may be restored by the instruction REM which works in a
similar manner.
pressed by SEM.

Again, J, K , and illegal punches cannot be sup-

68 (5/60:2M- -HR)

i nt e r n a ti o n a 1 B u s in e s s M a c h in e s C D r p o r a tro n
Data Processing Division 112 E a s t P o s t Road Whi te Plains N Y

