FILE MEMO

SUBJECT: Distribution of Operation Classes in Sample Programs used in SIGMA Timing Simulator

The definition of what composes a "typical scientific problem" is a subject which can invoke endless debate. One of the chief reasons why statements on this subject can be challanged is that most past experience has been on machines which do not have the same operation codes as SIGMA. There can also be considerable changes in the overall laying-out of problems in a computer such as SIGMA over older smaller machines which will influence the distribution of operations used; Be that as it may, here are the distributions of operation classes in the problems actually being used in the SIGMA timing simulator.

		Percentages of Orders Executed							
	U Problem Name	nconditional Branches	Indicator Branches	tion and Branching	Floating Point	VFL			
1.	Mesh Calculation	0	0	14.%	85.%	1.%			
2.	Monte Carlo Branching	12. %	24. %	15.%	47.%	2. %			
3.	Transac test problem	0	13. %	10.%	71.%	6. %			
4.	Matrix inversion	0	0	33. %	67.%	0			
5.	Westinghouse Reactor prob	lem 0	0	10.%	90.%	0			

The first two have been used most heavily.

Within the floating point set the following statistics exist: (Floating Compares, Add exponents, etc., are lumped with Fl Adds)

		Percentage of Floating orders executed									
	Fl Loads										
	Problem Name a	nd St	tores	F1 Add	Fl	Mpys	Fl Divs				
		1					:				
ŀ.	Mesh Calculation		56. %	26. %		14. %	4.%				
2.	Monte Carlo branching		54.%	43. %	b	3.%	0.%				
3.	Transac Test problem		27.%	46. %		18.%	9.%				
4.	Matrix inversion		50. %	25. %	D	25.%	0				
5.	Westinghouse Reactor problem	n	39. %	22. %	D	39.%	0				
	Averages	Ŧ	45. %	32. 9	9	20.%	3.%				
	"Standard" 6-6-3-1 Ratio	=	37.5%	37.5	%	18.8%	6.2%				

FILE MEMO

March 5, 1958

The main conclusion one can draw from the above is that the "Standard" ratio may be allright as an average but there are large variations away from it in individual "typical" problems.

-2-

٠.

Hanwood H. Kelaky

Harwood G. Kolsky

HGK/jcv

DISTRIBUTION:

D. W. Pendery
E. F. Codd
J. C. Gibson
B. Moncreiff
B. L. Sarahan
J. J. Kenney, Jr.
F. P. Brooks
H. C. Montgomery
E. Bloch
L. E. Kanter
J. F. Dirac
W. Wolensky
E. D. Foss
C. R. Holloran

D. W. Sweeney E. W. Coffin E. McDonough H. A. Mussell P. H. Sterbenz W. Buchholz G. A. Blaauw S. W. Dunwell R. E. Merwin J. E. Pomerene R. J. Bahnsen H. K. Wild R. J. Blosk