Memorafiium to: Dr. S. G. Campbell September 12, 1961

Subject: Design of Floating Point Arithmetic

The following consists of a number of suggested improvements on 7030

Floating Point Arithmetic. If implemented, the machine will have a unique
system of three interconnected accumulators, an unusually powerful instruction
set and extremely fast arithmetic. Most of the hardware needed is already in
the 7030, and the additional hardware investment will be small.

The present memo will cover the fellowing points:

Format

The Multiplier Register

The Triple-Accumulator System
Postgressive Indexing
Immediate Operands

6. Data Flagging and Overflow
Scrting and Merging

G W N -

-3

Other topics will be discussed by a different memo.

This memo is more or less a continuation of an earlier one ('"Floating Point
Arithmetic', August 23, 1961), and relevant material may be found in two
other memos (''Index Word Format and Index Arithmetic', July 26, 1961 and
"Progressive Indexing'", July 28, 1961).

The triple accumulator concept evolved in several discussions with Don Gibson
(Kingston). I have benefited greatly from discussions with Don Gibson and
Robert Rockefeller (Kingston), and stimulating discussions with C. T. Apple,
N. Hardy, G. Hira and Gordon Zook (Kingston).

FORMAT

The 7030 floating point fraction is preceded by the exponent and followed
by the 4&bit sign byte. It is desirable in double precision work to have
the second order fraction adjacent to the first order fraction in the
double~length accumulator to accommeodate VFL data handling: In the
7030 this is achieved by detaching the sign byte from the floating point
number and placing it in a special sign byte register ($SB).

This arrangement has a number of drawbacks. First, the result of a
floating point '"load" or (''load with flag"), even if unnormalized, will not
reproduce the bit configuration of the word in the accumulator area.

Secondly, any floating point instruction involving the left accumulator
address (8. 0) will be an unusual instruction, for which 60 bits from
address 8. 0 plus 4 bits from address 10. 03 (fourth bit of sign byte
register) must be mobilized by hardware.

A third difficulty is that, again for VFL accommodation, the second order
fraction begins immediately after the end of the first order fraction,
namely at bit 60 of the left accumulator. This artificial placement has
the effect that, so far as floating point arithmetic is concerned, the lower
accumulator ceases to be an independent entity, but mainly a slave of the
upper accumulator.

It is more desirable to place the sign byte at the front cof the floating point
word. The exponent sign bit should also be the leading bit of the exponent
field for the sake of uniformity. During a floating point unnormalized
"load with flag', the entire word can occupy the left accumulator without
change of bit configuration. Floating point instructions involving the left
accumulator address will then be a nonexceptional operation.

The need for a separate sign byte register will be removed; there need
only be a 4-bit '"zone byte register" preceding the left accumulator.

An immediate consequence of this new arrangement is that the fraction ends
precisely with the left accumulator. The rather unnatural partition at the
60th bit is thus avoided. Further, this enhances the semi-independent
position of the right accumulator.

To ensure the fraction continuity of a double-precision number in the double
precision accumulator, the ideal low order fraction should again be adjacent
to the high order fraction, with the low order sign byte and exponent
displaced to the extreme right, as seen in Figure 1.

-3

ZYXW

STUV expt 1 fraction | fraction 2 S’I.éUV expt 2

' beginning of left accumulator eginning of right accumulator

It is important to allow the lower accumulator the freedom of having its own
sign byte and exponent. It may not be easy to ensure the low order sign byte
and exponent to be compatible with the high order counterparts, nor is it
really necessary. There should, however, be the instruction CSLO (com-
patibilize and store low order) which treats the low order fraction as the low
order part of a double precision word, creates and inserts the correct sign
byte and exponent before storing.

THE MULTIPLIER REGISTER

In the K-2 improvement program a multiplier register ($ MR) is provided to
facilitate the ""multiply and add" instruction. This reduces the vector
multiply arithmetic time by a factor of two.

The multiplier register in K-2 is accessible to only three instructions:
LMR (load multiplier register), *+ (multiply and add) and STM (store
multiplier). It has no address.

It is important that this register be given an address, for there is a genuine
need for addressable transistor registers in the accumulator area serving
as temporary storages to avoid unnecessary interaction with memory.

In the '"double divide' instruction instead of sending the remainder to location
13. 0 in the memory, it would be much more expedient to put it in $MR for
rapid reaccess.

THE TRIPLE-ACCUMULATOR SYSTEM

The 7030 employs the universal accumulator concept: the most important
results of arithmetic are always placed in the accurmulator. This, plus the
addressability of the accumulator, removes much need for using temporary
storages.

It is still necessary to protect a result from being destroyed by the next few
instructions. Since the forwarding implementation is uneconomical, it is
necessary to have high speed registers for temporary storage. The lower
accumulator and the multiplier register, when given high speed linkage to
the upper accumulator, clearly will serve the purpose.

One can proceed a step farther to save the reaccessing the temporary
storage, by endowing these two registers the property of universal
accumulators.

-4

The universal accumulator in the 7030 is achieved by performing arithmetic
with special hardware outside the accumulator. It is thus extremely simple
for the hardware to pick up operands from, and submit results to, any of the
three ""accumulators'.

It turns out that the linkages, through the néed for "double" cperations and
"multiply and add" are already present, although a little strengthening may
lead to higher speed.

A single accumulator is not really enough to demonstrate the power of 7030
arithmetic, since the storing and refetching from temporary storages are
redundant operations. More than four accumulators would lead to another
type of redundancy, namely redundancy of hardware. The optimum balance
of performance with hardware calls for about three or four accumulators.
The natural expansion of 7030 facilities with little increase of hardware leads
to the near optimum number of three.

There should be a more powerful instruction set to help bring out the potential
of the triple accumulator scheme. There should be elementary arithmetic
instructions, (add, multiply, etc.) available to all three accumulators
separately. Then there should be cooperative instructions (such as "'add
double'" "multiply and add") to allow the accumulators to pool their resources
together. Finally there could be automatic 'filing' and "retrieving" schemes
to reduce the number of redundant operations to a minimum.

The triple-accumulator possibility changes the entire complexion of floating
point arithmetic. Not only will programming be vastly simpler and easier to
debug, but the scheme allows great improvement in arithmetic speed. For
instance, if two consecutive instructions refer to different accumulators, the
second instruction can be started long before the first one finishes.

. POSTGRESSIVE INDEXING

Index arithmetic on the 7030 is relatively slow. A sequence of '"load index"
instructions take 5. 7 ps each, a sequence of '"add to value' instructions

take 5.2 ps each. For floating point inner loops the most important instruc-
tion is "add to value immediate' a sequence of which takes 3. 3/\15 each.

When interlaced by floating point instructions, much of the time can be over-
lapped. The amount dead time which cannot be overlapped is 1.5 to 1. 8).15.

There are various ways to improve the index arithmetic speed. For instance
by refraining from loading index recovery levels into the lookahead, the dead
time can be reduced to zero, if ther is enough arithmetic action to cover up
the I-box index arithmetic time.

5.

However, it is not easy to cover up several microseconds of I-box time

by concurrent floating arithmetic, particularly if the latter is made faster.
L

The solution is to make useful index arithmetic an automatic secondary

operation on floating point instructions. This saves instruction space and

can allow overlap (within the I-box) of decoding time. Further if the index

arithmetic is similar to routine effective address creation, the I-box time

will be cut drastically, to the extent that overlapping with E-box time is

practically assured.

In 7030 VFL arithmetic, progressive indexing is a powerful secondary
index arithmetic operation. Somewhat unfortunately, the feature is quite
different from usual effective address creation, and is therefore not too
fast and is hard for new programmers to learn,

In an earlier memo (Progressive Indexing, July 28, 196l1) a scheme to
replace the present progressive indexing has been suggested. In the new
"postgressive indexing' scheme the effective address is generated ina
standard fashion (address field plus index value field), but the effective
address may or may not replace the index value field, dependent on the
specification by the programmer,.

The postgressive indexing scheme saves a good bit of hardware, is just as
powerful as progressive indexing, is potentially faster, and is easier to
learn and use by programmers.

A method to avail the postgressive indexing feature to practically all
instructions was also described in the same memo. The precise specifica-
tions of the four options (normal, immediate, V+I and V+ICR), are

relegated to the two unused index register bits, and only one bit per instruc-
tion is needed to specify whether the specifications are to be ignored or not.
This greatly generalizes irnmediate index arithmetic (by taking the immediate
option in direct index arithmetic. Such instructions previously cannot be
indexed, but will now be fully indexable), and makes bug-free floating point
arithmetic particularly easy to program.

IMMEDIATE OPERANDS

A side-effect of the postgressive indexing scheme is that all floating point
instructions now can have optional immediate operanda. Namely, the
address field can be used to contain the operand, rather than an address
which refers to the operand.

The use of immediate operands reduces memory access, hence trends to
cut down the number and durations of memory conflicts in the machine.

-6~

Of much greater importance is the forthright nature of coding achievable
through immediate operand addressing. It will now be possible to say
“"multiply the quantity in the accumulator by 13" directly in one instruction,
rather than "multiply the accumulator contents by the contents of 25724, 0",
By the time the instruction is being executed the contents of 25724. 0 may
no longer contain the number [3.

The instruction "add to exponent immediate'" will now be a special case
of the instruction "add to exponent', and can be removed.

DATA FLAGGING AND OVERFLOW

The data flagging feature in 7030 floating point arithmetic is extremely
convenient for boundary value problems and matrix manipulations.

The presence of three flag bits (TUV) per floating point word, however,
may be a luxury. It turns out that the presence of one flag is very helpful,
but there are few instances calling for two data flags and virtually no need
for all three flags at all. It seems desirable to turn the lower flag bits to
better use.

Unnormalized floating point arithmetic on the 7030 may lead to overflows in
the fraction field. This overflow may only be intended by the programmer
to be a temporary phenomenon to be retrieved in subsequent operations. A
case in point is (0.5 + 0.5) - 0.5, where the result should be +0.5. On the
7030 this leads to a '"lost carry' indicator being turned on, and the result is
minus 0.5, becauee the machine does not allow retrievable overflow of the
fraction field for unnormalized floating point arithmetic.

Because floating point arithmetic is much faster on the 7030 than VFL, it
is advantageous to do unnormalized floating point arithmetic on VFL
quantities to gain speed. The lack of proper overflow retrieval is a handicap.

It is therefore suggested that in the floating point word the V flag bit be used
as an extension of the high order bits of the fraction, such that fractions
twice as large as normal can be allowed to exist. Also the U flag should be
made into a double overflow flag which is turned on whenever a fration
double overflow occurred. Such double overflow should not be retrievable
without explicit bit-setting instructions, and a U-flag interrupt can be made.
as an indication for double fraction overflow. The interruptibility of the V
flag,on the other hand, is not really crucial, :

The new floating point word format would place the U, V flags ahead of the
fraction, and the overflow interpretation is quite natural. The ability for
a floating point word to carry its own overflow indications should be an
added asset.

-7

It is extremely important that the fraction overflow condition be retrievable
on unnormalized add operations. For other instructions the precise action on
V-flagged" quantities is not of grave concern,

SORTING AND MERGING

The 7030, because of the highly overlapped nature, is relatively slow on
branches on the basis of E-box conditiong. The indicator bits AL, AE, AH
can be tested only by proceeding on an assumption with provision to back-
track.

The assumption on X-1 and K-1 is that the branch is probably unsuccessful.
In the K-2 and subsequent machines the assumption is that the condition of
these indicators will probably remain unchanged between the decoding and
the execution of the branch instruction.

The K-2 scheme can be quite effective if the ""compare' instruction which
sets the indicators AL, AE and AH is several instructions ahead of the
conditional branch. For many situations this "instruction distance' can be
maintained, and the conditional branch is very fast.

There are, however, situations which involve extremely short conditional
branch inner loops, and the "instruction distance' can be maintained only
through time consuming artifices. Outstanding cases are sorting, in which

-a given collection of numbers are rearranged in numeric sequence, and

merging, in which two or more presorted sequences combine to form a
longer sorted sequence.

The sort-merge problem is important particularly in commerical data
processing. Usually the data may be in VFL format, but the key items to
be sorted may well have been recorded in floating point format to gain speed.

The solution to the sort-merge problem lies in giving the E-box high speed
facilities to do the right thing automatically without testing by conditional
branches.

For the 7030 a new instruction, tentatively call KL (compare load) allows
high speed automatic "anchor" sorting, and a new KC (compare status change)
indicator bit with interruption facilities allows high speed merging.

In the compare load instruction, the memory operand is compared with the
quantity in the upper accumulator. Whichever is larger goes to the upper
accumulator, and the smaller quantity is loaded into the lower accumulator.
The instruction produces automatically a sorted pair of numbers without any
conditional branch instructions.

-8-

For a collection of N numbers, one number is placed first in the upper
accumulator. Then, (N-1) pairs of KL, SLO instructions later the largest
entry will be found in the upper accumulator. The (N-1) smaller numbers,
now partjally sorted, are stored in the memory ready to repeat the process
with one fewer member. This "anchor'" sorting process, in which the
heftiest quantity is always found at the bottom after one sweep, is here done
completely without any conditional branch instructions.

As a result of a compare instruction the AL, AE, AH bits are gset. If the
resultant status is different from the previous status, the KC bit is set to
1, otherwise it is set to zero. When the KC bit is further endowed with
interrupt abilities, it can allow the merging process to proceed in a speedy
manner.

Suppose there are two presorted sequences (p.) and (qg). To merge the two
into the sequence (r__) one may assume (p,) is'larger than many leading
members of (qy). (qg) can therefore be sent to the accumulator, be compared
against p, and stored into (r,). Aslng as these quantities are less than

Po» nothing will happen to disrupt this process. When an exceptional case is
found by the compare instruction, KC will be turned on, causing an interrupt.
Then the exceptional qy is assumed to be larger than members of (p,), and
the process continues. When both (pk) and (q}() are exhausted, (rm) will be

a sorted merged sequence.

The KC indicator bit has other useful properties. It can allow the removal
of the ""compare for range'' type of instructions, can can give indication when
the ""anchor sort" scheme is completed ahead of expectations.

Suppose one wants to find out if C lies within the interval (A, B). It is only
necessary to compare C against A, then C against B and interrogate the KC
bit. If the bit is a 1, the comparison status with A must be different from
the comparison status with B, and C must either lie in the middle, or is
equal to one of the comparands. Note that it is not necessary to know
whether B is greater than A or not. It suffices that B is different from A.

During the use of the KL instruction for anchor sorting not only the largest
quantity is found at every sweep, but the sequence is partially sorted as well.
If after a certain number of sweeps the probability of completion is high, it

is possible to switch to KC interrupts to complete the sorting. If no inter-
ruption occurred during the sweep, the sequence must already be well ordered.

Ccl

Tien Chi Chen

TCC:tm

