Memo to: Dr. S. G. Campbell August 28, 196l

Subject: Floating-Point Arithmetic

The following and a subsequent memo consist of a number of observations and
suggested improvements on 7030 Floating-Point Arithmetic. It is helieved

that the suggestions, if implemented, will make the 7030 much faster, and vastly
more powerful. This memo is concerned mainly with correcting observed
deficiencies of the 7030. The subsequent memo will contain specific recommenda-
tions.

L. 7030 Floating-Point Arithmetic

The 7030 is basically designed ae a floatinz-point machine. The
unparalleled speed and flexibkility at floating point arithmetic are
its basic selling points. The following is a list of some of the
distinct features of 7030 floating-point arithmetic:

a. Microsecond speed.

+, -, 1.5)18; %, 2.7)15; /, 10)15. L (K2), f}.Z}xs.
b, Extensive chiecking of data

ECC check for memory opnds and instructions;

Parity check for data traunsport;
Residue (mod 3) check for airthmetic.

c. | Universal accumulator avoids misplacement of results.
d. Addressability of the accumulator allows direct referral
t of previous result as input operand.
€. Noisy mode allows the estimate of round-off error.
f. Data flagging enables interruption of program by exceptional

quantities tagged with non-zero flag bits,

g. 30 basic instructions, each one capable of being modified by
3 bits: the unnormalized bit, the negative kit and the aksolute
bit, (29 instructions in X-1 and K-1.)

Dr, S. G. Campbell -2- August 28, 1961
h. Provision for convenient double precision arithmetic.
i. Exponent flag to prevent exceptionally large or exceptionally

small quantities to disguise as normal numbers,

2. Criticisme

The 7030 floating point arithmetic design, however, is not perfect and
the following is a list of areas which could he improved.

a. The desizn does not solve the temporary storage problem
effectively.

There are three kinds of problems which call for temporary
storage: misplacement of arithmetic result (characteristic

of von Neurnann type of AC-MQ design), lack of accumulator
addressability(as needed in multinlying the accumulator contents
Ly itself), and possible destruction of an arithinetic result
needed some steps later, The first two problerns are solved
conveniently on the 7030,

The third problem is solved in principie by the'forwarding"

of data from one lookahead level to the other. The forwarding
is expensive and timmewise unrewarding and is removed from
K-2 and subsequent mach ines. The remaining alternative of
putting the result in some other internal register is not
effective because of the lack of high speed linkage and because
the multiplier register ($MR), installed as an afterthought, has
no atidress.

. Relative imbalance of speeds.

The multiply time of 2. 7 us will probably not be rnatched for some
time. One wishes however, that the floating aJd is faster than
1/2 the n.ultiplication timme., The loasd, store timie on K-2 will be
0.9 to 1.2 ns usually, The outsider may, however, wonder why
it is not possible to bring these down to 0. 3);5 in the neighborhood
of slow floating point instructions.

Dr. S. G. Camphell -3- August 23, 1961

Lack of sorting-merging facilities.

The conditional branch on results of accumulator cornpare
operations is slow., On K-2 it is fast only if the testing loops
are large and if optimal programming technigues are used.
There is no fast way to perform a "bubble sort" or a merge.

Inadequate unnormalized arithmetic facilities.

Unnormalized floating point arithmetic is theoretically
capable of being faster than norimalized arithmetic. In
the 7030, however, no effort is made to clearly separate
the two.

More important, there is no provision to tackle the over-
flow of the fraction part, except the LC (lost carry) type
of indicator bits. If fixed-point arithmetic is to be done as
unnormalized floatin; point arithmetic, there should be
ways to allow a temporary fraction overflow,

Inaccessitility of the remainder on doutle divide operations.

The remainder register, being in location 13. 0 in the instruction
part of core memory, is one of the most inaccessible ''re;isters'.
Tais means whenever a double divide instruction is used, there

is a good cnance of conflict with instruction access. It algo
creates complications within the lockahead.

The factor register in location 14.0 also in the core memory,
and‘the LFT, %+ operations on X-1 and K-1 has the same difficulties
as in double divide. On K-2 the use of the D register avoids this
difficulty, except in VFL arithmetic.

Relative slowness of double-precision load-store arithmetic, -

The convenience of the double-lenzth accumulatsr and the flexibility
of the class of ""double'" operations are hampered by the fact that
the double precision load-store operations are still quite slow.

Suppose one has two numbers Al, A2 in the memory. They have
thie same sign, the exponent of AZ is precisely 43 units lower
than that of Al, Together they represent the double precision
quantity A, What is the price to put this quantity A in the
accumulator ?

Dr. S. G. Camphbell -4- August 28, 196l

The usual way would be to double load Al, then double add
AZ. The former operation takes only 1.2 ns, but the latter
takes 5.4 ns because the AZ fraction has to be shifted 48
places at the price of 0.3 us per shift of 4 units.

The situation is similar when one attempts to store the
double-length accumulator operand into, say Al and A2.

The ''store, store low order' sequence, of course, creates
an over-demand of the lone LAAR on X-1 and K-1, but this
is not serious on K-2. The store probably will not take
more than 1.2 ps, but the '"store low order'" requires 5.4 us
because of 48 shifts, 42 of which required 0. 6)1s per shift
of 6 units. '

It would seem more desirable to load and store the lower
accumulator directly in such cases. However, there are
no convenient instructions in the 29-instruction set to
achieve this purpose; further, the accumulator format
actually destroys the distinction between the upper and
lower accumulators, since there is only one exponent, oue
sign byte, and the low order fraction begins at the 60th
bit rather than the 64 kit of the double accumulator.

g. Overabundance of flag bits.

There are three data flag bits, T, U and V, for each floating-

point number. It is found by actual programming experience

that the power of the machine is indeed greatly enhanced by

the availability of one flag bit. There are occasional needs

for a second bit, but there is actually no case in actual computation
that three bits are really needed. It would seem desirable to turn
the uwnused bit(s) to better use.

h. Absence of progressive indexing facilities.

All 7030 VFL instructions have progressive indexing facilities,
Progressive indexing is hard to learn, mainly due to the
unnatural divorcement from effective address creation. Once
learned, however, it is an extremely powerful tool, making
bug-free programming much easier. It is obvious that the
hardware installed for progressive indexing is equally useful
to floating point computations, if there is a way of specifying
progressive indexing in floating point instructions.

D S. G. Campbell -5- August 28, 1961

Of the eight progressive indexing options, & are concerned
with altering of the index register being used, one is for
normal indexing, and one is to specify an immediate operand,
It is easy to speculate the power of an instruction set which
allows immediate operands. ''Multiply the accumulator by 17"
is obviously more direct and to the point than "multiply the
accumulator by the contents of location 12000, (I hope it still
has the number 17 I put there 5 seconds ago)".

i. Incomplete use of power inherent in the design.

All the criticisms above can actually be summarized by this
sentence,

The floating point arithmetic wag built chiefly for speed, of
course. Accompanying this investment is potentialy for
much greater power and flexibility. Both of the latter are
already quite apparent in X-1, much more so in K-2. How-
ever, even in the K-2 the computing potential of the machine
hardware remains largely untapped, and the machine as much
fulfills the needs only of somewhat specialized market.

Making Full Use of 7030 Hardware.

Great harm can be caused by assuming that asynchronous designs yield
mostly improvements in speed, and are destined only for specialized
markets; that there is no good way to improve the performance of the
7030 design without exorbitant additional cost.

The implementation of ‘the 7030 high speed design in fact, already has

introduced hardware features to allow larpge performance enhancement

without serious additional cost.

The points raised in the last section are answered below through modest
redesign of the instruction set and improvement of hardware linkages.

Dr. S. G. Campbell -6~ , August 28, 1961

An easily implemented three-accumulator system consisting
of the left accumulator, the right accurmulator and the
multiplier register will not only resolve the third temporary
storage problem, but will greatly enhance the power and
flexibility of the machine,

Operations referring to different accumulators can now
coexist in the E-box with no fear of interference. This
increases the performance of operations in such a manner

as to reduce the shifting cost. The relative imbalance of
instruction speeds will be redressed. Unnormalized loads and
stores can be done in the lookahead at the rate of 0. 3}15 each.

One new instruction, KL (compare load: load low order,
compare with high order and exchange to insure low order is
smaller) greatly enhances "bukble sorting'.

One new interruptible indicator bit $KC (comparision status
change), which is turned on only if the present compare instruc-
tion execution changes the compare type indicator bits, greatly
facilitates automatic merging, and incidentally removes the
need for ""compare for range' type of instructions.

More vigilance will be paid to the "unnormalized" modifier bit.
The V flag will be used as fraction overflow bit, and U flag
will be used as '"fraction double overflow" trigper.

Remainders will be put in the multiplier register.

The independent status of the low order accumulator (see (a)),
automatically reduces the time for double precision load and
stores to reasonable values.

By (d), the U, V flags now sees proper usage.

Basic reshuffling of floating point instruction set allows every
instruction the freedom of being '"postgressively' indexed,

The postgressive indexing scheme is fast, easy to learn, and
just as powerful as progressive indexing (see an earlier Memo
on Progressive Indexing, July 28, 1961,)

Dr. S. G. Campbell -7- August 28, 1961

The result is a three-accumulator machine, each one is
capable of doing independent arithmetic, yet for special
instructions (*+ and D#¥, etc.) can cooperate with and
complement each other. With a 64-instruction set, each
instruction being further postgressively indexable, the
machine will have power worthy of the hardware invest-
ment. The additional hardware investment is very small,
and is dependent on the amount of overlap in (b) to speed
up the execution of instructions. A more systematic
account of the design will be presented in a subsequent

memao.

Discussions with Don Gibson (Kingston) has been instrumental in arriving
a at the new design, particularly the three accurtulator concept and speed-

up possibilities.

Stimulations also have been received from C. T. Apple,

N. Hardy, R. Rockefeller (Kingston), G. Zook (Kingston) and G. Hira.

TCC:tm

27

T~ -

v /
Tien Chi Chen

Special Studies

