
PRODUCT PLANNI

0~i~funel2, 1959 .

*(Present location: D M Re iearch, Poughkeepsie)

n

T A B L E OF C O N T E N T S

Page,

1 I. Intra du c tion

General Description of the System

Detailed Description of Virtual Memory Operation

ui. 1-4

I 5-24 III.

A. General Conditione to be Considered

EL. Definitions 5 -9

C . Logic of the Virtual Memory 9-24

Description of Timing Sirnuratinn F’rogram 24-28 IV.

A. General Conslderatians 24-25

B. Logic of the Simulator 26-28

Some Results of the Simulation Studies 29-60 v.
A. General Description 29-32

B. Test Problems Uaed 32-33

C. Results of Simple Parameter Studies 33-48

D. The E€fect of the Half -Microsecond bstruction Memory
on STRETCH Performance 48-55

E. A Study of Branching on Arithmetic Results in STRETCH 56-60

APPENDIX: Details of Timing Simulation Program SM-2 61-80 V I I-

.‘

T A B L E OF F I G U R E S

Title

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 6A

Figure 6B

Figure 6C

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Schematic of ST3RE:TCP-I Caimputer

Contents of a Virtual Memory Level

Virtual Memory Interlocks

Instruction Fetch Procedure

Indexing Procedure

Procedure for Placing In~it~ructlons into the Virtual Memory

Logical Conditions for Bring Type Operations

Logical Conditions for Store Type Operations

Pag:
2

6

8

10

11

13

14

16

Logical Conditions for Immediate Type Operations 18

Data Fetch Procedure 19

Data Store Procedure 20

Procedure far Placing Data into Virtual Memory 21

23 Procedure for Removing Inistruction from Virtual Memory

SIM - 2 Simplified Flow Diagram 28

Listing of f3hulator Print-Out

Listing of Simulator Summary Print-Out

Computer Speed VS. no. Lewels of Virtual Memory

Computer Speed VS. no. c d Main Memory Boxes

Computer Speed VB. Indexing Arithmetic Time

Computer Speed va. Average Arithmetic Time

Computer Speed va. Instruction Memory Cycle Time

Arithmetic Unit Efficiency vs. Average Arithmetic Time

Computing Speed vs. I/Q Word Rate

Computing Speed v8. Number of Memory Unita 1

Computing Speed V4t Niunber of Memory Unitre 2

30

31

36

38

39

40

42

43

45

46

47

I. INTRODUCTION

I

I

Early in the planning of the STRETCH computer it was seen
that by using the latest solid state components in sophisticated circuits
that it would be possible to increase the speed of floating point arith-
metic by almost two orders of magnitude over that in existing computers.
However, there seemed to be no possibility of developing on the same
time-scale economically feasible large memories with more than a
factor of ten or perhaps twenty increase in speed. A s a result, the
proposed system appeared to be in danger of being seriously memory-
access limited.

Moreover, as the speed of the floating point operations in-
creases, a larger and larger percentage of the computer's time is
spent on "parasitic operationst1, i. e . , operations whose only function
is program control and data selection. It was obvious that a radi-
cally new machine organization was necessary in order to capitalize
upon the possibilities opened up by the high arithmetic speeds in the
presence of relatively slow memories.

A t this time, the possibility of a llllook-ahead~l device was sug-
gested in which an independent indexing arithmetic unit would prepare
the effective addresses of instructions and initiate memory references
to a multiplicity of memory boxes.
in high speed buffer registers until needed by the arithmetic unit.
device would serve two desirable purposers; (1) some of the parasitic
operations would be done in parallel and thus not delay the principal cal-
culations, and (2) several memory 'boxes could be running simultane -
ously, giving the effect of higher memory speed.

The data thus fetched would be held
This

11. GENERAL DESCRIPTION OF THE SYSTEM

The major logically-independent blocks of the STRETCH com-

That is, each does its tasks as

In practice,

puter are shown in Figure X.
sidered as operating asynchronously.
fast as possible independently of the others.
have its own clocking circuits and still operate properly.
for economy% sake they a re all timed 'by the same master oscillator,
but this does not destroy their logical independence.

Each of the units pictured may be con-

In theory, each box could

3

The bus control unit serves as a routing agent between the
memories and the various data processing units.
units make a request simultaneously the control unit assigns prior-
ities in the following order: (1) High speed Exchange, (2) Basic
Exchange

lf two or more

(3) Virtual Memory, and (4) Indexing Ari the t i c Unit.

The Indexing Arithmetic Unit fetches instructions, performs
all necessary indexing operations and sends the instructions to be
executed to the Virtual Memory.

J

The Virtual Memory fetches and receives the data required
by the instruction and holds this data until the arithmetic unit is
ready for it. The Virtual Memory also performs all store opera-
tions. It holds the: data generated by the Arithmetic Unit or Indexing
Arithmetic Unit until the memory to which the data must be sent is
available.
for instructions to be fed to the arithmetic unit, but also acts as a
* '1 ook - be hind I s tar ag e buff e r

Thus the Virtual Memory acts not only as a!Ilook-aheadl1

FIGURE 1

SCHEMATIC OF SIGMA COMPUTER

e

- 3 -

The actual design of such a ltloak;-ahea.dtl device posed a num-
ber of logical problems , particularly in connection with conditional
branches. In colaboratian with John Griffi th, a device was proposed
later named Virtual memoryi1, which answered these logical problems
and served as guide for the actual organization of STRETCH.

However, a machine organization of this complexity requires a
detailed timing analysis in order to determine the value of adding hard-
ware in the form of the %irtual mernoryll.
the sole function of the "virtual memoryv1 is to increase machine speed,
by increasing the efficiency of other devices.
timing analysis could not be made on the basis of a few trivial examples
(e . g. matrix: multiply).
can be extremely deceptive. Since a detailed timing analysis of a com-
puter of this complexity is extremely tedious to carry out by hand, it
became clear that if the job were to be done, it would be necessary to
simulate the proposed machine on another computer. This prompted
us to write the simulation program dasc:ribed below.

This is especially true since

It was also felt that the

Machine performance obtained in this fashion

With the above general organization in mind, let us discuss
some of the logical problems posed by such a system.
lem is a result of the very concept which enables US to obtain such
great benefits from the stored program computer-the ability to t reat
instructions as data. In a system such as we have proposed there is
a large amount of simultaneous operatioin. For example, the indexing
arithmetic unit m a y be busy preparing an instruction before previous
instructions have been completed or even started by the arithmetic
unit. One of these previous instructions m a y modify the instruction
which is presently being indexed. The virtual memory muat recognize
this situation and allow the intervening instructions to be completed
before doing the modified inatruction.

The f i rs t prob-

A similar problem exists with respect to ordinary data. In order
to operate several memories simultaneously, it is necessary to start
obtaining data from these memories before the preceding operations have
been completed. Yet, one of them operations may be a store into one of
the data locations. The virtual memory must make provisions to insure
that each instruction obtains the moat up-to-date data a s implied by the
order of the program.

-4-

ir

One of the novel features of the STRETCH cornputer is its
elaborate interrupt system.
expected occurrence ar ises , the program will be interrupted and con-
trol will pass to a special routine which is designed to take care of the
case in question, then return control to the original program. In this
situation the virtual memory must have provisions to retain enough
information so that when an interrupt occurs we can resume the com-
putation exactly where we left off. It must be able to recognize which
of the changes that have been made in advance a re not desired and should
be obliterated and which a re exact solutions that must be restored.

Under this system whenever some un-

Another special case ar ises when a conditional branch on arith-
metic results occurs. Here we will not know which of the two brancherr
we should have taken until the precesding instruction is executed.
the cage the wrong path has been selected, the virtual memory must be
prepared to drop the intermediate results which have been computed and
pick up the correct branch in a way very similar to that of an interrupt.

In

Summing up all theae logical problems, we may state that the
fundamental rule for the Virtual Memory is that it must make the asyn-
chronous and non-sequential computer give results identical to those
which would be obtained by performing the program one instruction at
a time in the order in which they are written,

Since our original work on the virtual memory and simulation
in 1957-58, a large number of detailed changes have been made in the
actual hardware design of STRETCH. These neceseitated several mod-
ifications in the Simulation program to estimate their effect on the over-
all system performance.
changes for expository reasons since our purpose is to describe the vir-
tual memory and timing simulation. concepts not to describe the STRETCH
hardware exactly. The result is that the syntem described below imbodies
a more general system than that found in the! Simulator which in turn is
more general than that found in the actual ccbmputer.

I In this report we are omitting many of these

r..

- 5 -

111. DETAILED DESCRIPTION - OF V1H.TUA.L MEMORY OPERATION

A. General Conditions to be Considered

The conditions which occur in the following situations must be
considered in some detail:

1.

2.

3.

4,

5 .

6 .

7.

The fetching of instructions by the Indexing Arithmetic Unit.

The indexing of instructions and modification of Index registers

The loading of the Virtual Memory and the setting of its eondi-
tions by the IAU.

The action of the Virtual Memory :in fetching data.

The action of the Virtual Memory :in storing data.

The communication between the Virtual Memory and the main
arithmetic unit.

Special situation8 such as conditional branching on arithmetic
resulta, atc.

B I Definitions

Some of the terms w e will use are defined as follows:

1 Operations

Operations are considered to ba of three types:

(1) Bring or fetch type - All instructions requiring data to be
transmitted from external memory to the Virtual Memory

(2) Store Type - Instructions reqiiiring the transmissinn of data
from the Virtual Memory to external memory or index
memory.

(Note: W e consider all indexing instructions to be of
the Store Ty&, although the store m a y be to
either external memory or index memory.)

(3) Immediate Type - All operationa not requiring data transmission.

-6 -

2. Virtual Memorv Quantities

D..

(1) Virtual Memory - A number of Virtual Memory (or look-
ahead) levels (numbered 0 to N-I) .

(2) Level of Virtual Memory - A collection of registers and
The contents of the jth level it3 shown control bits.

in Figure 2.

Figure 2 Contents of a Virtual Memory Level

(3) Instruction Address Register (Ij) - Contains the address of
the instruction currently in the j th level.

(4) Operation Code Register (Ope) I Contains the operation to
be performed by the arit d tmetic unit.

(5) Store Bit - (Sj) - A one bit trigger which indicates the level
contains a Store type instruction.

(6) Bring Bit - (Bj) - A one bit trigger which indicates the level
contains a fetch type instruction for which the data access
has not been started.

(7) Forwarding Bit (Fj) - A one bit trigger which indicates that
the j th level muat transmit data to another level.

(8) Forwarding Addrerss (FAj) - A register which contains the
number of the level to wh:tch the data must be sent if
Fj is set,

(9) O.K. Bit (OKj) - A trigger which when set indicates that
the correct data for the instruction to be executed is
present in the j th Data Field.

[lo) Data Field (Dj) - A registex which contains the operand
data for the instruction.

-7-

-.!

c.

(11) Data Address (DAj) - The operand data addrees (already
indexed by the IAU) for Dj.

(12) Compare Bit (Cj) - A trigger which if not set indicates the
address in DAj should not be included in any address
comparisons being made.

3. Counters

The Virtual Memory is controlled by a set of counters which
count mod (N) ,where N is the number of Virtual Memory levels.

(1) Counter one (C1) - Indicates the level into which the next
instruction m a y be placed.

(2) Counter two (C2) - Indicates the level from which the next
bring type instruction m a y be initiated.

(3) Counter three (C3) - Indicates the level from which the next
store type instruction may be initiated.

(4) Counter four (C4) - Indicaters the level from which the arith-
metic unit will get its next operation and data.

4. Interlocks

The above counters must be interlocked in the following manner
to assure proper sequential operation of the computer (see figttrs 3):

(1) Interlock one (11): C1 = C3 + N Prevents the JtclLU from placing
the next operation into the level indicated by Cy because an
unexecuted store i s still in the level.

(2) Interlock two (12): C1 y C3]Prevents a store from being in-
itiated from the level indicated by C3 because the store
has already been done.

(3) Interlock three (13): C1 = C2 Similar to 12, prevents a
fetch from being initiated.

(4) Interlock four(I4): C1 = C4 Prevents the arithmetic unit
from executing an old instruction.

1

..-

A

/ Counter C1

Counter C4

2

(Output 1)

(output 2)

Interlocks I4 and I5 are as shown, the other interlocks are
done in a similar manner.

Figure 3. Virtual Memory Interlocks

(5) Iriterlack five (15): Ci = Cq + N Prevents the IAU from
p1acin.g the next instruction into the level. indicated by
C1 because the instruction there has not been executed
yet.

- -

C . Logic of the Virtual Memory

1. General

There are two basic precepts which must be kept in mind to under-
stand the operation of the Virtual Memory:

The OK bit (Oj) being set in the j th level indicates that the
contents of Dj is the correct data called for by DA

logical decisions will be made in such a manner as to make
sure this is the case.

All
operations will be performed snly under this cond f tion and

Addresses can be compared by the LAU with every DA address

have its Cj bit set. If a cornpaxison exists between a new DAj
being placed in the Virtual Memory and an old DAk, the com-
pare bit ck is turned off and the address of level j is placed in
FAk. This insures a unique meaning for the comparison. If
this were not done, another in13truction address DAe might
compare against two levels and thus c a w e an ambiguity.

simultaneously. DAj is not used for any level which d oes not

II_

2. hrstruction Fetch Logic

Figure 4 is a flow diagram of the IAU Instruction Fetch Procedure.
The logic is as follows: If the IAU is ready to fetch another instruc-
tion, it compares the instruction address with all the DAj * s of Virtual
Memory. If there is no comparison, the instruction fetch is initiated.
If there is a comparison the M U must take its instruction f r o m the
Virtual Memory provided the OK brit is set, otherwise, it must wait
until the OK bit is s e t .

Note: This procedure prevents the logical difficulty mentioned earlier
which would occur if the Virtual Memory contained a store order into
the instruction presently being fetched.

For Example: a STORE Address at2
a+l LOAD M, i
a+2 ADD N, i
a+3 - - - -

The store to a + 2 must be done in sequence or the old value N would
be used for the address instead of the quantity being set by a.

3

: @ m o d I I- * &
NO I

Figure 4, Inditruction Fetch Procedure

-11-

-- .

I

u

E Start M amor y
Reference far
index value

Figure 5 I Jrdexfng Proctsfdure

-12-

3. Indexing Logic -
Figure 5 shows the flow for ixlstruetion indexing. After deter-
mining that an instruction is ready to bc indexed, the I,AU tests
whether or not the index value is available. U it is, the index-
ing operation is rrtarted if not the memoryreference is started
and the IAU waits until the data returns befare proceeding. If
the index-fetch has not been started, the LAU compares the in-
dex address against all the data addresses in Virtual Memory.
If none compare, the index value is fetched normally.
does compare, the index fetch i t 3 held up until the OK bit is set
for the data. This value from the Virtual Memory is then used
for indexing the instruction.

If one

4. Logic of Putting Instructions in the Virtual Memory

(1) Figures 6,6A, 6& 6C repreaent the logical flow for putting
instructions into the Virtual Memory. I€ the indexing arith-
metic unit has an instructiom prepared fox the Virtual Mern-
o r y J it m a y transmit the inutruction into the Virtual Memory
if interlocks one and five do not forbid It. These interlocks
prohibit a new instruction from destroying an old one which
has not been executed as yet, whether an arithrnetic opera-
tion (15) or an unexecuted store (11).
instructions vary depending on whether they are of the bring
type, store type, or immediate type.

The handling of the

(2) The bring type, a6 described in Figure 6A,proceeds as
follows: If the effective data address of the instruction
compares withthe DA addrees. in some level, the instruc-
tion I its op code, and effe ctiva data address are loaded into
the level marked by Cp The compare bit for level C1 is
set to one while the compare bit for the compared-with level
is set to zero. If the 0, K. bit in this compared-with level is
set , meaning that the data located there is correct, the data
i s transmitteddirectly ta the C 1 level and its O,K, bit i e also
set. If the O.K. bit is not set, we must tag the compared-with
level by setting its Forwarding bit and by putting the value of
C1 into its Forwarding address, the bring bit for level C1 is
also set to zero since na further data fetch is required.

If the effective data address does not compare withany Virtual
Mernarylevel, the instruction is put directly into level C1 ,its
0.K. bit irs set to zero, and i t E i bring bit is set to one, indicating
that a fetch must be started.

-13-

Does Ig prevent
" e , " , , " . No m41*.x,b, operation 1 ct

.... " . , .. * * 1 . . 4Y . ." . ~ * ..." * - -.. I..". ,. .*I"-..".--.,.. -.. "..-..----"..-.A

Doe8 the indexing A. W.
have an in8 raady for
the Virtual Memory

I wait

-t.-.e-" "..--- "...-_-.*-.

N O T I

x

I

Figure 6 , Procedure: far placing Inrptpuctions
into the Virtual Memory

-1 4-

Sat the forwarding bit to ans
and put C1 in the forwarding
prddrarps of the compared wit1
lavel.
Set $he O.K. bit to 5er0 in
the C1 level

-.

m 4 I H - U

and to aero in compared

C1 level: put the inrstrucl
drese in LA put the op GO

ode in OP Put the data add-
ess in DA. Set the bring bit,

&ore bit, and the f m -
ding bit to 543ro

mpared wit

No

L
Jln the C1 level: mt the instruc-
tion address in IA Put the op code
in OP Put the data addreaar in IDA.
bat the bring bit to one, Set the
forwarding bit, the compare bit
and the 0 . K . bit to: aero

.
Send data from the cornpared
with Lave1 to D of level C1.

Set O,,K, bit of level C1 to

It--- I

return to top of Figure 6

Figure 6A, Logical Conditllonsi for Bring
Type Operations

-15-

(3) Figure 6B shows the Store type procedure.
address of the instruction doerg not compare with the DA
address in some level, the instruction is placed into the
level marked by C1.
that a store will be required.
forwarding bit are set to zero, its compare bit i s set to
one. If on the other hand the ;addresses do compare,, the
same procedure is followed but in addition, the compare
bit in the level compared-with is set to zero so that future
compariaons will not use it.

If the effective

The store bit is set to one indicating
The levelbbring bit and

The OK bit has not yet been sat.
ation is an index 'stare and set to zero if it is an ordinary
store.
should be zero since the data imust come from the arithmetic
unit after the preceedfng instruction is executed.

It is set to one if the oper-

For the ordinary store it is clear that the OK bit

A$ was mentioned in the definition on page 5 , we treat all
indexing instructions as store type and place the new value
of the indexed quantitiy into the Virtual Memory. This is
done because the Indexing Arithmetic Unit is going ahead
of the normal order of instruction execution and an inter -
ruption may occur before this indexing instruction should
have been done. In this case, the old value of the index is
still in the index register. On the other hand the Indexing
Arithmetic: Unit compares with the Virtual Memory and
extracts the mbst recent value of the index for indexing
succeeding inatructions. The OK bit ier Bet to one since
the appropriate data is in the above level. Both the new
and old index values must be carried along to give logically
correct conditions in the case of an interrupt.

A rsituation very similar to interrupt occurs in branches
on arithmetic resultrs where the Indexing Arithmetic Unit
I'guessed' which branch will be taken and proceeds with
fetching and processing the instructions on this branch
subject to being wiped out if the guess proved to be wrong.
(See the discussion on tlWrong way Branchest1 below.)

-16-

-
Set Q.K. bit to

aero - uuc , . .,

.-

--- ">-r-l.-.l--*w-,w....I

_I Does addrese compare with
a level DA

IU1 I---* .,. ,,,,, - --* ,--..-

NO
r --t

Ye8

---I-

put the finstruction address In IAr put the
op code ,in OP, put the data addreslp In SA.
Set the store bit to one, the bring bit to
zero, the forwarding bit to mro, and the
compare1 bit to one

'

- Ie the ertora to
, o--- an index

L .)

Put the index value in
D of the C1 level. Set

No

*
L-p return ta top of Figure 6

Figure 6B, Logical Conditions for Store
Type Operations

-17-

(4) Immediate Type instructions are the simplest type be-
cause they essentially carry their data with them.
6C shows the logic in this cam.
in the Virtual Memory level marked by Cy.
field of the instruction is placed in the data field of 61.
The OK bit is set to one indicating the data is present.
The bring and store bits a r e both set to zero. The com-
pare ‘bit is set to zero since the DA addredss field has no
meaning for immediate type ops.
the last instruction which occupied this level still remains
in DA so it has no relation to the present D field.)

Figure
The instruction is plsced

The address

(The data address of

5 , JLtogic of Data Fetching

See Figure 7: When an instruction of the bring type has been
placed in the Virtual Memory, the data required by the instruc-
tion in general will not be present (unless a comparison exists
alp was described above) and thus the data must be obtained from
care storage. The fetch cannot be started if interlock 13 holds
which means all the! fetches corresponding to the inatructions
presently in the Virtual Memory have been atarted. If a fetch
is possible, the bring bit at level C2 indicates whether or not
a fetch is necesraary. If necessary fhe fetch may be started if
the memory bus and memory unit corresponding to the data ad-
dresla are not already being used. When the fetch is started,
the bring bit for level C2 is set to zero. The counter C2 is then
stepped forward to the next level.

6. Logic of Data Storing

Figure 8 shows the Data Store logic, which is very similar to
that for data fetching jus t described. The only signlficant dif-
ference is that the O,K, bit must be set bef0.i.e the operation
can be started.

7. Logic for Placing Data into the Virtual Memorx

In Figure 9 , we see the logical conditions which must be satis-
fied by the data returning from Marnary addressed to the Virtual
Memory. The return address which was supplied when the fetch
was started selects the level into which the data will be placed.
The O.K, bit is then set to one indicating that the proper data
is in the level. The operation is complete at this point unless

I -

*--

From Figure 6

-.I- "".... "Wl I. - n .- -1 I < .-r-*..". T.",n".*nC"l.I.mll,- mi,OIln ,..rnr

In the C1 Ievel:
Put the instruction address in IA, put
the op code in OP, Pat the data addrslsa
into D (Note thip1) Set 0.K. bit to one,

1 Set forwarding bit, the bring bit and
and atore bit to zero,
bit to zero [Note)

Set the: cornpate

+
return to top of Figure 6

Figure 6C, Logical Conditions far Immediate
Type Operations

-19-

-1
Wai t

1

c

Start data fetch. Set
return address to level
C2. Set bring bit for
C2 to zero

.,_.I ,_ ._ ____-_._ ,. - .-.. .~_l"l_..I.-..--".--.,I-- -
---1..1.

Figure 7, Data Fetch Procedure

-20-

l - 1 7 Wai t

Is the Store Bit
Set for Level

Advance
Counter
---?-- I

.,-

ata Stora and

n_ ,T_*I+”‘ , .L /-._ .*..,”.“...“.IC.- ” -.. --e. ------“-----’-“ 1
---’.----’- ... --m*’----

set Stare bit for C3

---,=* r*c,-”cl m--------u.----

Figure 8, Data Store Procedure

-21-

.- I
wait

I

0 I 1'
Y e s

1 Set F bit to aero Uxr"r--Wm

.-1-+* #" -..... U'lr*uUCYXu.-rUIWUI.LUYY
""-~~"""-..'.-....- L.. *.*.*If I_."%* unlUI..*C.I"W

Place data in level in-
dicated by forwarding
addrew and set O,K.
bit in that level to one

Figure 9 , Procedure €or F'lacing Data into
Virtual Memory

-22-

c

the Forwarding bit i s set.
warded to the l e d designated by the Forwarding address.
This procedure continues from level to level as long as the
data continues to arrive into a level whose Forwarding 'bit is
set. This procedure automatically supplies all operands
present having
without additional memory references.

In this case, the data must be for-

identical data addresses with the proper data

8. Logic of Removing Instructions from the Virtual Memory

Observing Figure 10, we notice that as the arithmetic unit
completes an instruction it checks to see if the next instruc-
tion in the Virtual Memory is ready to be executed (indicated
by interlock 14). Note: The operation m a y be an unconditional
branch, a conditional branch, or an index type store as well as
a normal bring or store type instruction involving the accumu-
lator. Figure 10 shows only the ca8ses which involve the uni-
versal accumulator. The index anti unconditional branches
and the index store operations are merely ignored at this point.
They a re carried along only to provide the data for recovery in
the event an interrupt occurs. The execution of the conditional
branches on arithmetic results are described in the next section.

If the next instruction marked by counter C4 i s ready, it i s fed
into the arithxnetic unit. If i t is a &ore type, the data is gated
from the accumulator into the data field of level. C4, and the OK
bit is set to one. If the Forwarding bit of the level is s e t , a
forwarding procedure in this case is essential for the proper
logical operation OX the computer, whereas in the bring case i t
is a time-saver only.

If the instruction is not a store type, the arithmetic unit must
hold up until the 0 . K . bit far the].eve1 is set .
bit is set , the instructiori i s gated into the arithmetic unit
and executed.

When the O,K.

9. Logic of Interrupt Procedure

If for any cause an interrupt (or t rap) from a special condition
occurs, the instruction which is bering executed in the arith-
metic unit is completed. However, the next instruction is not
executed in spite of the fact all the data preparation for it m a y
have been completed. The address in the IA (instruction add-
ress)fieldwill serve as the value to reset the instruction counter
if it is desired.

U ..
Is the a r i t h e t k unit busy
doing an inatruction

hll.-.--"*-.".-".- -"..-..-.-- c
I

I
Yea

I
NO

dicated by forwarding
address and aat 0 , K . bit

I,

I

Figure 10, Procedure for .Removing Instructions
from Virtual Memory

-24-

.-

1

The Vitual M e m o r y is initialized, i. e . , set to the starting
conditions of an interrupt,with the exception that all store
orders which have already received data from the accumu-
lators must be executed first. Note: If the interrupt is of
such a nature that the normal flovv of instructions is not re-
sumed, the procedure of storing the modified values of the
index registers in the Virtual Memory gives logically correct
results, i. e . , the mzne as if the interrupt had occurred be-
fore the indexing took place.

IV. DESCRIPTION QF TIMING SIMULATION PROGRAM

A. General Considerations

During the logical design of STRETCH it was neeeasary
to prove the value of the Virtual Memory concept and to assist in
the selection of optimum values of various system design para-
metera. Examples of such parameters are: The: number of mern-
ory boxem, interlace and allocation of memory addresses, and num-
ber& of Virtual Memory levels. Also cxf Interest were trade-off
factors far erpeeds of indexing arithmetic wit, arithmetic unit,
memories, etc.

h Noimmber 1957 the Timing Skrnulatm (SUA-2) described
here was written for the u3M 704. This program attempted to answer
such questions quantitatively by simulating the times-wise operation
of STRETCH on typical. Lost programs coded in STRETCH language.

The basic logic of the 704 progmm fallows the principles
just described in the preceeding aoction far the Virtual Memory. It
ahould be stressed that the Simulator is a Timing Simulator and
does not execute the instructions .In an arithmetic sensa. It traces
the time -wise progress of the instructi.ons through the components
of the computer observing all the intsrhcks and t h e delays nece8-
aary for correct representation of the 'behavior of the machine.

One of the fundamental cancepta in the STRETCH design
is that of asynchronous operation of the components. This means
that there are a large number of Pogica.1 steps being executed at
any one time in the computer, each of sthem proceeding at i t s own
rate,
we have broken the continuaus time variable into finite time steps.
The basic t ime step is taken aa 0 . 1 microsecond in the Simulator.

To simulate this flow of many parallel continuous operations,

-25 -

Several reason& prompted us to select this time interval.
are relatively simple, such as the desire to have the rersults come
out in microseconds and decimal fractions thereof.
time interval makes a given problem run faster on the Simulator
since the running time is almost inversedy proportional to the time
step being used.

Some

Taking a coarse

D .-
More fundamentally, the '"naturalt1 internal time scales of

the computer are represented on one hand by the cycle time of the
main memories (2 microsec) and on the other hand by the time re-
quired for signals to traverse one logical level in the circuits (5 to
20 millimicroseconds).
as given by the I/O devices, l a in the order of mllliseconds for
star t up time and tens of microseconds for data flow rates.

The external time scale of the computer,

Most internal macro logical processes require 0 . 1 micro-
seconds or more since they usually requtise at least 10 logical levels.
Thead represent the scale of quantities we wished to study in this
sfmulator. Other rrcalet3 could have been chosen. For example, one
could write a program which followed the operation of every logical
%mdtl and llorll circuit in the computer.
written such a program for a small experimental study.) The simu-
lation program i s simpler on this scale but the specification of a
computer such ad STRETCH would be an enormous task- equivalent
to laying out the whole circuit design. Another difficulty, would be
that changing a gross parameter such aa the multiply time might re-
quire the changing of thousands of I1andtt and llortl blocks in the circuit
specification.

(In fact, the authors have

By taking 0.1 microaec as our quantum of time, we are
automatically setting the scale of the smallest circuit entities which
we will consider as being those which acxomplish complete functions
in a 0.1 rnicrosec or few multiples thereof. Thus by using this phil-
osophy, and considering many of the components of the computer as
"black boxes", we greatly simplify the details which must be con-
sidered without introducing serious timing inaccuracies.

Our experience has. indicated that more information was
gained by making a large number of fast parameter studies using
different configurations and programs that could have been obtained
by a very slow, detailed simulation of a few runs with more precision
per run. Even so our time scale i s too fine to make serious Input-
Output applications studies.
tor having at least a factor of 10 coarser basic time interval.

-
These would require a simpler Simula-

-26-

33. Logic of the Simulator

.

In the asynchronous organization of S T m T C H there can
be many major components operating at any one time. TO achieve
this parallel effect in the Simulator we essentially rlhold time stillr1
and scan the entire machine representation at each time step. Al-
though every major block of the program is traversed at each time
step, if there is no activity required in a given block, only a few
tests need be made by the code.

Lf in this process it i s deternained that a given logical unit
should do an operation, the time interval required for the operation
is obtained from a table of constants. The speed of the various log-
ical units can thus be changed parametrically by changing the values
in the tables. A constant obtained from the tables is inserted into a
memory location called the time counter for that unit. At each time
step the program reduces this counter by one until it reaches zero.
Thus the fact that the counter is non-xero can be used to indicate
that the particular logical unit is busy and not available to service
other requests. When the counter is aero the unit can consider a
new input.

In addition to the time counters many of the logical blocks
contain other conditions or interlocks which effect the operation of
the block.
before action is undertaken. AS an eieample, theQ K. bit" described
in the previous section i s stored as a or llzeroll in a memory
location associated with each Virtual Memory level (called LAU6, i
in the program, where i is the Virtual Memory level). The l'O.K.
bit indicates that the data in the level is the correct value for the
operation. In the p r o g r m the IfOK bittf is set by storing a one in
location LAU6, i.

These conditions are stored in the program and tested

Each logical unit when it completes its operation may have
The other unit may be notified

Either (1) The sub-
data available to start another unit.
that the data is available in two possible ways.
routine corresponding to the receiving logical unit searches all pos-
sible inputs to determine if any of tllejm has data for it, or (2) the
sending unit sets logical constants within the receiving unit which
indicate that the data is available. For example, the llO.K. bitt1
is set for a given level by the memory in-bus subroutine. While
on the other hand, the arithrnetic unit subroutine tests the O.K.
bit to determine whether or not data is available for it.

The simplified Flow Diagram in Figure 11, indicates the

Using the types of techniques just des-
order in which the subroutines for the various logical units a r e ex-
ecuted at each time step.
cribed above, the logical subroutines simulate the action of the
components of the computer such as t'he Virtual Memory, arithmetic
Unit ,etc.

--c

The details of the Simulator a re described by Tables 1
through 4 and in the detailed flow diagrams at the end of this re-
port. These flow diagrams can be comolated in the obvious way.with
t h ~ @ given in the section which desc3ribes the Virtual Memory,
The Simulator also contains several other subroutines which dq
such things as initialize the program at the beginning of a run, set
up the timing diagrams and summarize the results of the run, (aee
diacusaion in the Result Section),

The STRETCH instructions being simulated a re read into
the 704 from tape a a required.
from carda at the beginning of a run. (The input quantities read in
for each operation are listed in Table I, column 1.) It is interest-
ing toaote that since the Simulator ai~mulates timing only, not the
arithmetic or indexing functions, the aequence of instructions ta be
executed muat be furniahed aa a ltstringtt with all loope unwound.
However, to make the computer behave as it actually would, the
loops must be furnished with "wrong way11 paths given far the cases
where the computer would take such paths. Alao one must furnish
more than enough information along such paths aince it is difficult
to predict in advance how far the computer will get down the wrong
path before it is called back.

The instructions are put on tape

-

Parameters are changed from one run to another by UBB of
The control cards a r e set up in such a way that any control cards.

number of parameters may be changed between runs.

Results are given either a s detailed timing charta or a0
summary listings for each problem. The usual procedure has been
to print only summary results while making a series of param0te.r
studies.
read in, the problem tape is rewound, and the Simulator reruns the
problem with the new constants.

At the end of each run the new contra1 card or cards are

-28-

---+ 1

i 15

Initialization
Arithmetic Uni t
Decode Operatiuns
Virtual Memory
Indexing Arithmetic Unit
Bus from Memory
Bua to Memory
1/0 References to Memory
V.M. Stare Reference8 to Memory
V, Me Fetch References to Memory
L A , U. Reference8 to Memory
Instruction Fetch Reference8 to Memory
Count - down time
Print detailed listing
Summarize and print

Figure 11. S M - 2 Simplified Flow Diagram

-29 -

V. SOME RESULTS OF THE SIMULATICKN STUDI.€CS -
A. General Description

1 Introduction

During 1958 a number of reports were written giving
results of runs made with the S M - 2 program. W e will not
attempt to record here all af the results thus presented be-
cause many of them were superseded by later reports or were
concerned with specific problems in the design of STRETCH.
The results quoted here were chosen for their general interest
as parametric studies and are not intended to represent STRETCH
as it is actually designed.

2. Output Listings of Simulator

Figure 8 12 and 13 show examples of the type of output
listings; given by the Simulator.
timing chart with each line of printing representing 0 . 1 micro-
second of time:, The columns repmssnt the various components
of the computer. On the left and right am timing counts subdi-
viding each microsecond. On the Par right are conflict indicators
(YP on the charts) and waiting indicators, I1Wtt which indicate
when interlocks prevent operationer from proceeding.

Figure 12 is a piece of a long

The 2nd column, 11, gives the number of the instruction
being indexed.
instruction using the arithmetic unit.
represent the instructions using the memory buses.
labeled X-,I?-, and M- represent the index, fast, and main
memories. A string of t t X t ~ l l in the columns represents the
cycle time of the memory.
tion using the memory and number of times which it is repeated
gives the read-out time of the merrrazy.
which instruction i s located in the V i r t u a l Memory levels. The
other columns are for details in analysis and need not be eon-
sidered hem.

The 4th column, AU, gives the number of the
The next four columns

The columns

The riumber indicates the instruc-

The columns L- indicate

Figure 13 gives an example of a series of summary
listings. Each s e t of numbers represents a total problem run.
The quantities listed are given in Tables III and IV. A s was
mentioned earlier, far most of the runs made in the Simulator
studies, only summary runs were :made.

-3OA-
Figure 12

Listing of Simulator Print -Out

-306-
Figure 12

Listing Of Simulator Print -Out
X 8 7 1 0 9 L 7 cw

1 8 CW

2 10 cw
0 2 c\rl

-. 3 1 2 1 13 8 X X 8 11 10 9 1 0 2 3 w
10 1 4 cw 4 1 2 .,2 1 3 8 X R 11 10 9

8X a 11 i o 9 10 3 cw
1 0 8X 8 11 10 9 2 6 CW

cw
- 5 . 1 2 '4
6

-7 13 1 1 0 8X 8 11 10 9 15 1 7
A 13 1 1nx A X A 1 1 1n 9 1 5 13 cw

2 9 cw 9-13 1 1 5 1 O X 8X 8 11 10 9
J0 1'3 1 15 1 O X 8 X 8 11 10 9 .

1 10 cw
1 cw 8 11 10 9 15X 1 O X 8X

15X l o x 8X 8 11 1 0 9 2 2 cw
1 13 1

1 3 cw 15X l o x x 8 11 10 9
- 2 . 2 3 1

4 13 1 8 15X l o x x 8 11 1 0 9 4 cw
3 13 1

7 11 1 1 3
R 11 2 13 X 8 7 1 0 9
9 11 2

R 7 1 0 9
1 11 4
2 1 13X X 8 7 1 0 9

X 33x X 8 7 1 0 9 9 CW

13X X 8 / 1 0 9 0 1 1 7
-. l o 11 2 13X X ----

1

8

5 1 3 1 E5 X l o x x 8 11 10 9 2 5 c
X x x 12 11 1 0 9 1 6 C

x x 12 11 10 9 7 c
X x x 12 11 1 0 9 2 8 C

x x 12 11 10 9 1 9 c
x x 1% 11 10 9 10 c -

1 1 8 x x 12 11 10 9 2 1 c
1 1 1 2 w 2 1 4 .l x x 12 11 10 9

3 1 4 1 9 X x x 12 11 10 9 il 3

7 14 2 1 3 X l l X 12 11 1 0 13 2 7 w

9 1 13X 11x 12 11 10 13 9 w

6 13 1 8 15 1 0
7 13 2 8 1 0

.-2 0
9 1 3 2 8

2 0 3 4 8

4 1 4 1 11 x x 12 11 10 13 13 2 4
1 3 1 5 5 1 4 2 10 11 X 1 2 11 10 1'3

6 6 34 3 10 X X l l X 12 11 10 1 3 13

B 1 4 4 1 3 11x 1 2 11 1 C 13 l a w

,$O 1 s 3. 13x 11x 12 11 14 13 1 7 1 4 2 10 W
1 7 14 1 1 W ' 1 1 5 2 13% 1 1 x 12 11 1 4 13
17 1 4 2 w 3 15 4 13X 11x 1 2 11 1 4 13

2 3 w 3 1 13X 11x 12 11 1 4 13 17 1 4
1 4 w 4 16 1 11 17 1 4 13X X 1 2 11 1 4 1 3

-..

-_I

-7.

5 16 1 11 17X 13X 14X X 12 11 14 13 5 w
5 - 1 6 1 17x 13X 14X X 12 11 1 4 13 2 6-

9 16 2 11 17 X X X 14X' X 12 1 5 14 13 2 9

1 7 12 1 5 1 4 13 7 16 1 11 13 l 7 X X 14X X
8 R 116 2 - 1 1 13 17X X 14X X 12 15 1 4 13

1 10 X X 14X X 1 2 15 1 4 13
1 1 16 '3 11 X X 14X X 12 15 1 4 13

2 2 13 1 5 1 4 1 3 2 16 3 11 X 14X X
X x x 1 2 15 14 13 1 3 w 14

4
3 16 4

1 4 X X x x 12 1 5 1 4 1 3
19 2 5

4- 1 12
X x x 16 15 14 13 5 17 1

6 17 2 1 3 X X 16 15 1 4 13 19 1 6

h*-17 2 19 X X 16 15 1 4 13 2 8
1 9 9 17 3 1 4 19 X X 16 15 1 4 13

---.-..

3 0 16 7 XI 37

" -

-_L

' 7 17 2 13 X X X 16 15 1 4 13 19 7

l t 1 7 3 1 4 19X X 16 15 1 4 13 10
1 17 4 14 19X X 16 15 1 4 13 2 1

3 18 1 1 4 198 X 16 1 5 1 4 17 3

" ____----

2 1 14 19X X 16 I, 5 1 4 13 1 2

2 4 4 18 2 1 4 1 9 X X 16 15 1 4 17
1 5 w 5 18 2 19 X 16 1 5 1 4 1.7

2 7 7 1 16 15 1 4 17
8' 19 1 1.6 X 16 15 18 17 71 18 1 8

-
- 2 L . l L - 4 L I - -x 7 -6-

9 19 2 16 15 18 17 2 1 18 9
2 1 18 "2 16 15 18 17 2 10 10 19 2 17

1.19 4 2 1 1 8 16 15 18 17 1 1 w-

4 20 7 ?l>t . d B X

2 w 2 I 21x 18X -- 16 IS 18 17
13 20 1 2 1 x 18X 16 19 18 17 1 9 2 3 W

16 1 9 18 17 19 1 4 w
1 9 5 w 2 l X 18X 16 19 10 17

J
5 3 0 4
6 , I _ _ _ _ 22-- ___- ~ 19- _ _ - - -X . 1 8 % I_c1_____ -/mU __-_I_____-__ ____- 2 6 1

23 1 7 w 7 1 21 19 X 18X 20 19 18 17

-__I_ ------- ____

_ _ - _

- 3 o c -
Figure 12

Listing of Simulator Print-Out

I - -I- -_-_"_I-___

r 8 1 I 8 x J 9 x ~ _ _ _ _ ---I- 20 19 18 17 2 3 8 w-
9 2 1 1 2 3 18X19X 20 19 1 8 1 7 2 9 w

10 2 1 2 18 2 3 x 1 z 20 19 18 17 1 10 w
1 2 1 2 18 2 3x x19x 20 19 18 17 1 w

20 19 18 17 2 2 -
3 1 3 R 2 3x X19X 20 19 18' 17 1 3
4 27 1 18 23x -____I__ X19X 20 19 18 2 1 2 1 4
5 32 2 23 X X19X 20 19 18 2 1 2 1 2 5 w
6 7 7 2 23 19 X X x ,.x 70 19 1 8 2 1 2 1 1 6 W

7 w
8 2 2 21 4 ' x x 20 19 18 2 1 2 8
9 1 19 7 1 x x 20 1 9 18 2 1 1 9

lozju39-- x X31X k J 13 2 2 2 1 25 2 2 1 0
1. 33 2 19 x x 2 1 x 20 19 22 2 1 2 s 22 2 1
2 2 3 4 1 9 X Z l X 20 19 2 2 2 1 25 22 1 2
3 1 19 X 2 l X 20 19 22 2 1 25 2 2 ' 3
4 24 1 19 3 '572L--- X 2 - 1 _ x _ _ _ - I _ _ ~ 20 2 3 22 2 1 2 4
5 24 2 2 5 2 2 x 2 1 x 30 23.72 21 1 5 w

30 2 3 2 3 2 1 *c-*
6 24- 2 20 -- X 2 5x-.-.-.----- x71x22x ---- ~-
7 24 2 X 35x x 2 1 x 2 7 x a0 23 312 2 1 2 7 w
R 24 2 2 I. ZliX---.-.--..-.L?-2 L- 20 2 3 2 2 7 1 1 8 W
9 24 4 2 1 25x x32x 20 23 22 25. 9 w

2 1 0 -20'---1_--- 3 5 - ~ - - X __-__ x 2 2 x 20 23 22 3 1 I

1 1 21 25 X x 2 2 x 24 23 22 2 1 '27 2 4 1 1
--- 2 1 2 1 ---I_-- -- ------I___ x 2 2 x 24 23 22 2 1 27 24 2

3 7 5 I 27 2 4 x 2 2 x 24 23 22 2 1 2' 3 w
4 25 2 22 27 2 4 x x--- 24 23 2 2 2 1 1 4 w
5 25 2 22 X- 27X 2 4X x x 24 23 22 2 1 5 w

2 6 6 25 2
7 2 5 4 2 2 27X 2 4x x x 24 23 22 2 1 1 7

9 26 1 32 77 X 2 4X x x 24 2 3 22 25 2 5 2 9
10 26 2 22 27 Y X 24 23 2 2 2 5 2 5 1 10 2 4x ---

1 26 3 2 2 X 2 4X X 24 2 3 22 25 25 1
2 26 2 22 ____---- 2 5 -- - __l__ 24x X -- 24 2 3 2 2 2 5 2 2
3 26 4 24 2 5 X X 24 2 3 22 25 1 3 w
4 1 23 24 X _I_ x 2 u ----- _______ 24 23 22 2 5 4
5 27 1 X 25X X 24 23 26 25 29 2 6 2 5

29 26 1 6 6 27 2 24
7 27 2 24 X x 25x 24 23 26 25 29 26 7

2 e w
9 27 4 29 26 x 25x 24 23 26 2 5 1 9 w

10 1 -- __I ___-_ - --.--. _- ------- ???-- X26X?5XK -I----- 24 23 26 2 5 10 w
- _ 1 28 1 29x X26X25X 24 27 26 2 5 2 f 2 1 W

2 2P 2 2 5 -----I 29x X76X X 24 27 26 2 5 2 7 1 2 W
3 28 4 25 29x X26X X 24 27 26 2 5 27 3 w
4 ,______--__.-- 1 29 37 - - - - - I ____ X X 2 h X x __ 24 27 26 2 5 2 4
s 1 25 29 77 X 26X X ' 28 27 36 3 5 3 1 1 5

-6 1 2 5 --_-- - _--_-____I- ? hX32L_X.- 28 27 26 7 5 3 1 6
7 29 1 25 31 36X x 2 7 x 28 27 26 2 5 2 7
8 29 2 29 26 3 1 __- x x27x 28 27 2 6 25 1 0
9 29 4 25 2.6 -7m- x X7TX 28 2 7 26' 2 5 9

1 0 1 25 3l.X x x27x 20 27 26 25 2 10 ----- --- - - - - ~ - ~ x - - ---..--x-T27-x _ _ _ _ _ _ _ _ _ _ - _ -

3 ' 30 R - - - - - ~ X I
2 30

4 26 20 27 2 6 29 2 3
X X X 38 27 26 7 9 1 , 4

5
1 26 3 1 27 ----.-.-.---.- 4

X X X 2a 2 r 30 29 3 3 s
X X 28 27 30 29 3 3 2 6 6 31 1 2 6

t 31 7 7A X X 3 R 77 30 3 9 ' 3 3 1 7
.A.1-_ - - - - _ _ _ _ _ - - - ._ x x - --281Lx 3 9 .35\ a

9 1 27 33 X X 28 27 30 29 2 9
3 3 X - X 28 91 9 0 29 1 10

1 32 2 27 3 3x X 28 3 1 30 29 1
2 2.2.- 4 27 I______ _- " ?X "- X 28 3 1 30 29 2 2

4
3 1 27 33x X 28 3 1 30 29 1 3

-- 33x X 28 3 1 30 29 35 ~ 4
3 1 33 X X 28 31 30 29 35 2 5

-- 2 3 1 4 , 23X X19X

7 2 2 2 19 x x 20 19, 18 3 1 2 1

6 C

2 4 23 2 2 2 1 --___.-.
~ - - _ I _ x x 24 23 22 2 1 8-.-

27X 2 4X x x
I- --I-____________ ~ _I______ -_I__._

I

- - 8 --------- 1 22 ----- 27X __I__ 2 4x

--IIy--.L-"...L-u-Iw. x 35x ---I-I.- 24 2 3 26 25

_l_l_-l__ 0 27 2 _--I-- 2 9 -. 26 - ---- - - - - ~ X -- 25X - - - 24 23-26 2 5

273- 27 -Ti- ?3----
31x X X27X 28 27 26 29 I : =' 2 26 -TiiI~-----'--- -~

- - - - - . " II _- I _- ---__-_-__

10 37 1 27

1 2'3

' 6 1 28 '3 X 32 3 1 30 29 35 1 6 _ _ *

-3OD-
Figure 12

Listing of Simulator Print-Out

7 1 28 32 31 30 29 35 7
B 3 3 1 3 5 -1---11- - 32 3 1 30 19 2 8 W
3 33 2 29 3 5 X 32 3 1 30 29 1 9

10 33 4 - - ~ - 39x - .---_I-.-___- 32 3 1 30 29 10

2 34 1 30
1 1 30 35x 32 31 30 29 2 1

x 255 32 3 1 3 0 3 3 1 2
3 34 2 3 5 x 32 3 1 30 33 3
4 34 4 31 5 5 -I_ X .--__I 32 31 30 33 2 4
5 1 31 3 5 X 32 3 1 30 33 1 s
6 1 31 X - 32 31 34 33 37 6

37 3'1 34 33 37 2 7
3 3 31. 34 33 37 1 8

7 35 1 '32
0 39 a 31 '
9 35 4 3 1 32 31 34 93 37 9

2 10
1 36 1 3 1 37 33 35 34 33 1 1
2 36 2 3 1 -- ~ _ _ . _ 37x -- 32 35 34 33 2
3 3.6 4 31 37x 32 33 34 33 2 3
4 1 3 1 37x 32 3 5 34 33 1 '4
5 1 3 1 3tX 31. 3 5 34 3 3 39 5
6 1 37 X 3 2 3 5 3 4 33 39 2 6 W

1 7 7 1 32 37 X X 3 2 3 5 54 33 39
1 8 X ---x35 3 4 3 3 39 0

9 37 1 33 39 76 35 34 33 2 9
1.0 37 2 33 39 36 3 5 '34 33 1 10
1 37 4 39x 36 3 5 3 4 33 1
3 1 34 39x - -- 36 35 34 33 2 7
3 38 1 34 39x 36 35 34 37 1 3
4 38 2 34 39 x -.--L--.l_-_l-__ 36 35 34 37 4
5 38 4 34 ?9 X 36 3 5 34 37 2 5
6 1 34 39 X 36 35 34 37 1 6
7 1 34 X 36 35 38 37 41 7
8 39 1 34
9 39 7 ?I, 36 35 38 37 41 1 9

10 1 31 37 32 31 34 33

-~

-I---______ _-_-__I__ _I_ -1--1__ - _- - ~ - - ^ 36 35 3a 37 41 2 8-.-..- -I__-_-

8 61 2 5 5 x
9 6 1 4 59

1 62 1 60
2 62 2 6 3X

63X

6 1 63 X X
9 1 6'3

7-

9 6 3 2
10 63 2

2 1
lSs63 4 98X

4 44 2 ?a'
5 64 2 63 ? 8

1
7 64 4
9
9 98 1

1 98 4 64 X

3
4

-x4Q_rjsss- 6q a

1
63 X 55x 57 60 59 58 2 9
63 X 57 6 0 59 58 1 10

X 63X X 6 1 60 5 9 58 1
X 61 60 59 58 2 2

10

3 62 2 6 1 63X X 6 1 60 59 58 1 3 w
4 2 4 X 6 1 60 59 58 4 w

X X cI* 60 5 9 58 2 5 w

62 98 X 6 1 60 59 6 2 2 8 W A 43 1
98 X 6 1 60 59 62 1 9 w

--- 9RX X 6 1 60 59 62 10 w
98X - &1 60 5 9 62 1 2 w

3 6 4 1 X 98X 61 60 63 62 a
X _I 6 1 60 63 62 2 4

X X 61.60 63 62 1 5 w

X U,L.Z?. 62 98 1 6
1 X 6 1 60 5 3 62 98 7

2 1 w X 6 1 60 59 62

1--

- 6 4 2 61 60 6 3 62 6 W
2 9 w 6 1 60 63 62

6 1 60 6 3 6.2 1 8 W
X 6 1 64 63 62 9

10 98 2 61 64 63 62 2 10

-...-----_ 2 1 .--___ -.__ ---_ 61 64 63 62 2 w
1 98 64 63 62 2 3
1 98 64 6 3 62 1 .4

5 1 98 98 64 63 62 5

1 1 w 6 1 64 63 62

~__. ._ ___
PROJECT 700C SIMULATOR b2 C6CFE + KOLSKY NOV 57

6 5 4 3 2 1 X I 4 LA FM MM IR IS I A fr--T4b-FrF-O DY X 1 X2 MD F1 F2 F3 M 1 M 2 M3 1 5 14 13 12 11 10 9 8 7
4 2 4 2 2 2 2 2 2 . 2 2 1 2 4 4 6 8 1 7 2 0 5 0 1 8 2 0 1 8 1 2 8 6 4 2 1 1 0 5 4 2 1
Tt AU I A U AOLA LAF WI WM DLA 8 7 6 5 4 3 2 1 0 fBF I BM OBF 0

-____ 1665 454 349 .-.??l!? .--_ -535 --_ ?E- _266 _I_.I__________ .. 535 335 64 36 29 144 76 144 8(
IS 4 3 2 1 M12 M 1 1 M10 M9 M8 P 7 - - - r MS M4 M3 M2 M 1 MMC FMC MBC Ft3t

ar

14L- 9 . 25.0 _.. 590 7 33-2 276 276 180 212 219 193 . -- -J-2&..--..-;

e4

O
o

U

&

6

N
C

d
*

i
,

)
I

d

a
l

x
!

I
r
(

cr)
4

W

0

-32-

The detailed timing charts for most problems would
Since over a 1000 cases be about 50 feet long far each run.

have been run, it is clear that o d y a few cases could be
printed in full detail. Neverthelesw, the detailed timing
charts were essential for two reaBons: (1) Debugging the
program with all its hundreds of conditional branches would
have been a staggering task without the detailed listings, and
(2) determining the causes of sorm,e of the anamolouB summary
results required that one examine the listinga in detail. Also
the authors found that studying the listings enabled them to get
a
locate bottlenecks in the processing speed.

for the flaw of information which was neeeaaary to

El. Test ,Problems Used.

Five a% the tes t problems used most frequently are des-
cribed below. Other test problems were used for specific studies
but since the results were similar for all p1~blem8 of a given type,
we gradually discontinued using them. The following were origin-
ally seleited a s baing typical of dif€erent classes of problems. A
brief dekcription of each i s repeated here for completeness.

1. Mesh Problem - Part of an hydrodynamics problem from
Loa Alamos. It contains a rnlore or less I'average" mix-
ture of instructions for scientific problems: 85OJo Floating
Point instructions, 1.I% index modification instructions,
and 1% Y F L Jct is usually arithmetic unit limited.

2. Monte Carlo Branching Problem __c - Part of an actual Monte
Carlo neutron diffusion code, It represents a chain of
logical decisions with very little arithmetic in between. It
contains 4770 Floating Paint a 15% index modification inatruc-
tions, and 3670 branches of the indicator and unconditional
types. It is largely instruction-access limited.

3. Reactor Problem - The inner. loop of a neutron diffusion
problem from Westinghouse. It consists of 90% Floating
Point arithmetic (39y0 of which are multiplys) and 10% in-
dex modification instructionu.
metic unit limited.

It is almost entirely arith-

i
i

-33-

.. .,

4. Computer Test Problem - The evaluation of a polynominal
uaing computed indices.
compare various computers.
10% index modification, 6% VFL and 13% indicator branches.
It is usually arithmetic unit limited but not for all configura-
tions.

T t was prepared by I. Ziller to
It has 71% Floating Point,

5 . Simultaneous Equations - The inner loop of a matrix inver-
sion routine 67% Floating Point and 3370 index modification.‘
Arithmetic and logic are about equally important.
ited both by arithmetic and instruction-access speeds.

It i a lim-

C. Resulta of Simple Parameter Studies

1. General

When the Simulator Program was first completed in
late 1957, we undertook a aeries of studiea in which the main
parameters describing the STRETCH leystem were varied one
or two at a time in order to get a rneaeure for the importance
of different effects. During thia phase we spent much time study-
ing the detailed print outs described above to determine the exact
cause of EO m e of the anornolous efjfects.

After this w e began to specialize the studies towards
amwering specific questions in the: STRETCH design and made
more use of the Summary listings. Two of these studies are
described in tho following sections. In the present section the
major part of the material is taken from the first parameter
studies. The graphs reproduced below are in terma of an ar-
bitrary speed scale in which one of the first problems studied
(The Mesh Gale.) wa;s taken as 100,

The table below summarizes the major effects studied.
The individual items are discussed in the following subsections.

Examples of STRETCiH Timing Simulator Kesulta
Description M e s h Calc. Monte Carlo

1.
2.
3.
4.
5.
6 .
7.
8.
9.

Standard De sign
Speed %Change

1.00 0
A . U . Times Doubled 73
I.A.U. Times Doubled 67.
Both AU and IAU doubled 6 0 .
2. 0 us hstr . Memory 98.
Combining Instr.and Data in 4 MM 82.
Combining Instr. andDatain 6 MM 86.
2 Levels of Virtual Memory 89.
4 Levels of Virtual Memory 106.

Speed
45.
43.
26
24.
35.
32
33
38
46.

$?Q Change
0

-34-

' 2. Standard Values of Parameterw -

¶

The combination of constan1:s which was taken as the
standard reference values fo r the original parameter studies
is a8 follows:

a. Machine Components:
1. Levelsr of Virtual Memory
2, Number of hstruction Memories
3. Number of Main (data) Memories

1. Indexing Time*
2, Arithrnetl-c Unit ' S h e 8

Floating Add
Floating Multiply
Floating Divide
Fetch

uaual 6-6-34 average

b. Computer Speeds:

4
2
4

0 . 6 usec

0 . 6 usec
1.2 uaec
1.8 uaec
Q,2 uaew
0.64 usec

*This is total t ime to index one order, includes inrstructian
1 decoding index fetch, index addition, and atoring modified

address,

e. Memory Speedei:
1. Fast (Xnstr.) Memory Times

Read aut time
End Signal Time
Memory qgcler time*

0.4 usec
0.4 usec
0 . 6 usec

*(The actual effective cycle time itr 0 . 9 ugec, since the bus
clocking permitted successive references to the same mem-
ory box only in multiplee of O 1 3 usec and the memory box
must be free at the time of the reference not just finishing.)

2. Main (Data) Memory Times
Read out t h e
End Signal T h e
Memory cycle time*

0 .8 usec

2.0 ueec
1.7 U88C

*(The effective cycle is 2. 1 UEI for same reason a8 above).

3. Index Core Memory Times
Read out time .
Memory cycle t ime

0.4 usee
0 . 8 usec

The index cores are asaumed tied directly to the IAU,
so these figures include bus times.

4. Bus Spaado
a* Bumw t o and from hstruct ion and Data

mennorfee 0. 2 W Q C slot (either read or

b. Dec~drts and l~rwitching time In central con-
trol unit 0 . 2 uwx to 0 .4 UBBC (dspending
on bus ~ d h t a available.)

writs) available every 0 * 3 uaec,

Note: A separate burs eystem to instruction and
Data memories i B aSBUm3dt but not neceseary.

In addition there is usually a 0 . 1 U B ~ C delay between the
completion of any function and the beginning of the next one by the
unit, or in the transfer from one register to another.

3. Speed vg Number of Levels of Virtual Memory

Figure 14 shows the effect on computer performance of
varying the number of levels of Virtual Memory. Curves for the
Monte Carla and Mesh Calculations with two sets of arithmetic
and indexing arithmetic speeds are shown.
the 6-6-3-1 averages mentioned above,

The AU t imes given are

(4)

A number of interesting result8 are apparent from theas

There is a tremendous gain to be had in going to the
V i b a l Memory organization. The point for "0 levels11
meane that the arithmetic unit 318 tied directly to the
instruction preparation unit, although simple Indexing -
Execution averlap Ika still possible.

The gakn in performance goes up very rapidly for the
first two levels then rirws more alawly for the rest of
the range.

A large number of lave:La does the Monte Carlo problem
less good than the Merjh problem because conatant branch-
ing in the formax. spoil^^ the flow of instructions. Notice
that the curve for the Monte Carlo problem actually de-
creaiea slightly beyond. a h levels. This phenomenom ie
a result of memory conflicts cauaed by extraneous memory
references startad by the computer running ahead on the
wrong-way paths of branches

-

The computer performance on a given problem ie clearly
lass for alower arithmetic speeds. However, it is important
to note that the sensftlvit~ of the performance i8 also leea fox
slower arithmetic speeda. The Viztual Memory improvee the
performance in either case, but it i s not a substitute for a fast
arithmetic unit.

120

I IO

100

90

80

70 a
E 60

5 0

40

30

20

I O

w

v)

SIGMA COMPUTER SPEED

vs. No, of levels of

Look-Ahead Registers

4 Main Mems. 2,O p s

2 Fast Mems, 0 . 6 ps

For two s e t s of Arith, Speeds
m

MESH CALC. WITH
L AU TIME 0.64~~

-1AU TIME 0 . 6 ~ ~
c

MESH CALC. WITH
AU TIME 1 . 2 8 ~ ~
TAU TIME 1 . 4 ~ ~ -.c --

0
.. 0 0 MONTE CARLO CALC. --- AU TIME 0.64~~

IAU TIME 0 . 6 ~ ~

MONTE CARLO CALC,
cr----------- AU TIME 1 . 2 8 ~ ~

. IAU TIME 1 . 4 ~ ~

:a
#+

I I I I 1 1- 0 '
0 I 2 3 4 5 6 7 8

NO. LEVELS OF LOOK-AHEAD

-37-

4. SDeed v s Number of Main Memorv Units

Figure 15 shows how internal computer performance varies
with the total number of memory units for a particular problem.
The entire calculation is assumed to be contained in memory for
all caaes,
apparent from the. graphs.

The speed gain from overlapping memories is quite

The speed differential between having and not having instruc-
tions separated from data arises from delays in instruction fetches
caused by the memory units being busy with data.
this effect varies from problem to problem, being less pronounced
for problems which are arithmetic limited and more for logical
problems.

The s h e of

Since memory units far STI€UGTCEi are attachable only in
pairs after the first and are interlaced only in powers of two,
some df the points on the graph do not represent physically attain-
able cambinations,e. g. , 5 memories all interlaced. (The simu-
lation prograxn has no Buch restrictions.)

The I X t l g l r on the graph show the: effect of replacing the
0 . 4 uaec instruction memories by a pair of 2 .0 u m c memoriae.
The reaulting performance change is small for the Meah Problem,
which is arithmetic l h i t e d , but large for the instruction-fetch
limited Monte Carlo problem.

5. Speed VIS Arithmetic .I.. Unit and ;IndexaArithmetic Unit Timers

Although evsryone realima tho importance of arithmetic
speed on overall computer performance, it wa%r not until the aim-
ulator results became available that the true importance of the
indexing arithmetic speeda wa8 recognized. Figures 16 and 17
show a Cwo parameter family of curves giving the computer speed
as a function of the AU and I A W thers .

Figure 17 in which the arithmetic time is l the abscissa .
shows an interesting tfsaturatEon" (effect where the computer per-
formance is independent of AU speed below 00me critical value,
Thug it makes no sense to atrain ALU speeder if the IAU i ~ l not im-
proved to match. The CUTVBB in Figure 16 show the Bame effect
i. e. I the IAU speed ierves a0 a ftceilinglf an perfurmance beyond
whish the AU speed cannot pass.

-38-
Figure 15

120

I I O

I O 0

90

80

70

60

50

40

30

20

IO

0

SIGMA COMPUTER SPEED

vs. Number of Main

Memory Boxes

4 levels LA

0 .6 ps IAU time

0 .64 ps AU time

MESH CALC. WITH REGULAR
SEPARATE 0 . 6 ~ ~ FAST MEM. /-

P
/

MESH SEPARATE
2.0~s INSTR, MEM.

MESH CALC. WITH DATA

2 . 0 ~ ~ MAIN MEM. BOXES

MONTE CARLO WITH REGULAR

AND INSTR. SHARING SAME I

0
0

0
0

0 0 //SEPARATE 0.6~s FAST MEM.

--=-m

%!!!&!kRk!&S INSTR. MEM, -- ----- .I,---- - ----
' Y J M O N T E CARLO WITH DATA

AND INSTR. SHARING SAME
2 . 0 ~ ~ MAIN MEM. BOXES

0 1 2 3 4 5 6 7 8

NO. MAIN MEMORY BOXES

-39- Figure 16

--.

I IO

. 100

90

80

70

60

5 0

40

30

20

IO

0

SIGMA COMPUTER SPEED

\ v8 . Indexing Arith, Times

for vaious Arithmetic Unit

times,

4 Main M e m s . 2 . 0 ps

2 Fast Mems 0 . 6 ps

4 levels of look-ahead

80.96

13: 1.28

MESH CALC,

\

} MONTE

4'

CARLO
f ,? ,*:

CALC.

0 0.5 1.0 1.5 2.0 2,5
INDEXING ARITHMETIC TIME (psec)

storing modif led addc)
(Averoge time to index one instruction incl. decode and

-40- Figure 17

h
W
W a
v)

.

I20

I10

I O 0

90

80

70

60

5 0

40

30

20

I O

0

SIGMA COMPUTER SPEED

VB. Arithmetic Times

for various Indexing

Arithmetic Unit Times

.

4 Main Mems. 2.0)IS

2 Fast M e m s , 0.6 pa

4 levels of look-ahead
.

- IAlJ4.4p~

.
IAU 1 . 8 ~ ~ FOR MESH CALC.

0 0.5 I .o I.!5 2.0 '2.5
AVERAGE ARITHMETIC TIME (psec.)
(Execution time for 'bveraqd'operotion)

-41-

The Monte Carlo problem is much less sensitive to
arithmetic speed than is the Mesh problem. Their roles are
reversed for the indexing arithmetic speed aince the indexing
arithmetic unit controls the rate of instruction preparation and
the Monte Carlo problem is in~ltru~ction-acces s limited.

I

r

6 . Speed vs Instruction Memory Speed and Instruction Buffering

Figure 18 shows the effect on overall performance of the
instruction memory cycle time. The most striking result shown
is the reduction in speed of the Mesh Problem with the removal
of the indexing arithmetic unit instruction buffer

Not only a s the speed of tha problem cut almost by a
factor of two, but it clearly as~urrres the behavior of an instruc-
tion-acces s-limited problem instead of a compute-limited problem.
Thia instruction buffer (called Y2 in STRETCH) really serves as
a 2 level Virtual Memory for the indexing arithmetic unit and
gives many of the same advantages lo instruction preparation
which the regular Virtual Memory does to data preparation.

Far mor0 detail concerning instruction memory speed
see the section on the Half microsecond memory below.

7. Arithmetic Unit Efficiency

One fallacy which ia frequantly quoted is that the goal of
improved computer organization fejt to increase the arithmetic unit
efficiency. Actually there a r e two reasons why this is not the goal
in itself, 'She first is that arithmetic efficiency depends strongly
on the mixture of arithmetic and logic in a given problem so that
a general purpose computer cannot hope to give equally high per-
centage utility to all.

The second reason i a apparent in Figure 19 which ahows
that the best way to increase the arrithmetic unit efficiency is to
rjlow down the arithmetic unit!

The real goal of improved organization is maximum over-
all computer performance far min.imum cost.
increase the arithmetic unit: speed as long a8 its percent efficiency
ia reasonable for a variety of problems.
when the overall performance gain no longer matches the increase
in hardware and complexity.
i s a by-product of this design process not the prime variable.

One will tend to

One will atop this process

Thua the arithmetic unit efficiency

-4%-

70

60

50

40

30

20

I O

0

Figure BB

m

MESH CALC, WI
IAU BUFFER

-4.
---*

-sc,

MONTE CARLO

f \ - '.
\Ir

--4.

- -s , ----- I -
-
- :/ IAU BUFFER

...
.I.csq.,

I)

I

I I I I 1

Q
w
W
111
m

,

I20

I IO

100

90

00

SIGMA COMPUTER SPEED

vs. Instruction Memory Time

4 Main Mems. 2 . 0 ps

2 Fast Mems, - (varied)

4 Levels of look-ahead

0.6 IAU time

0.64 AU time

- [MESH CALC. WITH
IAU BUFFER

- I -

THOUT

WITH

-43-
Figure 19

''-

I

CL.

10001

80°A

60°4

40%

20%

0

SIGMA ARITHMETIC UNIT EFFICIENCY

vs . Ave, Arithmetic Time

for various cases

1 Index Mem. 0.8 ps

4 Main Mems 2 . 0 ps

2 Fast Mems 0 . 6 pa

4 levels of look-ahead

%Efficiency = Time A, U. is operating x 100
Total Time for Problem

REACTOR PROBLEM
0 /

COMPUTER TEST PROB

0- MATRIX INVERSION
MONTE CARLO 0"

0 0.5 I .o I .ti 2 .o

AVERAGE ARITHMETIC TIME (psec)

(EXECUTION TIME FOR "AVERAGE" FLOATING OPERATION)

-44-

8. Speed v s Concurrent Input-Output Activity

Y

Ul,.

Becauee of the relative time scales of 1 / 0 activity and
the CPU procesaing speeds the Simulator cannot take in account
the availability or non-availability of data from 1/0 on the pro-
gram being run.
computation of the I/O devicea operating at different rates sim-
ultaneously with computing.

However, we can observe the effect on the

Using the STRETCH control word philosophy it is poesible
to have a number of input-output units operating at the same time:
the Central Procersxting Unit is running. The Basic Exchange can
reach a peak rate of 1 word every 10 micromconda. The high
speed disk normally operatea at 1 ward every 4 microrreconds.
Siace the mechanical devices take priority over the CPU in add-
reaging memory, the computation slowa down because of mernory-
busy conflicts

Figure 20 shows an example of how internal computing
speed is slowed a s the I/O word rates are varied continuously.
At the theoretical ''choke off" the 110 devices take all the vniarnory
cycles available and stop the caleul.ation. Notice that this condition
can never arise for any I/O rates plresently attainable.

9. &eed vs Number of Memory Units with and without High Speed
Disk Running

Because there are fewer mtsmory cyclae available when
there: are fewer memory u n i t s
a larger percentage slow-down for a smaller STRETCH system.
Figures 21 and 22 show this effect for two typical problems-one
which irs normally arithmetic limitad and one which is inetruction-
fetch l b i t s d . The former is l e a 8 rrensitive to such interference
mainly because the Virtual Memory haa more of an averaging effect
on i t s data memory references.

the High Speed disk unit will cause

The following table shows the (approximate quantitative re -
duction in internal computing apeed caused by the disk running
at the same time, using the speed *without I/O as 100% for each
configuration.

Number of Memories For Monte Carlo Problem For Reactor Problem

Figure 20

SIGMA INTERNAL COMPUTING SPEED
Percentage Reduction in Speed caused by
Input-Output devices referencing memory
at different rates while the: calculation is
proceeding.

BASE: DATA & INSTRS. MIXED I - - - - - . I r c = - r r r IN 4 MEMS. - - ------==---I r------ --.I--

-; O\
I . w

8 -60%

t- z
'W
0

e t

4 MEMORY UNITS
I

I
I
I

2. MEMORY ------------ UNITS
- - V - t - - - #+-

0) I

I, I
I / I v I

/ 'I I
/ I I

I '
I I

I 1
I I
I I
I 1 /

I I
I I /
I
I 9
I
I ' p-HIGH SPEED
I 1 I DISK RATE G~ASIC EXCHANGE
I 1 I
I I I

I
/

I I 0
0

I
I
I

I

I

I
I
I
I
I

I PEAK RATE
I

m - - I MEMORY UNIT I # d - -

e----
rrrr a-

/-I--
/

/

I /

I

FOR MONTE CARLO PROB. I i / I I
1 1 I I I

I I I I I I I I
1 I 1

1 I I I I I I
1 1 I I I I I I I I

1

5 IO 15 20 2f
WORD RATE-MICROSECONDS BETWEEN CONSECUTIVE WORDS

Figure 21 - 46 7

0.

I O0/&

=2O0/oa

-30%

-40%

-50%

-6O0/0

-70%

SIGMA Internal. Computing Spead
YS. Number O f Memory Units with
and without Disk running

DATA 8

SEPARATED
[INSTR.

----- - - --- - --- -, - -------- e----
0

.Ir -x

DISK RUNNING
@ 4 p s PER WORD
AT SAME TIME
CALCULATION IS
BEING DONE.

I

I
I
I
I
I
I

1
. I

I

.

I
I
I
I x

FOR REACTOR DIFFUSION
PROB. DATA tk INSTRUCTIONS
MIXED IN MEMORY.

(NOTE: THE REACTOR PROB.
is LARGELY
ARITHMETIC UNIT
LIMITED.)

NUMBER OF 2 psac MEMORY UNITS

Figure 22 -47-

SIGMA Internal Computing Speed '

VS, Number of Memory lUnits with
and without Disk Running

DATA 8

SEPARATED
\ INSTR.

- - - - - - - - - .li - 0 -- m u m - - - - - - - - - -

//
/

/
/ 4' f' /

f 2'
0

0 '-WITH DISK RUNNING

I @ 4ps PER WORD
AT SAME TIME
CALCULATION IS
BEING DONE,

FOR MONTE CARLO BRANCHING I
I PROB, DATA 8; INSTRUCTIONS
I NllXED IN MEMORY

8

I
I (NOTE: THE MONTE CARLO IS
I LARGELY INSTRUCTION-

J ACCESS LIMITED,)
I

I x .

I I I I

I h 4 6
NUMBER OF 2 psec MEMORY UNITS

-48-

I -

. -

The user of a small STRETCH system is thus penalized
three times compared to a large system user: (1) The top speed
of his system is reduced by the losrr of memory overlap, (2) H e
has a larger I/O penalty when it is run concurrently with the
computation, and (3) the smaller amount of data which he can
hold in the memory at one time increases the amount of 1/0
activity he needs to do the job.

Looking at it more positively, the user who in the past
purchased larger memories for his 704 obtained only the bene-
fits of the third effect, while a STRETCH user also gets a I1bonusl1
of the first two as he expands his system.

D. The Effect of the Half-Microsecond Instruction Memory on STRETCH
Performance

1 Introduction:

During July and August of 1958 a series of Timing Simu-
lator runs were made to evaluate the status of the SIGMA and
HARVEST computers. One parameter studfed was the speed of
the instruction memory. Several runs were also made in which
there was no separate instruction memory but instructions and
data were stored in the same boxes.

The results of these runs proved to be quite important
in evaluating the importance of the half -microsecond memory
to the STRETCH program.
from Project 7000 File M e m o which was published at that time.

The fo1:lowing analyrsis is taken

2. Advantages and Disadvantages of the Half -Microsecond Memory:

A. The primary advantage of the half-microsecond memory is,
of course, its speed. This speed is beneficial in the following
two casea:

(1) PmgraxnrJ can be instruction access limited either be-

If the half-
cause they consist of a series of short operations, or
because they contain many branch orders.
microsecond memory is used for instructions it will
help reduce tha limltatiaxi by furnishing the instructions
at a farrter rate.

(2) In programs which are drsta-accesa limited, putting
the data in the faster mznory will cut down the time
required for fetching the data. VFL operation8 with
ahort fields are in this category. These are of par-
ticular importance for HARVEST applications a

. -

tn both of the above cases it is the speed of the memory
compared to the arith.motic speed which is the important
ratio-the faster the arithmetic speed the faster the memory
required to service it properly.

B .
is its size. Each memory box contains only one-aixteenth
as many words a s a comparablle two microsecond memory
box.
performance becauw more time will be spent reallocating
programs. Unfortunately this reduction cannot be evaluated
quantitatively by simulation since i t depends on the nature of
the future problems, and on the nature of future methods of
scheduling machine use.

The main disadvantage of the hal€-rnicrosecond memory

This decreased size certainly must result in reduced

There is another advantage in larger memories3 which is even
harder to evaluate and that is the removal of programming re-
strictions which exist when programs must be cut to fit a small
memory.

3. Simulator Input Data:

The test problems were run with most of the recent design
changes simulated, including the Q,8 microsecond 1-Box repetition
rate and the 0.2 microsecond bus dots .
for the runs were:

The arithmetic speeds used

STANDARD SIGMA HARVEST

Load, Stare 0 . 2 us
Floating Add 0.6

Floating Divide 1. a
Floating Multiply 1. 2

6-6-34 average

0 . 4 ua 0 . 4 us
I . 0 1 . 0
2 . 5 7 .5

7 . 5 7. 0
1* 43 2.40

- -

*-

The average times listed on the la& line are used for
convenience of plotting only.
intended to represent present STRETCH values.

Them arithmetic speeds are not

4. Results:

Results af same of the runs are given in Table V. A short
summary of the pertinant results are given in Table VI.

-50-

Straight overagtas 0% ths percentage loases da not tell the
whole story. There are abrupt changaa in behavior for Borne of
the problems from one case to another. Upon examination, the
reason in each case waa due ta the problem becoming instruction-
access limited where it had previouelly been ar i the t i c limited,
Each problem crosms over under different circurnatances because
of its own particular combination of instructions.

Table V I also lists the programs which seem to be instruc-
tion-acces s limited for each memory and arithmetic speed configur -
ation.

The phenomena which has beien obaerved so many times
before, still holds here- - -the highel: the machine8 overall per-
forrnanceI the more sensitive it becomes to each individual corn-
ponent's performance. Thus, all of the problems are prone to
become instruction-access limited a t STANDARD speada, where
only the faithful Monte Carlo code is limited at HARVEST speeds.

The magnitude of the lorsses :must be considered as we11 a0
the pattern.
haMng a separate instruction memory i s as large or larger than
the speed of the memory. The average percentages are given in
table VUe

Clearly the memory interferences caused by not

5 . Rough Estlmate of the Effect of Having a Larger Instruction
Memory on Computer Speed:

A s was mentioned in section 1, the favorable speed ad-
vantage gained by having a larger instruction memory is hard
to a88888 quantitatively.
order -of -magnitude eatimate only.

The following is intended to be a raugh

In a given time T, assumed to be long enough to do several
problems, the computer wi131 divide: its activities between the time
spent on useful calculation and the time spent on swapping codes in
and out of instruction memory. W a may write

T = n t , + n Rtc - ntc (1 + R.)
where n a the number of useful inlstructiona executed

R *; the ratio of the nuxnber of words swapped per useful

t, = average time per calculation executed.
instruction executed. (R should be much less than 1)

(For simplicity the time for swapping an instruction is taken
the same as tc .)

The speed of the computer, $3, i s proportional to n/T,
the number of useful operations per unit time.
the ratios of the speeds of two systems as:

So we may write

The tcl/tez factor is the ragular speed-up caused by the
faster memory.
aulting from the effect af swapping codes. As a gums, we can
take R as being inveraely proportional to the memory size, ao that

The term involving the K's i a the new factor re-

also since the R 1 s are both much l e s a than 1, we may write

In the! present caae, consider a 10% computer speed dif-
ferential on t d a between the half and two-microsecond memories,
which differ in siee by a 1 ta 16 ra?tio.
R2 will be necessary to make the half mfcrosecctnd memory result
in an increase in epeed oyer the two microsecond memory.
answer ilcr approximately:

W e can a& what value of

The

That 50, each inatructicm in the hdlf microsecond memory muat
be used at lsaat 10 t imes In an average prograsra, before it is re-
placed in order that the half microsecond memory show a net
increase in a p e d uver the larger, slower 2 us memory.

Very roughly speaking, each instruction must be w e d at
least once for each percent lolss in a p e d under the configurations
teated hers to. 'bra& even. It s e e n n ~ likely that this condition will
be easily satisfied in practice, so that the faster memory will in-
deed reault in a faster cornputgr even though part of ita advantage
ier. lost.

The other factor mentioned which favora larger mem-
ories is the effect of being able to write leas complicated codes
when they need not be cut to size. One can express this factor
as a (1 + f) term times the! speed of the computer to givee its
effective speed. This speed gain ia because the machine has
to do a fraction f fewer hatructions to accomplish the same
job with a larger memory as it would take with the smaller.
Since this fraction is so strongly a function of the problem in-
volved, one can only guess what it will be aa an average for
all SIGMA problems. It should be in the 0 to 10% range, how-
ever.

6. Conclusions:

Whether a problem is instruction-access limited or not
is the main property which determines its behavior under
change# in instruction memory.

The property of being inatruetion-acceBs limited depends
coneiderably on the individual aequence of instructions in
a problem itself, and on the! relative speede of the arith-
metic unit and the instruction memory.

The higher the performaince of the computer, the more 88'12-

sitlve iar i t a speed to changes in instruction memory con-
figuration. At the, SIGMA. speeds, replacing the two 0 .6
UB memory boxes by two 2 . 0 UB memories results in an
average of 2.5% loas in performance in the cases teated.

At SIGMA Bpeeda, intermixing data and inastructione
causes an average 1088 of 3.9% in performance over
having a separates 2.0 UUII inatructicin memory. This is
because conflictsl betwean data and instructions delay
inlatruetion acce08e8. Note that this is larger than the
effect of memory rspeed itself.

The speed gain8 from having a faster memory are reduced
somewhat by the fact t b t it isj smaXlsr and more time
muat 'be spent swapping cod at^
effect tirnewiae however.

This mema to be a small,

The effective, performance increase pomaible because
bigger prograsxrrs may be) put into the larger memory at
once is hard to asseae. It is probably also in the 1 to
10% area.

l n w CQN * N
a .

O Q d o h i g I I o f f I 1

$ $ $ C (r l - 4

........ (\, 4,,",- -.." ... "............._..I... _. - ... I- I........................-.......-..-- .-
r - V I 0 A W N barn

. e . 0 .

....... ,,rr cy, (Y, . M "*".'*'-- l,̂ ,,l.., .,_,,- .. -..-.......... -1-......'.(......

M<r) ttcm m m

I r (I I I I

e . odcxi O Q l n o d d
._........... !.*...I.""."" - ".. . . .r.".r-. .~.~

LnGN w m o O o b b

O Q C Q b m l n m $ $ $ & < 4 OO'Gui
........ ~.~ ".."-._*.. I.,.." I...-".....-...- .__.. "_" _.,__ ,.* ..l-".l""*.l. .,̂ "..*.. -1-1

mrn . . r+N
m m

I _",.,,* ,.._" ,1..-. ",-... u,...-....-,.l.-

--._ -__..__, _"_l,l(__I .I~U...-l.ll,,*.. ..,.,- *,,. ̂. ..- .. .*I,, "...... ''"I*'.'

-54-

TABLE VI

Summary of Results: Average Computer speed changes caused by In-
etruction memory speeds and Arithmetic Speeds $ straight averages for
all five test problems.

STANDARD AU Speede

1. 2 112 us Mems.
2. 2 2usMems
3. No. Xnstr. Mem.

SIGMA AU SDeeda

1. 2 1 / 2 u s m e m s
2. 2 2 u s M e m e
3. No. InrJtr. Mem.

HARVEST AU Speeds

1. 2 1 / 2 u8 Mems.
2. 2 2 us Mema.
3. No. Inatr. Mem.

Average Percent Decrease

0
-2.5%
4.4QIO

0
-1.8%
-3 .8%

Problems*which are
Instr. - access limited

*The Problem numberhi are those given in Section VB.

-55-

TABLE VU

Average Percentage Losses for all problems.

Arithmekic Sneeds

STANDARD SIGMA
A n loss caueed by

Memory by 2.0 u8 N s m -
ory.

replacing 0 . 6 us Inetr. -3aBVo -2,570

Average additional loss

arate Xnetr. Memory.
caueed by having no aep- -12,2%

Maximum loss caused

Inetr, Memory by 2,O
us Memory

by replacing 0 . 6 ua -9 .5%

W3-M 9 %

-8 . ai%

Max. additional lone
c+uesd by having no -19 .5% -6.6%
separate Inetr, Mem-
ory.

HARVEST

-1.8%

- 2, Mi0

-8.270

-4.7%

-56-

E. A Study of Branching on Arithmetic Results in STRETCH

I .

.*

t

1 . Introduction:

The asynchronous organization of STRETCH allows many
of the components of the Computer System to be operating at the
same time on different jobs and thuis by overlapping greatly in-
creases the overall efficiency of the system,

Unfortunately this organization also has it8 drawbacks.
In particular, one of the curses. of the non-rrequential prepara-
tion and execution of inatructions is that if there is a Branch in
the problem code it apoils the smooth flow of instructions to the
Indexing Arithmetic Unit. Any branch in a program will cauae
some delay, but the ones which hurt the most are the branchea
on arithmetic results which cannot be detected by the Indexing
Arithmetic Unit in advance,

2. Ways in Which Arithmetic Reault Branches can be Handled:

There a re two fundamental ways in which branchea on
Arithmetic Unit results can be handled by the computer:

(1) The computer can etap the flaw of instructions until
the Arithmetic Unit has completed the preceeding ap-
eration so that the result iar known, then fetch the next
correct inatructian. Thiti places a delay on every AU
reault Branch whether taken or not,

(2) The computer can
going to go before
ing and preparing
the under standing
instructianra must
taken instead.

I

'1guesP which way the branch ia
it ier taken and proceed with fetch-
the instxuctiona along on0 path with
that if t<ha guess W ~ B L wrong, these
'be diacsrdrsd and the correct path

Under the second alternative there are four posaible ways
The branches in question are in which the guessing cars ba made.

indicator branches on the Arithmetic Unit reault indicators, Them
operations have a modifier which allows the branch to be taken either
if the specified indicator is on or off.
indicator is on or off for each, the four combinations are:

Since one can guese that the

Caae Name Operation - -
I: NN-FF b d Branch on

off
0

u. N F - E " Ind Branch on
off

III NN-F'N h d Branch on
off

I V NF-FF Ind Branch on
Qff

Guesa

Ind on
off

Ind off
an

Ind on
on

Ind off
off

Assumed Result of Operation

branch
branch

no branch
no branch

branch
no branch

no branch
branch

3. Simulation Results:

To study the effects of wrong-way brancheB on the SIGMA
Timing Simulator, the Monte Carlo Branching Code was chosen
acB the guinea pig. The code was rewritten 80 that every arith-
metic result branch was a wrong guess and again so that every one
was guessed correctly. (Note that meither af them extremes is
actually posaible in a program with branches u n h a a they are
eesentially uncanditianal,)

Several runs were made varying the, inatruetion memory
speed and the At7 andl IAU timea. The regular (NF-FN) ease herd
two wrong branches aut of thirteen sncauntered in one loop of the
program which conaista of fifty-nine operations executed per loop.

By examining the timing charts drawn by the Simulator for
many of the individual branchest th(e average time dsslaye listed in
Table VI11 were derived.

Tabla VIII: Avaraae Time Delay per Individual Branch

no bzanch right 0 u19 0 us
no branch wrong 2.5 UB 3w2 us
bxmch right 1 . 5 us 3 . 2 ua
branch wrong 3. 'f u61 4 .8 UI

For Wtandardl' T h m (AU 0.64 ua, IAU 0.6 UB)

xf one takes the actual times to complete the problem

The
in each caae and divides the total delay by the number of wrong-
way branches, one obtains the t imes listed in Table IX.
approximate delay clue to the memory interferences, etc. , caused
by starting the processing af the wrong instructions, can be es-
timated by comparing the times in Tabla VI I I with those in Table 3uc.
These interference times are listed in Table IX.

4

L Table XX. Average Time Delay in Total Problem per Wrong-way Branch
O.6us mem bn~tr. ry. Oh2&n.;+:

For 1'RecommendedTimes~'(AU4. 09 u s , I A U ~ O . 9us 3 . 6 us 4.3 us
For Itstandard Timesi1 (AW=O. 64 us, uLU=O. 6 us) 2 * 9 ua 3 . 5 U8

Extra Delay due to memory Interferences 0.5 U8 1. 0 U B

Presumably if one holds up on every branch (Case 0) the
t ime loss will be about that of assuming no Branch and guessing
wrong. (line 2 in Table VXTI). J3 one guesses according to one of
the four other cases , the: time loss will depend on (1) the percent-
age of branches which are Br-ons, (2) the percentage of Br-on8
which are actually taken, and (3) the percentage of Br-offa which
are actually taken.

The calculation will be delayed by each branch taken even
when they are guessed correctly, however, since we are interested
in examining the additional time loat due to gueasing wrong or hold-
ing up, the delays due to correct branching should be removed. The
following times in Table X may be used to compute actual combina-
tions of branches.

Table X: Average Time Delay per Branch

Computer Should Have 0 . 6 us Instr. 2.0 ua hstr .
Gueased Guessed 7 Memory i Memory

Hold up no branch 2. 2 U8
Hold up branch 2 . 5 us
no branch no branch rD us

Branch branch (0 us
Branch no branch 2 . 7 us

no branch branch 3. ID U8

1 .6 ua
3.2 u13

4 . 2 ua
0 u19

2 . 6 us

0 U8

-59-

3

J

The temptation in evaluating the individual casea is to
assume 50% for all the combinatione and essentially average
the time losses. Actually, by examining a few problems auper-
ficially, we have found that considerably fewer than half the
arithmetic result branches encountered in a code are actually
taken. About 20% seem to be more typical. Thia seams to be
due to the tendency of coders to think of the branches a s being
exceptional cases.
code continuously and the excaptionrs elsewhere.

They normally write the main flow of the

There seems to be a tendency to link indicators turning
on with exception cases. In time this would result in fewer Br-
on6 being taken and more Br-offs boing taken, These generaliz-
ation# are admittedly uncertain mainly becauae very few relevant
statiatics are available.

There is also a 'lfeedbacktl in such statistics becauae the
way in which the machine gueaaes the branches will influence
future programmers to write their codes to take advantage of
the speed gain, 80 that the atatistics of the future will be biased
in favor of the system chosen now I

Table XI compares the five cases for several assumed
values of percentages.
to the averages to be expected.

The last two Lines are m y guersses as

Table XI: Average Time Delavs Der Branch for the Different Case8

% 70 %
Br-ons Br-ons Br-offs Case 0 C a m I Case II Case I11 Case IV

taken taken Holldap NN-FF NF-FN NN-FN NF-FF

50% 5070 50% 2.35~0 1 . 3 0 ~ ~ 1 . 4 5 ~ 8 1.381.16 1.38ua
for 0 . 6 ua. Instruction Memory

50% 2070 2070 2. 26 2.14 0 .54 1 . 3 3 1.42 U8
80% 20% 8070 2. 30 1 .69 0.89 1 . 1 9 0 . 4 7

for 2.0 us Instruction Memory
50% 50% 50% 2 . 4 0 ~ ~ 1 .OOus 1 . 8 0 ~ s 1 . 4 0 ~ ~ 1 . 4 0 ~ s
50% 2070 2Oyo 1 . 9 2 1 .96 0 . 3 6 1.16 1.64
80% 20% 80% 2.11 1.45 0.84 2. 22 0.10

4. Cancluaions:

(1) The performance variation in a problem with a lot of
arithmetic data branching can vary by approximately
{ 15% defiending on the way in which the branches are
handled.

6 0 -

I

t

(2) Holding-up on every branch seems to be l e a s desir -
able than any of the guesaing procedures.

(3)It is very unlikely that one ever get fewer than 15% or
more than 85% wrong-wa.y branches regardless of his
procedure.

(4)It seems possible to get ,a fairly low loss by picking
Case IV, provided the percentages on the last line of
Table IX really are correct.
centages should be different, Carse IV is much mare
sensitive to them than Case 11.

However, if the per-

(5) To be really effective Ca,se IV needs the exiatance of
the indicators 0 5 0 to make the distinction be-
tween off and an precise. At present one must code
"Br-on O", a8 W r -off P 0 , '1 IO that the equating
of Itont1 to "exceptional ease" is apoilerd somewhat.

(6) The highest performance would be: obtained if each
branch had an extra "guews bit" which would permit
the programmer to apeclify which way he enstimates
each branch will moot likely go. This seems to be
impossfble in the present format schemea. It also
would place a considerable extra burden on the pro-
grammer for the gains promiaed.

5. Recommendations Finally Prerranted as a Result sf the Simulator Runs

C a m XI (NF-FN) should be adopted a a the gusasing acheme.
This mean8 that for any branch for which the lAU cannot compute
the correct outcome, it should gutma that the branch is not - taken
and proceed with the processing of the next inratruction.

Case 11 waa chosen over c a m :tV because;

1) Ita time loss is low (at heasat second best)

2) It does not require sptscial controls for deciding whether
to asaume a branch i s ta.kan or not

3) It does not require? thrit new indicators be defined.

4) It should not confum the programmer with complicated
rules of coding the way Case IV might.

-61 -

D *

I

I

VI. APPENDIX: Details of T h i n g Simulation Program SM-2

The following pages give detailed symbol definitions and flow
The diagrams accurately repreaented diagrams for the SIM-2 code.

the code at the time they were drawn.
tions to the program since then, particularly in the I/Q rrimulation
section, but they do not change the main 1,ogic of the flow.

There have been aome addi-

The simplified flow diagram, Figure 11, shows the major
The following pages elaborate upon this sections of the program.

figure.
Section 111.
parts in the flow diagrams which follow.

The logic of the Virtual Memory operation is described in
The logical diagrams given there have direct counter-

STRETCH Timing Simulator Program S M m Z
List of Quantit€es Used in Flow Diagram

Table 1

Quantities Concerning Instructions fed thTough Simulator u
I

Instr.
Input

bstr. Number

Ins tr . Location
#f Index Addr.
#II Index Addr .
Data Addresa
Special Desig.
Return Tag
Sp. Sp. Deaig.
Compare Bit
Forward Addr .
O.K. Bit
Forward Bit
Mem. Bring Bit
Unit Clock

op. Code

I11
112
I13
E4
115
116
xr7
I18
119

Main 4

Instr,
Mcm.

4 &
Instr. Number
Return Adds
Bring Bit
Read out Clock
End Sig.Clock
Mem. Cy.Clack
Mem.Res . Bit
Mem. Box No.

h o k -
ahead
teady
Xeg .

LR3
LRI

LR2

' Index
Core
Mem,

l x M 4
IXM2
E M 6
IXM8

Look-
ahead
.evels

LAU8
mu2
LAU 1

LAU3

LAW4
LAW5
LAU6

LAU9
LAU?

Central
Control
Decode

XBDI(or 6)
XBD (or 5)
BD2(or 7)

lBD4(or 9)

T]BD3(or 8)

hstr ,
Fetch

IMRS
IRUM
ICAN
ICRl
ICR2

B U G 2

Bus to
Mem,

YF1
JF
JF2

YF4

JF3
Y F m fast
memorl

SM-main
memorl

Arith.
Unit

IP1
N U U 1
NRAU2

JAUT

But3
From
Mam.

-~

N F I
NF

NF2

NPIFast
memory

NMPmain
memory

Indexing
Arithmetic
Unit

IRO
3EtO
IRO

lEZO1 (Fetch)
IRI (Return)

INS

Exchanges

(9 0 , 9 1 , 9 2 , 9 3)
32
1 OF 0

CLC

IOM

-63-

List of Syrnbolcc

TABLE 11

I

B

L

i

"4

Control and Tally Quamtitiea
L I * ' . - '

1. I ' Look-Ahead Symbols:

NCTRA Instruction Fetch Counter
NCTRB Data Fetch Counter
NCTRC Data Store Counter
NSTOB
NLH Number of Look-.Ahead level8
NBFR Modular value of NCTRC

Store Bit (an unexecuted Store)

2, Conflict Counters, and Tallys:

CTT
CAU
cmu
CADLA
CLAP
CWI
CWM
CDLA
CXF
CIM
CQF
COM
GIST
CIIMM
CMAAC
CFMC
CXMC

Total Time Tally
Arithmetic Unit Tally
Indexing Arithmetic Unit Tally
Average depth of LookhAhetad Tally
Look -Ahead Full Tally
Arithmetic Uni t Waiting on Instruction Tally
Arithmetic Unit VKaitlng on Data Tally
Look-Ahead level use Tally
h-Bu6 from Fast: Memory Tally
b-Bua from Main Memory Tally
Out Bus (Read) to Memory Tally
Out Buts (Write) to Memory Tally
bdex State Tally
Memory uae Tallmy8
Main Memory Conflict Tally
Fast Memory Conflict Tally
Index Memory Conflict Tally

MARK Time Counter for Listing
BIB Break-in Bit on WrongwWay Branchem
SKIP Signal to ttRwz-Dxnylt st End
TALLY Count of Number of Executed Oplp.
A , I3 AD, THINK Tampor ary Locations
JUDR,IDW ,LDA Pseudo-op Controls, etc,
LASCB LookmAhaad, Self Compare Bit
PBSCT I CBIT , PHDB
TBXT , WBXT Controls for Printing;
IB
IF, RP, 8 P I SSP

Block for Input from Control Garde
VariouPr Printing Blocks

-64-

List of Symbolrs

Table nt1

Input Constants Appearing on Summary Liating 4

C

Symbol Name
on in Description

Listing Code
vryl ' - . ' . - * L . l '

LA
FM
MM
IR
IS
IA
ID

M B
FB
l?D
HM
HE
x1
x2
MD
F1
F2
F3
M1
M2
M 3
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
LE

NLH
NUFM
NUMM
lrNX - 4
XNX-3
INX-2
mx-1
INX
NMBT
NFBT
IDMT
DMT+1
U>MT+2
IDMTi-3
U3M T+4
IDMT+5
MFT 1
M F T 2
MFT 3
MMT 1
MMT 2
MMT 3
5"-15
JT-14
5"-13
JT-12
3T-11
JT-10
JT-9
J'T-8
J'T-7
JT-6
STIES
YT-4
JT-3
JT-2
JT-1
JT

No. levcles of look-alhead
No. of fast memory boxes
No. of main m e m o r y boxes
Index reset U U State 4
Index s tore4 WW State, 3
Index a d d 4 31AU State! 2
Index Decode JAU State I.

Main (or write) bus time
Fast (or read) bus time
Fast: Memory bua decode time (CCU)
Hamming check time)
High Speed Exchange1 word rate
Index Memory read-out t*e
Index Memory cycle time
Main Memory bua dercode time (CCU)
Fast Memory read-aut time
Farst Memory end signal time
Faat Memory Total cycle time
Main Memory read-out time
Main Memory end signal t h e
Main Memory Total cycle time
op. Codlet 15 Square Root

(not us e d)

14 Divide
1 3
12 Cumulative Multiply

10
9 Add
8
7 Load
6
6
4 Immediate OPS
3 Immediate, Ops.
2 Immediate Ope,
x Bnmediate Ope.

11 Mu1 t ipl y

Low Speed Exchange word rate

Liat of Symbola

Table XV

Output Repults on Summary Listing

Symbol Name

Liating Code c Y

on in Description

XMC
TT
AU
ULU
A D U
LAP
WI
W M
DLA-
IBF
IBM
RB
WB
Is-
M-

MMC
FMC
WBC
KBC

(CXMC)
CTT
(CAW)

Index Memory Conflict8 (in 70 of total time)
Total Time of problem (XXX. X microseconda)
Arithmetic Unit busy (in 70 of TT
Indexing Arithmetic Unit bupsy
Average depth of look-ahead
Look-ahead full
Arithmetic Unit waiting on inatructions
Arithmetic Unit waiting on data
70 Time Look-ahead has depth specified
In bus from faet Memory busy
In bus from Main Memory busy
Read bus to Memory busy
W r i t e bus to Memory busy
Time apent in Indexing State specified
Time Memory Box specified is bulsy

Main Memory conflicts
Fast Memory conflic'ts
Write burs conflicts
Read bun conflicts

(M12 to M5 are Main Memories, M 4 to M1 are Instr. M e m e .

TST

Op coders: (1) 1 thru 4 Immediah (1- wrong-way branch)
(2) 5 thru 34 bring type (See Table 111)
(3) 35 indexing type
(4) 36 to 97 store type
(5) Instruction No. 98 Stop in AW and Tr to Summary

Return Addresrrrm: (1) 20 - I M J data
(2) 21 Instruction fetch
(3) 1 2,3, . (I 8 a Look-ahead levels
(4) 32 = Exchange

5r;ga. Q

130 I so

A 3 0 A 31 A 3 1 A33

L,,.,,.",,,w.,,.. r" ..,. , " ,,..,,,,,, ..,J r---"-- --e-

' A 7 $.

-68 -

z

-69-

Y

. *

Oq- xz-3
I+ I I W

J.
A4.1

,

4

I I#@

--

I=& J""

I ' l#o I-

-71-

J/
A 72

I ljto

I

>

?

i
J+ a

A229

6

E

A303

r,
1

t *.

1

- - I

-75-

I- I -

a
a

T '4

-77-

J

41,

'1"

to
r(3 332

J.
A 33x

J =b

7

I+ I I Xbrdcru

I I ,

I

I

.1
A346

I Z-Q I =b

,1
A345

I - C

I PO I
b . I-

-80-

'r)

rrrrc
?

I

