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I. INTRODUCTION 

I 

I 

Early in the planning of the STRETCH computer it was seen 
that by using the latest solid state components in sophisticated circuits 
that it would be possible to increase the speed of floating point arith- 
metic by almost two orders of magnitude over that in existing computers. 
However, there seemed to be no possibility of developing on the same 
time-scale economically feasible large memories with more than a 
factor of ten or perhaps twenty increase in speed. A s  a result, the 
proposed system appeared to be in danger of being seriously memory- 
access limited. 

Moreover, as the speed of the floating point operations in- 
creases,  a larger and larger percentage of the computer's time is 
spent on "parasitic operationst1, i. e .  , operations whose only function 
is program control and data selection. It was obvious that a radi- 
cally new machine organization was necessary in order to capitalize 
upon the possibilities opened up by the high arithmetic speeds in the 
presence of relatively slow memories. 

A t  this time, the possibility of a llllook-ahead~l device was  sug- 
gested in which an independent indexing arithmetic unit would prepare 
the effective addresses of instructions and initiate memory references 
to a multiplicity of memory boxes. 
in high speed buffer registers until needed by the arithmetic unit. 
device would serve two desirable purposers; (1) some of the parasitic 
operations would be done in parallel and thus not delay the principal cal- 
culations, and (2) several memory 'boxes could be running simultane - 
ously, giving the effect of higher memory speed. 

The data thus fetched would be held 
This 

11. GENERAL DESCRIPTION OF THE SYSTEM 

The major logically-independent blocks of the STRETCH com- 

That is, each does its tasks as 

In practice, 

puter are shown in Figure X. 
sidered as operating asynchronously. 
fast as possible independently of the others. 
have its own clocking circuits and still operate properly. 
for economy% sake they a re  all timed 'by the same master oscillator, 
but this does not destroy their logical independence. 

Each of the units pictured may be con- 

In theory, each box could 

3 



The bus control unit serves as a routing agent between the 
memories and the various data processing units. 
units make a request simultaneously the control unit assigns prior- 
ities in the following order: (1) High speed Exchange, (2) Basic 
Exchange 

lf two or  more 

(3) Virtual Memory, and (4) Indexing Ari the t i c  Unit. 

The Indexing Arithmetic Unit fetches instructions, performs 
all necessary indexing operations and sends the instructions to be 
executed to the Virtual Memory. 

J 

The Virtual Memory fetches and receives the data required 
by the instruction and holds this data until the arithmetic unit is 
ready for it. The Virtual Memory also performs all store opera- 
tions. It holds the: data generated by the Arithmetic Unit or Indexing 
Arithmetic Unit until the memory to which the data must be sent is 
available. 
for instructions to be fed to the arithmetic unit, but also acts as a 
* '1 ook - be hind I s tar  ag e buff e r 

Thus the Virtual Memory acts not only as a!Ilook-aheadl1 

FIGURE 1 

SCHEMATIC OF SIGMA COMPUTER 
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The actual design of such a ltloak;-ahea.dtl device posed a num- 
ber of logical problems , particularly in connection with conditional 
branches. In colaboratian with John Griffi th,  a device was proposed 
later named Virtual memoryi1, which answered these logical problems 
and served as guide for the actual organization of STRETCH. 

However, a machine organization of this complexity requires a 
detailed timing analysis in order to determine the value of adding hard- 
ware in the form of the %irtual mernoryll. 
the sole function of the "virtual memoryv1 is to increase machine speed, 
by increasing the efficiency of other devices. 
timing analysis could not be made on the basis of a few trivial examples 
(e .  g. matrix: multiply). 
can be extremely deceptive. Since a detailed timing analysis of a com- 
puter of this complexity is extremely tedious to carry out by hand, it 
became clear that if the job were to be done, it would be necessary to 
simulate the proposed machine on another computer. This prompted 
us to write the simulation program dasc:ribed below. 

This is especially true since 

It was also felt that the 

Machine performance obtained in this fashion 

With the above general organization in mind, let us discuss 
some of the logical problems posed by such a system. 
lem is a result of the very concept which enables US to obtain such 
great benefits from the stored program computer-the ability to t reat  
instructions as data. In a system such as we have proposed there is 
a large amount of simultaneous operatioin. For  example, the indexing 
arithmetic unit m a y  be busy preparing an instruction before previous 
instructions have been completed or even started by the arithmetic 
unit. One of these previous instructions m a y  modify the instruction 
which is presently being indexed. The virtual memory muat recognize 
this situation and allow the intervening instructions to be completed 
before doing the modified inatruction. 

The f i rs t  prob- 

A similar problem exists with respect to ordinary data. In order 
to operate several memories simultaneously, it is necessary to start 
obtaining data from these memories before the preceding operations have 
been completed. Yet, one of them operations may be a store into one of 
the data locations. The virtual memory must make provisions to insure 
that each instruction obtains the moat up-to-date data a s  implied by the 
order of the program. 
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One of the novel features of the STRETCH cornputer is its 
elaborate interrupt system. 
expected occurrence ar ises ,  the program will be interrupted and con- 
trol will  pass to a special routine which is designed to take care of the 
case in question, then return control to the original program. In this 
situation the virtual memory must have provisions to retain enough 
information so that when an interrupt occurs we can resume the com- 
putation exactly where we left off. It must be able to recognize which 
of the changes that have been made in advance a re  not desired and should 
be obliterated and which a re  exact solutions that must be restored. 

Under this system whenever some un- 

Another special case ar ises  when a conditional branch on arith- 
metic results occurs. Here we will not know which of the two brancherr 
we should have taken until the precesding instruction is executed. 
the cage the wrong path has been selected, the virtual memory must be 
prepared to drop the intermediate results which have been computed and 
pick up the correct branch in a way very similar to that of an interrupt. 

In 

Summing up all theae logical problems, we may state that the 
fundamental rule for the Virtual Memory is that it must make the asyn- 
chronous and non-sequential computer give results identical to those 
which would be obtained by performing the program one instruction at 
a time in the order in which they are written, 

Since our original work on the virtual memory and simulation 
in 1957-58, a large number of detailed changes have been made in the 
actual hardware design of STRETCH. These neceseitated several mod- 
ifications in the Simulation program to estimate their effect on the over- 
all system performance. 
changes for expository reasons since our purpose is to describe the vir- 
tual memory and timing simulation. concepts not to describe the STRETCH 
hardware exactly. The result is that the syntem described below imbodies 
a more general system than that found in the! Simulator which in turn is 
more general than that found in the actual ccbmputer. 

I In this report we are omitting many of these 

r.. 
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111. DETAILED DESCRIPTION - OF V1H.TUA.L MEMORY OPERATION 

A. General Conditions to be Considered 

The conditions which occur in the following situations must be 
considered in some detail: 

1. 

2. 

3. 

4, 

5 .  

6 .  

7. 

The fetching of instructions by the Indexing Arithmetic Unit. 

The indexing of instructions and modification of Index registers 

The loading of the Virtual Memory and the setting of its eondi- 
tions by the IAU. 

The action of the Virtual Memory :in fetching data. 

The action of the Virtual Memory :in storing data. 

The communication between the Virtual Memory and the main 
arithmetic unit. 

Special situation8 such as conditional branching on arithmetic 
resulta, atc. 

B I Definitions 

Some of the terms w e  will use are defined as follows: 

1 Operations 

Operations are considered to ba of three types: 

(1) Bring or fetch type - All instructions requiring data to be 
transmitted from external memory to the Virtual Memory 

( 2 )  Store Type - Instructions reqiiiring the transmissinn of data 
from the Virtual Memory to external memory or index 
memory. 

(Note: W e  consider all indexing instructions to be of 
the Store Ty&, although the store m a y  be to 
either external memory or index memory. ) 

(3) Immediate Type - All operationa not requiring data transmission. 



-6 -  

2. Virtual Memorv Quantities 

D.. 

(1) Virtual Memory - A number of Virtual Memory (or look- 
ahead) levels (numbered 0 to N-I ) .  

(2) Level of Virtual Memory - A collection of registers and 
The contents of the jth level it3 shown control bits. 

in Figure 2. 

Figure 2 Contents of a Virtual Memory Level 

(3)  Instruction Address Register (Ij) - Contains the address of 
the instruction currently in the j th level. 

(4) Operation Code Register (Ope) I Contains the operation to 
be performed by the arit d tmetic unit. 

(5) Store Bit - (Sj) - A one bit trigger which indicates the level 
contains a Store type instruction. 

(6) Bring Bit - (Bj) - A one bit trigger which indicates the level 
contains a fetch type instruction for which the data access 
has not been started. 

(7) Forwarding Bit (Fj) - A one bit trigger which indicates that 
the j th level muat transmit data to another level. 

(8) Forwarding Addrerss (FAj) - A register which contains the 
number of the level to wh:tch the data must be sent if 
Fj is set, 

( 9 )  O.K. Bit (OKj) - A trigger which when set indicates that 
the correct data for the instruction to be executed is 
present in the j th Data Field. 

[ lo) Data Field (Dj) - A registex which contains the operand 
data for the instruction. 
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c. 

(11) Data Address (DAj) - The operand data addrees (already 
indexed by the IAU) for Dj. 

(12) Compare Bit (Cj) - A trigger which if not set  indicates the 
address in DAj should not be included in any address 
comparisons being made. 

3. Counters 

The Virtual Memory is controlled by a set  of counters which 
count mod (N) ,where N is the number of Virtual Memory levels. 

(1) Counter one (C1) - Indicates the level into which the next 
instruction m a y  be placed. 

( 2 )  Counter two (C2) - Indicates the level from which the next 
bring type instruction m a y  be initiated. 

(3) Counter three (C3) - Indicates the level from which the next 
store type instruction may be initiated. 

(4) Counter four (C4) - Indicaters the level from which the arith- 
metic unit will get its next operation and data. 

4. Interlocks 

The above counters must be interlocked in the following manner 
to assure proper sequential operation of the computer (see figttrs 3): 

(1) Interlock one (11): C1 = C3 + N Prevents the JtclLU from placing 
the next operation into the level indicated by Cy because an 
unexecuted store i s  still in the level. 

(2) Interlock two (12): C1 y C3 ]Prevents a store from being in- 
itiated from the level indicated by C3 because the store 
has already been done. 

(3) Interlock three (13): C1 = C2 Similar to 12, prevents a 
fetch from being initiated. 

(4) Interlock four(I4): C1 = C4 Prevents the arithmetic unit 
from executing an old instruction. 



1 

..- 

A 

/ Counter C1 

Counter C4 

2 

(Output 1) 

(output 2) 

Interlocks I4 and I5 are as shown, the other interlocks are 
done in a similar manner. 

Figure 3. Virtual Memory Interlocks 



(5) Iriterlack five (15): Ci = Cq + N Prevents the IAU from 
p1acin.g the next instruction into the level. indicated by 
C1 because the instruction there has not been executed 
yet. 

- -  

C .  Logic of the Virtual Memory 

1. General 

There are two basic precepts which must be kept in mind to under- 
stand the operation of the Virtual Memory: 

The OK bit (Oj) being set in the j th level indicates that the 
contents of Dj is the correct data called for by DA 

logical decisions will be made in such a manner as to make 
sure this is the case. 

All 
operations will be performed snly under this cond f tion and 

Addresses can be compared by the LAU with every DA address 

have its Cj bit set. If a cornpaxison exists between a new DAj 
being placed in the Virtual Memory  and an old DAk, the com- 
pare bit ck is turned off and the address of level j is placed in 
FAk. This insures a unique meaning for the comparison. If 
this were not done, another in13truction address DAe might 
compare against two levels and thus c a w e  an ambiguity. 

simultaneously. DAj is not used for any level which d oes not 

II_ 

2.  hrstruction Fetch Logic 

Figure 4 is a flow diagram of the IAU Instruction Fetch Procedure. 
The logic is as follows: If the IAU is ready to fetch another instruc- 
tion, it compares the instruction address with all the DAj * s  of Virtual 
Memory.  If there is no comparison, the instruction fetch is initiated. 
If there is a comparison the M U  must take its instruction f r o m  the 
Virtual Memory  provided the OK brit is set,  otherwise, it must wait 
until the OK bit is s e t .  

Note: This procedure prevents the logical difficulty mentioned earlier 
which would occur if the Virtual Memory contained a store order into 
the instruction presently being fetched. 

For Example: a STORE Address at2 
a+l LOAD M, i 
a+2 ADD N, i 
a+3 - - - -  

The store to a + 2 must be done in sequence or the old value N would 
be used for the address instead of the quantity being set by a. 
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Figure 4, Inditruction Fetch Procedure 
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Figure 5 I Jrdexfng Proctsfdure 
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3. Indexing Logic - 
Figure 5 shows the flow for ixlstruetion indexing. After deter- 
mining that an instruction is ready to bc indexed, the I,AU tests 
whether or not the index value is available. U it is, the index- 
ing operation is rrtarted if not the memoryreference is started 
and the IAU waits until the data returns befare proceeding. If 
the index-fetch has not been started, the LAU compares the in- 
dex address against all the data addresses in Virtual Memory. 
If none compare, the index value is fetched normally. 
does compare, the index fetch i t 3  held up until the OK bit is set  
for the data. This value from the Virtual Memory is then used 
for indexing the instruction. 

If one 

4. Logic of Putting Instructions in the Virtual Memory 

(1) Figures 6,6A, 6& 6C repreaent the logical flow for putting 
instructions into the Virtual Memory. I€ the indexing arith- 
metic unit has an instructiom prepared fox the Virtual Mern- 
o r y J  it m a y  transmit the inutruction into the Virtual Memory 
if interlocks one and five do not forbid It. These interlocks 
prohibit a new instruction from destroying an old one which 
has not been executed as yet, whether an arithrnetic opera- 
tion (15) or  an unexecuted store (11). 
instructions vary depending on whether they are of the bring 
type, store type, or immediate type. 

The handling of the 

( 2 )  The bring type, a6 described in Figure 6A,proceeds as 
follows: If the effective data address of the instruction 
compares withthe DA addrees. in some level, the instruc- 
tion I its op code, and effe ctiva data address are loaded into 
the level marked by Cp The compare bit for level C1 is 
set to one while the compare bit for the compared-with level 
is set to zero. If the 0, K. bit in this compared-with level is 
set ,  meaning that the data located there is correct, the data 
i s  transmitteddirectly ta the C 1  level and its O,K, bit i e  also 
set. If the O.K. bit is not set, we must tag the compared-with 
level by setting its Forwarding bit and by putting the value of 
C1 into its Forwarding address,  the bring bit for level C1 is 
also set  to zero since na further data fetch is required. 

If the effective data address does not compare withany Virtual 
Mernarylevel, the instruction is put directly into level C1 ,its 
0.K.  bit irs set  to zero, and i t E i  bring bit is set to one, indicating 
that a fetch must be started. 
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Figure 6 ,  Procedure: far placing Inrptpuctions 
into the Virtual Memory 



-1 4- 

Sat the forwarding bit to ans 
and put C1 in the forwarding 
prddrarps of the compared wit1 
lavel. 
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the C1 level 
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ode in OP Put the data add- 
ess in DA. Set the bring bit, 
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ding bit to 543ro 
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No 
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tion address in IA Put the op code 
in OP Put the data addreaar in IDA. 
bat the bring bit to one, Set the 
forwarding bit, the compare bit 
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. 
Send data from the cornpared 
with Lave1 to D of level C1. 

Set O,,K, bit of level C1 to 

It--- I 

return to top of Figure 6 

Figure 6A, Logical Conditllonsi for Bring 
Type Operations 
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(3) Figure 6B shows the Store type procedure. 
address of the instruction doerg not compare with the DA 
address in some level, the instruction is placed into the 
level marked by C1. 
that a store will be required. 
forwarding bit are set  to zero, its compare bit i s  set  to 
one. If on the other hand the ;addresses do compare,, the 
same procedure is followed but in addition, the compare 
bit in the level compared-with is set  to zero so that future 
compariaons will not use it. 

If the effective 

The store bit is set  to one indicating 
The levelbbring bit and 

The OK bit has not yet been sat. 
ation is an index 'stare and set  to zero if it is an ordinary 
store. 
should be zero since the data imust come from the arithmetic 
unit after the preceedfng instruction is executed. 

It is set to one if the oper- 

For the ordinary store it is clear that the OK bit 

A$ was mentioned in the definition on page 5 ,  we treat  all 
indexing instructions as store type and place the new value 
of the indexed quantitiy into the Virtual Memory. This is 
done because the Indexing Arithmetic Unit is going ahead 
of the normal order of instruction execution and an inter - 
ruption may occur before this indexing instruction should 
have been done. In this case, the old value of the index is 
still in the index register. On the other hand the Indexing 
Arithmetic: Unit compares with the Virtual Memory and 
extracts the mbst recent value of the index for indexing 
succeeding inatructions. The OK bit ier Bet to one since 
the appropriate data is in the above level. Both the new 
and old index values must be carried along to give logically 
correct conditions in the case of an interrupt. 

A rsituation very similar to interrupt occurs in branches 
on arithmetic resultrs where the Indexing Arithmetic Unit 
I'guessed' which branch will be taken and proceeds with 
fetching and processing the instructions on this branch 
subject to being wiped out if the guess proved to be wrong. 
(See the discussion on tlWrong way Branchest1 below. ) 
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Figure 6B, Logical Conditions for Store 
Type Operations 
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(4) Immediate Type instructions are the simplest type be- 
cause they essentially carry their data with them. 
6C shows the logic in this cam. 
in the Virtual Memory level marked by Cy. 
field of the instruction is placed in the data field of 61. 
The OK bit is set  to one indicating the data is present. 
The bring and store bits a r e  both set  to zero. The com- 
pare ‘bit is set  to zero since the DA addredss field has no 
meaning for immediate type ops. 
the last instruction which occupied this level still remains 
in DA so it has no relation to the present D field. ) 

Figure 
The instruction is plsced 

The address 

(The data address of 

5 ,  JLtogic of Data Fetching 

See Figure 7: When an instruction of the bring type has been 
placed in the Virtual Memory, the data required by the instruc- 
tion in general will not be present (unless a comparison exists 
alp was described above) and thus the data must be obtained from 
care storage. The fetch cannot be started if interlock 13 holds 
which means all the! fetches corresponding to the inatructions 
presently in the Virtual Memory have been atarted. If a fetch 
is possible, the bring bit at level C2 indicates whether or not 
a fetch is necesraary. If necessary fhe fetch may be started if 
the memory bus and memory unit corresponding to the data ad- 
dresla are not already being used. When the fetch is started, 
the bring bit for level C2 is set to zero. The counter C2 is then 
stepped forward to the next level. 

6. Logic of Data Storing 

Figure 8 shows the Data Store logic, which is very similar to 
that for data fetching jus t  described. The only signlficant dif- 
ference is that the O,K,  bit must be set bef0.i.e the operation 
can be started. 

7. Logic for Placing Data into the Virtual Memorx 

In Figure 9 ,  we see the logical conditions which must be satis- 
fied by the data returning from Marnary addressed to the Virtual 
Memory. The return address which was supplied when the fetch 
was started selects the level into which the data will be placed. 
The O.K, bit is then set to one indicating that the proper data 
is in the level. The operation is complete at this point unless 
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Figure 6C, Logical Conditions far Immediate 
Type Operations 
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Figure 9 ,  Procedure €or F'lacing Data into 
Virtual Memory 
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the Forwarding bit i s  set.  
warded to the l e d  designated by the Forwarding address. 
This procedure continues from level to level as long as the 
data continues to arrive into a level whose Forwarding 'bit is 
set. This procedure automatically supplies all operands 
present having 
without additional memory references. 

In this case,  the data must be for- 

identical data addresses with the proper data 

8. Logic of Removing Instructions from the Virtual Memory 

Observing Figure 10, we notice that as the arithmetic unit 
completes an instruction it checks to see if the next instruc- 
tion in the Virtual Memory is ready to be executed (indicated 
by interlock 14). Note: The operation m a y  be an unconditional 
branch, a conditional branch, or  an index type store as well as 
a normal bring or  store type instruction involving the accumu- 
lator. Figure 10 shows only the ca8ses which involve the uni- 
versal accumulator. The index anti unconditional branches 
and the index store operations are merely ignored at this point. 
They a re  carried along only to provide the data for recovery in 
the event an interrupt occurs. The execution of the conditional 
branches on arithmetic results are described in the next section. 

If the next instruction marked by counter C4 i s  ready, it i s  fed 
into the arithxnetic unit. If i t  is a &ore type, the data is gated 
from the accumulator into the data field of level. C4, and the OK 
bit is set to one. If the Forwarding bit of the level is s e t ,  a 
forwarding procedure in this case is essential for the proper 
logical operation OX the computer, whereas in the bring case i t  
is a time-saver only. 

If the instruction is not a store type, the arithmetic unit must 
hold up until the 0 . K .  bit far the ].eve1 is set .  
bit is set ,  the instructiori i s  gated into the arithmetic unit 
and executed. 

When the O,K. 

9. Logic of Interrupt Procedure 

If for any cause an interrupt (or t rap)  from a special condition 
occurs, the instruction which is bering executed in the arith- 
metic unit is completed. However, the next instruction is not 
executed in spite of the fact all the data preparation for it m a y  
have been completed. The address in the IA (instruction add- 
ress)fieldwill serve as the value to reset the instruction counter 
if  it is desired. 



U .. 
Is the a r i t h e t k  unit busy 
doing an inatruction 

hll.-.--"*-.".-".- -"..-..-.-- c 
I 

I 
Yea 

I 
NO 

dicated by forwarding 
address and aat 0 , K .  bit 

I, 

I 

Figure 10, Procedure for .Removing Instructions 
from Virtual Memory 



-24- 

.- 

1 

The Vitual M e m o r y  is initialized, i. e . ,  set to the starting 
conditions of an interrupt,with the exception that all store 
orders which have already received data from the accumu- 
lators must be executed first. Note: If the interrupt is of 
such a nature that the normal flovv of instructions is not re- 
sumed, the procedure of storing the modified values of the 
index registers in the Virtual Memory gives logically correct 
results, i. e .  , the mzne as if the interrupt had occurred be- 
fore the indexing took place. 

IV. DESCRIPTION QF TIMING SIMULATION PROGRAM 

A. General Considerations 

During the logical design of STRETCH it was neeeasary 
to prove the value of the Virtual Memory concept and to assist in 
the selection of optimum values of various system design para- 
metera. Examples of such parameters are: The: number of mern- 
ory boxem, interlace and allocation of memory addresses, and num- 
ber& of Virtual Memory levels. Also cxf Interest were  trade-off 
factors far erpeeds of indexing arithmetic wit, arithmetic unit, 
memories, etc. 

h Noimmber 1957 the Timing Skrnulatm (SUA-2) described 
here was written for the u3M 704. This program attempted to answer 
such questions quantitatively by simulating the times-wise operation 
of STRETCH on typical. Lost programs coded in STRETCH language. 

The basic logic of the 704 progmm fallows the principles 
just described in the preceeding aoction far the Virtual Memory. It 
ahould be stressed that the Simulator is a Timing Simulator and 
does not execute the instructions .In an arithmetic sensa. It traces 
the time -wise progress of the instructi.ons through the components 
of the computer observing all the intsrhcks and t h e  delays nece8- 
aary for correct representation of the 'behavior of the machine. 

One of the fundamental cancepta in the STRETCH design 
is that of asynchronous operation of the components. This means 
that there are a large number of Pogica.1 steps being executed at 
any one time in the computer, each of sthem proceeding at i t s  own 
rate, 
we have broken the continuaus time variable into finite time steps. 
The basic t ime step is taken aa 0 . 1  microsecond in the Simulator. 

To simulate this flow of many parallel continuous operations, 
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Several reason& prompted us to select this time interval. 
are relatively simple, such as the desire to have the rersults come 
out in microseconds and decimal fractions thereof. 
time interval makes a given problem run faster on the Simulator 
since the running time is almost inversedy proportional to the time 
step being used. 

Some 

Taking a coarse 

D .- 
More fundamentally, the '"naturalt1 internal time scales of 

the computer are represented on one hand by the cycle time of the 
main memories ( 2  microsec) and on the other hand by the time re- 
quired for signals to traverse one logical level in the circuits (5 to 
20 millimicroseconds). 
as given by the I/O devices, l a  in the order of mllliseconds for 
star t  up time and tens of microseconds for data flow rates. 

The external time scale of the computer, 

Most internal macro logical processes require 0 . 1  micro- 
seconds or  more since they usually requtise at least 10 logical levels. 
Thead represent the scale of quantities we wished to study in this 
sfmulator. Other rrcalet3 could have been chosen. For example, one 
could write a program which followed the operation of every logical 
%mdtl and llorll circuit in the computer. 
written such a program for a small experimental study. ) The simu- 
lation program i s  simpler on this scale but the specification of a 
computer such ad STRETCH would be an enormous task- equivalent 
to laying out the whole circuit design. Another difficulty, would be 
that changing a gross parameter such aa the multiply time might re- 
quire the changing of thousands of I1andtt and llortl blocks in the circuit 
specification. 

(In fact, the authors have 

By taking 0.1 microaec as our quantum of time, we are 
automatically setting the scale of the smallest circuit entities which 
we will consider as being those which acxomplish complete functions 
in a 0.1 rnicrosec or  few multiples thereof. Thus by using this phil- 
osophy, and considering many of the components of the computer as 
"black boxes", we greatly simplify the details which must be con- 
sidered without introducing serious timing inaccuracies. 

Our experience has. indicated that more information was 
gained by making a large number of fast parameter studies using 
different configurations and programs that could have been obtained 
by a very slow, detailed simulation of a few runs with more precision 
per run. Even so our time scale i s  too fine to make serious Input- 
Output applications studies. 
tor having at least a factor of 10 coarser basic time interval. 

- 
These would require a simpler Simula- 
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33. Logic of the Simulator 

. 

In the asynchronous organization of S T m T C H  there can 
be many major components operating at any one time. TO achieve 
this parallel effect in the Simulator we essentially rlhold time stillr1 
and scan the entire machine representation at each time step. Al- 
though every major block of the program is traversed at each time 
step, if there is  no activity required in a given block, only a few 
tests need be made by the code. 

Lf in this process it i s  deternained that a given logical unit 
should do an operation, the time interval required for the operation 
is obtained from a table of constants. The speed of the various log- 
ical units can thus be changed parametrically by changing the values 
in the tables. A constant obtained from the tables is inserted into a 
memory location called the time counter for that unit. At each time 
step the program reduces this counter by one until it reaches zero. 
Thus the fact that the counter is non-xero can be used to indicate 
that the particular logical unit is busy and not available to service 
other requests. When the counter is aero the unit can consider a 
new input. 

In addition to the time counters many of the logical blocks 
contain other conditions or interlocks which effect the operation of 
the block. 
before action is undertaken. AS an eieample, theQ K. bit" described 
in the previous section i s  stored as a or llzeroll in a memory 
location associated with each Virtual  Memory level (called LAU6, i 
in the program, where i is the Virtual Memory level). The l'O.K. 
bit indicates that the data in the level is the correct value for the 
operation. In the p r o g r m  the IfOK bittf is set by storing a one in 
location LAU6, i. 

These conditions are stored in the program and tested 

Each logical unit when it completes its operation may have 
The other unit may be notified 

Either (1) The sub- 
data available to start  another unit. 
that the data is available in two possible ways. 
routine corresponding to the receiving logical unit searches all pos- 
sible inputs to determine if any of tllejm has data for it, or  (2) the 
sending unit sets logical constants within the receiving unit which 
indicate that the data is available. For example, the llO.K. bitt1 
is set for a given level by the memory in-bus subroutine. While 
on the other hand, the arithrnetic unit subroutine tests the O.K. 
bit to determine whether or not data is available for it. 



The simplified Flow Diagram in Figure 11, indicates the 

Using the types of techniques just des- 
order in which the subroutines for the various logical units a r e  ex- 
ecuted at each time step. 
cribed above, the logical subroutines simulate the action of the 
components of the computer such as t'he Virtual Memory, arithmetic 
Unit ,etc. 

--c 

The details of the Simulator a re  described by Tables 1 
through 4 and in the detailed flow diagrams at the end of this re- 
port. These flow diagrams can be comolated in the obvious way.with 
t h ~ @  given in the section which desc3ribes the Virtual Memory, 
The Simulator also contains several other subroutines which dq 
such things as initialize the program at the beginning of a run, set 
up the timing diagrams and summarize the results of the run, (aee 
diacusaion in the Result Section), 

The STRETCH instructions being simulated a re  read into 
the 704 from tape a a  required. 
from carda at the beginning of a run. (The input quantities read in 
for each operation are listed in Table I, column 1. ) It is interest- 
ing toaote  that since the Simulator ai~mulates timing only, not the 
arithmetic or indexing functions, the aequence of instructions ta be 
executed muat be furniahed aa a ltstringtt with all loope unwound. 
However, to make the computer behave as it actually would, the 
loops must be furnished with "wrong way11 paths given far the cases 
where the computer would take such paths. Alao one must furnish 
more than enough information along such paths aince it is difficult 
to predict in advance how far the computer will get down the wrong 
path before it is called back. 

The instructions are put on tape 

- 

Parameters are changed from one run to another by UBB of 
The control cards a r e  set  up in such a way that any control cards. 

number of parameters may be changed between runs. 

Results are given either a s  detailed timing charta or a0 
summary listings for each problem. The usual procedure has been 
to print only summary results while making a series of param0te.r 
studies. 
read in, the problem tape is rewound, and the Simulator reruns the 
problem with the new constants. 

At the end of each run the new contra1 card or cards are 
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i 15 

Initialization 
Arithmetic Uni t  
Decode Operatiuns 
Virtual Memory 
Indexing Arithmetic Unit 
Bus from Memory 
Bua to Memory 
1/0 References to Memory 
V.M.  Stare Reference8 to Memory 
V, Me Fetch References to Memory 
L A ,  U. Reference8 to Memory 
Instruction Fetch Reference8 to Memory 
Count - down time 
Print detailed listing 
Summarize and print 

Figure 11. S M  - 2 Simplified Flow Diagram 
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V. SOME RESULTS OF THE SIMULATICKN STUDI.€CS - 
A. General Description 

1 Introduction 

During 1958 a number of reports were written giving 
results of runs made with the S M - 2  program. W e  will not 
attempt to record here all af the results thus presented be- 
cause many of them were  superseded by later reports or  were 
concerned with specific problems in the design of STRETCH. 
The results quoted here were chosen for their general interest 
as parametric studies and are not intended to represent STRETCH 
as it is actually designed. 

2. Output Listings of Simulator 

Figure 8 12 and 13 show examples of the type of output 
listings; given by the Simulator. 
timing chart with each line of printing representing 0 . 1  micro- 
second of time:, The columns repmssnt the various components 
of the computer. On the left and right am timing counts subdi- 
viding each microsecond. On the Par right are conflict indicators 
(YP on the charts) and waiting indicators, I1Wtt  which indicate 
when interlocks prevent operationer from proceeding. 

Figure 12 is a piece of a long 

The 2nd column, 11, gives the number of the instruction 
being indexed. 
instruction using the arithmetic unit. 
represent the instructions using the memory buses. 
labeled X-,I?-, and M- represent the index, fast, and main 
memories. A string of t t X t ~ l l  in the columns represents the 
cycle time of the memory. 
tion using the memory and number of times which it is repeated 
gives the read-out time of the merrrazy. 
which instruction i s  located in the V i r t u a l  Memory levels. The 
other columns are for details in analysis and need not be eon- 
sidered hem. 

The 4th column, AU, gives the number of the 
The next four columns 

The columns 

The riumber indicates the instruc- 

The columns L- indicate 

Figure 13  gives an example of a series of summary 
listings. Each s e t  of numbers represents a total problem run. 
The quantities listed are given in Tables III and IV. A s  was 
mentioned earlier, far most of the runs made in the Simulator 
studies, only summary runs were :made. 
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Figure 12 

Listing of Simulator Print -Out 
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Figure 12 

Listing Of Simulator Print -Out 
X 8 7 1 0  9 L 7 cw 

1 8 CW 

2 10 cw 
0 2 c\rl 

-. 3 1 2  1 13 8 X X 8 11 10 9 1 0 2 3 w  
10 1 4 cw 4 1 2  .,2 1 3  8 X R 11 10 9 

8X a 11 i o  9 10 3 cw 
1 0  8X 8 11 10 9 2 6 CW 

cw 
- 5 . 1 2  '4 
6 

-7 13 1 1 0  8X 8 11 10 9 15  1 7  
A 13 1 1nx A X  A 1 1  1n 9 1 5  13 cw 

2 9 cw 9-13 1 1 5  1 O X  8X 8 11 10 9 
J0 1'3 1 15  1 O X  8 X  8 11 10 9 . 

1 10 cw 
1 cw 8 11 10 9 15X 1 O X  8X 

15X l o x  8X 8 11 1 0 9  2 2 cw 
1 13 1 

1 3 cw 15X l o x  x 8 11 10 9 
- 2 . 2 3  1 

4 13 1 8 15X l o x  x 8 11 1 0 9  4 cw 
3 13  1 

7 11 1 1 3  
R 11 2 13 X 8 7 1 0  9 
9 11 2 

R 7 1 0  9 
1 11 4 
2 1 13X X 8 7 1 0  9 

X 33x X 8 7 1 0  9 9 CW 

13X X 8 / 1 0  9 0 1 1 7  
-. l o  11 2 13X X ---- 

1 

8 

5 1 3  1 E5 X l o x  x 8 11 10 9 2 5 c  
X x x  12 11 1 0 9  1 6 C  

x x  12 11 10 9 7 c  
X x x  12  11 1 0 9  2 8 C  

x x  12 11 10 9 1 9 c  
x x  1% 11 10 9 10 c - 

1 1 8  x x  12 11 10 9 2 1 c  
1 1 1 2 w  2 1 4  .l x x  12 11 10 9 

3 1 4  1 9  X x x  12 11 10 9 il 3 

7 14 2 1 3  X l l X  12 11 1 0  13  2 7 w  

9 1 13X 11x 12 11 10 13 9 w  

6 13 1 8 15  1 0  
7 13 2 8 1 0  

.-2 0 
9 1 3  2 8 

2 0 3  4 8 

4 1 4  1 11 x x  12 11 10 13 13  2 4 
1 3  1 5 5 1 4  2 10 11 X 1 2  11 10 1'3 

6 6 34 3 10 X X l l X  12 11 10 1 3  13  

B 1 4  4 1 3  11x 1 2  11 1 C 13 l a w  

,$O 1 s  3. 13x 11x  12 11 14 13 1 7  1 4  2 10 W 
1 7  14 1 1 W ' 1 1 5  2 13% 1 1 x  12 11 1 4  13  
17  1 4  2 w  3 15 4 13X 11x  1 2  11 1 4  13  

2 3 w  3 1 13X 11x 12 11 1 4  13  17 1 4  
1 4 w  4 16 1 11 17 1 4  13X X 1 2  11 1 4  1 3  

-.. 

-_I 

-7. 

5 16 1 11 17X 13X 14X X 12 11 14 13  5 w  
5 - 1 6  1 17x 13X 14X X 12 11 1 4  13 2 6- 

9 16 2 11 17 X X X 14X' X 12 1 5  14  13  2 9  

1 7  12 1 5  1 4  13 7 16 1 11 13 l 7 X  X 14X X 
8 R 116 2 - 1 1  13 17X X 14X X 12  15 1 4  13 

1 10 X X 14X X 1 2  15 1 4  13 
1 1 16 '3 11 X X 14X X 12 15 1 4  13 

2 2  13 1 5  1 4  1 3  2 16 3 11 X 14X X 
X x x  1 2  15 14  13 1 3 w  14 

4 
3 16  4 

1 4  X X x x  12 1 5  1 4  1 3  
19 2 5  

4- 1 12 
X x x  16 15 14 13 5 17 1 

6 17 2 1 3  X X 16 15 1 4  13  19  1 6  

h*-17 2 19  X X 16 15 1 4  13  2 8  
1 9  9 17 3 1 4  19  X X 16  15  1 4  13 

---.-.. 

3 0  16 7 XI 37 

" -  

-_L 

' 7 17 2 13 X X X 16 15 1 4  13 19 7 

l t 1 7  3 1 4  19X X 16  15  1 4  13 10 
1 17 4 14  19X X 16 15 1 4  13  2 1  

3 18 1 1 4  198 X 16 1 5  1 4  17 3 

" ____---- 

2 1 14 19X X 16 I, 5 1 4  13  1 2  

2 4  4 18 2 1 4 1 9  X X 16 15 1 4  17 
1 5 w  5 18 2 19 X 16 1 5  1 4  1.7 

2 7  7 1 16 15 1 4  17  
8' 19 1 1.6 X 16 15 18 17 71 18 1 8 

- 
- 2 L . l L - 4 L  I - -x 7 -6- 

9 19 2 16 15 18 17 2 1  18 9 
2 1  18 "2 16 15  18 17 2 10 10 19 2 17 

1.19 4 2 1  1 8  16 15 18 17  1 1 w- 

4 20 7 ?l>t . d B X  

2 w  2 I 21x 18X -- 16 IS 18 17 
13 20 1 2 1 x  18X 16 19 18 17  1 9 2 3 W  

16 1 9 18 17  19 1 4 w 
1 9  5 w  2 l X  18X 16 19 10  17  

J 
5 3 0  4 
6 , I _  _ _ _  22-- ___- ~ 19- _ _  - - -X . 1 8 %  I_c1_____ -/mU __-_I_____-__ ____- 2 6 1 

23 1 7 w  7 1 21 19 X 18X 20 19 18 17  

-__I_ ------- ____ 

_ _ - _  
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Figure 12 

Listing of Simulator Print-Out 

I - -I- -_-_"_I-___ 

r 8  1 I 8 x J 9 x ~ _ _ _ _  ---I- 20 19  18  17 2 3  8 w- 
9 2 1  1 2 3  18X19X 20 19  1 8  1 7  2 9 w  

10 2 1  2 18 2 3  x 1 z  20 19 18  17 1 10 w 
1 2 1  2 18 2 3x x19x  20 19 18 17 1 w  

20 19  18  17  2 2  - 
3 1 3 R  2 3x X19X 20 19 18' 17 1 3  
4 27 1 18 23x -____I__ X19X 20 19  18  2 1  2 1  4 
5 32 2 23  X X19X 20 19 18 2 1  2 1 2 5 w  
6 7 7  2 23 19 X X x ,.x 70 19 1 8  2 1  2 1 1 6 W  

7 w  
8 2 2  21 4 '  x x  20 19 18 2 1  2 8  
9 1 19 7 1  x x  20 1 9  18  2 1  1 9  

lozju39-- x X31X k J  13  2 2  2 1  25 2 2  1 0  
1. 33 2 19 x x 2 1 x  20 19 22 2 1  2 s  22 2 1 
2 2 3  4 1  9 X Z l X  20 19 2 2  2 1  25 22 1 2 
3 1 19 X 2 l X  20 19 22 2 1  25 2 2 '  3 
4 24 1 19 3 '572L--- X 2 - 1 _ x _ _ _ -  I _ _ ~  20 2 3  22 2 1  2 4  
5 24 2 2 5  2 2  x 2 1 x  30 23.72 21 1 5 w  

30 2 3  2 3  2 1  *c-* 
6 24- 2 20 -- X 2 5x-.-.-.----- x71x22x  ---- ~- 
7 24 2 X 35x x 2 1 x 2 7 x  a0 23 312 2 1  2 7 w  
R 24 2 2 I. ZliX---.-.--..-.L?-2 L- 20 2 3  2 2  7 1  1 8 W  
9 24 4 2 1  25x x32x  20 23 22 25. 9 w  

2 1 0  -20'---1_--- 3 5  - ~ - -  X __-__ x 2 2 x  20 23 22 3 1  I 

1 1 21 25 X x 2 2 x  24 23 22 2 1  '27 2 4  1 1 
--- 2 1 2 1  ---I_-- -- ------I___ x 2 2 x  24 23 22 2 1  27  24 2 

3 7 5  I 27 2 4  x 2 2 x  24 23 22 2 1  2' 3 w 
4 25 2 22 27 2 4  x x--- 24 23 2 2  2 1  1 4 w  
5 25  2 22 X- 27X 2 4X x x  24 23 22 2 1  5 w  

2 6  6 25 2 
7 2 5  4 2 2  27X 2 4x x x  24 23 22 2 1  1 7  

9 26 1 32 77 X 2 4X x x  24 2 3  22 25 2 5  2 9 
10 26 2 22 27 Y X 24 23 2 2  2 5  2 5  1 10 2 4x --- 

1 26 3 2 2  X 2 4X X 24 2 3  22 25 25 1 
2 26 2 22 ____---- 2 5  -- - __l__ 24x X -- 24 2 3  2 2  2 5  2 2  
3 26 4 24 2 5  X X 24 2 3  22 25 1 3 w  
4 1 23 24 X _I_ x 2 u  ----- _______ 24 23 22 2 5  4 
5 27 1 X 25X X 24 23 26 25 29 2 6  2 5 

29 26 1 6 6 27 2 24 
7 27 2 24 X x 25x 24 23 26 25 29 26 7 

2 e w  
9 27 4 29 26 x 25x  24 23 26 2 5  1 9 w  

10 1 -- __I ___-_ - --.--. _- ------- ???-- X26X?5XK -I----- 24 23 26 2 5  10 w 
- _  1 28 1 29x X26X25X 24 27 26 2 5  2 f 2 1 W  

2 2P 2 2 5  -----I 29x X76X X 24 27 26 2 5  2 7 1 2 W  
3 28 4 25 29x X26X X 24 27 26 2 5  27 3 w  
4 ,______--__.-- 1 29 37 - - - - - I ____  X X 2 h X  x __ 24 27 26 2 5  2 4  
s 1 25 29 77 X 26X X ' 28 27 36 3 5  3 1  1 5  

-6 1 2 5  --_-- - _--_-____I- ? hX32L_X.-  28 27 26 7 5  3 1  6 
7 29 1 25 31  36X x 2 7 x  28 27 26 2 5  2 7  
8 29 2 29 26 3 1  __- x x27x  28 27 2 6  25 1 0  
9 29 4 25  2.6 -7m- x X7TX 28 2 7  26' 2 5  9 

1 0  1 25 3l.X x x27x  20 27 26 25 2 10 ----- --- - -  - - ~ - ~ x -  - ---..--x-T27-x _ _ _ _ _ _ _ _ _ _ - _ -  

3 '  30 R - - - - - ~ X I  
2 30 

4 26 20 27 2 6  29 2 3  
X X X 38 27 26 7 9  1 ,  4 

5 
1 26 3 1  27 ----.-.-.---.- 4 

X X X 2a 2 r  30 29 3 3  s 
X X 28 27 30 29 3 3  2 6  6 31  1 2 6  

t 31 7 7A X X 3 R  77 30 3 9 '  3 3  1 7  
.A.1-_ - - - - _ _ _ _ _  - - -  ._ x x -  --281Lx 3 9  .35\ a 

9 1 27 33  X X 28 27 30 29 2 9  
3 3  X - X 28 91 9 0 29 1 10 

1 32 2 27 3 3x X 28 3 1  30 29  1 
2 2.2.- 4 27 I______ _- " ?X "- X 28 3 1  30 29 2 2  

4 
3 1 27 33x X 28 3 1  30 29 1 3  

-- 33x X 28 3 1  30 29 35 ~ 4 
3 1 33 X X 28 31 30 29 35  2 5  

-- 2 3 1  4 ,  23X X19X 

7 2 2  2 19 x x  20 19, 18  3 1  2 1  

6 C  

2 4  23  2 2  2 1  --___.-. 
~ - - _ I _  x x  24 23 22 2 1  8-.- 

27X 2 4X x x  
I- --I-____________ ~ _I______ -_I__._ 

I 

- - 8 --------- 1 22 ----- 27X __I__ 2 4x 

--IIy--.L-"...L-u-Iw. x 35x  ---I-I.- 24 2 3  26 25 

_l_l_-l__ 0 27 2 _--I-- 2 9 -. 26 - ---- - - - - ~  X -- 25X - - - 24 23-26 2 5  

273- 27 -Ti- ?3---- 
31x  X X27X 28 27 26 29 I :  =' 2 26 -TiiI~-----'--- -~ 

- - - - - . " II _- I _- ---__-_-__ 

10 37 1 27 

1 2'3 

' 6  1 28 '3  X 32 3 1  30 29 35 1 6  _ _  * 
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Listing of Simulator Print-Out 

7 1 28 32  31  30 29 35 7 
B 3 3  1 3 5  -1---11- - 32 3 1  30 19 2 8 W  
3 33 2 29 3 5  X 32 3 1  30 29 1 9  

10 33 4 - - ~ - 39x - .---_I-.-___- 32  3 1  30 29 10 

2 34 1 30 
1 1 30 35x 32 31  30 29 2 1  

x 255 32 3 1  3 0 3 3  1 2  
3 34 2 3 5 x  32 3 1  30 33 3 
4 34 4 31 5 5  -I_ X .--__I 32 31 30 33  2 4  
5 1 31  3 5  X 32 3 1  30 33  1 s  
6 1 31 X - 32 31 34 33 37 6 

37 3'1 34 33 37 2 7  
3 3  31. 34 33 37 1 8  

7 35 1 '32 
0 39 a 31 ' 
9 35 4 3 1  32 31  34 93 37 9 

2 10 
1 36 1 3 1  37 33 35 34  33 1 1  
2 36 2 3 1  -- ~ _ _ . _  37x -- 32 35 34 33 2 
3 3.6 4 31 37x 32 33 34 33 2 3  
4 1 3 1  37x 32 3 5  34 33  1 '4 
5 1 3 1  3tX 31. 3 5  34 3 3  39 5 
6 1 37 X 3 2  3 5  3 4  33 39 2 6 W  

1 7  7 1 32 37 X X 3 2  3 5  54 33 39 
1 8 X ---x35 3 4 3 3  39 0 

9 37 1 33 39 76 35 34 33 2 9  
1.0 37 2 33 39 36 3 5  '34 33 1 10 
1 37 4 39x 36 3 5  3 4  33 1 
3 1 34 39x - -- 36 35 34 33  2 7  
3 38 1 34 39x 36 35 34 37 1 3  
4 38 2 34 39 x -.--L--.l_-_l-__ 36 35 34  37 4 
5 38 4 34 ?9 X 36 3 5  34 37 2 5  
6 1 34 39 X 36 35 34 37 1 6  
7 1 34 X 36 35 38 37 41 7 
8 39 1 34 
9 39 7 ?I, 36 35 38 37 41 1 9  

10 1 31 37 32 31 34 33  

-~ 

-I---______ _-_-__I__ _I_ -1--1__ - _- - ~ - - ^  36 35 3a 37  41 2 8-.-..- -I__-_- 

8 61 2 5 5 x  
9 6 1  4 59 

1 62 1 60 
2 62 2 6 3X 

63X 

6 1 63 X X 
9 1 6'3 

7- 

9 6 3  2 
10 63 2 

2 1 
lSs63 4 98X 

4 44 2 ?a' 
5 64 2 63 ? 8  

1 
7 64 4 
9 
9 98 1 

1 98 4 64 X 

3 
4 

-x4Q_rjsss- 6q a 

1 
63 X 55x  57 60 59 58 2 9  
63 X 57 6 0  59 58 1 10 
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The detailed timing charts for most problems would 
Since over a 1000 cases be about 50 feet long far each run. 

have been run, it is clear that o d y  a few cases could be 
printed in full detail. Neverthelesw, the detailed timing 
charts were essential for two reaBons: ( 1 )  Debugging the 
program with all its hundreds of conditional branches would 
have been a staggering task without the detailed listings, and 
(2)  determining the causes of sorm,e of the anamolouB summary 
results required that one examine the listinga in detail. Also 
the authors found that studying the listings enabled them to get 
a 
locate bottlenecks in the processing speed. 

for the flaw of information which was neeeaaary to 

El. Test ,Problems Used. 

Five a% the tes t  problems used most frequently are des- 
cribed below. Other test problems were used for specific studies 
but since the results were similar for all p1~blem8 of a given type, 
we gradually discontinued using them. The following were origin- 
ally seleited a s  baing typical of dif€erent classes of problems. A 
brief dekcription of each i s  repeated here for completeness. 

1. Mesh Problem - Part of an hydrodynamics problem from 
Loa Alamos. It contains a rnlore or less I'average" mix- 
ture of instructions for scientific problems: 85OJo Floating 
Point instructions, 1.I% index modification instructions, 
and 1% Y F L  Jct is usually arithmetic unit limited. 

2. Monte Carlo Branching Problem __c - Part of an actual Monte 
Carlo neutron diffusion code, It represents a chain of 
logical decisions with very little arithmetic in between. It 
contains 4770 Floating Paint a 15% index modification inatruc- 
tions, and 3670 branches of the indicator and unconditional 
types. It is largely instruction-access limited. 

3. Reactor Problem - The inner. loop of a neutron diffusion 
problem from Westinghouse. It consists of 90% Floating 
Point arithmetic (39y0 of which are multiplys) and 10% in- 
dex modification instructionu. 
metic unit limited. 

It is almost entirely arith- 

i 
i 
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4. Computer Test Problem - The evaluation of a polynominal 
uaing computed indices. 
compare various computers. 
10% index modification, 6% VFL and 13% indicator branches. 
It is usually arithmetic unit limited but not for all configura- 
tions. 

T t  was prepared by I. Ziller to 
It has 71% Floating Point, 

5 .  Simultaneous Equations - The inner loop of a matrix inver- 
sion routine 67% Floating Point and 3370 index modification.‘ 
Arithmetic and logic are about equally important. 
ited both by arithmetic and instruction-access speeds. 

It i a  lim- 

C.  Resulta of Simple Parameter Studies 

1. General 

When the Simulator Program was first completed in 
late 1957, we undertook a aeries of studiea in which the main 
parameters describing the STRETCH leystem were varied one 
or two at a time in order to get a rneaeure for the importance 
of different effects. During thia phase we spent much time study- 
ing the detailed print outs described above to determine the exact 
cause of EO m e  of the anornolous efjfects. 

After this w e  began to specialize the studies towards 
amwering specific questions in the: STRETCH design and made 
more use of the Summary listings. Two of these studies are 
described in tho following sections. In the present section the 
major part of the material is taken from the first parameter 
studies. The graphs reproduced below are in terma of an ar- 
bitrary speed scale in which one of the first problems studied 
(The Mesh Gale. ) wa;s taken as 100, 

The table below summarizes the major effects studied. 
The individual items are discussed in the following subsections. 

Examples of STRETCiH Timing Simulator Kesulta 
Description M e s h  Calc. Monte Carlo 

1. 
2. 
3. 
4. 
5. 
6 .  
7. 
8. 
9.  

Standard De sign 
Speed %Change 

1.00 0 
A . U .  Times Doubled 73 
I.A.U. Times  Doubled 67. 
Both AU and IAU doubled 6 0 .  
2. 0 us hstr .  Memory 98. 
Combining Instr.and Data in 4 MM 82. 
Combining Instr. andDatain 6 MM 86. 
2 Levels of Virtual Memory 89. 
4 Levels of Virtual Memory 106. 

Speed 
45. 
43. 
26 
24. 
35. 
32 
33 
38 
46. 

$?Q Change 
0 
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' 2. Standard Values of Parameterw - 

¶ 

The combination of constan1:s which was taken as the 
standard reference values fo r  the original parameter studies 
is a8 follows: 

a. Machine Components: 
1. Levelsr of Virtual Memory 
2, Number of hstruction Memories 
3. Number of Main (data) Memories 

1. Indexing Time* 
2, Arithrnetl-c Unit ' S h e 8  

Floating Add 
Floating Multiply 
Floating Divide 
Fetch 

uaual 6-6-34 average 

b. Computer Speeds: 

4 
2 
4 

0 . 6  usec 

0 . 6  usec 
1.2 uaec 
1.8 uaec 
Q,2 uaew 
0.64 usec 

*This is total t ime  to index one order, includes inrstructian 
1 decoding index fetch, index addition, and atoring modified 

address, 

e. Memory Speedei: 
1. Fast (Xnstr. ) Memory Times 

Read aut time 
End Signal Time 
Memory qgcler time* 

0.4 usec 
0.4 usec 
0 . 6  usec 

*(The actual effective cycle time itr 0 . 9  ugec, since the bus 
clocking permitted successive references to the same mem- 
ory box only in multiplee of O 1  3 usec and the memory box 
must be free at the time of the reference not just finishing. ) 

2. Main (Data) Memory Times 
Read out t h e  
End Signal T h e  
Memory cycle time* 

0 .8  usec 

2.0 ueec 
1.7  U88C 

*(The effective cycle is 2. 1 UEI for same reason a8 above). 

3. Index Core Memory Times 
Read out time . 
Memory cycle t ime 

0.4 usee 
0 . 8  usec 

The index cores are asaumed tied directly to the IAU, 
so these figures include bus times. 



4. Bus Spaado 
a* Bumw t o  and from hstruct ion and Data 

mennorfee 0. 2 W Q C  slot (either read or 

b. Dec~drts and l~rwitching time In central con- 
trol unit 0 .  2 uwx to 0 .4  UBBC (dspending 
on bus ~ d h t a  available. ) 

writs) available every 0 * 3  uaec, 

Note: A separate burs eystem to instruction and 
Data memories i B  aSBUm3dt  but not neceseary. 

In addition there is usually a 0 . 1  U B ~ C  delay between the 
completion of any function and the beginning of the next one by the 
unit, or in the transfer from one register to another. 

3. Speed vg Number of Levels of Virtual Memory 

Figure 14 shows the effect on computer performance of 
varying the number of levels of Virtual Memory. Curves for the 
Monte Carla and Mesh Calculations with two sets of arithmetic 
and indexing arithmetic speeds are shown. 
the 6-6-3-1 averages mentioned above, 

The AU t imes given are 

(4) 

A number of interesting result8 are apparent from theas 

There is a tremendous gain to be had in going to the 
V i b a l  Memory organization. The point for "0 levels11 
meane that the arithmetic unit 318 tied directly to the 
instruction preparation unit, although simple Indexing - 
Execution averlap Ika still possible. 

The gakn in performance goes up very rapidly for the 
first two levels then rirws more alawly for the rest of 
the range. 

A large number of lave:La does the Monte Carlo problem 
less good than the Merjh problem because conatant branch- 
ing in the formax.  spoil^^ the flow of instructions. Notice 
that the curve for the Monte Carlo problem actually de- 
creaiea slightly beyond. a h  levels. This phenomenom ie 
a result of memory conflicts cauaed by extraneous memory 
references startad by the computer running ahead on the 
wrong-way paths of branches 

- 

The computer performance on a given problem ie clearly 
lass for alower arithmetic speeds. However, it is important 
to note that the sensftlvit~ of the performance i8  also leea fox 
slower arithmetic speeda. The Viztual Memory improvee the 
performance in either case, but it i s  not a substitute for a fast 
arithmetic unit. 
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4. SDeed v s  Number of Main Memorv Units 

Figure 15 shows how internal computer performance varies 
with the total number of memory units for a particular problem. 
The entire calculation is assumed to be contained in memory for 
all caaes, 
apparent from the. graphs. 

The speed gain from overlapping memories is quite 

The speed differential between having and not having instruc- 
tions separated from data arises from delays in instruction fetches 
caused by the memory units being busy with data. 
this effect varies from problem to problem, being less pronounced 
for problems which are arithmetic limited and more for logical 
problems. 

The s h e  of 

Since memory units far STI€UGTCEi are attachable only in 
pairs after the first and are interlaced only in powers of two, 
some df the points on the graph do not represent physically attain- 
able cambinations,e. g. , 5 memories all interlaced. (The simu- 
lation prograxn has no Buch restrictions. ) 

The I X t l g l r  on the graph show the: effect of replacing the 
0 . 4  uaec instruction memories by a pair of 2 .0  u m c  memoriae. 
The reaulting performance change is small for the Meah Problem, 
which is arithmetic l h i t e d ,  but large for the instruction-fetch 
limited Monte Carlo problem. 

5. Speed VIS Arithmetic .I.. Unit and ;IndexaArithmetic Unit Timers 

Although evsryone realima tho importance of arithmetic 
speed on overall computer performance, it wa%r not until the aim- 
ulator results became available that the true importance of the 
indexing arithmetic speeda wa8 recognized. Figures 16 and 17 
show a Cwo parameter family of curves giving the computer speed 
as a function of the AU and I A W  thers .  

Figure 17 in which the arithmetic time is l  the abscissa . 
shows an interesting tfsaturatEon" (effect where the computer per- 
formance is independent of AU speed below 00me critical value, 
Thug it makes no sense to atrain ALU speeder if the IAU i ~ l  not im- 
proved to match. The CUTVBB in Figure 16 show the Bame effect 
i. e. I the IAU speed ierves a0 a ftceilinglf an perfurmance beyond 
whish the AU speed cannot pass. 
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120 

I I O  

I O 0  

90 

80 

70 

60 

50 

40 

30 

20 

IO 

0 

SIGMA COMPUTER SPEED 

vs. Number of Main 

Memory Boxes 

4 levels  LA 

0 .6  ps IAU time 

0 .64  ps AU time 

MESH CALC. WITH REGULAR 
SEPARATE 0 . 6 ~ ~  FAST MEM. /- 

P 
/ 

MESH SEPARATE 
2.0~s INSTR, MEM. 

MESH CALC. WITH DATA 

2 . 0 ~ ~  MAIN MEM. BOXES 

MONTE CARLO WITH REGULAR 

AND INSTR. SHARING SAME I 

0 
0 

0 
0 

0 0 //SEPARATE 0.6~s FAST MEM. 

--=-m 

%!!!&!kRk!&S INSTR. MEM, -- ----- .I,---- - ---- 
' Y J M O N T E  CARLO WITH DATA 

AND INSTR. SHARING SAME 
2 . 0 ~ ~  MAIN MEM. BOXES 

0 1  2 3 4 5  6 7 8  

NO. MAIN MEMORY BOXES 



-39-  Figure 16 

--. 

I IO 

. 100 

90 

80 

70 

60 

5 0  

40 

30 

20 

IO  

0 

SIGMA COMPUTER SPEED 

\ v8 . Indexing Arith, Times 

for vaious Arithmetic Unit 

times, 

4 Main M e m s .  2 . 0  ps 

2 Fast Mems 0 . 6  ps 

4 levels of look-ahead 

80.96 

13: 1.28 

MESH CALC, 

\ 

} MONTE 

4' 

CARLO 
f ,? ,*: 

CALC. 

0 0.5 1.0 1.5 2.0 2,5 
INDEXING ARITHMETIC TIME (psec) 

storing modif led addc) 
(Averoge time to index one instruction incl. decode and 



-40- Figure 17 

h 
W 
W a 
v) 

. 

I20 

I10 

I O 0  

90 

80 

70  

60 

5 0  

40 

30 

20 

I O  

0 

SIGMA COMPUTER SPEED 

VB.  Arithmetic Times 

for various Indexing 

Arithmetic Unit Times 

. 

4 Main Mems. 2.0 )IS 

2 Fast M e m s ,  0.6  pa 

4 levels of look-ahead 
. 

- IAlJ4.4p~ 

. 
IAU 1 . 8 ~ ~  FOR MESH CALC. 

0 0.5 I .o I.!5 2.0 '2.5 
AVERAGE ARITHMETIC TIME (psec.) 
(Execution time for 'bveraqd'operotion) 



-41- 

The Monte Carlo problem is much less sensitive to 
arithmetic speed than is the Mesh problem. Their roles are 
reversed for the indexing arithmetic speed aince the indexing 
arithmetic unit controls the rate of instruction preparation and 
the Monte Carlo problem is in~ltru~ction-acces s limited. 

I 

r 

6 .  Speed vs Instruction Memory Speed and Instruction Buffering 

Figure 18 shows the effect on overall performance of the 
instruction memory cycle time. The most striking result shown 
is the reduction in speed of the Mesh Problem with the removal 
of the indexing arithmetic unit instruction buffer 

Not only a s  the speed of tha problem cut almost by a 
factor of two, but it clearly as~urrres the behavior of an instruc- 
tion-acces s-limited problem instead of a compute-limited problem. 
Thia instruction buffer (called Y2 in STRETCH) really serves as 
a 2 level Virtual Memory for the indexing arithmetic unit and 
gives many of the same advantages lo instruction preparation 
which the regular Virtual Memory does to data preparation. 

Far mor0 detail concerning instruction memory speed 
see the section on the Half microsecond memory below. 

7. Arithmetic Unit Efficiency 

One fallacy which ia frequantly quoted is that the goal of 
improved computer organization fejt to increase the arithmetic unit 
efficiency. Actually there a r e  two reasons why this is not the goal 
in itself, 'She first is that arithmetic efficiency depends strongly 
on the mixture of arithmetic and logic in a given problem so that 
a general purpose computer cannot hope to give equally high per- 
centage utility to all. 

The second reason i a  apparent in Figure 19 which ahows 
that the best way to increase the arrithmetic unit efficiency is to 
rjlow down the arithmetic unit! 

The real goal of improved organization is maximum over- 
all computer performance far min.imum cost. 
increase the arithmetic unit: speed as long a8 its percent efficiency 
ia reasonable for a variety of problems. 
when the overall performance gain no longer matches the increase 
in hardware and complexity. 
i s  a by-product of this design process not the prime variable. 

One will tend to 

One will atop this process 

Thua the arithmetic unit efficiency 
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Figure 19 

''- 

I 

CL. 

10001 

80°A 

60°4 

40% 

20% 

0 

SIGMA ARITHMETIC UNIT EFFICIENCY 

vs .  Ave, Arithmetic Time 

for various cases  

1 Index Mem. 0.8 ps 

4 Main Mems 2 . 0  ps 

2 Fast Mems 0 . 6  pa 

4 levels of look-ahead 

%Efficiency = Time A, U. is operating x 100 
Total Time for Problem 

REACTOR PROBLEM 
0 / 

COMPUTER TEST PROB 

0- MATRIX INVERSION 
MONTE CARLO 0" 

0 0.5 I .o I .ti 2 .o 

AVERAGE ARITHMETIC TIME (psec) 

(EXECUTION TIME FOR "AVERAGE" FLOATING OPERATION) 



-44- 

8. Speed v s  Concurrent Input-Output Activity 

Y 

Ul,. 

Becauee of the relative time scales of 1 / 0  activity and 
the CPU procesaing speeds the Simulator cannot take in account 
the availability or non-availability of data from 1/0 on the pro- 
gram being run. 
computation of the I/O devicea operating at different rates sim- 
ultaneously with computing. 

However, we can observe the effect on the 

Using the STRETCH control word philosophy it is poesible 
to have a number of input-output units operating at the same time: 
the Central Procersxting Unit is running. The Basic Exchange can 
reach a peak rate of 1 word every 10 micromconda. The high 
speed disk normally operatea at 1 ward every 4 microrreconds. 
Siace the mechanical devices take priority over the CPU in add- 
reaging memory, the computation slowa down because of mernory- 
busy conflicts 

Figure 20 shows an example of how internal computing 
speed is slowed a s  the I/O word rates are varied continuously. 
At the theoretical ''choke off" the 110 devices take all the vniarnory 
cycles available and stop the caleul.ation. Notice that this condition 
can never arise for any I/O rates plresently attainable. 

9. &eed vs Number of Memory Units with and without High Speed 
Disk Running 

Because there are fewer mtsmory cyclae available when 
there: are fewer memory u n i t s  
a larger percentage slow-down for a smaller STRETCH system. 
Figures 21 and 22 show this effect for two typical problems-one 
which irs normally arithmetic limitad and one which is inetruction- 
fetch l b i t s d .  The former is l e a 8  rrensitive to such interference 
mainly because the Virtual Memory haa more of an averaging effect 
on i t s  data memory references. 

the High Speed disk unit will cause 

The following table shows the (approximate quantitative re - 
duction in internal computing apeed caused by the disk running 
at the same time, using the speed *without I/O as 100% for each 
configuration. 

Number of Memories For Monte Carlo Problem For Reactor Problem 
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I -  
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The user of a small STRETCH system is thus penalized 
three times compared to a large system user: (1) The top speed 
of his system is reduced by the losrr of memory overlap, (2) H e  
has a larger I/O penalty when it is run concurrently with the 
computation, and (3) the smaller amount of data which he can 
hold in the memory at one time increases the amount of 1/0 
activity he needs to do the job. 

Looking at it more positively, the user who in the past 
purchased larger memories for his 704 obtained only the bene- 
fits of the third effect, while a STRETCH user also gets a I1bonusl1 
of the first two as he expands his system. 

D. The Effect of the Half-Microsecond Instruction Memory on STRETCH 
Performance 

1 Introduction: 

During July and August of 1958 a series of Timing Simu- 
lator runs were made to evaluate the status of the SIGMA and 
HARVEST computers. One parameter studfed was the speed of 
the instruction memory. Several runs were also made in which 
there was no separate instruction memory but instructions and 
data were stored in the same boxes. 

The results of these runs proved to be quite important 
in evaluating the importance of the half -microsecond memory 
to the STRETCH program. 
from Project 7000 File M e m o  which was published at that time. 

The fo1:lowing analyrsis is taken 

2. Advantages and Disadvantages of the Half -Microsecond Memory: 

A. The primary advantage of the half-microsecond memory is, 
of course, its speed. This speed is beneficial in the following 
two casea: 

(1) PmgraxnrJ can be instruction access limited either be-  

If the half- 
cause they consist of a series of short operations, or 
because they contain many branch orders. 
microsecond memory is used for instructions it  will 
help reduce tha limltatiaxi by furnishing the instructions 
at a farrter rate. 

(2) In programs which are drsta-accesa limited, putting 
the data in the faster mznory will cut down the time 
required for fetching the data. VFL operation8 with 
ahort fields are in this category. These are of par- 
ticular importance for HARVEST applications a 
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tn both of the above cases it is the speed of the memory 
compared to the arith.motic speed which is the important 
ratio-the faster the arithmetic speed the faster the memory 
required to service it properly. 

B .  
is its size. Each memory box contains only one-aixteenth 
as many words a s  a comparablle two microsecond memory 
box. 
performance becauw more time will be spent reallocating 
programs. Unfortunately this reduction cannot be evaluated 
quantitatively by simulation since i t  depends on the nature of 
the future problems, and on the nature of future methods of 
scheduling machine use. 

The main disadvantage of the hal€-rnicrosecond memory 

This decreased size certainly must result in reduced 

There is another advantage in larger memories3 which is even 
harder to evaluate and that is the removal of programming re- 
strictions which exist when programs must be cut to fit a small 
memory. 

3. Simulator Input Data: 

The test problems were run with most of the recent design 
changes simulated, including the Q,8 microsecond 1-Box repetition 
rate and the 0.2 microsecond bus dots .  
for the runs were: 

The arithmetic speeds used 

STANDARD SIGMA HARVEST 

Load, Stare 0 . 2  us 
Floating Add 0.6 

Floating Divide 1. a 
Floating Multiply 1. 2 

6-6-34 average 

0 . 4  ua 0 . 4  us 
I .  0 1 . 0  
2 . 5  7 .5  

7 . 5  7. 0 
1* 43 2.40 

- - 

*- 

The average times listed on the la& line are used for 
convenience of plotting only. 
intended to represent present STRETCH values. 

Them arithmetic speeds are not 

4. Results: 

Results af same of the runs are given in Table V. A short 
summary of the pertinant results are given in Table VI.  
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Straight overagtas 0% ths percentage loases da not tell the 
whole story. There are abrupt changaa in behavior for Borne of 
the problems from one case to another. Upon examination, the 
reason in each case waa due ta the problem becoming instruction- 
access limited where it had previouelly been ar i the t i c  limited, 
Each problem crosms over under different circurnatances because 
of its own particular combination of instructions. 

Table V I  also lists the programs which seem to be instruc- 
tion-acces s limited for each memory and arithmetic speed configur - 
ation. 

The phenomena which has beien obaerved so many times 
before, still holds here- - -the highel: the machine8 overall per- 
forrnanceI the more sensitive it becomes to each individual corn- 
ponent's performance. Thus, all of the problems are prone to 
become instruction-access limited a t  STANDARD speada, where 
only the faithful Monte Carlo code is limited at HARVEST speeds. 

The magnitude of the lorsses :must be considered as we11 a0 
the pattern. 
haMng a separate instruction memory i s  as large or larger than 
the speed of the memory. The average percentages are given in 
table VUe 

Clearly the memory interferences caused by not 

5 .  Rough Estlmate of the Effect of Having a Larger Instruction 
Memory on Computer Speed: 

A s  was mentioned in section 1, the favorable speed ad- 
vantage gained by having a larger instruction memory is hard 
to a88888 quantitatively. 
order -of -magnitude eatimate only. 

The following is intended to be a raugh 

In a given time T,  assumed to be long enough to do several 
problems, the computer wi131 divide: its activities between the time 
spent on useful calculation and the time spent on swapping codes in 
and out of instruction memory. W a  may write 

T = n t ,  + n Rtc - ntc (1 + R.) 
where n a the number of useful inlstructiona executed 

R *; the ratio of the nuxnber of words swapped per useful 

t, = average time per calculation executed. 
instruction executed. (R should be much less than 1 )  

(For simplicity the time for swapping an instruction is  taken 
the same as tc . )  



The speed of the computer, $3, i s  proportional to n/T, 
the number of useful operations per unit time. 
the ratios of the speeds of two systems as: 

So we may write 

The tcl/tez factor is the ragular speed-up caused by the 
faster memory. 
aulting from the effect af swapping codes. As a gums, we can 
take R as being inveraely proportional to the memory size, ao that 

The term involving the K's  i a  the new factor re- 

also since the R 1 s  are both much l e s a  than 1, we may write 

In the! present caae, consider a 10% computer speed dif- 
ferential on t d a  between the half and two-microsecond memories, 
which differ in siee by a 1 ta 16 ra?tio. 
R2 will be necessary to make the half mfcrosecctnd memory result 
in an increase in epeed oyer the two microsecond memory. 
answer ilcr approximately: 

W e  can a& what value of 

The 

That 50, each inatructicm in the hdlf microsecond memory muat 
be used at lsaat 10 t imes In an average prograsra, before it is re- 
placed in order that the half microsecond memory show a net 
increase in a p e d  uver the larger, slower 2 us memory. 

Very roughly speaking, each instruction must be w e d  at 
least once for each percent lolss in a p e d  under the configurations 
teated hers to. 'bra& even. It s e e n n ~  likely that this condition will 
be easily satisfied in practice, so that the faster memory will in- 
deed reault in a faster cornputgr even though part of ita advantage 
ier. lost. 



The other factor mentioned which favora larger mem- 
ories is the effect of being able to write leas complicated codes 
when they need not be cut to size. One can express this factor 
as  a (1 + f )  term times the! speed of the computer to givee its 
effective speed. This speed gain ia because the machine has 
to do a fraction f fewer hatructions to accomplish the same 
job with a larger memory as it would take with the smaller. 
Since this fraction is so strongly a function of the problem in- 
volved, one can only guess what it will be aa an average for 
all SIGMA problems. It should be in the 0 to 10% range, how- 
ever. 

6. Conclusions: 

Whether a problem is instruction-access limited or not 
is the main property which determines its behavior under 
change# in instruction memory. 

The property of being inatruetion-acceBs limited depends 
coneiderably on the individual aequence of instructions in 
a problem itself, and on the! relative speede of the arith- 
metic unit and the instruction memory. 

The higher the performaince of the computer, the more 88'12- 

sitlve iar i t a  speed to changes in instruction memory con- 
figuration. At the, SIGMA. speeds, replacing the two 0 .6  
UB memory boxes by two 2 . 0  UB memories results in an 
average of 2.5% loas in performance in the cases teated. 

At SIGMA Bpeeda, intermixing data and inastructione 
causes an average 1088 of 3.9% in performance over 
having a separates 2.0 UUII inatructicin memory. This is 
because conflictsl betwean data and instructions delay 
inlatruetion acce08e8. Note that this is larger than the 
effect of memory rspeed itself. 

The speed gain8 from having a faster memory are reduced 
somewhat by the fact t b t  it isj smaXlsr and more time 
muat 'be spent swapping cod at^ 
effect tirnewiae however. 

This mema to be a small, 

The effective, performance increase pomaible because 
bigger prograsxrrs may be) put into the larger memory at 
once is hard to asseae. It is probably also in the 1 to 
10% area. 
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TABLE VI 

Summary of Results: Average Computer speed changes caused by In- 
etruction memory speeds and Arithmetic Speeds $ straight averages for 
all five test problems. 

STANDARD AU Speede 

1. 2 112 us Mems. 
2. 2 2usMems 
3. No. Xnstr. Mem. 

SIGMA AU SDeeda 

1. 2 1 / 2 u s  m e m s  
2. 2 2 u s M e m e  
3. No. InrJtr. Mem. 

HARVEST AU Speeds 

1. 2 1 / 2  u8 Mems. 
2. 2 2 us Mema. 
3. No. Inatr. Mem. 

Average Percent Decrease 

0 
-2.5% 
4.4QIO 

0 
-1.8% 
-3 .8% 

Problems*which are 
Instr. - access limited 

*The Problem numberhi are those given in Section VB. 
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TABLE VU 

Average Percentage Losses for all problems. 

Arithmekic Sneeds 

STANDARD SIGMA 
A n  loss caueed by 

Memory by 2.0 u8 N s m -  
ory. 

replacing 0 . 6  us Inetr. -3aBVo -2,570 

Average additional loss 

arate Xnetr. Memory. 
caueed by having no aep- -12,2% 

Maximum loss caused 

Inetr, Memory by 2,O 
us Memory 

by replacing 0 . 6  ua -9 .5% 

W3-M 9 % 

-8 . ai% 

Max. additional lone 
c+uesd by having no -19 .5% -6.6% 
separate Inetr, Mem- 
ory. 

HARVEST 

-1.8% 

- 2, Mi0 

-8.270 

-4.7% 
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E. A Study of Branching on Arithmetic Results in STRETCH 

I . 

.* 

t 

1 . Introduction: 

The asynchronous organization of STRETCH allows many 
of the components of the Computer System to be operating at the 
same time on different jobs and thuis by overlapping greatly in- 
creases the overall efficiency of the system, 

Unfortunately this organization also has it8 drawbacks. 
In particular, one of the curses. of the non-rrequential prepara- 
tion and execution of inatructions is that if there is a Branch in 
the problem code it apoils the smooth flow of instructions to the 
Indexing Arithmetic Unit. Any branch in a program will cauae 
some delay, but the ones which hurt the most are the branchea 
on arithmetic results which cannot be detected by the Indexing 
Arithmetic Unit in advance, 

2. Ways in Which Arithmetic Reault Branches can be Handled: 

There a re  two fundamental ways in which branchea on 
Arithmetic Unit results can be handled by the computer: 

(1) The computer can etap the flaw of instructions until 
the Arithmetic Unit has completed the preceeding ap- 
eration so that the result iar known, then fetch the next 
correct inatructian. Thiti places a delay on every AU 
reault Branch whether taken or not, 

(2) The computer can 
going to go before 
ing and preparing 
the under standing 
instructianra must 
taken instead. 

I 

'1guesP which way the branch ia  
it  ier taken and proceed with fetch- 
the instxuctiona along on0 path with 
that if t<ha guess W ~ B L  wrong, these 
'be diacsrdrsd and the correct path 

Under the second alternative there are four posaible ways 
The branches in question are in which the guessing cars ba made. 

indicator branches on the Arithmetic Unit reault indicators, Them 
operations have a modifier which allows the branch to be taken either 
if the specified indicator is on or off. 
indicator is on or off for each, the four combinations are: 

Since one can guese that the 



Caae Name Operation - -  
I: NN-FF b d  Branch on 

off 
0 

u. N F - E "  Ind Branch on 
off 

III NN-F'N h d  Branch on 
off 

I V  NF-FF Ind Branch on 
Qff 

Guesa 

Ind on 
off 

Ind off 
an 

Ind on 
on 

Ind off 
off 

Assumed Result of Operation 

branch 
branch 

no branch 
no branch 

branch 
no branch 

no branch 
branch 

3. Simulation Results: 

To study the effects of wrong-way brancheB on the SIGMA 
Timing Simulator, the Monte Carlo Branching Code was chosen 
acB the guinea pig. The code was rewritten 80 that every arith- 
metic result branch was a wrong guess and again so that every one 
was guessed correctly. (Note that meither af them extremes is 
actually posaible in a program with branches u n h a a  they are 
eesentially uncanditianal, ) 

Several runs were made varying the, inatruetion memory 
speed and the At7 andl IAU timea. The regular (NF-FN) ease herd 
two wrong branches aut of thirteen sncauntered in one loop of the 
program which conaista of fifty-nine operations executed per loop. 

By examining the timing charts drawn by the Simulator for 
many of the individual branchest th(e average time dsslaye listed in 
Table VI11 were derived. 

Tabla VIII: Avaraae Time Delay per Individual Branch 

no bzanch right 0 u19 0 us 
no branch wrong 2.5 UB 3w2 us 
bxmch right 1 . 5  us 3 . 2  ua 
branch wrong 3. 'f u61 4 .8  UI 

For Wtandardl' T h m  (AU 0.64 ua, IAU 0.6  UB) 



xf one takes the actual times to complete the problem 

The 
in each caae and divides the total delay by the number of wrong- 
way branches, one obtains the t imes  listed in Table IX. 
approximate delay clue to the memory interferences, etc. , caused 
by starting the processing af the wrong instructions, can be es- 
timated by comparing the times in Tabla VI I I  with those in Table 3uc. 
These interference times are listed in Table IX. 

4 

L Table XX. Average Time Delay in Total Problem per Wrong-way Branch 
O.6us mem bn~tr. ry. Oh2&n.;+: 

For 1'RecommendedTimes~'(AU4. 09 u s , I A U ~ O .  9us 3 . 6  us 4.3 us 
For Itstandard Timesi1 (AW=O. 64 us, uLU=O. 6 us) 2 * 9  ua 3 . 5  U8 

Extra Delay due to memory Interferences 0.5 U8 1. 0 U B  

Presumably if one holds up on every branch (Case 0) the 
t ime loss will be about that of assuming no Branch and guessing 
wrong. (line 2 in Table VXTI). J3 one guesses according to one of 
the four other cases ,  the: time loss will depend on (1) the percent- 
age of branches which are Br-ons, (2) the percentage of Br-on8 
which are actually taken, and (3)  the percentage of Br-offa which 
are actually taken. 

The calculation will be delayed by each branch taken even 
when they are guessed correctly, however, since we are interested 
in examining the additional time loat due to gueasing wrong or hold- 
ing up, the delays due to correct branching should be removed. The 
following times in Table X may be used to compute actual combina- 
tions of branches. 

Table X: Average Time Delay per Branch 

Computer Should Have 0 . 6  us Instr. 2.0 ua hstr .  
Gueased Guessed 7 Memory i Memory 

Hold up no branch 2. 2 U8 
Hold up branch 2 . 5  us 
no branch no branch rD us 

Branch branch (0 us 
Branch no branch 2 . 7  us 

no branch branch 3. ID U8 

1 .6  ua 
3.2 u13 

4 . 2  ua 
0 u19 

2 . 6  us 

0 U8 
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The temptation in evaluating the individual casea is to 
assume 50% for all the combinatione and essentially average 
the time losses. Actually, by examining a few problems auper- 
ficially, we have found that considerably fewer than half the 
arithmetic result branches encountered in a code are actually 
taken. About 20% seem to be more typical. Thia seams to be 
due to the tendency of coders to think of the branches a s  being 
exceptional cases. 
code continuously and the excaptionrs elsewhere. 

They normally write the main flow of the 

There seems to be a tendency to link indicators turning 
on with exception cases. In time this would result in fewer Br- 
on6 being taken and more Br-offs boing taken, These generaliz- 
ation# are admittedly uncertain mainly becauae very few relevant 
statiatics are available. 

There is also a 'lfeedbacktl in  such statistics becauae the 
way in which the machine gueaaes the branches will influence 
future programmers to write their codes to take advantage of 
the speed gain, 80 that the atatistics of the future will be biased 
in favor of the system chosen now I 

Table XI compares the five cases for several assumed 
values of percentages. 
to the averages to be expected. 

The last two Lines are m y  guersses as 

Table XI: Average Time Delavs Der Branch for the Different Case8 

% 70 % 
Br-ons Br-ons Br-offs Case 0 C a m  I Case II Case I11 Case IV 

taken taken Holldap NN-FF NF-FN NN-FN NF-FF 

50% 5070 50% 2.35~0 1 . 3 0 ~ ~  1 . 4 5 ~ 8  1.381.16 1.38ua 
for 0 . 6  ua. Instruction Memory 

50% 2070 2070 2. 26 2.14 0 .54  1 . 3 3  1.42 U8 
80% 20% 8070 2. 30 1 .69  0.89 1 . 1 9  0 . 4 7  

for 2.0 us Instruction Memory 
50% 50% 50% 2 . 4 0 ~ ~  1 .OOus 1 . 8 0 ~ s  1 . 4 0 ~ ~  1 . 4 0 ~ s  
50% 2070 2Oyo 1 . 9 2  1 .96  0 . 3 6  1.16 1.64 
80% 20% 80% 2.11 1.45 0.84 2. 22 0.10 

4. Cancluaions: 

(1) The performance variation in a problem with a lot of 
arithmetic data branching can vary by approximately 
{ 15% defiending on the way in which the branches are 
handled. 
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(2) Holding-up on every branch seems to be l e a s  desir - 
able than any of the guesaing procedures. 

(3)It is very unlikely that one ever get fewer than 15% or 
more than 85% wrong-wa.y branches regardless of his 
procedure. 

(4)It seems possible to get ,a fairly low loss by picking 
Case IV, provided the percentages on the last line of 
Table IX really are correct. 
centages should be different, Carse IV is much mare 
sensitive to them than Case 11. 

However, if the per- 

( 5 )  To be really effective Ca,se IV needs the exiatance of 
the indicators 0 5 0 to make the distinction be- 
tween off and an precise. At present one must code 
"Br-on O", a8 W r  -off P 0 ,  '1 IO that the equating 
of Itont1 to "exceptional ease" is apoilerd somewhat. 

( 6 )  The highest performance would be: obtained if each 
branch had an extra "guews bit" which would permit 
the programmer to apeclify which way he enstimates 
each branch will moot likely go. This seems to be 
impossfble in the present format schemea. It also 
would place a considerable extra burden on the pro- 
grammer for the gains promiaed. 

5. Recommendations Finally Prerranted as a Result sf the Simulator Runs 

C a m  XI (NF-FN) should be adopted a a  the gusasing acheme. 
This mean8 that for any branch for which the lAU cannot compute 
the correct outcome, it should gutma that the branch is not - taken 
and proceed with the processing of the next inratruction. 

Case 11 waa chosen over c a m  :tV because; 

1) Ita time loss is low (at heasat second best) 

2) It does not require sptscial controls for deciding whether 
to asaume a branch i s  ta.kan or not 

3) It does not require? thrit new indicators be defined. 

4) It should not confum the programmer with complicated 
rules of coding the way Case IV might. 
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VI. APPENDIX: Details of T h i n g  Simulation Program SM-2 

The following pages give detailed symbol definitions and flow 
The diagrams accurately repreaented diagrams for the SIM-2 code. 

the code at the time they were drawn. 
tions to the program since then, particularly in the I/Q rrimulation 
section, but they do not change the main 1,ogic of the flow. 

There have been aome addi- 

The simplified flow diagram, Figure 11, shows the major 
The following pages elaborate upon this sections of the program. 

figure. 
Section 111. 
parts in the flow diagrams which follow. 

The logic of the Virtual Memory operation is described in 
The logical diagrams given there have direct counter- 



STRETCH Timing Simulator Program S M m Z  
List of Quantit€es Used in Flow Diagram 

Table 1 

Quantities Concerning Instructions fed thTough Simulator u 
I 

Instr. 
Input 

bstr. Number 

Ins tr . Location 
#f Index Addr. 
#II Index Addr . 
Data Addresa 
Special Desig. 
Return Tag 
Sp. Sp. Deaig. 
Compare Bit 
Forward Addr . 
O.K. Bit 
Forward Bit 
Mem. Bring Bit 
Unit Clock 

op. Code 

I11 
112 
I13 
E4 
115 
116 
xr7 
I18 
119 

Main 4 

Instr, 
Mcm. 

4 & 
Instr. Number 
Return Adds 
Bring Bit 
Read out Clock 
End Sig.Clock 
Mem. Cy.Clack 
Mem.Res .  Bit 
Mem. Box No. 

h o k -  
ahead 
teady 
Xeg . 

LR3 
LRI 

LR2 

' Index 
Core 
Mem, 

l x M 4  
IXM2 
E M 6  
IXM8 

Look- 
ahead 
.evels 

LAU8 
mu2 
LAU 1 

LAU3 

LAW4 
LAW5 
LAU6 

LAU9 
LAU? 

Central 
Control 
Decode 

XBDI(or 6 )  
XBD (or 5) 
BD2(or  7) 

lBD4(or 9 )  

T]BD3(or 8) 

hstr ,  
Fetch 

IMRS 
IRUM 
ICAN 
ICRl 
ICR2 

B U G 2  

Bus to 
Mem, 

YF1 
JF 
JF2  

YF4 

JF3 
Y F m  fast 
memorl 

SM-main 
memorl 

Arith. 
Unit 

IP1 
N U U 1  
NRAU2 

JAUT 

But3 
From 
Mam. 

-~ 

N F I  
NF 

NF2 

NPIFast 
memory 

NMPmain 
memory 

Indexing 
Arithmetic 
Unit 

IRO 
3EtO 
IRO 

lEZO1 (Fetch) 
IRI (Return) 

INS 

Exchanges 

( 9 0 , 9 1 , 9 2 , 9 3 )  
32 
1 OF 0 

CLC 

IOM 
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List of Syrnbolcc 

TABLE 11 

I 

B 

L 

i 

"4 

Control and Tally Quamtitiea 
L I * '  . -  ' 

1. I '  Look-Ahead Symbols: 

NCTRA Instruction Fetch Counter 
NCTRB Data Fetch Counter 
NCTRC Data Store Counter 
NSTOB 
NLH Number  of Look-.Ahead level8 
NBFR Modular value of NCTRC 

Store Bit (an unexecuted Store) 

2, Conflict Counters, and Tallys: 

CTT 
CAU 
cmu 
CADLA 
CLAP 
CWI 
CWM 
CDLA 
CXF 
CIM 
CQF 
COM 
GIST 
CIIMM 
CMAAC 
CFMC 
CXMC 

Total Time Tally 
Arithmetic Unit Tally 
Indexing Arithmetic Unit Tally 
Average depth of LookhAhetad Tally 
Look -Ahead Full Tally 
Arithmetic Uni t  Waiting on Instruction Tally 
Arithmetic Unit VKaitlng on Data Tally 
Look-Ahead level use Tally 
h-Bu6 from Fast: Memory Tally 
b-Bua from Main Memory Tally 
Out Bus (Read) to Memory Tally 
Out Buts (Write) to Memory Tally 
bdex State Tally 
Memory uae Tallmy8 
Main Memory Conflict Tally 
Fast Memory Conflict Tally 
Index Memory Conflict Tally 

MARK Time Counter for Listing 
BIB Break-in Bit on WrongwWay Branchem 
SKIP Signal to ttRwz-Dxnylt st End 
TALLY Count of Number of Executed Oplp. 
A ,  I3 AD, THINK Tampor ary Locations 
JUDR,IDW ,LDA Pseudo-op Controls, etc, 
LASCB LookmAhaad, Self Compare Bit 
PBSCT I CBIT , PHDB 
TBXT , WBXT Controls for Printing; 
IB 
IF, RP, 8 P  I SSP 

Block for Input from Control Garde 
VariouPr Printing Blocks 
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List of Symbolrs 

Table nt1 

Input Constants Appearing on Summary Liating 4 

C 

Symbol Name 
on in Description 

Listing Code 
vryl ' - .  ' . - * L . l '  

LA 
FM 
MM 
IR 
IS 
IA 
ID 

M B  
FB 
l?D 
HM 
HE 
x1 
x2 
MD 
F1 
F2 
F3 
M1 
M2 
M 3  
15 
14 
13  
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
LE 

NLH 
NUFM 
NUMM 
lrNX - 4 
XNX-3 
INX-2 
mx-1 
INX 
NMBT 
NFBT 
IDMT 
DMT+1 
U>MT+2 
IDMTi-3 
U3M T+4 
IDMT+5 
MFT 1 
M F T  2 
MFT 3 
MMT 1 
MMT 2 
MMT 3 
5"-15 
JT-14 
5"-13 
JT-12 
3T-11 
JT-10 
JT-9  
J'T-8 
J'T-7 
JT-6  
STIES 
YT-4 
JT-3 
JT-2 
JT-1 
JT 

No. levcles of look-alhead 
No. of fast memory boxes 
No. of main m e m o r y  boxes 
Index reset U U  State 4 
Index s tore4  WW State, 3 
Index a d d 4  31AU State! 2 
Index Decode JAU State I. 

Main (or write)  bus time 
Fast (or read) bus time 
Fast: Memory bua decode time (CCU) 
Hamming check time) 
High Speed Exchange1 word rate 
Index Memory read-out t*e 
Index Memory cycle time 
Main Memory bua dercode time (CCU) 
Fast Memory read-aut time 
Farst Memory end signal time 
Faat Memory Total cycle time 
Main Memory read-out time 
Main Memory end signal t h e  
Main Memory Total cycle time 
op.  Codlet 15 Square Root 

(not us e d) 

14 Divide 
1 3  
12 Cumulative Multiply 

10 
9 Add 
8 
7 Load 
6 
6 
4 Immediate OPS 
3 Immediate, Ops. 
2 Immediate Ope, 
x Bnmediate Ope. 

11 Mu1 t ipl y 

Low Speed Exchange word rate 



Liat of Symbola 

Table XV 

Output Repults on Summary Listing 

Symbol Name 

Liating Code c Y 

on in Description 

XMC 
TT 
AU 
ULU 
A D U  
LAP 
WI 
W M  
DLA- 
IBF 
IBM 
RB 
WB 
Is- 
M- 

MMC 
FMC 
WBC 
KBC 

(CXMC) 
CTT 
(CAW) 

Index Memory Conflict8 (in 70 of total time) 
Total Time of problem (XXX. X microseconda) 
Arithmetic Unit busy (in 70 of TT 
Indexing Arithmetic Unit bupsy 
Average depth of look-ahead 
Look-ahead full 
Arithmetic Unit  waiting on inatructions 
Arithmetic Unit waiting on data 
70 Time Look-ahead has depth specified 
In bus from faet Memory busy 
In bus from Main Memory busy 
Read bus to Memory busy 
W r i t e  bus to Memory busy 
Time apent in Indexing State specified 
Time Memory Box specified is bulsy 

Main Memory conflicts 
Fast Memory conflic'ts 
Write burs conflicts 
Read bun conflicts 

(M12 to M5 are Main Memories, M 4  to M1 are Instr. M e m e .  

TST 

Op coders: (1) 1 thru 4 Immediah (1- wrong-way branch) 
(2) 5 thru 34 bring type (See Table 111) 
(3) 35 indexing type 
(4) 36 to 97 store type 
(5) Instruction No. 98 Stop in AW and Tr to Summary 

Return Addresrrrm: (1) 20 - I M J  data 
(2) 21 Instruction fetch 
(3) 1 2,3, . (I 8 a Look-ahead levels 
(4) 32 = Exchange 
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A 72 
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r(3 332 

J. 
A 33x 

J =b 

7 



I+ I I Xbrdcru 

I I ,  

I 

I 

.1 
A346 
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A345 
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