- APL/IDS SYSTEM - POUGHKEEPSIE
Department H-65, Building 956
Extension: 255-8474

May 10, 1971

RECEIVED
MAY 2 6 1971

APL PROJECT

Memorandum to: Dr. A/ D. Falkoff

Subject: '~ shared Variables

Following are my thoughts regarding shared variables arrived at
during the drive back from the meeting on April 27. First of
all, let me compliment you for having organized a good program.

The proposal for shared variables is elegant. As far as we can

see, it will be possible for us to adopt it without difficulty,

and .to do it in such a way that users of our system can move over

to it without undue inconvenience. The biggest surprise to us

was that you do not plan to treat large files on disk as completely
transparent variables. We were prepared to follow you in this direc-
tion; for example, our disk reading I-Beam is equivalent to:

z2 [A + i B]

Where .Z can be a file on disk, A the index within it, and B the
nunber of elements desired. -

We realize that the implementation which you have used was an ex-
pedient for getting in operation quickly, and that something quite
different later may be done. Sometimes, however, temporary measures.
become permanent before the alternatives to them are understood.
For this reason, we have the following comments:
(.

a) - It is our belief that dividing a process in two parts to be

put in separate partitions is nearly always damaging. It

usually has two negative side effects:

1) More main memory space is required.

2) I/0 performance suffers because much of the I/0
management has to be turned over to the operating
system, which has less information to go on than
is available when all of the I/O management is
handled within one partition.

Dxr. A. D. Falkoff , ' May 10, 1971

Shared Vvariables Page 2

b) The APL package provided should be complete within itself,
There should be no programming required of the customer to
prepare to handle cards, tapes, printer, disks, etc.

[DN

¢) All customer programming should be done in APL. The customer
should not need to know or use COBOL, FORTRAN, PL-1l, or assembly
language. :

d) The two processors involved ordinarily have at least momen-
tarily a master and slave relationship. The only exception
we know is simple interrogation, such as looking at a clock,
in which one processor is oblivious of the other.

e) It is very important to keep down the amount of main memory

required to use APL. We know of more than one APL sale which
has been lost because of the space which APL regquires.

Following the above lines of reasoning, our implementation works
in the following way:

° We are providing all of the necessary controls for cards,

tape, disk, and printer as primitive preprogrammed I-Beams.
‘"The customer has no programming to do to prepare to use these
"processors". They do not require a separate partition. They
are stored on disk and with the exception of the space for
DTF, etc. within the operating system, take no memory space

. exXcept when called. Their management is included within the

compass of the overall data management of the partition to
ensure maximum efficiency. 7 :

We draw a distinction between shared variables on disk, which
require no manual attention, and cards, tape, and printer, which
do. A shared variable on disk differs from other variables only
in having two names, rather than the usual one. One name per-
mits reading, and the other reading and writing. The names

are synonymous with security codes, as is true for workspaces
and sign-on numbers.

Tape, card, and printer operations are presumed to be initiated
only by the system operator. We have found no condition under
which a remote user might reasonably be expected to initiate
their operation.

Our basic practice in the handling of tape shared variables is

to transfer data on tape to disk without conversion or formatt-
ing of any kind. For example, if a user sends us a tape to be
put into the system, we enter its data directly on disk as' a
shared variable and leave it up to the user to do later all
necessary conversion and formatting in APL. This works out well,
and in time will be extended to cards and the high-speed printer.

i oA TR SRR,

'Dr. ‘A. D. Falkoff ' May 10, 1971
Shared Variables Page 3

° For our Model 50 system, it appears to bhe efficient to
transfer data directly from the workspace to disk or tape
or to card or printer buffqr. This eliminates the need
for a buffer area in memory through which to transfer the
data.

° Our thinking is in line with Mr. Perry's with respect to

" the amount of use of shared variables. We expect that about
50% of the users of the system at all times will be working
with disk files. This means that disk traffic will be high,
and that a buffering area in memory would be of significant
size. Certain of the data transfer operations which we per-
form today between disk and workspace involve blocks of 6000
bytes.

° Where communication is required between two or more processors
of egual rank, as for example in simulating the play of chess
.or bridge game, we are able to use the disk as an intermediary
.8lave to provide the equivalent.of the kinds of operation you
demonstrated. : ’

° The only added memory space which we require to provide shared
variables is for a list of active shared variables together
with the basic operating system areas, such as DTF's. Each
‘variable occurs in the list only once, regardless of the number
of its users. E

° We are running into demand for high-speed data transfer from
our system to other computers, 2780 printers, etc. This will
be handled by treating the high-speed line as a slave processor
within the APL partition. .

It would seem.to us that it should be possible to retain the elegance
of expression which you propose and still achieve the simplicity,
low_memory requirement, and high performance which we hope to have.

.) S. W. Dunwell
SWD:jc ' :

¢c: Mr. D. Beverson
Dr. K. Iverson
Mr. H. Lyons///
Mr. P. Phelps
Mr. N. Rasmussen

