r)
~
AN
:
N

September 27, 1956

PROJECT STRETCH
LINK COMPUTER MEMO NO. 10

TITLE: Floating Point Definition

BY:

F., P, Brooks

As a result of conferences between Messrs, W, Wolensky and F, P. Brooks,
and the specifications suggested at the meeting with LASL representatives
on September 19th, the following definitions of floating point operation in the
Link and Stretch are proposed:

1)

2)

3)

4)

5)

A floating point number shall be represented by an exponent sign,
an exponent magnitude, a fraction sign, and a fraction magnitude,

Simple logical addition and subtraction shall be able to modify the
exponent and its sign in such a manner as to effect multiplication
and division of floating point numbers by powers of two for all
floating numbers, Alternatively, a special mode of floating shift
that suitably alters exponents shall be provided.

For exponent magnitude, at least eight and not more than twelve bits
are needed, While the smaller exponent range forces scaling in
some few problems, it shortens considerably the time required for
a program error or an instability in mathematical method or model
to show itself by oxerﬂow or underflow, It appears that the seven
bit magnitude (10 "‘38) presently available in the 704 is satisfactory
for most LASL problems. The exponent should express a power of
two, since thie simplifies circuitry for comparison and arithmetic
operations, '

Underflow conditions (exponent sign negative, exponent magnitude
overflow) shall set a selector. It shall be possible to cause break-in
(Switch of program control to another instruction counter) at the time
of underflow selector transfer without a programmed test in the
operating program. This offers to the programmer the options of
transferring to an error routine immediately upon underflow or of
changing the underflowed quantity to zero,

Overflow conditions (exponent sign positive, exponent magnitude over-
flow) shall set a separate selector which shall have the same control
powers as the underflow selector.




-

6)

7

8)

9)

10)

Page - 2 -

- All words with a zero fraction shall be treated as mathematical zeros,

satisfying these equations in all floating point operations and all com-
parisons with all floating point numbers:

For all X#0 X+0=X
X, 0=0
O/K « O

- [x|<-0 w0 </x/

In order that these conditions be satisfied, it appears desirable to let
one bit indicate a zero fraction, and to set this bit when a word with
zero fraction leaves the arithmetic unit after a floating point opera-
tion. This should permit time saving on additions, multiplications,
or divisions of zero, and would simplify comparisons.

An attempted division by zero shall set a selector other than those
provided for overflow and underflow, and this selector shall have the
same break-in property that those do,

A set of unnormalized floating point operations shall be provided to

aid fixed floating conversions and special operations.

The standard floating point operations shall provide full normaliza-
tion after each operation, so that floating point numbers are ordinarily
stored in fully normalized form. LASL representatives pointed out
that unnormalized storage with left and right shifting before floating

- additions, etc., might permit time savings in some common problems.

These savings are on the assumption that the time required for shifting
and normalizgation will be linear with the number of places to be shifted.
The possible time savings on accumulation are somewhat offset by pos-
sible time losses on comparisons, multiplications, and divisions, and
by circuitry complications. It does not appear that shifting in the Link
and Stretch will necessarily depend linearly upon the number of places
to be shifted, and the possible net time savings of the semi-normalized
mode of operation does not appear to be worth the complications intro-
duced,

If floating point addition is accomplished in such a way that a single-
word addend can be summed with a two-word augend in the central re-
gisters to provide a two-word sum, provision of this type of operation
will simplify programming of long accumulations., These at present
demand a consideration of the order of addends.




