~. ; - i
COMPANY CONFIDENTIAL

PROJECT STRETCH

FILE MEMO #46

SUBJECT: Binary-Decimal and Decimal-Binary Conversions

BY: H. C. Montgomery and W. Wolensky . :
DATE: September 21, 1956

Summary

A number of conversion techniques are mentioned and given an approxi-

mate evaluation using criteria of interest in computer applications. In

some detail a modified table look-up method is described which appears

to have comparative advantages of speed, flexibility, and loglcal sim-

plicity.

The Methods Considered (see references 2 and 3 for detailed procedureés)
‘ 1. Repeated Division. In this method the number to be converted, the

model number N,,, ‘is divided (or multiplied if N, is a fraction) by
the image radix. The partial remainder is the least significant bit
of the image number Nj. The process is repeated until the partial
quotient is zero. ' 3 '

2, Repeated Subtraction. Using this method one subtracts from Ny,
the highest power of the image radix which is less than or equal
to Npyye Al placed in the appropriate bit position of the conversion
image Nj of N indicates that a subtraction has been made. Taking
the part1a1 dlfference, successively decreasing powers of the image

- radix are tested until a-subtraction yields a non-negative difference.

Powers of the radix not subtracted appear as zeros in the corres-
ponding bit positions of N;. The proceés continues until a partial
difference equaling a power of the image radix is obtained.

3. Boehm Shift Methbd. Described by Miss E. Boehm and Mr. J.
Griffith in the 704 literature, this method combines features of a
number of other methods in a fast but complex shifting-adding-
testing procedure, '

4. Summation Method, The most significant bit of Nn’;"is multiplied by
‘ the model radix expressed in the image radix form; The next bit is
: added to this partial product and the multiplication repeated. "The
procedure continues until the least S1gn1f1cant bit has been added to
1Mm preceding partial product ~

FILE MEMO #46 -2 September 21, 1956

5. Modified Table Look-up. N, is converted a byte at a time, The
conversion images of the bytes are extracted from the machine
‘memory and added together to form N;. The images in the machine
memory represent previously computed conversions for all possible
combinations of the byte arrays.

An approximate evaluation of these methods according to six criteria
is summarized in the table on page 6. ‘

In each of the methods listed above, provision must be made for converting
floating point numbers, The method described in some detail below seems
to be the most favorable of those with which we are familiar at'the present
time. It is a combination of a table look-up scheme and a method described
by Dr. W. W, Peterson in his paper "Editor and Translator PK EDIT".

Notation

The following notation proves to be convenient:

1. n = the number of bits in ohé word,

2.. Nf = the fraction part of the ﬂoating point number N.

3. N€ = the expo’neht part of the floating point number N.

4, S = the address of the first cell of the block of memory in which
column three of the look—up. table is stored. (see appendix l.)

; 5. . d = the number of bits used to express exponents of floatmg point
numbers,
6. k = the highest power of 10 which can be expressed in binary form
‘using n bits. n =3 (k-1) + h/3, where h is the multiple of 3 nearest
to k. | :

The Method
Fixed point to fixed point for integers or fractions.
1. Binary to BCD.

a. Restriction: using the 4 bit BCD code, 10 "% 2N <10 P/4,
/

LX)

® FILE MEMO #46 3. September 21, 1956

b, Arithmetic units required: both the binary and BCD units.
(the BCD unit may be used alone if the byte size is restricted
to be fewer than 4 bits.)

c., Tables: a samplé table is given in appendix 1-a,
d. The procedure:

1. To the number S add binary-wise byte one of Ny,.

2. To the contents of some register or memory cell A (whose
contents are initially zero) add BCD-wise the contents of
the memory cell whose address is the sum found in step
one,

3. Repeat steps one and two for the remaining bytes of N,

, each time incrementing the constant S of step one by
2P, where p is the number of bits in a byte., Upon com-
) ‘ pletion of step two for the last byte, C (A) = Nj. e

2. BCD to Binary.

é. Restrictions: if the 4 bit BCD code is used, then the byte lehgf;h
should be an integral multiple of four; For fractions, an error
of one-half is possible in the last place for each byte. If Ny,
does not exceed one word in length, then no overflow occurs,

: b; Arithmetic units required: only the binary unit need be used,

¢. A sample look-up table is given as appendix 1-b,

d, | The procedure; the procedure is the same as given above for
. .the inverse conversion, except: “

1, Binary addition is used throughout.
2, In step three, S is incremented by 1oP/4 rather than by 2P,

Fi'oating Point to Floating Point

‘ 1. Binary to BCD.

a. Restriction: depending upén the word length, overflow may 'occur,:

FILE MEMO #46 -4- September 21, 1956

b. Arithmetic units required: both the binary and BCD umts
are used,

c. The procedure:

1. Divide or multiply N, by 10K in floating binary as
many times ras necessary'to get N1 such that 1= N
(Retain the number rk for later use in developing
Nf.)

1 S <lo%,

2. Convert N1 to a fixed point binary number N11 of length
2, bits with the binary point in the middle. .

3. Divide N1l by 109, where q is such that 109~ 1‘<N11 <109,
Let N:11 = NAL. 1079,

. 4. Round N1 by dividing one-half by 10“"'cl and adding it to

5. Convert N%l as a fixed point fraction to get Nf.

6. Convert the quantity (+ kr + q) as a binary fixed point
integer. This glves Ne (use + if IN l?l and - if ‘lec,l)

2. BCD to Binary.
This is analogbus to.the procedure just described,

. Other Comments

1. At the cost of increased complexity in fixed point conversions, a zero
look-ahead feature could be used to enable one to skip bytes of N,
having all zero bits.

2, The floating point procedure can be readily adapted to conversions of
the floating to fixed point type.

3. Means for automatically extracting successive bytes of a word would
. ‘increase the speed of fixed point conversions and, moreover, would-
simplify their programming,

FILE MEMO #46 | . .5 September 21, 1956

4, A facility for incrementing by some constant a register not
' related to an operation, while the operation is being executed,
would eliminate the delay, in step three of the fixed point con-
versions, in which S is increased successively by 2P (or 10'9/4).
References o _ ' ‘)
1. Editor and Translator PK EDIT, a paper by Dr, W. W. Peterson.
2. Manual of Operation, IBM Type 704, Appendix A,

3. 704 Manual, Section N, '"Conversion'l,

™

memory allocation,

& decimal adders,

Same Method ‘ Relative
7 Used for Special Relative Relative Logical Equipment
- Method | Integ. & Fractions Requirements Flexibility Speed Complexity | Required
1 no none good very slow éimple Moderate controls binary
’ & decimal adders.
2 yes Powers of the radices gobd ‘ slow simple Moderate controls binary"
are needed. ‘ & decimal adders.
3 no Fraction conversion fair very fast | complex Elaborate controls binary
not treated. & decimal adders,
4 no Some fractions require [poor slow simple Moderate controls binary
awkward scaling, ' & decimal adders,
5 yes . Prepare& tables & . good very fast | simple Moderate controls binary

I . .
D e - -

a, This table assumes n =12 and p =4, Notice that we must restrict Ny 4103. .
An analogous table would be used for fractions. ‘

. Appendix 1.

Binary to BCD (Integers)

Col. 1 Col, 2 Col. 3 | ~ Col. 4

Byte Byte Address where cqQlumn

No, ' Array Byte Images » 3 entry is stored

1 0000 0000 0000 OOOO S+0
0001 0000 0000 O0OO1 S+1
0010 0000 0000 0010 S+2
1111 0000 0001 O0101 ’ S+15

2 0000 0000 0000 OOOQO (S+16)+0
0001 0000 0001 o0110 (S+16)+1
0010 6000 0011 O0O10O , (S+16)+2
1111 0010 0101 0101 (S+16)+15

3 0000 0000 0000 0000O (S+32)+0

s 0001 0010 0101 0110 (S+32)+1
0010 0101 0001 0010 (S+32)+2
0011 0111 0110 1000 (5+32)+3

b, Comments on "a' above apply. (But Nmz.lo?’ not for the same reason)

BCD to Binary (Integers)

1 0000 0000 0000 00O0O R+0
0001 0000 0000 0001 R+1
0010 0000 0000 0010 R+2
1001 0600 0000 100Q1 R%9
2 0000 0000 0000 0000 . (R+10)40
| 0001 0000 0000 1010 (R+10)+1
0010 0000 0001 0100 (R4 10)+ 2
S 1001 0000 0101 1010 (R+10)+9
‘3 0000 0000 0000 0000 (R+20)+0
0001 0000 0110 0100 (R+20)+1
| 0010 0000 1100 1000 (R+20)+2
1001 0011 1000 ‘0100 (R+20)+9

