COMPANY CONFIDENTIAL

PROJECT STRETCH
FILE MEMO #30
SUBJECT: Multiple Precision Addition and Subtraction
BY: W, Wolensky
DATE: - April 9, 1956

\

The problem of Multiple Precision is one of requiring significant digits
in excess of word size capacity in a given machine, A given word "A"
if large enough can be divided into sections, and each secfion can be
represented by a machine word. A = AY + A.’2“48 + A377° ceeeacor
more simply A=A} + Ay + A3 ----to the degree-of precision reguired.

Arithmetic operations involving multiple precision numbers present
machine handling problems unique to a machine because each machine
word is only a portion of a complete logical word. Some of the problems
encountered are herein defined, and a method of handling multiple pre-
cision add and subtract is illustrated,

A machine word of 60 bits is composed of an exponent of 10 bits, a
fraction of 48 bits, one sign bit, and one overflow indication bit, In
multiple precision problems the exponent is only significant in A,, the
first and most significant of the word sections, The exponents of A2 and
A3 are progressively -48 from the preceding word section, It is planned
that the exponent will always be positive because it is possible to realize
all nbmeric values with a positive exponent and a fraction that can be
either positive or negative,

For the purpose of this memo, zero is defined as an exponent of all zeros
and a fraction of all zeros. In the case of multiple precision numbers, the
~ fraction portions of all the word sections must be zero as well as the
exponent of the most significant word section, It is evident that an increase
_in the exponent is the same as shifting the decimal point to the right, In
the event that the exponent is increased beyond its capacity of 10 bits, an
exponent overflow indication is provided, Should the exponent be reduced
to the point where it will try to assume negative values, the exponent and
the fraction will be set to zero,

Automatic single precision floating point operations cannot be applied
directly to multiple precision operations, Floating point methods can be
programmed for the particular situation at hand in a step by atep procedure,
likewise automatic normaliving procedures should not be applied to multiple -
precision applications, Normalization should be done in a programmed, step
by step procedure only if the expunent is not all zeroa,

FILE MEMO #30 ’ -2~ - April 9, 1956

Exponent differences between words involved in multiple precision
addition and subtraction are very easily reconciled. The multiple
precision word carries its exponent with its most signigicant word
section (all fraction parts carry their own sign indication). Régard-
- less of the value of the exponent for a given multiple precision word,
the value of the exponent associated with the second word section is
48 less than the value of the preceding word section. (The difference
is determined by the number of bits in the fraction part of each word
section,) The value of the exponent associated with the third word

" section ig 48 less than the exponent of the second word section and
96 less than the exponent of the first word section, etc,

When two words are brought together for addition or subtraction, one
of the first operations that will be normally performed is the deter~
mination of the difference between the exponents. If the difference
between the exponents is less than 48, all sections of the lesser valued
word is shifted to make the exponents equal and the process of com-
bining Ay + B, A, + B.2 s Ag +'B3, etc. is continued. Because of the
shifting of the lesser word, some of its least significant bits will not be
involved in the operation,

A difference in exponent values that ranges between 48 and 96 implies
‘that the lesser word has no counterpart to the most significant section
of the greater word, In this case 48 must be subtracted from the
exponent difference and the remainder indicates the amount of shifting
necessary to properly align B; so that it is compatible to Aj, An
exponent difference between 96 and 144 indicates that the most sig-
nificant portion of the lesser multiple precision word will align itself
to the third most significant portion of the greater multiple precision
aword, offset or shifted by exponent difference minus 96,

An exponent difference greater than the degree of precision times the
exponent differential (3 x 48 = 144) indicates that no addition or sub-
traction operation is to be performed., The larger of the two words is
the result of any considered addition or subtraction, '

One means of normalizing multiple precision numbers is similar to that |
used in the 702 and 705, A special Normalize and Transfer instruction ‘
is provided which causes a transfer when an insignificant zero is removed
from the fraction part of a machine word, If there is no insignificant zero
to be removed, no transfer is affected, The instruction permits removal

’

FILE MEMO #30 -3- April 9, 1956

of any or all insignificant zeros and readily permits counting for
exponent modification, It is presupposed that a'single instruction
will be provided which will fully normalize the word and the number
of zeros eliminated will be available in the exponent counter,
Addition and subtraction are performed in the computer by an adder,
Subtract can be defined as changing the sign of the second word and
adding, Addition is split into two types of operation, addition with
like signs and addition with unlike signs, Addition with like signs'i‘s
a standard algebraic addition whereas addition with unlike signs is a
process of complementing the second word and adding it to the first,

To facilitate ‘multiple precision operations, several special instructions
and indications are suggested., : :

a) Add, if unlike signs suppress recomplémenting, impose
initial carry in, ‘

b) Add, if unlike signs suppress recomplementing, suppress
initial carry in,

c) Add, if unlike signs permit recomplement, permit initial
carry in, :
d) Add, if like signs force an initial carry in. (instruction ¢

is the standard add instruction, modifications a, b,. and'd
can be realized by coding specifically designated bits in the
instruction code)

e) Carry indication; if addition results in the fraction over-
flowing the left most significant position, a carry indication-
is provided.

£f) Load complement: the word specified is loaded in complement
form into the accumulator.

Multiple Precision Addition (like signs) Given: T'riple precision words
+A and +B where A>>DB, therefore Ay > By, and Ay << Brz, A2 B
(see Fig, 1), A typical program for performing multiple precision add
with like signs is presented ; detail is provided only in the areas that

FILE MEMO #30 o -4- | April 9, 1956

specifically relate to rhu‘ltiple precision,

1,

5.

Test the signs of A and B; if the signs are alike and addition
is to be performed, or if signs are unlike and subtraction is
to be performed continue to step 2. (A and B both +, addition
is to be performed). ' ‘

Subtract the exponents of A} and Bl’ determine the difference
if any, and which of the two is larger. (For this example let

the exponent of A; be larger thah that of B; by one),

If necessary, modify index registers to properly locate the
word sections to be involved in the operation,

Create B1 which is B with the same exponent as A,

4a, L<’)ad Bj into accumulator shift right one position, store
B1 in memory.
4b, . Ring shift accumulator left 49 positions (in the illustration

of figure 1 a four bit fraction is shown, therefore ring shift
accumulator left five positions),

4c, Load B, into accumulator ring shift accumulator right one
position, store Bé in memory,

4d, Ring shift accumulator left five positions,

4e, Load Bg into accumulator ring shift accumulator right one
position, '

With»Bg in accumulator Add A3 to contents of accumulator,
5a, Store result in accumulator as Sum S3 in memory,

5b. Test for carry out, if carry out exists do special operation,
 if no carry out exists do 6 (no carry out in illustration),

o FILE MEMO #30 -5- April 9, 1956

6. Load B into accumulator, add A,.

6a, Store result in accumulator as Sum Sy in memory.

6b, Test for carry out, if carry out exists do 7, if no
carry out exists skip 7 do 8. (carry out is present)

7. Load Bi into accumulator Add A) with special instruction
imposing an initail carry in, Transfer to 9,

8. Load B'1 into accumulator add Al.

9. Test for carry out, if no carry out store S| in memory and .
problem is finished, if carry out exists do 10, (carry out
exists), ’

10, Add one to exponent of Sy, test for exponent overflow, if
. . exponent overflow stop machine, if no exponent overflow do
11, (no exponent overflow exists),

11, Shift accumulator right (this is not a ring shift) one position
because carry out digit is one position to left of normal
fraction store S1 as final answer,

lla, Ring shift accumulator left five positions, Load S),
ring shift accumulator right one position, store S2.

11b, Ring shift accumulator left five positions, load S3,
ring shift accumulator right one position, store Sj3,
problem completed, :

Multiple Precision Addition (unlike signs)

Given: Triple precision words -A and +B where A»B, therefore,
Al > Bl, and A< B2, A3 >»rB3 (see figure 2),

A typical program for performing multiple precision subtract (or add
with unlike signs) is presented, detail is provided only in the areas
that specifically relate to multiple precision,

FILE MEMO #30 “6- April 9, 1956

Test the signs of A and B, if signs are unlike and addition
is to be performed, or if signs are alike and subtraction is
to be performed'continue to step 2. (A is minus, B is plus
and Addition is to be performed,)

Subtract the exponents of A) and B}, determine the difference
if any, and which of the two is larger, (exponents of A) and B}

. are equal therefore, no shifting or exponent manifpulation is

required.)

 Adjust index registers to properly sequence the word sections

for the operations to be performed,

Load B3 into accumulator, Complement and add A3 to contents
of accumulator, suppress recomplementing impose initial carry

-in,

4a, Test for carry out; if a carry out does not exist continue
to 4b; if a carrv out does exist follow different procedure-
(illustration of figure 2 doées not have a carry out.at this
point.)

4b, Store contents of accumulator in memory at S3.

Load B2 into accumulator, Complement and Add A2 to contents
of accumulator, suppress recomplementing and suppress initial
carry in (Compare with step 4, initial carry in is suppressed here
because there was no carry out from addition of B3 and Aj)

5a, Test for carry out; if carry out exists continue to 5b, if
' carry out does not exist follow different procedure which
- adds A] to B} and suppresses initial carry in, (illustration
has a carry out at this point,)

5b, Store contents of accumulator in memory at S2.

Load B] into accumulator, Complement and add A} to contents
of accumulator, suppress recomplementing, and imposing initial
carry in, (initial carry in provided because preceeding operation
contained a carry out,)

FILE MEMO #30 : -7- April 9, 1956

9,

6a, Test for carry out; if carry out exists store accumu-
lator into memory as S; and transfer to 8, if no carry
out exists do 6b, (no carry out exists) :

6b, Complemeht cohtents of accumulator. Place proper
exponent with S}, Change sign of S] to minus,

6c. Load S; into accumulator, Coinplement contents of
accumulator store S2 in memory, make sign minus,

Load S3 into accumulator, Complement contents of accumu-~

lator, Add one to accumulator contents, Store in memory

as S, change sign to minus,

Ta.)

b,

Te.

Test accumulator for carry out if no carry out exists
transfer to step 8, if a carry out exists do 7b,

.Add one to S, and check for overﬂow, if no overflow

transfer to step 8,

Add one to Sj, and check for overflow, if no overflow
transfer to step 8, if overflow exists stop machine,

This is an optional procedure provided to normalize the multiple
precision word if desired ‘ :

8a,

8b, -

Load $3 into accumulator, Shift accumulator left number of places

Load Sj into accumulator, Normalize and transfer,if a -
zero is removed a transfer is effected to another protion
of 'the program where the number of zeros removed is

counted and control is then returned to 8a, If no zero is

. removed control is switched to 8b,

Test zero removal count if count is equal to zero, no
normalizing is to be done, if count is greater than zero
do 9.

equal to zero removal count (one in this case per figure 2) Stowe
S3 in memory, :

FILE MEMO #30 ~ -8- : April 9, 1956

9a, Shift accumulator right five positions. Load S; into
accumulator, Shift accumulator left one position,
Store S, in memory, '

9b, Shift accumulator right five positions, ILoad S; into
aceumulator, Shift accumulator left one position,
Subtract zero removal count from S, exponent, S
is now in final form store S; in memory, solution is
complete, '

The illustrations of figure 1 and figure 2 with their accompanying
solution procedures outline or define practically all the possible
gituations that can arise in multiple precision addition and sub-
traction, The purpose of analyzing the problems and providing a
means of solution for multiple precision add and subtract has been
completed, It is expected that the ideas presented herein will be
reviewed and modified after the basic stretch logic has been more
firmly established.

FILE MEMO #30 -9-
X = X .+ X2
Exp., Fract, Exp, Fract,
B = 010 1001 — 1100
A = 011 1100 o 1011
B = 011 0100 — 1110
1110 =
1011 =
CARRY oLT 11100 =
' -\.‘11001 =
0100 = Bj
1100 = A; (7)
11001 = Ci
10001 = S} (8a)
S= 100 1000 1100
Figure 1

April 9, 1956

+ X3
Exp. Fract,
— 0111l
- 1011
= 00111 (4)
00111 = B4
1011 = Aj
00110. = (Ci
01110 = Sj3
B |
Ay (6)
Ci
52

Multiple Precision Add (like signs)

1111 (11)

(5)

FILE MEMO #30

X‘ =
‘ Exp.
-A =« 010
+B = 010
A = 010
- 0|0
S ®m - 010

S¥z = 00\

¥ normalized

Multiple Precision Add (unlike Signs)

-10- April 9, 1956
X3 + X + X3
Fract, Exp. Fract, Exp., Fract,
1110 0011 1010
1001 1110 0011
. 0001 1100 0101
0011 =
0101 =
NGO CARRY OUT~ > 01111 =
\00001 =
1110 = B,
. 1100 = A&,
CARRYiovr = 11000 = Ci
~11010 = Sp
1001 = B,
0001 = A&
00011 = Ci
01011 = §) 1110
: 0001
| 00000 Ci
- 0100 0101
0100 0101 1111
1000 - 1011 1110 -
Figure 2

