4”*“3-«_«0\1%%7%{

FLOATING POINT DATA WORD FORMAT (STRETCH)

. SCHEME IT
E. A. Voorhess (11/30/56)

INTRODUCTION

After the development and presentation of Schems I, it was felt by
a considerable number of experienced programmers that it was possible to
design a much simpler scheme- preferably one without I's or e's. It is
the purpose of this papep to try to maks such a scheme specific.

CHARACTERISTICS OF SCHEME II.

1. Schems is designed for normalized and unnormalized modes of operation.

2. Exponent overflows and underflows can occur only when at least one
of the operand mantissas is non-zero. v

3. Let Q represent any floating point number with a zero mantissa. (It
may be that Q should be further restricted.) '

4. Let N represent any floating point number with a non-zero mantissa.

5. If one or both of the oparands is Q, the primary operation is not
performed. Again, it may be desirabls to perform result normalisza-
tion (if normalized operation) as in N + Q. This is done in this
write-up.

6. Operand (argument) mantissas are assumed in the following NN
to be either normalized or umnormalized.

7. Each arithmetic instruction contains a bit called the Break-in bit (BI).
This bit is relavant only on exponent underflow situations (described
later). Assume that the absence of BI means that Break-in does not
take place, i.e. is usually ignoraed.

8. Each Load or Store (relevant to arithmetic reglsters) has a Reset bit,.
. (R), instead of the corresponding BI bit. The presence of an R bit
resets the three triggers (described in 10 below) and clears the
WInstruction Location Preserve Register" (described in 9 below). If
the R bit is not present in the instruction, neither of these events
- take place.

9. It is assumed that the machine contains an "Instruction Location
Preserve Register®, (ILPR). This register is self-explanatory and
the conditions for its being set are indicated later in the paper.

. This register contains the last "interesting” location {or possibly
no location).

10. The machine is assumed to have three triggers:
' a, "Hi-Ov® : Indicates high order exponent overflow.

b. "Hi-Un" : Indicates high order exponent underflow.

c. ¢" ZD " : Indicates division by zero. In this respect the
division, N/, is always assumed to take place
regardless of whether or not there are more lead

" zeroes in the divisor than in the dividend.

Schems TI

CHARACTERISTICS OF SCHRME II (Continued).

11. It is assumed that there are two types of Division operations (both
having BI provisions) to allow the programmer either intervention or
no intervention due to attempted division by gero (Q). Let us call -
the first type "Divide or Transfer" and the second type "Divide or
Bypass"., In "Divide or Transfer®, the transfer is assumsed ta be to
™M 3 (Fast Memory, location 3), and the "ZD" trigger is not set. In
"Divide or Bypass®, the "ZD" trigger is set (when appropriate) and the
program continues to the next instruction. In all zero division cases
the dividend is left as the result in the A and B registers, i.e. "N/Q = N
and nq/Q = Qn,

12. Assume (for convenience) that signed exponents are used.

13. Format and "Class":
L .

o m
ﬁ}i p% MANTISS A 1 Data Word
Sl
;5 = A register
v ',’ép_‘;‘ MANTISSA] (or result register)
L LAY I)

V: Excess exponent bit.

(The sign of the exponent distinguishes expoﬁenb overflow
from exponent underflow.)

Let the dotted line, L (for limit), between bits 1 and 2 (for the time
being) represent the upper exponent boundary. When L is%rossed" due
to exponent underflow or overflow, the event will be designated as a

¥ 1gt Class" ufferflow or overflow. The result of an operation on ordi-
nary arguments which produces a lst class event can be completely repre-
sented in a data word. Triggering, DBreak-ins, etc. which are performed
are done to provide advance warning. '

Exponent carries from bit 1 to bit V are referred to .as "2nd Class"

exponent underflows and overflows. In this case more drastic action is
called for.

TYPES OF EXPONENT EVENTS , .

Exponent Overflow (Note: Whensver low order overflow occurs, then high
order must also have exponent overflow and hence
high order exponents only are considered.)

A. 1st Claas Exponent Overflow (< exponent).
"Hi-Ov" trigger is set. Trigger is examined by separate instruc-
tion such as "Transfer on Hi-Ov" and not by BI (Break-in) in the
offending instruction. (BI bit is ignored.) The ILPR is set.

B. 2nd Class Exponent Overflow (+ exponent).
The machine does an immediate ard mandatory transfer to some
fixed memory location, say ™ 1. No triggers are set. (BI bit
is ignored.) The ILPR is set. ‘ '

NIV

3
Scheme 11

TYPES OF EXPONENT EVENTS (Continued)

. Exponent Underflow

A. 1st Class Underflow (- exponent).

The BI bit of the instruction is examined and if 1lst Class
sxponent underflow occurred during the execution of the instruc-
tion, Break-in to FM 2 takes place. No trigger (namely "Hi-Un*
trigger) is set and no clearing of the high order recult takes
place. The ILPR is set in either case.

B. 2nd Class Underflow (- exponent). .
The number is cleared and "Hi-Un" trigger is set. Trigger is
examined by "Transfsr on Hi-Un" instruction and not by BI
which only applies to lst Class underflows at time of formasy
tion. The ILPR is set.)

Clearing of low order underflows is done and there is no setting of triggers,
no BI's, no setting of ILPR, etc.

RANDOM OBSERVATIONS

1. Possibly some $ype of "internal switch" could be designed to allow
positioning of L instead of having it rigidly fixed between exponent
bits 1 and 2, "L = # Mode". ' ,

<i> 2. Cancellation indication could be an additional bit (or two) in
data word. :
1 bits|___Je] | ¢ = Ot Less than % word
, cancellation.

c = 1 More than % word.

2 bits:| L3 |

0] 01 Less than % word.

0|1 : More than %, less than %.
1|0 : More than %, less than 3/L.
1)1:

More than 3/4.
(Would Breask-in techniques be desirable--more bits from instruction-?)

3. Should an internal switch be providaed to halve "effective" mantissa
lengths to provide unused bits to bs used by the programmer in any
way he desires ard which are not disturbed or modified by arithmetic
operations? (Would this bs more flexible if done in quarters?)

L. The operands are always assumed to be in the S-fegister and the A',B!
registers after the execution of any operation.

5. The result of an operation involving operands, both of which are Q's,
is assumed to*produce a Q whose exponent is computed by the usual
rules for exponents.

