PROJECT STRETCH
FILE MEMORANDUM
SUBJECT: An Automatic Protection and Relocation Scheme

DATE: December 17, 1957

NOTE: This memo ‘stems from discussions between the authors
on December 3, 1957

1. Objectives
Two important considerations in deciding whether the Stretch
computer system can be multiprogrammed in a general and practical

way are automatic protection and relocation.

1.1 Need for Automatic Protection

We shall assume that two or more programs are sharing mem-
ory and their execution is to be interleaved and overlapped. Further,
we shall assume that these programs were written either without the
knowledge that they were to be operated together or not making use of
this knowledge. These assumptions represent the normal circumstances
in which Stretch users will be multiprogramming, if they multiprogram
at all,

Consider now the environment in which any one of these programs
is operating: this environment can be thought of as a system consisting
of the machine, the supervisory program, and the other programs with
which it is sharing memory space and CPU time. The reliability of this
system (defined as the probability of running without error for a given
period of time) is the product of the reliabilities of its components; :
that is, the reliability of the machine itself is multiplied by that of the
supervisdéry program and by that of each program being time-shared
with the given program. It is felt that a supervisory program can be
developed with a degree of reliability that can for all intents and pur-
poses be taken as unity, and hence ignored.

What, then, can be said of the reliability of the problgm programs
themselves? The chances that one of these will clobber another or clobber
the supervisory program cannot be ignored, even though we may assume

that:

uZ—

1) each problem program has been '"debugged"

2) during assembly a check is made on address
parts to determine that there is no obvious
reference outside of the area allotted in a

+ relative way to the program.’

The reason for this is that debugging is seldom, if ever, 100
percent complete. This is particulatly true of problems involving
computed references to memory, or indexed references for which
the limit or count depends on data. It is just these kinds of refer-
ences which are likely to go outside of the region allotted to the
program as a whole, and it is just these kinds of references which
are not detectable at assembly time,

In addition to programming blunders there is always the poss-
ibility that a machine malfunction may cause a program P to clobber
a program Q. The likelihood of such malfunction may be small, but
it is greater the longer a program sits in the machine — and it should
be observed that individual programs sit longer when multiprogramming
is the order of the day.

Taking both programming blunders and machine malfunction itto
consideration, we may conclude that, fer the basic computer as new
defined, a program is operating in a significantly less reliable en-
vironment when it is time-shared with other programs than when it is
executed by itself.

Let us turn our attention now to fault location. Suppose program
P clebbers program Q either in Q's instruction area or data area, It
is very likely that P will not discover what it has done if the machine is
not equipped with protection facilities. The execution of P could, in fact,
be completed successfully if it so happened that Q did not change any of
its locations which P had written into. As far as the program i@ is con-
cerned, the effect of being clobbered by P is somewhat akin to being
stored in an unreliable memory which has no automatic error detection
and no customer engineer. It would be satisfactory if there were a
reliable, general and efficient pregramming technique for Q to deter-
mine that it had been clobbered. Such a technique does not appear to
exist. (The method of foerming a check sum for O whenever it loses the
CPU and sum checking Q=whenever it regains the CPU is reliable but
adds a heavy burden to multipregramming).

1.2

-3

A customer's confidence in using Stretch on a multiprognmming
basis will depend on the machine being as alert to clobbering as it is

“toa simple malfunctioning of memory.

Need for Automatic Relocation

The grimary gqpy- of multiprogramming is to obtain better utiliz-
ation of the equipment, particularly the CPU, In many installations the
amount of memory available will be a limiting factor on the number of
programs which can be operated together and therefore on the advantage
to be gained by multiprogramming. This is the first reason for requir-
ing that it be pessible to pack programs in memory.

The second reason for packing programs is that idle memory loca -
tions represent a significant dollar loss in value extracted from a given
installation.

How is the packing of programs related to relocation? Suppose
we have a memory packed to tise hilt with programs and, in a broad .
sense, start off their execution together. It is mast unlikely that these
programs will be completed together. As various programs are completed,
space in memory becomes available first in one part ¢of memery, then in
another. After a while, there will be several scattered areas in memory
into which a new problem program would fit, if only these areas were
contiguous. In order to collect all the available space into a single area,
it is necessary to relocate some or all of the preblem pregrams which
are still being executed. ‘

Relocation of programs which are still bding executed needs care-
ful consideration from two standpoints:

1) is it feasible?
2) if feasible, s it werthwhile?

With regard to feasibility, it is quite obvious that a program cannot, in
general, be relocated at an arbitrary stage in its exscution in the Stretch
machine as now defined. An address standing in the accumulator, index
registers or temporary storage would be overlogked in a programmed
relocation procedure unless a riélecation hit-map {1 mean= adjust, 0--
tnesns do not} were kept absolutely up-te-date for every use of every
location. Absolute up-to-dateness is not quite achievable.

ba

-4-

It is natural to su“est that, if programmed relocation is not
feasible at an arbitrary stage in the execution of a given program, it
should be possible at specified points. In practice, however, such
points either do not occur or occur very infrequently unless a pro-

‘grammer takes special pains (and extra program steps) to create them,

The number of such points he creates can hardly be legislated and t!:ore
ts little or no incentive for him to create any at all,

With the currently defined machine, we are, therefore, rcdncod
to some such approach as the following: a new pregram will not be
brought into the memory until enough programs have bean completed
to make available a single area of memory aufﬁcimﬂy large to accom-
modate the new program. In other words, excluding initial allocation,

" relocation will be avoided altogether, It is clear that consistent use

of this approach results in poorer utilization of the oqmpm.nt than
could be achieved with @ machine which provided for relocation in a
viable and efficient form,

Another aspect of the need for automatic relocation is the use of

‘everlays: that is, overwriting one portion of a program by another por-

tion of the same program, the new portion being brau'ht in from aux-

fliary storage. In a multiprogrammed Stretch there would be benefits

to be gained by using overlays in some cases where there would be

none in a singly programmed machine. Low-duty pertions of mze pro-
gram skould yield memory space to high-duty portiens of another. Re-
locating programs with overlays during execution is a cufﬁciintly com-=-
plex procedure in a machine which does not have automatic relocation for

“the problerny programmer to abandon the use of ovorlayn or for the

supervisory programmer to avoid relocation.
' /

1.3 Summary of Objectives

The objectives of this proposal may be summarized as folloiw-:

1y to provide a protection mechanism which. wﬁl confine
: all memory references made by a given progrun to
a specified area together with those locations whose
. addresses are less than 64;

2) to provide a selective means of adjusting addresses
so that relocation during execution becomes feasible
and efficient. :

4500"

2. Pragoul

o, E denote sffective addresses rupoctively bcforo and
after mperindexing

b, B denote the lower and upper bounds of a given problem
program ; \

As presently defined, the machine comp'arci an effective address
e with the bounds b, B. The exact nature of this compariuon -~ and of
the interrupt which may result Irom it — have not yet been ugrud upon.

In this proposal the effective address e is eithor superindexed by
b or compared with b according as its high order bit is 1 er O respec-
tively. The detailed steps are outlined in the flow chart. Superindexing
is made conditional because: ‘

1) it will be necessary to relocate contrel wordn
" by traditienal (brute ferce) methods

2) it is deiirsblo te be able to use centrol werds as
index words without a prier trnnlformatien (specifice
ally, unr-loc:ltion)

3. Comiments

If it turns out that the superindexing ltep materially affects the
computing speed of Sigma, then it should be suppressed in this system
but retained in the Basic system.

" Attachment Je Batchold.r E. F qud , o

EFC/jcv - ’
Cbum Vva , &M4

W. P, Heising B Moncrnfi

DISTRIBUTION LIST

- Messrs. J.
G
L.
w.
E,
J.
R.
P.
F.
H.
: H.
Miss E.
Messrs. R.
D.
C.
D,

*

C. Batchelder
A. Blaauw
Briner
Buchholez

W. Coffin

C. Gibson
Goldfinger

S. Herwitz
E. Johnston
G. Jones

G. KOlBkY 4.;
McDonough
R. Nern

W. Pendery
Scalzi

W. Sweensy
Wolensky

