October 13, 1960

FILE MEMORANDUM
SUBJECT: Proposal for a Comprehensive Matrix

Computation System for the STRETCH
Computer

I. Objectives

In keeping with the current trend towards more nearly automatic
programming, this proposal describes a comprechensive system for
carrying out a wide variety of matrix operations as specified by source
language statements whose operands are entire matrices rather than
individual matrix elements. In view of the expectation that'the STRETCH
computer will be extensively used for matrix computations, such a sys-
tem could prove to be a powerful programming aid. :

The principal objectives which the proposed system sceks to achieve
are as follows: .

A. To provide programming facilities for executing such standard
matrix operations as:

1. Addition, subtractio.n, multiplication, and inversion.
2. Transposition, partitioning, and rearrangement.

3. Solution of simultaneous equations.

4. Conversion from one matrix form to another.

5. Computation of eigenvalues and eigenvectors.

6. Input/Output.

B. To permit matrices of several different types to appear as operands
in any matrix operation, using a uniform source program notation.



II.

C. To provide optimum computational efficiency and also to conserve
storage space by taking full advantage of such structural peculiarities
of matrices as numerous zeroes and/or duplicate elements.

D. To provide means for extending the system facilities with respect
both to additional matrix types as operands and to additional matrix
operations.

This system is intended to work in conjunction with, and eventually
to become an integral part of, the STRETCH Macro Language Processor.
At the present stage of development of this Processor, it ig appropriate
to refer only to the Autocoder language as a source language for the pro-

'posed matrix computation system. In future, however, means either of

extending FORTRAN or of developing a new computing langhage to sup-
plant FORTRAN may be considered.

In the proposal to follow, which is based on a similar matrix com-
putation system partially developed for the IBM 704 computer, only the
main features of the system will be described. Numerous problems of
implementation and usage will undoubtedly arise, some of which may
have been anticipated, but these problems will not be treated in detail
in the proposal. ;

Implementation
A. Autocoder Formats

1. Each matrix will be assigned a symbolic NAME which will
always be used without subscripts when referring to the entire
matrix as an operand. However, single elements, rows, or
columns may be designated by using subscripts in the following
manner. For a matrix named ABLE:

the I, J-th element is: ABLE (I, J)
the I-th row is: ABLE (1,.)
the J-th row is: ABLE (., J)

2. A declarative statement will be used to define ecach matrix as
to type and maximum dimensions. This information will be
used by the Processor to make the appropriate entries into
the data definition table and to generate the necessary data
definition and/or data reservation instructions in STRAP code.

Format:

NAME MATRIX, ELEMENT, STRUCTURE, IV?[AXROW, MAXCOL



Following the matrix NAME, the first field, MATRIX, is the
OPCODE and signifies the definition of a matrix. The second
field describes the type of matrix element, such as REAL,
COMPLEX, etc. The third field describes the structure, such
as DIAGonal, SYMmetric, etc. The fourth and fifth fields des-
ignate the maximum number of rows and columns of the matrix.
For example, a real (single precision floating point), symmetric
matrix named DOG, and having maximum dimensions 150 by 150,
would be defined thus:

DOG MATRIX, REAL (SP), SYM, 150, 150

(The suggested types of element and structure to be allowed
will be discussed in Section III below.)

L]
A typical imperative statement will have the format:
OPCODE, NAME 1, NAME 2, NAME 3

when three operands are required. Those arithmetic OPCODES
which are appropriate for matrix operations will be retained
without change. For example, if MPY is the OPCODE for mul-
tiplication, then

MPY, ABLE, BAKER, CHARLIE

will mean that the matrix CHARLIE is the product of ABLE *
BAKER. In the case of matrix inversion, however, only two
operands are required. Hence,

INVERT, DOG, EASY

will mean that the matrix EASY is to be computed as the inverse
of DOG. (The suggested OPCODES will be described in Section
IV below.)

Each imperative statement of the foregoing type will be trans-
lated by the Processor into a STRAP calling sequence which will
be used to gain entry into the appropriate subroutine(s) to execute
the operation requested. This calling sequence will be equivalent
in information content to the Autocoder instruction,



B. Memory Block Structure

1. All numerical data for each matrix will be stored consecutively
beginning with the third word of a memory block assigned to
that matrix.

2. The first two '"header' words will be reserved for descriptive
information. The first header word of each such block, which
is at the address symbolized by the matrix NAME, is a control
word having its own address in its address field and a count of
the total number of words in the block in its count field. This
word will be used for input/output operations.

3. The second header word of the block will consist of two half-
words with the actual number of rows stored in the first 18
bits of the address field of the first half-word and the actual
number of columns similarly stored in the address field of the
second half-word. The remaining bits of these two half-words
are available for the type code of the matrix.

4. Each different type of matrix will have its own peculiar storage
format, chosen so as to conserve storage space both in core
memory and on tape. As a consequence, a number of different
subroutines will be required to execute each type of matrix
operation. But by eliminating trivial computations with zeroes
and/or duplicate elements, much greater computational efficiency
can thus be achieved.

C. Method of Execution

1. All matrix operations will be executed interpretively using the
STRAP calling sequence to gain entry into the appropriate
master subroutine for carrying out each different operation
such as add, invert, etc.

2. The initial task of each such master subroutine, immediately
after entry is gained, will be to examine the second header
word of each of the operand matrices in order to determine
the types of matrix involved in the operation to be executed.
By means of a table look -up, the correct inner subroutine
required to execute the operation is then chosen.



Before transferring control to this inner subroutine, however,
the master subroutine first checks the dimensions of the operand
matrices to ensure that they are compatible with the operation
to be performed. |
When control has been passed to the inner subroutine, the first
task is that of forming the two header words for the result
matrix. The actual operation is then performed and upon its
completion, control is returned to the next calling sequence in
the main program.

Error messages will be printed in cases where noiinner sub-
routine exists for carrying out the called-for operation on the
types of matrix specified or in case the matrices Have incom-
patible dimensions.

III. Matrix Types and Storage Formats

A. Elementary and Special Matrices

1.

Certain special matrices, which are useful computational or
symbolic tools, will be allowed. The following elementary
matrices require no numerical data and can be completely
described by the two header words. '

a. Null matrix. (The dimensions will be given in the second
header word, if needed. If the dimensions are omitted--
i.e., set to zero--this will be taken to imply that the null
matrix is of adjustable size.)

b. Unit matrix. (Again, dimensions will be given if needed--
if omitted, the size will be considered adjustable.)

c. All-ones vector. (Dimensions n x 1 for a coldmn vector
and 1 xn fora row. If n= 0, this dimension will be con-
sidered adjustable.) ‘

d. Unit row vector. (First half of second header: word gives
length of vector; second half word gives position of the only
nonzero element, which is unity. If length = (0, it will be
considered adjustable.)

e, Unit column vector. (Similar to above.)



f. Ei' matrix--all zeroes except for unity in the i -th row and
j-th column. (Dimensions adjustable.)

Additional matrices, related to some of those justidescribed,
are the following in which a constant (real or complex, simple
or multiple precision floating point) is stored following the
two header words. ‘

g. Scalar mat;rices (k * unit matrix)
h. k * all-ones vector

i. k % unit row or column vector

jo ko* Eij

In each of these cases, the previously described conventions
regarding fixed or adjustable dimensions will apply.

Other special matrices of an elementary type are the following:

a. Binary matrices--consisting of 1 or 0 elements only.
(Stored by rows or by columns, 64 bits per word, each
row or column starting at a full word boundary and occu-
pying as many consecutive words as needed.)

b. Ternary matrices--consisting of +1, -1, or 0 elements
only. (Stored by rows or by columns, 64 bits per word,
each row or column starting at a full word boundary. The
magnitudes of the first 64 elements of each row or column
are stored in the first word and the corresponding signs in
the second word of the row or column--followed by as many
alternating words of magnitude bits and sign blits as needed.)

c. Incidence matrices--tabular form. (These matrices are
used to describe connectivity or incidence relations between
branches and nodes in a linear graph. Each data word, cor-

 responding to a directed branch of the graph, will contain
the number of the initial node in the address of the first
half word and that of the final node in the address of the
second half word. This form may be converted to a ternary
matrix, if desired.)



B. Matrix Classification according to Type of Element

The elements of matrices may be not only null, binary, or ternary
numbers as described al?ove, but also any of the followﬁng data
objects:

1.

Real numbers, single or multiple precision floating point.
(Stored as normalized binary floating point, if single precision.
If multiple precision, the most significant portion is stored in
the first word of a block in normalized form, followed consecu-
tively by unnormalized words having successively lower signifi-
cance.)

Complex numbers, single or multiple precision floating point.
(Stored consecutively with real part immediately preceding
imaginary part. If multiple precision, both the real and imagi-
nary parts are stored in two consecutive blocks each having

the same format as that of a multiple precision real number.)

Polar numbers (polar form of complex numbers), aingie or
multiple precision floating point. (Stored consecutively with
modulus part preceding argument or phase.)

Submatrices, designated by the symbolic NAMEs associated
therewith. (Stored with one submatrix NAME per word in A8
code. Matrices whose elements are other matrices are known
as compound matrices. With this classification included in

the system, compounding of matrices to any depth is possible,
at least in principle, and can be used to handle multisubscripted
variables.)

C. Matrix Classification according to Structure

* The following structural classification, subject to later extension,
includes the most common types encountered in scientific and
engineering applications of matrices. “

1.

Rectangular matrix. (Stored consecutively by rows or by

columns. Includes row and column vectors as special cases.)
(]

Symmetric matrix (real) or Hermitian (complex). (Stored

consecutively by columns omitting all elements above the main

diagonal.)

Diagonal matrix. (Only the diagonal elements are stored.)



4. Codiagonal matrix. (Stored consecutively as follows: main
diagonal, first subdiagonal, first superdiagonal, second sub-
diagonal, second superdiagonal, and so on until all nonzero
codiagonals have been stored. If symmetric, only subdiagonals
are stored. Type code must indicate number of codiagonals.

If this number is zero, all codiagonals will be stored.)

5. Hessenberg matrix. (Contains one superdiagonal, main diago-
nal, and all subdiagonals. Stored with superdiagonal first,
main diagonal next, followed by consecutive subdiagonals.)

6. Upper qr lower triangular matrix. (Stored with main diagonal
first followed by successive sub- or superdiagonals.)

7. Sparse matrices. (Only the nonzero elements will be stored,
in sequences similar to those of the rectangular, symmetric,
or codiagonal matrices described above. In addition, a key
showing the location of these nonzero elements in the matrix
would be needed. Two alternative methods for storing this
information are:

a. A bit pattern wherein 1's indicate the present of nonzero
matrix elements. :

b. Two half words, following each nonzero data word, and
showing the row and column position thereof.):

IV. Recommended Autocoder Instructions for Matrix Computation
A. Addition, Subtraction, and Multiplication

In keeping with the previously suggested Autocoder formats (see
File Memo, September 7, 1960, by F. H. Branin), each matrix
operand may be prefixed by a minus sign, if desired. (The slash,
representing absolute value, will not be used.) Accordingly, if
we use the more conventional opcodes ADD, SUB, and MPY, we
may express the operations of addition, subtraction, and multipli-
cation of matrices as follows:

ADD,A,B,C means A+ B=C
ADD, A, -B, C means A-B=C
SUB,A,B,C means A-B=acC

MPY, -A, B, C means -A*B=C



Arithmetic operations on single rows, single columns, or single
elements of matrices may be specified using subscripts as follows:

ADD, A(l, .), B(K, .),C where C is a row vector
MPY, A(l,.), B(.,L),C ~ where C is a scalar
MPY, A(., ), B(K, .), C where C is a matrix
SuUB, A(1, ), 5.,C where C is a scalar
Inversion

INVERT, 4, B means A"ll= B

INVERT, -A, B means A" =B

Transposition

XPOS, A, B means At =B

Partitioning and Rearrangement

In partitioning a given matrix by extracting a contiguous sequence

of rows and columns without rearranging them, it is sufficient to
specify the first and last rows and the first and last columns. Thus,
if we desire to extract the 5-th through 11 th rows and the 2nd
through 4-th column of matrix A and designate this new matrix as

B, we may write the three Autocoder instructions:

PARTIT, A, B i
ROWS, 5-11
COLsS, 2-4 ’ "

If we wish to extract the K-th through L-th rows and M th through
N-th columns, we may write:

PARTIT,A, B
ROWS, K-L
COLS, M-N

where K L and M N, of necessity.

If a rearrangement is desired, either with or without partitioning,
we may use a similar format but with the rows and columns of the
matrix to be partitioned listed explicitly in the order in which they
are to appear in the result matrix. For example, if we wish to let
rows 5, 2, 7, and 9 of A be the first through fourth rows of B and



- 10 -

columns 2, 4, 1, 7, and L1 of A be the first through flfth columns
of B, we may write:

PARTIT, A, B
ROWS, 5,2,7,9 .
COLS, 2,4,1,7,11

In either usage, all three instructions must always appear together
with PARTIT first. If the sequence is PARTIT, ROWS, and COLS,
then the rows of the partitioned matrix become the rows of the result
matrix, and likewise with the columns. However, if the sequence

is PARTIT, COLS, and ROWS, then the columns of the partitioned
matrix become the rows of the result and vice versa. In other
words, a transpostion is included along yith the partitioning and/or
rearrangement. |

Solution of Simultaneous Egquations

If the matrix equation AX = B is to be solved, whether X and B are
single column vectors, or a matrix consisting of several column
vectors, the Autocoder instruction c#lling for solution of this equa-
tion will be

SOLVE, A, X, B meaning solve AX = B

Since matrix inversion requires roughly a factor of three times as
much computation as the solution of simultaneous equations, solu-
tion by means of matrix inversion will actually be employed when-
ever X and B consist of four or more columns. |

Conversion from one Matrix Form to Another

If matrix A is diagonal or symmetric and is to be converted to
rectangular form, stored rowwise, which is the form of matrix
B, the Autocoder instruction for effecting this conversion is

SET =, A, B

This instruction can also be used to move a matrix from one loca-
tion to another without change of form if both operand matrices
have the same form. If an inadmissible conervsion is called for
by mistake--such as converting a rectangular matrix to diagonal
form--the operation will be carried out nevertheless, but a diag-
nostic message will be printed out at thé same time.



14

- 11 -

Computation of Eigenvalues and Eigenvectors

No recommendation concerning the Autocoder instruction format for
this computation will be made at present. The problem needs to be
studied extensively. Suitable instruction formats can bHe formulated
and added to the system later on.

Input/Qutput
Input-output operations with matrices will be called for using the

format suggested by R. L. Harding. (See File Memo, October 5,
1960.)

Some Recognized Problems and their Possible Remedies

A.

The biggest drawback of the proposed system is the large number

of inner subroutines that would be required to handle the various
different situations that can arise with the matrix types suggested.
For example, in the case of real, single precision matrices, alone,
if we allow gix structural classes (rowwise or columnwise rectan-
gular, symmetric, diagonal, codiagonal, and symmetric codiagonal),
36 different subroutines would be required for multiplication and
almost that number for addition or subtraction. Accordingly, some
limitation on the allowable combinations of matrix types must be
imposed, at least at first while the system is being developed and
checked out. At a later date, a scheme could be worked out for
scanning all matrix types and operations during compilation of each
source program and selecting only those subroutines which are actu-
ally needed. In this way, the storage space allotted to the matrix
computation system in the object program could be m'uiimized.

As new matrix types are added to the initial system, tle tables used
in selecting subroutines will need to be expanded. Accoprdingly, a
mechanism for effecting this expansion, in conjunction with the
STRETCH Macro Language Processor, will have to be!developed.

In a given operation upon compound matrices--for example, multi-
plication--the master subroutine which effects the intcrpretation
and inner subroutine selection, will have to be entered repeatedly
from within itself--or rather from within one or more jof its inner
subroutines. Moreover, the inner subroutines themsclves may
have to be entered repeatedly in similar fashion. Accordingly, an
expandable bookkeeping scheme, perhaps in the form of a push-down
list, will be needed to keep track of the various points of entry and
exit to these various subroutines. ‘



- 12 -

D. Development of suitable Autocoder instructions for various matrix
operations should be straightforward, but, the data description state-
ments may be a bit more involved.

E. Although each matrix will be stored as compactly as possible, a
great deal of core memory space may be unused simply because
data reservations are planned, at present, to be made on the basis
of the maximum dimensions of each matrix operand. However, it
may later be feasible to develop a dynamic memory allbcation
scheme, for use at execution time, which stores all matrices con-
secutively as they are encountered in the program and, when memory
is about to overflow, saves only those matrices which will be called
for later in the program.

= SN L-EENE
F. H. Branin

FHB:jas



