
October 13, 19610 

FILE MEMORANDUM 

SUBJECT: 	 Proposal for a Comprehensive Matrix 
Computation System for the STRETCH 
Computer 

I. 	 Objectivee 

In keeping with the current trend towards m o r e  nearly automatic 
programming, thie proposal describes a comprehensive syiertem for 
carrying out a wide variety of matrix operations as specified by source 
language statements whose operands are entire matricea rather than 
individual matrix elements. In view of the expectation that  the STRETCH 
computer will be extensively used for matrix computations, such a eys-
tern could prove to be a powerful programming aid. 

The principal objectives which the proposed system seleks to achieve 
are at3 follows: i 

A. 	 To provide programming facilities for executing such tbtandard 
matrix operations ae: 

1. 	 Addition, aubtractio'n, multiplication, and inveraibn. 

2. 	 Transposition, partitioning, and rearrangement. 

3. 	 Solution of eimultaneous equations. 

4. 	 Conversion from one matrix form to another. 

5. 	 Computation of eigenvalues and eigenvectors. 

6. 	 Input/Output. 

33. 	 To permit matricee of eeveral different types to appear as operands 
in any matrix operation, using a uniform source program notation. 
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C .  	 To provide optimum computational efficiency and also to conserve 
storage space by taking ful l  advantage of such structural  peculiarities 
of matr ices  as numerous zeroes and/or duplicate elements. 

D. 	 To provide means for extending the system facilities ~ i t h  respect 
both to additional matrix types as operands and to additional matrix 
operations. 

This eystem is intended to work in conjunction with, and eventually 
to become an integral part of, the STRETCH Macro Langualge Processor .  
At the present stage of development of this Processor ,  it i d  appropriate 
30 refer  only to the Autocoder language as a source languagie for the pro-
'posed matrix computation system. In future, however, meians either of 

extanding FORTRAN or  of developing a new computing langbage to sup-

plant FORTRAN may be considered. 


In the proposal to follow, which i s  based on a similar rhatrix com-

putation system partially developed for the IBM 704 computer, only the 

main features of the system will be describe& Numerous problem8 of 

implementation and usage will undoubtedly a r i se ,  some of which m a y  

have been anticipated, but these problems will not be treated in detail 

in the proposal. 


11. 	 Lrnplementation -

A. 	 Autocoder Formats  

1. 	 Each matrix will be assigned a symbolic NAME wHich will 
always be used without subscripts when referring to the entire 
matr ix  a8 an operand. However, single element@,, m w 8 ,  or 
columns may be designated by using subscripts in the following 
manner. F o r  a matrix named ABLE: 

the I, J-th element is: ABLE (1, J) 

the I-th row is:  ABLE (I,.) 

the J-th row is:  ABLE (., 3) 


2. 	 A declarative statement will be used to define each matrix as 
to type and maximum dimensions. This informatidm will be 
used by the Processor to make the appropriate entkies into 
the data definition table and to generate the necessary data 
definition andlor  data reservation instructions in dTRAP code. 

Format: 

NAME MATRIX, ELEMENT, STRUCTURE, MAXROW, MAXCOL 
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Following the matrix NAME, the  f i r s t  field, MATRIX, is the 
OPCODE and signifieo the definition of a matrix, 
field describes the type of matrix element, such as REAL, 
COMPLEX, etc. The third field describes the structure,  such 
as DIAGonal, SYhhnetric, etc. The fourth and fifth fields dee-
ignate the maxirnum, number of.rows and columns ob the matrix. 
For example, a rea l  (single preciaion floating point), symmetric 
matrix named DOG, and having maximum dimensions 150 by 150, 
would be defined thus: 

The second 

DOC MATRIX, REAL (SP),SYM, 150, 150 

(The suggested types of element and structure to bs allowed 
will be discussed in Section UI below.) 

3,  A typical imperative statement will have the format;: 
6 

OPCODE, NAME 1 ,  NAME 2, NAME 3 

when three operand8 are required. 
which are appropriate for matrix operations will be retained 
without change. 
tiplication, then 

Those arithmetic OPCODES 

For example, if MPY i s  the OPCODE for mul -

MPY, ABLE, BAKER, CHARLIE 

will mean that the matrix CHARLIE ia the product of ABLE 
BAKER. In the case of matrix inversion, howeverp only two 
operands are required. Hence, 

INVERT, DOG, EASY 

will mean that the matrix EASY i s  to be computed ssls the Inverse 
of DOG. 
IV below.)  

(The suggested OPCQDES will be decrcrlbed in Section 

4. Each imperative statement of the faregoing type will be trans-
lated by the Processor into a STRAP calling sequence which will 
be used to gain entry into the appropriate subroutine(s) to execute 
the operation requested. This calling sequence will be equivalent 
in information content to the Autocoder instruction, 
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B. M e m o r y  Block Structure 

1. 	 All numerical data for each matrix will be etored consecutively 
beginning with the third word of a memory block aesigned to 
that matrix. 

2 .  	 The f i rs t  two "header" words will be reserved for descriptive 
information. The f i r s t  header word of each such block, which 
is at the address symbolized by the matrix NAME, ie a control 
word having it0 own address in its addrese field and a count of 
the total number of words in the block in its count field. This 
word will be ueed for input/output operations. 

3. 	 The second header word of the block will consist of two half-
words with the actual number of rows stored in the f i r s t  18 
bits of the address field of the first half-word and the actual 
number of columns similarly stored in the addreas f€eldof the 
second half-word, The remaining bits of these two half-words 
are available for the type code of the matrix. 

4, 	 Each different type of matrix will have i ts  own peculiar storage 
format, chosen so a a  to conserve storage'space both in core 
memory and on tape. As a consequence, a number of different 
subroutines will be required to execute each type of matrix 
operation. But by eliminating trivial computations with zeroee 
and/or duplicate elemehts, much greater  computational efficiency 
can thus be achieved. 

C. 	Method of Execution 

1 .  	 All matr ix  operations will be executed interpretively using the  
STRAP calling sequence to gain entry into the appaopriate 
mas ter  subroutine for carrying out each different operation 
such as add, invert, etc. 

L. 	 The initial task of each such master subroutine, immediately 
after entry is gained, will be to examine the second header 
word of each of the operand matrices in order to dietermine 
the types of matr ix  involved in the operation to be executed. 
By means of a table look up, the correct  inner subroutine 
required to execute the operation i s  then chosen. 



3.  	 B e f w e  transferring control to this inner subroutine, however, 
the master  subroutine f i r s t  checks the dimensions of the operand 
matr ices  to ensure that they a r e  compatible with the operation 
to be performed. I 

4. 	 When control has been paseed to the inner subroutine, the f i r s t  
taek is that of forming the two header words for the result  
matrix. The actual operation is then performed and upon it8 
completion, control i s  returned to the next calling sequence in 
the main program. 

5. 	 E r r o r  messages will be printed in cases where no~innersub-
routine exists for carrying out the called-for operation on the 
types of matrix specified or in ease the matr ices  Have incom-
patible dimensions. 

111. 	 Matrix Types and Storage F o r k a t s  

A. 	 Elementary and Special Matrices 

1. 	 Certain special matrices, which a r e  useful compuwtional o r  
symbolic tools, will be allowed. The following elamentary 
matrices  require no numerical data and can be completely 
described by the two header words. 

a. 	 Null  matrix. (The dimensions will be given in the second 
header word, i f  needed. If the dimensions are omitted--
i. e . ,  set to zero--this will be taken to imply that the null 
matr ix  is of adjustable s ize . )  

b. 	 Unit matrix. (Again, dimensiona will be give0 if needed--
if omitted, the size  will be considered adjnetable. ) 

c .  	 All-ones vector. (Dimensions n x 1 for a column vector 
and 1 x n for a row. If n I 0, this dimension will be con-
sidered adjustable. ) 

d. 	 Unit row vector. (F i r s t  half of second header word gives 
length of vector; second half word gives poaition of the only 
nonzero element, which is unity. If length = a, it will be 
considered adjustable. ) 

e,  	 Unit column vector. (Similar to above.) 

c 


1 
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f .  	 E . .  matr ix--al l  zeroes except for unity in the  i-th row and 
j-% column. (Dimeneaions adjustable. ) 

Additional matr ices ,  related to some of those juat ,described, 
are the following in which a constant (realor  complex, simple 
or multiple precision floating point) i s  atored following the 
two header worda. ' 

g. 	 Scalar matr ices  (k* unit matrix) 

h. 	 k * all-ones vector 

i. 	 k * unit r o w  or column vector 

j. 	 k * Eij  

In each of these cases,  the previously described conventione 
regarding fixed o r  adjustable dimensions will capplf. 

2 .  Other special matrices of an elementary type are the  following: 

a. 	 Binary matrices--consisting of 1 or 0 elements only. 
(Stored by row6 or  by c ~ l u m n s ,64 bits per  wqrd, each 
row or column starting at a f u l l  word boundary and occu-
pying as many c~nsecu t ive  words as needed. ) 

b. 	 Ternary matrices--consisting of t 1 , - 1, or 0;elements 
only. (Stored by row8 or  by columns, 44 hits per  word, 
each row or colurnn etarting at a fu l l  word boundary. The 
magnitudes of the first 64 element6 of each row o r  column 
a r e  stored in the first word and t h e  corresponiding signs in 
the second word of the row or column--followed by as many 
alternating words of magnitude bite and eign biita as needed.) 

c .  	 Incidence matrices--tabular form. (These matrices a r e  
used to describe connectivity or incidence relbtions between 

* 
branches and nodes in a linear graph. Each data word, cor-
responding to a directed branch of the graph, will contain 
the number of the initial node in the address oif the  f i r s t  
half word and that of the final node in the addr,eae of the 
second half word. This form m a y  be converted to a ternary 
matrix, if deeired. ) 

1 
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B. 	Matrix Classification according to Type of Element 

The elements of matr ices  may be not only null, binary, o r  ternary 
numbers as described above, but also any of the following data 
objects: 

1. 	 Real numbers, single o r  multiple precision floatkng point. 
(Stored as normalized binary floating point, if single precision. 
If multiple precision, the most significant portion i e  stored in 
the firet  word of a block in normalized form, followed c o n ~ e c u -  
tively by unnormalized words having successively lower signifi- 

. cance.) 

2. 	 Complex numbers, single or multiple precieion fldating point. 
(Stored consecutively with real  par t  immediately preceding 
imaginary part. If multiple precision, both the r e d  and imagi- 
nary parts  are stored in two consecutive blocks each having 
the same format as that of a multiple precieion real number. ) 

3. 	 Polar numbers (polar form of complex numberra), single o r  
multiple precision floating point. (Stored consecutively with 
modulus par t  preceding argument o r  phase. ) 

4. 	 Submatrices, designated by the symbolic NAMES associated 
therewith. (Stored with one submatrix NAME per word in A8 
code. Matrices whose elements a r e  other matrices  are known 
as compound matrices.  With this classification included in 
the system, compounding of matr ices  to any depth ie possible, 
at least  in principle, and can be ueed to handle rnuiltisubscripted 
variables. ) 

C. 	Matrix Classification according to Structure 
m 

The 	following structural  classification, subject to latex extension, 
includes the most common types encountered in acientidic and 
engineer ing app1i cat ions of matri c ee .  

1, 	 Rectangular matrix. (Stored consecutively by rowis or  by 
C O h ~ n n 8 .  Includes row and column vectors as epckial casee. ) 

# 

2. 	 Symmetric matrix (real) or  Hermitian (complex). (Stored 
consecutively by columns omitting all elements above the main 
diagonal. ) 

3. 	 Diagonal matrix. (Only the diagonal elements are stored. ) 
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4. 	 Codiagonal matrix. (Stored consecutively as follows: main 
diagonal, first subdiagonal, f i rs t  superdiagonal, eccortld sub-
diagonal, second superdiagonal, and so on until a l l  nonzero 
codiagonals have been atored. If symmetric, only subdiagonals 
a r e  stored. Type code must indicate number of codiagonals. 
If this number is zero, all codiagonals will be stored.)  

5. 	 Hessenberg matrix. (Contains one superdiagonal, m&in diago- 
nal, and all subdiagonals. Stored with superdiagonal first, 
main diagonal next, followed by consecutive subdiagonals. ) 

6.  	 Upper Qr lower triangular matrix. (Stored with mikin diagonal 
f i r s t  followed by successive sub- or  superdiagonalr. ) 

7. 	 Sparse matrices.  (Only the nonzero elements w i l l  be stored, 
in sequences similar to those of the rectangular, symmetric, 
or codiagonal matricee described above. In addition, a key 
showing the location of these nonzero elements in the matrix 
would be needed. Two alternative methods for storing this 
information are: 

a. 	 A bit pattern wherein 1 ' s  indicate the present of nonzero 
matrix elements. 

I 

b. 	 Two half words, following each nonzero data word, and 
showing the row and column position thereof. ) 

IV. 	 Recommended Autocoder Instructions for Matrix Computation 

A. 	 Addit'ion, Subtraction, and Multiplication 

In keeping with the previously suggested Autocoder formats ( g e e  

File  	Memo, September 7, 1960, by F. H. Branin), ea+ matrix 
operand may be prefixed by a minus sign, if desired. (The slash, 
repreeenting absolute value, will not be ueed, ) Accordiingly, if  
we use the m o r e  conventional opcodes ADD, SUB, and MPY,  we 
may 	express the operations of addition, subtraction, and multipli- 
cation of matrices a8 follows: 

ADD, A, B,C means A t  B = G  

ADD,A, -B,C means A - B s C  

SUB,A, B,G means A - B a C  

M P Y j  -A, B,C means - A * B z G  




a 


Arithmetic operations on single rowsj single C O ~ I ~ I ~ ~ I ~ B ,or  single 
elements of matrices may be specified using subscriptis as follows: 

B. Inversion 

INVERT,A, €3 means A-1= B 

INVERT, -A, B means -A- l  z B 


C. Traneposition 

D. Partitioning and Rearrangement 

In partitioning a given matrix by extracting a cont ipow sequence 
of rows and C O ~ U Y I ~ Bwithout rearranging them, it irs sufficient to 
specify the f i r s t  and last rows and the f i rs t  and laet columns. Thus, 
if we desire to extract the 50th through 11 th row8 and1 the 2nd 
through 4- th  column of matrix A and designate thie new matrix as 
B, we m a y  write the three Autocoder i na t ruc t fons :  

PARTIT, Aj B 
ROWS, 5- 11 
COLS, 2 - 4  e 

If we wish to extract the K-th through L-th rows and M-th through 
N-th C O h n n 8 ,  we m a y  write: 

PARTIT, A, B 
ROWS, K - L  
COLS, M-N 

where K L and Ad Nj of neceasity. 

If a rearrangement i s  deeired, either with or without partitioning, 
we may UBE-a similar format but with the rows and colimns of the 
matrix to be partitioned listed explicitly in the order in which they 
are to appear in the  result  matrix. For example, if we wieh to let 
row8 5, 2,  7, and 9 of A be the first through fourth rows of B and 
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E. 


F. 


columns 2, 4, 1, 7, and 11 of A be the f i r s t  through fifth columns 
of B, we may write: 

PARTIT, A, B 
ROWS, 5, 2, 7,9 
COLS, 2 , 4 ,  1, 7,11 

In either usage, all three instructions must a1way;cP appear together 
with PARTIT firet .  If the sequence is PARTIT, ROW$, and COLS, 
then the rows of the partitioned matrix become the row8 of the reault 
matrix, and likewiae with the columna. However, if the sequence 
ie PARTIT, COLS, and ROWS, then the c O l U ~ 8  of the partitioned 
matrix become the row6 of the result  and vice v e r ~ a .  In other 
words, a transpostion i s  included along yith the partitioning and/or 
rearrangement. 

Solution of Simultaneous Equation6 

If the matrix equation AX = B is to be solved, whether X and B a r e  
single column vectors, o r  a matr ix  consisting of several column 
vectors, the Autocoder instruction cklling for solution of this equa-
tion will be 

SOLVE, A, X,B meaning solve A X  E B 

Since matrix inversion requires roughly a factor of  thlree t imes as 
much computation as the solution of simultaneous equations, solu-
tion by rneane of matrix inversion will actually be employed when-
ever X and B consist of four o r  more columns. 

Conversion from one Matrix F o r m  to Another 

If matrix A ie diagonal o r  symmetric and is to be converted to 
rectangular form, stored rowwise, which ia the form of matr ix  
B, the Autocoder instruction for effecting this converaion is 

SET =,A,  B 

This instruction can a180 be used to move a matrix from one loca-
tion to another without change of form if both operand matrices 
have the same form. Xf an inadmissible conervsion is called for 
by mistake--such as converting a rectangular matr ix  to diagonal 
form--the operation will be carr ied out nevertheless, but a diag-
nostic mesaage will be Rrinted out at the e r n e  time, 
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G. 	Computation'of Eigenvalue a and Eigenvector s 

No kecommendation concerning the Autocoder inetructibn format for 
this computation will be made at present. The problerh needs to be 
studied extensively. Suitable instruction formats can tle formulated 
and added to the system later on. 

H. 	 Input / Output 

Input-output operations with matr ices  will be called fozt using the 
format suggested by R. L. Harding. (See File Memo, October 5, 
1960. ) 

V. 	 Some Recognized Problems and their Possible Remediee 

A. 	 The biggest drawback of the proposed system is the ladge number 
of inner subroutines that would be required to handle tye various 
different situations that can arise with the matrix types suggested. 
For example, in the  case of real ,  single precisian matirices, alone, 
if we allow six structural  classes (rowwiae or  columnwise rectan-
gular, symmetric, diagonal, codiagonal, and symnietr:ic codiagonal) 
36 different aubrouthes would be required for multipli@ationand 
almost that number for addition or subtraction. Accorklingly, eorne 
limitation on the allowable combinations of matrix types must be 
imposed, a t  least at f i r s t  while the system i s  being ddeloped  and 
checked out. At a later date, a scheme could be workgd out for 
scanning all matr ix  types and operations during compibtion of each 
source program and selecting only thoee subroutines which a r e  actu- 
ally needed. In this way, t he  storage space allotted to'thematrix 
computation system in the object program could be miziimized. 

€3. 	 As new matr ix  types are added to the initial system, the tables used 
in selecting subroutines wi l l  need to be expanded. Accordingly, a 
mechanism for effecting this expansion, in conjunctioii'with the  
STRETCH Macro Language Processor ,  will have to be'developed. 

C. 	In a given operation upon compound matr ices-  -for exahple,  multi-
plication- -the mas ter  subroutine which effects the intckpretation 
and inner subroutine selection, will have to be entered repeatedly 
from within itself-or rather from within one or more iof its inner 
subroutines. Moreover, t he  inner subroutines themst:lves may 
have to be entered repeatedly in similar fashion. Accdrdingly, an 
expandable bookkeeping scheme, perhaps in the form oif a push-down 
list ,  will be needed to keep track of the various points bf entry and 
exit to theae various subroutines. 
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D. 	 Development of suitable Autocoder instructions for various matrix 
operations should be etraightforward, but the data description etate-
me+ may be a bit more involved. I 

E. Although each matrix will be stored as compactly as passible, a 
great deal of core memory space may be unused simply because 
data reservations are planned, at present, to be made on the basis 
of the maximum dimensions of each matrix operand. However, it 
m a y  later be feasible to develop a dynamic memory ailbcation 
scheme, for use  at execution time, which stores all matrices con-
secutively a8 they are encountered in the program and, when m e m o r y  
is about to overflow, ~ a v e sonly those matrices which will be called 
for later in the program. 

FHB:j a s  


