
t

by

Louis Gatt

Zone Motteler

Grover Lewis

Frank Evans

Dick Thomas;

c

Strap 1is a program f o r assembling symbolic programs f o r

Stretch, u t i l i z i n g a 32K 704. It I s a predecessor t o Strap 2, which

will u t i l i z e the Stretch machine itself for assembly. All programs

which can be assembled by Strap 1can also be assembled by Strap 2.

1. 	 S T W CODING FORM

The coding form and the card form are divided in to 4 f i e l d s .

These f i e l d s and t h e i r posit ions are shown below.

1 2 - 9 10 	 71 2 2 - 80
Col 0 Class Name Skatement 	 Ident i f icat ion

The purpose of each f i e l d is:

1. 	Class (1column) - t o ident i fy the card format (binary, decimal,

symbolic, e t c) .
2. 	 Name (8 columns) - t o ident i fy the statement by a symbol (optional)

3 . 	 Statement (62 columns) - t o express a machine o r pseudo-instruction

4. Ident i f icat ion (9 columns) - t o ident i fy the card or program (does

not a f f ec t assembly)

1

2 . INSTRUCTION FORMATS .
2.0. General.

Machine instruct ions are written and punched symbolicdly i n

the statement f i e l d of the form described above. A card nay contain

s e v e r d instruct ions separated by <. (The keypunchers w i l l be instructed

t o punch t h i s symbol as 11-0 double punch.) The number of instructions

which may be punched on a card is United by the number o f columns avai l -

able i n the statement f i e l d . The symbol in the name f ie ld of a card

having more than one instruction in the statement f ie ld is associated

with the first instruction. The remaining inst ruct ions are treated as if

they appeared on separate cards having blank name f i e l d s , (I t is not

necessary t o nme an instruction unless it i s referred t o i n the program.)

A single inst ruct ion cannot be continued from one card t o another. A

comment may follow m y instruction. A comment is i n i t i a t e d by the symbol

' (an 8-4 double punch) and terminated e i the r by the end of the card or

a +. A ' i n the name f i e l d causes the whole card t o be treated as comment;

it w i l l be printed on the l i s t i n g but w i l l not otherwise a f fec t assembly.

Symbolic instruct ions are divided into subfields (e .go, operation,

address, offset , e t c .) by commas. These subfields may --ln t u r n be sub-

divided o r modified by expressions contained i n parentheses, such as Index

r eg i s t e r specifications, secondary operations i n progressive Fndexing,

e tc . Three general classes of operations can be defined in Strap 1:

lega l machine operations, data-entry psuedo-operations, and instructions-

to- the -compiler pseudo-operat ions .

2

3

2.1

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10

11*

12.

2.2

1.

2 .

3.

4.

3.

6 .

7 .

Machine Instruct ions

Format

Data Entry Instructions

Format

(EM)DD(dds), D, D ' , D " , - * .

CW(OP2), FWA, C, R

xw, v, c, RY 0-7

VF, F

m, c

m, R

EXT(L, L ') any l ega l instruct ion

3

Operat ion

Floating point

Miscellaneous, unconditional branch, SIC

Direct index arithmetic

Immediate index arithmetic

Count and branch

Indicator branch

WL arithmetic, connect, convert

Swap, transmit full words

Transmit half words

Branch on b i t

Input-output s e l ec t

Load value with sum

Operation

Data def ini t ion

Input-output control word

Index word

Value f i e l d

Count f i e ld

Refill f i e l d

Extract

t

2.3 Instructions t o Compiler

- Format 	 Operation

1. SYN(dds), 	 Synonym

2. DDI(dds), D 	 Data defini t ion for immediate op

3. SLC, Ar-& 	 Set location counter

4. END, B19 End of program

5 - DR(dds) L ' , L", * -) DaAa reservation

6. CNOP, A19(I) 	 Conditional no-op

Terminate loadFtlg and branch

2 . The format 	symbols used above are defined as follows:

1. 	 OP o r OP1 A f ixed symbolic (hopefully mnemonic) representation

of a machine operation.

2 . 	 0P2 A secondary operation in progressive indexing o r

input-output.

3. An 	 A data address of length n b i t s .

4. B19 	 A l9 -b i t branch address.

5 . 	 1 A b b i t index address in which 0 s igni f ies no

indexing and 1 t o 15 s igni f ies indexing by the

corresponding index reg is te r .

6 . 	 K A single b i t index address i n which the choice

is 0-no indexing, o r 1-index w i t h r eg i s t e r 1.

7. 	 J A 4 b i t index address which refers t o an index

reg is te r as an operand. In t h i s case 0 refers t o

index 0, word 16. J = 5 b i t s i n immediate transmits.

4

8 . OF Off set.7
3. 10 	 Input-output un i t address

10. cw18 	 Control word address.

11. EM 	 Entry mode. .

12. D 	 Numerical data.

13. 	 FWA F i r s t word address of words t o be t ransferred i n

input-output operation.

14. C 	 Count f i e l d (18 bits, uns iped) .
15. R 	 Refil l f i e l d (18 bi ts , unsigned) .
16. v 	 Value f i e l d (2 5 b i t s , signed).

17. L ' 	 Symbolic o r numeric integer.

18. dds 	 Data description.

19. primes Used t o distinguish otherwise ident ica l f i e l d s

in a format. In transmit the data is transmitted

from A t o A' .

3. Data Description

In the format specifications above, the symbol dds i s added asc_

a modifier t o certain operations and stands f o r the data description f i e l d .

It i s specified by:

1. M the use 	mode,

2. FL the f i e l d length,

3. BS the byte size.

These three en t r i e s appear within parentheses i n the above order, thus;

(M, FL, BS) . A data description given with any of the four pseudo-ops,

5

.

DD, DDI, SYM, o r DR, appl ies t o the symbol i n the name f i e l d of the card

and is automatically assumed whenever that name appears i n an address

f i e l d of an inst ruct ion. This data description may be overruled by writ ing

a d i f f e ren t data description e x p l i c i t l y as a modifier i n the two machine

iirmtruction formats where it applies. There are seven fixed mode desig-

nators as follows:

1. N Normalized f l o a t i n g point,

2. u Unnormalized f l o a t i n g point,

3. B Binary signed VFL,

4. BU Binary unsigned WL,

5 . D Decimal signed VFL,

6. DU Dectmal unsigned WL,

7. p A special character designating "da.ta propert ies of . "

Within a data description f i e l d the byte s ize o r f i e l d length may be

omitted, but never the mode. If byte size o r f i e l d length, o r both, are

omitted, the mode w i l l imply the missing p a r t of the data description as

")
follows:

f ixed format of' 64 b i t s ; f i e l d length and byte s i ze

U not appropriate ,

B FL = 64 BS = 1,

BU FL = 64 BS = 8,

1 FL = 64 BS = 4.
DU

Note: Some pseudo-ops (e.g. DDI) imply FL # 64. See description of

individual pseudo-op f o r d e t a i l s e

6

A data description using P is wri t ten as follows: (P, Symbol),

It means t h a t the data propert ies associated with the given symbol are t 0

apply t o the ins t ruc t ion with which it is writ ten. P can be used only

with l e g a l machine instruct ions, never with a pseudo-op.

Ih straightforward coding it i s unnecessary t o write a da ta

description on machine operations . The data description associated with

the def in i t ion of a symbol (i n a data-entry or data-reservation pseudo-od)

i s automatically applied t o the machine operation i n whose address the

symbol appears. IT a data description i s given on a machine operation,

it overrules any data description derived from the symbolic address.

Cases can arise from programmer e r ro r s i n which a da ta descripd

t i o n and operation are not mutually consistent. In t h i s case the opera-

t i on w i l l overrule. E there is no way t o obtain a data description

from the symbolic address o r from an e x p l i c i t data description f i e ld ,

three cases arise.

1. The operation symbol can stand f o r e i t h e r f loa t ing point o r

var iable f i e ld length operations (e.g., +, -, *, /). The operation i s

assembled as VFL with data description (BU, 64, 8).
2. The operation symbol can stand f o r VFL only (e.g., Mt-1) . It

is assigned a data description (BU, 64, 8).
3;. The operation symbol can stand f o r f loa t ing poin t only

(e.g., +A, 'ANA). The operation is assembled as normalized f loa t ing

point, except E+I and i t s modified forms, which are unnormalized unless

overruled.

7

c

A n er ror mark w i l l be printed i n m y of these cases.

4. Strap 1 Location Counter

Cards are read i n sequence, and the number of b i t s needed f o r

each instruction or piece of data is added t o an assembly location counter

in order that each instruction or data entry may be assigned an address.

A. principle of rounding upwards is followed, guaranteeing tha t an in-

struction, value, count, or r e f i l l w i l l begin exactly on a half-word

address and that index words, control words, and f loa t ing point data

w r i l l begin only on full-word addresses. The SLC pseudo-operation pro-

vides a means of setting the assembly location counter t o m y value a t

any point i n a code, and thus gives the programmer complete control of the

location of h i s code. Following an SLC, the location counter is advanced

i n normal fashion u n t i l another SLC card rese ts it.

51. Symbols

A programmer symbol is any sequence of six or fewer alphabetic

and numeric characters, the first of which must be specifically alphabetic:.

Such a symbol is defined by the programmer and may repreaent a machine

address of not more than 24 b i t s plus a sign, or a signed Lnteger of not

more than 24 bi ts . A symbol is defined when it appears i n the name

f i e ld of a card. Hence a given symbol may appear i n the name f i e l d only

once. The name of an ordinary machine instruction o r data entry pseudo-

operation is set equal t o the vaLue of' the assembly pmgram location counter

at the point of i ts appearance i n a code. There ex i s t specid. pseudo-

operations capable of defining a symbol as an address o r an integer

independently of the location counter.

8

A system symbol consis ts of a dollavl sign followed by f i v e o r

fewer alphabetic and numeric characters. System symbols represent various

special reg is te rs , indicators and input-output un i t s . Their meaning is

fixed by the assembly program and i s not subject t o programmer control.

A programmer symbolized f i e l d is a f i e l d which may contain

programmer symbols and/or system symbols. of the f ie lds shown i n the

ins t ruc t ion formats above all may contain programmer symbols except OP,

OPl, OP2, EM, D, and the mode f ie ld of a data description. A l l o thers

may be symbolized by the programmer subject t o the ru l e s and r e s t r i c t i o n s

given below under the heading Address Arithmetic.

60 General Parenthetical Integer Entry

By means of the general integer en t ry any integer o r a rb i t r a ry

pattern of b i t s may be s tored in any posi t ion of an instruct ion o r data

en t ry f ie ld . This type of en t ry may not be used w i t h the pseudo-ops

c l a s s i f i ed as ins t ruc t ions t o the compiler. The format f o r general integer

en t ry is: (.n)An+l. It is a modification which m a y be appended t o a D

f ie ld or t o any programmer symbolized f i e l d (o r i n place of such a f ie ld)

---which I s not enclosed parentheses. (Thus, f o r example, FL and BS

f ie lds cannot contain a (.n) entry.) The integer n is the number of the

rightmost b i t of the parenthet ical f ield. The address An+l is formed as

an unsigned n+l--bit f i e ld and added t o the ins t ruc t ion o r data f i e l d by

means of a logical "or" in the leftmost n+l--bits. Subfield boundaries

are ignored by general integer entry. The posi t ion of the en t ry is de-

t emined by counting the b i t s of the whole instruct ion f i e l d no matter

9

7

which subfield the integer entry m a y happen t o be appended to . Thus,

f o r example, i n a VFL inst ruct ion so modified, OP, AZ4(I)(
OF7

:is exactly equivalent t o OF, AZ4(I) OF7(In the case of a DD

pseudo-op the posi t ion of the p a r e n t h e t i c d f i e ld is determined by

counting the b i t s of the f ie ld , D, with which it is writ ten. In any

case the general integer en t ry must follow a l l other m o m a t i o n i n the

-fieldor subfield i n which it appems, except f o r another general in te -

ger entry. Although one en t ry could be made t o serve i n m y s ingle

Instruction, it is more convenient t o write several d i f f e ren t integer

en t ry speclf icat ions when one wishes t o place numbers in vwious places

In a field, Therefore no l i m i t i s set on the number of consecutive

e n t r i e s which can be wri t ten together, except a8 hposed by the length

of the statement f i e ld of the card. I% An+l is negative, an n+l--bit

2 % complement is taken, The maximum size of n is r e s t r i c t e d by the

t o t a l length of the ins t ruc t ion o r b t a field, m. O<n<m. For example,

in a half-word instruct ion O,<n,<3; i n a full-word instruct ion 0sn < 63.

The radix of An+l may be specified as mentioned below under "Radix

Specification. "

Multidimensional Arrays

Strap 1 provides a convenient method of def inlng multidimensiond

arrays of data and of addressing individual elements of an array. All

indexing, of course, must be handled e x p l i c i t l y by the programer A

symbol is defined as the f i rs t element of an a r ray of n+l dimensions by

v i r tue of its appearance i n the name f i e ld of a data reservation statement

10

of the following sor t : DR(dds), (L, L ' L", , Lr). This statement

i s interpreted as reserving space f o r an L x L' x L" x x Lr array

of data fields. A number of b i t s equal t o the f i e l d length of each

element multiplied by the product of the dimensions is s e t aside f o r

t h i s array and the location counter advanced accordingly, (Ethe data

Bescription specifies f loa t ing p o b t words, the correct number of f u l l

mrds is reserved, beginning a t a full-word boundary.) In addition the

number and value of the dimensions i s permanently associated with the

symbol so defined. men in any address f i e ld a specific member of t h i s

array may be addressed by writing: Symbol (9, q', q",-*, q
r). The

first element of the array is Symbol (0, 0, O,..., 0) = Symbol, and

the last element of the reserved space i s Symbol (L-1, L ' 4 , L"-1, . ,L r - l)

The address of an a rb i t ra ry element i s computed by means of the formula:

Address of [Symbol (q, q', q",*-, q r)] = Address of [Symbol (0, O., O,-**,O)]

+ FL x (q+q'L.t.q"LL'-tq"'LL'L"+ where FL is the f i e ld length of an* * e) ,

element i n the array. Strap 1wi l l handle a maximum of f i f t een dimen-

sions in t h i s fashion. Such an array address may be used in any program-

mer symbolized f i e ld not i n parentheses, except a, general parenthetical

integer entry.

8. B i t Addresses and Integers

8.0 Definition

Two kinds of numbers have been defined f o r use i n the program-

mer symbolized f i e l d s of Strap statements. A b i t address i s a s tyle of

writing a machine address by specifying nw, a number of full 64-bit mrds,

11

and T+,a number of bi ts . The format is nw. I.+,. The period separating

tihe two integers distinguishes the b i t address from an ordinary integer

rii’ which is the second kind of number allowed t o appem i n address f i e l d s .

As the name “bi t address” implies, these numbers are converted t o and

carr ied as 24-bit binary integers such as are appropriate to the address

f i e l d s of VFL inst ruct ions. When used in the address f i e l d of ins t ruc t ions

for which a shorter address is appropriate a b i t address i s truncated t o

the correct length and inserted. The location counter contains a b i t

address. There is no l i m i t on the s ize of the numbers nw and r+, except

Ithat 64nv + I+,, must be l e s s than 224 ,

Example: 505.17 = 50003T7 = 0.32337

Integers i n programmer symbolized f i e l d s are always converted

‘to binary. They are l imited i n length t o the length of the f i e l d in to

iwhich they are t o be inserted, with the addi t ional r e s t r i c t i o n t h a t an

integer larger than 24 b i t s cannot be symbolized.

B i t addresses and symbols f o r b i t addresses are intended p r i -

ma;rily f o r use i n address fields of machine ins t ruc t ions , Integers and

symbols f o r integers are intended primarily f o r use i n f i e l d s for which

they seem more appropriate, counts, shifts, f i e l d length, byte s ize , e t c .

8.1 Addition of Integers and B i t Addresses

Although it is expected that integers and b i t addresses w i l l

generally be used i n d i f fe ren t f i e l d s , addition of the two types of

numbers is defined, the r e s u l t being a function of the type o f inst ruct ion

f i e l d f o r which the number is intended. Algebraic addition is permitted i n

a l l f ie lds which may be symbolized by $he programmer. Symbols f o r both

b i t addresses and integers are signed numbers. The number of terns which

may appear in a f i e ld i s l imited only by the space available on the card,

except f o r the case of SYN and DR, noted below in sections 10.0 and 11.0.

Example: SAM - JOE + FRED -. 72.386 + 5 ,

where SAM and JOE axe defined as b i t addresses and FRED is an integer,

w i l l in general be a lega l address. The data description of the f i n a l

symbol, FRED, w i l l apply t o the whole combination. In computing such an

address, the sum of the b i t addresses is obtained separately from the

sum of the integars; the b i t address sum is then truncated on the r igh t

if necessary and the result added algebraically t o the integer sum. 3cf

the f ie ld for which the address is intended is signed, the sign w i l l be

placed i n the correct b i t , IT the f i n a l result is negative and the n-bit

f i e ld f o r which it is intended is unsimed, a 2% complement is

formed and inserted, except i n the case EXT (L, L ') where IL I and I L'I

are used. A posit ive f i n a l result, of course, is inserted as a t rue

figure, The programmer is reminded tha t a 2 ' s complement must be used

w i t h cwe on Stretch i n order not t o get an "address invalid" indication.

Either a b i t address or an integer or a combinatfon of the two

may appear i n any programmer symbolized f i e l d w i t h only four res t r ic t ions :

1. 	 The "I" or "K" index f ie lds must contain at

least -one b i t address term.

2. 	 The ent r ies in an array specification must

no* contain any b i t address terms. (lh

EXT (L, L ') , (L , L ') i s not considered an

array specif icat ion.)

3. A period may not appear i n the f i e l d of a

general integer entry. A symbolic b i t

address appearing i n such a f i e l d is t rea ted

as a 24-bit integer.

LL No arithmetic can appear i n the name f i e l d ,

which i s reserved f o r defining symbols.

The following ru l e s describe the method by which b i t addresses

and integers are truncated and added. The numbers a re assumed t o be signed

24-bit integers before the operation. Addit ion i s algebraic. An emor
in ,d ica t ion w i l l be given i f non-zero b i t s a re discarded, except f o r the
''W1b i t of an index f i e l d . I n the diagrams below integers and b i t addresses
are drawn sh i f ted wi th respect t o each o t h e r by the proper amount. The

xiwbers are a lgebraical ly added w i t h t h e o f f se t shown, complemented (if
~iecessary), truncated (i f necessary) t o the correct f i n a l length, and
inserted into t he correct posi t ion i n the operation word. Uthough the

diagrams show t h e f i n a l sum f i e l d truncated t o t he appropriate length, the
b i t s a re not ac tua l ly discarded unless they would f a l l outside the GddreEs

t

B i t address: B.A. 24 b i t s

I. 24 b i t s
t

SWn 1-245its -1
Note: Integer counts b i t s . I

14

H a - w o r d address: B.A. r y T G - 5 b i t s
* * A19

I.

Note: Integer counts half words.

3* A18 Full-word address: B.A.
1

18 b i t s
I’ TZJ
I

----------I
I. 1 24 b i t s 1

I
-I

SWn] 18 b i t s I
I

Note: Integer counts full words.
I

4. %u Signed 11b i t address: B.A. I 24 b i t s I
II

I. 24 b i t s
I-I

5 . OF7 Offset: B . A .
1

I 24 b i t s
I
I

I. 1 24 b i t s I

Note: B i t address 1.32 = .96 = integer 96
l------------i

6. FL6 Field length: B . A . 24 b i t s I
I

I. l24bits-l

Note: 1.0 = .64 = 64 = 0 not error marked

3-5

I

I

7. BS3 B y t e size:
I

I 24 bits
r

I
I

I. 24 b i t s 1-
!

swn

Note: .8 = 8 = 0 no t e r ror marked

,8. I, J 4 b i t index f i e l d s : B.A. [18 b i t s I 6 b i t s 1
I

y - 1
I

I.

I
I

sum

I
I

Mote : A "1" i n the b i t position immediately t o the l e f t of the
f i n a l sum f i e l d is discarded with no e r r a r indication.

I
1

13. K single b i t index f i e l d : B.A. 18 b i t s 6 bits]

I. 1 24 b i t s -A
I

SUm 1b i t -n
I

i

Note: A "1" i n the b i t position which corresponds t o 1116'ti n the

sum is discarded w i t h no error indication.

113. I O input-output address: BOA.

I. I 24 b i t s I-~
I
I

I 7 b i t s
I
I

Note: Integers count tape units, channels, etc.

16

[--[

--

9. 	 Radix Specification

In any programmer symbolized f i e l d not enclosed by parentheses,

numerical in tegers and b i t addresses may be wri t ten i n any radix from

2 t o 10. The radix is specif ied by simply enclosing the appropriate in te -

ger (wr i t ten i n decimal) i n parentheses a t some appropriate point i n the

subfield. The radix appl ies t o the e n t i r e subfield unless r e se t before

reaching the end. If no radix base i s specified, base 10 is assumed.

Some examples :

a. 	 (8)573 - 34 + 50 (all numbers are oc t a l)

b . 	 (2)11011011100011.11110 (b i t address wri t ten i n binary)

C . 	 (5)SAM - 342 (The symbol SAM i s not a f fec ted by the radix, having

been previously converted t o binary. The integer 342 is

writ ten i n the number system of base 5 .)

d. 	 (8)7436.(10)60 + 9 (The full word portion of t h i s b i t address is

wri t ten i n oc ta l , whereas the b i t portion and the integer 9

are writ ten in decimal.)

When wri t ing a general parenthet ical integer entry, the radix

base may be specif ied within the same parentheses as the .n and i n any

order, thus, (a, R) o r (R, .n).

Examples:

a. 	 (. 5 O , 8)17 - JOE + (10)4203(4, .22) - 33303(.60)1030

(7) (.30)1265(.20)(10)138 - (6>43(.lo1553

Note t h a t the radix does not have t o be specif ied with .n, IT

no radix is specified, the current operative one i s continued; it i s -not

resest t o LO. It w i l l be understood t o be 10 if no radix has been pre-

v:iously specified i n the f i e l d t o which the general parenthetical integer

entry is appended. The radices which apply in the above examples are:

Example Number Radix

1 17 8

JOE does not apply

k o 3 10

33303 4

1030 4

1265 7

138 10

43 6

553 6

All the control integers (within parentheses) are interpreted as decimal

numbers.

10. 	 Synonym

Format: Name 1 SYN(dds), %b

The pseudo-operation SYN is used t o define a symbol in terns of

a b i t address, an integer, o r a combination of the two. The address s4
is evaluated and i t s value is attached t o the symbol i n %hename f i e l d .

The dds i s attached t o the name. IY no data description is given, the

data properties of the f i n a l symbol not in parentheses are transfered t o

t h e name. If t h i s symbol has multidimensional properties, they a re

18

A W N) , (10, 2 0)

B sm, N 5 , 5)

.

-Name S t atemen t

SAM SYN(N) , 1000.O

FLAG sm(13u, j, 8), .G1

(intervening code)

I L, + FLAG
The " b a d " instruct ion loads only the f l a g from the f l o a t i n g point word

"SAM" preparatory t o some WL arithmetic or tests on the flag.

11. Other Restr ic t ions on Address Arithmetic

11.0 DR

_I

Format: Name I DR(dds), (L, L', L",...)

A DR reserves space f o r data and spec i f ies the dimensions of

multidimensional arrays (see section on multidimensional arrays). The

amount of space reserved I s equal t o the f i e ld length, as specif ied o r

implied i n the data description, multiplied by the product of the integers,

L, L ' , L", e t c . , t ha t is, FL x L x L' x L" x ... b i t s . DR is error-marked

if it has no data description, and normalized f l o a t i n g point is assumed.

Each of the programmer symbolized f i e l d s , L, L', e t c . may contain a t mostt

-one programmer symbol. A minus sign preceding the programmer symbol i s

ignored. If evaluation of the complete f i e ld L produces a negative resLLt,

the absolute value will be taken.

20

Example:

-Name Statement

lega l SAM I DR(B, 2 0) , (12, ~ + 4 ,L-6)

i l l e g a l JOE I DR, (1 2 - K , K+L, -14)

Format : Name EXT(L, L ')OF', A

The instruct ion which follows the parentheses af ter EXT is

completely formed. Then b i t s L Lo L' inclusive are extracted from it

and compiled i n the posit ion in the code where the EXT occurs. The re-

mainder of the subject instruction i s discarded. The name symbol is

assigned a data description of (BU, L'-L+1, 8). The fields L and L ' may

contain any number of symbolic integers but any b i t addresses they contain

e i the r must not depend on the location counter o r else must be defined by

a preceding card.

Example: EXT(18, 47) + (B , 18,7),73.16

F i r s t the full-word instruction + (B, 18, 7)> 75.16 i s forme&.

Then b i t s 18 t o 47 inclusive (the f irst b i t is numbered "0" according t o

Stretch custom) are extracted and stored in t h e program being compiled.

dds = (BU, 30, 8). The location counter i s advanced 30 b i t s .

11.2 -SLC

Format: SLC, %b

The assembly location counter is set t o the value of the addreas

of t h i s pseudo-op. The next instruct ion compiled will be at t h i s address,

21

subQect t o the various rounding upwards conventions. If %4 contains

symbols which depend on the location counter f o r t h e i r value, they must

be defined by preceding cards. A symbol i n the name f i e ld of SLC is

ignored.

12. Notes on Special Operation Formats

1, LVS: "Load value with sum" Name I LVS, J, A, A ' , A*',

J represents the index r eg i s t e r whose value f i e ld

w i l l be f i l l ed . A, A ' , A", e tc . are index-type addresses

each of which causes a one t o be placed i n the correct

posit ion i n the machine address. The index field "I"

may be specified in parentheses of the end of any A

field. E more than one "I" is entered they w i l l be

combined by means of a "logical or.''

2. CW: "Control mrdl' Name I CW(OP2), FWA, C, R

Intended for the en t ry of input-output control

words. The location counter w i l l be rounded to*guaran-

tee tha t the control word ell.begin on a f u l l - m r d

address. dds = (BU, 64, 8). The secondary operation,

OP2, provides f o r e ight possible var ia t ions of the input-

output function as follows:

22

a. CR:

b . CCR:

c . CD:

d. CDSC:

e . SCR:

f. SCCR:

€5. SCD:

Multiple Chain
B i t B i t

"Count within record" 0

"Chaincounts within record" 0

"Count, disregarding record" 1

"Count, disregarding record,

skip, and chain" 1 1

"Skip, count within record" 0 0

"Skip, chain counts within

record'' 0 1

"Skip, count, disregarding

record" 1 0

h. 	 SCDSC: "Skip, count, disregarding

record, skip, and chain" 1 1

3. xw: "Index wordrr Name I X W , V, C, R, 0-7

The index word w i l l begin at a full-word address.

dds = (BU, 64, 8). The in t ege r 0-7 loads b i t s 25-27.

4. W: "Value f i e l d " Name I VF, V

The value f i e l d w i l l begin at a half-word address.

dds = (B, 25, 1)

5 . CF: "Count f i e ld" Name I CF, C

The count f i e ld w i l l begin a t a half-word address.

dds = (BU, 18, 8)

23

Skip

Flag

0

1

1

1

1

6 . RF : "Refill-f ie ld" Name IEIF, R

The r e f i l l field w i l l begin a t a half-word address.

dds = (BU, 18, 8)

7 . CNOP: "Conditional no-op" Name I CNOP, 9
CNOP may or may not en ter a NOP, depending on the value

of the assembly location counter. This pseudo-op guarantees

t h a t the instruct ion following CNOP w i l l begin a t a f u l l -

word address. If a half-word NOP i s required t o advance the

location counter t o the next fu l l word, it will be inserted.

8. Progressive indexing. OP(OP2)(dds),%&(I), OF7(I')

The six operations which can appear i n the OP2 f i e l d

i n t h i s instruction are:

1. V+I, "Add immediate t o value"

2. V-I , "Subtract immediate from value"

3. CV+I, "Count, add immediate t o value"

4. CV-I, "Count, subtract immediate from value"

5 . CRV+I, "Count, ref ill, add immediate ts value '

6. CRV-I, "Count, re f i l l , subtract immediate from vdue"

9. END: "End" END, B19
An END card s ign i f i e s the end of the program. Its

location gives the s t a r t i ng point f o r assigning locations

t o undefined symbols. If' it has an address, B19' a t rans i -

t ion card t o B w i l l be punched. A symbol i n the name19

field is imored on t h i s pseudo-op.

24

10, TLB: "Terminate loading and branch"

When t h i s pseudo-op is encountered a t ransi t ion card is

punched immediately t o t ransfer control of the machine t o the

location B The ef fec t is the same as with an END card19
except that the assembly continues uninterrupted and the re-

mainder of the program is loaded under program control. A

symbol i n the name f ie ld I s ignored on t h i s pseudo-op.

25

1-3. Miscellaneous Notes

1. Instruction data description.

Reference t o a machine instruct ion by another instruct ion

requiring a data description will give a dds of (BU, 64, 8) o r

(BU, 32, 8) depending on whether the operation re fer red t o occupies

a full or a half word. This dds can, of course, be overruled.

2. B l a n k s .

Blanks are ignored i n all f i e l d s except i n enter ing

alphabetic information. "hey have no meaning whatever i n any

other f i e l d . Blank cards are ignored. An END card must be used

t o s ign i fy the end of the program.

3. Parentheses within Parentheses.

In Strap 1 it is a general rule that parentheses may not

appear within parentheses . Programmer symbolized. f ields appearing

within parentheses are therefore r e s t r i c t e d somewhat in t h a t they

must always have radix 10, may not contain array specif icat ions, nor

may they have generaL parenthet ical integer e n t r i e s appended t o

them .
4. Null f i e l d s .

Certain subfields in any operation format may be omitted, and they

are then said t o be n u l l f i e l d s . A r i gh t t o l e f t drop-out feature

operates i n assembly. 33' the rightmost subfield f o r a format is

omitted it i s compiled as a zero f i e l d . If' the two rightmost

f i e l d s a m omitted they are both compiled as zero, e t c . A sub-

f ie ld i n the i n t e r i o r of' a format is made n u l l by writ ing only

26

the coma which ends the f i e l d thus: OP, , A. Index modifiers

I and K are made n u l l by simple omission.

5 - Supression of e r ro r marks e

Error marks, except f o r mispunch indications, can be

suppressed f o r any statement by pref ixing the op symbol with a

do l l a r sign. Thus $OP, A(I) w i l l suppress e r ro r marks which would

otherwise be pr in ted i n connection w i t h compiling tha t operatioq,

bu t only t h a t one.

6 . Name with blank statement f i e l d .

If a card contains only a name, the statement f i e l d being

l e f t completely blank or containing comments only, it i s treated

as a data reservation f o r one normalized f loa t ing point word.

That is, the statement DR(N), (1)is assumed i n t h i s event by

Strap 1.

7. Undefined symbols .
If a symbol appears i n a programmer symbolized f i e l d , but

never appears i n the name f i e l d of any card, it is undefined. Un-

defined symbols are assumed t o represent normalized f l o a t i n g point

words and are assigned succeeding full-word locat ions beginning

w i t h the f irst one after the END instruct ion.

14. System Symbols

System symbols are symbols whose values are f ixed in the compiler.

They are ident i f ied i n programmer symbolized fields by the f a c t tha t t he

f i r s t character of a system symbol is a dol la r sign, which i s a character

t h a t can never appear i n a programmer symbol. Note t h a t a dol lar s ign

prefix i n the operation field is a signal t o suppress e r ror marks and

Ishat the indicator symbols, when inserted into the "branch on indicator"

Instructions, do no t have the doll-ar s ign pref ix . System symbols which

represent special r eg i s t e r s i n memory o r special b i t s are ' b i t addresses;

a l l others are Integers. System symbols may appear i n arithmetic ex-

pressions i n proogrammer symbolized f i e lds , where i n cases t o which

r e s t r i c t ions apply, they can be considered i n the same c lass as numeric

en t r i e s since t h e i r values are immediately available whenever needed.

The system symbols are:

1. $0 t o $13, ident ica l t o $XO t o $XPj, are index r eg i s t e r s 0 t o 15,

addresses 16.0 t o 3l.O. For example, $5 (o r $X5) will produce the

correct index f i e l d of 5 i n an I-or J - f i e ld o r the address 21.0 in an

A-f i e l d

2 . Other special reg is te rs .

Location Word No. Mnemonic Name-
0 $2 Word nunibex- zero

1.0 $IT Interval t i m e r

1.28 Time clock

2.0 Interruption address

3 .o Upper boundary

3.32 Lower boundary

3.57 Eoundary control

4.32 Maintenance bits

5.12 Channel address

28

2 . Other special reg is te rs (continued)

Locat ion Word No. Mnemonic Name

6.0 $CPus CPU s ignal

7.17 $LZC L e f t zeros count

7.14 $ A X All ones count

8.0 $IJ Left h a l f of accumulator

9.0 $R Right h a l f of accumulator

10.0 $= Sign byte

12.21 $MASK Mask

13.o $RR Remainder register

14.0 $FR Factor r eg i s t e r

1500 $m Transit r eg i s t e r

3. Indicator b i t s . The symbol f o r any indicator b i t may be prefixed

with a dol la r sign and placed in a programmer symbolized f ie ld , where

it w i l l represent the correct b i t address i n word 11.

4. Location counter. Whenever the dol la r sign by i t s e l f appears i n a

programmer symbolized f i e l d , it represents the value of the location

counter a t the beginning of t h a t instruction. In e f f ec t t h i s is the

location of the instruct ion i n which it appears if tha t instruct ion

ac tua l ly compiles space i n the program. Example: the instruction,

B, $-2. means branch t o the inst ruct ion which begins two full words

before. Note t h a t B, $+.32 means branch t o the next instruction,

e f fec t ive ly no operation.

Note: AIL of the system symbols i n c lasses 1, 2, 3, and 4

are b i t addresses and are assigned standazd data descriptions with mode

- --

'binary unsigned, byte s ize eight, and f i e l d l eng th depending on the

length of the r eg i s t e r .
5 . Lnput-output addresses. Some of the system symbols for input-output

addresses may have different values a t different ins ta l la t ions , since

the channel t o which a par t icu lar piece of' equipment is connected is

arbi t rary. The symbols may represent either channel addresses or uni t

addresses, depending on the conf'iguration of the input-output system .
System -bo1 	 Meaning

Punch

Printer

Reader

Disk wit

Channel 0, Channel 1,-=,Channel k

Tape 0, Tape 1,e * * , Tape k

Insuiry s ta t ion

Console

If more thanone punch, pr inter , console or any other output

un i t is attached t o the machine, the same numbering convention used i n

channel and tape addresses is adopted, where $CNSL = $CNSLO, and so on.

For example one may have $PRTO, $I?RT1, $PRT2, e tc .

15. 	 General. Data --E n t a

The use of the pseudo-operation DD (Data Definition) enables __I

the programmer t o enter data in to a program i n a var ie ty of forms.

Among the p o s s i b i l i t i e s which e x i s t are decimal t o f l o a t i n g binary

conversion, e i t h e r nomnalized or unnormalized, conversion of decimal

f r ac t ion t o binary f r ac t ion i n f ixed point, integer t o Snteger conversion

from my radix from 2 to 10 t o a radix of e i ther 2 o r- 10, and conversion

of alphabetic i f l o m a t i o n t o binary-coded forms. The pseudo-operation

DDI (Data Definition Ilnmediate) is intended f o r defining data t o be

used i n the address of immediate operations, All the fea tures l i s t ed

above, with the obvious exception of the f l o a t i n g point conversion,

are a l so avai lable with DDI. The method of use of t he DD will be

described first, and then the minor differences between DD and DDI w i l l

be l isted.

15,~.-DD

Format: Name 1 (EM)DD(dds), D, D ' , D f f , * * * .

The address f i e l d s D, D ' , D", e t c . are all equivalent t o each

other. They are compiled sequent ia l ly as separate pieces of data, each

having the data description specified, bu t only the f irst having a name.

The e f f ec t produced i s exact ly the same as if the en t ry mode, op, and

data description were repeated on separate cards with only one D-field

per instruct ion and blank name fields. E one wishes t o name the separate

e n t r i e s D, D ' , D", e tc . , indeed it i s necessary t o write each one on a

separate card since the name of a DD is given the address value of the

f i rs t b i t of the first D-field. Programmer symbols may not appear i n

the main body of a D-field, bu t only i n general parenthet ical integer

en t ry f ie lds which are attached t o the ends of D-fields. (Note: Since

15.2

each D-f i e ld is e s sen t i a l ly a separate major f i e l d , the parenthet ical

en t ry counts b i t s from the beginning of the D with which it is writ ten.)

Ln the main portion of a D-field various l e t t e r s and symbols have f ixed

meanlngs not subject t o programmer control .
Entry Mode

The entry mode gives information about the form i n which the

data appears on the card; it may also have some implications about the

form t o which it is converted and stored. An ent ry mode may appear before

the DD as shown in the format. Those not concerned with entry of alpha-

be t i c information may a l s o be used a t the beginning of individual D-fields.

It i s not always necessary t o specify the entry mode expl ic i t ly .

There are four di f fe ren t entry modes:

1. (R) Radix. The radix has already been explained f o r the case of

address arithmetic. In the case of data entry it can be used with

integers only; a decimal point o r a f loa t ing point notation implies

a radix of LO. The entry mode radix specif ies the radix in which an

integer i s writ ten on the card, but says nothing about the one t o

which it is converted.

2 . (Fn) (Fn) implies that the data is written with a decimal radix and

Iis t o be converted t o binary, and may include a decimal f rac t ion

portion t o be converted t o a binary f rac t ion of length n bi ts .

The (decimal) integer n following F specif ies the number of

f rac t iona l b i t s t o be l e f t t o the right of the binary point when the

number, o r numbers, which follow are converted.

32

3, (Az) Alphabetic conversion. This ent ry mode must precede t h e DD,
c

. 	 and on ly one address f ie ld 'ID" is allowed per statement. The Holleri-bh

characters beginning w i t h t h e one after t h e c o r n which ends t h e op

f i e ld are converted t o I B M tape BCD u n t i l t h e ckwacter " z " is-

reached, Note t h a t tape BCD i s mmewhat d i f f e ren t f r o m i n t e r n a l 704

BCD, The byte s i z e of converted characters may range from 1 through 12

i n a DD, 4 through 12 i n a DDI, and i s specified by the dds. Lead,ing

zeroes are inser ted i n each byte f o r BS > 6 9 and leading b i t s are truncated

from each byte f o r BS e 6. The byte s i ze compiled i n an operation

r e fe r r ing t o t h e data is set t o e i t h e r t h e specified byte s i z e o r 8,

whichever is smaller. The terminating character "z" itself is not i n -

cluded. It may be any legal Holleri th character except b lank , >,+
o r ' . Blanks occurring within the f ie ld t o be converted are retained

and correct ly stored. The characters are counted by Strap 1and t h e

location counter properly advanced.

4. 	 (IQSz) Inquiry s t a t ion conversion. This en t ry mode operates exact ly

as (A) except t h a t t h e Holleri th characters are converted t o t h e 7-bit

inquiry s t a t i o n code, and therefore 7 i s t h e magic number separating

truncation from addition of leading zeroes. Although t h e IQS code

includes a l a rge number of spec ia l characters, Strap 1 is limited t o

t h e ones which can be entered by means af I B M off-line card and tape

equipmento

15.3. The Form of 	 Decimal Numbers

Decimal numbers may be wri t ten i n f ixed o r f l o a t i n g point form,

with o r trithout a decimal point. The general form is

+, x x X X * * * x ~ . x ~ ~ * * x ~ .E+-y y y

33

--

In this form E means t h a t the number which precedes it i s multiplied by

10 raised t o the power which follows it. That is, 572.343-57 means

572.9 x io-57. Parts of the general 	form which a re not necessary f o r

wri t ing 	a number nay be omitted, thus:

integer

decimal f r ac t ion

integer times power of lQ

A plus sign is understood if omitted. The decimal, point can be

:Ln any posi t ion i n the number. The portion of the number symbolized above

by x ' s is l imited t o 20 d i g i t s ; t h a t symbolized by y ' s t o 3 d i g i t s (but

irecall that f l o a t i n g point numbers i n Stretch are limited t o a range of

:Lo616 t o 10-616 e

:L5.4. Insertion of Specific F ie lds

:L. Exponent En-try: X f n

The le t te r "X" may be used t o en ter any a r b i t r a r y exponent

:into a f loa t ing point unnormalized word. n i s a decimal integer which is

converted t o binary and which replaces any exponent previously calculated'.

2 . 	 Sign Byte Entry: Sn

The le t te r "S" i s used t o en te r a sign byte in to data. n is an

oc ta l integer which is evaluated and which is "0R"ed i n with any sign byte

previously calculated. The sign byte generated depends on the byte s i ze

according t o the following table :

34

B y t e Size 	 Sign B y t e

S

ST

STU

ZSTUV

ZZZSTUV

where 	Z is a zone b i t ,

S is the sign b i t ,

T, U, V are the f l a g b i t s .

15.5. 	 Rules f o r Entering Data

The l e g a l formats f o r enter ing data can be c l a s s i f i ed according

t o the use mode wri t ten i n the data description f i e l d of the DD state-

ment. In general an element l i s t e d i n the general format may be omitted

if it i s not needed t o specify the data.

1. 	Normalized Floating Point

Format: Name I DD(N), +xx***xx.x--xxEkyyySyySn
The number is converted t o normalized f loa t ing binary form

according t o the standard S t re tch 64-bit format. A four -b i t sign byte

i s formed and stored. If none is entered by means of an "S", the sign

before the number is used and the f l a g b i t s are set t o zero.

35

Examples:

a. DD(N), 54.73 E 4

54/73 x 104 i s converted t o f loa t ing binary. The sign b i t is

zero (= plus) , and the f l a g b i t s are zero (L e . e n t i r e sign byte i s

zero) .
b. DD(N), -54.73 E 4, o r DD(N), 54.73 E 4 S 10

In t h i s case the sign b i t is set t o one (negative) and the

f l a g b i t s are zero.

DD(N),C. -54.73 E 4 S 5

The sign b i t is one, since the number is negative, and f l a g

b i t s T and V &re one. U lis zero.

d. DD(N), 1, p-3, -45.7, 12 S 17

This example i l l u s t r a t e s the multiple en t ry feature . This

single DD statement compiles four 64-bit f l oa t ing point words and

advances the location counter accordingly.

In normalized f loa t ing point a special feature i E i available

f o r use i n any D field, making the entry of ra t iona l f rac t ions and cer ta in

i r r a t iona l numbers much easier. Arithmetic involving several numbers may

be writ ten using the standard Fortran symbols. Strap 1will ppedorrn the

arithmetic and compile a single normalized constant. The operations

available are addition(+) subtraction (-) , multiplication (*) and

division (/), only r e l a t ive ly simple expressions are allowed--that is,

they must contain no parentheses. Multiplications and divisions are per-

formed first (and i n a series of multiplications and divisions they are

done i n order from l e f t t o right) and then the additions and subtractions.

The ar i thmetic is done among absolute constants, and a sign byte may be

used a t the end. It will be "0R"ed i n with the f i n a l result.

Examples :

a. DB(N), 1/3, 472jC351, 4-79/21 S 4

Note sign byte entered i n last D f i e l d .

b. DD(N), 27.9/31.4/12/14 E 3, 4+3y/5%

The number produced i n the f irst case is 27 -9
31.4 x 12 x 1 4 x 105 '

i n the second 4 + ~ 7 x 6
5

C . DD(N),

As an e x t r a convenience ce r t a in system symbols are defined by which con-

s t a n t s involving i r r a t i o n a l numbers can be entered. They are:

1. $PI 3T

2. $E e

3. $M logloe

4. $rJ m e 2

Thus one can en te r 	a number such as 4rt x lom7by wri t ing

DD(N), 4 *$PI *LE - 7.

It is t o be espec ia l ly noted t h a t i n Strap 1 t h i s ar i thmetic feature i s

avai lable with the normalized f l o a t i n g point mode only.

37

2. Unnormalized Float ing Point

Format: Name I (Fn)DD(U), f xx.**x.x-*xE+yyySn X+n

or DD(U), (Fn) 3 xx-.ax.x.-xEZyyySnEn, (Fn)+xxe .e tc .

The number is converted t o binary w i t h the correct number of

binary fractional. places as specif ied by the (Fn) en t ry mode, and a correct

exponent i s computed and entered. This exponent i s overruled and re-

placed by that following the "X" if "X" i s used. (I t i s necessary only

if f o r some reason, the programmer desires an incorrect exponent.) The

ent ry mode (Fn) can come before the DD, i n which case it applies t o a l l

11-fields of the statement, o r it may form the f i rs t element of a D-field,

i n which case it overrules one given before the DD. Ei ther t he X or the

S o r both may be omitted o r their order may be interchanged. Omitting

S has the sane e f f e c t here as i n the normalized case. Omitting X simply

Elllows the correct exponent t o remain as computed. Leaving out the sign,

decimal point o r E is permitted as in normalized numbers.

Ekamples :

it. DD(U), (F21) - 343.7, (Fl0) 4-32

Two numbers are compiled. In the f i rs t 343 is converted as an

integer and .7 is converted t o a 21-bit f r ac t ion . They are joined

and placed i n t h e rightmost b i t s of t h e f r ac t ion portion of t he floating

point word, and the correct exponent (i n t h i s case 27) and sign axe

supplied. In the second D f ield, 432 is converted t o a binary integer .

Since ten f r a c t i o n a l b i t s are specified, bu t no decimal f r ac t ion i s

writ ten, the ten rightmost b i t s of the f r ac t ion f i e ld are set t o zero

.

and the number i s entered w i t h i t s rightmost b i t i n posit ion 70.

b * (F15)DD(U) , 767.52, 767.52 X-22 S11

The (F15) applies t o both D f i e l d s . In the second the computed

exponent is overruled by the specified one and the number i s made

negative by means of the specified sign byte.

C . (Fl5)DD(U), 767 52 , (F20) 767.52 S11 X-12

This example i s ident ica l with example 2 except t h a t i n the

second f i e l d the op entry mode (Fl5) i s overruled by a f i e ld en t ry

mode (F20), and the order of S and X i s interchanged, which makes

no difference .
If the entry mode is omitted, two cases a r i se .

a. 1cf the number i s entered i s an integer, (F O) i s understood

b * E the number entered i s a decimal f rac t ion , it is converted t o a

normalized f loa t ing point number, .but w i l l be used as though unnormalized,

Examples :

a. DD(U), l7, 17x-35

In the f irst case 17 is converted t o binary, placed in the

f rac t ion with i t s rightmost b i t in posit ion 60 and an exponent of 48

supplied. In the second f i e l d the same thing i s done except t h a t

the exponent is set t o -35.

b. DD(U), 17.3

In t h i s example 17.5 is converted to normalized f loa t ing binary

and stored as such. However, instruct ions whose normalization b i t s

depend on the symbol i n the name f i e l d of t h i s pseudo-op w i l l have

39

them set t o “unnormalized .
Note: 17 E 5 i s an integer and w i l l be recognized as such.

17 E-5 is a decimal f rac t ion and w i l l be normalized,

17.3 E 5 is en integer but will be treated 8s a f rac t ion and

normalized. Hence a normalized integer can be

assigned use mode “unnormdized. ‘ I

An integer 	greater than 2@ i s stored as a normdized number,

.3. Binary Signed W L

Formats: 	 (Fn)DD(B, FL, BS), k x x * **x.x***xE+yySn

DD(B, FL, BS), (Fn) ~ x x - * x . x - *a + y y Sn

(R)DD(B,FL, BS), ~ X X - X X si^

DD(B, FL, BS), (R) +xx xx Sn

A data defini t ion of binary signed data may have e i t h e r (F’n)

or (R) en t ry modes, but not both a t the same time. (Fn) implies tha t

the data following it are writ ten i n a decimal radix, whereas (R) implies

-that the number following it is an integer. An integer subject t o a radix

en t ry mode must be w r i t t e n without the a id of E since E i s not defined f o r

iz radix other than 10. A decimal f rac t ion must have a controll ing (Fn)

entry mode. There i s no obvious way t o convert t o a f ixed point number

vithout specifying the binary scaling. In the data description e i t h e r

the field length or byte s ize o r both may be omitted. The implied f i e l d

:Length in t h i s case i s 64; the implied byte s ize is 1. As usual the sign

byte need not be specified unless the programmer desires t o have f l a g o r

#zoneb i t s different from zero. Note t h a t the sign b i t posit ion changes

40

f o r byte s ize less than 4. To make a number negative specify the sign

byte as:

BS = 1, S1,

BS = 2 S2,

BS = 3, S4,

BS = 4, S10.

E a number has no en t ry mode a t all, it must be a decimal integer but

may i n t h i s case be wri t ten with the a i d of the "E" notation.

Examples:

a . (FT)DD(B, ,4) , .005E3S13, -17, 143.2S11, (8)77760 I

Implied f i e l d length is 64. Octal specif icat ion in last D f i d l d

overrules (F7) writ ten before DD.

b (2)DD(B, 16, 8) 110101S377, (10) -972, 11101110S201

Binary entry, overruled i n second D f i e l d .

c (F12)DD(B, 24), 1.324E3, -72.13-4, 3.4E-4S1

Implied byte s i ze i s 1.

d. DD(B), 1489, -1272, 1491, (~ 1 3)-972.16, 13948~1,1 2 ~ 5 ,

Decimal integers except where a f i e l d en t ry mode i s wri t ten.

4. Binary Unsigned VFL

Formats: (Fn)DD(BU, FL, BS), xx-.x,x-=xEfyy

DD(BU, FL, BS), (Fn) x x - - x . x . . -xE+.yy

(R)DD(BU, FL, BS), xx..mc

DD(BU, FL, BS), (R) xx***xx

41

(Az)DD(BU, FL, BS), alphabetic information t o " z "

(IQSz)DD(BU, FL, BS) , alphabetic infomation t o "zl'

NunericaL ent ry is exactly the same as i n binary signed data

except t h a t no sign byte i s formed and if' the byte eize i s l e f t out of

the dds, it i s set t o 8. Any sign o r sign byte (with "SI') written with

mode BU i s ignored. The two alphabetic modes are permitted here; they

m e explained i n the section under "Entry Modes." Note t h a t the alpha-

be t i c en t ry mode must precede the DD, t h a t there can be only one R f i e l d .

per statement and t h a t if the f i e l d length is omitted it is set equal t o

the byte s ize .

Example s:

a. (F13)JmBU, 301, 17.2, 183, (8) 70707

b. (A*)RD(BU, 48, 6), GLORIOUS FRIDAY, TKE l3TH.*

The mode and f i e l d length have no e f f ec t on the conversion and.

storage; they are used i n compiling instruct ions which refer t o the name

of t h i s statement. Field length 48 indicates that the programmer wants

t o process these characters i n groups of 8.

c. (IQSS)DD(BU, 32, 8) DOG EAT DOG S

3 . Decimal Signed WL

Formats: (R)DD(D, FL, BS), f xx. .xxx Sn

DD(D, FL, BS), f(R) xx-*xx Sn

DD(D, FL, BS), f xx.**xxEyySn

The two decimd modes i n RD and DDI statements represent the

42

I

only cases i n which Strap 1 converts numbers t o an in te rna l decimal radix.

This conversion is limited a b i t more in being available only from integeris

t o integers. The radix entry mode indicates the radix i n which the nunbeds

are writ ten on the card. Thus it is possible t o wrlte an .integer i n binany

o r oc t a l and have it converted t o decimal f o r machine use. If no en t ry mdde

is given, decimal t o decimal is implied and the E notation can be used t o

multiply an integer by posi t ive powers of 10. If e i t h e r the f i e l d length '_--
or byte s i z e i s omitted, the implied values are FL = 64, and BS = 4.

Examples :

EL.DD(D), -9534.812, +173~3,18~10~13

Fie ld length = 64; byte s ize = 4. A four-bi t sign byte is

formed. Decimal to decimal conversion.

b o (2)DD(D, 20) , lllOlOOOllOlS7

Binary t o decimal conversion. BS = 4.

c . W D , 	9 81, 432E3

Decimal t o decimal conversion. FL = 64. Four binary zeros axe

inser ted in the zone posi t ions of each byte.

6. &cimd Unsigned VFI,

Formats: 	 (R)DD(DU, FLY BS), x x D o ~ x x

DD(DU, FL, BS), (R) X X * - * X X

DDIDU, FL, BS) , xx***xxxEyyy

(AL)DD(DU, FL, BS) , alphabetic information t o " z "

(IQSz)DD(DU, FL, BS), alphabetic information t o "z"

The numerical conversion i s j u s t as i n decimal. signed mode

except f o r the omission of the sign byte. Alphabetic conversion is

exactly as i n the binary unsigned mode except that in s tmc t iona refer-

ring t o t h i s data w i l l be compiled as decimal operations. For alphabetic

en t ry implied f i e ld length is equal t o byte s ize .

Examples :

a. DD(DU), 8430051, (8) 77241, 82~10

FL = 64, BS = 4. An o c t a l t o decimal conversion is inser ted

between two decimal t o decimal. conversions.

b. 	 (IQS3)DD(DUy , 8), PUSH PANIC BUTTON 3

FL = 8.

.
SUMMARY 	OF RULES FOR DD STATEMENTS

Entry mode Appropriate use modes

Fn U, B, BU

R B, BU, D, DU

A BU, DU

IQS BU, DU

Note: 	 Use mode N should have no en t ry mode,

Special 	f ie ld en t ry Appropriate use modes

S N, u, B, D

X U

The f loa t ing decimal notation, using E t o designate multipli-

cation by powers of 10 i s appropriate t o a l l modes although it i s always

r e s t r i c t e d t o a decimal radix and i n the decimal use modes, is r e s t r i c t ed

t o increasing the magnitude of decimal integers.

If the f i e l d length is omitted from the dds, it w i l l be assigneq

a value of 64, except i n the case of alphabetic entry where it is set

equal t o the bybe s ize . The m a x i m u m permissible f i e l d length for a DD

statement is 64.

The following examples i l l u s t r a t e the use of general parenthe-

t ical . integer entry w i t h DD,
f-?

In the second case the sign byte i s specified by means of (.n)

entry.

45

b. DD(B), (Fg) -35.7(.24) SAM + 4

The address SAM + 4 is placed in the first part of the 64-bit

f ie ld , followed by the converted number -35.7 .
c . 	 (8)DD(BU), 4762(.10)707(10, .20)34

707 i s w r i t t e n i n oc ta l , 34 i n decimal.

rg.6 -DDI

Format: Name I (EM)DDT(dds), D

DDI is used t o define a symbol which is used at some other

point i n the program as the address of an immediate operation. It com-

pjiles no space a t i ts location i n the program, and i n f a c t its posi t ion

i n the program is of no importance whatever. It may have only one D

f fe ld , as shown in the format. The rules for writ ing the data f i e ld are

the same as f o r DD with some obvious and r e l a t i v e l y minor changes. Neither

of the f loa t ing point modes can be used with DDI. The upper l i m i t on

f i e l d length i s 24 instead of 64, and i n every case where a f i e ld length

of 64 i s implied Tor a DD, a f i e ld length of 24 is implied f o r a DDI. A

general parenthet ical integer en t ry may not be appended t o the end of the

data f i e ld as it can i n DD statements.

If a DDI has a f i e ld length of less than 24, the number which

i-t defines will appear in the leftmost portion of the address of the oper-

a t ion when it is compiled i n an immediate operation. Unused b i t s i n the

right end of the address all be zero, but they may be loaded by means of

a general parenthetical. integer en t ry i n the operation i tself . If the

46

address f i e l d of an m e d i a t e operation contains arithmetic among symbols

or symbols and integers, the arithmetic w i l l be done in binary regardlessr

of how the symbols were defined or what the mode of the operation itself j

is. A l l numeric en t r ies i n such an address f i e l d are handled exactly as :

other addresses and converted t o binary, never t o decimal. Therefore,

the only way t o get a decimal number in to the addxess f i e ld of an immcdidte

op, without writing it in the Stretch BCD code expl ic i t ly , is t o symboli4e

it and use a DDI. Care should be exercised in address arithmetic among

signed numbers, since the sign byte is compiled as such and does not

par t ic ipate i n the arithmetic as a sign.

Examples :

-
JOE

SAM

BILL

DDI(DU) , 9478

DDI(DU, 12), 342

DDI(DU, 24), 12

L I , JOE

+I, SAM

-I, SAM + BILL

The sequence above i s an example of s l i gh t ly t r icky codlng t o

show what i s possible. JOE has f i e ld length of 24 implied. All three

symbols have a byte size of 4. The address SAM + BILL i s added i n binary,

but since the addresses do no t overlap they produce a legal decimal number,

342012. The r e su l t i s 9478 + 342 - 34012 = -332192.

47

-
AW DDI(B), 142

JIM SYN(B, 24L 389

R I P SYN(B, 24), -210
'

LI, A I 2

+I, JIM

+I, JIM + R E '

48

Restrictions on Addresses i n SYN, DR and SLC

In order t o f i n i s h assembling a program in a f i n i t e length of

time using a f i n i t e storage, some generali ty has been sacr i f iced in the

address arithmetic which can be allowed with the three pseudo-ops, SYN,

DR and SLC. The underlying reason for t h e i r d i f fe ren t treatment i s t h a t

their addresses must be evaluated sooner i n the program than those of

other operations. Strap 1is a three pass assembly i n which the first

two passes are concerned primarily with assigning vaiaes or addresses t o

symbols and the last with forming the machine code and revealing it t o

the outside world in some form of (EL l i s t i n g and s t r e t ch column binary

cards.
During pass 1any SYN address containing only numer'ical

en t r ies , o r numeric& en t r i e s plus system symbols, can be evsluated

immediately. A SYN address which contains symbolic inf'oma-bion cannot

be. SZtrap 1can, however, s tore the symbol from the name f ie ld and one

symbol from the address (always the one on which the mode of the name

symbol will depend if not overruled) f o r fu ture reference. No sign is

stored f o r the symbol, but a symbol f o r a negative quantity i s aJ-1 r igh t ,

The same r e s t r i c t ion applies t o each of the elements of the address of a

DR (each "L" i n the notation of t h i s paper) The re s t r i c t ion on DR

addresses is really the crucial one at t h i s point, because the DR address

is completely evaluated a t the end of pass 1. Therefore, each element of

49

--

t h e DR adcress and the SYN chain of SYN's defining the t;yxholic p o r t i o n

plus a s ingle symbol (algebraic addition, but n o t subtraction of a symbol,

e ,go,
+ 5 + symbol or symbol +- 5). Since a l l of this in format ion is

stored i n t ab les permanently and is alvays available t o the assembly

program, the order of t h e cards is of no importance. A t the end of

pass 1an evaluation is made of a l l symbols defined i n t h i s simple

manner, and as stated above a DR must be completely definedl a t t h i s

point.

W i n g pass 2 locat ions are assigned to a l l symbols which

depend on the locat ion counter f o r t h e i r value, and a new attempt is Anade

to evaluate SYN addresses not evaluated i n the first pass. A t t h i s point

the order of the cards can play an important role . If aP1 of the symbDls

appearing i n an address have appeared previously i n the name f ie ld and if'

they i n turn are defined by symbols which have appeared previously (or by

%he location counter) then the address can be evaluated no matter how

m,myprogrammer symbols it contains o r what signs they may be preceded by.

If there are tm o r more symbols i n a SYN address still not; evaluated

when the card is encountered i n pass 2, the name symbol may never be com-

p l e t e l y evaluated and w i l l e l i c l t an e r r o r indication whenever it is used.

If only one symbol remains not evaluated at t h i s point then eventual success

d.epends on the sign which precedes it as w e l l as i ts posi t ion i n the address

and later evaluation. A t the end of pass 2 an attempt is made t o t i e up

50

ap1 the loose ends s t i l l dangling from t h i s pa r t i cu la r rats' nes t . IT

any symbols remain not evaluated a f t e r t h i s procedure, a last t r y will be

made when the SnV card is encountered i n pass 3. But t h i s may be too l a t e ,

depending on the order of the cards.

From the preceding discussion it is c lea r that the address of an

SLC card must be evaluable when it is encountered i n pass 2 . The same r u l e s

apply t o it as t o the address of a SYN card which can be completely evalu-

a ted a t t h a t point. However, fl the address of an SLC cannot be evaluated,

all is l o s t and no attempt is made t o t i d y up a t the end of the pass. This

last point also appl ies t o the L and L' of EXT(L, L') . Since they are used

t o compute the amount t o advance the locat ion counter, they must be avail-,
b able when the card is encountered i n pass 2.

t

"i

3

b

4

4

J 	 APPENDIX D

Strap-1 p r i n t s e r ro r marks i n the right-most columns of t h e

assembly l i a t i n g , showing ac tua l or probable coder and/or machine errorsa
These e r ro r marks, cons t i tu t ing t h e twenty-slx le t ters of t h e alphabet,

and some spec ia l characters (given a t t h e end of t h e l i s t) are explained
below:

A 1, 	No character8 are given wi th an A or IQSen t ry mode i n a DD
I

statement
2. 	 Too many address f ie lds were given,

B 1, 	The b s e s i z e of t h i s ins t ruc t ion i s > 8, and has been set
t o 8.

2, 	 The byte s i z e of a decimal ins t ruc t ion f 4, bu t has been
lef t a t t h e specif ied value.

3. 	 A or IQS byte s i z e i n DD statement i s r l 2 , ana has been set
t o 8,

C 	 A negative f i e l d (address, index, f ie ld length, e t c ,) has bee@
Icomplemented.

This complementing takes place p r i o r t o t h e t runcat ion

described under "Vff, if any.

D 	 Data e r ro r i n DD or DDI.-
The data 	hae been set t o zero.

E: 	 Entry mode error in DD or DDI,
0

mtry mode (10) 28 assumed.

F 1. The given f ie ld length is > 64, and hse been eet t o 64.
I

2. 	 Field l ength of a VFL binary multiply - or dtvlde-type order
I s * 48, but has been left a t Specified value,

A I'go-to'' type order, i ,e. , a branch or END cars, has a
transfer address 4 32 and I index 0,

This card has an i l legal name (a non-alphanumeric character
i s present: t h e character has been ignored).

A branch on indicator , w i th indicator numerically specified,
has indicatoF numeric * 63.
The 	indicator has been computed modulo 64.

W

I

I

There is 	an i l legal punch on this card,
There ie an i l l e g a l character i n eome f ie ld on t h i s card.
(if an I l l e g a l numeric OCCWB i n a radix en t ry from R = 2
through R = 9, t h e f ie ld it3 set t o zero; In all other cases
t h e i l legal, punch o r character is ignore&)

A RTT-error ha6 been detected i n reaaing tape 2 on t h i e cwd.

The locat ion counter is out of range as a reeult 09 t h i s
ins t ruc t ion , If c 32, it has not been changed; if *777777*778J
it has been taken modulo 1000000.008.
An SLC address contains em integer ,

!he! given mode I 8 not consis tent with t h e given operation or
vice versa; e+ , M + 1 (N),... The mode, FL, and BS are
ignored .
No mode given with DD or DR -- N is assume&,

No mode given with DDI =- (BU, 24, 8) i s aseumecl,
An operation which could be e i t h e r VFL or f loa t ing point
has no overruling mode and a numeric address, VFL is seemed,

Error i n integer i . e , , (a) entry,

Offset + f ie ld length - byte eize (i f eigned) an t h i s op i s
P 128, .None of t h e t h ree q w n t i t i e e is changed,

Decimal o f f s e t i s not divisible by 4, but is lef't unchanged.

Conaitianal branch has K f ie ld 1,
The given K f ie ld i s taken modulo 2,

Illegal OPL o r OP2 i n progreeeive Indexing,
OP2 l e ignored,
Illegal OP3 i n CW. OP3 l e ignored,
Pseudo-crp hae been speciftea i n an EXT f ie ld ,
f ie ld has been set t o 0,

R 	 Radix i e out of range R = 16 is uee&,
I

In e i t h e r case,

The requested

s 	 Illegal OP after an SIC order, (Only half-word branch orders -are permitted.

T 	 An index is given with LV8, or an Immediate index OP, which
are ncm-indexable

u 	 VFLi decimal multiply or &iviiie has been specif ied, (m e r e are
no such OPs.)
The OP has been assembled as requeeted bu t it must be remembered
t h a t it a c t s as a LFT order,

-3-

V. 1. 	 Overflow i n an address f i e ld ; t he f i e l d has been truncated if
.I

necessary t o fit t h e amber of bi t s avai lable .
2. 	 A DD with entry mode A or IQS has a byte s i z e which i s too

small, Le . , 4 6 or <8 respectively.
L

W 	 The operation specif ied here is non-existent. The full-word
ins t ruc t ion SIC, $15; BE, 0 has been inser ted here.

X 1. 	 An address f ie ld on t h i s card cannot be completely evaluated.
E m g o ,due t o a too-complicated chain of SYN cards, etc,
The computation has been completed as far as possible.

2. 	 A symbol specif ied on a PVNSYM card does not occur i n t h e
program.

Y 	 There is a symbol on t h i s card containing more than six
characters.
Only t h e 	first six are used.

Z 1. 	 No address o r name f ie ld has been specif ied on a SYN or DDI
card; or a SYN card i s not computable by pas8 3.

2. 	 The second half' word address of an Input-Output op l a 32.

1 	 No r i g h t parenthesis i n a f i e ld ; 2 or more l e f t parentheses
before f irst r i g h t parenthesis ,

+ 	 Arithmetic h a s been used i n t h e address f i e l d of a VFL immediate
OP (not allowed); or, a symbol defined by a DDI has been used
i n an ari thmetic expression i n a VFL immediate address f ie ld .

The ar i thmetic was performed ib binary unsigned,

6 	 A symbol on t h i s card has s ix charac te rs and cannot be tailed.

Note: The coder is reminded mat t h e pr in tout of a l l except
ce r t a in non-coder e r r o r marks (viz., K, 3) can be suppressed
by pref ixing the OP f ie ld wi th t h e symbol $. I n case dupl icate
e r ro r marks appear, more than one e r ro r of t h e same type has
been made, Individual e r ro r marks A, B, C, ... may be
suppressed by use of t h e ins t ruc t ion
SEM,A,B,C, ...
All may be suppressed by SEM alone.

Any of t he suppressed e r ro r marks may be restored by t h e insf,ruction

REM which works i n a similiar manner. Again, J, K. and i l legal

punches cannot be suppressed by SEM.

