-

June 2, 1958

ANALYSIS IN DEPTH OF THE ITEMS LISTED IN PROPOSAL FOR SIMPLIFYING

AND REDUCING TRANSISTOR COUNT OF SIGMA

1. Elimination of the Hamming checker, generator from the computer internal
bus, (memory words, and exchange) The reasoning behind and implications
of making this move are:

a)

Little Need

b)

- Save Time

bl)

' Swap Time for

Transistors

c)
Parity should
Suffice

d)

Only Unit with
Error Correction

Hamming not
Really Required
1)

Challenge Reason-
ing Presented

The Hamming checking and correction system is being)
applied to an area where most generally we have ex - o
perienced the greatest reliability in past machines. The
most effective place for this type of checking would be

' the 1/0.

This is an expensive and time consuming operation. If
it can be eliminated, not only will transistors be saved,
but it may be possible to reduce the length of the time o ma AL
cycle in the I box thereby increasing performance.

An interesting thought eminating from item b is that it
is conceivable if the I box cycle is reduced and perform- S ,{?.
ance increased, it may then be possible by removing one
level (est.) of Look Ahead and saving more transistors, :
to bring the performance level back to where it presently Ao oo feipea
iﬂFo ’ ERT :;,;"f‘,g}w)
e centag b

A simplified parity checking system should suffice to re- Lednty
place the full Hamming checker based on the argumentof
item 1.

2N
AN
i

The Hamming checking system happens to be the only speci-

fic unit which presently has the ability to correct single

errors. If this unit is removed, then another area must . .

be found where single error correction facilities are avail- /,,),M

able or else make a change in the wording or interpreta - L !
tion of the Sigma contract,
Errors that have been experienced in core memory sys -
tems once the system has been checked out and installed £id
are not generally single bit errors., Line drivers, de - "f"“"”‘"‘?
' coders, and sense amplifiers have caused more errors "e‘;z,af’ﬁ‘f}‘
than the picking up or dropping of a single bit, JRiEEe s I AR
.,4',?1{? 4 »g o J’l?
Item e can be questioned on the grounds that we have no #f Fhe
S i

experience with the type of memory being built. Thereis
however sufficient similarity so that intuitively the con -
clusion can be drawn that the relative parameters effecting
reliability should not be substantially altered,

multiply and divide,

g
Fuhdamental
Transistor
Savings
2,
change are:
a)

Change in
Computer
Emphasis

b)

Transistor
Savings

c)
Alter Emphasis
of Problem
Attack

d)

Optional
Feature

3

June 2, 1958

Elimination of the Hamming checker from the Sigma

computer proper will immediately result in a tran -

sistor savings of about units, If a substitutionis
made, relocating the Hamming or replacing it, then

the transistors involved must be subtracted from the
immediate savings.

310

The Sigma computer i now considered to be a product
to satisfy the requirements of Scientific or Technical
applications only, With this modification of competi-
tive area, the existence of decimal arithmetic opera -
tions can be justly challenged. Binary VFL, and con-

nective operations are still required, therefore providing ¥

a decimal add and subtract is of trivial cost and may
possibly be used to advantage, The remaining decimal
operations which can more readily be eliminated are
multiply, cumulative multiply and divide,

The number of transistors that can be eliminated is ap-
proximately . This number is composed mainly
of transistors that comprised the execution controls of
the subject instructions. The basic decimal addfacuity
is retained to provide simple add and subtract to aid in
conversion problems,

Problems that could formerly be expediently done in
decimal (normally short) may now be penalized in that
it may become necessary to convert to binary, process,
and perhaps reconvert to decimal.

Although this may bo' true, it is exﬁe.cted that this type
of problem be encountered infrequently,

The inclusion of controls for decimal multiply, cumu-~
lative multiply and divide may possibly be made an
optional feature. The suggested approach is to include
the controls in the original design and layout, then not
liat the control components with the released system.
The implication is that machines never desiring the eli-
minated facilities are less densely packaged or contain
wasted space,

oA

!

Eliminate the ability to permit full word instructions to lie across word
boundaries.

Specify the restriction that full word instructions must lie

1400 {

Elimination or making an optional feature’ of Decimnl multiply, cumulative
The reasons behind and implications of making this

D) The

L~)

o ‘1‘4:'5""'«

&

2 -
% "/'WW)

”
gz nele 4

g

l(;,((

ke S
ie £

guid oV
S

) s L€

A and
;

e /

-

2)
Reduce Com- -
‘plexity and
Transistors

b)
Assembly
Program

more
Complex

c)

Main Prcgram
Inefficiency
or Penalty

d)

Change in
Emphasis

-3 . June 2, 1958

within word boundaries,

" Applying the restriction will reduce the complexity

and general confusion in attempting to understand
the logic, switching and data paths of the Ibox,
There will also result the elimination of approxi -
mately transistors.

Applying this restriction may make an autocoding
program or assembly program a bit more compli-
cated to write. There is nothing to indicate that
this type of program would be impossible to write
or when written would be substantially reduced in
efficiency.

No Op. instructions would neces sarily have to be

inserted in a program at the point where the program

breaks from a series of half word instructions to
full word instructions if the last half word instruc-
tion ends in the middle of a word. The following
two observations can be made: 1) Programs will
not generally alternate between half word and full
word instructions at frgguent intervals, They will
more likely execute loops or logic processing in
one mode or the other and change mode only when
it becomes necessary; 2) When a break is made
from one mode to the other, the only concern is in
the direction of converting from half to full word
instructions, On the average 5_% of these cases
would require the inclusion of a half word no-op
instruction - the case where the last half word in-
struction ends in the middle of a memory word.

The emphasis of Scientific applications over com-
mercial applications has resulted in suggesting the

elimination of decimal multiply, cumulative multiply,

and divide. A logical extension of this philosophy
also implies less frequent use of full word instruc-
tions. Less frequent use of full word instructions
also implies less frequent program changing from
half to full word instructions thereby reducing the
number of no-ops that would potentially be inserted
into a pregram,

pifnade

L

A | enfrrnaf

SNt A LE

/ -r’.’&:bt

‘ff, P TS

4. Eliminate the possibility that a 0.5 us memory should be part of standard

installation, or standard optional equipment to the Sigma system.

/

Codye,
"i“ /;g‘{{

-t N
ﬂ“fimf % gl s,

v lr‘.O"L‘x;__
.

/a

Fres

2 -

"

&~ oy

-4 - June 2, 1958

a) Dr. H, G. Kolsky has shown that the inclusion of

M Dubious a 0.5 us memory does not necessarily imply an ﬂ/ﬁ"
Performance increase in performance, particularly when re -) MW S adh
Increase lated to costs and possible substitutions for that m’ﬁ?ﬁ%"“

cost,

b) From information available the 0,5 us memories

are not actually 0.5 us and are closer percentage o :‘l*i*?_,
Cost Basis wise to the 2.0 us memeories than the givennames Ao @ -
- imply. The capacities of the two memories are L& s 2,
LY #

one to sixteen for a cost that is approximately equal,
Therefore a summation reveals: costs about equal,

capacity 1 to 16 speed of operation is not 4 to 1.

c¢) The Sigma contract calls for inclusion of a 0.5 us
_ , memory and if it is eliminated, it is quite likely ki
Penalty of that renegotiation of the contract might be inorder,)

Elimination or at least the substitution of some hardware or

logic feature not presently listed in the contract to T
replace the 0.5 us memory. G e

d) Elimination of the necessity to provide facility for
. 0.5 us memory can directly result in the elimina-
Advantages tion of transistors., The need for addition, etc, ‘
in instruction preparation, special bus switching,

register entry etc. are eliminated.

5, - Eliminate the use of signs for index arithmetic ,' permit straight addition 24
only with subtraction being done by addition of the ogg_mplement of t.he ‘ '-V/D"/
number intended to be subtracted. I

l‘wdr 1«2"-%«1 !
e !
o

a) The acceptance of thia restriction immediately re--
sulte in a saving of approximately _ transistors. 477
- Since only addition is permmuble, no complementa-
- Transistors tion is required at the inputs to the index adder, no
Saved recomplementation cycle has to be provided for, con-
trol logic is simplified, the carrying and manipulation
of sign bits is eliminated and no test for a negative ef-
fective address need be provided for. ;

b) If this restriction is adopted, it may be more likely
using emitter follower logic, etc. to reduce the time R AR
Performing of index add cycle. This time reduction(and perhaps
Advantage the time saved by the Hamming chetker elimination)
may provide the ability to reduce the overall time
cycle of the I box thereby increasing performance.

>

Programmer
Penalty

Penalty
Relationships

c)

,d)

-5 -) "June 2, 1958

Since only addition would be provided, the program-

mer cannot use a single numeric field to adjustdirec-

tion of indexing. Two separate values must be pro-

vided, one to permit forward progress, the other to

permit negative progress if it is necessary that this /}
technique be employed. In certain instances a pro - AL .
grammer can avoid the problem just described by g
using two index registers in place of one thus halving ,ﬁ\‘mwwd
the number of independently available index registers, Ut Temae s
or maybe increasing the frequency with which avail -

able index registers must be set up for independent

usage, o 4

No machine presently exists which provides the flexi- m} jf Ao v
bilities and capacities of the Sigma computer. If a TS o
problem normally requires 4 index registers, eight ‘{‘ . 3[,7’1
Sigma registers can be used with seven remaining for
multiprogramming, additional flourishes to the solu -
tion, etc. The net result can often be that no severe
handic_ap is imposed upon the programmer “and the prob--
lém may be run faster and at less cost depending upon
increased I box performance and transistor count re -
duction.

6. Eliminate Progressive indexir';g‘_a‘bilitiee and the ability to specify that a
full word instruction may be immediate.

Transistor
Savings

Doubtful
Advantage

of Progressive
Indexing

-a)

b)

The adoption of this proposal will result in a transistor

savinge of approximately units. Complexity of the .7

I box will also be r.educed in that it no longer becomes

a problem to see what the 'P' field will turn out to be

after indexing so that the proper handling and indexing of

the instruction address can proceed,

Progressive indexing has always been subject to chal - .
lenge primarily on the basis of doubtful advantage. Pro-

gressive indexing provides no unique ability,. it makes

possible a macro-ing of an index instruction with a pro- iy,
cess instruction, but provides no function that cannot cavi = 3.
otherwise be specified. -Its existence is attributed totwo . .7 G-
things (in this writer's opinion) 1. A compromise be - /,Mgf{ -

tween two camps of opinion, with the resulting mental 70 | 5y
compromise that "If you accept this item, I will accept \ w z,
“itern x which you champion”, 2, Demonstrating that this o
feature can be used to eliminate some instructions in Contid fc

certain areas of commercial applicatiens,

-6- June 2, 1958

i

¢) The recent change in emphasis; Sigma computer as a
Emphasis prime technical calculator, minimizing the commer-
“wr Change cial aspects, weakens the argument of item b) 2.

d) The availability of an immediate modifier proves con-
: venient when a constant to be derived from an address
Doubtful Value portion of an instruction as modified by an index quan-
of Immediates tity is desired. (either may be zero) How often is this
desirable? Since an immediate modification cannot be
logically defined when applied to a "to memory" type of
instruction, its use is restricted to "to accumulator"
type instructions,

e) The existence of Prbgressive indexing and an imme -
diate modifier can, at best, provide for the combina-~
tion of certain types of instructions (index modification

Real Advantage and processing) thereby reducing the total number of ' A L

instructions comprising the program. The immediate
modifier offers the advantage that for the particular
case no data fetch need be made, nor is it necessary
to provida a sepa¥afe storage area for this particular
class of constants.
f) The P field or progressive indexing modifiers exist in
o Confusion the second half of a full word instruction., Both halves
Point of a full word instruction are indexable. The following
truths can be stated:

1) The exact nature of the instruction

cannot be determined until the second i

e
T

half of a full word instruction has been
indexed.

2) Logical rules of algebra cannot be ap-
plied to indexing the second half of a
full word instruction since the indexed : L
area is composed of independentfields
through which carrys may propagate.

3) Extreme care will have to be exercised .,
to prevent arriving at a P field result
which is detrimental,

7. Eliminate or class as optional features the LLZC (Left zero counter) and
AOC (All ones counter) associated with the logical connectives opera -
tions.

“r Transistor a) The LZC and AOC are expensive units and if eliminated

Savings would result in a saving of approximately transistors.

o
-

-k

2 500

Justification as

an Optional
Feature

Justification for

-7 - June 2, 1958

programmers will not be making immediate effec- |
tive use of these tools. It is the opinion of this !

The LLZC and AOC are features which have never P m«i’ furist

before been available to programmers, and al - ’ i A !/

though they are powerful tools, it is expectedthat ! . L e
x oz

writer that except for sophisticated computer users, 4o il M_%
these features will in larger percentage of cases : gromrat
be left idle while concerted efforts will be expended | .

to work with the logical connectives, From this it

is concluded that the LZC and AOC can be justly ne ! wéf .
categorized as Optional Features. The intent is ' oyl

that the LZC and AOC be designed and layed out,
but not included as part of the original model.

The LZC and AOC provide information which can-
not easily be derived by any other technique. The

only justification for reducing the feature to an Op- /e
Apou LA

Retention tional level is its cost and lack of proof that the 4 P
feature is a necessity. Its inclusion in the overall et ;f,%;,
Sigma design along with the connectives raises the Py
computer at least one level of sophistication above I BT
2ll existing computers.. | // \L oy £ 2 4 ;p;
8. 'Eliminate or class an an optional.feature the address comparison mech-

anism for multi program zone protection.

Transistor
Savings

Question

Multiprogramming

Restricted
Definition of

Multiprogramming

Removing the address comparison feature from the
category of "integral part" of Sigma computer will 2768
result in a saving of approximately transistors.

The address comparison mechanism is defined for
program (memory zone) protection in machines that
are being used for multi programming., The implica-

o

rammed. Is this a valid assumption? If one, two y

e
11111

or several installations have problems that are suf - ”“""’f” froee

ficiently long running, to justify the elimination of the B f el

multi program cencept should they be penalized with 1T e

the cost of these extra transistors, this wanecessary 7 b e,

programming obstacle, and perhaps mcreased execu- PE

tion time ? R— s it
G 4o 3" j’ B 1y Fibt 7

An "inner group' multiprogramming concept can be
defined where the memory protection can be made

the responsibility of the auto assembler, supervisory
program, or the automatic debugging program. This
“inner group" concept permits multiprogramming only
as it directly relates to the main program, i.e., set-
up routines, I/0 signals, exception case handling, etc.

-8 - June 2, 1958

More simply defined, an "inner group'' multiprogram is
-) defined as the sophisticated switching between the several
sub routines directly related to the main line program.

d) If the memory protection feature were made an optional ELACHIN
_ '~ feature, the feature would be designed, but the system
Optional Feature would not include the hardware to perform the automatic
protection unless requested by a particular customer(at
an additional cost).

e) A compromise may be a more acceptable solution. The
compromise would include specifying 2 memory protec-
Compromise tion feature that is not so elaborate, effective, complex, ,;M»Jj
or costly as the one presently proposed, The transistor o
saving would be reduced, but the overall effect would still
be to reduce the total transistor count of the system,

% Eliminate or classify as an optional feature the Elapsed time clock.

a) The elimination of the Elapsed time clock from the Sigma
Transistor computer system would result in a saving of approximate- s
Saving ly transistors. i

b) There is no known use being contemplated for the elapsed
Challenge time clock in the areas for which the machines under con-
Validity tract are being built. There is no denying that potential)) fi"é /

uses can be listed by the dozen, but it is not presenﬂy ;
Known’ that the clock will be used. ’

c) The elapsed time clock does provide a unique tool for com-
Clock is puter purchasers. It is the one feature that exclusively
Unique makes the machine fit into the categery of real time proces- v
sing. The effect of the clock cannot be duplicated in any At
manner - a clock must be provided or simulated for the
situations where it is required.

d) Making the elapsed time clock seems to be a reasonable ”
compromise. The customers not intending to use it will v’
Optional ' not have it, and those customers whe desire it will find it 144: «
available at a slight additional cost. , sevpr g
AR
10, Restricting VFL operations to bytes of 4 and 8 only, and these bytes must
lie on boundaries which are modulo 4 both in memory and in the accumu-

lator, : el

Transistor a) Adoption of these restrictions can result in a transistor Y.
“wr Saving saving of approximately units, v

De-emphasize
VFL Opns.

Packing
Density
Reduced

Implied
Restriction

Compromise

- Personal
Conclusion

11, Define, clarify and reduce the presently assumed level of completeness
checking. '

Transistor
Saving

b)

© d)

f)

a)

b)

-9 June 2, 1958

If the above restriction is adopted, a _define awkwardness—

will result in VFL programming. The awkwardness will
result from trying to adapt existing control parameters
(instruction addresses 18-19 bits, etc.) into fields whose
length is modulo 4. Certainly some modification or re -
definition of the machine will be in order, or at least the
creation of sorme new instructions.

Single bit fields and non modulo 4 fields will have to be
expanded to become modulo 4 by insertion of zero bits.
The net result becomes a reduction in the density of in-
formation bits stored in memory. Complexities are also
introduced in the 1/0 area where units functioning on a 5
or 6 bit character basis will have to be modified or con-
verted by some intermediate buffer to be compatible with
the processing capabilities of the computer,

The only byte size conversion that could be possible is
from 4 to 8 and its inverse., Intermix of numeric and
alphanumeric data for processing becomes less feasible,

A compromise that will permit more varied capabilities
and, of course, reduce the transistor saving is to speci-
fy that the instructions mentioned apply only to the ac-
cumulator, Some true VFL attributes remain in retain-
ing the ability to store and extract variable fields associ-

ated with memory, but these same fields in the accumulator
must be modulo 4. Byte size conversion may be fromany- |

thing (1-8) to 4 or 8 of the accumulator, and its inverse
operation.

If a decision is to be made on the basis of the original
restrictions, it will probably be best to eliminate VFL
from the computer completely and replace the void with
some special instructions which will provide the missing
abilities (i.e., L.ocad Exponent, Store Address, etc.).

The presently assumed level of checking is imposing a

severe penalty in number of transistors required to reach
the goals arbitrarily set. A large savings can be realized

m W

f on M/nif

f }
I) MO,

/

{

of

from to transistors if the level of checking can » -/207

be reduced,

The present philosophy pertaining to the Sigma computer

very simply states that the computer will be fully checked.

- 10 - June 2, 1958

This philosophy can be expanded to have three parts. 1) full

checking 2) error correction and 3) fault location, A clear

guide has never been established to help the logical designer
Review Philosophy determine the type of checking system or the method for deter-

mining a reasonable cost for a2 checking system. Thenatural

tendency has been to provide checking abilities definitely

above a minimum level costwise, and with no method to judge 7

adequacy of the applied checking system the whole system :

becomes shrouded in doubt.

c) To establish a criteria upon which logic designers can base
their checking systems a Checking Philosophy is proposed.
Proposed The net result of adopting this or any other set of rules should
Philosophy be a consistency of approach towards checking and a reduction
' in the number of trangistors required for checking. .

1. No proposed checking schemes shall include
error correction except as it comes free
from the checking system design, ~

2. No proposed checking scheme shall include
fault location except as it comes free from
the checking system designed. o

3. No checking system shall contain more than ST
30% of the transistors comprising the area | "L";m
being checked. ’

4., The principle of "Borrow from Peter to pay
Paul" may be applied to an area where a mini- .

“mum checking scheme cannot be designed for :
30% of the transistors of the area., If a mini-
mum checking system costs more than 30%
of the area being checked, the area may be
extended to include another area in whichthe
cost of checking was below 30%. Following
this principle, the total cost of checking in
the computer cannot exceed 30%.

N
bt

E—

4 ,ﬁmﬁi*f&‘: ,

5. No checking system shall be adopted if it gt wsed
geverely increases the time of execution sgein ;{’ ?

through the logic path being checked., Severe
can imply 30% increase,

d) The following table may be interesting, it was originally pre -
' pared as an aid to the Analysis of checking problem:

- 11 « June 2, 1958
. How to Where gshould Test for Determining
What kind How much determine checking be adequacy necessity
- of checking? checking? amount done? of checking for checkix?.&
none none intuition 1/0 none none
Pure parity a little discussion datapaths intuitive assume itis
Checking casting out abitmore % of xistr mem & bus no. ofxistrs statistical
duplication a lot logic logic units used reliability
etc, % of over- controls program study
all com - analysis
puter statistical
none
special code
Error try again - ‘
Corr‘c- . BtOP " 11 " " "
tion decode
2 out of 3
none .
point to point
Fault loca- decoding
- tion trap & analyze " " " " "
diagnostics
et 12, Ehmmate the use of an adder for generating an interrupt address, substitute
the prefixing technique.
Transistor a) Eliminating the use of an adder for generating an interrupt S
Saving address will result in saving approximately transistors.
b) The addition makes pogsible the placing of the block of unique
- instructions related to the condition causing interrupt any - 107
Difference of where in existing memory. The prefixing technique restricts '
methods the positioning of this block of unique instructions to any mod-
‘ ule of 64 words, The worst conceivable loss a program can
be responsible for is 63 unused memory positions. A program
which cannot substantially reduce this loss is not well organ -
ized.
c) A possibility werth mentioning is that the operation may be
speeded up if no add cycle is required. The prefix technique
Faster calls for 12 bits of interrupt base address to be placedalong-
Operation side the six bits from the Leftmost one identifier. It is nat 2
evident that this can have any effect on reducing the overall
: I time cycle,
“w 13, Simplifying or restricting the existing definitiens of instructions can re-

‘sult in a transistor savings.

- 12 - June 2, 1958

a) Eliminating some of the modifiers applicable to specific in -
structions, restricting the breadth of coverage of certain
% Reduce No. of instructione and/or elimination of some of the desirable,but
Formats not really necessary attributes of certain instructions will s
permit an instruction class to fit into the format of other in- ’ﬁft,(gf, :
struction classes. It is possible therefore to greatly reduce
the number of different instruction formats resulting in the
- simplification of I box gating and control. Some ideas are
available from proposals 0415 and 0417, '

T {u.:»}
el

b) The Transmit and Swap instructions are powerful tools for
general programming and greatly facilitate such operations
as set up and clearning for interrupt. There are times when }
a good thing can be carried too far. One possible case of
Transmit and carrying a good thing too far might be the ramifications speci-
Swap field for the Transmit and Swap instructions., The following
‘ questions can legitimately be asked: 1. Is it necessary to T@l
permit this manipulation of half words as well as full words? ; S
2. Does an immediate mode pay for itself? 3. Is the re - - ‘
sultant aborted format just as easy to live with? (considera-
tions to auto assembly and auto coding) Presently there are ,
specified: Transmit; full, direct; half, immediate Ve
Swap: ful}, direct; full, immediate !

- ‘ __ ¢} The most obvious deviant from a uniform format is the _
on Indicator instruction. Another instruction is provided which -
serves exactly the same purpose - namely the Branch on Bit m
Branch Indicator , instruction. The largest difference between these two instruc- , .-
or Bit ~ tions is size - the Indicator is half word, the bit is full word.

: '~ Two approaches can be suggested: 1. Eliminate the indicator
instruction since the bit instruction with the numeric address
of the indicator register will provide the exact same ability
(at the cost of one additional half word). 2. Not all of the in-
dicators are important enough to have an pptional mask bit ,

‘therefore why not lessen the density of bit packing in the in- <%,
dicator instruction by permitting reference only to the mozxe s
important indicator bits thereby letting the instruction format ..., ¢
become identical to other formate..«}

Sy

14, _ Simplification of the instruction set by eliminating the more costly instruc-
- Eliminate tions can result in substantial transistor savings and in many cases donoth-
Costly ing in the way of reducing machine capabilities, (eliminate redundant or
Instruc- macro instructions) o
tions o . o :
a) The effective operand address is used to fetch from memory
an instruction that will be modified and executed. The in -
‘ struction counter is not stepped for this extra instruction
> ~ fetch. Unique restrictions must be applied to the abilities of

-13 - June 2, 1958

of the instruction fetched for execution it may not: change the

o instruction counter contents, modify the indicator registex:;
Execute Instruc- alter the boundary registers, effect the elapsed time clock,
tion or effect the interruption address register. (Branch instruc-

tions cannot be executed since they by definition alter the
contents of the instruction counter. It is also quite likely
that the Look Ahead mechanism must be run out and main -
tained in this condition while an Execute instruction is being ‘
handled. P

The Execute instruction has it's use in program tracing of

other programs. It is therefore useful for program debug-
Execute Uses ging and analyazing if a Master debugging or tracing program

is available, What is the likelihood of having available a

master debugging or tracing routine? What is the likelihood ~ /7t¢:

of individual debugging routines being written? Could not a

reasonable degree of debugging be built into a Fortran type

auto assembler without requiring the Execute instruction in

the computer? No one can deny that the Executes are intel- } i

lectually stimulating, but all can ask if they are useable. /o e €

718 4
[RX RS g

b) The effective operand address is used to fetch a word. The

value field of this word is then used as an instruction address.

W Indirect Execute The instruction is fetched and executed as in the Execute in -

‘ struction. The value field of the word is stepped by one or

two (half or full word instruction was fetched) and the word
is returned to its original position in memory. The inclusion
of the Indirect Execute instruction can nearly be defined as
having one computer within another. The uses of Indirect
Execute are the same as for the Execute instruction and the
same questions can be asked regarding substantiation for
inclusion,

¢) The Store Address instruction provides that a portion of the
value field of the index register specified by J replaces the
Store Address address portion of the instruction located by the effective
operand address. The portion of the value field that is trans-
ferred depends upon the instructiorf into which the number is
placed.

This is definitely a macro operation and eliminating this in - A
struction does not effect the ability to accomplish the function, | L2 3:
it will of tourse take more instruction space. Is this function) ' ’?‘*f
Questions used frec ‘ﬁy, enough to provide a hardware built in program? |,
Could not the Store Value instructions be made to suffice? If vy
~ some increased uniformity of formats be provided so that a fosies .
single size address field can result, would not the Store Ad-

Rename

Load Indirect

d)

- 14 - S June 2, 1958

dress instruction and Store Value instruction be identical?

The Rename instruction has the following definition. The
index word in the index register specified by J is storedin
memory at the location defined by the refill field of the
index word in index register Xo. The effective address
(18 bits) then replaces the refill field of index word Xo and
also specifies the place in memory where the newindex
word is obtained which replacé’s the index word originally
in the index register specified by J.

The Rename instruction is then an automatic storingof, and
;%lgg_h_zg of an index word and its home location in memory.

is «is not really an instruction, this is hardware sub rou. fgﬂ
tine, Its usefulness is based on the premise of quickly and

sfficiently modifying and preserving an index quantity. The

fallagy of this reasoning is that it is applicable to only @ne *:‘;wt s
of the index registera. (It can be used concurrently for £

several index registers, but it would take a highly sophisti- "{"ﬁ’}w’u

‘cated programmer to keep things straight.) If the instruc- -

reverted to its original or earliest definition, then the ef -
fect would be to halve the number of available index registers,

Since it is apparently more desirable not to halve the number

of effective index registers, the Rename definition is now so)
restricted that its usefulness is minimized, perhaps noteven x '
existent. -

The Load Indirect instruction specifies that an index word

" identified by J has its value field replaced by an instruction

address which is located by the effective operand address

of the original instruction. This is a macro instruction and
reasonably acceptable, however there are some quahﬁers

to the existing definition which make one think twice. It is

also specified that the instruction fetched to provide the ad -

dress to replace the value field be inspected and decoded and

if also a Load Indirect instruction the same initial operation A
is to be repeated, The implications of this definition are in-
creased cost, increased complexity, and the possibility that

the computer could run indefinitely and not produce useable

results unless special precautions be taken. An interlock is

further defined which will prevent the computer from running
indefinitely, also an indicator poaitmn is exclusively devoted

to this one inutructiona :

1. This instruction is reputed to be a conces- ;
sion to Los Alamos, is it reasonable topena- | .
lize all future customers? . i

15 - June 2, 1958

vy l P j
Instruction Set) 2, Is there sufficient general purpose o, e
Reduction Simplification to justify the existence of this 0" Pt
uniquq_‘ instruction? ;fm.; e ﬁé'
15, Reductions can be made in the transiator count of the computer by elimina-

ting from the instruction set those instructions which are little used, con-
tain a degree of redundancy or provide a function than can readily be repro-
duced by a combination of other instructions.

Floating Point
Single

Load-Store
Index
Direct

Symmetry
Destroyed

a)

o

i

A whole group of instructions can be eliminated on the grounds

that their equivalent instruction in double precision, provides
results from which can be extracted the single precision re -

sults desired. One point that should not be ignored is the de -
sirability that the time required to produce the double preci - wenkd
sion result should not be Significantly greater than the time to rhe
normally produce the single precision result. The instructions

in this category are: PO

]

al) F.P. Multiply

a2) F.P. Divide

a3) F.P. Add Magnitude
a4) F,.P. Add

The Load index and Store Index instructions are justified on

the grounds that only a half word instruction is required toper-
form the function, this even in the light that two other instruc-
tions are available which accomplish the same thing. Thefirst

is the ability to Store giving the address of the index register.
The second is either the Transmit or Swap ability. (The Swap
provides more than just the Load or Store, it provides both.)

The Transmit can eyen be faster and more powerful than the

Load or Store index, i.e., Load 16 Ix registers. Using the

Load Ix instruction technique; 16 instructions = 8 to 9 instfuc~
tion fetches, and 16 Ix word fetches, total = 24 fetches. Using

the Transmit technique; 1 instruction = 1 to 2 instruction

fetches, 1 control wd fetch, and 16 Ix word fetches, total & T}“"(”‘
18 fetches, Net difforence 6 fetches. T fesree. in

R SWE
An argument can be raised about the destruction of the é_}_r_r_{x_-f

metrx of the instruction set if these instructions are elimi-

nated. The fact is true, the symmetry will be destroyed, but
the questions should be asked: Cannot this set be related to

the Immediate Index instruction set which is symmetrical and
yet does not contain éither the Load or Store inde®? Should

the set have been built up, so that it approached a symmetri- YLz
cal pattern? There are so many peculiarities in the system
now, would it be burdensome to have a non symmetrical set

L,
of instructions ? 7
!yl
’\{ s Ll'é‘/ﬁ' ’lﬁf‘
:(,z s ‘;f ““H ”"‘41‘?{

p
Wn-ﬂx mff A ey
c"/*/%&' A—'f

Load-Store
Refill
Direct

Compare
Counts

Compare Value
Negative
Immediate

Interchange
Augments

Continued
Compare

c)

d)

8)

-lb6 - June 2, 1958

The Load and Store Refill operations are convenient, but it
appears that their justification for existence is a symmetri-

cal instruction set and greater potential of use in a commer-
cial application, (which aspect is presently deemphasized. ’
Other instructions are available which can be utilized to pro-
vide this function. Among them are Load, Store and Connect,

The Compare Count direct and Compare Count immediate pro- J
vide no feature that cannot be reproduced by using other exist-
ing instructions. Its claim for existence is based on conven-
ience, it i8 a macro operation whose use is in direct opposition
to the philosophy of automatic detection of Count to zero, There
is no substantiation on the basis of instruction set symmetry.
in fact, its existence is counter to symmetry. ' S 1‘“,&”
‘ G@«?M
The Compare Value Negative immediate instruction fits into . . v
all the classifications mentioned for the Compare Count,
item d).

//

The Interchange Augment instructions are candidates for elim-
ination because they provide no unique abilities and can not

only be duplicated by other inastructions, but the function itself
can be eliminated in many cases just by judicious organization

of the program instruction list. It is acknowledged that the

cost of these instructions is small. Philosophically speaking, }
a lot of little raindrops can cause a flood,)

The Continued Compare instruction was defined to facilitate
comparisons of fields whose precision is greater than one.

The recommended procedure is to compare on the high order
and follow with a continued compare of the lower order bits

of a field. If the high order compared anything but equal, the
Continued Compare became a no-op., otherwise it extended

the compare operation. A serious complication arises since

the sign of a field is appended to the low order bits, theinitial 9
compare cannot include sign relationships, consequently a \
false or incorrect comparison can result. The instruction Con- '
tinued Compare as defined does not really provide any means

for facilitating comparison of fields whose lengths exceed 64
bits,

