e i e SEF T U THRY

//6(0&7

PRELIMINARY SAMPLES OF THE ALPHA LANGUAGE

hy: S. A. Schmitt

i R. King
Date: September 9, 1959 L
M X
=~ "
w"
e
Company (Confldenual

This document contains information of a propricetary nature. ALL
INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE,
No information shall be divulged to persons other than 1M employees
authorized by the nature of their duties to receive such information, or
individualsor organizations who are¢ authorized by IBM or 1ts appointee
to reccive such information.

1BM Research l.aboratory
Yorktown Heights, New York

Alpha is an attempt to provide as convenient a Harvest pro-
grarnming language as possible, within the existing restrictions of
delivery time and manpower. It is modest in its objectives. It is to
be used by programmers, not by analysts. It is procedure-oriented,
not problem-oriented. That is, the programmer must state the method by
which the problem is to be solved; Alpha does not do automatic problem
analysis. Alpha will not rearrange a problem to use the Harvest stream
unit as efficiently as possible, but a programmer can state h.s pro-
cedure in such an order as to cause Alpha to use the stream unit efficiently,
Thus the higher-level decisions are left with the programmer. On the
other hand, Alpha relieves him of the burdensome parts of programmng -
translating procedure statements into detailed machine instructions,
and allocating storage for these detailed operations. v

This report gives a general description of the Alpha language
and system. Many of the details are still vague, for they wiil have to be
worked out as the system is written. However, the plan described here
is one that the IBM Farm Boy group believes to be within its ability to
implement in the time available.

The clearest demonstration of the nature and capabilities of
Alpha is afforded by the sample programs submitted along w:th this
report. The report itself should be considered as a supplement to the
programs.

The most distinctive characteristic of an Alpha-language program
The vocabulary is large enough to allow statements to be made in reason-
able-sounding English sentences, and the order of statements is one that
might be used in a verbal explanation. In spite of this freedom, however,
the language has been chosen so as to be unambiguously interpretable by
the compiler.

It is striking how much of each program is devoted to data
description and the selection of particular pieces and parts cf the data.
We believe that this is characteristic of the problems with which Harvest
will be confronted, and the Alpha language is therefore aimed toward making
data specification as clear and simple as possible. In this respect these
recent efforts on Alpha complement the previous work on Transcript, which
was aimed primarily at a specification of the operations required.
Transcript can then be considered to be a part of the over-ail Alpha
system, specifying the common operations for which subroutines will
have to be written.

mailto:objective@

™
[

Alpha will achieve much of its flexibility and readability by use of
a large vocabulary. This will include both words and phrases; an
initial pass of the compiler will identify each word and group the words
into phrases wherever possible. To avoid possible confusion between
words of the language and programmer-assigned names, Alpha will
use the expanded alphabet that is to be available on Harvest .nput-output
equipment. All words of the Alpha language will be written :n lower
case, while all symbolic names chosen by the programmer will be
written in upper case.

No matter how large a vocabulary a programming language has,
there will always be occasions when it is desirable to add to the language.
This can be done in three ways: First. a programmer may, as in any
other programming system, write a subroutine and refer to :t by a
symbolic name. Second, the Alpha language includes terms that make
it possible to define new words. That is, a new word may be incorporated
into the language by explaining, in Alpha language, how the word is to
be interpreted. In its first pass the compiler will use the exulanatory
information to replace the new word and its context by equivalent
statements in standard Alpha language. This is an importan: feature,
not only because it allows any programmer to develop specia!-purpose
extensione of the language but also because it enables the developers
and maintainers of the Alpha system to build up the language much more
rapidly than would be possible if every new term required the writing
of a detailed subroutine. Finally, the third method of extend:ng the
ianguage is to make available a system for writing generator sabroutines
for macro-instructions, as in the IBM 7070 Autocoder systen:. This is
another bootstrapping technique that should simplify the task of the
system maintenance group.

An editing problem

We have a file of an unkncwn number of records of varying un-
specified lengths. (Max. no. of records = 100, max. length of a
record = 500). The elements of a record are the characters A to Z.
It is desired to edit each record so that when it is divided into pairs,
no pair will consist of a doubled letter. This may be accomplished
by breaking up an offending doublet as it arises and inserting an X if
the doublet is #XX and a Q otherwise.' If an odd letter remains at the
end of a record, attach an X (or a Q if the odd letter is X). The f{ile
of edited records will later be put through a table conversion process.
The original file need not be retained in the machine. The order of
records within the file is not important, and there is no corrclation
in the processing from record to record.

"A little editing problem" page 1 of 2
Lk ’L |
nput { ‘
2FILE : file 1634? max (100 REJ(:ORDS
| !
3 RECGOGRD : re?ord 1
1 !
: | ' r
4 ‘f SERIAL : - .4d | |
’ i ? | :
5 TEXT|: —» ; ;max $00 CHARACTERS
! ! i | :
6 | |CHARACTER : domain = alphabet 1
‘: | . i
7 a | i '
i , ‘
; |
— '
9 linput ‘ ; | ;
| * E ; :
10 [FILE file MOSES ; max 100 RECORD#
: ' i : i
11 'RECORD : regord | |
!)‘ ! ‘ s ‘
12 q 'SERIAL : 4d ! |
j ! | : i !
13 | 'TEXT :—»; max 500 GHARACTERS
{ : : . : .
b { : l 3
14 § ;_ 'CHARACTER : domain = alphabet 1
i C { ;
15|card : (running time) E ‘ |
i : : ; !
| : 7 : ‘ |
-4 4d = MO#ES . i :
16 J 4 & L R
' | ! ; ' :
| ; i 3 i
L7 | | : a f» |
18 i ; k | | %
? ! l 1 ’
19 s ; ! | ’
: ’ | | , ;
20 ! ‘ |
N @
22 |
!
23 '
24 :

2R

line 1: 'input' : a) an explanatory word for readability
b) a word signifying that what follows
describes data being supplied :rom the outside

line 2: '‘FILE: ' : a symbolic name for the data down to the next
name at the same hierarchical level

'file n' : means ''this is the contents of a certain
phvsical file called n on the master list
held by the supervisor.' it does not in-
clude the introductory and final data on the
file which describe the file and give checks -
only the logical content

'‘'max n SYMB' : a bound for the amount of input for the space
allocation routine (when it is written)

line 3: 'RECQRD' : the first - and here the only - breakdown
"~ of the structure FILE

‘record’ : means it is a logical record. Whether in this
file the records are distinguished by EQR
marks or counts is a concern of the supervisor
but not the programmer

line 4: 'SERIAL' : the firet breakdown of RECGRD
‘44" : 4 decimal digits. If this is ever to be treated
as a number without other specs 1t 18 a 4-digit
humber.
line 5: 'TEXT' : The second breakdown of RECORD
— : means all the remainder dntil the next

symbolic name on the same hierarchical level.

‘max n SYMB' more for the space allocator
line 6: 'CHARACTER' : the first (and only) breakdown of TEXT
domain = : these iterns (CHARACTERS) corne from
alphabet n : an alphabet is an established collating

sequence. in this case alphabet | is A—> Z
and the domain definition could have been
omitted, this one thereby being implied.
{This is true of the bottom element of a
hierarchy.)

lines 9-16 give an alternative formulation when the program :is to be run
at various times with the particular file specified at running
time

line 10: Here MQASES is a symbolic name for the file number. The
compiler is faced with three alternatives:

a) MOSES will be given byan = statement somewhere later
in the input statement

B) MGSES will be listed as an input given at running time and
the object program will have to arrange to pick it up (this
is the alternative shown here)

or ¢) MGSES will be calculated by an = statement operation later
on. In this program since only one file is being read in, the
input would be unspecified and the program thrown off the
machine. '

"A little editing problem" page 2 of 2

1 programi l ‘l
2 'We first edit the texts so !that the resulting uequencjn of pairs contain no

3 Houblets'! Z i

: : | 1

4 ; ' |

: ;

5 |take a RECGRD i i

| : |

6 |ork with TEXT 1

| 1

z .
7 lidentify by SERIAL |
| | '
l

8 take two CHARACTERS
3 hreet ;
9 ; éif conly ope remains then :
10‘ ; : put it oui i x
11 i } if it is nc;t X! thei!'x put out 'X"'; eiie put out 'Q’
; : : | ’
12 , %énd of processing CHARACTERS
13 ::if they are unequal then pt;lt them out
14 ’ if they are equal then '
i5 i put out first CHA%IACTER_
i6 i jif it 18 '}:(‘ then pc;t out 'Q'% ; else pat out 'X!
17 , 'put back second CJiHARAC'I;EIR
18 Edo this ffm all CHARACTERS ,

+
{ .

19 [call the result : npw TEXT

}

20 |call ([nkw TEXT, old SERIAL) : PROCESSED ® RECGRD

i

21 |do this for all RECORDS i
22 |

23 1" " We now perfofm a transformation"

t ' « ¢ L]

24
kcentinaation

line 1: 'program'

line 2-3 " n

line 4

an
line 5 ‘take tge SYMB!
n

line 6 ' work with SYMB'

a) an explanatory and for readability

b) a signal that input description is ended

¢) a marker to break the hierarchical
structure of 'do’ loops. This could
as easily have been accomplished by
the following comment in accordanse
with the rules of line 23,

2 comment with no effect on the program,
An X i the right hand column means that
the statement continues on the next line,
No hyphen should be used to divide a word.
at the end since the kev puncher probably
would be forced to divide the line
differently, anyhow.

spaces may be left for readability

this 1) indicates the greatest amount of
material that needs to be present for the
current processing. When this is the
highest hierarchy 1t gives info about
how much need be read into memory at ene
time for the space allocator.

Z) reads in the data from outside if it is not
already in the machine

3) sets up indexing to cbtain the sequence
of SYMBs

4) if > 1 item 1s taken. sets up implied
references to the members as -1, -2,
... and/or as first', 'secondf, ...

There will generally be a hierarchy of takes.

partly for readability, partly to help the
compiler to set up indexing for getting this
field, [There is some auestion of just
‘taking TEXT'. However, I feel that the
more elaborate procedure helps the com-
piler enough to make it worth while] .
TEXT now replaces RECORD as the implied
symbol if any is referred to.

line 7 'idemtify by SERIAL’

line 8 ‘take n SYMB'

line 9 'iff 'only n remain(s)’
‘ "6 n remain'
' < n remain’
‘partial field'

....then
.., else

a) specifies a field which is sufficient to
identify the item worked with for future
reference.

b) sets up a table (implicit, explicit?)
between order of processing and
identification to the outside.

c} an identification can not he referenced
implicitly. Thus TEXT is still the
implicit referen ce.

This is subordinate t¢ TEXT so it sets up
indexing to secure (the next) two characters.
CHARACTER(S) is now the implicit reference
and the two can be identified as -1, -2, or
first, second. The compiler makes a note
that it must have n. if there are none it goes
back up to the top of the next higher hier-
archical level. If there are some but not
enough it will look for instructions how to
proceed. If no such insiructions are forth-
coming it will drop the ¢lements and

procede as if there were none. If there are
enough it will look for instructions on how

to handle them.

'if' introduces a cond.tion extending up

to the word ‘then'. If the condition is
satisfied the operations following ‘then’

are performed. If the conditions are not
satisfied the statements following 'else' are
executed. If only one poasitive action and
one negative action are specified the whole
thing should be written as one line. If
several positive actions are specified, they
should be indented under the'if'while the
‘else' is put under the'if'. If 23 con-
ditions are involved thev are aligned and
the appropriate acticns indented under each.
If there is an 'else' covering others it falls
under the '‘'ifs'.

The last named symbol CHARACTER- is
implied here.

line

line

line

line

line

line

line

line

line

E=2

fﬁas length n SYMBq

10

11

12

13

14

15

16

17

18

‘put SYMB out!

pro

'put out SYMB!'
pro

‘“if ...then,, ;else,..

'end of processing SYMB' :

‘they' ‘'them!'
'they'

'first CHARACTER'
'itl

'‘put back SYMB'
‘put SYMB back'
‘second’

‘do this'

for'
‘all SYMB'
['firlt n SYMBE

['umil'] -
-
I [the] result’,

'put out’ means form into a result stream.
It does not automatically imply writing on
tape or printing, tho the writeout might
happen automatically if snemory became
full. The pronoun ‘it' refers to
CHARACTER.

See line 9. ‘it' againrefers to CHARACTER
This is a subordinate 'if* and is tested only
if 'only one remains’.

determines at what hierarchical level SYMB
is being processed. Looks ﬁ)r ops at that
level from this place downwgrd. Sets

trigger saying this processing level is
finished. Backs up to top of next higher level,

both refer to CHARACTER(S). 1f in the
indentations immediately above a new
implicit name had been generated we would
nevertheless have reverted to an implicit
'CHARACTER(S)' since this 'if' is on the
same level as the 'if' on line 9.

as in line 13

first refers to the implicit numbering of
line 8§, Actually here and in line 17
'‘CHARACTER!' could have been omitted.
'first CHARACTER!' is now implicit
reference

refers to first character

back.up appropriate indexing so these
items will be at the head
same as 'first' in line 15

indexing for this hierarchical Jevel.
repetition starts from the top statement in
this level.

introduces extent of repetition

look at the extent of SYMB defined elsewhere
and exhaust it 1n order

for minimum of (all , nij

introduces method of stopping

built-in name for output stream

control for stopping is on the output. Of

course it stops sooner if the input is exhausted.

) aey w—gih_“yf':“‘g‘w AV ‘ *"v O"!)

R - EERE NS T

line 19 'call SYMB:' : a labelling statement
'the result’ : see line 18
‘new' : has meaning only if SYMPB has occurred

before. Then it transfers the label from
the unprocessed material to the processed.
This is logically done item by itemn. The
old material is no longer labelled; exactly
when it can be destroyed for new storage
space is not altogether clear.

line 20 '(new TEXT, old SERIAL)': this means the adjoining in this order of the ’

two fields. 'new'] believe is unnecessary
tho probably mnemonic. ‘old' means the
unprocessed material cr fields associated
with it,

PROCESSED @ RECORD : I would have likedto call them 'new
RECOGRDS ' but 1 am uncertain yet
what would happen in the next statement,
A hypothesis is given in iine 21.

line 21 ‘'do this' : specifies repetition at the level of RECORD
for all RECQRDS unless we specifically say 'new! the labels
in indexing 'do’' statements refer to the
original labels at the top of the hierarchical
level, since for the unprcocessed material
the old label is the onlv applicable one,

line2z """, " : A comment with extra quote mark at the
front is a marker to say that subsequent
processing is logically distinct, If the
comment here {or in lines 2-3) is itself to
contain a quote, use gingle quotes inside.
A comment may provide a label for the
following statement by capitalizing some
words in it. The first contiguous set of all-
capital words not separated by punctuation
except & is the label.
e.g. "STEP ONE : Go Jumpf"

Determining the cycles of a permutation

We are given 100 permutations, each of 35 elements, ané¢ wish
to calculate the cycle structure. The printout should exhibit the original
parmutation as well as the cycle structure.

"Determining the cycles of a permutation’

page | of 1

8

10

11

12

13

14

15

16

17

i8

19

{end l

input ‘
FILE|: file|1984] 100 [RECQRDS

[RECQRD : | record ; 15 ELFMENTS

'ELEMENT : démain = 1(1)35
‘ |

prosrhm ? ‘

take s RECORD |

Form P tablo : 1(1) 35// *ECG}RD . ifori=I(1)35

form a list L : 1 ‘(I)BS;; ini’gially ;1(1)35
"This iia a list ofjthe ileme?ht. na:it yet manipulated"”
form a mt*cc : im- C i :
"Tl'ns is a hst of the q;.ycle;. C"g
;form a list C: 1(1)35 whcre
| | i i

| C. 1-T(C. (i-1)) forn‘e(l)-
f Cg:T'(Cala~C§1

c

:delet¢ all C i fr:pm I.j

do t.hi- until L u empty i

¢ : §
crder cC by length of C s |

prmtt 11-115: 31(1) 35» i; format s d¢,‘\
11-115 : ~ELE‘.MEN"I‘S_ .%forrnat ‘ad¢]

i
1

', douﬁle lp§ce

{

fCLr ; ‘;form_ht yﬁid ¥
[‘ A 1 -

6- ple spi.ce | |

|
i :
do thip for all RECGRDS

line 1

line 2

line 3

line 4

line 5

iine &

line 7

line 8

line 9

‘input'

‘FILE'

‘filen'

'100 RECOGRDS'
‘RECORD’
‘record’

'35 ELEMENTS'
‘ELEMENT!

‘domain ='

'1{1)35°'

‘program’'

'take & SYMB'
n

‘form a'

‘table T:'

6 //___c

'RECQRD. 1!

Hor i = 1(1)35"

'form a'
ilist L:'

'1(1)35 !

‘initially’
'1(1)35°

[

marks beginning of description of data
entering the program from outside

a symbolic name - here never needed in the

program

a physical file named and referred to by

the supervisor I
L f‘f—”‘“ :

for storage allocatios _%@‘? §4

the subdivision of FILE

a physical record

for storage allocation

the subdivision of RECOQRD
points out extent of variable
means it canbe 1, 2, 3, ..., 3%

marks the beginning of processing

set up indexing to pick out the sequence
of RECORDS; work with OR¢ at a time

create the object mentioned and label it
for reference
'table' implies a transtormation. Whenever
T() is encountered it will do this con-
version
on the left are the arguments separated by
commas; on the right the entries
SYMB. j,‘m , isa durnmy variable

k.n

ll

enumerating the subdivision of SYMB.
says the subdivisions of RECGRD are
taken in 1,2,...,3% order. Now that i has
been enumerated it is released for further
use.

»

as in line 7

a list is just that., If items are deleted from
it, it closes up.

in this position it gives the type of elements
on the list

says what is on the list to start with

the list L is originally 1,2,..., 35

a comment

line 10 ‘lists C' the elements of CC are themselves lists called

(C. {actually tc be referred to as C. 1, C.2, ...
line 11 " " a comment

line 12 This is indented because the statements refer

line

line

line

line

line

line

13

14

17

18

line 24

line 25

‘where "
‘'C.1=L.1"

C.i = T(C.(i-1))

Ic'gi

| P)
'T(C.g) =C.l1'
'delete. . . from)’

211 C.i1
“Yrom L

‘do this'

funtil’
'is empty'

‘order ... 9Y!
in

Tength'

‘end’

to list CC.

whereas 'for' gives ar enumeration, 'where'’
introduces a combined enumeration-cal-
culation in the next lower level of the
hierarchy.

the first element on £ is the first element
an L. flf the domainsg of C ard 1. had not
aliowed this an error :ndication should come

up.i

i
gives the rule of cazlculation. The i
element of C is the transform by table T
of the (i-1}%%,

., means the last elerment of N Y

ihieans the next to thae last ¢

is the element such that

the transform of the last element of C equals
the first element of C.

from an ordinary list this means strike out
and close up

all elements of C

from list L

indication of repetiticn back tc beginning of
this hierarchy - in tluis case, line 12.
points to condition fo:r stopping

there are no elements

place the elements in the order to be
specified if the word ‘descending' does not
cccur in this statement, the order is
ascending.

a built-in operation which results in
categorizing each element by the number of
subelements. Here tae number of elements
in each C would be ccunted. The 'order by
length' would put the shortest one first, etc.

establishes repetiticr. for level of RECQRDS

signifies end of comp .ete program

