April 9, 1958

INTERNAL NOTE #29

Subject: Preliminary Specifications of a Basic Computer
Coding System

The coding system we propose for the Basi¢ computer is based
on the philosophy that the most applicable coding system for any com-
puter is one directly related to the machine it is meant to serve.
Therefore, the makeup of instructions for our proposed scheme will
have a pattern similar to that drawn up for instruction words by the
Basic machine planners.

Basic computer instruction words come in two sizes, a half-
word and a full-word. A half-word instruction is composed essentially
of an operation, an address, and address modifiers. The full-word
instruction is composed of the previously described half-word plus
an additional half-word for specifying essentially a second address
and address modifiers. An easily recognizable difference then exists
between these two possible types of instructions. For both types
there will be a primary address, but in addition, the full-word in-
struction will have a secondary address. Therefore, half-word in-
structions will be grouped as single address instructions and full-
word instructions will be grouped as dual address instructions.

Single address and dual address instructions can be further
subdivided into six instruction categories each. (These categories
have already been defined by the Basic machine planners.) Among
the instruction categories we find that the registers affected by in-
struction operations are either specified, implied, or non-existant.
(These registers may be the accumulator, accumulator sign byte,
mask, indicator, or index registers.) If the registers are non-
existant or implied, there is no need for coding. If the registers are
specified, there is need for coding. Therefore, a classification with
respect to implied and apecified registers should exist for these
instruction categories.



Our proposed coding system for the Basic machine now takes
shape. There will be two groups of instructions - single address
- and dual address. Each of these groups will be subdivided into an
implied register class and a specified register class. Under each
class will fall two or more of the six instruction categorics of each
instruction group. The outlined organization is as follows:

L Single Address Group
A, Implied Register Class

1) Floating Point Instructions
2) Miscellaneous Instructions

B. Specified Register Class

1) Direct Index Instructions

2) Immediate Index Instructions
3) Count and Branch Instructions
4) Indicator Branch Instructioms

II. Dual Address Group
A, Implied Register Class

1) Transmit Instructions

2) Input-Output Instructions

3) Store 1. C. and Branch Instructions
_ 4) Branch on Bit Instructions

B. Specified Register Class

1) Integer Instructions
2) Connection Instructions

A discrepancy may be apparent in placing integer instructions
under the specified register class but as we shall see later, integer
instructions are more suited to this classification. Now within this
framework we can establish a system for expressing instructions.

The tenets for expressing instructions in our proposed coding
system are these. Ins¥rugtions may be expressed with numeric or
mnemonic symbols or actual binary notation. Symbolic notations



-3 .

will be unrestricted as to length whether these notations represent
operations, addresses, index registers, or special modifiers. The
coding format will be free of pre-established instruction subdivisions
and reliance will be placed on punctuation to denote the intent and
extent of instruction notations. For those coders who insist on
precisely defined coding fields for expressing instructions, they have .
only to follow the same instruction expression order as we are pro-
posing and if they follow this order, they have but to define their own
special field restrictions for our general coding system to achieve
complete compatibility. In fact an important tenet of our system
should be that it be amenable to minor coding variations, such as

the above special case, merely by notifying the assembly program of
the variation,

How the proposed tenets will be effected is fairly ocbvious ex-
cept for denoting instruction notation intent and extent by punctuation.
Now, if we recall the instruction organization as already set forth,
we remember that there is a single address group and a dual address
group. The single address will stand alone and needs no punctuation
as long as the register is implied. However, if there is a specified
register, it will follow and will be separated from the address by a
comma. Whenever there is an address modifier, it will be placed
immediately after the address and enclosed in parenthesis, In the
case of dual addresses, the second address will follow and will be
separated from the first address by a comma. If there is a specified
register, it will follow and will be separated from the second address
by a comma. Again, whenever there is an address modifier, it will
be placed following the address but inside the following comma and
enclosed in parenthesis. Operations need no separation as they will
appear first in the entry and are easily recognizable. This should be
a simple and comprehensive advanced system for coding instructions.

The general organization of the proposed coding system is as
follows: : :

Single Address Group
A, Implied Register Class

1) Floating Point (n/u) [8] Address (Ix)
2) Miscellaneous Address (Ix)



B. Specified Register Class

1) Direct Index Address {Ix), Jx

2) Immediate Index Address (Ix), Jx

3) Count and Branch Address (M), Jx

4) Indicator Branch Address (M), Indicator

1I. Dual Address Group
A, Impliied Register Class

1) Transmit (K(x)) Address (Ix), Address (Ix)
2) Input-Output Address (Ix), Address (Ix)

3) Branch on Bit Address (Ix), Address (M)

4) Store 1. C. and Branch Address {Ix), Address

B, Specified Register Class

1) Integer (b/d) Address (Ix, P), Fld (Ix), Reg (off)
2) Connection (1111) Address (Ix, P), Fld (Ix), Reg (off)

Herein we note that the integer instruction category is placed under
the specified register class whereas a register can actually be im-
plied, However, since the register address can be modified by an
offset, we adopt the same scheme as used in the connection instruction
category. But in practical use the accumulator register need not be
specified for integer instructions; therefore, the register coding can
be omitted and the offset specified in the normal way (enclosed in
parenthesis).

Further elaboration of the coding system is offered here for a
more thorough understanding of it. We shall discuss the system by
proceeding through the coding system as previously outlined.

Floating point operations may be performed with normalized
fractions or unormalized fractions, thus, at the coders option either
(n) or (u) can be selected. The addressed data which the operation
will affect can have one of several signs [gl. The sign may be
specified by the coder or it may be the same as assigned to the data
when it was last stored. The address may be modified by any index
register (Ix) from 0 through 15, Miscellaneous instructions have only
an address modifier (Ix) which is used in the same way as for floating
point instructions.



For the first two instruction categories under the specified
register class of the single address group, the address modifiers can
be any index register from 0 through 15. For the last two, the address
modifiers can only be index registers 0 or 1 plus several special
modifiers whose definition will be found in the Basic manual. The
specified registers (Jx) are index registers 0 through 15. Here J is
used instead of I to denote the difference between an index register
that is operated upon and one that modifies an address. The specified
Indicator will refer to one of the 64 possible conditions in the Basic
machine which can be interrogated for.

For the implied register class of the dual address group, the
symbols should be self explanatory except for K(x). K(x) furnishes
the number of half words to be transmitted and can be either an con-
stant number (K) or an index register address from 0 through 15 (Kx)
which supplies the constant number.

Under the specified register class of the dual address group
we find the most complex instruction expressions - integer and
connections. The integer operations may be performed in binary
or decimal arithmetic; thus, at the coders option (b) or (d) can be
selected. There are 16 connections which can be selected and the
truth table binary output that would result from any particular
connection is the best means for specifying that particular connection,
Integer addresses have a sign modifier which is the same as that
explained for floating point instructions, The primary addresses for
both integer and connection instructions can be modified by index
registers as previously described and in addition the index registers
can be changed in accordance with the P modifier. If the primary
address is an immediate value, a number symbol (#) following the
value is sufficient to indicate that it is actual data. For both integer
and connection instructions a specific size field must be stated and
this field may or may not be indexed. For both integer and connection
instructions an operation register ig either implied or stated. Unless
otherwise specified the register operation begins in the normal position
and need not be stated. But for those cases where it is offset, the
offset will be symbolically noted in parenthesis.

It should be obvious that for this coding system any part of the
instruction enclosed in parenthesis may be omitted entirely and
sufficient information is .still available for the machine to execute the
instruction without dire consequences. Thus, when coding addresses
that do not have modifiers, a statement of omission is unnecessary.



o’

Additional information pertinent to coding is:

1. [8] - sign to be used in treating data at location indicated by
either actual or symbolic address
+ = unsigned positive or absolute positive
- = unsigned negative or absolute negative
- = opposite sign under appropriate conditions
nothing = data sign.

2. Inx - index registers 0 through 15, may be actual or mnemonic
representation.

3. P - increment (1), increment-count (IC), increment-count-refill (ICR),
or decrement (D), etc, whichever is appropriate.

4. Fld - either decimal or mnemonic representation of field to be pro-
cessed. If actual numeric, byte size and number of characters must
be provided.

5. Off - offset from starting point of accumulator or register.

6. Reg - register to be affected by operation. Accumnlator register AB
implied for integer instructions.

1. K(x) - either constant {K) indicating number of half words to be
transmitted or index register number (Kx) containing such a number.

8. Jx - index register operated on by an operation.

9. M - branch modifier codes indicating advance, condition on which
to branch, and final indicator conditions.

LaMar L. Briner

LLB/bb





