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February 1, 1957 

Subject: 	 Control System font a Simple 
Continuous Stream Regieter 

Introduction 

The continuous st ream register %s essentially a parallel to ser ia l  
data converter with psrsvision for automatically maintaining a 
specified flow of bytes. This report considere a simple streaming 
mechanism in sufficient detail to show feasibility, checking features, 
and some of the consequences of interaction with other devices. The 
treatment is intended to be rigorously asynchronous and self-timed. 

The Streaming Concept 

W 	 The net behavior of a streaming mechanism has been given in Borne 
detail in srMachineSpecification Repsrt # P o(September 4, 1956)by 
S. W. DunweP1, Other specification report8 describe devices which 
will work with the streaming mechanism. A complete streaming 
operation could involve several continuous st ream regis ters  together 
with some logical o r  arithmetic operation on the bytes of the stream. 
Figure P suggests a typical streaming setup in which data i s  sent 
from m e m o r y  separately into two regis ters  (CSR#I, CSR #2)and 
the two output byte streams combined into one stream which is 
as~embPedback into words and sent back to memory. 

It is expected that a stream operation will be defined at the outset 
by suitable setup instructions followed by an execute o r  9fstartff 
instructiong after which the appropriate memory references and 
f low of byte8 will be sequenced automaticaPly. S t  is the implementation 
0f ehirs automatic sequencing which is considered here  for  the case of 
QIW CSR accepting rsuceeasive words from m e m o r y  and feeding a 
stream of bytes to some undefined logical operation. Figure 2 shows 
how this limited problem Pe abstracted from the general st ream 
process of Figure 1. 

The Continuous Stream %Mer 
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intersecting l ines pick up the byte output and present it to the byte 
size selector, A maximum size byte of 8 consecutive bits can be 
selected starting at any of the 128 bit positions by energizing the 
appropriate byte select line. A byte select Pine is' energized by 
placing the corresponding 7 bit byte address  in the byte address re-
gister. In Figure 3, the byte address  59 will energize the select  
line shown a t  the center of fie matrix and connect bit 59 to the upper- 
most of the eight horizontal byte lines; bit 60 to the next byte line; 
etc. The lower 3 byte linea a r e  connected to the first 3 bits of the 
next word, that is we have here asked for a byte which is partly ia 
the "QI1  word and partly in the Vsword. The use of a double length 
CSR keeps this possibility f rom being too awkward. 

The switching elements of the matrix a r e  assumed to be t ransis tors  
so that, except for an approximately 50 microsecond transient period 
following imposition of a new byte address, the selected byte output is 
steadily energized. Should dynamic switching elements such as magnetic 
films be employed it will be necessary to provide an output byte register. 

The Simple Stream 

A simple s t ream operation would begin with the main computer control 
arriving at a s t ream setup order. Figure 4 shows an example in  which 
the setup has specified a s t ream of ten &bit bytes to be abstracted f rom 
memory starting at bit address 0 in m e m o r y  word S. The main com-
puter control next encounters a s t ream %xecutett instruction which 
specified what operations will be done on the abstracted bytes. W e  will 
not consider these operations but will use the kxecute"  instruction only 
to mark  the time at which s t ream flow can begin. After ten bytes (in 
this example) have been processed, the s t ream is turned off and the 
main computer control allowed to proceed to the next instruction. 

Asynchronous Operation 

The preceding paragraphs have presented the streaming operation from 
the user's standpoint. It has been easy to describe primarily because 
strearning has been so defined as to make programming easier  and 
more natural. But the automatic features which simplify programming 
demand m o r e  0f the equipment than has been usual in  the past. More-
over the SSR of Figure 2 is only 0ne component in  a computing complex 
which is at feast  as inclusive as Figure B, and'm a y  even contain other 
complete computers. A variety of interactions can occur between the 
components of this complex. For example two CSRb may refer to the 
same m e m o r y  block at the same time. h e  may proceed, the other 
must wait. These interactions seem to force a flexible policy of step 
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by step, ~r asynchronous, timing of a11 p r o c ~ ~ s e s .  

Asynchronous timing m a y  be formally defined as follows: consider 
that the numbers in all the machine regis ters  as well as the contents 
(0 o r  1) of all control flip-flops are assembled together into one 
large n bit number, Call this number the present %tatel '  of the 
machine. 1cf m bits of the present state a r e  combined in  some way 
to produce K new bits, a potential new state is defined. The tran- 
sition from the old state to the new state is complete when these K 
new bits have been stored correctly in K of the n flip-flops. None 
of these K flip-flops can be the same as the m which entered into 
forming K e Therefore at most n/2 bits can enter into formation of 
the next state., These rules guarantee that the new state can be 
formed, stored, and checked - however long this m a y  take - before 
the relevant portion of the present state is destroyed. 

Asynchronous operation is illustrated throughout the following 
sections. A specific example i e  discussed in more detail in the 
section on address generation. 

Overall Timing: Control 
-w 

The whole s t ream operation is first divided into operations per byte. 
Each per-byte operation is further sub-divided into a control phase 
followed by a data phase. In the control phase is done everything 
necessary to insure that a correct  next byte is presented at the CSR 
output. h the data phase the byte remains presented at  the CSR 
output until it is no longer needed by the logical process being per- 
formed. 

The timing control at this level is shown fn Figure 5. Starting at the 
upper left the receipt of a s t ream setup instruction sets the C/D 
toggle (flip-flop) to the control (C) state and s ta r t s  the control phase. 
This may proceed even though the execute order  has not yet been 
received, After all requirements OP the control phase have been 
satisfied, the ''control phase donettline is turned on, When an 
Itexecuteti order  has also been received, the C / O toggle is se t  to the 
data (D) state and the data phase began. a f t e r  the data phase is over, 
G / D  is set back to C to prepare the next byte. 

A byte counter, Bower right, advances by one for each alternation of 
C and ID phases. The exact duration sf either C o r  D phases does not 
matter at all to the operation of this counter provided a given phase 
Pasts at l eas t  long enough to allow a correct  transfer between n1 and 
q. This minimum duration will be guaranteed by not. allowing the 
C 4 D  transition until a check circuit (not shown QXI big 5) signals 
nl =nl. 
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A simple but important property of fie asynchronous approach hae 
already appeared. We have broken the overall timing problem down 
into two independent subdivisions without placing any restrictions on 
the subdivision timing whatever except to point out that they must  
last long enough to do what they m a y  be required to do (but no longer). 
This property can extend through all levels of the design. The 
practical importance of this concept cannot be overstressed. It 
means that a design meeting logical and maqemat ica l  requirements 
can be laid out before specific component performance is known, and 
further that a t  any l a t e r  time a faster  component can be used without 
invalidating that de sign. 

I Control Phase Timing 

Receipt of a setup instruction starts the control phase preparatory to 
emitting the first byte. Refe-ring to Figure 6, lower left, the setup 
condition gates the starting byte address  SB into the "next byte 
address0 '  regis ter  and, because we a r e  in  the C phase, a lso into the 
"present byte address" register.  This la t te r  regis ter  is the same as 
that shown in Figure 3, hence the switch matr ix  sets  up the proper 
byte location although the CSR may not yet contain the proper word, 
The lowest order  bit of the word address  is included as the 7th bit  
of the byte address  and wi l l  select the half CSR in which the byte 
begins. 

A toggle associated with each CSR half (described la te r  in connection 
with Figure 9 )  denotes whether that half has  been filled with the proper 
word. The state of bit 7 of the byte address  is compared with the 
corresponding CSR full/empty signal, o r  both if the byte overlaps 2 
words. If the register(s) a r e  filled and all other C functions are 
complete, the C/D toggle is switched to the D phase. An analogous 
data phase control is  indicated but not discussed. 

Memory Processes  

The preceding section describes the control phase fully, assuming 
the interaction of the full/empty toggles. The behavior of these is a 
function of the memory reference procesa which comprises the 
remainder of this report. 

Memory Address Generation 

Figure ? shows that at setup time the starting memory address  S is 
e 	 placed in the memory address  register.  The initial conditions a r e  

such that the gate S + 1+SS is enabled and therefor S t 1 will immedP-
ately start forming into SI. A feedback check on this gating process 
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is prov~c~ed SIandby forming S !  - B (which should be n s  + 1) - jJ 
comparing ~e result vcrie~taS, ~n equality condition signals correct 
completion of the gate. 

When the initial m e m o r y  address is no longer needed, that is when 
the first word has been brought to the CSR and checked to be correct, 
gate S + B-?S' is shut off and gate S s + S  is enabled, bringing in 
S 9 1 as the: next memory addresso etc. Completion and check of 
the SS+S gating is signalled by a digit for  digit comparison of S and 
SI* 

The control of this asynchronous process is examined in  more detail 
in Figure 8 (a)and (b). As  described ear l ier ,  the initial state of 
this system is given by the two 20-bit numbers S and Si (SI initially 
not defined) or  more precisely by the 40 bit number SS'. Next a new 
state S(S t 1) is formed and checked. Then the state (S + 1)(S + 1) 
is formed and checked etc. The 4 successive steps of this process 
a r e  summarized in the state table (Figure 8a) and a two bit binary 
code used to identify each step. Notice that a reflected o r  Wrayta 
code is used because each successive step should be represented by 
only a one bit change. The table implies the gating control block 
diagram of Figure 8b. The two control toggles are necessary to 
define the 4 successive steps, F o r  each "get next memory addressso  
command one progression is m a d e  through the 4 steps and an advance 
of one! made %nthe memory address. 

Memory Reference Control 

Figure 9 shows the control for  initiating and checking memory re -  
ferences. Starting at the upper left and assuming that we want a 
memory reference to address  S, we transmit the address  S over the 
data bus to the memory. Along with S is sent the identification code 
of the unit (CsR in this case) which is to receive word s when it comee 
out. Asauming 2.0 microseconds memory, the 7 high m d e r  bits of 
S interact with recognition circuits in the memory boxes and select 
a particular box. The remaining 13 bits plus the receiver identification 
are, on recognition, gated into a 17 bit address  register in the m e m o r y  
box. Receipt of a selecting address initiates a memory cycle in the 
selected box. The particular wire actually pulsed in the memory 
matrix is checked against tihe address  in the register (ref. a scheme 
proposedby WeHunt). When the selected data is available it is 
transmitted over the  data bus back to the @SIRcontrol. Since the 
selecting address m a y  have reached the memory incorrectly €or a 
number of reasons, the address actually used is transmitted back, 
along with the receiver identification, to the CSR control, Here it is 
checked against the addreseja actually sent. 
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The possibility of error due to logical interference between various 
use r s  of the memory is considerable and 8 0  a properly requested 
memory reference may fail to compare on the address  echo check, 
The whole s t ream operation wil l  consequently wait, so it wi l l  be 
advisable to incorporate a "try again'! circuit  (not shown) on the 
memory request line. Some provision in this direction will be  
needed anyway since the requested rn emory block may be busy, 
Once an echo check i a  obtained, it is routed toward the proper CSR 
half (in Figure 9 the control peculiar to the 0 half CSR i s  omitted for 
simplicity). The major logical flow in Figure 9 is drawn heavy for  
em pha sis. 
Assume the 9 half CSR is designated, and if it is indeed emptyo the 
m e m o r y  word is gated into it. The correctness  of the data itself 
is checked in the CSR by at leas t  a parity check and possibly a 
Hamming type check. However it is done, a check signal is or is 
not emitted. If the check fails the aforementioned "try again" 
circuit comes into play. Ef the check goes, the full/empty toggle 
i 8  turned to stfulltt.  The 9"P condition allows the next memory 
address  to be B e t  up and, provided the other CSR half is now empty, 
initiates another memory request. 

Memory Busses 

A partial aim of this analysis is to present the demands of the CSR 
mechanism in sufficient detail to be of u s e  to the memory and the 
memory bus designer and yet by adherence to asynchronous tech- 
niques to make the present proposal independent of how the m e m o r y  
problems a r e  finally met. 

It should be noted that since the memory busses m a y  be electrically 
quite long and since memory references form a closed loop with 
respect to the requesting unit, the proposed checking scheme has  
been an overall one. An Important implication of this choice is that 
the data transmitted over the busses can be a burs t  only long enough 
to pass a comparing c i r w i t  and set  a register (say 70 rnillimicro-
seconds) however long the busses may be. 
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