
Subject: 	 Control System for a Simple

Continuous Stream Register

I3y: 	 J. H. Pomerene, W, A, Hunt, F. P. Brooks, Jr.

Date: 	 February 1, 1957

Company Confidential

This document contain8 idormation of a proprietary nature. ALL
INFOR,MATI[ONGONTBXNED HEREIN SHALL BE KEPT IN CONFI-
DENCE. No infPsrmation shall be divulged to persona other than IBM
employee8 authorized by the nature of their duties to receive such
information, or individuals or organizations who are authorized in
writing by the Department of Engineering or its appointee to receive
such information,

February 1, 1957

Subject: 	 Control System font a Simple
Continuous Stream Regieter

Introduction

The continuous st ream register %s essentially a parallel to ser ia l
data converter with psrsvision for automatically maintaining a
specified flow of bytes. This report considere a simple streaming
mechanism in sufficient detail to show feasibility, checking features,
and some of the consequences of interaction with other devices. The
treatment is intended to be rigorously asynchronous and self-timed.

The Streaming Concept

W 	 The net behavior of a streaming mechanism has been given in Borne
detail in srMachineSpecification Repsrt # P o(September 4, 1956)by
S. W. DunweP1, Other specification report8 describe devices which
will work with the streaming mechanism. A complete streaming
operation could involve several continuous st ream regis ters together
with some logical o r arithmetic operation on the bytes of the stream.
Figure P suggests a typical streaming setup in which data i s sent
from m e m o r y separately into two regis ters (CSR#I, CSR #2)and
the two output byte streams combined into one stream which is
as~embPedback into words and sent back to memory.

It is expected that a stream operation will be defined at the outset
by suitable setup instructions followed by an execute o r 9fstartff
instructiong after which the appropriate memory references and
f low of byte8 will be sequenced automaticaPly. S t is the implementation
0f ehirs automatic sequencing which is considered here for the case of
QIW CSR accepting rsuceeasive words from m e m o r y and feeding a
stream of bytes to some undefined logical operation. Figure 2 shows
how this limited problem Pe abstracted from the general st ream
process of Figure 1.

The Continuous Stream %Mer

-2- February 1, 1957

intersecting l ines pick up the byte output and present it to the byte
size selector, A maximum size byte of 8 consecutive bits can be
selected starting at any of the 128 bit positions by energizing the
appropriate byte select line. A byte select Pine is' energized by
placing the corresponding 7 bit byte address in the byte address re-
gister. In Figure 3, the byte address 59 will energize the select
line shown a t the center of fie matrix and connect bit 59 to the upper-
most of the eight horizontal byte lines; bit 60 to the next byte line;
etc. The lower 3 byte linea a r e connected to the first 3 bits of the
next word, that is we have here asked for a byte which is partly ia
the "QI1 word and partly in the Vsword. The use of a double length
CSR keeps this possibility f rom being too awkward.

The switching elements of the matrix a r e assumed to be t ransis tors
so that, except for an approximately 50 microsecond transient period
following imposition of a new byte address, the selected byte output is
steadily energized. Should dynamic switching elements such as magnetic
films be employed it will be necessary to provide an output byte register.

The Simple Stream

A simple s t ream operation would begin with the main computer control
arriving at a s t ream setup order. Figure 4 shows an example in which
the setup has specified a s t ream of ten &bit bytes to be abstracted f rom
memory starting at bit address 0 in m e m o r y word S. The main com-
puter control next encounters a s t ream %xecutett instruction which
specified what operations will be done on the abstracted bytes. W e will
not consider these operations but will use the kxecute" instruction only
to mark the time at which s t ream flow can begin. After ten bytes (in
this example) have been processed, the s t ream is turned off and the
main computer control allowed to proceed to the next instruction.

Asynchronous Operation

The preceding paragraphs have presented the streaming operation from
the user's standpoint. It has been easy to describe primarily because
strearning has been so defined as to make programming easier and
more natural. But the automatic features which simplify programming
demand m o r e 0f the equipment than has been usual in the past. More-
over the SSR of Figure 2 is only 0ne component in a computing complex
which is at feast as inclusive as Figure B, and'm a y even contain other
complete computers. A variety of interactions can occur between the
components of this complex. For example two CSRb may refer to the
same m e m o r y block at the same time. h e may proceed, the other
must wait. These interactions seem to force a flexible policy of step

.

-3- February 1, 195'7

by step, ~r asynchronous, timing of a11 p r o c ~ ~ s e s .

Asynchronous timing m a y be formally defined as follows: consider
that the numbers in all the machine regis ters as well as the contents
(0 o r 1) of all control flip-flops are assembled together into one
large n bit number, Call this number the present %tatel ' of the
machine. 1cf m bits of the present state a r e combined in some way
to produce K new bits, a potential new state is defined. The tran-
sition from the old state to the new state is complete when these K
new bits have been stored correctly in K of the n flip-flops. None
of these K flip-flops can be the same as the m which entered into
forming K e Therefore at most n/2 bits can enter into formation of
the next state., These rules guarantee that the new state can be
formed, stored, and checked - however long this m a y take - before
the relevant portion of the present state is destroyed.

Asynchronous operation is illustrated throughout the following
sections. A specific example i e discussed in more detail in the
section on address generation.

Overall Timing: Control
-w

The whole s t ream operation is first divided into operations per byte.
Each per-byte operation is further sub-divided into a control phase
followed by a data phase. In the control phase is done everything
necessary to insure that a correct next byte is presented at the CSR
output. h the data phase the byte remains presented at the CSR
output until it is no longer needed by the logical process being per-
formed.

The timing control at this level is shown fn Figure 5. Starting at the
upper left the receipt of a s t ream setup instruction sets the C/D
toggle (flip-flop) to the control (C) state and s ta r t s the control phase.
This may proceed even though the execute order has not yet been
received, After all requirements OP the control phase have been
satisfied, the ''control phase donettline is turned on, When an
Itexecuteti order has also been received, the C / O toggle is se t to the
data (D) state and the data phase began. a f t e r the data phase is over,
G / D is set back to C to prepare the next byte.

A byte counter, Bower right, advances by one for each alternation of
C and ID phases. The exact duration sf either C o r D phases does not
matter at all to the operation of this counter provided a given phase
Pasts at l eas t long enough to allow a correct transfer between n1 and
q. This minimum duration will be guaranteed by not. allowing the
C 4 D transition until a check circuit (not shown QXI big 5) signals
nl =nl.

=-

A simple but important property of fie asynchronous approach hae
already appeared. We have broken the overall timing problem down
into two independent subdivisions without placing any restrictions on
the subdivision timing whatever except to point out that they must
last long enough to do what they m a y be required to do (but no longer).
This property can extend through all levels of the design. The
practical importance of this concept cannot be overstressed. It
means that a design meeting logical and maqemat ica l requirements
can be laid out before specific component performance is known, and
further that a t any l a t e r time a faster component can be used without
invalidating that de sign.

I Control Phase Timing

Receipt of a setup instruction starts the control phase preparatory to
emitting the first byte. Refe-ring to Figure 6, lower left, the setup
condition gates the starting byte address SB into the "next byte
address0 ' regis ter and, because we a r e in the C phase, a lso into the
"present byte address" register. This la t te r regis ter is the same as
that shown in Figure 3, hence the switch matr ix sets up the proper
byte location although the CSR may not yet contain the proper word,
The lowest order bit of the word address is included as the 7th bit
of the byte address and wi l l select the half CSR in which the byte
begins.

A toggle associated with each CSR half (described la te r in connection
with Figure 9) denotes whether that half has been filled with the proper
word. The state of bit 7 of the byte address is compared with the
corresponding CSR full/empty signal, o r both if the byte overlaps 2
words. If the register(s) a r e filled and all other C functions are
complete, the C/D toggle is switched to the D phase. An analogous
data phase control is indicated but not discussed.

Memory Processes

The preceding section describes the control phase fully, assuming
the interaction of the full/empty toggles. The behavior of these is a
function of the memory reference procesa which comprises the
remainder of this report.

Memory Address Generation

Figure ? shows that at setup time the starting memory address S is
e 	 placed in the memory address register. The initial conditions a r e

such that the gate S + 1+SS is enabled and therefor S t 1 will immedP-
ately start forming into SI. A feedback check on this gating process

-5- February B, 1957

is prov~c~ed SIandby forming S ! - B (which should be n s + 1) - jJ
comparing ~e result vcrie~taS, ~n equality condition signals correct
completion of the gate.

When the initial m e m o r y address is no longer needed, that is when
the first word has been brought to the CSR and checked to be correct,
gate S + B-?S' is shut off and gate S s + S is enabled, bringing in
S 9 1 as the: next memory addresso etc. Completion and check of
the SS+S gating is signalled by a digit for digit comparison of S and
SI*

The control of this asynchronous process is examined in more detail
in Figure 8 (a)and (b). As described ear l ier , the initial state of
this system is given by the two 20-bit numbers S and Si (SI initially
not defined) or more precisely by the 40 bit number SS'. Next a new
state S(S t 1) is formed and checked. Then the state (S + 1)(S + 1)
is formed and checked etc. The 4 successive steps of this process
a r e summarized in the state table (Figure 8a) and a two bit binary
code used to identify each step. Notice that a reflected o r Wrayta
code is used because each successive step should be represented by
only a one bit change. The table implies the gating control block
diagram of Figure 8b. The two control toggles are necessary to
define the 4 successive steps, F o r each "get next memory addressso
command one progression is m a d e through the 4 steps and an advance
of one! made %nthe memory address.

Memory Reference Control

Figure 9 shows the control for initiating and checking memory re -
ferences. Starting at the upper left and assuming that we want a
memory reference to address S, we transmit the address S over the
data bus to the memory. Along with S is sent the identification code
of the unit (CsR in this case) which is to receive word s when it comee
out. Asauming 2.0 microseconds memory, the 7 high m d e r bits of
S interact with recognition circuits in the memory boxes and select
a particular box. The remaining 13 bits plus the receiver identification
are, on recognition, gated into a 17 bit address register in the m e m o r y
box. Receipt of a selecting address initiates a memory cycle in the
selected box. The particular wire actually pulsed in the memory
matrix is checked against tihe address in the register (ref. a scheme
proposedby WeHunt). When the selected data is available it is
transmitted over the data bus back to the @SIRcontrol. Since the
selecting address m a y have reached the memory incorrectly €or a
number of reasons, the address actually used is transmitted back,
along with the receiver identification, to the CSR control, Here it is
checked against the addreseja actually sent.

- 6 - February I , 1 9 5 7

The possibility of error due to logical interference between various
use r s of the memory is considerable and 8 0 a properly requested
memory reference may fail to compare on the address echo check,
The whole s t ream operation wil l consequently wait, so it wi l l be
advisable to incorporate a "try again'! circuit (not shown) on the
memory request line. Some provision in this direction will be
needed anyway since the requested rn emory block may be busy,
Once an echo check i a obtained, it is routed toward the proper CSR
half (in Figure 9 the control peculiar to the 0 half CSR i s omitted for
simplicity). The major logical flow in Figure 9 is drawn heavy for
em pha sis.
Assume the 9 half CSR is designated, and if it is indeed emptyo the
m e m o r y word is gated into it. The correctness of the data itself
is checked in the CSR by at leas t a parity check and possibly a
Hamming type check. However it is done, a check signal is or is
not emitted. If the check fails the aforementioned "try again"
circuit comes into play. Ef the check goes, the full/empty toggle
i 8 turned to stfulltt. The 9"P condition allows the next memory
address to be B e t up and, provided the other CSR half is now empty,
initiates another memory request.

Memory Busses

A partial aim of this analysis is to present the demands of the CSR
mechanism in sufficient detail to be of u s e to the memory and the
memory bus designer and yet by adherence to asynchronous tech-
niques to make the present proposal independent of how the m e m o r y
problems a r e finally met.

It should be noted that since the memory busses m a y be electrically
quite long and since memory references form a closed loop with
respect to the requesting unit, the proposed checking scheme has
been an overall one. An Important implication of this choice is that
the data transmitted over the busses can be a burs t only long enough
to pass a comparing c i r w i t and set a register (say 70 rnillimicro-
seconds) however long the busses may be.

JHP/jh

Y

4

c - 4

e?w $e?!.+ up

I AJch rf. _J

I
I

-7-

\\

GC9
s+\ +
st-+

-

--
-

--
-

3

-
-
3
-

4
Y

)

