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HARVEST REPORT #10

Subject: Some Comments on the Problem of Sorting

We are given a collection of objects hereinafter called items which

are linearly ordered in such a way that the relative order of any two
items can be determined by direct comparison of the items themselves.
QOur objective is to arrange the items so that their linear sequence
agrees with their intrinsic order. Many procedures have been described
for bringing items into sequence and it is important to know which
method is the fastest. The methods of information theory enable us to
find certain theorems which are at least related to the proslem of
determining the fastest method of sorting.

In any machine computation, the steps can be divided roughly into two
kinds, the admimstratlve and the decisive. By the decisive steps we
mean those places in the computatlon where the data itself enters in
such a way as to affect the final result. The other steps are adminiss
trative; they include any sort of data rearrangement, counting routines
(when the counting objectives are independent of the data), address
modifications, print outs, etc. The distinction is not always clear-cut,
but in the problem of sorting it is, or at least for the proceduresswhich
are widely used. Information theory proves that there are definite \
lower bounds to the number of decisive steps for any operation, so that
one measure of efficiency in'any procedure is obitained by comparing
the actual number of decisive steps with the theoretical minimum, Un-
fortunately this measure takes no account of the administrative steps
which can frequently be the principal part of the computation as far as
overall time is concerned.

We shall discuss sorting by counting decisions, where we assume that
all decisions are of the simple binary type: '"Is item A ahead of item
B2

Let us note that the fair estimate of the length of a process is the average
length taken over all possible input data, weighted by the a priori proba-
bilities of these data.

Theorem 1. Consider the problem of selecting one of n possible alternatives,
all equally likely a priori, by a succession of binary decisions. The
minimum, over all procedures, of the expected number of decisions is

@ (n) where:

V(n)=p+l-‘;ﬁpi HZP"1$n$ZP
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(Proof will not be included here)

Theorem 2. If C = 1 -1log, e + log2 log,e ~J .086, then

: logzn Sep(n) < log2n+ C.

The lower inequality is equality if n is a power of two. The upper bound
is approximated when n v Zpllogze.

In proving theorem 1, it is assumed that one may ask any sort of a question
requiring a two-valued (yes or no) answexr. The minimum will always be
attained if at each stage the possible alternatives are divided into two
groups as nearly equal as possible and asking whether the correct choice
lies in the first group. In practice, we cannot always ask a question of
this type by a simple step, so that @(n) can be well below the minimum
of practical answers. Example: Given a file of n items, known to be -
sorted, and known to contain exactly one pair of duplicates, find them.

In this problem there are n - 1 alternatives, since the pair can be the
first and second card, the 2nd and 3rd, .., (n-1)st, nth, According to

the theorem, the minimum length of a process for finding the pair is about
logz(nnl) This would be achieved if we could ask the question ''Is the
_pair in the first half of the file ?'" But since there is no way of answering
“this question short of looking through the whole first half of the file, which
itself would involve a lot of decisions, we cannot achieve the minimum of
the theorem, or anything near it. It is clear that the best we can do using
elementary questions, is to turn the file from the beginning comparing
successive cards. Since we expect to find the pair halfway through on the
average, the length of this process is 1/2 (n~1), a far cry from logz(n-l)
if n is large. Our process would be ideally efficient if we were asked to
find the duplicates in a sorted file, without knowing that only one duplicate
occurs, In that case we would have to go through the whole stack in any
case 80 the process would have length n-1, But there are precisely 2n-1
ways that the file could contain duplicates. In the first problem, we seem
to be obliged to reacquire information which we already knew, that most
cards are unlike their neighbors.

Liet us apply theorem 1 to the question of sorting a mixed file of n items.
Our problem is equivalent to determining which of the n! rearrangements
of the file actually puts it in sort, and these rearrangements are equally
likely, since the file is presumed to ne randomly mixed. Therefore the
absolute lower bound to the number or binary decisions is c(ﬂ(nl). Now we
cannot actually ask an arbitrary question; we are restricted to asking
questions comparing just two items, and therefore this lower bound may
not be attainable. By actual trials it was found that it is indead attainable
for n = 2, 3, 4, or 5, but there was no apparent system for doing so, and
even if there were it would probably be unfeasible from the administrative
view-pa‘int.

Consider the following method of sorting: Successivély put each item into
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the file in its correct place. Here we start with the first item, which

can ve filed in its place with no comparisons, Then the sccond.item can

ce filed in one of two rlaces, vefore or after the first and tae mean aumber
cof cdecisions in;ﬂ (2). The third item goes in one of farce laces and the
most efficient procedure will reguire $7(3) wecisions on the average. In
ceneral, the k-th card can be added ia x ways aad tae corract decision wiil
resuire /a.’? (k) stens on the averace. This value can actually be achieved

- comparing the new item with the middie iten: of the file, then with tae

’
item in the middie of tns appropriate half, etc. Tae whsle process will

reqguire 94 (1) + ;;,:“/" (2) + =-==-- + ?.’-’/""(;1) stes on the averasc.
Using the estimate of theorem 2 we have
logzn! =log,l + log,2 + ----- + log,(n)g 2(1) + -——(41)70(11)6

< (log,1 + .086) + (log,z '+ .986) L (liogzn + .08¢)
= log,n! + .086n.
We can show that on the average

70(11) - log,n v . 056

so that

79(1) F o +/a9(n)/ulog2n! + .056n

This proves that the method of successive filing of single items is very
close to the absolute lower bound percentage-wise. Thus for n = 1,000,000
we find that (1, 000,0001) A, 18.5 (10%) so that 2 (1) + =-n-- +

79 (1, 000,000) is only 0, 3% larger.

We consider the method of merging into blocks of two, then four, etc. We
assume that the block sizes are always exact powers of two, and, for con-
venience, that the total number of items is a power of 2, say 2°. We use
the ordinary process for merging two blocks of size 2k, ais will never
take more than 2K+l - 1 comparisons, and on the average it will take

2+l _ 2 4 2 . Then the entire process will take on the average
2K + .1
-l ] -
2P7 224 =20 ) v 2P2 (2224 2 )+ 2P30@3 24 2 )4 eee-
1+l 2 + 1 4+ 1
+20QP -2+ 2 )
2P~ T 41

steps. The principal terms work out to be

2P (p-2+ 9
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where ©-= 1 + 1 + 1 + + 1 ~ . {365

I(1 + 1) 2(2 + 1) 4(4 + 1) ?p~1(2p~l + 1)
Using Sterling's approximation to log nl, we find

fﬂ(Zp!) ~v (p - logpe) 2P

Therefore, this method is proportionately longer than perfect by

log,e ~ 2 + 0 = 1.442 - 2+ .736 = . 178
p - logpe P - logze P~ 1.442

For p =20, i.e. 240 5r about 1,000,000 items this is only 1%.

When the method of successive collation is applied to blocks of mixed sizes,
it is necessary to contmually check for the end of the block., This has the
effect of nearly doublinig the number of comparisons, while its effect on the
number of passemrough is to reduce it by one, hence this method will
always be markedly inefficient when judged by the simple criterion of number
of comparisons made. This is not to say that the method is unsatisfactory.
Rather it suggests that the number of comparisons is not an appropriate
measure of efficiency.

The two procedures discussed in detail also show that the measure of
efficiency is inappropriate. Single item filing can be done very efficiently

in terms of number of comparisons, but in practice it is not easy to do on
tapes. It would require a great deal of administrative time. The factor of
two in comparisons between the fixed-sized and random-sized block methods
is also illusory, because in the fixed size method a count and corresponding
interior comparison must be made to identify the ends of blocks. Unless

the method of determining precedence between items is complicated, the
random sized block method will be easier. In this method, hard comparisons
for ends of blocks can be avoided if an extra control symool is added to the
beginnings of blocks. This reducés the comparison to a simple search for the
control symbol which is almest always quicker. This gives up any random
increases in block size, but these are in any event rare after the first pass.

~Theorem: Suppose we are given n equally likely hypothesis concerning an
object and wish to determine which is valid by binary conbinational questioning
(i. e. each question we ask receives a yes-or-no answer). Each questioning

S———
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procedure ylelds an expected number of questions and also a maximum
number of questions. Among all questioning procedures, the minimum
value of the expected number of questions is '
E(n) =(p+ 1) - _2;1_)_ where p is the least integer for which n 2P,
n
Among all questioning procedures, the minimum value of the maximum
number of questions is

M(n) =p

Both of these bounds are attained by the procedure of always dividing the
hypotheses remaining into two equal groups (or groups as nearly equal as
possible, i.e. within one) and asking in which group does the correct
hypothesis lie.

Proof: Whatever question we may ask, the two answers have the effect of
dividing the hypotheses into two disjoint groups, so we may as well consider
every question to be of the form ''Is .it in this group?'. Now since the
hypotheses are assumed to be a priori indistinguishable, the result of asking
the questions question 'Is it in this group of k?' is either 1) to put us in the
position of determining which of k hypotheses is valid, which happeas if the
answer is ''yes', an event of probability k/n or 2) to put us in the position

of determining which of n-k hypotheses is valid, 'which happens if the answer
is "no'", an event of probability (n-k)/n. In any case, we then proceed to
ask about the reduced group by whatever procedure is optimum for the size
in question. If, then, E(n) is the expected number of questions by the
optimum procedure for a group of n, the expected number of questions by
the procedure outlined above is '

1+ kE(k)+ n-k E (n-k).
n n

The optimum procedure for n-hypotheses is, then obtained by choosing the
minimum value of this expression for all possible values of k (i.e. 1, 2, ..
n-1). Thus

E(n) = 1 + min k E (k) + n~k E (n-k) *
k n n

This gives us a recurrence from which E can easily be calculated. We may
however achieve a closed form by first putting

F (n) = nE(n) |
Then F(n) = n + miﬂ { F(k) + F (n-k)g , ok

Suppose that n = 2P " 4 q where 0 q < 2P-!
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= p-1
Put FE(n) =(p-1)2 +(p+ 1) g
First, we note that Fo(n) =n+ F, ([_r_x_j) + F, (o '[E])
2 : Z

by direct computation in two cases according as n is even n odd, Second,
observing that F, in a linear interpolation of the function x log,x, agreeing
with the latter for powers of two, it is clear that F, is convex, so that

T oW B0} 2] R [2])

Therefor Fo satisfies the recursion *%, Hence F = F,
Writing F (n) =p2P-l + pg+ q-2P"! =p.n+n-2P

We get E(n) =p+ 1 - 2P as stated.

n

Secondly, the choice k =(_r_1_] is always a suitable choice of k in ¥, so that

the minimum value of E is in fact attained with a process which always
divides the stacks evenly as nearly as possible. Finally, if ng 2P, then

at the q-th stage all groups will be less than n equal to 2P~ in number, and
after p stages, no group will have mare than 1 member, i.e. the problem
is done. Evidently M (¥) >. 2P,

Theorem: 0L E(n) ~log,n £ 1 -logye+ log,log,e A/ . 086‘

Probf: F (n) is linear between n = 2Pl and n = 2P and agrees with
n log,n at these two points. The latter being strictly convex
nlog,ng F (n) for all n.
Hence log,(n) & E (n) for all n,
In the interval

2P*lg ng 2P we may write

E@m=p+1-2P
. n

E (n) - logyn = (p + 1) - _@E - logzn

n
The maximum value of the function
p+ 1~ _Z_I: - logzx
x
is achieved when ) _ ,
2P 109, €& _ o o

at————pn

I~
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x = 2P
logze

whenp + 1 - E_L: - logzx ={p+ 1) ~ logze -p+ log2 (logze)
x

=1 - log,e + log,log;e.

- E (n) - logzn <L 1 - logze + legzlogze for all n,

Comments: Evidently not more than 24 21 hypotheses can be distinguished
with g questions, and exactly this many can be done with q questions. If
the number of hypotheses is not a power of 2, then one cannot make all
questions efficient, so there is bound to be a loss due to 'breakage'. The
discrepancy

_E (n) - logyn

Aﬁplication to sorting problem:

1. To put the n~th number in sequence in a file already containing

n items properly sequenced. There are n possible places to put the
new()&i{e Therefore the minimum expected number of comparisons
is at least E (n). But since it is possible to always make the com-
parison so as to split the possibilities as nearly evenly as possible,
i, e. always compare the new item with the middle item of the string
in which it belongs, the number of comparisons need not be more
than E (n).

2, To arrange n items in sequence, with no a priori information

about their order, There are n! rearrangements possible, To

sequence the file correctly we must determine (possibly not

explicitly] Which of: these arrangements to correct. Hence any
procedure must have an expected number of comparisons > E(nl!).

It is by no means clear that the questions which achieve this expectation
can actually be phrased in the form of simple comparisons between

two items, so it may not be possible to achieve this bound. However,
we can see that the method of adding one more item to the file after
another has an expectation

CE(l) + E(2) + ~~= 4 E(n)

=logl +log2+ --- +logn+ S (E() ~logi) £ logpnl + n{.086)

AG/ jh A. Gleason





