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HARVEST REPORT #lO 

Subject: Same Comments on the Problem of Sorting 

W e  are  given a ~ ~ S l e ~ t i ~ nof  objects hereinafter called i tems which 
are linearly ordered in such a way that the relative order  of any two 
items can be determined by direct comparison of the items themselves. 
O a r  objective is  to arrange t h e  i tems so that their l inear sequence 
agrees  with their  intrinsic order.  Many procedures have been described 
for  bringing i tems into sequence and it bs important to know which 
m e t h ~ dis t he  fastest .  The methods of information theory enable u s  to 
find certain theorems which are at leas t  related to the pro'tslem of 
determining t he  fastest  method of sorting. 

In any machine computation, the steps can be divided roughly into two 
kinds, t h e  admb-1-g ve and the d_ecisiLe. By ~e decisive steps we 
mean those places in t<g computation where the data itself enters in 
such a way as to affect t h e  final result. The other steps are  adminis& 
trative; t h e y  include any sor t  of data rearrangement, counting routines 
(when the counting objectives a r e  independent of the  data), address  
rnoClificati(ms, print outs, etc, The distinction is not always clear-cut, 
but in the problem of sorting it is, o r  at least for  the procedurewwhich 
a r e  widely used. Information theory proves that there are definite 
lower bounds to the number of decisive steps for  any operation, so that 

" _ _  - --
one ,meamire of efficiency in any pr-ocedure is obtained by comparing 
the actual number of decisive steps with the theoretical minimum. Un-
fortunately this measure takes no account of the administrative steps 
which can frequently be the principal par t  of the computsl: Aon as far as 
overall time is concerned. 

W e  shall discuss sorting by counting decisions, where we assume that 
all decisions are of the simple binary type: "1s i tem A ahead of i tem 
B ? I '  

Let u s  note that t h e  fair estimate of the length of a process i s  the average 
length taken over all possible input data, weighted by the a priori  proba- 
bilities of these data, 

Theorem 1. Consider the problem of selecting one of n possible alternatives, 
i__. 

all eiually l ikely a priori ,  by a succession of binary decisions. The 
minimum, over all procedures, ob the expected number of decisions is 
6p (n)where: p(n)= p -+ 11 - -ZP 

n 
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(Proof will not be included here) 

Theorem 2. If C = 1 - logz e + logz logZe Aj .086, then 

10g2n .-(4"(n) 4 log n t c. 
- 2 

The lower inequality is equality if n is a power of two. The upper bound 

is approximated when n w  2P/logZe. 


In proving theorem 1, it is assumed that one m a y  ask any sor t  of a question 

requiring a two-valued (yes or no) answer. The minimum will always be 

attained if at each stage the possible alternatives a r e  divided into two 

groups as nearly equal as possible and asking whether the correct choice 

Lies in the first group. In practice, we cannot always ask a question of 

this type by a simple step, so that P ( n )  can be well below the minimum 

of practical answers. Example: Given a file of n items, known to be 


ported, and known to contain exactly.one pair of duplicates, find them..-,-"- I 
In this problem there a r e  n - 1 alternatives, since the pair can be the 

first and second card, the 2nd and h d ,  
., (n=l)st ,nth. According to 

the theorem, the minimum length of a process for  finding the pair  is about 

logZ(n-l) .  This would be achieved if we could ask the question "Is the 
 1 

pair in the first half of the f i le?"  But since there is no way of answering
-this question short  of looking through the whole first  half of the file, which 
itself would involve a lot  of decisions, we cannot achieve t h e  minimum of 
the theoremo o r  anything near i t ,  It is c lear  that the best we can do using 
elementary questions, is to turn the file f rom the beginning comparing 
successive cards. Since we expect to find the pair halfway through on the 
average, t h e  length of this process is 1 / Z  (n-I), a far cry from logZ(n-l)  
if n is large. Our process would be ideally efficient jf we were asked to 
find the duplicates in a sorted file, without knowing that only one duplicate 
occurs. In that case we would have to go through the whole stack in any 
case so the process would have length n-1. But there a r e  precisely Zn-' 
ways that the fils could contain duplicates. In the first problem, we seem 
to be obliged to rearequire information which we already knew, that most 
cards are unlike their neighbors. 

Let us apply theorem 1 to the question of sorting a mixed file of n items. 

Our problem is equivalent to determining which of the-n I rearrangements 

of the file actually puts it in sorto and these rearrangements'are equally 

likely, eince the file itji presumed to oe randomly mixed. Therefore the 

absolute lower bound to the number ol' binary decisions is y ( n I ) .  Now we 

cannot actually ask an arbitrary queetion; we are restricted to asking 

questions comparing j u s t  two items, and therefore this lower bound may 

not be attainable. By actual trials it W ~ E Ifound that it is indead attainable 

for m = 2, 3, 4, or 5, but there waa no apparent system for doing so,, and 

even if there were it would probably be unfeasible from the administrative 

view-pa?int. 


Goneaider the following.method of aorting: Successively put each item into 
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, W e  can show that on the average 

y ( n )  - 3og-p /V , 0 5 6  

so that 

y(1)t -.I---tp17(n)rz/log n l  t . 0 5 h
2 

This proves that the method of successive filing of sin$e items is very  
close to the absolute lower bound percentage-wise. Thzus f o r  n = 1, 000, 000 
we find &at ~ ( I , O O O , O O O ! )  hr 18.5 (10') so that (1) t - - - - - t 
p3 (1, 000,OQQ) is only 0. 37%larger .  

W e  consider t h e  method of merging into blocks  of two, then four,  etc. W e  

assume that t h e  block sizes are always exact powers of twa, a7i, f 

Or co3-
venience, that t he  total number of items is a power of 2 ,  say 2 . We u s e  


the  ordinary process  f o r  merging two blocks of size 2Ii. TLis will never 

talce m o r e  an &+1 - 1 comparisons, ami oa ~e averase it will talce 

2 k + l  - 2 4- 2 . Then the entire process will take on tihe average 


2k 4- kI 

steps, The principal terms work out to be 
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where -0-= 1 4- I t 1 + 
l(1 t 1) 2 ( 2  t 1) 4(4 + 1) 

Using Sterling's approximation to log n!, we find 

Therefore, this method i s  proportionately longer than perfect by 

When the method of successive collation i s  applied t o  blocks of mixed sizes, 
it i s  necessary t o  continually check for  the end of the block. This lzas t h e- _ - t
effect of nearly do&Xfig3he number of comparisons, while its effect an t h e  1 
number of passe%rzcz&'is to reduce it by one, hence this method w a l  
always be markedly inefficient whea judged by t h e  simple criterion of number 
of comparisons made. This is not to say  that the method i s  unsatisfactory. 
Rather it suggests that the number of comparisons is not an appropriate 
measure of efficiency. 

The two procedures discussed in. detail also show that the measure of 
efficiency is inappropriate. Single i tem filing can be done very efficiently 
in terms of number of comparisons, but in practice it is not easy to do on 

. It would require a great deal of administrative time. The factor  of 
two in comparisons between the fixed-sized and raad0.m- sized block methods 
is also illusory, because in the fixed size method a count and corresponding 
interior comparison must be made to identify the ends of blocks. Unless 
the method of determining precedence be tween  items is comqlicated, the 
random sized block method wil l  be easier.  In this xne'hod, hard coriiparisons 
f o r  ends of %lackscan be avoided if an extra control symool is added to the 
beginnings of blocks. This reducks the comparison to a simple search fo r  t h e  
control symbol. which is almost always quicker. This gives up any random 
increases in block size, but these are in any event rare after the first pass, 

Theorem: Suppose we are given, n equally likely hypothesis concerning an 
object and wish to  determine which is valid by binary conbinational questioning 
(i,e. each gue8tion we ask receiveis a yea-or-no answer). Each questioning 
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procedure yields an  expected number of questions and also a maximum 
number of quebtions, Among all questioning procedures, tihe rninjmum 
value of the mcpectcd number of questions is 

E (n) = { p  4- 1) - 2p where p is the least  integer for  which n 4 2l'. 
7 


n 
Among all questioning procedureso the minimum val-ioe of the maximum 
nnmber of questions is 

Both of these bounds a r e  attained by the procedure of always dividing t h e  
hypotheses remaining into two equal groups (or groups as nearly equal a s  
possible, i. e .  within one) and asking in which group does the correct  
hypothesis lie. 

Proof: Whatever ciuestion we may ask, the two answers have the effect of 
dividing t h e  hypotheses into two disjoint groups, s o  we may as well consider 
every question to be of the fo rm "1s i t  in this group?"'. Now since the 
hypotheses are assi.-.medto b e  a prior i  indistinpishable, the result of asking 
the questions question ''1s it in this group of k?lI is either 1) to put us in t h e  
position of determining which of k hypotheses is valid, which happens if the 
answer is Ityes", an event of probability zc/n o r  2) 'to put us in the position 
of determining which of n-k hypotheses i s  valid, 'which happens if the answer 
is an event of probability (n-k)/n. In any case, we than proceed to 
aek about the reduced group by whatever procedure is optimum for the size 
in question. If, then, E o ' i s  the expected number of questions by the 
optimum procedure for a group of n, the expected number of questions by 
the procedure outlined above is 

I t 
I 
k E (lc) $. -n-k E (n-k), 

n n 


The optimum procedure for n-hypotheses is, then obtained by choosing the 
minimum value of this expression for all possible values of k (i.e .  1, 2, .. . 
n4). Thus 

E(n) = 11 t min k E (k)t n-k E (n-k)- L31 

a# 

k n n 

This gives us a recurrence from which E can easily be calculated. We may 
however achieve a closed form by first putting 

E' (n) = nE(n) 
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Put 

F i rs t ,  we! note that. F,(n) = n 9 Fa ( n ) f Fe(n 

by direct computation in two cases  according as n is even n odd, Second, 
observing that Foin a linear interpolation of the function x 10g2x, agreeing 
with the latter fo r  powers of twoo it is clear that Fois convex, so that 

Therefol: Fo satisfies the recursion **, Hence F = Fo 

W e  get  E (n) =r. p 4= 1 - -2p as stated. 
n 

Secondly, the choice k = is always a suitable choke of k in Y,, so that 

the minimum value of E is in fact  attained with a process which always 
divides tha  stacks evenly as nearly as possible. Finally, if n 4  2p, then 
at the  q-th stage all groups will be less than n equal to 2Pgn in number, and 
after p stages, no group will have mane than 1 m e m e e r ,  i, e. t h e  problem 
i s  done. Evidkntly M (*) ,& 2p. 

Probf: F (n)is linear between n F 2P-l and n = 2p and agrees with 
n logZnat these two points. The la t ter  being strictly convex 
n log+ 4 F (n)for  all n, 
Hencz log-&) 6 E (n) for all ne 
h the interval 

n s ZP we may write 

1) - 2p - log2ra 
-.*.-.. 

n 


The maximum value of t he  function 

I?* 1 

= Q J  eJ9*  



8 

-7- December 118, 1956 

log28 

when p f 1 - -Zp - log
2
x = (p f 1) - log

2
e - p 9 logz (log2e) 

X 

= P - logZe + log210g2e. 

E (P)- log2n 4 P - log e 4- log2log2e for all n,B O 
 2 

Comments: Evidently not more than 2q h3Lpothesee;l can be dietinguished 
withacpestione, and exactly this many can be done with q questions. If-*"-**%e <.v*L 

the number of hypotheses is not a power of 2, then one cannot make all 
questions efficient, so there is bound to be a lose due to "breakaget0. The 
diEI crepancy 

1- 
E (n)- log2n 

measuree thialtqaaa-Jt is remarkably emall,-- ."..". 

Application to wrting problem: 

1, TQ put the n-th number in sequence in a file already containing 
n items properly sequenced. There are n possible places to put the 
new(&-6$3, Therefore the minimum expected number ob cornparisone 
is atleast E (32). But dnce it is  possible to always make the corn= 
parieon BO ace to split the pomibilitiee ars nearly evenly a8 possible, 
i. e. always compare the new item with the middle itbm of the string 
in which I t  belongs, the number of compariaona need not be more 
than E (n). 

2, To arrange n items in mquenceo with no a priori information 
about their osder, There are n! rearrangements possible, .To 
sequence the file oosractly we murjrt determine (possibly not 
explicitli :which c$.l theee arrangement8 to correct .  Hence any 
procedure must have an expected number of comparisons &E(nl). 
It irs by no means clear that the querstisnra which achieve this expectation 
can actually be phrased in the form of eimple comparisons between 
two items, E ~ Qit may not be possible to achieve this bound. However, 
we can m e  that the method ob adding one more item to the file after 
ano.t;hmha8 an expectation 




