a1 N H
L
!

A A
[ﬁt /V/ ’

Memorandum for: Mr, J. W, Birkenstock February 8, 1956
Mr,. J. A, Haddad
Dr. C. C. Hurd
Mzr, R, L. Palmer

’

SUBJECT: Stretch Proposal

]

Attached is a report reviewing the subject proposal prepared by a
group of Applied Science, Engineering and Product Planning per-
sonnel, The report discusses certain inadequacies of the proposal
and presents recommendations for their correction,

The attached report further finds that random access storage capac-
ities in excess of 1,000,000 words are essential to a well-balanced
computer having the speed of the Stretch machine. A program to
develop random access storage devices in this area is recommended.

£

v ‘
, (' ~L§ (=« (x-»]
i /J. W. Backus

JWB/mms
Enclosure
CC: Miss E. M, Boehm - WHQ
Dr. C. R, DeCarlo - WHQ
Mr, S. W, Dunwell - Poughkeepsie
Mr. B, O, Evans - WHQ
Dr, J, L. Greenstadt - WHQ
Mr, J. E. Griffith - Poughkeepsie ~-4<
Mr. J. B, Jackson - Richland, Washington
Mr, ¥F. E. Johnston - Albuguergque
Mr, W, F, McClelland - Chicago
Mr. D. W. Pendery - WHQ

Mr. D. W. Sweeney - Endicott

COMPANY CONFIDENTIAL

A review of the .
STRETCH PROPOSAL
February 7, 1956

The following study group has reviewed the subject proposal:

Applied Science:
J. W. Backus
J. L. Greenstadt
J. B. Jackson
¥, E. Johnston
W. F. McClelland
D. W. Sweeney

Engineering:
E. M. Boebm

Product Planning:
J. E. Griffith

s The study group finds the proposed computer weak in certain areas.
These areas are listed below in order of importance. It is felt that
the recommended changes in these areas should either be included in
the original proposal or offered at additional cost in order to assure
Los Alamos that a satisfactorily balanced machine will be available,

1. The total random access storage capacity of the. machine
(32,000 words) is entirely inadequate for a machine
having the proposed arithmetic speeds,

a. This 32,000 word storage capacity is already
offered with a machine (the 704) having approxi-
mately 1/200 the arithmetic speed of the Stretch
machine,

b, The largest matrix which can be stored in the
main storage units of the machine can be in-
verted in approximately 20 seconds.

€. The access time of the high speed RAM units is
such that it is not feasible to transmit blocks of
information samaller than 10,000 words. A
32,000 word storage capacity then permits only
three blocks of information to appear in storage.

-

c. cont.

A well balanced machine should have a storage
capacity to contain at least ten blocks. The 704
main storage can contain seventeen blocks. A
"block'" of information from an auxiliary storage
unit is here considered to have a number of
words whose transmissmn time from the unit is
twice the average access time of the unit,

T j

e AT TR

Recommended storage capacity: ,
Sixteen 8, 192 word two microsecond access storage
units (instead of four such umts) Total: 131,072
words. T

2. The high speed (.5 microsecond access) storage capacity
(1,024 words) is inadequate.

a, Storing instructions in the two microsecond access
units causes the machine to operate at 1/3 to 1/10
its potential speed.

b, Few programs will {it in the proposed 1,024 words
of .5 microsecond access units, Thus, a large
portion of many programs will operate the machine
at a small fraction of its top speed.

c. Dr., Kolsky of Los Alamos states that & is likely in
future problems that hydrodynamics calculations
which require 10,000 701 instructions may appear
simply as subroutines,

!

Recommended .5 microsecond access storage capacity:
Eight 512 word units (instead of two auch units),
Total capacity: 4096 words,
3. TFacilities for removing large volumes of information from
the machine for later re-entry are inadeguate,

a, Twenty minutes are required to dump 2,000,000
words from disc storage ontc a 727 tape unit, Thus,
when examination of certain pnntecx information is
necessary at some intermediate stage of a calculation
before continuing, as much as 40 minutes may be
required to dump and re-enter the appropriate infor-
mation,

-30-

b. During the process of unloading one partially com-
pleted problem onto 727 tape, the machine may be
otherwise useless if the next problen. requires the
use of the disc storage being unloaded.

¢. Los Alamos anticipates frequent occurrence of the
gituations referred to in a, and b, above,

Recommended facilities for removal and re -eniry of infor-
mation into the machine:
Two magnetic tape units (instead of none) capable
of recording or delivering more than 15,000 words
per second, T TT——

Facilities for providing initial input information and recording;
final output at speeds commensurate with thuat of the machine
are inadequate,

a. Loading a 180 x 180 matrix and recording its inverse
on 727 tape requires 40 seconds. Inverting the matrix
requires 20 seconds,

b. In the 704 two multiplications can be performed in
the time required to enter one word from 727 tapes,
In the Stretch machine, 800 multiplications can be
performed in the time required to enter a word
from 727 tapes.

Recommended facilities for providing initial input and final
output at appropriate speeds:
Auxiliary equipment for recording input information
on the high performance tapes recommended in
itexn 3 above and for printing or preparing 727 tapes
from information on the high performance tapes,

The ultra high speed (.2 microsecond access, transistor)
storage capacity (16 words) may be inadequate,

a. The rate of flow of instructions from the .5 micro-
second fast storage is frequently not quite adequate
_ to operate the machine at full effectiveness. There-
fore, it is often necessary to use ultra [ast storage
for all index quantities and intermediate results in
order to obtain these quantities at the proper rate

without interfering with the flow of instructions,

, .
Recommended ultra high storage capacity:
Sixty-four .2 microsecond transistor registers
(instead of sixteen such registers)

6. In general, the greatest weakness of the Stretcl: computer
as proposed is its lack of adequate random access storage
capacity., An increase of such capacity to 131,072 words
is recommended because this is considered the largest
economically feasible capacity obtainable usmg present
methods of constructmg random access storage devices.
However, the study group wishes to emphasize in the
strongest possible manner that it considers rardom access
storage capacities in the neighborhood of 1,000,000 and
more words esaential to a well balanced machme “with the
speed of the Stretch computer, It seems clear that any
proposal to L.os Alamos offering randomn access storage
capacity of about 1,000,000 words and any reasonable
machine organization stands an excellent chance of being
accepted even at increased cost.

It is suggested that a stong program in IBM to develop economically
feasible 1,000,000 word random access storage devices would be of
inestimable benefit to all areas of our future EDPM business: scientific,
industrial, and commercial data processing, It is further suggested '
that IBM give careful consideration to indicating in its proposal to Los
Alamos and any similar proposals its intention to embark on such a
program for developing very large random access storage devices,

In order to supply information to the arithmetic unit of the Stretch
machine at an adequate rate, the units of a very large random access
storage require individual access times of less than ten microseconds.
For certdin classes of problems, multiplexing techniques of the look-
ahead type would fail to provide an adequate flow of information unless
the access time to an individual unit of storage is less than five micro-
seconds, Increases in the speed of the arithmetic unit beyond those
now proposed would require corresponding decreases in the access
time to each unit of storage if the arithmetic unit is to be kept reasonably
busy.,

Below are listed some of the considerations which indicate the increasing
importance of very large random access storage demcea for data proc-
essing machines of the future,

A large proportion of even the problems of today in the
scientific, industrial, and commercial areas require
storage capacities in excess of 1,000,000 words. Most
of this storage capacity today is necessarily in the form
of non-random access storage such as tapes, drums and
disc storage.

We are encountering many difficulties with the non-random
access properties of these large capacity storage facilities.
The frequent necessity to sort information stored on tapes
and the slowness of the sorting process is an indication of
the need even today of large random access storage,

Certain present day problems are such that solutions are
completely not feasible unless the data can be stored in

random access storage, Examples: (1) obtaining the roots

of matrices. (2) Monte Carlo calculations. It is not un~ ,
reasonable to assume that the higher speeds of future machines
will make possible the solution of much larger problems of |
these types, thereby requiring random access storage capac-
ities in excess of 1,000,000 words for their solution. Certain
other types of calculations are such that they may require

very much more machine time when non-random access

storage must be used for data than the time required when
adequate randomn access storage is available. Linear pro-
gramming problems and other scheduling calculations are
examples in the area of industrial problems. Certain file
maintenance and sorting jobs are examples in the commer-

cial area. In the scientific area an example which may very
well constitute a large portion of the calculations performed

at Los Alamos is that of the solution of hydrodynamics prob-
lems over a network of points whose neighbors change during
the calculation,

The major time and cost involved in planning the solutions of
most large problems is associated with planning the organization
and transmission of information in non-random access storage.
Planning the efficient use of this auxiliary storage is corres-
pondingly the most difficult, if not impossible, task to have
performed by an automatic programming system,

The best non-random access storage device now contemplated
for the Stretch machine, the RAM with 6 microsecond per word
transmission rate, cannot supply information at an adequate
rate to keep the arithmetic unit busy for a very significant class
of problems, those involving large matrices. In matrix multi-

.6

plication where neither matrix fits the random access
storage, the calculation proceeds at half speed.

The Stretch machine and other future machines will produce
results at a rate which prohibits their complete human
inspection. Thus, future computers must be able to locate
interesting or. exceptional results for detailed human ex-
amination. Their ability to do 8o will depend almosat entirely
on the ability to rearrange information rapidly according to
a variety of criteria, Such an ability to rearrange implies
large random access storage. .

A SYSTEM DESCRIPTION

OF

PROJECT STRETCH

December 29, 1956

COMPANY CONFIDENTIAL

Data Processing Systems Planning:

F. S. Beckman
J. C. Gibson
R. Goldfinger
J. E. Griffith
B. L. Sarahan
D. W. Sweeney

V | I. Ziller

T g

I. Introduction

This report describes, in summary, the presently accepted form of the Stretch
computer, The form of the machine, as herein described, is the result of a rather
dynamic convergence of opinions about what is desirable and opinions about what is
feasible. Since these two sets of opinions do not always converge, the form of the
machine must change in order that divergences are changed into convergences: The
overall effect is thus to force a general convergence toward the form of the machine
as it will be, The form described here will be subject to violent fluctuations in the
future, for new hardware possibilities and opinions about what is basically desirable
must change the form as much as possiible. in order that the rate of convergence be
as high as possible.

As is presently conceived, the Stretch computer will be made up ofmcomputers.
These computers are complete in themselves and capable of independent or integrated
operation. The reason for this is that it allows a certain degree of independence in
the planning and design of the -system, thus simplifying some of the concepts of a
system of such advanced capabilities. The principal difference between the two ’
computers is that one is slower in operational speed than the other. The slow
rjachine will be about 10 times as fast as the IBM Type 705 system and is designed for
both commercial and scientific problems. The fast machine will be about 100 times
as fast as the IBM Type 704 system, and it is slanted toward the specifically scientific
or technical area of computation. It is this machine which will satisfy, for the most
part, the AEC contract with IBM.

This report will describe fhe two machines separately, but it is expected that

. . . veas
there will be many overlapping concepts in the two, The L&a of overlap will serve

to make the joint use of the two machines as practical as possible.

+laa]sg

II. The High Speed Machine
A. Introduction

The High Speed 'M;chine is composed of three basic units: memory, arithmetic
unit, and decoder, all three interconnected by a bus system with;:ppropriate in}?ut/outa
put connection.

Present day opinion has established the feasibility of producing a memory
of 2,0 use¢, full cycle time in lar'ge enough quantities to be used in a machine such as
is contemplated., However, in order to have computing speeds that are 100 times
faster than the 704, it is necessary to have a basic arithmetic speed of the order of
one microsecond per operation, This speed is somewhat incompatible with the 2.0
usec. memory cycle, as it implies that the arithmetic unit can chew up data twice as
fast as the data can be obtained from the memory, There is also another problem:
the instructions must also be procured from the same memery as the data, offering
another block to the goal of getting a computer 100 times faster than the 704, \y’e
therefore appear to be in a quandry; the arithmetic speed of 1.0 usec is too fast for
a machine with 2,0 usec. memory; it appears that the overall speed of the machine
will be limited by the many necessary references to the 2, 0 usec. memory.

The solution to this problem lies in the possibility of multiplexing the various
units of the machine so that more thé.n one unit can be operated at one time, In fact, this
appears to be the only way of operating slower units so that they can keep up with
faster units. The unit size of the 2.0 usec. memory aids this idea, for the ‘memory
will come in blocks of 8192 words, each block with its own memory register, so that
the blocks may be multiplexed by adding sufficient control hardware. It can be shown

that this can be done and that, on the average, the delay due to 2.0 usec, data refer.ences

g PRy

-3 o

can be made sufficiently small to be ignored.

Howe®er, there is still a problem; if instructions as well as data are
stored in the 2.0 usec. memory, there will still be a delay due to the many instruction
~ references that are nedessary. Due to the ordered manner in which these references
are taken, multiplexing does not offer an adequate solution.

alleviated

For the Stretch machine, this problem will be aliessited by the introduction
of the notion of a memory hierarchy, that is, a memory made up of units of various
speeds, Specifically, a special memory with a cycle length of 0.5 usec. has been
introduced as a special instruction storage, This memor.y will be much smaller in

’ becouse T oivultion

quantity than the 2.0 usec. memory, for the Fest Memory (as the 0,5 usec, cycle
memory is known) is more expensive and only enough is needed to contain the program.

Another even faster {0, Zluaec. cycle) memory is included to serve as a
block of index registers. This memory allows the indexing process to proceed at a very
high rate and thus contributes to the overall speed of the machine by lessening the time
needed to prepare the final effective address,

Thus, the computer has a memory made up of units of 3 different speeds -
2,0 usec;’ 0.5 usec., 0.2 usec. It is assumed that any combination of these may be
specified for a particular installation.

The decoder is the unit which is concerned with obtaining and indexing in-
structions, multiplexing the various memories with each other and the arithmetic
unit, and executing the operation called for in the mostPﬂ'icient manner. Due to the
discrepancy between the 2,0 usec, memory cycle and the 1.0 usac average arithmetic

cycle, it is necessary to buffer the decoder with two or three registers which contain

indexed instructions ready for execution. The relative slowness of the memory can

215

- 4 -
be discounted by a buffered decoder, and the decoder will, as a general rule, allow
the arithmetic unit to operate as if it were looking at a 1. 0 usec. memory. If the
speed of the 2.0 usec. memory could be increased to 1,0 usec., cycle time, the
buffering could be excluded from the 'decoder with a small increase in overall
performance of the machine,

‘Two new philosophies have been applied to the multiplexed operation of
the machine: one, the asynchronous operation of the various units of the machine,
including the memories, arithmetic unit, and input/output equipment; two, the non-
sequential execution of the instructions to provide for a very high simultaneous use
of the various units of the computer., These philosophies are manifested in the
design of the decoder which serves as the central control for these simultaneous
operations.

The arithmetic unit is 2 completely selfc-rcontained unit which will operate
in either fixed or floating point notation. This arithmetic unit retains the original
operands until the correct answer has been produced. Also, the arithmetic unit

E

requires only as much time as is necessary to produce the correct answer; this_

means that the actual gimsenentedtspusinse-tisconnrest-oremonnihicansenestivttivsrnetan
time needed to produce the correct answer depends on the operands themselves;

in particular, the number of binary ones which make up the numbers determines

the time required. This feature is particularly valuable in an asynchronous machine,

for it allows the overall speed of the machine to vary with the size of the operands

used. Thus, if the average operand is '"'small" in size, the computer will operate at a

higher speed than if the average operand is "“large" _in size; also, the adjustment in

epeed is continuous and automatic, and the decoder takes advantage of any variations

in speed, o
h"z‘l /"b

-5 -
At this point, we will now begin the description of a machine that is founded
 on the three basic units described abqve.
III. Information Flow
A. General

The computer is basically a bus system to which is connected the memories,
decoder, arithmetic unit and I/O. Appropriate control is provided to switch each of
these units to the bue at the proper time,

B. Memory
There will be, at most, memories of three different speeds. The two higher
Speed
speed memories are necessary tp account for the difference in the spped of the slowest
{2.0 usec. - Data Memory) and the average operational speed (1.0 usec.) of the
arithmetic unit, The memories are as follows:
a. Data Memory - 2.0 usec cycle
b. Instruction Memory - 0.5 usec cycle
c. Index Memory - 0.2 usec cycle

Since each type of memory is for a special purpose, the speed is specified
accordingly.

1. Data Memory - 2.0 usecs. This memory will come in blocks of 8192 words,
and each block will have its own memory register and memory address register. This
type of memory may be increased in blocks of 8192 words and the addressing will be
aeqﬁenced such that successive addresses will be in adjacent blocks of memory, In

case an odd number of blocks is attached to the machine, one block may contain 8192

wamsis successively addressed words, The machine addressing system will provide

for direct addressing of a location in a memory of the order of one million words,

12y q9]58

- 6 -
and therefore, the data memory of the machine may be built up of 8192 word blocks
until the maximum size is reached.

Since all memories are composed of 64-bit® words, they ara all compatible
and any memory may be used for any type of storage such as data, imstructions and
index quantities,

2. Imstruction Memory - 0,5 usec, This memory will be available in
blocks of 512 words. It is expected that this memory will be used principally for
instructions, but it can be used for any type of information desired, The addresses
of locations in this memory will fall in the low order range of the one million locations
provided in the address structure of the machine. It is expected that the maximum
amount of Instruction Memory that can be installed on any one machine will be about
4000 words, It is probable that the addressing sequence will be interleaved across
adjacent memory blocks as in the case of the Data Memory. Howsever, if the timing
is propitious another arrangement may be used; successive addresses will be placed
in one block thus allowing a sequential placement within each memory block.

3. Index Memory - 0.2 usec. This memory will be available in blocks of
: words, This memory is intended for use as index register storage and as auxiliary
accumulators., It will be connected to the bus as an adjunct to the Data Memory and
the Instruction Memory., The addressing sequence will be placed in the lowest-order

: stat
range of memory addresses. Thus, the memory addressing sequence will sésee with
the Index Memory, proceed without any gaps into the Instruction Memory, and finally
extend into the Data Memory, "

4. Address placement, It has been arbitrarily decided that the Data

Memory will start at location 4096 and extend as far as necessary up to a maximum

of 1,048,576.

“aa st

-7-

The Instruction Memory will occupy those location from 4095 downward.

It is assumed that a maximum of 4095 words of Instruction Memory will suffice. If
' Jdividin

any customer wishes mors than 4095 words of Instruction Memory, the Méline

may be moved up to 8192, but this should be done only as a last resort,

The first 4096 words of Data Memory are assumed té be unavailable, for
these addre;ses are occupied by the Instruction Memory and the Data Memory. There
is, therefore, fhe implication that the first 4096 words of Data Memory must be
’rasgrved for other uses, even if all of the address are not used. It is possible
that there will be an engineering solution to this problem such that the loss is virtual
and not réal.

C. Memory Bus

The bﬁu system in the Sirétic;.‘h‘computer will be, in a conceptual sense, one
common, bidirectional system which is common to all memories, the decoder, the
control arithmetic unit, the arithmetic unit, the 1/0O Exchange and, if necessary,

the 1/0O Computer. Figure 1 gives a schematic view of this system:

Data Instruction Index
Memory Memory Memory
1
Control
Exchange I, H.S. 1/0 Arith, Unit
(LS 1/0) 1/0 Computer Decoder Unit

b }

Figure 1

N,

It 9]56

-8 =

This system involves a bus which is common to all basic units thus
allowing the transfer of information between any two units during any 0. 2 usec.
period.

The actual bus system, as finally designed, may include more than one
bus as shown above, but the final decision must depend upon consideration of
engineering feasibility and overall machine performance. For instance, in order
to achieve the desired performance on a set of typical problems, it may be

necessary to have a separate bus for transmitting instructions from the Instruction

Memory to the decoder.
D. Instruction Flow

1, Instruction Counter,) This counter will denote the location of the
last instruction called from memory into the Instruction Register. This counter will
be available for modification, and its contents may be read out at any time into the
memory, Control Arithmetic Unit or Main Arithmetic Unit.

2, Instruction Register. This register receives the instruction from
the memory . register. All indexin;::ther address modification takes place in this
register. A special Control Arithmetic Unit is associated with this register to
perform the arithmetic required for indexing operations. The Instruction Register
has associated with it a decoder which will decode and execute instructions which
do not involve the Ma;in Arithmetic Unit,

Instructions which refef to the Main Arithmetic Unit proceed on into

the Decoder after their addresses have been properly modified, No address modifica-

tion of any kind is possible in the Decoder itself.,

1225 |50

-9 -
L 3. Control Arithmetic Unit. This unit comprises a 26 bit accumulator
with sign control, It is capable of addition or subtraction of signed 26 bit € numbers
in integer form, The normal address will be a 20 bit signed number, and any
arithmetic operations will be accomplished in the high order (left hand) 20 bits, The
low order six bits are for use in bit addressing wherein the address of any bit in
memory may be repredented by a word address of 20 bits and a bit address (of any
bit within the word addressed) of six bits.
Multiplication operations may be performed on 10 bit integers but
at a loss in time.
The normal mode of use will be such that the operation of the
Control Arithmetic Unit will Ee specified by suitable modifters in the instruction
/
itself, However, a set of special commands will allow the unit to be programmed
in a manner analogous to the Main Arithmetic Unit to handle cases not included in
the instruction format. For example, the operations of multiplication and division
in the Control Arithmetic Unit may be initiated only by one of the set of special
commands, Shifting in the Control Arithmetic Unit will also not be possible except
when specifically instructed.

4, | Decoder. This unit consists of a decoding register and several buffer
registers. The normal flow of instructions will be from the Instruction Register,
where they were indexed, into the first)Secoder buffer register, thence into the

decader
second Beeader buffer register, thence into the third - - - etc. until the Becoder
/F{egister is reached. The number of Becoder buffer registers is dependent upon the
relative speeds of the components in the machine and the desired degree of performance,

At In certain cases, it is possible to initiate a reference to Data Memory from somse of

12f34)s¢

= 10 =«
the buffer registers, but this action is dependent upon the instruction cantents of
the buffer registers and the Decoder Register and is not a feature that can be
accounted for or used by the programmer.

The original location in memory of each instruction is carried along
with it in the buffer and Decoder Register, and is lost only when the execution of an
instruction has been completed and no automatic breakin actions are required.

execntion

5. Execution Control. The sueetwéen of the instruction will proceed until
the end-of-execution signal is given at which time the option of breakin must be
examined. If no breakin is possible or specified, the next instruction may proceed
If breakin is taken, the next instruction may not be initiated until a gpecial 3 trigger
is set by the program, |

E. Data Flow

The data being transmitted to or from the Main Arithmetic Unif will always
pass thru the S register which serves as a connection between the bus system and
the Arithmetic Unit proper. If the data being transferred to the Arithmetic Unit is intendec
for any register other than the S register, then the data must be transmitted from the
S register to the other register. Figure 2 shows the layout of the Main Arithmetic

Unit and illustrates the registers which are available to the programmer,

S 64 bits
—
L a L+) 4% 112 bits]
3
LR 64 bitg
Figure 2

“'/z_‘i/{L

-1l =
The S register is 64 bits long and serves as an operand register for

o
arithmetic operations and also as\termination for the bus system. The R register is

and
64 bits long ao is used to contain the remainder in divide operations. The A register

is 112 bits long and its w—;:ngth is one mantissa length exactly so that floating
point operations may be extended to produce double precision mantissas.

The Main Arithmetic Unit also includes a 96 bit parallel adder to produce
double precision answers for the normal floating point mode of operation. In addition,
there will be a shifting matrix included in the Main Arithmetic Unit,

This shifting matrix will be capable of shifting any group of adjacent bits
to any other position in any other register. It will also be possible to shift any group
of bits to any other position.in the same register, There will be, in addition to
shifting operations, appropriate masking facilities for both the transmitting and
receiving register and optional /fontrol for all of these fsatures,

Suitable checking hardware will be associated with the Main Arithmetic
Unit such that all answers produced by arithmetic operations will be checked and"
corrected if possible, This implkes that the original operands must be retained until
a correct answer is produced, and thus there may exist some registers in the Main
Arithmetic Unit which are necessary for producing checked answers., These, too,
will probably be made available to the programmer if they exist, but the use of theese
registers will be severely limited by the implications of their principal use.

IL Word Format
There will be, of necessity, several different word formats in the Stretch
Computer. This is necessary in order to provide flexibility and high speed performance.

One may design a machine with only a few formats, but the invariable result is loss

15 a/5t

-12 -
of speed in some applications. In order, therefore, to provide a high level of per-
formance in all problem areas, several word formats will be available in order to
facilitate the use of the inherent speed of?the machine, There will exist
areas for which there is no optimum format, but if the chosen formats are properly

Sacv i f.ce

compromised, any area may be handled without a serious seefm of performance.
Since there may be only a limited number of different formats in a machine such as the
Stretch’ one wonders how to guarantee adequate performance in those cases for which
no specific format is given.

One solution commonly taken is to eliminate the problem by providing a general
format which includes most all-> possible mm cases., This solution provides a format
filled with various modifiers which are used to define the format for any given
operation, This approach is commonly known as "Microprogramming.' When
implemented, this solution usually requires a longer word length than would any other
method and since some modifiers are not used in many operations, the space reserved
must therefore be, wasted. In order to gain the extreme flexibility of format and use,
it is generally felt that the wasted space is not too serious a disadvantage.

However, thereis another solution to the problem of providing flexibility
and high speed, and this solution appears to be more conaiater;t with the fundamental
nature of a stored program computer than any other solution heretofore proposed.

In order to understand it, however, it ia first necessary to define what is meant by
the '"fundamental nature' of a computer,

The most eseential characteristic of a stored program computer is that it can
be made to look like any computer that we please {within very broad limits). This

characteristic was unknown before the advent of stored program machines, (although

12/, s

<13 -
Turing proved in 1935 that such a machine could be made) and it is the principal
reason why the power of gm¢ stored program computer staggers our wildest flights of
fancy. The ability to look like any other mé.chine wasplpene is a property hitherto
unknown of any machine, aqd it is found to be the property a very large class of
machines which we call com[;uters. In actual practice the only limitation of any
computer is the time required to perform the job. By this, we mean that any
decent stored program computer may be programmed to look like any other computer
we please, but there may be a loss of efficiency’ | ‘such that the simulated machine is
too slow for any practical use., The limitation, therefore, is one of time, In
other worde, the computer is limited to éimulation only of those machineswhose speed
is fast enough to be useful. .

Thus, the problem of designing a computer which can '"look" like the broadest
poésible class of other machinefis one of exploiting the hardware of the given computer
té the fullest, The consideration of this problem turns out to be the consideration of a
subject we now call 'editing.'' Editing refers to the process of mapping information
from one format into another.

In the past, the useful ness of having more than one format has been recognized
and all stored program computers have been built with at 1east two formats {instruction
and m 8o as to save editing operations, thereby effectively increasing the speed of
the machine. In time, it was recognized that "having more than two formatﬁ
would allow a given computer to simulate a larger class of useful machines, but adding
formats costs hardware and money, thereby decreasing the application . potential
as much as slowing down the computer. The microprogram approach is to provide

a large generalized format with modifiers to convert it into any of a very large

class of formats is still too small in many cases; also, it may require more hardware

2/29l5a

= 14 «
than does the case of few, but fixed, formats. In any case, the microprogram solution
is clearly an extension of the fixe:d format philosophy and suffers from the same
defect; that the fundamental nature of the stored program computer is not being
exploited.

The Stretch Computer will incorporate a philosophy which is different from
tha,t‘in any presently existing or propossd machine. That is, it will manifest as an
important part of its character the ability to simulate a much greater variety of
computers than is possible by any other means; namely, it will bave as a specific design
feature the ability to operate in the interpretive (simulative) mode. The key to this
ability is, as mentioned previously, the ability to edit in a fast and direct manner,

The principal reason that present '{.‘-day compute rs run slow in the interpretive mode is
that their ability to edit in a generalized manner is very deficient. By generalized
editing, we mean the ability to map (transform) information in any format whatever

to any other format, usually the machine’s own format.

Present day computers spend by far the greater time in the interpretive mode
editing instead of performing useful work., For certain often~occuring special cases,
such as floating point arithmetic, special formats are defined, but no real effort has
been made to facilitate the use of formats not fonseen by the machine's designers.

Recognizing that the most innate characteristic of a computer is its theoretical abilit
to simulate any other computer desired, the Stretch computer will, therefore, contain
the ability to operate in the interprstive mode at a speed much more commensurate
with the speed of its components. This philosophy will, in particular, ﬁ of great help
in applying the techniques of automatic programming to the use of large computers,

Therefore, the Stretch machine will have a limited number of word formats, but
it will contain special 'mstructioxi to facilitate the mnof, and operation with, *

an infinitely large number of other formats (these special instructions will be covered -
TR & 0

, . |
later with regard to logical onerations and sditinel Qinca the cmacbimala ceand 1o aa - I{ZAIQ

=15 =
interpretive mode will be greatu} relatively, than any present day computer, the
Stretch Computer will be able to simulate a gigantic variety of other computers. Where-
sidetrasl

as in present day computers multiple formats are built in as an attempt to sidetvaet
the necessity of cditingj the Stretch philosophy recognizes that the ability to edit is
fundamentally necessary to any computer, and therefore, every attempt will be made
to provide this facility in a form which r.cc;gnizcs that its importance is greater
even than the basic arithmetic oparafiorﬂ

The following set of formats have been selected as a basis for carrying out
the aforementioned philosophy; the set of four formats includes one instruction format,
one index word (location) format, and two data formats.

A. Instruction Format. This format is composed of six fields as shown in

Figure 3 and several interpretations are possible

x operation Al Address E T

1 12 6 21 2T 12 = L&
12

Figure 3
for any given case. The fields and their respective uses are as follows:

Field

X - 1 bit - This is an unassigned bit for the programmer's use,
and had no assigned machine function.

Operation = 12 bits - This field will contain the operation code
and any operation classifiers needed.

Address Interpreter - 6 bits - This field will denote the interpretation
to be taken on the Address, E, and T Fields.

Address - 21 bits - This field will contain a 20-bit address and a sign

to facilitate a generalized form of indexing arithmetic.

2faq)se

- 16 -

Extension = This 12 bit field may serve as an extension of the
Address field (for bit addressing) or as an Index Tag. The
exact interpretation will be controlled by the Al field.

Tag = This 12 bit field will normally serve as an Index Tag, but

may have other meanings as controlled by the Al field,

| 'i‘he exact interpretation of any combination of the Address, Extension, and
Tag fields will be specified by the contents of the Address Interpreter field. The
Al field will allow a maximum of 64 Jglt different interpretations to be taken on this
particular format. In addition, the classifiers in the operétion code will allow ¢
for many classes of operations such as floating point, fixed point, etc.

B. Index Word Format. The Stretch Computer does not have index registers
as such, Instead, provision will be ma&e for using any memory location as an
index register. This will provide as many index' registers' as is convenient with a
given memory size. The various speeds of # memories will control the speed with
which any given indexing operation takes place. The Index Memory is a special
high speed memory intended for use in‘ those cases where high speed indexing is <imm
desired and will effect a reference in 0, 2 usec. It is not necessary to use Index
Memory for indexing operations, and thus the Instruction Memory or Data Memory ¢
may be used instead for indexing operations. The only difference will be in the
resulting speed of indexing operations.

The format of an Index Word will be as shown in Figure 4,

S Compare Add Increment Base
1 21 21 21

"2 4/58

=17 =

The field will be as follows:

S = 1 bit = unassigned at present,

Compare Address - 20 bits + sign - This field will contain an
address which may be compared automatically with the Base
Address. An alternate interpretation of this field will split it

~ into two parts, a 10 bit count field and a 10 bit 4 sign count
increment field, The count field may be automatically incre-
mented with the contents of the Count Incremen:;t field. These
two interpretatiohs will be specified by the instruction itself,

Increment - 20 bits + sign = The contents of this field may be auto=
matically added to the contents of the Base field upon command,

Base - 20 bits + sign - This field contains the address which will
normally be added to the contents of the Control Accumulators
as part of an indexing operation.

It should be noted that all fields in an Index Word are signed quantities and that
all additions and subtractions performed as part of indexing operations are therefore
algebraic operations. This facility allows addresses to be increased or decreased
by complementary programming techniques. The operations performed on Address
fields in an instruction itself are also algebraic :;md thus the Address field of an
instruction is signed to permit a consistent scheme of indexing. However, all actual
addre asﬁssent to Memory Address Registers are interpreted as absolute values only;
there are no signs which refer to memory locations.

C. Arithmetic Data Format - This is the standard format for data to be
operated upon by the Main Arithmetic Unit. Figure 5 shows the fields which make~

up this format,

S weg "2a/5s

=18 =

P{ S {Exp { Mantissa
4 3 9 48 Fljeuv-e s

Programmers' Bits - 4 bits = These four bits are reserved for
use by Jthe programmer. They are assigned for any auto-
matic action.
Sign Field - 3 bits - This fie-ld contains the sign of the exponent,
the sign of the mantissa, and an indicator bit to indicate numbers
not repre sentablg in floating point notation, such as zero.
Exponent - 9 bits - Fér floating point afithmetic this field will
contain the expone.vnt- of the number. The exponenf range is
10 s 152. For fixéd point arithmetic, this field is left blank
and is ignored by the Main Arithmetic unit.

Mantissa - 48 bits - This field will contain thé mantissa of floating
point numbers and the fractional representations of fixed point
numbers. The interpretation of this field will be specified by
the comrnana itsélf. | |

The same format is used for both ﬁxed and floating point arithmetic, but‘the
interpretation, as specified by ‘the in;stru.ction, alters the mganing of some of the
fields. |

D. Logical Data Format - This 'format is, in reality, no format at all, It is

somewhat analoguous to the zero of an arithmetic system, and is included as the null

class of formats. This format, defined in Figure 6, complements

64

Figure 6

the set of all other formats and is one of the most important of all formats, for it

22956

=19 -
serves as a blank format which the programmer may use to define his own format
for a particular application. Simce none of the bits are assigned to any give purpose,
the programmer may, by interpretive coding, define his own format and use it to
construct a language of his own choosing,

49
This format may be altered in two ways; by fixed point (#8 bit) arithmetic and

by logical manipulations upon the set of 64 bits, The instruction set will include suit-
able commands for efficiently performing any alteration desired by these means,

thus carrying out the philosophy of providing means for efficiently operating the

machine in the interpretive mode,

12/24]5¢

- 2 O e

The Instruction Word

-
A general form of the instruction word has been proposed., This form is
modified to include specific sets of instructions, which require the specification
of varying amounts of information. The different portions of the general form of
the instruction word perform somewha;t different functions for certain sets of
operations. A specification of various types of indexing also requires modificatiéon
of the general form. This section will define the general form of the instruction
words and specify the modifications required. A separate section will define the
indexing modes applicable to this computing system.
A, General Format
The general form of the instruction word is as follows:
-
Field No. 1 2 3 4 5 6
Field Size 1 12 6 21 12 12
In this general form, the meaning assigned to the various fields is as follows:
Field No. 1 - Not used, available to programmer
2 - Operation Code
3 - Address Interpreters
4 - Word Address
5 - Tag Address #1
6 - Tag Address #2
This form provides for the usual mode of operation of specifying an operation
to be performed and the address of the location of the data, with the provision of
-

specifying the location of two indexing quantities which are used to modify the address

gl

- L] -

prior to the execution of the operation. Each of the fields is described in more detail
in the following paragraphs.

Field Number 1

At the present time, one bit has been placed in the ''not used' category. This
bit location might be used by the programmer to signal special action either through
subsequent programming or through operation of an automatic break-in feature.

Field Number 2 - Operation Code

The bits of the operation code field will define the operations which the machine
is expected to perform. This field will probably contain certain bit locations which
specify the various classes of instructions. The class of an instruction may indicate
a variation in the interpretation of the instruction format. Other bits of the operation
code might be used to indicate variations within the operation code itself, e.g., one
bit within the Arithmetic Class of instruction might differentiate.between fixed point
and floating point operations. The bits of the operation code should be used in a
manner which is most advantageous to the machine decoding of that operation. The
specific operations which will be required for the Stretch system are defined in a
later section of this report.

Field Number 3 - Address Interpreters

The six bits of this field are used for the specification of the manner in which
the Word Address and the two Tag Addresses are to be used. The assignment of
meaning to these bits will be dependent upon the engineering considerations involved
in the design of mechanisms to handle the different modes of operation.

Field Number 4 - Word Address

The twenty-one bits of this field are used to specify in a binary number system

2 sign and a twenty-bit address of a memory location. Provision is thus made for

t

1% 4/5¢

- LY, -

directly addressing somewhat more than a million words of memory. A sign is

o
attached to the word address to simplify address modification. This bit has no

medyne
uu-&y in the interpretation of the address.

Fields Numbers 5 and 6 - Tag Addresses #1 and #2

Each of these fields contains twelve bits. The twelve bits permit direct address-
ing of each machine register and each of the 0. 2 us and 0.5 us memory locations. The
normal use of these addresses will be to specify index registers for the modification of
the word address. Any of the faster memory locations may be used as an index register
within the general instruction form.

B. Memory Location Addressing

In most one-address instructions, the programmer is free to specify an opera-
tion code and the location of the data t§ be used in this operation. Provision is made
for modifying this addres_s by indexing. Two other modes of addressing are included
in the specification of the Stretch system. These modes are immediate and indirect
addressing. The usual mode of addressing will be referred to as direct addressing.
In direct addressing, one specifies that this operation be performed on or with the
contents of some memory location.

Immediate Addressing

Whenever constants in a direct addressing scheme are used arithmetically or in
the modification of instructions, it is necessary to refer to memory to obtain the con-
stant data word. In an immediate addressing mode, the bits of the Word Address
(including the sign bit) of Field Number 4 are used as the data in the operation
specified. The use of this addressing mode will provide considerable flexibility in the

modification and manipulation of instructions or data.

e lre

_‘z‘x.—-

Indirect Addressing

In indirect addressing the contents of the word at memory location X are used as
 the address of the word whose contents are to be used as data in the operation specified.
In this mode of operation, the indexing specified is performed. The location specified
by the modified indirect address may specify a word which again contains an indirect
address. The process, that is, the search fo? an immediate or direct address, will
continue until an address which is not indirect is encountered. This mode of address-
ing is useful in providing links between programs and in the specification of the location
of data for sub-routines.

Bit Addressing

In many cases it is desirable to interrogate the condition of a bit location in
memory. This bit location might be a single unit of a selector register. In these cases,
it might be necessary or desirable to allow modification by the contents of two index
registers. Some combination of bits in the Address Interpreter Field (Field Number 3)
will specify that the address be interpreted as a foﬁrteen-bit word address and a six-bit
bit-position address. This type of address representation implemented by indexing will
provide direct addressing of each bit within a million word memory. This mode of
addressing also assumes a difference in the form of the index register, which
difference will be described in a later paragraph.

C. Functions of the Tag Fields

Some comments concerning the function of the Tag Fields have already been
made. The most straight-forward use of these two fields is for the specification of
two index registers whose content values are to be used successively to modify the
word address of the instruction. This use of the Tag Fields is useful in those cases

where the word address is either direct or indirect. There may be some reason for

iy ql5¢

-4 —

aliowing indexing of immediate addresses, but the exact definition will be dependent
upon programming examples. The following paragraphs will describe various other
uses of the Tag Fields.

Two Address Operation with Single Indexing

The majority of instructions will likely require one-dimensional indexing. In
these cases the index register to be used is specified by the contents of Tag Field #1.
The following uses under these circumstances have been assigned to Tag Field #2,

a. Pre-Store - The contents of the receiving register (S) are stored in
the location specified by the contents of Tag Field #2 following the
Word Address indexing by the contents of the location specified by
Tag Field #1 but prior to the execution of the instruction. Thus, a
number taken from a 2.9pfmemory location can be stored in a faster
memory for future use during the execution of the first instruction
in which the number is involved. It should be noted that this can be
thought of as an exchange type instruction on the usual store class
of instructions. For example, the original contents of a memory
location‘are brought out and placed in a fast memory location and
then the instruction is completed by the storage of the particular
accumulator or register specified.

b. Post-Store - The contents of the high-order result register (A) are
stored in the location specified by the contents of Tag Field #2 on the
completion of the operation. The contents of Tag Field #1 specify the
location of the index register to be used in modification of the word
address. This mode is particularly useful in Be storage of temporary

results.

229 /5t

c. Limited Two Address - In this case, the use of Tag Field #1 is

used to specify a normal indexing operation. The contents of the
location specified by Tag ‘Fiéld #2 are transferred to the high-
order result register (A) prior to the start of the operation. The
low-order result register (B) may or may not be cleared, depend-
ing upon the specification mode. At the completion of the opera-
tion the contents of the high-order result register (A) are stored
in the location specified by Tag Address #2. This mode permits
a limited form of two-address operation.

[Actual two address]

Combined Use of Tag Fields

Many cases will require that index and other address modifications be performed
using operands outside of the low 4, 096 memory locations. In such cases, it is desir-
able fo combine the two Tag Fields to form a second twenty-one bit word address.

" 'Three of the available twenty-four bits are not used. The uses of this second word
address are:

a. Immediate Address - The signed number specified by the twenty-

one bit second word address is combined with the normal word
address to obtain a modified address for use with the operation
code. This permits the indexing quantity to be carried within
the instruction itself.

b. Indirect Address - The signed number specified by the twenty-

one bit second word address is treated as an absolute value.

This quantity specifies an indirect index address, that is, the

I*/29]5e

-2zl -

quantity specifies the location of the actual Tag Address to be
used for indexing.

c. Direct Address - The signed number specified by the twenty-

one bit second word address is treated as an absolute value.
This quantity specifies the location of the index quantity to be
used in modifying the word address. This mode of operation
permits the use of any memory location within the computer
system to be used as an index register. The use of a 2.0
microsecond memory location as an index register will
obviously cost some time in the execution of the instruction.

Variable Field Operations . —-

One of the most used logical operations involves the packing and unpacking of
pieces of information of less than a word length into or from word length forms which
can be handled by the system. This is normally done through the use of a mask or filter,
which allows certain bit channels to be operative and the remainder to be non-operative,
Because all of the instructions refer to full words, the actual instructions used to
specify the operation of packing (for example), have little relation to the operation being
performed. It is proposed that a limited number of operations (on the order of five or
six) be provided with a variable field length type of operation.

In this mode of operation Tag Address #1 field is broken into two six-bit fields.
The six-bit field nearer to the word address field specifies for this operation the starting
point in the memory word, that is, information is required from the memory word
beginning with the bit position specified. The second six-bit field specifies the number o

of information bits required. On these special instructions part of the operation code
specifies the starting point in the accumulator. Indexing on a bit - basis is specified

by Tag A
y Tag Address #2. ““/3.7/5'6

As an example of this mode of operation, the instruction
Clear and Add 25, + 17986, 60, 6, 0
is interpreted as:
1. No indexing
2. The 6 bits of memory word 17986, positions 55 through 60 are extracted.
3. The bit in position 60 is used.for sign control.
4. The bits in positions 55 through 59 are placed in positions 21 through 25
respectively of the high -order accumulator register.

This example illustrates the need for specifying operations which include
manipulation of either signed or unsigned quantities. It is expected that this type of
operation will be extremely useful in assembling instructions.

A minimum list of operafion codes would include Clear and Add, Add, Load,
Store, and Unload.

Many of the advantages of this type of operation can be secured on other opera-
tions. In these cases, the starting point"in the aécumulator is assumed to be the low-
order bit position (or the sign position). The word address and the two tag fields are
used in the manner just described. Thus, the information field in the memory word
is defined. Information sufficient to this specified length is provided to or taken from
the accumulator during a given operation. This mode gives direct bit addressing of
any bit within a million-word memory system. Indexing is based upon a combined
word and bit address, and the form of this indexing is described in the next section.

There are additional implications of this mode of operation when one considers
the use of any register as an addressed memory location. Many shift instructions are

automatically made available by the commands associated with variable field length.

IY2q)56

~25 -

For example, the instruction

LOAD 14, + Address ACC, 15, 8, 0,
accomplishes a one position left shift in the accﬁmulator of an eight-bit field without
change of sign. A special operation might »be required to set unused bits on left and/
or right to zero during a simulated shifting operation.

The specification of field length is restricted to a maximum of 64 bits. The
specified field of information may however, be contained in sequential bit positions
of two adjacent words.

Comment on Word Addressing

All internal arithmetic and control registers and counters will be individually
addressable. Each of these addresses will be in some normal addressing sequence,
but this sequence may not necessarily be dense. The 0.2 us, 0.5 us and 2.0 us
memory locations will be assigned addresses sequentially within each memory type.
There will be no gaps in addressing between these different memory types. All of
the internal registers and counters, the 0.2 us memoﬁr locations, and the 0.5 us
memory Iocatiohs will have addresses below decimal 4096.

Multiple Tag Words

The general instruction form provided for double indexing, that is, the
modification of the word address by the address modifier values of two specified
index registers. A special word format is required for those cases of multiple-level
indexing to a degree greater than two.

The instruction contains an indication in the Address Interpreter field that
multiple-level indexing will be required. Under these conditions, the contents of
Tag Address #2 specify the location of a "multiple tag word.'" The location of a
""multiple tag word" might also be specified by a combined address of Tag Address

#1 and #2,
"2faql5e

Car

-7~

- The multiple tag word has a format as follows:

a. Interpreters - 4 bits
b. Tag Address #1 - 12 bits
c. Tag Address #2 - 12 bits
d. Tag Address #3 - 12 bits
e. Tag Address #4 - 12 bits
f. Tag Address #5 - 12 bits

Thus, a maximum of six index registers can be specified with an instruction and a
multiple tag word. The interpreter field (3.) specifies the first of the five tagj}
(counting from the left), which is to be used. The indicated tag and all of those to
its right will be used in a normal manner. Any tag fields which are zero will not
enter into the indexing operation. |

Additional multiple tag words may be called for through the interpreter field (a).
Indicators specify that the contents of Tag Address #5 be used to specify the next
multiple tag word, or that the Tag Address fields #4 and #5 be combined to specify the
next multiple tag word.

Geometrical Addressing

The use of the multiple tag words for obtaining multiple-level indexing is
restricted only by the fact that the tags used be of the twelve-bitg type, thus
restricting the index registers to locations below 4096. In every other respect this
is a completely general system of indexing. The following descriptions of geometrical
addressing will illustrate a second means of multiple indexing which is only a little
less general than the system just described.

This form applies to those instructions in which both tag address fields are

available. The Tag Address #1 is used to specify the base address of a set of twelve

PR Y

— %o

successive memory locations which may be'index registers. The bits of Tag Address #2
indicate in sequence the index registers which are to be used. Thus, for example,
Clear and Add + 17286 490_ 101100001001,
where the first two addresses are in decimal and the last in binary wessd means that the
word address (+ 17286) is to be modified by the contents of index registers 490, 492,
493, 498, and 501. This form of multiple-addressing has the advantage of compactness.
‘The changing of indicator bits is simplified by bit addressing, and the direct modification
of the word address or tag address is simplified by the variable-field type instructions.
Indexing
A method to modify word and bit addresses automatically is referred to by the
word '"indexing.' In general, a word address is modified by the value contained in
the index register specified by a secondary address within the instruction. In the
general form of the instruction, the modification of the word address of the contents of
two index registers is possible. On some of the other modes of operation, only sgingle
indexing is provided. This section will define in somewhat more detail the functions
of an index register.

A, Index Register Type #1

Any register or memory location can be used as an index register. The index
register is then sixty-four bits long, rather than simply the length of the word address.
’ pertinent
The additional bits may be used to specify other peobiment information with respect to

loop cycling and the other uses of the index register concept. The Index Register Format

Type #1 contains:

a. Compare Value 20 bits and sign
b. Value Modifier 20 bits and sign
c. Address Modifier Value 20 bits and sign
d. Not Used 1 bit

2l 49/s6

L4

- 3f -

In cases where this format for indexing is specified, the address modifier value
(field f.) is added with regard to sign to the contents of the instructions word address
field. The result is the effective addresé for the given instruction.

Instructions pertaining to the index registers of this type would include:

a. Modify Value - the contents of the Address Modifier Value (field ::_)
are combined algebraically with the contents of the Value Modifier
(field b), and the result replaces .the original contents of the Address
Modifier Value field.

b. Modify Value and Compare - the operation described above is per-
formed, but the result is also compared with the contents of the
Compare Value (field a). The equal, high, or low trigger of the
index control is turned on. The contents of these triggers may
be tested or stored on a subsequent instruction.

Any of the fields may be changed or reset by means of the variable-field type of
instructions described elsewhere in this report. Normally, only the Address Modifier
Value (field E) would be changed, but there will be many cases where it will be desir-
able to change the Value Modifier or the Compare ifalue. Field d may be used bjr the
programmer for purposes of indication or proble‘m control.

B. Index Register Type #2

In some cases, it is easier to control the r;epetition of a given process of a
counter, rather than by relating a Compare V~lue to the Address Modifier Value.
The index register format Type #2 provides for this mode of action. The contents
of the index register are:

a. Count Modifier 9 bits and sign

"*/r9/5s

-3 e -

] b. Count Value 10 bits and sign
2
c. Value Modifier . 20 bits and sign
d. Address Modifier Value 20 bits and sign
e. Not Used 1 bit

Indexing and the modification of the Address Modifier Value by the Value
Modifier is accomplished as described for the format Type #1, and presumably with
the same circuits. A special instruction is required:
Modify Count - the contents‘ of the Count Modifier (field a) are
combined algebraically with the Count Value (field _l::) and the
result replaces the original contents of the Count Value field.
A test of the count value will usually be a zero test of the Count Value field.
This is incorporated in the variable field length transfer instructions. The test of
™~ the count value for values other than zero would be performed by the compare type
instructions. Any of the fields may be changed or reset by means of the variable-

field length type of instructions described elsewhere in this report,

C. Index Register Type #3

The use of bit addressing, either in the ‘apecialized case of a word address
broken between a truncated word address and a bit address or the more generalized
form described previously, requires an address modifier value of 27 bits, The.
‘value contains a sign, twenty bits for the word address modifier, and six bits for the
bit address modifier. The size of this value cannot be contained within either of the
two previously specified formats. The Index Register Format Type #3 contains:

a. Count Modifier 9 bits and sign

> b. Count Value 10 bits and sign

1%/5 4 Ise

-33-

| c. Value Modifier 14 bits and sign
d. Bit-Address Modifier Value 26 bil;s and sign
e. Not Used ' 1 bit
The special instruction used to combine the value modifier and the address
modifier value must take account of the differences in field length. This instruction
is called Modify Bit-Address Value and operates similar to the instruction Modify
Value. The instruction Modify Count operates as described previously. The tests
of Count Value will be handled by variable field length transfer or compare instructions.
The Bit-Address Modifier Value can be tested by variable field length compare
instructions. Any of the fields may be changed or reset by means of the variable

field length type of instructions described elsewhere in this report.

'Vﬁ.t Input- Output Equipment
Every effort must be made to provide a general, easily usuable method of
attaching input-output equipment to the computer portion of the system. It is difficult
to predict the types of equipment which will be available in 1960 (particularly, when
one assumes that the equipment of any manufa;turer must be handled in some way).
A éommon control element for equipment operating at or below the 15KC range is being
designed. This element is called the Exchange.

The Exchange

The Exchange is designed to handle a wide variety of units with a minimum
modification of the units. The entire complement of units can be connected permanently
to the Exchange. A fixed number of channels (a number less than the number of units)

is provided between this switching control and the memory portion of the Exchange.

"2l 95

- 34 -

Specific input or output units are connected to these action channels under program
control. Simultaneous operation on all channels is permitted. Thus, the number of
input-output devices operating at one time is limited by this fixed number of channels.
Lower speed units (on the order to 20 characters per second] all operate into one
channel and are always connected. Approximately six input and six output units
6perating in the 15 KC range can be handled simultaneously with several hundred units
in the low speed range. The design of the Exchange should be such that the number of
input-output units required can be used to determine the size of the Exchange.
The functions of the Exchange are:
a. To interconnect specific input-output units to the available
channels.
b. To assemble the bits of characters into full computer words
or input, and to initiate the action to place completed words
in specific locations in the main memory.
c. To take full computer words from the main memory and to '
disassemble such words into characters for transmission to
output devices.
d. To accept control information from a computer and to use this ,
information to control the actions of input-output units connected \
to the Exchange.
e. To permit maximum efficiency in the use of channels by
automatic assignment of input-output units to availZable channe],f!.

f. To allow suitable error correction and detection devices to

monitor"!!the flow of information.

N .
A i

2haelecs

- 35 -

Exchange Instructions

The following instructions are needed for linking the operation of a computer with

the Exchange:

Select for Writing - specifies an output device and the location

of a control word. The output device is selected and the con-
trol word is transferred to the Exchange memory. The Exchange
control circuits initiate and monitor further operations.

Select for Reading - specifies an input device and the location

of a control word. The input device is Bselected and the control
word is transferred to the Exchange memory., The Exchange

control circuits initiate and monitor further operations,

. Select for Control - indicates a particular control operation re-

quired for the specified input-output device. For example, this
operation might be Backspace or Rewind in the case of magnetic
tape units. The nature of this instruction is dependent upon the
input-output devices connected to the Exchange.

Interrogate I/O Unit Status - specifies that the status bits

associated with a given input-output device be made accessible

to the computer working with the Exchange. The status includes

information about unit not ready, busy, read-write error, trane-
miesion error, etc. Detailed examination of the status field is
handled by the programmer.

Copy Control Word - specifies that the control word as it now

appears in the Exchange memory be sent to a specified location

in the main memory.

"2[29]5¢

Additional Requirements

The following comments are made with respect to additional requirements which
are to be imposed upon the Exchange. Most of thesé features are already included in
the Exchange planning and are included here to illustrate further the flexibility of the
Exchange.

It should be possible to distribute input information into several different regions
of memory without requiring control on end-of-record signals. This is accomplished
by chaining control words. It should also be possible to group information into one
record from several different regions of memory. This again is accomplished by
chaining control words.

If information is not required in a particular record, the flow of information
from or to main memory should be eliminated. The action of the Exchange might
continue, but the main memory is not imposed upon. This function is probably more
closely associated with input.

Information coming from an input unit should be treated as a serial seqﬁence
of bits. This sequence should be pla‘.clze‘t;l in memory in groups of sixty-four bits. No
provision should be made to standardize m: size or adjust the information to a
specified word length with existing input-output devices. These operations can be
handled by programming. It should be possible to influence future devices to meet

the exact requirements of the Exchange in a more suitable way.

Medium - Speed Input-Output Devices

The following devices are considered in the medium speed range and will probably
be used on the Exchange:
a. Type 727 Magnetic Tape Units (or an improved version of such

units) to provide a communication link between this system and

the 704-705 systems and certain auxiliary equipment.
22 9/56

-3~

b. Electronic Printer Plotter to permit page printing and print
plotting with recording on microfilm. An associated visual
display will be provided. The printing rate is lé. 500 char-
acters per second.

operational

c. High-speed direct printer with the)characteristics of the
present 1000-lines per minute wire pi-inter. This will be
used for direct communication with the computer and for
use as an auxiliary operated printer.

d. High-speed card reader for direct attachment to the com-
puter o.r for use as an auxiliary card-to-tape converter.

e. Card Punch of highest speed available for diréct attachment

or
to the computer as for use as an auxiliary tape-to-card converter.

Low-Speed Input- Output Devices

The following devices are considered in the low-speed range and will probably

be used with the Exchange. The number of units included in this category when one
.]
considers the Stretch Computer is probably extremely small. The number will

probably increase as real-time applications are associated with the Stretch Comp‘ute;r.
a. Manual Keyboard and Typewriter - interrogation devices of this

enter 3vd +a
nature will be used topextract information from the system.

b. Telephone Lines - will usually form a natural link between the

source of information and the computer system and between the
computer system and the controlled elements.

c. Visual Displays - will be used to an increasing extent.

'2faq]s¢

- g

High-Speed Input-Output Devices

The Exchange is limited to handling information centered around the 15KC

range. Such data transmission rates are clearly quite low with respect to the

computing speeds of the Stretch Computer. The following devices will be needed to

provide a somewhat more balanced system. The control equipment required may be

an attachment to the Exchange or separate units.

Faster Magnetic Tapes - tapes operating at a rate of 100
times that of the 727 will be required. These will be used
as additional external memory. A tape of 10 times that of
the 727 will serve as the input-output connection to other
computers. It will probably also be used as an auxiliary
recording source for later conversion to printed form or
card form. This speed tape should be ideal for handling

the input-output requirements of a machine operating at

‘about 0. 1 the rate of the Stretch machine.

Magnetic Disc Storage - with a capacity of a million words
and the ability to transfer information between this disc
storage and the main memory at a speed of 1 word every 4
microseconds. This storage is used to supplement the

mangetic core memory for the storage of instructions and data.

-

Provision must be made for the efficient selection of these units and the

rapid initiation of information transfer.

aylss

- 39—

» Input/Output CoppoTER

Sl lisepmtesse For certain applications, it is desirable to a have a separate

unit to handle input-output considerations. These applications are usually in the

realm of problems which require a large amount of data to be processed or in the
realm of real time problems, For problems in which it would be advantageous to
handle input/output with a special program running concurrently with the working
program, a special unit is available.

This unit is a full-sized computer in itself, and it is one which can operate
alone or in conjunction with the Stretch Computer. The most distinguishing character-
istic of it is that its speed is about 10X faster than 700 series machine and about 10X
slower than the Stretch Computer, The Secondary Computer, as it is called)hat 64 bit
words and an assortment of word formats all of which are compatible with the Stretch
machine,

However, the principle bias of the Secondary Computer is toward a combination
commercial-scientific data processing machine. To this end, it contains hardware
for both decimal and binary arithmetic, among other things, The Stretch machine
makes no specific concession to commercial data processing problems, but the
Secondary computer does, and such conce‘gsiona are manifested in the provision for
arranging, rearranging and transforming of data formats. These provisions, which
are more elaborate in the Secondary computer than in the Stretch Computer, with the
ability tov perform arithmetic computations in both the binary and decimal modes will
present to the rcommercial field a computer much more advanced than any machine

now existing or conceived.

laalse

— 1.5 __m

The ability of theLSecondary Computer in the field of scientific data processing
will be prOVided‘tO;\}i It-in floating point arithmetic (in binary only) and very
flexible indexing facilities. The arithmetic sp?eds of the Secondary computer will allow
it to tackle problems considerably larger than are now possible on the 704, but the
ultimate in scientific data processing ability will be furnished only by the Stretch
computer, and no attempt will be made to increase the power of the Secondary computer
for scientific problems beyond a factor of 10 over the 704,

computer

Thus, the real emphasis on the Secondaryjis toward the commercial data
processing field, and scientific problems will receive only a secondary consideration
beyond the provision of certain necessary features such as floating point arithmetic.

Since the Secondary Computer will have superior ability to edit data for input-
output operations, it is possible to use it 4s=mst as a fully programmed input-output
computer for the Stretch machine, thus relieving the - ‘Sttetch machine from that
work which may be done in parallel with the computational work on the data. Since
the requirements of sua‘a machine are difficult to meet, a complete computer will
be available to process input-output information.

During those periods when the Secondary computer is operating in
conjunction‘ ~ with the Stretch computer, the two may communicate with ‘jeach

thvough
other th-n:}:hree media: tape, memory, and the bus system of the machines. A
program to synchronize the action of the two machines will therefore not be limited
by the method of communication betwsen the two.

If there are periods when the two machines need not act in conjunction with each
other, both may be operated independently of the others., In this case the two machines
act as completely separate computer systems and each has all the basic facilities

to make such operation feasible.

12f29/58

- 4] -

V. OPERATIONS
A. Floating Point Operations

The specifications of the actual arithrﬁetic operations in floating point
are easily defined since most problems will be ;;rogrammed in normalized floating
point. The requirements for special information about results which have not been
easily available in other computers hé.s been extended considerably.

There will be operations of’add. subtract, multiply, and divide in single
precision floating point with sign manipulation of one of the operands. Multiple
precision operations can be easily progfammed. There will also be special mani-
pulation and test operations for all parts of the floating point data word.

Special information should be available to the programmer about the
result of any floating point operation. This infdrmation can be categorized as follows:

1. Exponent overflow

2. Exponent underflow

3. Exponent in range but greater than a set value
4, Complete figure loss as a result of addition
5. Improper divisors |

One a programmer has been '"notified" that one of the above events has
occurred "the ability to propogate this exception should be his option. Therefore the
following handling of exceptions is proposed.

1. Optional break-in if both operands are regular but the result
out exponent overflows or underflows, or an imporper divide

is attempted.

- 42 -
Optional break-in if figure loss is complete.
If either or both of the operands has an indication of exponent
overflow or underflow the result will be predetermined by a
set of fixed rules. If mantissas are zero they will be treated
as if they were non-zero except if they are used as divisors,
Program Assignable bits can cause optional break-in as they
flow into the .S register from memory for use as operands Eut
only those bits pla.éed specifically by the program will be stored
i.e., these bits will not be automatically transmitted through the

arithmetic unit,

The rules for propogation of exponent overflow or underflow are given by

the following figures. E is the symbol of exponent overflow, X is the symbol for a

normalized floating point number, and e is the symbol for exponent underflow.

Add operations

Operands | E x e
E E
x E
e E

* The result can cause optional break-in if exponent overflow or underflow,

if exponent exceeds a set magnitude, or if figure loss is complete.

Multiply operations

Operands | E
E E
x E
e E

- 43 -
#* The result can cause optional break-in if exponent overflow or under-

“wr flow, or if exponent exceeds a set magnitude.

Divide operation

Dividend :

Divisor E x e
E i E e e
x 1E * e
e E E E

The result can cause automatic break-in if exponent overflow or under-
flow, if exponent exceeds a set maghitude. Optional break-in will also be caused
if the divisor mantissa is zero.

Operation =

Assume a sign manipulator, M which has four states: use sign, invert
sign, set sign plus, and set sign minus, The symbol S will be used for the operand
in the S register, the sumbol A will be used for the 48 most significant bits of the
A register and the symbol AB will be used for the complete A register., The symbol
R will be used for the contents of the R ~ register.

All add operations will shift the number with the smaller exponent right
before addition. If the mantissa sum overflows the mantissa will be adjusted and the
exponent increased by one. If figure loss occurs the mantissa will be normalized and
the exponent decreased by the amount of normalization. The result willalways be
a double length mantissa in AB.

Add operation
\ MS + A into# AB

- MS - A into AB

MS 4+ AB into AB

- 44 -
MS - AB into AB
MA +S into AB
MA - S into AB
MAB +S into AB
MAB - S into AB
Multiply operations

All multiply operations will produce a double length product in AB. The

exponents will be added and a single leading zero in the product will be normalized,
MSe+e A ‘-into AB The two operands will be in S and R
M):‘ s into AB The two operands will be in S and R

Divide operations)

All divide operations will produce a single length quotient in AB and a
single length remainder in R. The quotient exponent will bé fhe difference of the
operand exponents. The remainder exponent will be the dividend exponent less the
number of divide sub cycles taken to ;;roauce the full length qﬁotient.

MB ¢ 5 into Quofient in B, Remainder inR |

MA ¥+ S into Quotient in B, Remainder inR

MS T A into Quotient in B, Remainder in R
Speéial operations

Square root MS into B

: Load MS from memory

Load MAB from memory

Load MR from memory

Store MS

Store MR

Store MA

- 45 o
Store MAB rounded
Store M (lower portion of B) this operation implies the generation of
an exponent 48 less than B exponent.
Round MAB
Normalize AB
Make exponent S into floating point number in AB
i Make mantissa S into exponent in AB less one with mantissa equal
to one half
Borrow from mantissa A
Interchange exponent S and AB
Compare exponent S
Compare exponent AB
Compare exponent R
Compare Floating Point number
Count leading zeros of AB
Add to mantissa AB
Add to exponent AB
Insert Program bits in AB
Insert Program bits in AR
Set exponent of S
Set mantissa of S
This is onh,-r a specimen list of the special manipulative commands for
floating point numbers. The actual detalling of these commands will depend

upon the actual machine hardware,

~

- 46 -
There will also be a mode of floating point operations which will introduce

a fixed error similar to rounding into all arithmetic results to facilitate the deter-
mination of significance. This mode will cause tﬁe automatic inversion of a pre-
determined bit in the result of all arithmetic operations., This inversion will take
place before normalization, The operations necessary are:

Enter mode (The éccumulator bit position is assigned by

this instruction).
Leave mode,

Test mode,

OPERATIONS

B. Fixed Point Operations
those

The fixed point operations can be divided into two classes: Wissms
operations upon "full word" data) and those operations upon pieces of
instructions and index words.

The set of operations proposed for the first class will be similar to
the floating point operations and will be on a word length basis. The
word length at the preéent time is 48 bits with sign and the 4 assignable
bits. The remaining 11 bits will be carried along but not considered in
the calculation. There will be optional break-in for the cases of overflow
on addition and improper divisors. The results will be defined if break-in
is not taken and summary 1ndic.ation will be made. The 4 assignable bits
and the 11 unassigned bits will -be maintained in the S register but will not
be transmitted through the arithmetic unit.

The operations are: |

MS + AB > AB

MS - AB — AB

MAB+S -» AB

M AB -.S —> AB

MS-A — AB

MA.S — AB

M AB .S — Qin AB, ﬁinR
MS: A —» QinAB, RinR
Load MS

Load M AB

I%29/5 6

-7

Load MR

Store MS

Store MA

Store MR

Store MA rounded

Store M (lower portion of AB)

Compare

Transfer Zero

Transfer Non-Zero

Transfer Plus

Transfer Minus

The set of operations proposed for the second class is a set of variable

field length operations. This set of operations should have in addition to the
data address and an index tag; three six-bit addresses, These addresses
will indicate the starting bit positic;n in the S register, the field length, and
the starting bit position in the A register. The address indicating the start-
ing bit position in the S register is equivalent to the actual bit address of the
storage position addressed. This allows the programmer to address any bit
or group of consecutive bits in any addressable location. /During any indexing
operation using this set of operations the six position bit address will be
appended to the low order positions of the data address and any index quantities
will increment this entire field with appropriate carry or borrow propagation.
mthe entire storage of the machine can be considered to be a contim*’ous
string of bits without word boundaries, This systern implies that the high-order

bit of a word has the bit address, 0, and the low-order bit of a word has the

bit address, 63.

2lyq/5¢

—47 -

Since the index words will contain one or more signed increments in
which the sign (or signs) will not be in the high order position of the word,
but associated with the actual increment field; it is necessary that the set
of instructions be of both a signed and an unsigned nature. If the unsigned
mode is specified the field will be considered positive and all bits of the
field will enter the data portion of the accumulator, If the signed mode is
specified, one bit of the field will be combined appropriately with the
accumulator sign and the remaining bits of the field will enter the data
portion of the accumulator.

The set of commands are:

Load S unsigned
Load S signed

Load A unsigned
Load A signed

Add A unsigned
Add A signed
Subtract A unsigned
Subtract A signed
Store A unsigned
Store A signed
Compare A unsigned
Compare A signed

It will be noted that the operations Load S unsigned and Load S signed
allow the programmer to obtain partial words for use in full length fixed
point operations which have not been specified in the above list such as

multiply and divide,

"frafes

- O

This set of commands will make un-necessary a host of special manipulative
commands which are required in other computers e.g., shift, store address,
load address, etc. They will also give the programmer a system much more
flexible than has been attninabﬁ in the past except by complex programs to
extract or xgartial words in memory. Besides being necessary to
manipulate instructiens and index quantities, these commands will be useful
in the cases where tables are collapsed to eliminate un-necessary zeros in
words or zero table values. The presence ;'absence of table values can be
indicated by a bit array containing a one or zero,simplifying in many cases
large volume table storage requirements. This set of commands will also
be necessary;’éet"he computer is required to perform radix conversion or
other input-output functions.
C. Data Transmission Operations

There should be two types of data transmit commands. One type to
transmit a word or block of words from one memory location to another
and a second type to interchange a word or block of words between two
locations., It appears desirable that nofénly should both starting locations
be indexable, but that different increments m be specified. The trans.

disturk

mit command ehould be strictly a memory function and not dés4sud the

arithmetic section. The interchange command may have to use the S register

as an intermediate buffer register.

'2fa /5

V. Operations

D. Logical operations, The Stretch computer will have a bank of selectors
{triggers) available to the programmaer to indicate the status of varidus component
units of the machine. Thess triggers will b& many in number and come in two classes:
those which indicate the status of certain machine components and those which are
controlled only by the program. In addition, the addressing scheme of the machine
allows the add:essing of any bit in any word in the memory, thus making it possible
to look at the memory as a collection of bits, not words, -

To facilitate operations on collections of bits, special commands are availb

able, for example:

apr-
AND 3X The contents of X st ANDed with the contents of the A Register
OR X Same for OR operation

Exclusive T oy
OR X Same erExcl. OR

Set " X For each bit in the A register, set the coresponding bit in word
X to a one. |

Reset X Set to zero ﬁs "a.bove.

Invert‘ X Invert as abﬁvo.

Transfer if
X ON For esach bit in the A register, examine the corresponding bit

in Loc. X. If all bits examined are on, transfer.

Transfer if any
X ON Same if any one of the corresponding bits are ON,
T T

Transfer if any X OFF
Same for OFF

'1'/11 If(_

v—-f‘,.—.

The following are to be applied without reference to any other register -
i. e, applied to the Loc. X only:

Transfer if all X ON

Transfer if all X OFF

Tr any X ON

Tr any X OFF

The following include geometrical to nurxizerical address conversion:

Tr X, b, ¢, y ON - Starting at bit b in Loc X, examine the next c bits. When

FWT M a bit is found ON, place?{ (the bit no. above b) in the CA and

Ogteprmei, St '

Tr to y.

Tr X, b, ¢, y OFF - Same for first zero.

Count Ones X, b, ¢ Count the total no, of one bits from bit b in X to c. Place

the no in the CA,

Count Zeros X, b}: Same for zeros.

All of the above commands may be used with bit addressing and variable field
length addressing. These commands may refer to any bit in the memory as % as To
any selector.

Provision for storing in a selector the result of a test on any bit or group of
bits will be provided as follows:

Set Sel, Z ON if X ON :
These commands will act if the bit or group
Set Sel Q OFF if X ON ‘

of bits specified in X is ON.
Invert Sel, Q if X ON

12l 9]¢ ¢

- 53 —

Set Sel. Q ON if X OFF : ’

- ‘Same as above but X must

Set Sel, Q OFF if X OFF

be OFF

Invert Sel. Q. if X OFF

The selector,, Q, to be operated may itself be the bit or one of the group of
bits addressed by X. These commands allow one to progiani any of the binary
logical connectives not included in the machine as operatns.

The selectors wﬂi bé addressable in two modes: numerical and geometrical,
The num/ﬂ}rical mode is the us@l mode of addressing selectors in present day machines.
This mode rslies on an assigned numoriéal address for sach selector. Any selector
may thus be interrogated by spoci@yﬁg its numerical address in the command. The
geometrical mode of addressing éeéonﬂs -on .th. positions of bits in a register., In
this mode, a selector is assigned to a pa&ticular bit positiaﬂ in a register, and the
selector may be interrogated by # comn;land which refers to the register. Tho;_lc
selectors corresponding to the bit poﬁitions with ones in them will be examined, :\'
all selectors corresponding to the bit positions with zeros in them will not be
examined. This addressing mode hé;u the advantage of pormitﬁhg tiu oxaminatio; of
many selectors at one tims,

The above set of commands,. “a.long‘ with fhe data tr.ar;sfo..r commands covered in
; following section, constituté a very powerful means for logical control of programs
and the rﬁarrangement of information within the machine.

E. Testing and Transfer

There will be a complete set of "'full' word length test and transfer commands
: for both fixed and floating point data such as compare, transfer zero, transfer minus,
A

etc, Thess commands as well as the variable

“‘{L‘! [g’;.

- 54 -

length compare command and the index test commands have been discussed
in other sections.

There will also be a set of variable length test commands. These wili
consist of a word address and an associated bit address and field ldangth,

The word and bit address will be indexable. The tests will be:
Test D, b, f for all ones.
Test D, b, f, for any one
Count all ones in D, b, f.
Count all zeros in D, b, f,
Count leading zeros in D, b, f{.
Count Il-::da ones in D, b, f.

These commands will set an indicator bit in the control section which
can be interrogated for a subsequent possible transfer. It will be noted
that this set of commands eliminates the need for special test commands
for zero, non-zero, plus, minus, etc,, when operating with the variable
length arithmetic. It also allows the programmer to consider any portion
of memory as a group of selector bits., This will probably eliminate the
need for a special class of indicators (or seiectorl) which are program

assignable.

L LY

§

- 55 =
One of the more important uses for logical and testing commands will be in
the utilization of the machin; break-in system. The Stretch Computer will have,-
for certain conditions, a means for usurping control of the machine in the event that
logical conflicts arise. Some of these conflicts may arise out of input-output opera-
tions and some may arise from inconsistenéies in the floating point arithmetic system.
In particular, the floating point arithmetic system is not capable of a completely
consistent definition, for the definition must be made in terms of a given problem class.
For instance, there is, at this time, no way to define in floating point notation a
zero which is exactly analogous to the zero found in fixed point notation. In floating
point notation there are many possible definitions of zero, - and the best zero to be
used depends upon the problem. Since more than one zero definition in the computer
is not feasible, one must séecify what the machine must do if the computer proégces
an undefined numbter as the result of an operation. Therefore, a reasonably general de-
finition of f;he results of any given operation will be built into the computer. For |
those cases in which it is possible to specify an alternate definition, break=in will
be provided.
The break-in, however, will be optional in every case, and the program must
specify the modes to be used, The optional break-in feature will be composed of
two parts: the Break-in Triggers which are directly associated with each conditio;z

upon which break-in is to be allowed, and the Break-in Control Register ,
which contains a bit position for each Break-in Trigger. 1If the corresponding bit in the

Break-in Control register is a one, the Breakin Trigger, when turned on, will force an

automatic transfer of control to a specific location. If the corresponding bit of the Break-in

control Register is a zero, no automatic action will be associated with the Break-in

Trigger, and the machine will ignore that trigger.

- 56 -

This system allows the programmer to specify which particular occurrences
will cause an automatic transfer of control. Thus, if the programmer cannot use
the machine definition of the result of any given operation, he may, thru the specifi-
cation of certain Break-in Triggers, generate his own definition in a subroutine and
have it automatically applied whenever the condition arises,

The commands covered in the previous sections will enable the programmer
to modify the Break-in Control Register at will and to test the Break-~in Triggers
in order to determine the status of the machine at any time. The Break-in Triggers
will be selectors of the same type as discussed previously, and will be controllable

to the extent implied by their use,

P

} G. Data Transfer - The Stretch Computer will have available a special
~ command for moving a group of bits from any position in s any word to any
position of any other word, The command itself will look as follows:
Transmit Data X, a, b, Y, ¢
This instruction will transmit b bits starting at location X, bit position a, to
location Y starting at bit position c, All other bits at location Y remain undis-
turbed. Locations X and Y may be any register or any memory location, and may
even be the same word. P This instruction allows the transmission of a group
of bits (not to exceed 64) from any wo;d to any other word, effecting at the same time
a shift of a specified number of positions to the right or left.
Another version of the same command exchanges two groups of s bits:
Exchange Data X, a B, ;Y, c
This instruction will exchange, b bits starting at location X, bit position a with
b bits starting at location Y, bit position c. All other bits in both X and Y rema;in
undisturbed. No more than 64 bits may be exchanged in one operation.
Another version of this command will exchange blocks of words in mtmory.‘
Exchange Words X, n,Y
This command will interchange the locations of a block of n words, one block starting at
location X and the other block starting at location Y. The two blocks may not overlap
in memory.
All of the above data transfer commands make use of the Main Arithmetic
Unit and its shift matrix, and therefore the contents of the registers will be destroyed
t‘f any data transfer commands. In addition, no other use can be made of the Main
- Arithmetic Unit while such operations are in process,

Thess commands allow the physical rearrangement of data to be facilitated

with a minimum number of commands.

12in 5

- Y -

H. Compare Opsrations - Commands to perform data comparisonss
and subsequent trigger setting will be available, It will also be possible to compare
two strings of bits both of which begin at arbitary locations within any two words,
Usually, Hi, Lo, and Equal indications will be given through setting appropriate
selectors or triggers. Both logical and arithmetic compare operations will be
available.

I. Table Lookup Operations - Certain specialized table lookup operations
are necessary to facilitate the use of tables to represent functions. For the
Stretch Computer, the commands will be of two types: one type will search a tablse
by comparing each entry against a standard, and the other type will effect a re-
placement of a given argurhent. The table search command will operate as
follows:

Table Search X, a, b, ¢
This command will search a table starting at Word X, bit a, It will compare b i)its
(starting at position a) with the contents of the A register. If equality occurs, the
word and bit address of the argument will appear in the Control Accumulator. If
inequality ‘occurg . the CA will be indexed C bits and the process repeated. If no
equality occurs before a preset address in a special register occurs, the process will
terminata,

This same command will appear in several modes of compare operation;

Conditions
Equal
Hi or Equal

Lo or Equal

124 fst

- 59 .

In addition, the command will operate to find, .the highest or lowest value in a
gives table.

The replacement table lookup will look at m bits in the low order part of the
lower half double length _A register and will lookup in a table starting at X, a,
a group of m bits which will then be placed in the high ordcr‘y. end of the upper half
of the A register. This cycle may be repeated a number, k, ¢g#f times. If the cycle
is repetitive the registers will shift appropriately between cycles so that a
sequence of groups may be transformed by the Wilisp lookup process.

T SR e,

@ lrey.an &R fule

i/ b

2]24]5¢

= Mew.
AL Ao S v
______________ Ny
e | Z(L= e i
4 N
i:‘; hna. g T o g T ——— < ’ » ,“'\\ .
%k?}m?fz | b %] fs .;yl«wf{,‘, M—W] Ler (anmd g} 3 & /%‘{

'-:“‘ c;* %&- ~~ ;2 5 M"M [(TM)

(coves)

corr 1€ € Ctemrirnm
-60- '

VI. Automatic Program Interrupt Control

We shall, in the following, use the expression ''break-in'' to refer to the
automatic interruption of a program in exceptional situations. In the STRETCH
computer many new problems appear because of computer characteristics that
have no precedent. For example, the asynchronous non-sequential control allows
the execution of control instructions prior to arithmetic operations which normally
would precede them. Thus, the recording of enough information to permit con-
tinuation of a program after a stop occurs is more complicated than in earlier com-
puters where it is often adequate, for this purpose, to remember only the last
executed instruction, In those situations where several operations are occurring
simultaneously (e. g. computing and using input-output equipment), if break-in
situations occur in more than one sequence of operations, some observation of
priorities may be necessary in determining the ordering of the corrective or other
operations undertaken by the computer. Rather than attempt to make automatic the
perhaps difficult decisions involved in doing this, we propose that the programmer
be responsible for this corrective action. This may n&t be very much of a burden,
however, because it is expected that a general purpose library program can handle
these situations in most cases, and it is proposed that such a program be an integral
part of the break-in system. This program will be referred to below as the break-
in library program. The desirability of having such a program, assumed to be pre-
gent in all normal uses of the machine, will in part depend upon the amount of storage
space that will be required to accommodate it. It may be feasible to store that part
of the break-in program that may be called upon frequently for the more common

break-in conditions in core storage (2 p sec cycle), while those parts that handle more

r/ re fe

~-61-

exceptional situations can be held in auxi}iary storage. If, on further investigation,
a very general program seems to be feasible then, in several situations, as indi-
cated below, it may be worth including in this program procedures which, if executed
by the inclusion of more hardware, would add significantly to the complexity and cost
of the compute_r. e

It is assumed that a ''Mask Word'' register will be under the control of the
programmer, The 64 bits of this word will refer to the status of as many ''triggers"
which respond to various machine states (defined below). In addition, an "Indicator
Word'" register will indicate the present status of these triggers. This register will
also be addressable and modifiable by the program. When the logical product of these
words is not zero, a break-in will occur. This will cause a transfer to a fixed laca-
tion (the first instruction in the interrupt library program). It might be slightly more
convenient to have the machine transfer automatically to a different location for each
break-in situation. However, the cost of the additional hardware required to accomp-
lish this should be considered and, if it is at all significant, the transfer to a fixed
location should be made. The break-in program can then determine from the logical
product of the Mask Word and Indicator Word the proper address to which to transfer,
Since the first step in the break-in procedure may, as indicated below, always be the
same (copying the decoder registers) it may be desirable to do this in any event.

Normally, many of the bits in the Mask Word will always be ''on''. Since a
general break-in system is being proposed we suggest below the inclusion therein of
the handling of several situations where the incorporation of enough hardware to ac-

complish automatic c‘)rrective action does not seem to be justified by the infrequent

’/m/s‘vy

-682-

need for this action. Thus, we propose that errors in the results of arithmetic
operations and possibly errors in the transfer or retention of words (the desir-
ability of handling this type of error by this means will depend upon the type of
error-detecting code that is eventually specified and the cost of including auto-
matic correction) be corrected by the break-in library program rather than by
additional hardware. |

As an example of a special operation that might be considered worthy of inclu-
sion in a general break-in system (but possibly could not be justified if it, and all the
hardware required to accomplish it, were considered alone), a special SUBROUTINE
instruction has been suggested (by Mr. W, P. Heising). This instruction located at
A would contain addresses B and C, It would cause the program to transfer to B and
continue with the subroutine beginning at this location until an instruction from loca-
tion C is called for. When this occurs the machine would automatically return control
to the instruction at A + 1. If the instruction SUBROUTINE is given before the return
transfer for a preceding SUBROUTINE instruction has been effected, the machine
would "'remember' enough information to permit this return to occur after execution
of the most recent SUBROUTINE instruction and the return to the location following it.
This could all be accomplished by additional hardware including a '"compare address
register'" and a ""comparator’' together with the break-in library program. The com-
pare address register would contain the address, C, that appears in the most recent
SUBROUTINE instruction, The comparator would compare the contents of the instruc-

tion counter and the compare address register.

Yo ts 7

-63-

Thus, this type of instruction involves a break-in operation. However, to
handle it in the same way as the other break-in situations described below involves
more hardware. It would be necessary to set a selector or break-in trigger bit in
the Mask Word when the instruction SUBROUTINE is given (hereinafter called the
SUBROUTINE bit). The corresponding bit in the Indicator Word would be turned ''on"
when the comparator indicates agreement of the number appearing in the instruction
location counter and the number, C, appearing in the moat recent SUBROUTINE
instruction. Because of the possibility of subroutines within subroutines, the inter-
i'upt library program would have to take appropriate action when a SUBROUTINE
operation is encountered before the return condition of a previous SUBROUTINE
operation., This wauld include storage of the most recent C address in the compare
address register and the A and B addresses in the memory used by that part of the
interrupt library program which performs this function. When a SUBROUTINE
instruction is given, the SUBROUTINE bit in the Mask Word will be examined and,
if a previous SUBROUTINE order has not been completed, a different bit in the
Indicator Word will be turned on and a break-in transfer to the library program will
occur,

A list of suggested break-in conditions follows. Each of these conditions
corresponds to one bit in both the Mask Word and the Indicator Word. In an installa-
tion that includes a separate lnput-output computer the detection of and remedial
action for some of the break-in conditions listed below would be undertaken by this
computer. Under group B, "E" represeljlts a floating point number with an exponent
overflow indication and ''e'' represents a floating point number with an exponent under-

flow indication.

Yo Is 9

-64-

A, Input-Output Conditions

. An error in reading.

An error in writing,

An end of file indication in reading (before a specified number of
records has been read).

An end of tape indication in writing.

Attempting to read or write beyond a maximum address (e.g. on a

drum or RAMAC unit)

(In the above conditions it is assumed that a register will contain the address

of the input-output unit involved, supplementing the information supplied by

the break-in bit)

B. Exceptional Arithmetic Conditions

6-

10.
11.
12.

13.

14,

Positive exponent overflow in floating point multiplication.
Negative exponent overflow in floating point multiplication.
Positive exponent overflow in floating point division.

Negative exponent overflow in floating point division,

Positive exponent overflow in floating point addition or subtraction.
Negative exponent overflow in floating point addition or subtraction,
A zero mantissa result of a floating point addition or subtraction*.
A zero mantissa result of a floating point multiplication (if un-
normalized arithmetic i8 used). *

A zero mantissa result of a floating point division (if unnormalized

arithmetic is used), *

'//0/»’7

15.

186,

17.

18.

19,

20.

21,

22.

23.

24.

25.

26.

27.

28,

29,

-65-
An exponent in the result of a floating point multiplication which ex-
ceeds some preset bound*,
An exponent in the result of a floating point division which exceeds
some preset bound*,
An exponent in the result of a floating point addition or subtraction
which exceeds some preset bound*,
An exponent in the result of a floating point multiplication which is
less than some preset bound*.
An exponent in the result of a floating point division which is less
than some preset bound*,
An exponent in the result of a floating point addition or subtraction
which is less than some preset bound*,
Attempting to multiply a number of type E by one of type e.
Attempting to divide a number of type E by one of type E.

Attempting to divide a number of type e by one of type e.

-Presence of an exponent overflow bit in one of the operands in an

arithmetic operation.

Presence of an exponent underflow bit in one of the operands in an
arithmetic o‘)eration.

Attempting é fixed point division where the divisor does not exceed
the dividend.

Occurrence of an overflow in a fixed point addition or subtraction.
Occurrence of an overflow in a left shift operation.

Occurrence of an overflow in a floating to fixed point conversion.

Yo fe

-66-

30. Complete loss of significance in a floating to fixed point conver-
sion,

*The procedure followed by the interrupt librafy program will depend upon

the setting of indicator bits in the data word operands.

Arithmetic and Other Machine (or Px;q_grammer) Errors

31. An error in a fixed point addition or subtraction.

32. An error in a fixed point multiplication.

33. An error in a fixed point division,

34, An error in a floating point addition or subtraction.

35. An error in a floating point multiplication.

36, An error in a floating point division.

317. An error in a word (indicated by the error detection bits) being read

out of a high speed storage unit.
38. | An error in a word (indicated by the error detection bits) being written
in a high speed storage unit,
39. Attempting to interpret an impossible operation code in an instruction.
40, Attempting to interpret an impossible address in an instruction.

Programmer Controlled Conditions

41, Break-in bit used by the SUBROUTINE instruction described above.
This bit in the Indicator Word is set when the contents of the Instruc-
tion Counter are shown by a comparator to be equal to the contents of

a ''control word register''.

’//o /g‘)

42,

43.

44,

45,

46.

47,

48,
49,

50.

64.

-67-
Occurrence of a SUBROUTINE order before the completion of a pre-
vious SUBROUTINE order
Complete tracing break-in bit under programmed control. It causes
a transfer of control to the interrupt library program after the execu-
tion of every instruction. The corresponding bit in the Indicator Word
will normally always be on. ~
Thig bit is like (43) except that it is controlled by a manually operated
switch.
Transfer tracing break-in bit under programmed control. It causes
a transfer of control to the interrupt library program before the execu-
tion of all transfers.
This bit is like (45) except that it is controlled by a manually operated
switch,
A manually controlled STOP switch sets this bit in the Indicator Word.
Thus, manually stopping the calculator i8 made part of the break~in
system.
A preset time of day has been reached by the real time clock.
A preset lapsed time interval is8 indicated by the real time clock.
These fifteen bits in the Indicator Word are under the control of manual
switches, ‘the program, real time devices and any parallel data pro-
cessors (such as an input-output calculator) incorporated in a STRETCH
system. Any of these can interrupt the high speed STRETCH com-

puter at any time, if the Mask Word permits it.

"'-(M/r?

-68-

The firat step in the break-in procedure will be to duplicate the five asynchro-
nous control (or decoder) registers in five reserved memory registers. Since a pro-
gram could not perform this function if its own Instructions went through the decoder,
it seems necessary to provide additional circuitry that would accomplish this when a
break-in occurs, It will probably be desirable that the break-in program be informed
of the original locations of the instructions in the decoder and therefore that these
locations appear in the decoder registers as well as the instructions themselves.

If two break-in conditions occur simultaneously or if a second break-in occurs
while a prior break-in situation is being corrected, no special difficulties are en-
countered. In both cases the break-in program can handle the different situations on
a priority basis, If the corrective action for any break-in must be postponed, it will
be the responsibility of the break-in program to "femernber" the Indicator Word, the
contents of the control registers and whatever other information is necessary in order
to correct the situation at a later time.

The break-in progrém should probably be written so that the frequency and loca-
tion of machine errors, occurrence of overflows and underflows and other informa-
tion of interest to the engineer and the programmer will always be recorded. This

would probably be an exorbitant requirement if break-in action were entirely automatic.

f’/’&‘/;’)

