7030 PROGRAMMING EXAMPLES



FORWARD

The following programming examples are inttended to illustrate
the use of 7030 instructions as active tools in problem solving. It is
believed that the serious reader, equipped with the 7030 Reference
Manual (A22-6530) and a description of the STRAP assembler (say the
Reference Manual, 704-709-7090 Programming _Pé.ckage fc;r the IBM
7030 Data ‘Processing System (C22-6531)), can obtain aidynamic
knowledge of 7030 programming without extensive outstde help.
Experience in computer programming, while certainly an asset, is not
taken for granted.

The subject matter is divided into four main sections:

1. Instruction Arithmetic Unit Instructions,

2. Variabl‘é. Field Length Instructions,

3. Floating-Pqint Arithmetic,

4. Special Problems.
No attempt is made to co;rer the entire i_nstructioﬁ set, to define every
term nor to explain every programming step. There are however, a
number of comments to assist the reader over rough spots or points of
ambigui@y. Frequently programming alyernatives are brought to the
attention of the reader to emphasize the fact that there are many ways of

doing the same problem. Efficiency in computer problem solving



involves the balancing of the following factors:

1. Accuracy of results,

2. Analysis effort,

3. Programming time,

4. Debugging time,

5. Production run time,

6. Effectiveness in repeated use of program (possibly by a stranger).
The relativd merits of these factors vary from problem to problem,
individual to individual and organization to organization.

In thé design of the programmiﬁg examples a seventh factor,

pedagogical value, has received the primary stress, and no claim is

made for efficiency in terms of the other six.



STRETCH PROGRAMMING EXAMPLES

Foreword

1. Instruction Arithmetic Unit Instructions

1.1 Transmittal of 2 full words. (3 examples)

1.2 Interchange of two word-pairs. {2 examples)

1.3 Cyclic permutation of a group of flull words. (4 examples)

1.4 Replacement of full words by zeros. (3 examples)

1.5 Replacement of isolated full word groups by zeros. (4 examples)
1.6 Subtraction of value fields.

i.7 Interruption measure.

1.8 Simulation of RENAME instruction.

1.9 Transposition of a square matrix with full word elements. (2 examples)

2. Variable Field Lengbth Instructions
2.1 Cyclic bit shifting.
2.2 Length of an unknown file. (3 examples)
2.3 Deletion of every 5th bit in a field. {6 examples)
2.4 Bit reversal. (2 examples)
2.5 Removal of key words.
2.6 Sorting on the basis of subfields. (3 examples)
2.7 Sorting into reserved table areas.

2.8 Purchasing list arithmetic.



ii.

Effective address creation,
Fetch (P"‘l)th element of rectangular matrix.
Simulation of 2~-bit addition.

Transposition of rectangular matrix.

Floating - Point Arithmetic

3.1

.30 2

3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

Separation.into integer and fraction parts.

Integer part of floating-~point word.

Polynomial evaluation. (2 examples)
Modifiedltrapezoidal rule. (2 examples)
Continued fraction evaluation. .

Scalar production of vectors.

Cube roo.t.

Normalized floating-point vectors from VFL data.
Double-precision comp;:-).re. (2 examples)

Integer part of log, N

Special Pr oblems

VFL fraction square-root,

Double-precision binary to decimal conversion.
Bit image of a sequence of numbers
Compression of sparse vector.

Scalar product of compressed sparse vectors.

Transposition of an 8 x 8 bit matrix. (3 exarn‘ples)



4.8
4.9
4.10

4,11

4.13

Transposition of a 64 x 64 bit matrix. (2 exampleé)
Product of square matrices. |
Cosine of 27X.

Natural logarithm.

Exponential of x.

Transcendental function evaluation,

Numerical integration.

141,



STRETCH PROBLEMS

w. # Instruction Arithmetic Unit Instructions

Problem 1.1, Transmittae o‘F 2 ﬂLVQ words.
Copy the contents of full words located in DOG, DOG + 1,0 into full words
located in CAT, CAT + 1.0 respectively.
Method 1,@# Use the immediate transmit instructions.

TI, 2, DG, CAT

or

TBI, 2, DQG #1.0, CAT+ 1.0
Comments,

@. No more than 16 full words can be transmitted by TI or TBI. If
16 words are to be transmitted the J fields could be filled by ) are
either 16 or 0 in STRAP coding. o engure that a“‘el'at source W snsm,eéeat

b. If the "source" and '"sink'" areas overlag(ﬂ%?TBl If CAT>DQG; \LNF"{'W
use TI if CAT<D@G. In the following we shall assume no overlap, T

Method 2,# Use an index register to control the number of words transmitted.
LCI, $1, 2.0
T, $1, DOG, CAT

Comments,

4. As many as 218 (262, 144) words can be specified this way.

k. The programmer should be cautioned that direct transmit type
operations with the J field referring 1o an index register with a
zero count field means the maximum count possible '

Method 3.W Use index instructions,
hd LX, $1, DG
. SX, $1, CAT
1LX, $1, DQG + 1.0
SX, $1, CAT + 1.0
Comments, -

d. Although data transmission is not the primary funection of index
registers, the timing here is not too different from that of the more
concise transmit instructions.

b, Two other ways are available: VFL load-store type operations and
floating point, (unnormalized) l.w/store. The latter'is efficient but
may turn onA§XPFPJ.nd. cator,

¢. The two "unused' bits ( bits 27 and 28) of the index register are available
for data transmittal, They serve no specific purpose otherwise,

Problernj.Z In‘[‘;er‘cl\a’nqe o‘lc €wo Worol—pa.lrs
Interchange the contents of full words DG, DPG + 1.0 with full words CAT,
CAT + 1.0,
Method 1,# Use immediate swap instructions,
SWAPI, 2, DQG, CAT
or
SWAPBI, 2, DOG + 1.0, CAT + 1.0
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Comments,
d. The swapping of each word-pair involves two memory fetches

followed by two stores into the 'fetche#? locations. Since the same memory
unit must wait 2. 2 micresecends between requests, the execution time
of swap instructions generally takes more time than transmit,
l). The J field in swap instructions is treated in exactly the same way as
in transmit instructions.
Method 2,# Use index instructions,
LX, $0, DQG
LX, $1, DOG + 1,0
LX, $2, CAT
LX, $3, CAT + 1.0
5X, $0, CAT -
SX, $1, CAT + 1.0
SX, $2, DQG
8X, $3, DOG + 1.0

Comments, » |
d. The execution time of this sequence is not heavily dependent on memory

‘delays, and Method 2 is expected to be faster than Method 1, Extensive
use of this type of coding is clearly limited by the entailing tedium,
Other alternatives are again, VFL and floating point L wF-ptores.

']). $0 may be used for any index purpose except address modification and
progressive indexing. In address modification a zero I.field
specifies no modification. |

Proble‘mﬁ, CQc’é.c. perm w‘éo.‘(:f.o n g{;t_ﬂ:/_é]_hmtp c"p ‘Fu.” Wor‘o/s.

Given quantities A, B,C,D, E, F, G, H,1, ia full words DG through DOG + 8,0,
Cyclically permute the information such that the new contents will be in the
sequence DEFGHIABC., ' ‘

Method 1, .
TI, 3, DOG, 17.0 "store A, B, C, .in $1, $2, $3, respectively
TI, 6, DG + 3,0 DOG _"[)EF:Q:-HIGHJ: :
TI, 3, 17.0, DQG + 6.0 "DEFGHT ABCL,

Method 2,

SWAPI, 8, DG, DQG + 1.0 'cyelic left shift one unit
SWAPI, 8, DGJG, DQG +1.0 "shift-another unit
SWAPI, 8, DQG, DQG + 1.0 "'complete the 3 unit cyclic left shift
Method 3,
SWAPIL, 3, DOG, DQG + 60 'place-ABE GHILEFALC
SWAPI, 3, DOG, DQG + 3.0 "complete the permutation
Methed 4, ' _
SWAPI, 6, DG, DOG + 3.0
Comments,
@. In order to permute N consecutive full words{é%q)(} thru DOG + N-—l) '

cyclically left K placegthe single itstruction

SWAPI, N-K, DOG, DGG + K
is adequate. If on the other hand N-K is a divisor of N, the situation is
equivalent to that of cyclically permiting right N-K places, and a back~
ward swap may be used:

SWAPBI, K, DOG + N-K-1 '"N-K divides N
If neither K or N-K is a divisor of N, no single swap instruction will suffice.
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Needless to say, if the number of full words to be swapped exceeds 16, the immediate
swap instructions should be replaced by equivalent direct swap instructions.

Problem14, Repfac ement of full words /71, 2 eros.
Replace the contents of full words DQG thrdugh DOG + 24.0 with zeros.
Method 1 W Set up a small loop using CB+ instructions.
LX, $3, XW3Z
AL Z, DDG($3)
CB+, $3, A: ...
B..i!. BEW, Bl ..
XW33 XW, 0,0, 25, XW3
Comments,
d. The address field of the BEW instructions and the refill field of
the index word are being used for identification purposes.
While the system is "waiting', the numeric equivalent of B,
being a branch, address, is in the instruction counter. During and
after the execution of the program, one can examine the refill field
of $3 to find out the source of the index information. These
identification tags can be useful debugging aids.
Bu It is good practice to use a decimal point in the value field of an
index word.

Method 2, : '

LX, $3, XW3BA

Z, 0($3)

‘CB-, $3, $n32

BEW $
XW3A XW, DOG + 24,0, 25, $
Comments,

. The use of $ to mean '"the location of this very instruction' is an efficlent
symbolic programming device. Instruction insertion and/or deletion
in the vicinity of a symbolic instruction containing $§, however, has to be
done with some care. For instance, the:insertion of a half word
instruction between the Z and CB- instructions without corresponding
change in the CB-~ instruction will cause branches to this new
instruction rather than to the Z instruction.
Method 3.w During a transmit instruction execution, storing of the Kth "sink"
word precedes the fetch of the (K + 1) th "source' word. This makes the following
concise program possible, :
2, DOG
TI, 12, DQG, DOG + 1.0
TI, 12, DQG, DQG + 13.0
Comments, -
a. The execution sequence is: R ‘ o +
zeros === C(DQ@G)--->C(DOG + 1.0), f_—_)
C(DOG + 1.0)=m=3 C(DOG + 2.0), etc.  CO(Q) maoms the codtunds el -
Probleml5, B_gplo.cemc nt of (solated Pu”-u/omj q towps bu Feros
Replace the following full words by zeros: DQC through DOG " 24.0, CAT
through CAT + 15.0, CHICK through CHICK + 34.0,




LINK 1
LINK 2
LINK 3

-4_'

Method 1.# Use chain indexing.

PRNID, JOE BLOWE, DEPT. 333
PUNID, J. BLOWE
SLC, 1000.0

LCI, $1, 3.0

LX, $2, LINK 1

Z, 0($2)

CBR+, $2, $ 32

CB, $1, $-1.0

BEW, $ :

XW, DQG, 25, LINK 2
XW, CAT, 16, LINK 3

- XW, CHICK, 35, $

END, 1000.0

Comments.

4. The PRNID, PUNID, SLC, and END pseudo instructions should be

included in every program intended for assembly. They are given
here as an example of correct usage.

b. This is a simple démonstration of the utility of the automatic refill

feature in the 7030.

Method 2,# Use chain indexingand an XF to terminate the sequence,

b.

Method 3.# Use transmit instructions.

LX, $2, LINK 1

Z, 0($2)
CBR+, $2, $-0,32
BZXF, $-1.0
BEW, $
LINK 1 XW, DOG, 25, LINK 2
LINK 2 XW, CAT, 16, LINK 3A
LINK 3A XW, CHICK, 35, $, 4
Comments.
(t. The use of the index flag to terminate a sequence is especially

important when the exact length of the indexing chain gs unknown

or variable. The number in the fourth subfield}&oncerns the

setting of bits 25, 26, 27 of the index word The number 4 means that
only bit 25 (XF) is a 1. .

Remember that the settnng of the index flag indicator is done Erior

to the refill,

Z, DQG
TI, 12, DOG, DOG + 1.0
TI, 12 DQG, DQG + 13.0

,T1;, 18, DOG, CAT

TI, 12, DG, CHICK
TI, 12, DOG, CHICK 12,0
TI, 11, DQG, CGHICK + 24,0

Method 4. Use transmit and index refill,

LX $2, XWaA

, CHICK

, $2, CHICK, CHICK + 1.0
, $2

, $2, CHICK, DOG

TL, 16, CHICK, <AT

=& N



XW 2, XW, 0.0, 34, XW2A
XWaA. XW, 0.0, 25, $
Comments,
4. The refill instruction operand is not limited to index registers.
It is possible for example to write
R, XWQ

and after its execution XW3 will have the same contents as XWO.A ..
Problem16, S bt ro.ction of value ‘PieIJ_s‘,
Subtract the value field of $1 from that of $14 and put the result in the value field
of $14, It is permissible to destroy $1 in the process.
Method 1 - Change the sign bit of the value field of $1, then add value fields.

: BBN, 17. 24, NEXT

NEXT = LVS, $14, $1, $14
Comments,

& In the LVS instruction the index registers to be added together must
all be different from each other. The J field, however, may refer to any
index register.

b. A"V+, $14, 17.0" could also be used as an instruction at location
NEXT.

¢. The conditional branch is being used unconditionally. The computer
nevertheless still makes the tentative asaumption that the branch
will be unsuccessful while preparing the BBN instruction. Some
time is lost if the assumption proves incorrect during execution time,

d. The program above is therefore efficient if the bit 17, 24 is
probably zero. If this bit is probably 1, BBN should be changed to BZBN.,

€. The machine preparation of the following conditional branch
instructions involves the tentative assumption that the branch will not
be successful’

All BB type of instructions (no exceptions)
All branches on indicator bits except the following:
- XF (11.38)

XCZ (11, 48)

XVLZ (11. 49)

XVGZ (11, 51)

XVZ (11, 50)

XL (11.52)

XE (11, 53)

XH (11, 54)
Note that branches on index results or index register conditions do
not involve tentative guesses. For example, CBRH does not behave

+ 1§3ea%&§egpg/§}t%qge ‘e ergfgagv}é&n‘ve instrustion cM1 2.00(1B4, 1)/ 1724 in /'/ac € o ',(4‘ BB"f'
Problemii. Tnterruption measwre, insTracTion
$IA contains the address 1000.0. It is desired that when a $TS interruption occurs
the instruction counter contents should be stored in the first 19 bits of location
2000, 0 and the main program ig to be continued. Write a code to effect this.
ﬁ‘_éfio_&a;'éic, 1000.0 + 4.0
TSFIX SIC, 200¢0; BR, 0
Comments,

d. The SLC pseudo instruction indicates the instruction TSFIX is to start at

1004. 0. " Since $TS is bit position 4 of the indicator register, a $TS inter-

ruption will lead to an automatic execution of the free instruction at
C($1A) + 4,0 = 1004. 0.




b.

a.

d.

.

The instruction counter is not changed during the execution of the
'"free instruction', hence the'branch relative to zero instruction will return
to the main program,

The interruption system is not disabled during the execution of the
"free instruction'. In fact during the interruption only the $IF monitoring
is relaxed temporarily to allew the fetching of the ''free instruction'’,
The SIC action is net performed unless the ensuing branch is successful,
and even then it is performed after the execution of the branch.
Instructions such as SIC, $+ 0.32; B, ANYWH will lead to a branch to
ANYWH if the branch is executed. The instruction counter will not have
time to alter the branch address before execution, '

Problem;t_ﬂ‘_.__ Sl'mu.,lcu(:l‘on o’# RENA ME insfru,c‘é/on.
Create the effect of the instruction RNX, $1, DOG($3). T

Do not simulaté the irdicator settings: T T

Method 1,
RNAME

STOX

LOX

X2

Comment

a.

SX, $2, X2 "save $2

SR, $0, 18.0

SX, $1, 0($2)

LX, $2, X2 "restore $2

LVE, $1, LOX

LR, $0, 17.0

LX, $1, DOG($3)

BEW, $

XW, 0
8, .
It would seem that the SR instruction could be altered such that the
refill field of $0 is stored directly into the address field of STOX,

and the use of $2waullbe avoided. This is not possible because in the
SR operation the refill field concerned is right appended by zero bits to
create a 25 bit value field. The latter is then stored. The STQX
instruction would be seriously altered if a direct SR operation is used.

Probleml.Q. Tra,nspos[{/on o‘)Ea Sqea re ma‘ér‘ix w:"ﬁ‘ll) 'FLLN word e/cmen‘és.

An N x N matrix has full word elements and is stored row~wise beginning at LQC,
Create the transpose of this matrix and store it in the same area.

Method 1. # Interchange rows and columns starting from the north and west borders
of the matrix, '

<TPPSE

SWAPI

XW2
XW3

XW+y 3
XW33

LX, $2, XW2; 8X, $2, XW22
LX, $3, XW3; SX, $3, XW3J3

'SWAPI, 1, 0($2), 0($3)

V+ICR, $3, N

CBR+, $2, SWAPI

V+IC, $2, N+1.; SX, $2, XW=3
V+IC, $3, N+1.; SX, $3, XW23
BZXCZ, SWAPI

BEW, $ -

XW, LOC + 1., N-1, XW2.2
XW, LOC + N, N-1, XW33
XW, 0

XW, 0
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N SYN, 100.0 "$7 100 x 100 matrix
LQC SYN, 32768.0 ""i{f matrix starts at 32768.0
Comments,

d. The program is written in such a way as to be reusable,

Otherwise the temporary index word storages XWIX2 and XW% 3 could

be omitted by a slight change of the program.
Method 2, Start from the upper and lower co-diagonals of the matrix and proceed
through the exchange of the north~east~most and the south-west-most elements.
TPPSE2 11X, $2, XW2; SX, $2, XW22

LX, $3, XW3; SX, $3, Xw23
SWAPI SWAPI, 1, 0($2), 0($3)

' V+ICR, $2, N+1,

V+ICR, $3, N+1,

BZXCZ, SWAPI

V+IC, $2, 1.0; 8X, $2, Xw2

V+IC, $3, N; SX, $3, XwB3

BZXCZ, SWAPI

BEW, $
XW2 XW, LOC+1,, N-1, XW22
XW3 XW, LQ)C+N N-1, XW3F3

XW22 XW, 0

XW 33 XW, 0

N SYN, 100. "size of matrix
LOC SYN, 32768.0 "starting location



2. Variable Ejeld Length Instructions.

Problem 2. 1. Cyclic bif shiftihg.

Cyclic left shift a full word in D@G by 7 bit positions.

Method 1.

L(BU, 64-7), DZG+.7, 7 "leave room for DOG thru DZG+0. 6
+(BU, 7), D@G

ST(BU, 64), DZG

Problem 2.2. Length of an unknown file.

Information of unknown length is written in consecutive 7-bit bytes
beginning at INF@. Its end is signified by the first appearance of a special
character consisting of seven binary 1's. Write a program to find the file

length (including the special character) in bits, and put the answer in the

value field of $1.
Method 1. Byte~by-byte compare.

LVI, $1, 0.0
LZAD L(BU,7,8), INFZ ($1)
K(BU, 7,8), ENDB

V+, $1, SEVN
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BZAL, $+1.0
B, LZAD
BEW, $
ENDB (7)DD(BU, 7,8),M1111111 “or C/achm/ 127
SEVN VF, 0.07
Comments, o ombor in s cwn natural radis ix convenicmt and

c.an AP (.LfJUWcr"Fu/ ol on c/ebtfyﬁin’g»

Method 2. Put end byte in $R with the compare and use progressive indexing.

LV, $1, VFIELD

LI(BU,7), 127 Yor (2) 111111
C@EMP  K(BU, 7)(V+I), 0.07($1)

BAE, $+1.0

B, COMP

L(BU, 7)(V-I), INF@($1)

BEW, §$

VFIELD  VF, INF¢

Comments.

a. The last VFL instruction serves mainly to perform the (V-I) operation,
4:0!‘ an aa"é‘ernn'é'iv& "{-"et:-An:' we se€ Me‘f:xoa/ 3.
thers.being-no-other- simple way-of doing:-the-same thing.

b. In binary unsigned operations the machine uses a byte size of 8
regardless of the data description, except for logical connectives.

STRAP inserts byte size 8 if unspecified.

C. A numeric bit address is signified by the appearance of a "point"

(whatever the radix). A number in the address-field without the "point"
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is satd to be an intéger address. The latter is acceptable to STRAP, but
STRAP.must translate it into the equivalent numeric bit address before the
program can be executed directly by the machine.
The bit address equivalent of an integer address is determined
by the enviromnment, which defines a subfield. The integer address‘is
non-zero bit For the
treated as an integer of the subfield (e.g., the  infeger 1 would occupy
thefrigh€:mogt_positipn),wthen the left margin,ef-the.subficld’ia“plnCQdfin
juxtaﬁosition_with the leading bit of the address field; leading to a bit-
address identification.
Where the environment seems to suggest moré than one sﬁbfieid;‘
théysmallest subfield 1s to be used.
o A VFL instruction normally implies a subfield of 24 iiﬁa. fin the
second instruction of the present program, the "immediate' nature, plus
‘the field length suggests a smaller (7 bit) subfield. The litter'is adopted

during the STRAP assembly as the defining subfield, and the bit address

\Equiﬁéleﬁt ig therefore

0. 1274277y = 0. 127#217)

» (127%211y.0 = 260096.0

The convenience entailed by the use of integer addresses is
, ' deeas
apparent: 260096.0 is not only difficult to obtain, but uiiiAnot contribute

to understanding.
Method 3. Use connective and branch on $RZ.

LVE, $1, VF1
LI(U,7), (2)1112111

CONT CTO110(V+I) (BU,7), 0.07($1)
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CNEP

BRZ, $+1.0
B,C@NT
V+, $1, VF1
BEW, $
SIC, INF@




Comments,

d.. The LVE instruction loads the magnitude of the dummy SIC instruction

b. CT0110 will lead to $RZ=1 if the memory field and the accumulator
field are equal. In reality the 7-bit memory field is left-appended
with a zero bit and is connected with eight bits left of the offset.

¢. The V+,$l, WORD instruction  in reality performs a subtract since

bit 2} of the SIC instruction is a 1,
The progressive indexing secondary operation can precede the (dds).
The CNOP forces the next two half—word-branc& instructions to be
packed in the same full word. This has a beneficial effect on
Instruction Unit 'timing. , ' ] /J
Probleml3, Deufeticn of '—"’.‘i".-.,’iy,_‘E.ﬁb_..._,b.éﬁ___!ﬂ._%,fl._e;.._
Given a string of 60 bits starting at FIELD, delete every 5th bit starting at
FIELD + 0. 04 and put the 48 bit result consecutively starting at FIEL., )
Assume that there is no overlap between (FIELD - FIELD 459) and (FIEL - FIEL+p;47,
Method 1. Lo'ad 5 signed bits and store 4 unsigned bits at a time.
LV, $2, VFIELD
LX, $3, VFIEL
L@AD L(B,5, 1)(V+I), 0.05($2)
ST(RU, 4)(V+IC), 0.04($3)
BZXCZ, LOAD
VFIELD VF, FIELD
VFIEL XW, FIEL, 12, §
Comments,
. BZXCZ is not considered to be a conditional branch instruction since
the instruction arithmetic unit knows the index conditions during
decoding time.
Method 2. Load 5 unsigned bits and store 4 bits with offset 1.

LV, $2, VFIELD

LX, $3, VFIEL
L@ADA L(BU,5)(V+I), 0.05($2)

ST(BU, 4)(V+IC), 0.04($3), 1

BZXCz, $-1.0

BEW,$
VFIELD VF, FIELD
VFIEL XW, FIEL, 12, $
Method 3, Other variations of the same theme. Instead of LOADA and LPADA +1.0
above, one may write any of the following instruction pairs:

L(BU,4)(V+I), 0.05($2)

ST(BU, 4)(V+IC), 0.04($3)

or
1L(B,5,2)(V+I), 0.05($2)
ST(B, 4, 1)(V+1,C), 0. 04(%3)
or

LWF(B, 5, 4)(V+I), 0.05($2)

ST(B, 4, 3)(V+1}, 0. 04($3)
Method 4., Remembering decimal information is processed in the accumulator in
4-bit bytes, it is possible to write just two instructions to solve this problem
under restrictions stated below. The decimal load operation behaves like
a decimal ''add to zero' operation.

® o
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L(DU, 60, 5), FIELD-0.01
ST(BU, 48), FIEL
or
LWF(D, 60, 5), FIELD-0.01
ST(B, 48, 4), FIEL
Comments.

a, The lead bits in the 5-bit bytes are deleted to five 4-bit bytes.

b. In the decimal load the 4-bit bytes will not be altered if they
contain what appears to be decimal information. Otherwise
carry propagation ana assimilation will occur. The byte
(1111)y, for instance, will become (0101)2 with a carry to
to the higher byte.

¢. The method fails if FIELD -0, 01 happens to be in a protected
meémory area, To avﬁid this difficulty, use say, L{DU, 59, 5),

FIELD instead.

Method 5
LX, $1, XW1; LV1, $2, 56
L(BU, 60), FIELD

STQRE ST(BU, 4) {(V + 1), 0.04($1), 0($2)
V-1 $2, 5
BZXVLZ, STORE
BEW, $

XW1 XW, FIEL, 0, $

Comments

d. The integer 5 in the V - I instruction means 5 units in the 19 bit

address subfield of the instruction half-word.



Method 6.

Comments,

A,

- 10, a =

Use logical connectives,
co011 (BU, 60, 5), FIELD "LF

cMo0101 (BU, 48, 4), FIEL, 1 "SF

The accumulator always uses 8 - bit bytes., Each memory
byte is left-appended by enough zeros to become 8-bit bytes
for the connect operation. In the LF operation true memory
bytes are expanded to 8-bit bytes; in the SF operation the 8-bit
bytes are truncated to the specified byte size (in the dds).

For operations Cabcd, CMabcd, CTabced (abcd can be any
combination of 0's and 1's) the result of the operation can be

seen from the truth ta."ble:
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Cabed: result goes to the accumulator
CMabed: result goes to memory

CTabcd: result discarded

Where m refers to a memory bit and a refers to an accumulater bit.
If m=1l and a=0, for instance, the result would be ¢. If the instructiens
for this case was C0010, ¢ equals 1.

c. Valuable b%t?oducta of the connective operations are, among others,
SRZ '"1s the result zero? Or, does the result contain no ones?" |
$A¢C "How many ones are there in the result?"

Sch_"Where is the leading one bit?"
‘The'CIabcd operation allows the user to examine thasa §i§#°d“¢§‘
without affecting the accumulater or the memory.

d. The only dcceptable entry mode for cmnnéctive‘opetations'is BU.

B,D, and DU are considered illegal by the STRAP assembler.

Problem 2.4. Bit reversalj

The 64-bit full word starting at WORD contains a binary message which
would be easily interpretable when every bit in the word is reversed
(W¢RD+0.63-bgcomes WORD + 0.0, etc.). Perform the bit reversal and put the result

in DR@W.

. Method 1. Load the entire word and store a bit at a time.

TI, 1, WERD, $R
LX, $1, XWl
©IX, $2, XW2
STOR ST (BY,1) (V+I), 0.1($1), 0($2)

CBH, $2, ST¢R
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BEW, $
Xwl XW, DRéffr, 0, $
Xw2 XW, 0, 644, $

Method 2. Load a..bit at a time and stotre the entire word,

LX, $1, xwl
LX, $2, XwW2

Lg L(BU,1) (V+I), 0.1($1), 0($2)
CBH, $2, L¢

ST (BU,64), DR@W

BEW, §
XW1 XW, WiRD, 0, §
XWZ XW, 0’ 64’ $

Problem 2.5. Removal of key words,

*

Given a string of 100 six-bit bytes beginning at DATA, remove any 4
consecutive bytes which match a given "key word" KEY. Pack the result

starting at ANSW.
Method 1.

LX, $1, Xwl; LX, $2, Xw2
LYDE L (BU,24) (V+I), 0.6(51)

K (BU,24), KEY

BAE, AE

ST(BU,6) (V+I), 0.6($2), 18

CAB CB, 51, L¢DE



b

ST (BU,18), 0(52) "store remaining 3 bytes
BEW, $
AE v+, $1, x18 "skip 3 more bytes
c-1, §1, 3 3 means 3.0 here
B, L¢DE
xwl XW, DATA, 100-3, $
Xw2 XW, ANSW, O, $
x18 VF, 0.18
Comments.,
a. The integer 3 in the C-I instruction means 3 units in a subfield ‘_of

18 bits (size of count field).

b. Re'!a.;bive.'y er‘r'ar_‘pree (:nféruc'ét.ans can Ze Fac/(eo/
to;etAycr‘ in the same line enable the pregrammer %
focus A:’s &’é{é'n*édan on f/e. l"es‘?—“ a‘F Me pro ramoth “6/&

c/e [qu‘ilf()} S_L-Lﬂ'.‘ e,
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Problem 2.6, - Sorting on the basis of subfields.

Given 16 consecutive fields beginning at DATA, each of the

following appearance:
{nlteger

The 4-bit subfield "A' may contain any number from 0 through
15. Assume all A subfields are different in content, sort on the basis of A
subfields and put the correspondent B subfields together in a string beginning
at ANS.
‘Method 1. Take advantage of the fact that there are exactly 16 A subfields

and that these subfields have different contents,
ASQRT LX, $2, XwW2
LOOP 1{BU, 4) (V + 1), 0.04($2)

* (BU, 24),VF20 "answer at offset 20

ST(B, 25, 1), 17.0, 20 "store into index register

value field
L (BU, 20) (V + 1), 0.20($2)

ST(BU, 20), ANS($1)

CB, $2, LOOP

BEW, $
XW2 XW, DATA, 16, §
VF20 VF, 20
ANS DRZ(BU, 20), (16)
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Comments,
a. If the A fields are not all different mis-stores will be made.

Method 2, A slight modification of Method 1.
ASORT2 LX, $2, XW2A
LOGP L(BU,4), -0.4($2), 20+ 2

+(BU, 4),-0.4($2), 20+ 4

ST(B, 25,1), 17.0, 20

L(BU, 20) (V + IC), 0.24($2)

ST(BU, 20), ANS($1)

BZXCZz, LOOP

BEW, $
XW2A XW, DATA + 0.4, 16, $
ANS DRZ(BU, 20), (16)

Comments,

a. The multiplication by 20 is replaced by judicious placement
of data in the load and add operations.

b. The following sets of instructions lead to the same results,

and other variations are possible.



{$2 has X in value field)

I(BU,4) (V + I), 0.04($2)

L(BU, 20)(V + I), 0. 20($)
ST(BU, 20), ANS($1)

CB, $2,LO0P

=1l1l.d -

($2 has X in value field)

L(BU,4)V + 1), 0, 24($2)

.

L(BU, 20), - 0. 20($2)
ST(BU, 20), ANS($1)

CB, $2, LOOP

($2 has X + 0.4 in value field)

L(BU, 4), -0.04($2)

L(BU, 20)(V + 1C), 0. 24($2)
ST(BU, 20), ANS($1)

BZXCZ, LOGP

¢. A negative numeric address is assembled by STRAP as its

two's complement, thus - A will be assembled as 2%%18-A.
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Method 2 , Repeco‘: ed compares torminimum.

VPC
STIX

KOMP

AGAIN

PACK

FIXMIN

XWwWi
Xwill
Xw2
XWI1A
VF1
VF2
ANS

’ ] b
Comments, ¢, Thiz method applics eveni

LX, $l, XW1; LX, $2, XW2
B, STIX

vV+C, $1, VF1

SX, $1, Xw11

L(BU, 24), 6(%$2)

K(BU, 4)(V+ICR),0.24($1), 20
RAH, FIXMIN

BZXCZ, KQMP

SF(RU, 24)(V+IC),0. 24($2)
RZXCZ, VPC

LX, $1, XW1A; LV, $2, VF2
L(BU, 20)(V+I),0. 24($2),
S{(BU, 20){V+IC),0. 20 ($1)
BZXCZ, PACK

BEW, $

LF(RU,24), «24($1), 24
SK(PU, 24), <. 24($1)
LF(RU, 24), 9.16

B, AGAIN

XW, DATA +0.24, 15, XW11
XW, 0

XW, DATA, 14, $

XW, ANS, 16, $

VF, 0.24

VF, DATA +0.04
DRZ(BU,ZO)}(I())

fall the A fields arenot different cn

"outer loop, restart with changed $1
"save $1 contents for later refill use
"load assumed minimum

"inner loop, test against assumed min
"usually successful

""'store proven minimum

"skip A field
"gstore sorted B field

"fixup routine,load new minimum
""store old quess in its place
"position new min. in accumulator
"return to inner loop

'"'will be changed during computation

content.

t. The original information will be permuted in the program. If this is
deemed undesirgable, one could transmit the information to a
temporary area and do the permutation there, leaving the original

Method 3,

LODE

TEST

information unaltered.

The code is written under the reasonable assumption that the
provisional minimum stands a good chance of being no larger than

an average entry.

For the sake of clarity the packing of the sorted fields is done
separately at the end. By using an extra index register this
patking action can be performed whenever a new proven minimum if found.

Re,uua,{-‘ecf
LX, $1, Xwi

LK, $2, XwW2

LX, $3, XW3; SX, $3, Xw33
L(BU, 24), 0($1)

LF(BU, 24), 0($2), 64
KF(BU, 4), 0($2), 20

BAH, SWICH

KF(BU,4)(V+ICR), 0.24($3), 20

BAH, FIXMIN
KF(BU, 4), -.24($3), 64+20

compares for both ma ximum and Menimum,

"test against assumed minimum

""test against assumed maximum



AGAIN

PACK

LPAD2

SWICH

FIXMIN

FIXMAX

Xwl

Xwz2
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BAL, FIXMAX
BZXCZ, $3, TEST

ST(BU, 24) (V + 1), 0.24($1)
ST(BU, 24)(V - 1), 0.24($2), 64
V+C, $3, VF3; CB, $3, LODE-1
LV, $1, XWI11;LX, $2, XwW22
L(BU, 24)(V+I), 0. 24($1)
ST(BU, 20)(V+IC), 0.20($2)
BZXCZ, LPAD2

BEW, $

SWAP, $L, $R

B, TEST

LF(BU, 24),-0.24($3), 24
ST(BU, 24), -0.24($3), 64
ST(BU, 24),9. 40, 24

B, AGAIN

LF(BU, 24), -0.24($3), 64+24
ST(BU, 24), -0.24($3), 64
ST(BU, 24), 8.40, 64+24

B, AGAIN

XW, DATA, 16, $

XW, DATA + 0.360, 0, $

"gtore minimum

"store maximum

"new minimum

"mew maximum



XW3
XWwW33
Xwzaz2
Xwll
VF3
ANS

Comments, d,

Problem 2.7,

- 13.a -

XW, DATA + 0.24, 14, XW33

Xw, O

XW, ANS, 16, $

VF, DATA + .4

VF, 0,24

DRZ(BU, 20), (16)

This method applies even if the A fields are not all different
in content. |

Sorting into reserved table areas.

Given the same field description as in Problem 3 above, as’

well as reserved table areas beginning at TABL 0, ..., TABL 15, e_a.ch'

of which is capable of holding the entire string (in this case 400 bits). Put

the proper B fields in successive entry areas of the TABL areas as dictated

by the contents of the A fields., Assume the A fields are not all different.

Method 1

LOAD

L{BU, 4)(%1), 0.24($2), -18

LVE, $3, MTABL($1)
L(BU, 20), -0. 20($2)
ST(BU, 20)(V+I), 0. 20($3)
SVA,$3, MTABL($1)

CB, $2, LOAD
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Xw2 Xw, DATA, 0,8
MTABL SIC, TABLO; SIC, TABLI; SIC, TABL 2; SIC, TABL3 '"Master Tabe
SIC, TABL#4; SIC, TABLS5; SIC, TABL6; SIC, TABL7
SsIC, TABLS; SIC, TABL9; SIC, TABL10; SIC, TABLI11
SIC, TABLI12; SIC, TABL13; SIC, TABLM;?’FABLIS
Comments.
a. The "master table'" area is updated constantly to avoid conflicts
in the storing of entries with equal A -fields.
b. The SIC operation by itself is meaningless as an instruction.
However,tspecifies a 24-bit address, and this fact is noted
by LLVE and SV A instructions.

Problem 2.8, Purchasing List Arithmetic,

A purchasing list consists of a string of fields, each of which

has the following structure

AIBl e | v ]le | ¥ | @

Subfield A is an 8-bit byte consisting of 1's,

Su_bfi'eld‘B has 2 8-bit bytes (itezﬁ no.).

Subfield C has 6 8-bit bytes (coaed name of product).

Subfield-D has 3 8-bit bytes, and contains thelno. of units of the product
desired in decimal (DU, 24, 8).

Subfield E has 6 8~bit bytes, and contains the unit price in cents of the
product in decimal (DU, 48, 8).

Subfield F has 12 8-bit bytes, and is blank (to be the total price field )
Subfield G is an unknown number of 8-bit bytes. It contains the remarks
concerning the product and/or the entire purchase. The first 3 8-bit bytes

of the subfield G in the last "product field" contains the 8-bit
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IQS expression END. None of the 8-bit bytes in G are a11. 1's.

If the complete string begins at LIST, write a program to fill in the total
price for each product in (DU, "96'", 8). For simplicity of programming
do repeated additions instead of decimal multiplications. Create the grand

total also, and put it(DU, 11128" 8) in the pseudo accumulator 13.0 through

14,0 ($RM and $FT).

Method I
Z, $FT
'LCON ‘LCV(DU, 24, 8)(V+I), 0.24+0.48($2), 128 - 18 "$R cleared too
L.C, $1, $L; BXCZ, NEXT '"binary count field
ADD (D, 48; 8), -0.48($2)
CB, $1, ADD
NEXT ST(DU, 64,‘8)(V+I), 0.64($2), 16 'store total
‘ST(DU, 32, 8)(V+I), 0.32($Z.)
M+(DU, 64, 8), $FT ""update grand total
L(BU, 32), TESTW
KF(BU, 24), 0($25 ""test for end of string
BAE, LAST
KOMF KF(BU, 24), 0.8($2) "test for beginning of new field
BAE, KOMF
MORE V+1, $2, 1.0 "bypass 64 more bits to new D field

B, LCON



LAST
TESTW
XWwW2
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L(DU, 64, 4), $FT

ST(DU, 64, 8), $FT

ST(DU, 64, 8), $RM, 64

BEW, $

(I0SQ)DD(DU, 24, 8),ENDQ
(8u,8,3),

DD(2)11111111

Xw, LIST+0.72, 0, $

"end mark for string

'""beginning mark for field
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Comments,

a. Decimal quantities with more than one digit must be converted into
binary before a binary arithmetical operation (say index count down) is
attempted.

b. It 18 convenlent to load one test quantity to be compared against
many. This eliminates a number of memory fetch operations. In the present
program two kinds of tests are performed, but the test quantities can be made
adjacent to each other, and loaded simultaneously, Note the KF's cannot be
replaced by simple K operations.

c. The 4-bit bytes are expanded into 8-bit bytes in the final store
of the grand total.

Problem 2. 9. Effective Address Creation,

Find the effective address of the instruction beginning at the
19 bit address INST without using the LVE instruction. Put the answer in
the value field of $1.
Method 1.

EFFADR L(BU, 32), INST

KFI(BU, 4),(2)0000 "agsume 4 bit index field
BAE, NOX ' ""assume indexing needed
ST(BU.4),SV+0. 19 "store in J field of SV instruction
sv sv, $0, 17.0 "index value field now in $1
B, TEST
NpOX Z, 17.0
TEST KFI(BU, 2), (2) 10,4 "test if floating point

BZAE, NOTFP



FP

MPLUS

" NOTFP

VFL

N@TVFL

= 15,4 -

~(BU, 32-18), $R. 32+0. 18
M+(B, 25,1),17.0, 32-24
BEW, $

KFKBU, 4),(2)1000, 4
BZAE, NOTVFL

«(BU, 32-24), $R.32+0, 24
B, MPLUS

KFKBU, 3), (2)100, 4
BAE, KTYPE

KFI(BU, 9),(2)111000000, 4
BAE, KTYPE

KFI(BU, 5), (2)10000, 4

"floating point measure

25 bit add

"test if VFL left address

"VFL measure

"test if K type indexing, CB, BIND

"test if K type indexing, BB

"test if immediate indexing



BAE, IMMED
B, MPLUS

KTYPE  ST(BU,1), KSV 0.22

KsV sv, $0, 17.0

KMINUS -(Bu,sz-19), $R.3240.19
B, MPLUS |

IMMED Z, 17.0

B, RKMINUS
COnmént§.
a. iThé affective address &

“otherwise 4 bit I field assumptien valid

119 bit address

J,m‘(, ( agi.éc've) _
8 thg{bum of theAnumeric address and the

o I an nsTraction the numerte address is abbrevioted inta the numeric address ‘(:cflc/:
value field of the specifited index register.ﬁ‘The size of the numeric address

fleld is deteruined by bits .

24 through .27 of the 1nst:uction.

1000 means a 24 bit numeric address field;

;XXIOfneans an 18 bit numeric address fleld)

*dchérﬁise a 19 bit numeric address field is meant.

Ihq 1netruction way allow no

indexing at all (immediate indexing instructions),

nay allow a one-bi; K-type of indexing specification (CB,Btﬁd. and BB) but

| gehérally allows a 4-bit I-type indexing specification.

If bits 23-27 havel0000: no indexing allowed;

If bits 25-27 have 100: K-type (CB, Bind);

If bits 19-27 have 111000000: K-type (BB);

ctherwise: I-type.

b : The reader should write

down the bit combination of several

instructions and follew the program closely.

c. In many instances the symbolic instructions should be written for the

cenvenience of the programmer

length 32-18 is evidently 14,

. In the instruction FP, the field

but clarity is gained by retaining the longer |



1€a

expression, The same is true for the address field of TEST. The

extra assembly time is trivial.

Problem 2.10. Fetch (p,q)thc element of rectangular matrix.

2% MxN

§
Given a matrix A ofA(Ii rows and N columns), stored row wise in consecutive

full words beginning with A4 in location MTRIX. Given also are binary

inéegers P, q in the leading 18 bite of $1 and $2. Put the element qu

in $R.
Method 1.
LYCATE V-I, $1, 1.0 "p-1 generated
L(suU,18), 17.0 "$1
* (BU,18), ENN "'result has 20 offset
ST (BU,25), $3, 207 "(p=1)*N
v+, $3, 18.0 "(p+~1)*N+q
V+, §3, VF
L(BU,64), 0(83)
BEW,1$
ENN DD (BU,18), N "N is assumed defined elsewhere
VF VF, MIRIX-1.0
Comments .
a. The element A ., is in MTRIX+(p~1)N. The element qu is therefore

pl
in MTRIX+(p-1)N+(q-1) or MIRIX-1+(p-1)N+q.

b, After a binary VFL multiply the answer is placed in the cleared

accumulator with offset 20.
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Problem 2.11. Simulation of 2-bit addition.

If P,Q,R each define a two-bit non-overlapping field, using logical
connectives only, create the lowest two bits of the sum C(PHC(@Q)

and put it in $R, ( C(X), means contents of X).
Method 1.

c0011(BU,2,2), P

c0110(8U,2,2), Q

CM0101 (BU,2,2), R

c0000(BU,2,2), R "or any other address
c0011 (pU,2,2), P, 1

¢0001 (8v,2,2), Q, 1

cMO110(BM,2,2), R

pommmnts. j
bbbl A ‘ma”’5°“e

a. This 1is actually aAsimulation of the parallel addition in binary

digital machines.
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Problem " 2. 11. Traneposition of r‘ec'{'cunq_u,,a,r motrix
Given an M N matrix of floating-pelnt words Gtarting at" Iﬁé‘aﬂon MATRX,

with the elements stored row-wise, Create the transpose of the matrix,

also stored row-wise,occupying the same area. Keep the number of
temporary storage locations small fer this purpese.

Analysis: Counting from the (1,1) element , if MATRX begins the storage area
for a PxQ matrix, then we may say the location MATRX + L contains the (r, 8)-
element, if

L=(r-1)*Q + (s-1) P, s€Q. ,
The transpose of an MxN matrix is an NxM matrix. The (i, j)-element
of this NxM matrix is in location, say, MATRX + K
K=(1~1)*M+(j-1) SN, M
The contents of this location, however, has to be fetched from the original ,
MxN matrix , the (J,1) -element. The fetch location is, say MATRX +K', with
K'=(j-1)*N+(i-1)
= integer remainder of (K*N)/(M*N-1)

The algorithm is therefore to save one element (the lead element) from
location MATRX +K, fill the latter with the contents of MATRX+K', then fill the
latter with the contents of MATRX+K" etc., until the fetch location is the same
as that of the lead element. The last store is performed with the lead element
to complete the permutation cycle. As the cycle invariably has fewer elements
than the matrix itself, care must be exercised to avoic*altering elements which
have already been permuted. This can be done by using flag; bits as identification,
at the same time ensuring that the lead element of every cycle has the
smallest (or alternatively largest) address possible. The method is essentially
that of M.F. Berman, J.A.C.M, 5, 383(1958). For similar techniques see
P.F. Windley, Computer J.,2, 47-48(1959), G.Pall and E,Seiden, Math. of
Computation, 14, 189-192(1960)

For square matrices each of the cycles have the only one (diagonal)
or two (off-diagonal) elements, and there exitt methods much more efficient
than the present one. Rectangular matrices offer few direct hints about the
nature of the cycles, theugh except that the first and last elements are
unaltered by the transposition process. ‘

Method 1, Use V- flag for permuted elemeénts., Assume the matrix elements .
do not contain V-flags originally., Advantage is taken also of $VF interruption.
TRANSP BD,5$+0. 32

LV, $1,8IA ¥ $1A assumed to have meaningful value

v#,$1,37.0

SVA, $1, SWAP2

SWAPI, 1,0($1), INST

T1,1,$IND+1.0,IN.§T+1. 0

CMILUL(BU, 1), $IND+1. 37

LVI, $1,0
LI(BU,18), M
*I(BUc 18)‘30 N
-1(BU, 18),1,20 0M*N-1
ST(BU, 25),20.0,20~7 I at full~word position of $4 value field
LC,$1,20.0 #zopy into $1 count field
CB&, $1,BZBZ
BEW:GNOP; NOP "to ensure CCYCLE will start at full word

NUCYCL i.x $2,1



TI,1, MATRX($2), TEMP " file away leading elemeht of cycle
CYCLE L(u),18.0 "location of old element
*[(BU,18), N, 128-18 *answer 18 at 20 offset
/(BU,18),20.0,20 . Vdivide by M*N-1
L(BU, 18), SRM+. 60~,18,128-18 " location of new element
LX,$3,5L
LWF (U), MATRX($3) “if operand has V flag, interruption ensues
CMI1111(BU, 1), $SB+0. 7 " oreate V-flag
ST(U), MATRX($2) v store into vacated location
1X,$2,19.0 "new address modifier
- B,CYCLE "endless loop dependent on $VF exit
ENDCYC TI,1, TEMP, MATRX($2) “transmit lead element of cycle.It has a Vflag
BZBN BZBN, MATRX+0, 63($1), NUCYCL
CB&, $1,BZBZ
SWAP2 SWAPL, 1,0, INST
T1,1,INST+1. 0, $IND+1.0
BEW BEW, $;CNOP
INST B,ENDCYC;NOP
TEMP DRZ(N) 1
MATRX SYN (BU 24),1000, 0 "user specified starting address
M SYN, 20 "user specified, No. of rows
N SYN, 5 "user specified, No. of columns

Comments,
d. To avoid conflicts, all but the leading members of each permutation

cycle are given a V-flag during the permutation, and the end of cycle is sensed
by the fetching of an element already with a V-flag. The BZBN instruction tests
elements of the entire matrix proceeding from the lowest addresses. If an
element has a V-flag, it must have been an element of some previous permutation
cycle. The flag is removed and test 1s made on the next element. If an element
is encountered without a V-flag, it has not been in any permutation cycle before,
and it must be the leading element of & new permutation cycle. The first and
last elements of any rectangular matrix are not affected by permutations.
b. The judicious use of interruption to exit from an otherwise endlgss
loop can lead to much saving of programming and execution time,
Usually, however, interruption should be done with the help of
the master-control or other supervisory programs, to ensure that
other interruptions are also handled properly. Here one entry of the
interrupt table has been changed at the beginhing and restored at the end.
€. There exist numerous ways to improve the present program. In
particular the replacement of VFL operatdons by proper floating point
counterparts may be recommended.
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3. Floating-Point Arithmetic.

Problem 3. 1. Separation into Integer and Fraction Parts.

The floating point number N in location DOG has a small (  48)
exponent magnitude. Create two normalized floating point numbers I, F in
CAT, CAT + 1 respectively such that I = an integer}

(F‘ < 1.0 sign of F=sign of N;j

andI+ F = N,

Method 1.

DL(U), DOG

D+(U), X48

ST(N), CAT

SL@(N), CAT + 1.0

BEW, $
X48 DD(N), 0..0X48 : "binary exponent of 48
Comments

a. The nurhber X48 forces the fraction of N to shift right the
proper amount.

b. For better understanding, the reader should illustrate the
program for himself using, for example, N = 2,5,

c. In dealing with normalized numbers, the (N) modifier is needed
only for arithmetical operations which may otherwise generate an unnormalized
result. The (U) modifier means ""do not perforrn normalization', not
"denormalize'. L(U) and ST(U), when applied to an operand which has already

been normalized will leave the number still normalized.
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Problem 3. 2. Integer Part of Floating-point Word.

The floating point number N in location DQG is defined as in
the previous problem. Put the lowest 18 bits of the VFL ineger corresponding

to I into the first 18 bits of the count field of §1.

Method 1
DIU), DOG
D+(U), X48
ST(BU, 18), 17.28, 68 "$1.28 is also acceptable
BEW, $
X48 DD(N), 0.0X48 "binary exponent of 48
Prqblem 3.3, Polynomial Evaluation,

Evaluate the polynomial

20

P(x) = Z apx"

k=0
where x is located in X, aj is located in A + K, K = 0. 0(1. 0)20. 0,

Store the result (single precision) in POLY,
Method 1, Term-by-term evaluation,
PILYN (U}, A

ST(N), POLY

L(U), X

LX, $2, Xw2

B, STOR

LOAD L(U), XK



STOR

Xw2

XK

*(N), X

ST(U), XK
*(N), A($2)
+(N), POLY
ST(U), POLY
CB+, $2, LOAD
BEW, §$

XW, 1.0, 20, $

DR(N), (1)
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"new power of x

"new partial sum
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commgnta.

‘. This is a relatively inefficient way to evaluate a polynomial but

the technique appliea to any finite series,

Method i.: Use the nesting technique.
o pfx) = (...((120 x+alg)x+...)x+ao.

LX, $2, XW¢RD2 '
L@, A+20.0

MURTI  *(N), X
+(N), A($2)
CB-, $2, MULTI
ST(U), POLY
BEW, $

XWERD2  XW, 19.0, 20, $

Comments.

& The nesting technique for polynomials is tyfice as fast, more
accurate, and requires fewer instructions than the term-by-term

method,

Method 3. Use nesting technique and double operations for extra accuracy.
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IX, $2, Xwa
L(N), A+20.0
DMULT D*(N), X

D+(N), A($2)
SRD(N), 8.0
CB-, $2, DMULT
ST(U), PGLY
BEW, $

XWa Xw, 19.0, 20, $

Comments.

a. The double operations are essentially no slower than the

corresponding regular operations.
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Pretlum 3.4, Mo&%g&"'fwezo&w rade.
Evalwidy tha ‘mw&
| L= 5114 dx
by o el Trogescidal e
fb{oo dx = h [4@ wh) + f (as3hh) + 4 -F(ﬂ+V\L\_-h/z):l

o

w{’\fw h:—.Qa—a)/n, Usre n=20 {an Mdmrm
Iflgg“e\ml?"l, GYTIIY Summ‘rmj L&o(o v\r‘v}e e ‘vg()ck) o vadustion maide ‘1&1[90‘) |

MTZR  LX,$4, xwi
Lw,B
~(\), A
N)
é”g”ﬁu),)z !
+ (N), A
B, ST@R
Lpop LW), Temp
+(N), H .
STER ST(w), TEMP w‘;&_ﬂl Tewmp
x (W), 2.0 " ov $L
X (N, 8.0 Y omewr méﬁm,ﬁ vakeor
M+ ANS
CB,%1,L@ar
BEW, $
Xwi Xw, 0.0, 20,%
A D (N), 0.0 " Lower Lk
B PP (N), 0 2.0 " P Lwnvt
N DD (W), 20,0 " wo. of dhrips
ANS PRIV, (1)
TEMP DR(M), W
H PRIN), D)

" or i2%.0
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Comments

a, The E # I instructions may be used for multiplying the floating-point
number in the accumulator by powers of 2. They are more efficient than
multiplications or divisions.

b. For a floating point instruction the address 8.0 or §L. means
the leading 60 bits of the accumulator plus the lowest 4 bits of $SB.
Method 2. Separate the function evaluation from the summing action
in the loop.

MTZR2 X, $1, Xwl
L(U), B
-(N), A
/(N), N
ST(U), M
E - (u),1
+ (N}, A
B, STOR
LOOP L(U), TEMP
+(N), H
STQR ST(U), TEMP "new x
B, FUNCT "branch to f(x) evaluation
RTURN M+(N), ANS ''new partial sum
CB, $1, LOOP

BEW, $



ANS

TEMP

FUNCT

Xwi
A
B
N

Comments.
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DR(N), }51)
DR(N), (1)

DR(N), (1)

*(N), 8.0 "function evaluator

%*(N), 8.0
B, RTURN

XW, 0.0, 20,$

DD(N), 0.0 "lower limit
DD(N), 2.0 : "upper limit
DD(N), 20.0 "no. of strips

a.. The present program requires two additional branch instructions

per loop, and is slowé: than that of Method 1. What it loses in speed is offset

by the gain in clarity, however, and if a new integral is to be evaluated, only

the lower portion of the program needs to be replaced.

Problem 3.5.

Continued Fraction Evaluation.

Evaluate the continued fraction

F=x

2
-2 with x = 1 /4.

3q



i
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Method 1.
CONF L{U), X
%, X
ST(U), TEMP Mx %k 2
LX, $2, xXw2
1{U), NUM 139
LOOP R/N, TEMP "X*X/39
ST, TEMPI
L(U), NUM
- TWO
ST(U), NUM
+, TEMPI "37-X#X%/39
CB, $2, LOLOP
R/, X

ST(U), TEMP2

BEW, $
X DD(N), $PI/4
NUM DIXN), 39.0
TWO DD(N), 2.0
XW2 XW, 0.0, 19, XW2
TEMP DR(N), (3)
TEMPI SYN(N), TEMP+1. 0

TEMP2 SYN(N), TEMP+2. 0



Method 1.

CONF

LOOP

NUM
TWO
XW2
TEMP
TEMP1

TEMP2

ST(U), TEMP
LX, $2, XW2
L(U), NUM
R/N, TEMP
ST, TEMPI
L(U), NUM

-, TWO
ST(U), NUM
+, TEMP1
CB, $2, LODP
R/, X

ST(U), TEMP2

BEW, $

DD(N), $PI/4
DDXN), 39.0

DD{N), 2.0

-Z23 -

Xw, 0.0, 19, Xw2 .

DR(N), (3)

SYN(N), TEMP+1.0

SYN(N), TEMP+2.0

My ek 2

II39

"X*X/39

"37.X%¥/39
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Comments,

a. The most efficient way to evaluate a continued fraction
is té start from below.

b. The R/N instruction should not be confused with R/{N).
The reverse divide feature in the 7030 is convenient for continued
fracfions.

c. Where the dds is not explicitly given in an instruction,
STRAP will insert the dds of the right most symbolic address. If the

latter has no meaningful dds, the next-to-the-right most symbolic

_addre'ss- will be used, etc. If the collection of symbplic addresses for

the instruction is exhausted without a proper dds having been found,

'STRAP will use the (N') modifier for instructions which are unam-

biguously flpating point in nature. The exception being E+I and variants.

An operation which caild be either VFL or floating point is assumed VFL,

Problem 3.6, Scalar Product of Vectors,

Find the following vector scalar product

16
(a,b) = E akbk
k=0 .
where a) is in A + K, bk in B+K, K=0. 0(1.0)16.0. Put the result in C.

Method 1. Use LFT, *+,

LX, $3, SXTEEN
L(U), A
D*(N), B

LOFT LFT(N), A($3)
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*+(N), B($3)
CB+, $3, LOFT
SRD(N), C
BEW, $
SXTEEN = XWw, 1.0, 16, $
‘ Comments
a. The *+ operation is ideal for vector énd ma trix products,
b, The LFT operation is a "memory to memory' operation,
;sin’ce?$' FT is a-bonafiag memory location, Since it does not involve
the *e_x_ecution aﬂthxnetic unit (the _E-box) and since the temporary
_,1_ﬂd;c:ja;£0f $MOP is tu;ned on only for E-box«to-memory operations,
$MPP is turned off by LFT.
c.“ While‘th.e LFT operand is on its way to $FT (location 14.0 in
‘memory) it is alsol'irna;c_ie a';railable in the look-ahead to facilitate the *+
‘ ‘-q‘pér‘ation. “This "forlwarding" operation allows thé %+ operation to proceed
‘before $FT is actuélly loaded, freeing the program from memory access
delays due to the atoré and a subsequent fetch (for the *+). Forwarding is
-élways done when i.nformation needed for the execution arithmetic unit is

known to be available in the Lookahead.



- 25.a -

Problem 3.7 Cube Root

Program to compute the cube root of a normalized floating

point number N by the following iteration formua:

| X3, +2N [ 3N/2
X = Xp———m— =X 1jz+~—m~—~}-
K
kel 2x>, + N k 2X> + N

Use it to compute the cube root of 8, with XO = 2.5. Ten iterations will
give full-length accuracy except for the round-off error in the. last iteration,
Method 1.
CBRT L(U) , EN
E-1,1
+(N), EN
ST(u), TEMP "3N/2 stored in TEMP
LX, $2, XwW2
L, GUESS
LOOP ‘ST,XK

¥, XK

+, EN 12 X %% 3 4+ N
R/, TEMP
+, HALF

*, XK "new XK created



XW2
HALF
ANS

TEMP

XK

'-25.3..1 -

CB, $2, LOOP
ST, ANS

BEW, $

XW, 0.0, 10, XW2
DD. (N), 0.5

DR (N), (1)

DR (N), (2)

SYN (N), TEMP + 1.0
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EN DD(N), 8.0

GUESS DD(N), 2.5

Comments,

a. Thié is a third order process: if X, has a relative error&,
one iteration later Xyl has a relative error of CG’. Here C=2/3.

See E.G, Kogbetliantz, IBM Journal of R. and D., 3, 147-152(1959).

.P'xfoblem 3. 8. Nbx_‘maiized floating-point vectors from VFL data.

' Given a stting' of 25 fields beginning at STRNG. Each field contains

an integer with the description (D, 48,6). Write a program to:

ai, _Clhange' each number Ny into a normalized fleating~point
‘number Fk'

b, Create the sum of the squares of Fy, then take the square root.

d. Divide each Fy by the square root, and store in FLOAT through

FLPAT+24, 0.

d. The suxﬁ of the squares of the resultant set of floating-point
numbers should now be unity (barringlc\‘small round-off error). The vector
compased of the set is said to be normalized. Note vector normalization is

not relat ed to the machine hardware normalized floating-point arithmetic.

Method 1.

 N@RMV  Z, SUM
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LX, $1, Xwl
IX, $2, XW2
L@@P: . LCV(V+I)(D, 48,6), 0.48(31), 68 |
EPLUS E+I, 48 “"number is now unnorm, 'FP integer
ST(N), 0(82)
*(N), SL
+, SUM
~ 8T(U), SUM
CBR+, $2, LGOP

SRT, RZDT
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LOGP2 L(N), 0($2)
/, ROQT
ST(U), 0($2)

CB+, $2, LOGP2

BEW, $
Xwl- XW, STRNG, 25, $
Xwa XW, FLOAT, 25, $
SUM DRZ(N), (1)
ROGT DRZ(N), (1).

Comments,

a. A word full of zero bits is being used as the "zeroth partial sum''."
Note that a sequence of zero bits is only an "order of magnitude " zero, not
a'true zero'. A true zero is approximable by a number with what looks like

#)

a very'\large negative exponent. An order of magnitude zero has a meaningful

cxponent, and can be interpreted as a number with no significant fraction digits.
In addition - type operations, an order of magnitude zero, by

virtue of its e xponent, may force the fraction of a nonzero number to shift

towards the right before the addition. In the present case the nonzeros all

have larger exponents and the use of order of magnitude zero to start a

sum will not lead to difficulties.

b, The EPLUS instruction could be removed from the loop without
causing any damage; the errors introduced would exactly cancel in the
normalization process,

c. The leading instruction is not really needed unless the program

is to be re-used in the machine,

d. The DRZ pseudo-operation leads to the reservation of strings of
zero bits. ‘
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Problem 3.9.  Double-Precision Compare

The accumulator contains a double precision floating-point quantity.
Another double precision floating point quantity is stored in two full words,
~ with the more significant part in M1, less significant part in M1 + 1. Compare

the two double precision quantities and set the appropriate indicators $AE, $AL

.an.d‘ $AH.
Method 1.. Full-scale double-precision subtract followed by a test on the resuit.
MK(DMP ST(ﬁ), Al ‘ ""'save accumulator
SLO {U), Al + 1,
DI(U), Al + L "dpuble -precision subtract
D-(U), M1 +1,
D+(N), Al
D-(N), Ml
L(BU, 3), $RLZ "$RLZ, $RZ, $RGZ fetched
ST(BU, 3), $AL "$AL, $AE, $AH stored
DL(U), Al + 1, "restore accumulator
D+('U), Al
BEW, $
Al DR(U), (2)
Comments,

a. The temptation is strong to compare the high order parts first,
and accept the indicator settings unless equality is indicated, and in the latter
compare the lower order parts. This is not correct because the compare
instruction is based on a floating subtract operation rather than a bit-by-bit

comparison. For example: if (Al, Al+1) and (M1, M1+1) have
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L E+1,1100---;—--o[+j [E+1-48]000-----0[+ respectively

mpen a comparison between Al and M1 leads to $AE=1
(the first 48 fraction bits of the subtraction result being zero)
and a straightforward compare of the second order parts will
lead to the erroneous conclusion that (A1, Al+1,) is larger
than (M1, M1+1,), whereas in reality (Al, Al+1.) represents
(1-2749) x oF
quantit
(1/';) x 2Bl o g0
the difference being noticeable at the fiftieth bit.
b. Aside from the above considerations the program presented does not
use conditional branches, eliminating the need for wrong.
branch recovery, ‘
C. The present program is applicable even if the lower order parts
are slightly off standard (say with an exponent only 46 units
lower than the higher order connter parts).

but(Ml; M1+ 1.) represents the larger.

Method 2 Compare high order parts. If they compare ' al'', perform
the double precision subtraction te ascertam the result.
DKOMP2 ST(U); Al  "'save accumulator
SLO(U), Al+1, :
K(U), M "single precision compare
BAE, DPSUB "wsually unsuccessfic
END BEW, $ "end of program
DPSUB DL(U), Al+1. - "full-scale double precision subtract
' D-(U), Mi+1. '
D+(N), Al '
D-(N), M1
L(BU, 3), $RLZ "$REZ, $RZ, $RGZ fetched
ST(BU, 3), $AL "$AL, $AE, $AH stored
DL(U), Al+1 "restore accumulator
D+(U), A1l
B, END
Al DR(U), (2)

Comments, L
d. The present program is free of the objections outlined in Method 1.
It is:fast if the higher order parts decide the outcome (as is usually
the case). Very effective for normalized double~precision
numbers, it may yield erroneous answers if one of the high order parts
has a zero fraction, as seen in the followmg case. »
(AL, A1+1.) [ E+3+48% 0 " I+| "E+j ] 0° TR
(M1, M1+1.) E 111mmmm=1] +| | E-48 1--~---1{+
result by present program =(Al, A1+1)) larger, because of the 48
: — unit difference in the exponent. Correct answer should lead to
(6/1/1, MI+1.) larger since the exponent difference is not 96 units, and
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(li-Je.)*ZE is clearly larger than o ET48
a. Even for a program with many different branches, it is
convenient to end at the same place as a debugging aid. Any other
instruction counter setting at the termination of computation will then be
an error signal,

Problem 3,10, Integer Part of LogzN.

N is a positive floating number in DOG, and log,N can be
written as an integer plus a positive fraction. Find the integer and put
its magnitude in the first 18 bits of the value field of $1, and the sign in
the sign position of the value field of $§1. Assume no exponent flag.

. o ol .

Analysis, LUN=2-B  1/2 5[5<1

Then log,N = o + 1og2ﬁ -1t log, E {0

= o =1 + (1+1logyp)

evidently d-1 éxpresaed as a 18 bit VFL integer, is the desired quantity.
L(N), DOG
E-I, 1
L(B, 12, 1), 8.0, 6
ST(B, 25, 1), $1

BEW, $
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4. Special Problems

Problem 4.1 VFL Fraction Square-root

Given a 64-bit binary unsigned VFL fraction in FRAC, extract
the square root and put it in the 64-bit field beginning at ROG@T.
vA-nalxsis: By the Newtonian process of extracting the square root x of
the ;1umber N,
Xy 1 = 120 + N/x)

If x,, has a relative error of &€, namel
k Yy

xg = X (1+€) x, = true x
: 2 1
= +
then Xp 4+ 1 Xt(l & /2'*0(@)) |
Thus if we are able to find a quess which has a relative error of 2'32, one

65

interation later the relative error would be reduced to 2
The 64-bit fraction is equivalent to a floating point number with zero exponent.
If this latter is manufactured and normalized, the SRT instruction can be used
to give a relative error less than 2-47, which is more than adequate for our
initial guess. The subsequent iteration is done in double precision, with

the second order part of the initial guess understood to be zero.

Method 1

SQRT L(BU, 64), FRAC, 52 "looks like FFP number
BRZ, STOR
D+(N), 0 "normalized long fraction
SRT(U), GUESS "first guess

D/(N), GUESS
ST(U), QUOT "first order quotient

DL(U), $RM
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/(N), GUESS "obtain second order quotient
D+(U), QUOT ""double length quotient
D+(N), GUESS

E-I{(U), 1 ""divide by two

D+(U), 0 : "shift until exponent zero
STOR ST(BU, 64), ROQT, 52
BEW, §$
GUESS DR(U), (1)
QUOT DR(U), (1)
FRAC f)R(U), (1) "to be supplied

Comments

a. Had the original fraction not been pre~-normalized, it may
éontain a number of leading zeros. The relative error of the square root
of the first 48 bits may no longer be the guaranteed 2-47, but may be as
large as 1 (when the first 48 bits are all zeros).

b.  The result is not rounded, as rounding will create an overflow
in the exceptional case when FRAC is almost 1.0.

Problem 4.2 Double~-Precision Binary to Decimal Conversion

Given a 96 bit binary fraction beginning at BFRAC, transform

it into a 112-bit decimal fraction beginning at DFRAC.
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‘'ne integers a.y can be extracted after each binary multiplication. They
are binary quantities still, but can be recoded interms of known
conventions, Fm can be used to create a rounded result, but is more often
ignored.

For ouf problem let R= =1014, This is the largest power of 10 expressible by
48 bits, and will contribute to the speed of conversion. The binary
multiplication #ill be that between a single precision number R and a
multiple precfsion quantity Fj ..

The a_; 's will have no more than 48 bits, and can be converted into decimal
by the " CONVERT type instructions. The recoded a -k will each have no
more than 56 bitsSince 2%56=112, we need only the first two ''super digits."
Method 1.

DFCONV L(BU, 48), BFRAC +(. 48, 68 "'second order part

*(U), RADIX .. :

L(BU,48), $1L. +0.12, 20 "third order result ignored

LFT(BU, 48), BFRAC .

*+(U), RADIX "there will be forwarding

ST(BU, 48), BUFFER #l 12, 20 'save secondokder part

CV(BU, 48) ' "convert first superdigit, zero offset

" ST(DU, 56), DFRAC

L(U), BUFFER

*(U), RADIX

CV(BU, 48)

ST(DW, 56), DFRACH). 56

BEW, $; CNOP "next item begins at full word
RADIX DD(BU, 12), 0 -

DD(BU, 48), (8)2657142036440000 '"10%**14

DD(BU, 4), 0
BUFFER DD(BU, 64), 0
BFRAC DR(BU, 48), (2) | "data to be supplied
DFRAC DR(DU, 56), (2)
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Comments.

a. A 96 bit binary number contains information acfually ejquivalent to
116. 25 bits of a decimal number. Only 112 bits are néeded f‘or the
problem as stated.,

b. In an n-fold precision calculation, (n+l)ig>rde‘r quantities frequently
(though not always) have little effedt, and can be ignored. Here the |

neglected third order quantity is noWhere larger than 2'"95

Problem 4. 3, Bit image of a sequence of numbers.

A Given 64 numbers in successive full words beginning at NUMB. Many
of these are floating pbint zeros, but some are not. Create a full word
beginning at BIMAGE in which sdccessive bits reflect the condition of the
successive words, such that a zero number will be represented by a zero
bit image a‘ﬁd a nonzero will have a 1 bit as image.

Method 1.

IX,$1,XW1
LX,$2,XW2

Z,BIMAGE "agssume most are zeros

LU L(U), NUMB($1)
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BZRZ, FIX "ugually unsuccessful
V+,$2, BIT "increase by one bit

CAB CB+,$1,LU

BEW, $

FIX CM1111(BU, 1)(V+I), 0. 1($2)
B, CAB

BIT VF, 0.1

Xwl Xw, 0.0,64,$

Xw2 Xw, BIMAGE, 0, $

Comments.

ax The bit image is very useful 1n,‘ say, sparse matrix multiplication.
The 'bit image of.each vector inveolved can l;e‘;created, and the nontrivial
multiplications needed bétween any two such vectors:can be tested
via the logical connectives "and", and the subsequent querying of $A¢C
and $1zC.

Problem 4.4, Eompression of sparse vector.

Given a sparse vector of N components stored in consecutive floating point
words beginning at SVEC, It has a bit image stored in consecutive bits
beginning at the full word beginning at BIMAGE. Compress the vector into
the sméllest possible storage space on the basis of this bit image, and put
the result in consecutive words beginning at SVEC also.

Method 1.
IX,$1,XW1;IX,$3,XW3
LVNI, $2,1.0
B,CONN

LGWF  LWF(U), SVEC($2)
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ST(U), SVEC($3)
V+IC, $3,1.0
C@NN  CO0011(BU, 1)(V+IC), 0. 01(51)
BXCZ, END
V+I,$2,1.0
BZRZ, LOWF
B, CONN
END 2z, SVEC (33)
CB+, $3,END
BEW, $
XwWl XW, BIMAGE, N+1,$
XW3 XW,0.0,N,$

Problem 4.5 Scalar product of compressed sparse vectors.

X and Y are two N- dimensional sparse vectors, N464, with the non-zero
components stored in consecutive floating-point words beginning at XVEC
and YVEC respectively, and bit images stored at XBMAGE and YBMAGE

respectively. Find the scalar product of these two vectors.

Th
Analysis: A The scalar product iseftaedas
N

(x,v) = % X Y
'tiw{’multiplication need be performed only when Xy and yk are both non-zero.

This information may be obtained with a connect operation on the bit images
: eld

of the two vectors. The $A@C . will‘féﬁm& the number of multiplications to

be performed and the $1LZC will give Ehe:lﬁcﬁﬂt]]tﬂfmme

M‘V lW{‘crma‘hOVl Clé)oq'f' 'tl»ﬂ’ SC/ASCW’pf K (’or & I/’F?JQJ
mu/-h,o//ca‘haﬂ
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LoF

FIN

Method 1.

T1,3,17. 0, SAVEX

L(BU, N),XBMAGE
C0001(BU, N), YBMAGE
ST(EU, N)KEYVEC

L(BU7), $AQC, 64+18
1X,$3,8.0

DL(U), ZERZ;ST(U), PRODT
BXCZ,FIN

B, LOF;CN@P

CMO0000(BU, 0),KEYVEC+0. 1, 0($1)

CT0011(BU, N),KEYVEC
LF(BU, 25), $LZC-0. 2,128~25
Lv,$1,8.0

CT0011(BU, 0), XBMAGE, 0($1)
LV,$2,7.32

V+,$2,18.0

CTO0011(BU, 0), YBMAGE, 0($1)
LV,$3,7.32

V+C, $3,19.0

L(U), PRZDT

LFT(U),XVEC($2)

*+(N), YVEC($3)

| ST(U), PRODT

BZXCZ, LODP

TI, 3, SAVEX,17. 0
BEW, $

"save $1,82,83

"1 bit if both items non-zero

"$ADC in $3 count field

“field length mdexing
"test left zeros

"low order part untouched
Fe(LZC) at field length position

"field length indexing

"XVECG modifier

"field length indexing-
"YVEC modifier

"restore high order part

"computation part

"restore $1,$2,$3

"answer in-acc. as well as PREDT



—32

ZERY DD(N), '0)
PRZDT  DRZ(N),(5)
KEYVEC  SYN(N),PR@DT+1. 0

SAVEX  SYN(N), PR¢DT+2. 0

Comments.

a. If half of the elements of each vector are zero, then statistically
speaking only one quarter of the multiplications need: to be performed.
Thus the loop in the present program can take four times aa long as the
corresponding loop in the straightforward multiplication method, and still
be efficient for sparse Veétors and sparse matrices.

b. The second I field in a VFL instruction can be used to 1nde)§ the
fleld length and byte size besides the offset. Bits in the half-word
position in the index value field influence the offset directly, 'bits in 26
times full word position influence the byte size directly, and bits in 29
times full word position influence the field length directly. Note that
$LZC is glven at the bit level and $AZC is given at the half-word level,

necessitating a small amount of adjustment.

Problem 4.6; Transposition of an 8x8 bit matrix,

Given an 8x8 matrix whose elements are bits stored consecutively and
rowpvise sstarting at BMATX8. Create the transpose and store the latter in

the same area.

Method 1. Bit -by~bit operation

BMX8T  IX,$2,XW2; SX,$2,XW\&2
LX, $3,XW3; SX, $3, YW 33
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LOF LF(BU, 1), 0. 0($3), 64
LF(BU, 1), 0. 0($2)
SF(BU, 1)(V+ICR), 0. 1($2), 64
SF(BU, 1)(V+ICR), N($3)
BZXCZ, LgF
V+C, $2,VF;SX, $2,XWsl2

V+C, $3, VF;SX, $3,XW33

| BZXCZ, LJF
B'EW, $
XW2  XW,LgC+0. 1, N-1,XWa?2
XW3 XW, L¢c-§_o. N, N-1,XW33 .

XWZ2  XW,0

XW3J3  XW,0

VF VF, 0. 1+0. N

LgC SYN, BMATX8

N SYN, 8

Comments.

a.] ' The program 1.s written to =~ accommodate an NxN bit matrix

beginning at LZC. The SYN pséudsn instSuctions define L@C as BMATXS8
and N to be 8. BMATXS8 is assumed to be defined elsewhere in the
symbelic program.
b. 0. N is equivalent to 0.8, since N is 8.
Method 2. Take advantage of the special properties of connective operations.
BMX8T2 IX,6S$1,Xwl
LvI, $2,8-1 "7 half words

LI(BU, 1),0 "zero accumulator
B, C{NNECT
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VMI V-1, $2,1 | "reduce offset by 1
CNNECT CO0:111(BU,8,1)(WHIC),0.8($1),0(52)

 BZXCZ, VMI

ST(BU, 64), BMATX8

- BEW, $§
Xwl XW, BMATXS, 8, $
Comments.
a. This is a much more efficient program. Instead of transporting

2*64 bits one at a time, 8 bits are loaded with each connect instruction

and the entire transpoged matrix is stored in one instruction. The indéxing

here is léss involved also. The price one pays is the lack of generality =

for a square matrix of size greater than 8x8 the coding would have to be

: cmnsiderablqr different.

Method 3, Same technlqué as above, but coded to accammmodate all NxN°

matrices with N8,

VMI

CNNECT

Xwl

LpC

N

IX,$1,Xxwl
LVvI, $2,N-1
LI(BU,1),0
B, CNNECT
v-1,$2,1 i | "reduce offset by 1
CO0111(BU, N, 1)(V+I.C), 0. N($1),0($2)
BZXCZ, VMI
SF(BU, N*N, N), LgC
BEW, $
Xw, Lgfc, N,$
SYN, BMATX8 "or any location desired

SYN, 8 "or any integer not exceeding 8
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Comments.
a. The store field instruction will not be assembled correctly by

STRAP-1, because of the multiplication in the data description field.

Problem 4.7, Transposition of a 64x64 bit matrix,

Given a 64x64 matrix whose elements are bits stored consecutively and
row-wise starting at BMX64. Create the transpose and store it in the same area.
Method 1, Bit :-by - byt’operation. Same as Method 1 of previous
program with,LOC and N redefined to be BMX64 and 64 respectively
Meth‘odvz. Use loqicai connectives. The matrix is partitioned into 8x8
submatrices .o'.ry.blo'cks and each is transposed separately.

BMX64T LX, $1,XW1;8%,$1,XW11;8X,$1,XW1ll  "row block index

IX,$2,XW2;8X,$2,XW22;8X, $2,XW222  "column block index

IX;$3,XW3 - "offset index
IX,-$4,XW4;SX, $4,Xw44 "block counter
DIAG LI(BU, 1), 0 "eclear accumulator

DIAG1 C0111(BU, 8, 1)(WICR), 0.64(51),7($3) "loop for diagonal blodk

V-‘-ICR,S3,4— | "lower offset by 1
| BZXCZ, DIAG1 "until block completed
DIAG?2 ST(BU, 8, 8)(V+ICR), 0. 64($1),64-8($3) "store diagonal block rowwise
V-ICR, $3,%
BZXCz, DIAG?2 "until block stored
CBZR, $4, BEW "branch if last dlagonal block complete
@rpIAG V+,$1,VFP8;8X, $1,XW1l1 "loop for off diagonal block pair

V+,$2,VFBP;SX, $2,XW222
LI(BU, 1),0
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OF DIAZ

NEWR@W

BEW
VFP8
VF 8P
VF8P8
Xwl
XW2

XW3

Xw4
Xwll

-.—.'3'3 ~—

C0111(BU, 8, 1)(V+ICR), 0.64($1),7($3) "row block treatment

C0111(BU, 8, 1)(WICR), 0. 64($2),64+7($3) "column block treatment

V-ICR, §3,1 "lower offset

BZXCZ, gFDIAL "until block pair complete

ST(BU, 8, 8)(V+ICR), 0. 64($2),64~8($3) "store into column block area
ST(BU, 8, 8)(V+ICR), 0. 64($1),128-8($3) "store into row b'lock ar®a
V-ICR, $3, 8

BZXCZ, OF DIA2 "until block pair stored

CBR, $4, GFDIAG "until bne row, one column complete
1X,81,Xw11 "procedure for new row

V+,$1, VP8P8
SX,$1,XwW11;8X,81,XW1l1
IX$2,XW22

V+,$82,VF8 P8

SX, $2,XW22;8X, $2,XW222
C-I,$4,1;8%, $4,XW44

B, DIAG |
BEW, $

VF, 0.8

VF, 8.0

VF, 8.8

XwW, L$C, 8,XW111

XW, LBC, 8, XWa2d
XW,0,8,$

XW, 0, 8, XW44

Xw,0

I -
to corteain row ur[ormcu -ton
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Xw22 Xw,0 “to contain column information
Xw44 - XW, 0 "to contaih block counter

XwWlill Xw, 0 "to contain row block information
Xw222 Xw, 0 "to contain column block information
LgC SYN, BMX64

Comenents.

a. The matrix is (mentally) partitioned into 64 square submatrices,

or blocksf/({gésize 8x8. The (I, J)-block of the transposed matrix is the
transpose of the (J,I)-block of the original matrix.

b. XW1,XW2,XW3 and XW4 are not destroyed in the program. XW11,
XW22 and XW44 are changed upon the completion of permutation of a row
of blocks with a column of blocks. XW111 and XW222 are changed upon
the completion of permutation of each pair of blocks, or that of a diagonal

bleck.

Problem 4.8 Product of square matrices.

NxN full word floating point matrices L,R are stored row-wise beginning at
LMTRIX and RMTRIX respectively. Create P=L*R and store it row-wise
beginning at PMTRIX.

Methodl. Use $2 for left matrix elements, $3 for right matrix elements and

$4 for product matrix elements. Program generates successive rows af the

product matrix.

TI, $3,XW2,$2 "load three index registers
SIX 8%, $2,xWad
LU L(U),ZERQ/

LIFT LFT(U), 0($2) "main loop
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*+(N), 0($3)

VPI V+I, $3, N "advance $3 to next row
CBR+, $2, LIFT ’ "advance $2 to next element
SRD(N), 0($4) "new product matrix element

V41, $4,1.0
V-ICR, $3, N*N-1. 0
BZXCz,LU "towards new product element of same

row
V+I, 52, N "prodedure for new row

CB, $4, SIX;BEW, $

XW?2 XW,LMTRIX, N, XW &2
XwW3 XW,RMTRIX, N, $
Xw4 XW,PMTRIX, N, $

XW2&  Xw,0

zrr;zt DD(N), 0



- 34 -

a. STRAP - does not perform maultiplication of addresses,
but STRAP - II will do it properly.
b. XW2, XW3, and XW4 are not destroyed and the program
can be used repeatedly without re-assembly or reloading irto the machine.

Problem 4. 9. Cosine of 2mi.

Given a number - 1/8 £ x £ 1/8 in the accumulator. Create

cos 2m in the accumulator.

Analysis: Since - T /4 ¢ 2wx & Ww/4, the series
N v
cos 2mx = 1 -(3n x) +(2‘WX)4 - e
2! 41
Do
2
-2 0 =) Xew™
k=20 (2K) !

is rapidly convergent. If the series is truncated at some point, the absolute

3 .

error,is estimated by the magnitude of the first omitted term. Further,

since cos 2 wx ) cos ®/4 70.7, the relative error defined by 6‘. = absolute error
true answer

is less than or equal to 1.439,
If the last term included has 2K = 16, the relative error estimate is less than
0.3 x 10-15, well within the round-off error due to arithmetical operations
using a 48 -bit fraction field length,
Method 1.
COSF *(N), TPI 1M2%$PI

D#(N), $L "square

SRD(N), TEMP.

LX, $2, Xw2
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DMULT D*N(N), CONST($2)
D+(N), WON
D*(N), TEMP

CB+, $2, DMULT

EMI E-I, 1
D-(N), WON
SRDN, $L.
BEW, $

TPI DD(N}), z*$r$1

XW2 Xw, 0, 7, $

CONST DD(N), 1/16%1/15, 1/14%1/13, 1/12%1/11,1/10%1/9

DD(N), 1/8%1/7,1/6%1/5,1/4%1/3

W@N DD(N), 1,0
TEMP DR(N), (1)
Comments

a. Instruction EMI is used in lieu of a multiplication by 1/2%1/1 to
gain a little speed.

b. By a redefinition of the constants the multiplication by 2%$PI
could be eliminated, but then instruction EMI would have tobe replaced

by a full-scale multiply operation.
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c. The nesting technique used tends to keep the round off error
to a minimum.
d. The number (2) of multiplication gerations in the loop can

be halved by using 1/2n! as the constants.
Method 2. Since cos 2A = ZcoszA-l, it is possible to reduce the number
of terms in the series by evaluating cos Tx first., Examination shows that
terms up to K = 12 would be adéquate.
COSF2 ST(N), TEMP

LX, $2, Xwaz2
DMULT D*N{N), KONST($2)

D+(N), WON

D*(N), TEMP

‘CB+, $2, DMULT

D*N(N), KONST ($2)

D+(N), WON

D*(N), $L ""create cos 2A

E+I (U), 1

D-(N), WON

SRD(N), $L

BEW, $
Xw22 Xw, 0, 5, $
KONST DD(N), $PI1/12*$P1/11,$PI/10%$P1/9

DD(N), $PI/8*$PI1/7, $PI/6*$PI/5

DD(N), $PI/4*$P1/3, $PI/2%$PI
WON DD(N), 1.0

TEMP  DR(N), (1)
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c¢. The nesting technique used tends to keep the round off error
to a minimum.
d. The number (2) of multiplication perations in the loop can

be halved by using 1/2n! as the constants,
Method 2. Since cos 2A = ZcoszA-l, it is possible fo reduce the number
of terms in the series by evaluating cos Tx first. Examination shows that
terms up to K = 12 would be adequate.
COSF2 ST{N), TEMP

LX, $2, Xwzz2
DMULT D*N(N), KONST($2)

D+(N), WON

D*(N), TEMP

CB+, $2, DMULT

D*N(N), KONST ($2)

DH(N), WON

D*(N), $L "create cos 2A

E+I (U), 1

D-(N), WON

SRD(N), $L

BEW, $
Xwaz2 Xw, 0, 5, $
KONST DD(N), $PI/12*$PI1/11,$PI1/10%$P1/9

DD(N), $PI/8*$PI1/7, $PI/6*$PI/5

DD{N), $P1/4%$P1/3, $PI/2*%$PI
WON DD(N), 1.0

TEMP  DR(N), (1)
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Comments,
0. The error situation is somwhat worsened in the present method.
Suppose cos A has been evhluated with abeolute error &; !
thow cosA=(cosA)ipye t+
2 A
2c084A-1=2(cos A)true
The total absolute error is therefore
4= 4f, cos A or 4§ W%(@ .
The relative error can be examined in the same light.
Problem 84 /0. Notural /o o rithm.
A positive single=~precision normalized floating~point number x is in the
accumulator. Replace it by lnx. Assume zero exponent flag for x.
Analysis:
x = F2BE = {3 pagE-1/2
Inx = (E~|/2)In2+1n( {2 F) -.-,
InYZF =2 .7 {‘Eﬁtal\’zk+1/(2k+ ) =2z % (z3%/2k+1
. \ VZF+1 k=0
9 (F =g\ . . |
Since Z (7;’;‘}7;:2) lies approximately in (0, 1/36), the series is rapidly convergent,
Replacing thetrugpes limit by Ky 5=8 the absolute truncation error in the
determination of In wr2 F would be much less than 2‘48. If the (E-1/2)1n2
term dominates in Inx, the relative truncation error wualld also be much
less than 2'48, and further improvement in this direction cannot be seen in
the single precision fraction.
If on the other hand, (E-1/2)In2 does not dominate the result, \E-llzl
itself must be small, But it can be no smaller than 1/2, since E is an integer,
Therefore the worst that can happen is when E=0, Fe~l, In this case one can
show the error cannot be improved without knowledge of the fraction

-1 +4g' cos A

i
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part of x beyond 48 bits.
Method 1.,
LNX ST(U), TEMP
F+(N), Q "F+1/RT2
ST(U), TEMP+1
F-(N), QQ "F-1/RT2
/(N), TEMP+1 "7 created
ST(U), TEMP+1
*(N), $L "Z%%2
ST(U), TEMP+2
LX, $1, XW1
D*(N), CONST($1)
ADD D+(N), CONST+1,0($1)
D*(N), TEMP+2
CB+, $1, ADD
D+(N), CONST +1.0(#1)
*(N), TEMP+1
E+I, 1
ST(U), TEMP+2
1.(B, 12, 1), TEMP, 69 ""exponent treatment
-1(BU, 1), 1, 68
D*(N), FLN2 "2E~-1 times 1n2
D+(N), TEMP+2
BEW, $ ‘
Q DD(N), 1/1,41421356205080  "1/RT2
QR DD(N), 2/1.41421356205080 "2/RT2
XW1 XW, 0, 7, $
CONST DD(N), 1/1751/15)1/13}1/11}1/9)1/7)1/5,1/3,’1
FLN2 DD(N), $NX 47 "N * 2%%4T
TEMP DRZ(N), (3)
XX DD(N), +3,52
Comments,

Q. In function evaluation an understanding of the properties of the
function and the format of the numbers used frequently leads to
great improvement in speed and accuracy, as shown by this example,

b, The truncated Taylor series in Z can be replaced by a polynomial
with fewer terms but comparable accuracy. The coefficients of the
optimal polynomial (s) for the evaluation of functions can be
computed by an iterative process, or can be excellently approximated by
appealing to the properties of the orthogonal Chebyshev polynomials.
Sece, for example, C. Lanczos, Applied Analysis (Prentice-Hall, 1956)
Ch. VII; F.D. Murnahan and J, W. Wrench Jr, Mathematical Tables and
Other Aids to Computation, 8, 185(1959).

¢. Instead of divisions by (2k+ 1), multiplication by the inverse is used
for speed.

d. In FLN2 X47 means replace the exponent field by +47." In the

present case $N, having the magnitude of 0.7 normally would have
an exponent of zero, and $NZ47 is the same as $N*2**47. This
would not be true had $N a magnitude of ,say, 1.5.

Problem 8 4. /1, E)(po nent( cu/ Qf_)_‘,,_-_,,

Given a normalized floating point number x in the accumulator. Find e ., put it in
the accumulator and branchael. 0S>$15). If e* cannot be found or stored, branch

to 0. 0($15). Attentition of BL, $Q,‘{$/f 32, 8LCz , F40C aud 14/ 1s permiited.

Analysis. If’[xiﬁ'i.(:):.z%’{lnﬁiex =2"/ 1% cannot be stored as a regular floating point
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number, A 0, 0($15) return with the exponent flag on is sufficient.

Otherwise the following algorithm can be used:

F
ex - 2X/1n2 - 21+ =2’I‘2‘F
0
ZF:th’IZ: E (Fan)k
k=0 ki
terms beyond k = 15 can be safely neglected.
It is also possible to reduce the range of the argument in the series to

improve convergence. For instance:
. 2
2Fo(2F 2y 2 - (2G)2

Do

. =\
-arG = U2 _ Z . (GIn2)"
k=0 k1

and termsg beyond k = 12 can be neglected. The subsequent squaring lead

to a round off error twice as large as before, however.

Method 1.

EXP KMG(N), KPMP
BAH, EXITI
D*(N), RLN2 . "1/LN2
D+(U), E11

sT{B, 12, 1), TEMEX, 128-12-11 "I as exponent
SHFL, 11

#(N), LN2X "IN2X-11

LX, $14, XW1i4

ST(U), TEMPF

D*(N), CONST($14Yy



DPLUS

EXITI1

KOMP
RLN2
o E1ll
LN2X
XW14

CPNST

TEMEX

TEMPF
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D+(N), CONST+1.0($14)

D*(N), TEMPF

CB+, $14, DPLUS

D+(N), COHNST($14)

E+(N), TEMEX

B, 1.0($15) "normal return

C0011(BU, 1), 10.4, 128-11 "exponent sign

LA(U),

$L "remove sign

cliii{Bu, 1) $L, 127 "insert exponent flag

B, 0.0($15)

DD(N),
DD(N),
DD(N),
DD(N),
XW, 0,
DD(N]),
DD(N),
DD(N},
DD(N),
DR(N),

DR(N),

1024%$N
1/$N
0X11
$NX-11
14, $

1/13076743680000, 1/87178291200

1/6227020800, 1/479001600, 1/39916800

1/3628800, 1/362880, 1/40320, 1/5040, 1/720
1/120, 1/24, 1/6, 1/2,1

(1)

(1)
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Comments,

a. There are nurnerous ways to improve the speed of the program.
The multiplications by 1/2 and 1, for instance, can be replaced by more
efficient devices. The creation of Fln2 also would not be needed if (an)k/k!
are used instead of 1/k! as coefficients.

b. The present program is actually written as a subroutine,
assuming the convention of 1. 0{$15) normal return and 0. 0{$15) error
return, Aside from $L, $R, iijﬂE, $14 and $15,none of the other internal
registers wn:; altered during exit., The memory requirement is also modest.
Further the program can be used again and again to evaluate the exponential

of whatever floating-point number given in the accumulator.

Problem 4.12 Transcendental Function Evaluation

Assume the existence of the previous exp(x) program. Compute

f(x)=2xe® /\J -6 for x=1T

and put the answer in the accumulator as a floating-point number.

Method 1.
LN(N), EKS
LVI, $15, $+1.0; B, EXP
B, ERR;NOP

RTURN ST(U), TEMP

LVI, $15, $+1.0; B, EXP

B, ERR; NOP
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#(N), EKS
E+I(UY, 1
ST(U), TEMP+1
LN(U), TEMP
+(N), WON
SRT(N), $L

R/(N), TEMP+1

BEW, § "normal exit
ERR BEW, $ "error exit
EKS DD(N), $PI
TEMP DR{N), (2)
WON DD(N), 1.0

Comments

a. The present program is designed to demonstrate the usefulness
of subroutines for repéated usage.

b. The accepted way to enter the subroutine SR (say) is to write

LVI, $15, $+1.0 (or LVI, $15, $+2)
before branching into SR, In STRAP II a pseudo instruction
LINK (no address needed)

is available for this purpose.

c. It is obvious that the present program can be recast into
conventional subroutine form also, if ever needed.

d. The present program requires the EXP subroutine, and therefore

is usually assembled together with the latter. Fortunately there is no multiply
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defined symbol to produce difficulties and no conflict in the use of special
registers and $14, $15. A good subroutine should keep the number of

. f ealivre .
symbols small, and the '"tailing'" technique available in STRAP can be
used by the user of the subroutine to avoid memory conflict.

Problem 4, 13. Numerical Integration

Provide a subroutine to handle the numerical integration of

any function over any finite interval., Use it to evaluate

1 -X
I= f 2 x e /\}l-e"x dx
0 :

Analxsis:

a. For standard intervals, sayJ{p, q), an n-point numerical
integration quadrature formula is the approximation
q n
(" w2F(z) a2 ~ > W, F(z,)
P i=1
with prescribed {Wi} and{zi} . In the well-known Newton-Cotes
quadratures the z;'s are evenly spaced over the interval.

In the case of the highly accurate Gaussian quadratures the z;'s

are the zeros of the nth degree orthogonal polynomial P, (z), where
q
g w(z) Pn(z) Pn(z) dz = 0, n # m.
p

The n-point Gaussian quadrature will yield an exact answer (barring round-off
error) if F(z) is a polynomial of degree no higher than 2n-1, For other
integrands the approximation is, in general, quite excellent. The most

commonly used Gaussian quadrature is the Legendre<Gauss quadrature with
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(p,q) = (=1, +1) and w(z) = 1.

For even n the formula becomes

+1 n/2 ‘
j F(z) dz ~ E Wi [F (z;) + _F\(T-z]-).]
-1 1i=1

For finite limits (a, b) other than (-1, +1), we have

b +1 +1
S f(x)dx =8 S. f(sz+t) dz = s g F(z) dz
a

n/2

~s E W, [f (szi+t)+ f(-szi+t)] :

i=1

where s =(b-a)/ (q-p)=(b -~-a)/2, t=a -sp=(b+a)/2



b. The integration subroutine has to be able to obtain f(sz + t)
and f(‘---szi + t) for a number of zi's. It is thus desirable to have available
an integrand evaluation subroutine, written in a standard format. The
integration subroutine does not need to know the integrand subroutine
in detail, only its address and calling sequence. It is conceivable that
the integrand subroutine also requires other subroutines, but this would
not be the direct concern of the integration subroutine itself.

c. The following specifications for the 8-point Legendre -Gauss
integration subroutine LEG Q8 are therefore reasonable:

1) The main program branches to the integration subroutine
by the standard LINK entry, in the following format:

LVI, $15, $+1.0:B, LEGQS

2) The leading 19 bits of the ensuing full word must contain

the address of the subroutine for the evaluati‘on of the integrand.
Word ‘

3) The next fullA(i. e., 1.0($15)) must contain the floating
point lower limit A.

4) The next full word (2.0($15)) must contain the floating
point upper limit B.

5) If an error occurs in the integration program, a return
should be made to 3.0($15).

6) If the evaluation is successful, the approximate value of
the integral must be in the accumulator during the normal return. The

normal return address is 4, 0($15).
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7) All internal registers except $L, $R, $SB, $FT, $TR,
$L.Z2C, $ADC, $14 and $15 are to be restored during exit, as is desirable
for all subroutines. Further, LEGQ8 must allow for the fact that the
integrand evaluation subroutine will use $L, $R, $SB, $FT, $LZC, $ADC,
and $14 without restoring,

d. The arrangement of the symbolic program is something like
the following.

1) Identification for assembly program and '"SLC".

2) A main program which makes use of LEGQS.

3) LEGQS8, which makes use of a subroutine, say SUBR.

4) SUBR, which happens to require the subroutine EXP.

5) EXP, which is self-sufficient.

6) Indication to end assembly and indication of the first

instruction to be executed.
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All pieces should be made available and assembled together by the STRAP

assembler.
Method 1,

" Main program for inteqgration. Answer should be in ANS.

LVI, $15, $+1. 0;B, LEGQ8
SIC, SUBR; NOP

DD(N), & 0

DD(N), 1. 0

BEW, $;NOP
ST(U),ANS;BLW, $

ANS DRZ(U), (1)

M&AIN

"ower limit
"upper limit
"¢y ror measure

Mnormal end of program

" 8-point Legendre-Gauss integration subroutine

" integrand evaluation subroutine with 1. (§15) return must be provided by user
with effective address at0. ($15), lower limit must be at 1. ($15) and
upper limit at 2. ($15), both as floating point numbers.

LEGQS8
LVE, $2, 0. (15)
SVA, $2,LEGQS8A
SVA, $2, LEGOSB -
DL(N), 1. (515)
D-(N), 2.(515)
E=I(U),1
SRD(N), LEGQ8P
D+(N), 2. (515)
SRD(I), LEGQ8Q
LX,$2,LEGQSI;L(U), LEGQ8Z;,
ST(U), LEGQ8S;ST(U), LEGQST
DL(U), LEGQ8Q
LFT(U), LEGQS8P
*N+(1), LEGQ8X(52)
LVI, $15,$+1.0
LEGQ8A B,$
B, LEGQ8E; NOP
ST(N), LEGQSR
DL(U), LEGQ8Q
LFT(U), LEGQS8P
*+(N), LEGQB8¥%(S$2)
LVI, $15, $+1. 0
LEGQ8B B,$
B, LEGQS8E;NOP
+(N), LEGQS8R
D*(N), LEGQ8W($2)
D+(N), LEGQS8T
D+ (N), LEGQS8S
S'1(N), LEGQS8S
SLO(U), LEGQS8T

CB+,$2,LEGQSL
*N(ﬁ‘&'ﬁ, LEGQBP
LX, 52,

LEGQS8L

LEGQ82

the integration subroutine will return normally to 4. ($15).
* error return is 3. ($15), with answer in $L.
SX,$2,LEGQ82;8X, $15, LEGQS8F

L _-‘)

'Y
" ~(b-a) /7.

"pra) /2

"(b —a)z[24(brd) /5

#branch address changeable
Nerror
¥normal return from integrand subroutiue

tsmptsrs ~(b-o)s/h + (bra),

" branch address changeable

¢
' @normal return to main program
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IX, $15, LEGQSF
B, 4. 0($15)
LEGQSE  1X,$2,LEGQ82
LX, $15, LEGQS8F
B, 3. 0(315)
LEGQ82 XW,0 lfchangeable
LEGQS8F Xw, 0 ‘Jlchangeable
LEGQ8Z  DD(N), 0.0
LEGQB8I Xw,0,4,$
LEGQS8R DR(IV), (3)
LEGO 815 SYN(N), LEGQS8R#. 0
LEGQS8T SYN(N), LEGQ8R+2, 0
LEGQ8P DR(N), (1)
LEGQ8Q  DR(N), (1),
LEGQS8X DD(N), .%028 98564 97536, .79666 64774 13627
DD(N), .52553 24099 16329, .18343 46434 95650
LEGQS8W «DD(N), .10122 85362 90376, .22238 10344 53374
DD(N), .31370.66458 77887, ,36268 37833 78362
' end of LEGQB subroutine.
' SUBR is a bona fide subroutine with 0($15) error exit and normal return 1, 0($15).
SUBR  =»8X, $15,SAVELS»
ST(N) SAVEX
LIN(N), SAVEX ,
LVI, $15, $+1. 0;B, EXP Mgo to EXP subroutine
, B, ERR;NOP '
RTURN ST(U), TEMP .
LVI, $15, $+1. 0;B, EXP dlgo to EXP subroutine
B, ERR; NOP
* (), SAVEX
E+I(U),1
ST(U), SAVEX Hox*eH*er+X
LN(U), TEMP
+(17), WON | |
SRT(1M), SL " square toot of 1-e**-x
R/(N) SAVEX
1X, $15, SAVEL5;B, 1. 0(515) "mormal retirn
ERR LX, $15, SAVEL5;B, 0, 0($15) "error return
WON DD(N), 1.0
SAVELS XW, 0
SAVEX DR( M), (1)
TEMF DR((), (1)
" EXP subroutine
(identical with a previous program)

Commants s
q. The instructicn execution should begin with MAIN, which triggers
all other programs.
b, The seemingly elaborate way of doing the problem is actually
very easy to use, particularly if most of the subroutines are

allable
, OFor mu ]ltIple integration the same integration subréutine can
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be assembled at different locations and one can be made subservient
to the other. For example

Y I

x, y)dydx =§ X )d]dx :
Ach(‘ y)dy ﬁB;p(,yy
=S' P(x)dx
4

and one of the integration subroutines is used to provide f(x).

Barring round-off errors, the 8-point Legendre-Gauss integration
subroutine will yg¢eld exact results if f(x) is a polynomial in x of 15th
degree or less. Otherwise the appooximation amounts to an exact
integration of a finite expansion of f(x) in terms of the orthogonal
Legendre polynomials Py (x) up to and including k=7.

A discussion of errors in numerical integration is outside the
scope of this work. It suffices to say that in case of suspicion of
inaccuracy, the domain can be subdivided, and the numerical quadrature
can be used for each subinterval to improve accuracy. This necessitates

only a trivial change in the main program.



A2. Checklist for Program before Assembly

Check for presence of PRNID, PUNID, SLC, and END. Make sure
that the address of SLC is a true bit address with a decimal point.

Are there undefined symbols? Circularly defined symbols?

Every operation field should be separated from the address field by

Look for missing right parentheses.

Look for missing quotation mark at the beginning of comment field.

A2.1 General format.
A2.2 Symbol definition.
Multiply defined symbols?
AZ.3 Instruction format.
a comma.
A2.4 Nature of instructions.

Check integers to make sure they are not bit addresses with missing
decimal point. : ‘

Half-word instructions cannot be. addressed down to the bit level.
Check particularly the address fields of V+, V+I, and floating point
operations., |

Check VFL instructions for field length >64 or byte size >8.

Check TI, SWAPI, etc., for count exceeding 16.

The address field of immediate index arithmetic instructions cannot
be indexed; the address field of CB, Bind and BB can only be indexed

by $1. VFL immediate instructions cannot use progressive indexing.

Make sure that J fields are supplied in the following operations: CB,
V+, and V+1.



A2.5

Loops and paths.

A2.6

Visually trace through all the possible paths in the program,
Trace the entry into, and exit from loops.

If a loop is closed by a CB, make sure the index register '"J" has
a valid (non-zero) count field at the beginning.

Termination of a loop by BAE or BZAE after a floating point com-
pare is a dangerous practice, because of unforeseen roundoffs.

Proofreading.

After the program has been keypunched, produce a 407 listing and
check the overall alignment, particularly the location of the NAME
fields, Proofread carefully, look for missing cards, mispunches,
and off-punches.

Character code for symbolic decks

Ny | ] x|

No 12 11 0
Zone | Zone|Zone|Zone
No Digit]| (Blank) + | - 0
1 1 A J /
2 2 B K S
3 3 C L T
4 4 D M U
5 5 E N A\
6 6 F | Q w
7 7 G P X
8 8 H Q Y
9 9 I R Z
3,8 . $ ’
4,8 L@, - |1 )0 | x |(,%

Also ; is defined to be equivalent to an (11, §) double punch. On
407 listings this double punch is usually considered to be 0. On
assembly listings the semicolon is replaced by a skip of the

printer to the next line. On the keypunched card it looks like the
Greek letter ©.
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AB., Machine Handling of Floating Point Exponent Flags in the 7030

1

Exceptional floating point quantities.

Exponent overflow and underflow occur only infrequently in most
floating point computations. In machines of earlier design, the
"overflowed'" and "underflowed' numbers have the appearance of
normal quantities, and further operations tend to lead to untrace=-
able contamination of the results. The conventional way of cir~
cumventing this difficulty is to test for the exceptional events from
time to time.

Some machines now have a "floating trap mode'" feature which auto~
matically interrupts the normal instruction sequencing immediately
after an exceptional event, without the need for test instructions.

A wide choice of interrupt conditions (XPFP, XPO, XPH, XPL,
XPU) is available on the 7030, enabling a firm control on the
quantities used in floating point instructions. Interruption‘feature,
however, tends to treat exceptional events equally and is not capable
of knowing the consequences of these events without elaborate pro-
gramming. '

On the other hand, if the "overflowed'" or '"underflowed' quantities,
which are responsible for the exceptional events, are themselves
clearly labelled, if the numbers contaminated by these labelled
numbers are also labelled in a consistent manner, it would be pos-
sible to perform an entire computation without any test instruction
nor interruption. In this scheme, drastic action would be not needed
unless part of the results bear the '"exceptional quantity' label.

In the 7030 the exceptional number is labelled by a "l1'" bit occupying'
the leftmost (exponent flag) position of the exponent field. An ex-
ceptional number therefore appears to be a number with an extremely
large exponent magnitude. The consistent rules governing the gene-
ration, propagation and disappearance of the exponent flag are re~
minescent of algebraic operations involving infinite and infinitesimal
quantities.

In the following EF represents the exponent flag, ES the exponent
sign.

EF
(EF

1 signifies a very large floating point exponent magnitude. If
1, ES 2 0 ==~~-- )

ion



Ab5,2

If EF = 1, ES = 0, the magnitude of the floating point number is
extremely large (2 21023 _ 10308), and may be symbolized by oo
(XFP case).

If EF =« 1, ES » 1, the magnitude of the floating point number is
extremely small, and may be symbolized by € (XFN case).

If EF = 0, the number is ‘said to be normal, and will be represented
by the symbol N,

The sign bit (bit 60) of the floating point number retains its normal
meaning in all cases.

The following scheme is designed to disallow the loss of EF bit due
to irretrievable overflows.

Generation of exceptional quantities.

In floating point operations involving normal numbers only, EF
behaves like an extension of the regular 10-bit exponent magnitude
field;, and will be turned on in the result if the expected answer
has an exponent either greater than 1024 or less than -1024. An
exponent overflow is said to have occurred in the former case,
rendering $XPO = 1. In the latter case an exponent underflow is
said to have occurred, and $XPU will be set to 1. In D/, $RU
may be set to 1. In either case, an expenent flag is said to be

generated.

Other operations will proceed norxﬁally for all generated EF cases
except in the following situations which might otherwise generate
exponent overflow beyond EF: '

a. Multiplications which lead to generated € results prior to
any normalization. The normalization and noisy mode, if
stated, will be suppressed. E+, E+I instructions behave
like multiplications.

b. Divisions where prenormalization of the two operands yields
an N and a generated €. The quotient fraction is developed
normally, but the queotient exponent will be either that of €
{case of small dividend), or that of 1/€ (case of small
divisor).
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The following table gives the conditions and the apparent range
of normal as well as exceptional numbers, when EF is imagined
to be an extension of the exponent magnitude field.

Condition of FractioA Apparent Range for
F.P. Number | Symbol | EF | ES Sign Normalized Fraction
XFP, + + 1 0 0 > 51023
Normal,+ +N 0 | o1 0. (21023 ,-1024
XFN, + +e 1 |1 0 271024 54

XFN, - -€ 1 |1 1 20 y-2-1024
Normal, - -N 0 0,1 1 (_2-1024’ 7‘._21023
XFP, - - 1 o 1 <.p1023

Exceptional number arithmetic.

In floating point arithmetic involving numbers with EF = 1, the
mathematical laws concerning extremely large and extremely
small numbers apply where the results are unambiguous. If

the outcome is indeterminate in a strict mathematical sense, the
ambiguity is resolved in the machine by the choice of o, producing
the most alarming situation possible:

.00+ 00 = OO; oo * (to0)
N =2 o0; o * (£ N)
00t€ = 00; € *(tN) = t ¢; €/(to)z t€;
€N = N; € % (€)= 2 ¢; €/(tN) = ¢t €;
€€ = (tE; tN/oow = tg;

* N/€ = X oo;

* oo; ©/(tN) = to0; VD = m;
* oo; ©/(t€)= tw; NC = €.

d u an

The following are resolved ambiguous cases:

-8 m 0*(t€)= too; 00/(t ®) = *oo;
€/(:€) = to;

For details, see A5.8. Note that normal answers are obtained
only by special €+N operations, and exponent overflows beyond
the EF position which may yield harmless-looking results are
prevented from occurring.
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Propagation of exponent flag.

A5.5

In operations other than K, KMG, KMGR, and KR, if both the result
and at least one of the operands are in the oo range, an "exponent
flag positive' condition is said to have been propagated, and $XPFP
is set to 1. The propagation of € condition does not lead to special
indicator settings. '

Comparison involving exceptional quantities.

A5I6

All oo are treated as equal in magnitude in K, KMG, and KR; all €
are likewise treated as equal in magnitude.

Approximation of the true floating point zero.

A5,7

The true floating point zero 18 approximated by an €. If a fl?s%i‘fg
point zero is requested of STRAP; what appears to be 0 * 2~
will result from the compiling.

The '"Zero multiply" indicator.

A5.8

$ZM cannot be turned on if the result of the multiplication is € with
zero fraction.

‘Summary of floatirig point arithmetic with exceptional operands.

(Only exponents are shown in equations below.)

A5'.8.-'1 B Additibn, subtraction, load, store, and SLO. (Result
‘may be N)
oor‘rooé = 00, Or ooz#; €,*® = oo;
091+N s 004 ' €1+N = N;
©+€ = 00}; €t €,- €4 or §f;
@) = € =y €1-€;= €; or -G
’oo'l - N = 0, Cl—- N- -N;

oo1 -oo2= ) Oor -ooz#; Cl-oo: «00.
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Fraction arithmetic: suppressed. Normalization and
noisy mode: allowed only if pre-normalized answer is
normal.

#Whichever has the higher exponent; or if the ex-
ponents are equal, whichever is from the ac-
cumulator.

F+ behaves like NOP for accumulator being o or €,
since the memory fraction is given the accumulator
exponent.

Multiplication, E+and E+I. (Result always oo or &)

Ab.8.3

ool'%’i‘ W3y = 0] Or ooz# €) *00 =

; *N a0, GI*N-CI

#
ool*C _"°°1 Cl*CzuclorGZ

. Fraction arithmetic: allowed to proceed. Normali-

zation and noisy mode: suppressed.
#In %+, where accumulator doee not contain operands,
whichever is8 from memory; otherwise whichever is

from the accumulator.

Division. (Result always oo or €.)

cao]./'oc»2 = 00,; 61/002 . 62(3 1/002)3
©;/N = 00;; €,/N a€;

oo1/€-2 = 00,(= 1/€,5); €./€; = y(= 1/€)
0,/00, = 00,; 0} /€y = 00y(x 1/€3);
N/mz = Cz(: 1/002); N/CZ - 002(: 1,”@2);
€ /00, = €,(z 1/00,); €,/€5 = wp(= 1/€3).

Fraction arithmetic: allowed to proceed. Normali-
zation and noisy mode: suppressed. Operations in-
volving € or oo will be treated as unnormalized.
Remainder: Exponent same as that of dividend, no
normalization allowed.



A5.8.4 Square root. (Result always o or €.)
(I)l - (Dl
€ =€
Fraction arithmetic: allowed to proceed. Normali-
zation and noisy mode: suppressed.
Ab5.8.5 Shift fraction.

€ and o behave normally, since the exponent is un-
altered.



A6. Noisy Mode in 7030 Programming

The purpose of the noisy mode is to allow the 7030 to perform its
own error analysis in the crucial area of significance loss in

‘Essentially the same computing algorithm for the solution of a

problem can be pursued twice on the machine, once in '"'normal"
mode and once in noisy mode. During the computation the low
order fraction bits are affected differently in each case, the dif-
ference being particularly noticeable on normalizing left shifts.
When the results are contrasted with each other, if the relative
discrepancy is 2°™, then probably the 'normal' result has a re-
lative error of 2°™, the odds being something like 2K to 1 in favor
of this interpretation (and against fortuitous agreement).

In the 7030 the noisy mode is activated only when the indicator bit
$NM equals 1, and only for normalized floating point operations.
When normalization is suppressed due to exponent flag conditions
(see A6.6), noisy mode will be inoperative. For convenience, we
shall speak of the influence due to noisy mode as noise.

Ab6.1 Purpose of noisy mode.
normalized floating point arithmetic.
Ab6.2 First order noise.

An operand may be right-appended by 48 identical bits at the be-
ginning of an operation, to produce a double~length fraction. We
may call these "'d" bits.

d = 1 if and only‘if

a. normalized operation is specified (and not suppressed).
c. the operand is one of the following:

1) an operand in (single) LOAD type instruction: L, LWF, LFT;

2) an operand in ST instruction (NOT SRD nor SLO);

3) the divisor in /, R/, and D/;

4) the dividend in / and R/;

5) the unshifted operand prior to arithmetic action in the fol«
lowing single operations:+, M+, +MG, M+MG; K, KMG,
KMGR, KR.

d s 0 otherwise.
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The unshifted operand in operations described in (5) is the operand
with the higher exponent, or if the exponents are equal, the operand
from the accumulator.

The d bits, being second order quantities, may influence the first
order part (first. 48 bits) of the result fraction through post-normali-
zation and/or arithmetic4§ction. The minimum noticeable relative
error due to d bits is 2”7 ; the maximum is just below 1/2.

We shall speak of first order noise as one which can create a mini-
mum noticeable relative error in the first order part (the first 48
bits) of the result fraction, and define second order noise as one
which creates a minimum noticeable relative error in the second
order part (the second 48 bits) of the (double-length) result fraction.
In the 7030 computer the d bits produce only first order noise.

Second order noise.

Ab.4

When a double~length fraction undergoes left shift (in, for example,
post-normalization), the positions left vacant are filled in by another
kind: of identical bits. We shall call them "dz” bits.

»dz = 1 if and only if

a. normalized operation is specified (and not suppressed);
b. $§NM = 1. ' ‘

d2 = 0 otherwise.

In all operations save one, the d, bits produce only second order
noise. In the cases where d and d., are both present, the result
fraction is invariably truncated to 48 bits, revealing only the effect
due to d bits.,

It must be noted that second order noise is not necessarily small,
The largest possible relative error caused by it is the same as
that for first order noise, namely just below 1/2. This occurs
when a 96-bit fraction before post-normalization has all bits equal
to zero except the last bit. Ninety-~five d, bits will be shifted in.

Machine instruction and noisy mode.

A6.7 shows the pertinent noisy mode features of floating point
operations,
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It is noteworthy that all but one double operations possess.second
order noise. The exception is D/, which has first order noise
through divisor preshifting. On the other hand, the ''single"
operation * posses only second order noise. The operation *+
has second order noise if the preceding LFT operation did not
introduce first order noise.

SRD and SRT arenoiseless operations.

In SLO the low order fraction is left~appended by 48 high order
zero bits to produce a 96 bit fraction. This latter is then shifted
left at least 48 places, shifting in d, bits. Second order noise on
the second order fraction thus behaves like first order noise on
an ordinary (single) fraction.

Noise in /, R/ and D/ is introduced in both the divisor (always by

d bits) and the dividend (d bits for /, R/; d, bits for D/). The
quotient never needs further normalizing left shifts and the normali-
zation of the remainder is noiseless. First order noise in D/ is
desirable if the quotient is to be single precision (say after a round-
ing operation), but not if truly double precision quotient is required.

It is possible to produce noisy results without any normalizing left-
shifts not only from divide-type operations, but in ADD-type opera~-
tions as well. The 48 d bits may simply create a carry into bit 47

of the fraction during the addition process.

Programming significance.

All digital computers have a finite word-length. In normalized
floating point operations the post-normalizing left shifts iptroduce
bits through the right-boundary of the fraction. With few exceptions
(some to be mentioned below), the programmer has no idea what
these bits ought to be, and he is unwilling to or has no way to find
out.

Shifting in all 1's as in noisy operations, very probably introduces
errors. It is almost equally probable that errors of a similar
magnitude are introduced by the alternative strategy of shifting

in zeros. In either case bias is introduced.

The purpose of the noisy mode is to bias the results in a manner
as opposite to '"'normal' as possible for the digits known to have
no numerical significance, yet without destroying the digits valid
for the particular machine instruction.
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In computations involving integers and simple numbers, extremely
frequently the result fraction is known to be exact, to be followed
by an infinite number of zero bits. It should be evident that such
exact answers can be corrupted by noisy mode. $NM should be
off, or unnormalized operations should be prescribed.

In programmed double-and-multiple-precision arithmetic, the ad-
dressed operand may have one or more well-defined lower order
part. The use of noisy mode amounts to a redefinition of the lower
order part, and extreme caution has to be applied, except perhaps
in dealing with the lowest-order fraction.

In programmed double-precision arithmetic second order noise is
always permissible, but first order noise should affect only the less-
significant part of the fraction. The use of LFT(N) as a prelude to *¢,
and D/(N) for unnormalized first order operands thus should be dis-
couraged; it is much safer to employ the unnormalized counterparts
to these operations. It is easy to introduce second order noise
through other operations in the instruction sequence..

Under special circumstances, normal and noisy compare type opera-
tions may yield different indicator settings (sometimes even for the
same two numbers). The user of floating point compare operations
should know always that, except for the "exact' operations he is com-
paring numbers affected by errors, and due allowance must be made
for this, whether noisy mode is used or not.

Suppression of normalization.

In the great majority of cases normalization, if specified in an in-
struction, will proceed. The exceptions occur only because of the
appearance of exponent flag.

Normalization (and therefore noisy mode) will be suppressed in the
following cases:

a. For instructions involving only one operand, if the operand prior
to the normalizing shift is either an oo (XFP case) or an € (XFN.
case). :

b. For instruction with two operands, neither of them are o or €:

1) instructions of * type, if the product: before normalization
is an €.
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2) instructions of / type, if the operands after prenormali-
zation contain one € and one N (i.e., no exponent flag).
(This case does not influence noisy mode in any way.)

The suppression of normalization in this categoryis to prevent
the loss of EF due to double underflow.

For instructions with two operands, at least one of which is
either oo or €: if the result is not an N before the post-normali-
zation. The result is an N only in the case of € +N, and normali-
zation here, if specified, will proceed.



A6.7 Summary of behavior of normalized floating point instructions in noisy mode.
Right~-Appendage Post-~Shifting Order of Noise
by 48 d Bits into Bit 95 by and Other
(prior to any ) d, Bits Comments

Add Type Operations

+, M+, +MG, M+MG yes, on unshifted yes(no effect) 1

operand

L,LWF yes yes(no effect) 1

ST yes yes(no effect) 1

K, KMG, KMGR, KR yes, on unshifted (no post-shifting) 1

operand

LFT yes yes(no effect) 1.Has bearing on *+,

SRD no yes(no effect) Noiseless

SLO no yes, before any 1

shifting

Multiply, Divide & Root |

* no yes 2

/, R/ yes, both divisor yes(no effect on 1

and dividend operands. No
post-left-shift
for quotient. )

SRT no yves(no effect) Noiseless

Double Operations

D+,D+MG, F+ no yes 2

DL,DLWF no yes 2

D, *+ no yes 2

D/ yes, on divisor yes, on dividend 1.No additional

preshift preshift. No noise introduced
post-left-shift in remainder
for quotient. normalization.
Yes(no effect)
on divisor pre-~
shift.

Others

E+, E+] no yes 2

SHF no no Noiseless



