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FORWARD 

The following programming examples are inkended to if%ustr;ete 

the use of 7030 instructions as active tools in problem solving. It is 

believed that the serious reader,  equipped with the 7038 Reference 

Manual (A22-6530)  and a description of the STRAP assembler (say the 

Reference Manual, 704-709-7090 Programming Package for the IkBM 

7030 Data ‘Processing System (C22-6531)), can obtain a dynamic 

knowledge of 7030 programming without extensive outsbde help. 

Experience in computer programming, while certainly an ;itmet, i~ not 

‘takenfor granted, 

The subject mat ter  is divided into four maim sections: 

1. Instruction Arithmetic Unit Instructions, 

2. Variable Field Length Instructions, 

3. Floating-point Arithmetic, 

4. Special Problems. 

No attempt is made to cover the entire instruction set, to define every 

t e rm nor to explain every programming step. There a r e  however, a 

number of comments to ass i s t  the reader over rough spots or  points of 

ambiguity. Frequently programming alternatives a r e  brought to the 

attention of the reader to emphasize the fact that there a r e  many ways of 

doing the same problem. Efficiency in computer problem solving 



involves the balancing of the following factor B : 


11 e Accuracy of results, 


2,  Analysis effort, 


3,  Programming time, 


4, Debugging time, 


5 .  Production run time, 

6 ,  Effectiveness in repeated use of program (possibly by a stranger). 

Thmnda$i,m)merits of these factors vary from problem to problem, 

individual to individual and organization t o  organization. 

In the design of the programming examples a seventh factor, 

pedagogical value, has received the primary stress ,  and no claim is 

made for efficiency in terms of the other six. 

T. C. C. 




STRETCH PROGRAMMING EXAMPLES 

Foreword 


f ,  Instruction Arithmetic Unit Instruc tisn EI 


1. 1 Transmittal  of 2 full words. (3 examplee) 

1, 2 Interchange of two word-pairs. (2 examples) 

1, 3 Cyclic permutation of a group ofrull words, (4 examples), 

1 .4  Replacement of full words by zeros. (3 examples) 

1, 5 Replacement of isolated full word groups by zeroB. (4 examples) 

11. 6 Subtraction of value fields, 

1. 7 Interruption measure.  

1 . 8  Simulation of RENAME instruction. 

1.7 Transposition of a square matr ix  with full word elemente, (2 examplee)W 

2. 	 Variable Field Length Instructions 


2, 1 Cyclic bit shifting. 


2.2 Length of an unknown file, (3 examples) 

2.3  Deletion of every 5th bit in a field, ‘(6 examples) 

2.4  Bit reversal .  (2 examples) 

2. 5 Removal of key words. 

2. 6 Sorting on the basis of subfielde, (3 examples) 

2. 7 Sorting into reserved table areas. 

2.8  Purchasing l is t  arithmetic. 



2. 9 Effective address  creation. 

2. 10 Fetch (e, ,q)th element of rectangular matrix, 

2. 11 Simulation of &bit addition. 


2, 12 Transposition of rectangular matrix.  


3. 	 Floating - Point Arithmetic 

3. 1 Separation into integer and fraction par ts .  

3. 2 Integer part of floating-point word. 

3.3 Polynomial evaluation, (2 examples) 

3 .4  Modified trapezoidal rule. (2 examples) 

3. 5 Continued fraction evaluation. 


3 , 6  Scalar production of vectors. 


3. 7 Cube root. 

3 . 8  Normalized floating-point vectors f rom V F E  data. 

3.9, Double-precision compare. (2 examples) 

3. 18 Integer par t  of logz 

4, 	 Special Problems 

4, 1 V F L  fraction square-root. 

4. 2 Double-precision binary to decimal conversion. 

4-. 3 Bit image of a sequence of numbers 

4,4 Compression of sparse  vector. 

4.5 Scalar product of compressed spa r se  vectors. 

4.6  Transposition of an  8 x 8 bit matrix. (3  examples) 



4.7 Transposition of a 64 x 64 bit matrix. (2 examples) 

4 . 8  Product:of square matrices. 

4.9  Cosine of 2nX 

4,lO Natural logarithm. 

4.11  Exponential of x. 

4.12 Transcendental function evaluation. 

4. 13 Numerical fntegr ation. 



STRETCH PROBLEMS 

&. 
I_

Copy the contents of full  words located in DOG, DOG + 0 into full words 

located in CAT, CAT * l a  0 respectively, 

f a  


Method 1.b Use the immediate transmit instructisns. 

TIj 2, DQG, CAT 

or 

TBIj 23 DOG + I m O j  CAT + 1.0 


Comments e 

& 	NQ mare than 16 full words can be transmitted by TI or TBL Sf 
16 words are to be transmitted h e  J fields could be filled by 

. 

4rJ9 Q P E t e deither 16 or  0 in STRAP coding. ur"e t h a t  4 pour= < er *nsf l i
8.  	If the rrsource" and %ink" areas  o v e r I a w T B 1  if CATI>DGG; \g_MPCr$/ 

use TI if CATdDOG. In the following we shall assume no overlap, -u---

Method 2.P Ude an index register to control the number of words transmitted,

Lcq, $1, 2.0  

T, $1, DOG, CAT 


Comments, 
6.As many as 218 (262, 144)words can be specified this way,
b. 	 The programmer should be cautioned that direct transmit type 

operations with the J field referring to an index regieter with a 
zero count field means the maximum count possible. 

Method 3 M  Use index instructions, 
LxJ $I# DOG 
SXj  $1, CAT 

Jltx, $l$ DOG + l a 0  

SX, $1, CAT -B- 1.0 

Commentst 
d. Although data transmission is not the primary function of index 

registers,  the timing here is not too different from that of the more 
concise transmit instructions. 

$, 	 Two other ways are available: VFL load-store type operations and 
floating poi t (unnorrnalized) Lbv'@*re. The latter is efficient but 
may turn om,$XPFPLndicaCor. 

d. 	The two "unused" bits ( bits 27 and 28) of the index register are available 
for data t r a n s m i e a t .  They -serve no specific purpose otherwise, 


ProblemU, ~ ~ + e r ~ L ~ ~ ~+wo ward-pa+s, 
e 	 O-F 

Interchange the content3 of full  words DQGJ DOG + 0 with full wards CAT,l a  

CAT + 1 . Q .  

Method l,.# Use immediate swap instructions, 


SWAPIj 2, DOG, CAT 

c)r 

SWAPBI, 2, D@G + L O ,  CAT -+ I. 8 

mailto:Lbv'@*re
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Cornmen& 
&. 	 The swapping sf each word-pair inv two memory fetches 

fallowed by two storea into the "fetc locations. Since the ~ a m ememory 
unit mu*stwait 2,2 rnieroseccmds between reque&a, the execution time 
of swap inatruetima generally takes more time than transmit,

&. he J f i e l d  in swap instruetiom i s  treated in exactly the same way aL1s 
in transmit instructions. 

Method 2 , ~U s e  index instructions, 
LxJ $ O J  

Lx, $1, 9 1.0 

LX, $2, CAT 
%xJ$8, CAT 1.0 

SXJ $0, CAT 

sx, $1, CAT 4- 1.0 

s x J  $', 

SX, $3, DOG * 1.0 

CommentISe 

a. The execution time of this sequence is not heavily dependeat on memory 
delays, and Method 2 is expected to be faster than Method lpExtensive 
use of this type af coding is clearly limited by the entailing te.d..iukn, 
Other alternatives are again, VFL and floating point LwF+Sares.b4 $0 may be used for any index purpose except address modification and 
progressive indexing. In address modification a zero 1 field 
specffies no modification. 

PrublemU, CqJ;r. p e r m--..---Ll;ka&;cz n-&:ft-amlp c7f M Lw-wcfs* 


Given q G & t i t f & S  A, b, 6 ,D, E, Fj C,13, I, in full words DOG through DOG -). 8. Oe 

Cyclically permute the information such that the new contents will  be in the 

sequence DEFGHIAEC, 

Method 1, 


TI, 3, DOG, 27.0' ' 'store A, B, @, . in $1, $2,. $3, respectively 
TIj 6, DQG + 3,qDCI)G " OpY!.L-* H-1ri.HX 
TI, 3, 17.0, DOG -I- 6 e Q  I' p 1; f GH 5 A P, C. 

Method 2, 
SWAFI, 8, DOG, DOG + 1.0 ' 'cyclic left shift one tanit 
SWAPI, 8, DQG, DOG + 1.0 "shift. another unit 
SWAPI, 8, DQG, DOG + l,d "axnplete the 3 unit cyclic left shift 

Method 3,  
SW.AP1, 3, DOG, DOG 3- 6,t7 ''WGH3iX: 'Akd.  
SWAPI, 3, DOG, DOG + 3.0 "complete the permutation

Method 4,  
SWAPI, 6$ Dm, DOG -I-3 .0  

Comments, s. In order t~ permute N consecutive full wordsfi%(DG thru DOG * N-l)c t  C - d S  fl- 1 1 ,  / l 5 C I ' ' U c ~  

cyclically left K placegithe single' ihstructkon 
SWAPI, N-K, DOG, DOG + K 

is adequate. If on the other hand N-K i s  a divisor of N, the situation fs 
e'quivdent t o  that sf cyclically permbting right N-K placeg, and a back-
ward swap may be used: 

S\rdAPBI, K, DOG + N-K-1 "N-Kdivides M 
If neither M or M-K is a divisor sf N# nb single swap instruction will  suffice, 
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NewUess to ~ a y ,if the number sf ful l  words to be swapped exceeds 16, the fmrnedfatt 
awap Instructions should be replaced by equivdlsmt direct swap imtructions,

Flu' 

ProbkmlA, ReEIa.c~men4of fuIlw~l,,I, (y ?.erose 
Replace the co.&&&-off6li-woa>agG%hrou@ D-T+ 24.0 with zeros. 

Method 1 W Set up a small loop using CB+ instructions. 


__. 

LX, $3, xw.3 
A:
 :. A 
2, DOG(@) 


cB*, $3, 61: I --*A* 


EL 	9. . BEW, Bi 8 ..I). 


y w a  XW, (AJL 25, xw.3 
Comments I 

aml. 	 The address field of the BEW instructions and the refill field of 
the index word are being w e d  for identification purposes, 
While the system is "waiting", the numeric equivalent of B, v 

being a branch, address, is in the instruction counter. During and 
after the execution of the program, one can examine the refill field 
a€ $3 to find out the source of the index information. These 
identification tags can be useful debugging aids.

bu It I s  gobd practice Lo use a decimal point in the value field of an 
index word. 

Methad 2, 
L?L $3, XW3A 
2, w#w 
CJEk-, $3, $ 9 3 2  
BEV6r.J $ 


xh'3Al XW, DOG -0- 24.0, 25, $ 

Comments 


a.The use of $ to mean "the locatLon of this very instruction irs an efficient 
symbolic programming device, Instruction insertion and/or deletion 
in the vicinity of a symbolic instruction containing $, however, has to be 
done with aome care .  For instance, thetinsertion of a half word 
instruction between the Z and CB- instructions without corresponding 
change in the CR- instruction will cause branches to this new 
instruction rather than. to the Z instruction. 

Method 3 , W  During a transmit instruction execution, storing of the Ktk f'sinkD' 
word precedes the fetch of the (K -+ 1) th "source" word. This makes the following 
concise program possible.

E,D m  

TI# 92, DOC;, D@G + 1-0 

TI, 12, DOG, DOG + 13.0 


Comments, 
L I	 I 

d. 	The execution sequence is: 
ZWWS --> C ( D @ G ) 4 C ( D ( l ) G+ 1. O ) ,  
CCDOG+ I, O++>C(DOG + 2.01, et@. CCQ) -5 k 

probled#5e ~ep lacernen& c r ~/so/m,+ec/ Fu.l/--worJ 

Replace the following fu l l  words by
w 
t hough  CAT + 15.0, CHICK through CHICK + 34.0. 



L 
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Method I.# U s e  chain indexingo 

PRNID, JOE BkoWEJ DEPT. 333 

PUNID, J. 1sLQ)WE 

SLCJ 1000.8 

LCI, $1, 3 . 8  

LX, $2, LINK 1 

E ,  	o($a
CBR+, $2, &32 

CB, $1, $ - L O  

BEW, $ 


LINK f XW,, DGG, 25, LINK 2 

LINK 2 XW, CAT, I€&LINK 3 

LINK 3 XW, CHICK, 35, $ 


END, 3eooo.o 

Comments 


dl, -%'he PRNHP), PUNID, SLC, and END pseudo fnstructfona should be 
included in every program intended for assembly, They are given 
here as an example of correct usage.

b. 	 TMS is a simple dcimionstration of the utility of tlne automatic refill 
feature In the 7030. 


Method-----
2,R Use  chain indexingand an XF to terminate the sequence, 
LX, $2, LINK I 
Z J 0($2)

@Em+,$2, $a32 

WZXF, $ - l o o  

BEW, $ 


LINK 1 XW, D$?l@, 25, LINK 2 

LINK 2 XW, CAT, 16, LINK 3A 

LINK 3!L XWJ cEPclI(, 35, $, 4 

Csmments 0 


1_1 

cl. 	 The use eaf the index flag to terminate a sequence is especially 
important when the exact length of the indexing c$ftNjcrt2~sunknown 
or variable. The number in the fourth subfield@oncerns the 
setting of bits 25, 26, 2'8 of the index word, The number 4 means that 
only bit 25 (XF) is a 1. 

#j.Remember that the settnng of the index flag indicator is done prior 
to the refill. 

Method 3, Use  transmit imstretetions, 
%# DOG 

TI3 12, DOG, DOG f .  0 

Ti, I.& DOG, DQG + 93,o 

,'I&, CAT16, DOCS, 

.TIs 12, .DOG, CHICK 

TI, 12, DaG, CHECK 8 12.0 

TI, 119 DaG, QXCK + 24,O 


Method 4.a Use transmit and index refill, 



-- 
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xw5. XW, 0.0, 34, XWSA 
x w u  XWJ o*o, 25, $ 

trrrr, Comments, 
a.The refi l l  Instruction operand is not limited to index registers. 

It i s  possible for example to write 
R, X W 2  

and after its execution X W a  will  have the same contents a8 X W a A  I .  

ProbleunZ.6, Sa b-t, p a I  ni.;an bf: f i e  I&, 

Subtract the value field of $1from that of $14 and put the result in the value field 

of $14. It i s  permissible to destroy $1in the procesa, 

Method 1 - Change the sign bit of the value field of $1, then add value fields. 


BBN, 9.7.24,NEXT 

NEXT LVS, $14, $1, $14 

Comments, 


In the LVS instruction the index registers to be added together must 
all be different from each other. The J field, however, may refer to any 
index regis ter .  

"V+-, $14, 17.0" could also be used as1 an instruction at location 
NEXT. 

7	Che conditional branch is being used unconditionally. The computer 
nevertheless still makes the tentative asaumption that the branch 
will be unsuccessful while preparing the BBN instruction. Sdme 
time i s  lost  if the assumption proves Incorrect during execution time.

dq The program above is therefore efficient If the bit 17. 24 is 
probably zero. If this bit is probably 91, BBN should be changed to BZBN. 

e. 	 The machine preparation of the following conditional branch 
instructions involves the tentative assumption that the branch will  not 
be successful! 
All EIB type of instructions (no exceptions) 
All branches on indicator bits except the following: 

XF (11.38) 
XCZ (11.48) 
XVLZ (11.49) 
XVGZ (11,51) 
xvz (11.50)
XL (11.52) --
XE (11.53) 
XH (11.54) 

Note that branches on index resu l t s  o r  index reg is te r  conditions do 
not involve tentative guesses. For exampleJ CBRX does no2 behave 

+ ~i$zea,--,~,e,,+wty c.Pranchc.-QnnecCtivetnstrticd~onc M A g  ooka5 31 17:J V  ~n e 'e '51u e  conditjonal e 
P r o b l e m L  I n  e r r w p t ~ o r )m e a s a r e .  1 i0 5 t r ; u cfin. 
$IA contains the addres'a 1000.0. It is desired that when a $TS interruption occurs  
the instruction counter contents should be s tored in the first 19 bits of location 

is to be continued. W r i t e  a code to effect this. 

TsFIx SIC, 20040; BR, 8 
-w Commentsr 

d.  	The SLC pseudo instruction indicates the instruction TSFIX is to a ta r t  at 
1004.0. . Since $TS is bit position 4 of the indicator register,  a $TS inter-
ruption will  lead to an automatic execution of the f ree  instruction at 
@($IA) + 4.0 = 1004.0. 



----- 

I 

b. The instruction counter is not changed during the epecutjesxn of the 
.I-..c

"free instruction", hence the"bsanchrelative Its zero instruction will  re turn 
to the main program, 

6. The interruption system is not disabled during the execution of the 
I !  free instruction". In fact during the interruption only the $IF monitoring 
I s  relaxed temporarily to d l o w  the fetching of the "free instruction". 

d. The SIC atition i s  n@t performed unless the ensuing branch is SUCCwiwfUPJ 
and even then It i s  performed after the execution of the branch. 
Instructions such as SIC, $+ 8. 32; €3, ANYWH will  lead to a branch to 
ANYWH if the branch is executed. The instruction counter will  not have 
time t o  alter the branch address before execution, 

p r o b l e m ,- _I -_._ 	 R E N A M E  insCruc4;on.__I_ _I-."".,.-----.I-S ; m u l a . t ; o n  J 
Create $he effect  of the instruction RNX, $1, DQ)@($3), -7 

~ ~ u ~ ~ € e ~ - ~ i n ~ ~ ~ ~ ~ ~ ~ g ~ ^ I - - - - - I I -
Method I, 

RNAME SX, $2, X2 "save $2 


SR, $0, f8 ,O 

STOX 	 sx,$1, W$2) 


EX, $2, x2 "restore $2 

LvE, $1, Lox 

LR, $0, 17.0 


LOX =,$1, DQjG($3) 
w BEW, $ 

x2 	 xw,0 

Comments, 

&, 	 It would seem that the SR instruction could be altered such that the 
refill field of $0 is stored directly into the address field sf ST(DX, 
and the use of $2u+d4'be avoided. This is not possible because in the 
SR operation the rc f i l l  field concerned i s  right appended by zero bits to 
create a 25 bit value field. The latter is then stored. The STOX 
instruction would be seriouaaly altered if a direct SR operatfan is used. 

Prsbleml.9, Transp~s&,nn  __ s L,,cl, r e  m d r i x  wi- th  f c J  word J e m e n ka -g _--------
Am N x N matrix has full  word elements and is stored row-wise GegimnEng at LQC, 

Create the transpose of this matrix and store it in the same area. 

Method 1#h Interchange rows and columns starting from the north and west borders 

of the matrix. 


TPOSE LX, $2, XW2; SX, $2, X W 2 2
F" 9wL, $3, xw3; sx, $3, x w 3 3  
SWAP1 	 SWAPI, I, 0($2), 0($3) 


V+ICR, $3, N 

CBR+, $2, SWAPI 

'9r+Ic,$2, N + l .  ; SX, $2, xwga 

V'IC, $3, N'1. SXJ $3, X W s 3  

BZXCZ, SWAPI 
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N 	 SYN, 100.0 100 x 100 matrixIt&+" 

w 	 LCbC SYN, 32768,O ''if matrix sttarts at 32768.0 
Comrnents, 

d o The program i s  written in such a way as to be reusable, 
Otherwise the temporary index word storage8 XWx13!2 and XWB3 could 
be ornittfikl by a slight change of the program, 

Method 2, Start from the upper and lower co-diagonals of the matrix and proceed 
through the exchange of the north-east-most and the south-weat-moat elements. 
TQgSE2 EX, $2, X W ~ ;SX, $2, X W Z ~  

$3, x w 3 ;  	SX, $3, xw33 
SWAPI 	 SWAPI, 1, 0($2), 0($3) 


V*ICRj $2, N+1, 

V+PCR, $3, N+1. 

BZXCZ, SWAPI 

V*IC, $2, 1.0; sx, $2, xwz2 

V+IC, $8, N;sx, $3, xwB3 

PZXCZ, SWAPI 

BEWJ $ 


xw2 L O c + l , J  N-1, xwa2 

xw3 XW, LO)C*N, N-1, X W 3 3  

x w z 2  ma0 

xw33 xw, 0 

N SYN, 100. "size of matrix 

mc SYN, 32768.0 'Istar ting location 




A 

2. Variable Field Length Instructions. 
I 

Problem 2. L Cyclic bif shiftihg. 

Cyclic left shift a full word in  D@G by 7 bit positions, 

Method 1. 

''leave room far DOG thru DQ/G+O,6 

Problem 2.2. Length of a n  unknown file. 

Information of unknown length is written in consecutive 7-bit bytes 

beginning at IW@. Its end is signified by the first appearance of a special 

character consisting of seven binary 1's.  Write a program to  find the file 

length (including the special character) in bits, and put the answer in the  

value field of $1. 

Method 1. Byte-by-byte compare. 



SEVN VF, 0.07 


Comments. 

0. The last VFL instruction serves mainly to perform the (V-I) operation, 
+clr a , I t c J  rnci.+i ve +e L X  n I' f i e d o c 4  3. 
tixxs-)~3ing-no-ot-her--simplr;vJi~-Z-ZL+ttmszme&ing. 

b e  ;ffrr binary unsigned operations the machine uses a byte size of 8 

regardless of the data description, except for logical connectives. 

STRAP inserts byte size 8 if  unspecified. 

C* A numeric bit address is signified by the appearance of a "point" 

(whatever the radix). A number in the addressafield without the ''point" 



i s  sa id  t o  be an i n t i g e r  address. The l a t t e r  is acceptable to  S T R A P ,  but 

irrrr' SmAP..nlust translate it in to  the equivalent numeric bit address before tho 

program can be executed direc t ly  by the machine. 

The bit address equivalent of an integer address is determined 

by the environment, which defines a subfield. The'integer oddraas is 
non- e r o  hi+ $ o r  *Xe 

treated as an integer of the subfield (e .g. ,  tho,lrt&gor iwould occupy 

the*riglitzmopt posit ipo)  $ ,  then the left margin sf the subfiald.isr placed "in 

juxtaposition with the leading bit 'of the address f i e l d  , leading t o  'a,Bit-' 

address identification. 

Where the environment seems t o  suggest more than one s u b f i e l d ,  

the atnalJest subfield is to  be used. 
I 

A VFL instruction normally implies a subfield of 24 'bit$. Zn the 

second instruction of the present program, the "immediater' rrature, p l u s  

the field l ength  suggests a srmller (7 b i t )  subfield. The l a t t e r  is adopted 

during the S T R A P  assembly as the defining subfield, and the bit address 

,equivalent i$ therefore 

0 ,  (127*2'7) 0 ,  (127*217) 

(127*2'').0 = 260096.0 

The convenience entailed by the use of integer addre8se8 I s  
dwv 

apparent: 260096.0 is not only d i f f i c u l t  to obtain, but * p o t  contribute 

t o  understanding. 

Method 3.  Use connective and branch on $RZ. 



V 




- 
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Comments, 
d. The LVE instruction loads themagnitude of the d u m m y  SIC inetruction 
8. 	@TO1110 will lead to $ R Z = l  if the memory field and the accumulator 

field a r e  equal. In reality the 7-bit memory field is left-appended 
with a zero bit and is connected with eight bits left of the offset. 

G .  	The V*,$l W a R D  instruction in reality performs a subtract dnce 
bit 2 y  of the SIC instruction is a 1,

d. 	The progressive indexing secondary operation can precede the (dda). 
e. 	The CNOP forces the next two half-word branchinstructions to be 

packed in the same full word. Tbis has a beneficial effect OA 

Instruction Unit t iming .  
P rob led ,3 I Df&t ic. 11 y ~ ' ~ c . $6 t h  / , 'A -!!-?-----.--y& _ -_ _ _  5 -6dd ,  ____--

Given a string of 60 bits starting a t  FIELD, delete every 5th bit starting at 

FIELD t 0. 04 and put the 48 bit result consecutively starting at  FIEL, 

Assume that there is no overlap between (FIELD- FIELD a 5 9 )  and (FXEL,- FIEL+@;Y7/ 

Method l 0  Lo'aad 5 signed bits and s tore  4 unsigned bits at a time, 


LV, $2, VFIELD 

LX, $3,  VFIEL 


LaAD 	 L(Bj5, l)(VtI) ,  0.  05($2) 
ST(EU,4) (VtIC) ,  0.04($3) 
B Z X C Z ,  LOAD 

VFIELD VF,  FIELD 
VFIEL X W ,  FIEL, 12, $ 
Comments, 

c2. B Z X C Z  is not considered to be a conditional branch instruction since 
the instruction arithmetic unit knows the index conditions during 
decoding time. 

Method 2. Load 5 unsigned bits and s tore  4 bits with offset 1. 
L V ,  $2, VFIELD 
LX, $3, VFIEE 

L@ADA 	 L(BU,  5)(V+I), 0. 05($2) 
ST(BU,4)(V+IC), 0.  04($3), 1 
BZXCZ, $ 4 . 0  
BE%$ 

VFIELD VF, FIELD 

VFIEE X W ,  FIEL, 12, $ 

Method 3, Other variations of the s a m e  theme, Instead of LaADA and LaADA 9 1. 0 

above, one may write any of the following instruction paira: 


E(BU,4)(V+I),  0.05($2) 

ST(BV,4)(VtIC) ,  0.04($3) 


o r  

L W F ( B ,  5, 4)(v*I)J0 . 05($2) 

ST(B, 4,3)(V+I)) 0. 04($3) 


Method 4., Remembering decimal information is processed in the accumulator in 
4 b i t  bytes, it is possible to write just two instruction8 to erolvo this pra'trlPm 
under restrictions stated below. The decimal load operation behaves like 
a decimal 	s'add to zero" operation, 
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E(DU, 6 0 ,  51, FIELD-0.01  


ST(BU, 48), PIEL 


Of: 

L W F ( D ,  60, 5)# FIELD-0.01  

STYIB, 48, 41, FPEL 

6omment6. 

a, The lead bits in the 5-bit bytea are deleted to five 4-bit bytes, 

b. 	 In the decimal load the $-bit bytes will not be altered if they 

contain what appears to be decimal information. Otherwise 

ca r ry  propagation and assimilation will occur. The byte 

(1 P 1 1)2, for instance, will become (0101)2 with a carry to 

t o  the higher byte. 

c .  	The method fails if  FIELD -0. 01 happens to be in a protected 

memory a reae  To avoid this difficulty, use say, L(DU, 59, 51, 

FIELD instead. 

Method 5 

LX, $1, X W 1 ;  LV1, $2, 56 

L(BU, 6O), FIELD 

STaRE 	 W B U ,  4) (V 4- I), 0.64($1), om) 
v - I, $2, 5 

BZXVLZ, S T ~ R E  

BEW, $ 

xw1 XW, FIEL, 0, $ 

Comments 

Zk. 	 The integer 5 in the V - I instruction means 5 units in the 19 bit 

address subfield of the instruction half -word. 



e 

Method 6 .  Use logical connectives. 

COO11 (BU, 6 0 ,  51, FIELD "LF 

CMOlOl (BU,48, 4)) FIEL, 1 "SF 

Comrnents. 

a, The accumulator always uses 8 - bit bytes. Each memory 

byte is  left-appended by enough zero5 to become $-bit bytes 

for the connect operation. In the LF operation true me m o r y  

bytes are expanded to &bit bytes; in the SF operation the 8-bit 

bytes are truncated to the specified byte size (in the dds). 

b. 	For operations @abed, CMabcd, CTabcd (abcd can be any 

combination of 0% and 1 ' s )  the result of the operation can be 

~ e e nfrom the truth table: 
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Cabcd: result goes t o  the accumulator 

CMabcd: r e s u l t  goes to memory 

CTabcd: result discarded 

Where m refers t o  a memory bit and a refers to an accumulator b i t ,  

If a m 1  and 150, for instance, the r e s u l t  would be c .  If the instruetiens 

for this  case WPP COOlO, c equal8 l L  

C .  	 of the connective operations are, mong other#, 

$RZ ''E8 tho result zero? Or, doe8 the r e s u l t  contain no ansa?" 

$A@C '%HOWmany ones are there i n  the result?" 

$LZC Where fa9 the leading one b i t ? "  

The CTabcd operation allms the user to examine thaab bfpmdactr
h 

without affecting the accumulatsr or the memory. 


de 'The only acceptable encry mode for connective operatiana'irr BU. 


B I D #  and DU are cansidered il1cgal by the STRAP assembler. 


Problem 2.4, B i t  ravarsalk 

The 6 4 - b i t  full word starting at: WgRD contains a binary mesaago which 

would be easily interpretable when every bit in the word i a  reversed 

(WQ1~Dt0.63becomes W g R D i O . 0 ,  etc , ) .  Perform the b i t  reveraal and put the r e s u l t  

i n  'DR&. 

Method 1. Load the entire word and store a b i t  at a time. 

LX, $1, xw1 


. Iix, $2,.xw2 


CBH, $2, ST@R 



I 

BEW, $ 


XWE xw, DR&, o ,  $W 

xw2 XW, 0, 6 4 5 ,  $ 

Method 2. Load & & b i ta t  a time and stbra the entire word, 

Problem 2,5. Removal of key words, 

t 


Given a string of 100 s ix-bi t  bytes beginning at  OATA, remove any 4 

consecutive bytes  which match P given "key word'' KEY, Pack the result 

atarting a t  WSW. 

Method 1, 


Ex, $1, xw1; Lx, $2, xw2 


L ~ D E  L(BU,24)  WI), 0.6($1) 

K (BU,24), KEY 


B A E p  AE 
yrru' 


ST(BU,6)(V+I), 0.6($2), 18 


CAB CB, $1, LQDE 




"atare remaining 3 bytcr 

"skip 3 more byte8 

xw2 XW# ANSW, 

X18 VF, 0.18 

Comments. 

OA $ 

w 

1. The integer 3 in the C-I-
18 b i t s  ( a i m  of ceunt f ie ld) ,  

instruction meam 3 unit8 i n  a rubfield of 



PrcJem 2 . 6 .  Sorting on the basis of subfields, 

6iven I6 consecutive fields beginning at DATA, each of the 

following appearance: 
.( 

(4Abit9 S ( L 0  bas) 

15. Assume all A subfields are different in content, sort on the b a d e  of A 

eubfielde and put the correspondent B subfields together in a rstring beginning 

at ANSe 

Method 1. Take advantage of the fact that there are exactly 16 A subfieldre 

and that these subfieldEs have different content%, 


ASCbRT LX, $2, xwz 


LOCbP fr;(BU, 4) (ST 9 I)# 8 ,  04($2) 


"answer at offeet 20 

ST(B, 25, 1),17*O, 20 "store into index regieter 
value field 

L (BU, 20)  (V t I), 0.20($2) 

ST(BU, 20)# ANS($l) 

* (BU,2A),VF20 

xw2 XW, DATA, 16, $ 


VF20 VF, 20 


ANS DRZ(BU, ZO), (16) 
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w 
Comments;; 

a, If the A fields are  not all different mis-s tores  will  be made. 

Method 2, A slight modification of Method 1, 

ASrbRT2 LXa$2, XW2A 

t ( B U ,  4),-0.4($2), 20 t 4 

ST(B, 25, l ) ,  17.0, 20 

L(BU, 20) (V t IC), 0,24($2) 

ST(SU, 201, ANS[$1) 

BZXCZ, LOOP 


B E W ,  $ 

XW2A XW, DATA t 0.4,  16, $ 


ANS DRZ(BU, ZO), (16) 


Comments, 

a, The multiplication by 20 is replaced by judicious placement 

of data in the load and add operations, 

b, The following s e t s  of inetructions lead to th; same results,  

and other variations are possible. 



= l l . d  -

'($2 has X in value field) ($2 has X in value field) ($2 hae X t 0.4 in value field) 

U(BU,4) (V t I), 0,04($2) L(BU, 4)(V t I),  0,24(,$2) L(BU, 41, -0.04($2) 

LjBU, 2Q)(Vt I), 0.  20($) 


ST(SU, Z O ) ,  ST(BU, ZO), ANS($l) ST(BU, 20), ANS($l) 


CB, $2, 	 CB, $2, LOOP BZXCZ, 

c .  	A negative numeric address is  assembled by STRAP a8 its 

two's complement, thus - A will be assembled as 2**18-A, 
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VPC 
STIX 

K D M F  

.AGAIN 

PACK 

FIXMIN 

XWP 
xw I P 

unJ 	 xw2 
XWIIA 
V F B 
V F 2  
ANS 

€3, STIX 
V t C ,  $1, VF1 
sx, $1, X W I 1  
UmJ,24) 9 O W )  
K(DU,  4)(VtICR),o. 24($1)8 20 
FAH, FIXMIIV 
R Z X C Z ,  K@MP 
S F ( P U ,24)(V+IC),0.24($2) 
F Z X C Z ,  VPC 
L X ,  $1, X W I A ;  LV,  $2, VF2 
L(DpJ, 20)(V+I),0.  24($2), 
ST(UU, 20)(VtIC),O. 20 ($1) 
BZXCZ, PACK 
1B 7::w $ 
L.F(PU,24) ,  41 24($1), 24 
SF(J2*U,24), i!24($1) 
L F ( D U ,  24),  9. 16 
E3, AGAIN 
X W ,  DATA 90.24, 15, XW-1 I 
xw, 0 
X W ,  DATA, 14, $ 

X W ,  A M ,  16, $ 

V F ,  0 . 2 4  

VF, DATA i-0.04 


"outer Poop,res ta r t  with changed $1 
"save $1 contente for la ter  refill u R e  

'"load assumed minimum 
jSinner l o p ,  test  against assumed rnin 
"usually ,succee eful 

"itore proven minimum 

%kip A field 
%tore sorted B field 

"'fixup routine ,load new minimum 
"store old quem in its place 
"position new min. in accumulator 
!!return to inner loop 

"will be changed during computation 

bj . 
deemed undesireable, one could transmit the information to a 
temporary area and do the permutation there,  leaving the original 
information unaltered. 

C. The code is written under the reasonable assumption that the 
provisional minimum stands a good chance of being no l a rger  than 

d. 	
an average entry. 
For  the sake of clarity the packing of the sorted fields is done 
separately a t  the end. By uering an  extra index regis ter  this 
packing action can be performed whenever a new proven minimum Wfound. 

Method 	3, R ~ ~ ( I c ? c L + ~ J  ma ximum and Tp,cnimum,cumpares - f o p  bo+h 
LX, $1, XWP 
tz, $2,  xw2 
E X ,  $3,  xw3; sx, $3,  xw33 

L@DE L(BU, 24)# 0($1) 
LF(BU, 241, 0($2), 64 
KF(BU,4Ll 0($2), 20 
BAH, SINICH 

TEST 
BAH, FIXMIN 
KF(BU,4)(VtICR),  0.24($3), 20 "test against a s e w n e d  minimurn 

K F ( B U , 4 ) ,  -.24($3), 64t20 "test against assumed maximum 
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BAL, FIXMAX 

AGAIN BZXCZ, $ 3 ,  TEST 

STtBU, 24) (V t I), 0. 24($1) "store minimum 

ST(BU, 24)(V - I), 0. 24($2), 64 "store maximum 

VtC, $ 3 ,  VF3; CB,$3, LODE-1 

PACK LV, $ 1 ,  XWll;LX, $2, x w 2 2  

LgAD2 L ( B U ,  24)(V+I),0. 24($1) 

ST(BU, ZO)(VtIC), 0. 20($2) 

BZXCZ, &@AD2 

BEW, $ 

SWICH SWAP, $L, $R 

-w B, TEST 

FIXMIN LF(BU, 24),-00 24($3), 24 

ST(BU, 24), -0.24($3), 64 

ST(BU,24),9. 40, 24 "new minimum 

B,  AGAIN 

FIXMAX LF(BU, 24), -0.24($3), 644-24 

STtBU, 24), -0.24($3), 64 

ST(BU, 24), 8040, 64t24 "new maximurn 

B, AGAIN 

XW1 XW, DATA, 16, $ 

xw2 XW, DATA -t 0 .360 ,  0 ,  $ 
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xw3 XW, DATA + 0.24, 14, XW33 

xw33 xw,  0 

xw22 XW, ANS, 16, $ 

xw11 VF, DATA t . 4  

VF3 VF, 0.24 

ANS DRZ(BU, 20), (16) 

Comments. a. This method applies even if the A fields are not all,different 

in content, 

Problem 2. 7. Sorting into reserved table areas, 

Given the s a m e  field description as in Problem 3 above, a8 

well agl reserved table areas beginning at TABL 0 ,  ,, TABL 15, each 
U 

of which is capable of holding the entire string [in this case 400 bits), Put 

the proper B fields in successive entry areas of the TABL areas a8 dictatbd 

by the contents of the A fields. A s s u m e  the A field$ are not all different, 

Method 1 

LX, $2, xwz 
v


LQSAD 	 L(BU, 4&-1), 0.24($2), -18 


LVE, $3,  MTABL($l) 


L(BU, 2 0 ) ) -0. 20($2) 


ST(BU, 20)(vt1),0,20($3) 


SVA, $3 ,  MTABL($1) 


CB, $2, LOAD 
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xw2 	 XW, DATA, 0,8 

MTABL 	 SIC, TABLO;SIC, TABL1; SIC, TABL'-2; SIC, TABL3 "Master Ta& 

SIC, TABL4; SIC, TABLE;;SIC, TABL6; SIC, TABL7 

SIC, TABLS; SIC, TABL9; SIC, TABL10; SIC, TABLll  
SX? 


SIC, TABL12;SIC, TABL13;SIC, TABL14; ,TABLl5 

C omrn e nt s. 
a. 	The "master tablet1 a rea  is updated constantly to avoid conflicts 

in the storing of entries with equal A fields. 

b. 	 The SIC operation by itself is meaningless as an instruction, 

kbwever,itspecifies a 24-bit address,  and this fact i e  noted 

by L V E  and SVA instructions. 


Problem 2.8. Pur chasing List  Ari t h e  tic. 

" 

A purchasing l ist  consists of a string of fields, each of which , 

has the following structure 

Subfield A is an 8-bit byte ,consisting of 1 's .  


Subfield B has 2 &bit bytes (item no. ). 


Subfield C has 6 $-bit bytes (coded name of product). 


Subfie1d.D has 3 8-bit bytes, and contains the no. of units of the product 


desired in decimal (DU,24, 8). 


Subfield E has 6 8-bit bytes, and contains the unit price in cente of the 


product in decimal (DU, 48, 8). 


Subfield F has 12 8-bit bytes, and is blank (to be the total price field). 


Subfield G is an unknown number of 8-bit bytes. It contains the remarks 


concerning the product and/or the entire purchase. The first 3 8-bit bytee 


of the subfield G in the last "product f ieldfg contains the 8-bit 


V 



V 
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IQS expression END. None of the &bit bytes in G are  all 1 's .  

If the complete s t r ing begins at LIST, write a program to f i l l  in the eotal 

price for each product in (DU, 1196",8). For simplicity of programming 

do repeated additions instead of decimal multiplications. Create the grand 

total also, and put i t \(DU, "128: 8) in the pseudo accumulator 13. 0 through 

14.0 ($RM and $FT). 


Method 


z, $FT 

L C ~ N  LCV(DU, 24, 8)(_VtI), 0.24+0.48($2), 128 - 18 It$, cleared too 

LG, $1, $L;BXCZ, NEXT "binary count field 

ADD +(ID, 481 8), -0.48($2) 

CB, $1, ADD 

NEXT 	 ST(DUI 64, S)(VtI), 0.64($2), 16 %tore total 

ST(DU, 32, 8)(V+I), 0,32($2) 

M t ( D U ,  64, 8 ) ,  $IF" "update grand total 

U B U ,  32) ,  TESTW 

KF(BU9 24)s 	 o w "test  for end of string 

BAE, LAST 

KOMF KflBU,  24), 0.8($2) "test for beginning 6f new field 

BAE, KOMF 

MORE Vt f ,  $2, 1.0 'Ibypass 64 more bits to new D field 

B, LCON 
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LAST L(DU, 64, 4), $FT 

ST(DU, 64, 8 ) ,  $FT 

ST(DU, 64, 8 ) ,  $RM, 64 

TESTW 

xw2 

(IQsQ)DD(Du, 24, S),ENDQ 

DD~2)11111111
@u, 8,a), 

XW, LISTtO. 72, 0 ,  $ 

"end mark for atrfng 

"beginning mark for field 



C 

W 

a, Decimal quantities with more than one digit must be converted into 

binary before a binary arithmetical operation (gay index count down) is 

attempted. 

b, It is convenient to load one test quantity to  be compared regainet 

many. T h f ~eliminates a number of m e m o r y  fetch operations, In the present 

program two kinds of t e s t s  are performed, but the test quantities can be made 

adjacent to each other, and loaded simultaneously, Note the K F ' e  cannot be 

replaced by simple K operations, 

c .  The 4-bit bytes are expanded into 8-bit bytee in the final store 

of the grand total, 

Problem 2.9.  Effective Address Creation, 

Find the effective addrees of the fnetruction beginning at the 

19 bit addrerse ENST without using the LVE ingtruction, Put the anmmp: in 

the value field of $1, 

Method 1. 

vtas8ume4 bit index field 

s s a s s u m eindexing needed 

%tore in J field of SV instructian 

"index value field now in $1 

Frr 

"test if floating point 



FP 


MPLUS 

NOTFP 

VFL 


NQ~TVFL 

-(BU, 32-18), $R.32t0.18 

M+(B, 25, I ) , l? .  0 ,  32-24 

BEW,  $ 

KFP(BU, 4), (Z)XOOO, 4 

BZAE, NQ)TVFL 

&(But32-24), $R.32+0,24 

13, MPLUS 

KFS(BU, 3) ,  (2)100,4 

BAE, KTYPE 

KFI(BU, 9),(Z)111000000, 4 

BAE, KTYPE 

KFI(BU, 5), (2)10000, 4 

"floating point measure , 

"25 bit add 

''teat if VFL left addreee 

WFL meaeure 

"teert if K type indexing, CB,BIND 

"teat if K type indexing, BB 

"teat if immediate indexing 



1000 mean8 a 24,bit nuenersc address f ie ld;  


,BIQmeans on 18 b i t  numeria address field; 


othlerwim a 5.9 bit numeric address f i e l d  i 8  meanta 

The instruction MY allow no Indexing at  all (imediizts indexing instructions), 

m y  allow a one-bit K-type of indexing apecificatioa (CB,B$ad, and BB) but 

general ly  n l l ~ w s  a 4-bit: I-type indexing specification. 

Xf b i t 8  23-27 hawelOOOOt no indexing allowed; 


I$ bits 25-27 ham 100: K-type (CB, Bind); 


ff b i t s  19*27 have ~ ~ ~ 0 0 0 0 0 0 :  (BB);
K-typo 

atberwiao t 1-type 

b e  The reader should write d m  the b i t  combination of aevsrlrl 

fnstructions and follmw the program ClQl3tefy. 

In many instance8 the symbolic instructions 0hdtnld be written fat: the 

emsvenicnca of the pxogramer. fn the inetruction FP, the f i e l d  

length 32-18 ie evidently 14, but clarity is gained by rctainiw the longer 

eb 




expre8don. The same f s  true for the laddrerss field of TEST. The 

extra asac3mhly time is tr ivial .  

Problem 2.10, Fetch (p2q) th2 element of  rectangular matrix. 

Given a matrix A stored row wise in consecuthraand N column^ 
f u l l  words beginning with All in lactation MTRIX. Given also are binary 

integere p ,  q in the leading 18 bite of $1 and $2. Put the element %q 

in $R. 

Method 1. 


"p-1 generated 

"$1 

%m~lthas 20 offset 

"(p-l)*B 

"(p-l)*N*q 

"N is assumed defined elsewhere 

ac The clement A is in MTRIXt(p-l)Ne The element ~p~ is thcrefore
PI 

in MTRIX+(p-l)N-+(q-l) or MTRfX-l~(p-l)N+q. 

b e  After a binary VFL multiply the answer i a  placed in the cleared 

accumulator with ,offsat 20. 



33 P,QrR each define a two-bit nonooverlapping f i e l d ,  using logicsrP 

connectives only ,  create the lowest: two b i t s  of the sum C @ ) + - @ ( Q )  

oxad put  f t  i n  $K9 ( C (X) means cmtsnts of X )  

"or any other address 

.-emments I/- 5 c A  

Sfl& 
1, This ie, actually a simulation o f  the parallel. addition in binary

A 

digital machineb. 
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with the elements stored rowwise ,  Create the transpose of the matrk, 
also stored r~w-wistg~occupying the same area. Keep the number of 
temporary storage locations small f w  this purpose. 
Analysis: Counting from the (1,l) element # if MATRX begins the storage area 
for a PjrQ matrix, then we may say the location MATRX + L aontains the (r, 8)-

element, i f  
L=(r-l)*Q $. (s-1) r e ,  s$Q. 

The transpose of an MxN matrix is an NxM matrix, The (i,j)-element 
of this NxN matrix is in  location, say, MATRX + K 

K=(i-l)*M+(j-1) i6N8 jdM
The contents of this location, however, has to be fetched from the original 
MxN matrix 8 the (j, i) -element. The fetch location is@say MATRX +Kt with 

K'=(j-l)*N+ (i-1) 
= integer remainder of (K*N)/(M*N-l) 

The algorithm is therefore to  save one element (the lead element) from 
location MATRX +K, d i l l  the latter with the contents of MATRX+K', the&%fin the 
latter with the contents of M A m + K "  etc.., until, the fetch location is the same 
as that of the lead element, The last store is performed with the lead element 
to complete the permutation cycle. As the cycle invariably has fewer elements 
than the matrk itself, care must be exercised to  avoi+ltering elements which 
have already bean parmutad, This can be done by using flag; bits as identification, 
at the same time ensuring that the lead element of every cycle has the 
smallest (or alternatively largest) address possible, The method is essentially 
that of MJ?.Berman, J.*A,C,M, !5, 383(1958). For similar techniques see 
P,F, Windley, Computer J. 47-48(1959); G,Pall and E, Seiden, Math. of821 

Computation, 14,189-192 (5960). 
For square matrices each of the cycles have W only one (diagonal) 

or two (Qff-diagonal) elements#> and t b r o  exiSt methods much more efficient 
than the present one. Rectangular matrices offer few direct hinta about the 
nature of the cycles, %iwg& except that the first and last elements are 
unaltered by the transposition process. 
Mathod 1. Use V- flag for permuted elements. Assume the matrix elements 
do not contain V-flags originally. Advantage is taken also of $VF interruption, 
TKANSP W,$+O.32 

Lv, $1, $LA 'f$IA assumed to  have meaningful value 
v2, $1,370 0 
SVA, $1, SWAP2 
SWAPI,1,o ($11, INST 
TI, 1,$IND+1. o,IN'ST+l. 0 
CM1111(BU, I), $INDtl.37 
LVI, $1,0 
LI(BU, 18), M 
*I(Bu, I@>>#N 
-I(BU,B8), 1 , Z O  II'M*N-I 
ST(BU, 25)#20. 0,20-7 I1 at full-word position of $4 value field 
Lc@$1,200 0 h o p y  into $1 count field 
CB&,$1, Bm 

"to ensure CYCLE will start at full word 
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CYCLE 


ENDCYC 
SZM 

sww2 

B E W  

INST 
TEMP 
MATRX 
M 

N 


w w  

TI; 1, MATRX($2), TEMP 
L(U'), 18.0 
*I(BU, 18)#N, 128-18
/(Bu818), 200 0,2 0 
L(BW,18),$RMt. 60-.18,128-18 

u,$3#$L 

LWF (U), MATRX($3) 
CM111l(BU, I), $SB+O. 7 
ST(U), MATRX(S2)
fx,$28190 0 

B, CYCLE 

TI,1, TEMP, MATRX($Z) 
BZBN, MATRX+O. 63($1), NUCYCL 
CB&,$1, BZBZ 
SWAPI, 1,O,INST 
TI, 1,]CNST+l.0, $IND+l. 0 
B m , $;CNOP 
B, ENDCYC;NOP 
DRZ(N), 1 
SYN(BU, 24), 1000.0 
SYN, 20 
SYN,5 

fl file away leading elemetxb sf cycle 
I' location of old element 
Ianswer i s  at 20 offset 
divide by M*PJ-l 

It location of new element 

if operand has V flag, interruption ensues 
11 ureate V-flag 

store into vacated location 
"new address modifier 
endless loop dependent on $VF exit 

@"transmitlead element of cycle.1t has a Vflarg 

user specified starting address 
''user specified, No. of rows 
''user specified, No. of columns 

_Comments, 
a. To avoid conflicts, all but the leading members of each permutation

cycle are given a V-flag d d n g  the permutation, and the end of 'cycle is sensed 
by the  fetching of an element already with a V-flag. Tho BZBN instruction tests 
elements of the entire matrix proceeding from the lowest addresses. If a n  
element has a V-flag, it must have been an element of some previous permubttion 
cycle. The flag is removed and test is made on the ne* element. If an  element 
is encountered without a V-flag, it has not been in any permutation cycle before, 
and i.t m u s t  be the leading element of &t new permutation cycle. The first and 
last elements of any rectangular matrix are not affected by permutations.

bo 	The judicious use of interruption to exlt from an otherwise endlsss  
loop can lead to  much saving of programming and execution t ime,  
Usually, however, interruption should be donea th  the help of 
the master-control or other supervisory programs, to ensure that 
other interruptions are also handled properly. Here one entry of the 
interrupt table has been changed at the beginhing and restored at the end. 

6. 	 There exist numerous ways to improve the present program. In 
particular the replacement of VFL operatdons by proper floatring point 
counterparts may be recommended. 



- 21 -


3,  Floating-point Arithmetic. 

Problem 3.  1. Separation into Integer and Fraction Parts .  

The floating point number N in location DOG hae a mnaU ( 48) 

exponent magnitude. Create two normalized floating point nurnbera 1, F in 

GAT, CAT 3- 1 respectively such that H = an integer; 

IF\4 1.9 sign of F=aign of N; 

and I t F = N. 

Method 1. 

ST(N), CAT 


SL@(N), CAT t 1.0 


B E W ,  $ 


X48 IDDCN), O.OX48 "binary exponent of 48 


Comrnents 


a. The number X48 forces the fraction of N to shift right the 


proper amount. 


b. For  better understanding, the reader  should illustrate the 

program for himself using, for exarnple, N = 2. 5. 

C e  In dealing with normalized numbers, the (N') modifier is needed 

only for arithmetical operations which may otherwise generate an unnormalized 

result. The (U) modifier mean8 "do not perform normalizationfg, not 

"denormalize". L(U) and ST(U), when applied to an operand which has already 

been normalized will leave the number still normalized. 



Problem 3,  2. Integer Part of Floating-point Word 

The floating point number N in location DOG is defined as in 

the previous problem. Put the lowest 118 bite of the VFL i e g e r  corresponding 

to 1 into the first 18 bits of the count field of $1. 

Method 1 

D+(U), X48 

I 1 $ L  28 is a h s  acceptable 

"binary exponent of 48 

Problem 3 . 3 .  Polynornia1 Evaluation, 

Evaluate the polynomial 

Fqx) = akxEt,% 
k= 6 


where x is located in X, ak i s  located in A + K, K = 0. o ( L  O ) 2 O e C b  


Store the result (single precision) in Prt>LY, 


Method 1, Term-by-term evaluationc 


Pe3LW WJL A 


ST(N9, POLY 


LX, $2, xw2 
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STOR "new power of x 

"new partial BW 

xw2 

XK 




ar This i s  a relatively inefficient way t o  evaluate a pdynmial but 

the technique appliaa to  any f in i te  eeries. 

Method 2. Uere the nesting technique, 

XWdRD2 XW, 19.0, 20, $ 

Comments. 


a. 	 The nesting technique for polynomials i s  Wiwe 18 f o a t ,  more 

iceurate, and requires fewer instructfane than the term-by-term 

method. 
Method 3. Use nesting technique and double operations for extra accuracy. 



CB-, $2, DMULT 


ST(U), PGLY 


BEW, $ 


w3 xw, 19.0, 28, $ 

Garnrnents. 

a, The double operations are essentially no slower than the 

corresponding regular operations, 
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w 

a 
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-w- Comment a 

a, The E ik I insrtructions m a y  be used for multiplying the floating-point 

number in the accumulator by powers of 2. They are more efficient than 

multiplications ~r divisions. 

b, For a floating point instruction the addreses 8.0 or $E meam 

the leading 60 bitrs of the accurnulator plus the lowest 4 bits of $SB, 

Method 2. Separate the function evaluation from the s m m i n g  action 

in the'loop. 

"new x 

"branch to f(x) evaluation 

"new partial s u m  
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ANS 

TEMP 

H 

FUNCT "function evaluator 

XWP 


A I tlower limit 

B "upper limit 

N DD(N), 20,O "no. of strips 

Comments. 

a, The present program requires two additional branch imtructions 

per loop, and i r s  slower than that of Method 1, What it loaes in speed i a  offset 

by the gain in clarity, however, and if a new integral is to be evaluated, only 

the lower portion of the program needs to be replaced., 

Problem 3, 5.  	 Continued Fraction Evaluation. 


Evaluate the continued fraction 


1 - X 

X2 
3 -

7 * *  
e 

with x = ~ / 4 .  
W 
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W 

"x 1* 2 

"39 

8'37 -x*x/39 

X 

NUM 


awo 
xw2 

TEMP 

TEMPI  

TEMP2 
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L(U), NUM 

- t  TWO 

ST(U), N U N  

t, TEMP1 

CB, $2, LODP 

R/,x 
STILT), TEMP2 

BEW, $ 

X DDYN), $PI/4 

NUM DD(N), 3 9 . 0  

TWO DD(N’), 2.8 

xw2 XW, 0 . 0 ,  19, XW2 

TEMP DR“ (3) 

TEMP1 SYN(N), TEMP-kP. 0 

TEMP2 SYWN), T E M P t 2 . 0  
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Comments, 

a. The most efficient way to evaluate a continued fraction 

is to s ta r t  from below. 

b. The R / N  instruction should not be confused with R/(N) ,  

The reverse  divide feature in the 7030 is convenient for continued 

fractions o  

c. Where the dds is not explicitly given in an instruction, 

STRAF will, inser t  the dds of the right p o s t  symbolic address. If theI 

latter has no meaningful dds, the next-to-the-right most  symbolic 

address will be used, etc. If the collection of symbolic addresses for 

the instruction i a  exhausted without a proper dds having been foundo 

STRAP will use the (N) modifier for instructions which a r e  unimn- 
W' 

biguously floating point in nature. The exception being E+I and variants. 

An operation which c a l d  be either VFL or  floating point is a s s u m e d  VFL, 

Problem 3 . 6 ,  Scalar Product of Vectors, 

Find the following vector scalar product 

16 
(a#b, = "kbk 

k=O 
where ak is in A t K, bk in B t K ,  K=O.O ( l .  0 ) 1 6 e  Put the result  in c.O e  

Method 1. Use LFT, *-to 

LX, $3,  SXTEEN 

LOFT 



SRDIN), C 

SXTEEN XW, 1.0, 16, $ 

Comrnent B 

a. The *t operation i e  ideal for vector and matrix producte, 

b. The LFT operation is a Itmemory to memory" operation, 

,4ince $ FT is a bonafide memory location. Since it does not involve 

the'mecution arithmetic unit (the E-box) and since the temporary 

ator $M@P is turned on only for E-boxdto-memory operatione, 

$M@P 1 ~ lturned off - by LFT. 

c. While the LFT opekand is on its way to $FT (location 14.0 in 

memory) it 1.8 also made available in the look-ahead to facilitate the *t 

operation. This llforwardingtl operation allows the *t operation to proceed 

before $FT is actually loaded, freeing the program from memory a c c e m  

delays due to the store and a subsequent fetch (for the *+). Forwarding is 

always done when information needed for the execution arithmetic unit is 

known to be available in the Lookahead. 

\ 
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Problem 3. 7 Cube Root 

Program to compute the cube root of a nornialized floating 

point number N by the following iteration formua: 
X3L -I-2N 

U s e  it to compute the cube root of 8, with Xo = 2. 5. Ten iterations will  

give full-length accuracy except for the round-off error in the last iteration. 

Method 1, 

CBRT L(W , EN 
E - 1 ,  1 

-W2 
+(N), E N  

ST(u), TEMP I13N/2stored in TEMP 

LX, $2,  xw2 

L, GUESS 

ST, XK 


*, XK 
'3, XK 

E t I ,  1 

t, E N  "2 X ** 3 t N 

R!, TEMP 

t ,  HALF 

*, XK "new XK created 



xw2 xw, 0 . 0 ,  10, xw2 

HALF DD (N),0*5 


XK SYN (N),T E M P  t 1 b O  
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EN DD(N), 8,O 


GUESS DD(N), 2 . 5  


Comments, 

This is a third order process: if xk has a rdative errore,
I 

one iteration later X F + ~has a relative error of CG3 . Here,C=2/3. 

See E.G. Kogbetliantz, IBM Journal of R. and D,8 2,147-152(1959). 

Problem 3.8, Normalized floating-point vectors from WL data. 

Given a string of 25 fields beginning at STRNG. Each field contains 


9x1 integer with the description (D, 48,6). Write a program to: 


a i ,  Change each number Nk into a normalized floating-point 


number Fk. 

be Create the'sum of the squares of Fk, then take the square root. 

C. Divide each Fk by the square root, and store in FL/ZSAT through 

FL#AT+24.0. 


d. The sum of the squares of the resultant set of floating-point 

numbers should now be unity (barring4small round-off error). The vector a 

composed of the set is said to  be normalized. Note vector normalization is 

not re1a.b e d  to  the machine hardware normalized floating-point arithmetic. 

Method 1. 

N a M V  2, SUM 



"number I s  now unnofnE FP integer 
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LOOP2 


xw1 

xw2 

SUM 

ROOT 

C0m.ments 

a. A word full of zero  bits is being used a s  the vrzeroth pat t ia l  BUM''.' 

Note that a sequence of zero bits is !only an "order of magnitude '' zero,  not 

a'krue zero's. A true zero is approxirnable by a number with what looks like 

w 
a verylarge negative exponent. An order  of magnitude ze ro  has a meaningful

/r 

exponent, and can he interpreted as a number with no significant fraction digits. 

In addition - type operations, an order  of magnitude zero,  by 

virtue of i ts  exponent, m a y  force the fraction of a nonzero number to shift 

towards the right before the addition, In the present case the nonzeros all 

have la rger  exponents and the use of order of magnitude zero to start a 

s u m  will not lead to difficulties. 

-b. The EPLUS instruction could be removed from the loop without 

causing any da.mage; the e r r o r s  introduced would exactly cancel in the 

normalization process. 

c .  The leading instruction is not really needed unless the program 

is to be re-used in the machine. 

d-a The DRZ pseudo-operation leads to the reservation of strings of 
zero  bits. 
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Problem 3 , 9 .  DqqPlhe-,Precision Compare 
I , . 

The accumulator contains a double precision floating-point quantity, 

Another double precision floating point quantity is stored in two full worda, 

with the more significant par t  in MI, less significant part in M1 t 1. Compare 

the two double precision quantities and set  the appropriate indicators $AE, $AL 

and'$AH. 

Method 1. Full-scale double-precision subtract followed by a test  on the result. 

MMOMP ST(U), A1 ''save accumulator 

SL@ [u), A1 t 1. 

BL(U) ,  A1 t 1, I'dmble -precision subtract 

D-tu), M1 t 1 ,  

D+(N), Al 

D-(N), M1 

L(BU, 3),  $RLZ "$RLZ, $RZ, $RCZ fetched 

ST(BU, 3), $AL "$AL, $AE, $AH stored 

DL(U), A1 t 1, "restore accumulator 

Dt(U),  A1 

B E W ,  $ 

A1 I w W n  (2) 

comrnenta 

a. The tempta'tion is strong to compare the high order par ts  f i rs t ,  

and accept the indicator settings unless equality is indicated, and in the lat ter 

compare the lower order parts. This is not correct  because the compare 

instruction is based an a floating subtract operation rather than a bit-by-bit 

comparison. For example: if ( A l ,  A l t l )  and (MI,M l t l )  have 
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t

@&en a C Q X ~ W ~ ~ S ~ I Ibetween A1 and M1 leads to $AEq% 
(the first 48 fraction bits of the subtraction result  being zero) 
and a straightforward compare of the second order parta wi l l  
lead to the erroneoua concluaion that (Al,  Al+  1.) i s  larger  
than (MI,M1-k I. ), whereas in reality (Al, AI+ 1.) represents 

(1-249) * zE ,,(,,, MI+L representrs the larger
quantity 	 ) 

(1j2) * ZE+l = 1;K2E 
the difference being noticeable at the fiftieth bit, 

Aside from the above considerations the program presented does not 

use conditional branches, eliminating the need for wrong 

branch recovery. 

The present program is applicable, even if the Power order parts 

are slightly off stmdard (say with an exponent 01-d~ 
46 units 
lower tham the higher order connter parts). 

-.Compare high order parts. If they compare " e ~ ~ a l " ,perform 
the double precision subtraction to ascertain the result. V 

BKOMP2 ST(U), A% I t  save ,accumulatuy 
w 	 SLO(U), AI+ 1. 

K(W, M I t  single precision corn are 
BAE, DPSUB I '  LL51LalI$ unsuccessF PL1-

END 	 BEW, $ ! I  end of program. 
DPSUB 	 DL(U), A l + L  "ful.l-scale double precision mbtract  

D-(U), Ml+1.  
D+(N), A.3. w m ,". 
L;IBU, 39, $RLZ "$RE&, $RZ, $RGZ fetched 
ST(BU*3), $AL "$AL, $AE, $AH stored
DL(U), 813.1 I t  r e store accumulator 
D+(U), A1 
B, END 

A1 	 DR(U), (2)
Comments 8 

&. 	The present program is free of the objections outiined in Method le 
It i s  fast if the higher order parts decide the outcome (as is usudPy 
the case) a Very effective for normalized double-precision 
numbers, it may yield erroneous answers if one sf  the high order part8 



( 1  =L.)*ZE i s  clearly larger than O$e2E4-48 

a. Even for a program with many different branches, it i e  

convenient to end at the same place as a debugging aid. Any other 

instruction counter setting at the termination of computation will then be 

an error signal, 

Problem 3,  10, Integer Part of Log& 

N is a positive floating number in DOG, and log2N can be 

written as an integer plus a positive fraction. Find the integer and put 

its magnitude in the first 18 bit8 of the value field of $ 1 ,  and the sign in 

the s'ignposition of the value field of $1 .  A s s u m e  no exponent flag. 
d

Analvsis. If N = 2 +, 
U Then logZN = d t logz = 1 4  log2 b<o  

= o( - 1 4- ( 1  t logzP> 

evidently 4-1 expressed as a 18 bit V F L  integer, is the desired quantity. 

L(N), DOG 

E-I, 1 

L(B, 12, l ) ,  8.0, 6 

W B ,  25, 11, $1  

B E W D  $ 
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4. Soecial. Problems 


Problem 4, 1 V F L  Fraction Square-root 


Given a 64-bit binary unsigned V F L  fraction in FRAC, extract  

the square root and put it in the 64-bit field beginning at R(1I)GT. 

Analysis: By the Newtonian process of extracting the square root x,of 

the number N, 

Xk = X t  ( 1 t E )  x+=t rue x 

then Xk +, 1 = Xt( 1#G2 / 2 a ( d ) )  

Thus i f  we a r e  able to find a quess which has a relative e r r o r  of Z 0 3 2 ,  one 

W -65interation la ter  the relative e r r o r  would be reduced to 2 . 

The 64-bit fraction is equivalent to a floating point number with zero  exponent. 


If this latter is manufactured and normalized, the SRT instruction can be used 


-47
to give a relative e r r o r  l e s s  than 2 , which is more  than adequate for our 

initial guess. The subsequent iteration is done in double precision, with 

the second order  par t  of the initial guess understood to be zero. 

Method 1 

SQRT L(BU, 64), FRAC, 52 "looks like FP number 

BRZ, STOEP. 

WN), 0 "normalized long fraction 

SRT(U), GUESS "first gueas 

D/(ld'), GUESS 

"first order  quotient 
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"obtain 8econd order  quotient 

"double length quotient 

"divide by two 

"shift until exponent zero 

STOR 

GUESS 


QUfbT 


FkAC "to be supplied 


Comments 


a. Had the original fraction not been pre-normalized, it m a y  

contain a number of leading zeros. The relative e r r o r  of the square root 

of the f i r s t  48 bite m a y  no longer be the guaranteed Z--47, but may be aa 

large as 1 (when the f i r s t  48 bits a r e  all zeros).  

b. The result  is not rounded, as rounding will create  an overflow 

in the exceptional case when FRAC is almost 1.0. 

Problem 4. 2 Double-Precision Binary to Decimal Conversion 

Given a 96 bit binary fraction beginning at BFRAC, transform 

it into a 112-bit decimal fraction beginning at  DFRAC. 
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The integers &.k can be extracted after each binary multiplication. They 
are binary quantdties still, but can be recoded interms of known 
conventions. F, can be used to create a rounded result, but i8 more often 
ignored. 
For ouPproblem let R=1014. This is the largest  power of 10 expressible by
48 bits, and w i l l  conkribute to the speed of conversion. The binary
multiplication tikill be that between a single precision number R and a 
multiple precbion quantity FL. 
The aik% w u l  have no more than 48 bits, and can be converted into decimal 
by the CONVERT type Mstructions. The recoded aek w i l l  each have no 
more than 56 bits,!&nce 2*56=112, we need only the first two "super digita. I t  

Method 1, 
DFCQNV L(BU, 48), BFRAC .So. 48, 68 I f  second order par t  

*(U), RADIX 
L(BUp48), $L+O. 12, 20 "third order result  ignored 
LFT(BU, 48), BFRAC 
*+(U), RADIX "there wi l l  be forwarding
ST(BU, 48), BUFFER 4 12, 20 "aave secondozxler par t  
CV(BU, 48) "convert first superdigit, zero offset 
ST(DU, 56), DFRAC 
L(U), B U F F E R  
*(U), RADIX 
CV(BU, 48) 
ST(DW, 56), DFRAC-tQ56 
BEW, $; CNOP "next item begins at ful l  word 

RADIX 	 DD(BU, 12), 0 
DD(BU, 48), (8)2657242036440OOO "10**14 
a>D(SV, 4), 0 

BUFFER DD(BW, 64), 0 
BFRAC DR(BU, 48), (2) "data to be supplied
DFRAC DR(DW, 56), (2) 
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Lomments. 

a, A 96 bit binary number contains information actually qAivalent to 

,116.25 bits of a decimal number. Only 112 bits are needed for the 

problem as stated, 

b. 	 In an n-fold precision calculation, (n+l$rder quantities frequently 

(though not always) have little effect, and can be ignored, Here the 

neglected third order quantity is nowhere larger than 2-95 

Problem 4.3( .  B i t  image of a sequence of numbers. 

Given 64 numbers in successive full words beginning at NUMB. Many 

of these are floating pbint zeros, but some are not. Create a full word 

beginning at BIMAGE in which successive bits reflect the condition of the 

successive words, such that a zero number will be represented by a zero 

bit image and a nonzero will have a 1 bit as image. 

Method 1. 

Lx,$1 ,xw1 

%ssume most  are zeros 

LU 




BZRZ,FIX "usually unsuccessful 


V+, $2, BIT "increase by one bit 


CAB CB+,$P,LU 


BEW, $ 


FDC CMP111(BU, l.)(V+I), 0. l ( $ Z )  


B, CAB 

BIT w,o. ]I 
Xvvl  XW, 0.0,64,$ 

xw2 XW, BIMAGE,0, $ 

Comment3. 

a, The bit image is very useful in, say, sparse matrix multiplication. 
, .  

The bit image af each vector involved can be created, and the nonttivial 

multiplications needed between any two such vectors &can be tested 

via the logical connectives I1and",and the subsequent querying of $APC 

and $LZC. 

Problem 4.4, &mpression of sparse vector._ 

Given a sparse vector of N components stored In consecutive floating point 

words beginning at SVEC. It has a bit image stored in consecutive bits 

beginning at the full word beginning at BIMAGE. Compress the vector into 

the smallest possible storage space on the basis of this bit image, and put 

the result in consecutive words beginning at SVEC also. 

Method 1. 

Lx,$1,xw1;Lx,$3,xw3 


LVNI,$Z, 1. O 


B,CONN 


L$wF LWF(U),SVEC($2) 




-

ST(U), SVEC($3) 


V-kIC, $3,1. 0 


C G N N  	 COO11(BU, l)(V+IC),0. O l ( $ l )  


BXCZ, END 


V+I,$Z, 1. O 


BZRZ, LjZhVT' 


B, CONN 


IT" 	 z, S'vtE;c($3) 

CB+, $ 3  I END 

REW, $ 


XWl XW, BIMAGE, N+1,$ 


xw3 XW, O* 0, Na $ 


Problem 	4, 5 Scalar product of compressed sparse vectors. 

X and Y are two N- dimensional sparse vectors, d 6 4 ,  with the non-zero 

carnponents stored in  consecutive floating-point words beginning a t  XVEC 

arid WEC respectively, and bit images stored at  XBMAGE and  YBMAGE 

respectively. Flnd the scalar product of these two vectors. 

zch. 
Analysis: A '&e scalar product W 

d 

N 
( & Y )  = XkYk' 

K i'/ 

kultiplication need be performed only when xk and y are both non-zero. 
k 


This information may be obtained wtth a connect operation on the  bit  images 

of the two vectors. The $A@C wil the number of multiplications to 

be performed and the $LZC will give & e # a c z ~ - e m 



Method 	1. 

w 	 TI,3 , 1 7 e  0, S A W  

L(BU, N),XBMAGE 

COOOl(BU, N), YBMAGE 

ST(BU, NFEYVEC 

LX,$3,8.0 


DL(U), ZER@;ST(U), P R m T  

BXCZ, FIN 

B,L@;CN@P 

L@@P 	 CMOOOO(BU, O),KEYVEC+O, 1,0($1) 

GTOOl1(BU,N),KEYSfEC 

LcdF 	 LF(BW, 25), $LZC-O.2,128-25 

LV,$1,8 .0  

CT0011(BU,O),XBMAGE, 0($1) 

LV,$2,7.32 

V+,$2,18. 0 

CTOOll (BU,0), YBMAGE, O ( $ l )  

LV,$3,7 .32  

v+c,$3,19.0 

L(U),PR@DT 

LFT(U),XVEC($Z) 

*+ (N),YVEC ($3) 

ST(U), PRaDT 

BZXCZ, L@@P 

FIN TII3 ,SAVEX, 17.0 

,BEW, $ 

''1 bit if 	both items nonl*zerO 

"$Ap)C in $3  count field 

"field length indexing 

"test left 	zeros 

I' low order part untouched 

"dLZC) at field length position 

"field length indexing 

' %	 ~ ~modifier 


"field length indexing 

YVEC modifier 

"restore high order part 

I'computation part 

"restore $1,$2,$ 3  
Itanswer in -am,  a s w e l l  as  PR@DT 



ZER@ 

P R ~ D T  

KEYVEC 

SAVEX 

W N ) ,  *a) 
DRZ(N), (5) 

SYN(N),PR$DT+L o 

SYN(N), PR$DT+P. 0 

Comments. 

a, If half of the elements of each vector are zero, then statistically 

speaking only one quarter of the multiplications need to be performed. 

Thus the  loop in the present program can take four times as long a s  the  

corresponding loop in the straightforward multiplication method, and still 

be efficient for sparse vectors and sparse matrices. 

b. 	 The second I field in a W L  instruction can be used to index the 

f ie ld  length and byte size  besides the offset. Bits in the half-word 

position In t h e  index value field inZluence the offset directly, bit% in 26 

t i m e s  f u l l  word position influence the byte s ize  directly, and bits in 29 

times f u l l  word position influence the field length directly. Note that 

$LZC is given at the  bit level and $A@C is given at the half-word level, 

ncccssltating a small amount of adjustment. 

Problem 4.6; Transposition of a n  8x8 bit matrix, 

Given a n  8x8 matrix whose elements are bits stored consecutively and 

ro*ise startifig at BMATX8. Create the  transpose and store the latter in 

the same area. 

Method 1. B i t  -by-bit operation 



LF(BU, I), 0. 0($2) 


SF(BU, l)(V+ICR),0,1($2), 64 


SF(BU, l)(V+ICR), N($3) 


r-' 

a. The program is written to  . accommodate an NxN bit matrix 

beginning at LgC. The SYN pseudo instguctions define L@C a s  BMATX8 

and N to be 80 BMATX8 is assumed to be. defined elsewhere in the 

symbolic program. 

be 0. N is equivalent to  0,8, since N is 8. 

Method 2. Take advantage of the special properties of connective operations. 

BMX8T2 W,$1,,XW1 
i, 

LVIO$2,8-1 " 7 half words 

I' zero accumulator 



VMI v-I, S 2 , l  	 "reduce offset by 1 

BaCCZ, V M I  

ST(BU, 64),BMATX8 

BEW, $ 

XWl XW, BMA'IX8,8, $ 


Cpmments. 


a. 	 This is a much more efficient program. I nstead of triamportlng 

2*64 bits one at a t i m e ,  8 bits are loaded with each connect instruction 

\ and the entire transpoged matrix is stored in one instruction. The indexing 

here is less involved also. The price one pays is the lack  of generality -
for a square matrix df size greater than 8x8 the coding would have t o  be 

considerablcy different. 

Method 3, Same technique as above, but coded to  accanmm'odate all NxN 

matrices with Nd8, > I 

w c , $ l , X w l  


LVI,$2,N-l 


LI(BU, l),0 


B, CNNECT 


VMI 	 v-I, S 2 , l  "reduce offset by 1 

CNNECT 	 CO111(BU8 N, I)(V'IC), 0,N($l ) r  0($2) 

BZXCZ, V M I  

SF(BU, N*N,N), L@C 

BEW, $ 

"or any location desired 

l'or any integer not exceeding 8 



Comments. 

a. 	 The store field instruction will not be assembled correctly by 


STRAP-1, because of the multiplication in the data description field. 


Problem 4. 	7#-Transposition of a 64x64 bit matrix, 

Given a 64x64 matrix whose demen t s  are bits stored consecutively and 

row-wise, starting at  BMX64. Create the transpose and store it in the same area. 

Method 1, Bit  -by - bjlt operation. Same as Method 1 of previous 

program with LqC and N redefined to be BMX64 and 64 respectively 

Method 2. Use locrical connectives. The m a t r i x  is partitioned into 8x8 

submatrices ,or blocks and each is transposed separately. 

RMX64T LX, $1,XW1;SX, $l,xWll;SX, $l,,XWl11 "row block index 

LX,$2,XW2;SX, $2,XW22;$x,$2,XW222 "column block fndes 

rx,,$3,XW3 - off set index 

Lx,$4,xw4;sx, $4,)NIr44 block counter 

DIAG 	 LI(BU, l ) ,  0 If clear accumulator 

DIAG 1 	 COlll(BU, 8,1)(V+ICR),  0.64($1), 7($3) "loop for diagonal blo& 


V-ICR, $3,& offset by 1 


BZXCZ, DIAG P until block completed 
'I  

DZAG2 ST(BU, 8,8)(V+ICR),  0. 64($1), 64-8($3) "store diagonal block rowwise 

V-XCR, $2?+ $r 
BZXCZ, DIAG2 	 until block storedI '  

CBZR,$4, BEW 	 branch if last diagonal block complete'I 

~ F D I A G  	V * , $ l , V F P 8 ; S X , $ l , X W l l l  "loop for off diagonal block pair 

v+,$2,VF&?P;SX,$2,xw222 

LL(BU, J-), 0 
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QPDIA1 

OFTXA2 

COllI(BU,8,l)(V+ICR), 0*'64($1),7($3) Vow block treatment 

CO111(BU, 8,1)(V+ICR), 0,64($2),  64+7($3) 

V-ICR, $ 3 , 1  

"column block treatment 

'I lower offset  

BZXCZ,@FDLA~ "until block pair complete 

ST(BU, 8,8)(V'ICR), 0.64($2),64-8($3) "store into column block area 

ST(BU, 8,8)(V+ICR), 0,64($1), 128-8($3) @'storeinto row block araa 

V-ICR, $ 3 , 8  

BZXCZ I @I?DIA2 

CBR, $4,@DUG 

NEWRCdW 	 LX,$1,XWll  

v+, $lIWE3P8 

sx,$1,XWl~;SX,$b,XW113. 

LXS 2 * xw22 

sx,$2,xw22;sx, $2 ,xw222 

B, DIAG 

BEW BEW, $ 

VFP8 O m  8 

VF8P VF, 8.0 

VF8P8 W, 8.8 

XWX 

X W  

xw3 

xw4 XW, 0,8,XW44 

XWP1 xw, 0 

' 'until block pair stored 

"until  one row, one column complete 

"procedure for new row 
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xw22 xw, 0 to contain column infirmation 
w 

XW44' xw,o "to contaih black counter 

X W l l l  xw,o to contain row block information' I  

xw222 xw,o 'I to contain column block information 

LQfC SYN,BMX64 

Comments. 

a. The matrix is (mentally) partitioned Into 64 square submatri'ces, 

et?$ or blocks,Ao s ize  8x8. The (I,f)-block of the transposed matrix is the 

transpose of the &I)-block of the original matrix. 

b. XWl,XWZ,XW3 and XW4 are not destroyed in  the program. XW9.1, 

XW22 and XW44 are changed upon the  completion of permutation of a row 

of blocks with a column of blocks. XWllP and W 2 2 2 are  chanaed upon 

the completion of permutation of each pair of blocks, or that of a diagonal 

block. 

Problem 4. 8 Product of square matrices. 

NxN fu l l  word floating point matrices L,R are stored row-wise beginning at 

LMTKIX and RMTRK respectively. Create P=L*R and store it row-wise 

bcyinning at  PMTRW:. 

--- Use $ 2  for left matrix elements, $ 3  for right matrix elements andMcthcdl .  


$ 4  for product matrix elements. Program generates successive rows o f  the 


product matrix. 


"load three index registers 

"main loop 
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VPT V+T, $ S 8  N "advance $3 to next row 

CBR+,$Z,LIFT' "advance $ 2  to next element 

SRD(N), 0($4) "new product m a t r i x  e l e m e n t  

V+I, $4,1.0 

V-ICR, $ 3 ,  N*N-l. 0 

RrnCZ,  LU "towards new product e l e m e n t  of dame 
row 

V+I, $2, N "prodedure for new row 

CB, $4 p SDC;BEW, $ 

xwz XW, LMTKIX, N,XW g ,  

xw3 XW, RMTRIX, N,$ 

xw4 XW, PMTRIX, N, $ 

xw$!.%xw, 0 

Zd?r<y DD (14) 0 



a# STRAP - docs not perform multiplication of addresses ,  


but STRAP - II will do it properly,  


b. XW2, X W J ,  and XW4 a r e  not destroyed and the program 

can be uscd repeatedly without re-assembly or  reloading imts the machine. 

Problem 4. 9. Gosine of ZIT#* 

Given a nurnber - 1/8  4 x 4 1/8 in the accumulator. Create 

cos 2r\x in the accumulator. 

AnalysiB : Since - T / 4  2 t~ x n/4,the aeries 

C O S  2 n x  = 1 - ( a x )
2 

-I-(2tr-x)
4 -..... '3 

21 4 !  

is rapidly convergent. If the se r i e s  is truncated at some point, the absolute 

F 

err0rJ .s  estimated by the magnitude of the first omitted term. Fur the r ,  


since cos 2 ~x 7 cos ~ / 4  =
70. 7,  the relative e r r o r  defined by 6,. absolute e r r o r  
t rue answer 

is less  than or  equal. to 1.438* 


If the l a s t  t e r m  included has 2K = 16, the relative e r r o r  es t imate  is l e s s  than 


0.3 x well within the round-off e r r o r  due to ari thmetical  operations 


using a 48-bit fraction field length. 


Method 1, 


' 2"$PI 

' Isquare 



EM1 

'W 

Cornment s 

a. Instruction EME is used in lieu of a multiplication by 1 / 2 * 1 / 1  to 

gain a little s p e d .  

b. By a redefinition of the constants the multiplication by 2+<$PI 

could be eliminated, but then instruction EM1 would have tobe replaced 

by a full-scale multiply operation. 
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c .  The nesting technique used tends to keep the round off e r r o r  

to a minimum. 

d. The number (2) of multiplication pe ra t ions  in the Poop can 

be halved by using 1/2n! as the constants. 

Method 2. Since cos 2A = 2cos 2A l l ,  it is possible to reduce the number 

of terms in the series by evaluating cos T X  first. Examination shows that 

t e r m s  up to K = 12  would be adequate, 

CQ)SF2 STfN), T E M P  

zx,$2, x w 2 2  

D2:c(N),T E M P  


(SBC, $2,  DMULT 


"create cos 2A 

x w 2 2  xw,  0, 5, $ 


KQ>NST DD(N), $PI/ 1Z2:$PI/ 11, $PI/ 1Og:$PI /  9 


DD(N), $PT/W$PI/7 ,  $PI/6>:c$PI/5 


DDW),  $P1/4*$PI/3, $PI/ 2::$PI 


WON DD(N), 1.0 

TEMP DRCN), ( I )  
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c .  The nesting technique used tends to keep the round off e r r o r  

to a minimum, 

d. The nwnber (2) of multiplication qe ra t ions  in the Poop can 

be halved by using 1/2n! a s  the conatants,  

Method 2. Since cos 2A = 2cos 2A l l ,  it is possible to reduce the nwnber 

sf t e rms  in the se r i e s  by evaluating cos T X  first. Examination shows that 

t e r m s  up to  K = 12  would be adequate. 

GOSF2 ST(N), TEMP 

zx,$2, xw22 

DMULT D9JNCN), KQ)NST($2) 

Dt(N) ,  WON 

D2:c(N), TEMP 

C B t ,  $2,  DMULT 

D';<N(N), KoNST ($2) 

"create cos 2A 

DDW), $PI/4*:$PI/3 ,  $PI/ 2::$PI 

WON DD(N), 1 . 6 )  

T E M P  DRCN), (1) 



Comments,
cc 


q L  	The error situation is somwhat worsened in the present method. 
Suppose COB A has been evMuated with absolute e r ror  $$ ; 
thm 	 C O S A = ( C O S A ) t r U ,  +E,

~ C O S ~ A - ~ = ~ ( C ~ S " A ) ~ , ~ ~ - ~+4Q; COS A 
The total absolute error  i s  therefore 

&'= 4$% cos A or 4 8  

The relative e r ror  can be examined in the slame l# 6t .  

Problem 9a~./Y,f-a~.---_- 1- -----^.-
(L.1 /ogariC/lrn. 


A positive single-precision normalized floating-point number x is in the 

accumulator, Replace it by h x ,  Assume zero exponent flag for x. 


1nx = c, .I) 

2k'1/(2k+1) = 2 5  ( 2 2 ) k / 2 k + l
k=O 

'trrr in (0,1/36), the series is rapidly convergent, 
absolute truncation e r ro r  in the 

than 2"48. If the (E-l /2) ln2 
term dominates in lnx, the relative truncation error wnhld also be much 
less than 2-48a and further improvement in this direction cannot be seen in 
the single precision fraction. 

If on the other hand, (E-I/2)ln2 does not dominate the result, )E-1/21 
itself must be small. But it can be no smaller than 1/2,  since E is an integer. 
Therefore the worst that can happen ia when, E=O, F-1. In this case one can 
show the e r ror  cannot be improved without knowledge of the fraction 
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"F+P /RT2 

'IF-1 /RT2
",zcreated 

ADD 

CONST DD(N) 1/ 1'7%1 / 15) 1 / 14 I. / 1I.? I. / 9j1/7j1 / 5,1/ 331 
FLAN2 DD(N), $ N X 4 7  tt$pJ*24c*47 
T E M P  DRZ(M), (3) 
XX DD(N), + 3 , 5 2  
Cornments, 

- 1 1  In function evaluation an understanding of the properties of the 
function and the format of the numbers used frequently leads ta 
great improvement in speed and accuracy, as shown by this example. 

b, 	 The truncated Taylor series in Z can be replaced by a polynomial 
wi th  fewer terms hut comparable accuracy. The coefficients of the 
optimal polynomial (5) for the evaluation of functions can be 
computed by an iterative process, or can be excellently approximated by 
appealing to  the properties of the orthogonal Chebyshev polynomials. 
See, for example, C. Lanczos, Applied Analysis (Prcntice-Hall, 1956) 
Ch. TPII; F.D. Murnahan and J.W. Wrench Jr, Mathematical. Tables and 
Other Aids to Computation, 8, 185(1959). 

c, 	Instcad of divisions by (2k+I), multiplication by the inverse is used 
for  speed. 

d. 	In FLN2 X47 means replace the exponent field. by +47, '' In the 
prescnt case $N,having the rnngnitude of 0. 7 normally would have 
a n  expollent of zero, and  $fiQC47 is the same as $N*k2**47. This 
would not be true had $N a magnitude of I say, 1.5. 
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number, A 0,O($P5) re turn with the exponent flag on is sufficient. 
W' 

Otherwise the following algori thm can be used: 

t e rma beyond k = 15 can be safely neglected, 


It is a l a 0  possible t o  reduce the range of the argument in tlne Berfes to 


improve convergence. For instance: 


k - 0  k l  

and term$ beyQnd k = E2 can be neglected. The subsequent squaring lead 

to a rcvund off errof  twice  as large as before, however. 

Method n d  
E X P  KMG(N), K@MP 

BAH, EXIT1 

D4<(N), RLN2 . " l / L N 2  

Dt(U) ,  E l l  

STQB, 12, 11, TEMEX, 128-12-11 l'P as exponent 

SHFL,  11 

*(NIP LNZX "LNZX-11 

LX, $14, XW14 

ST(U),  TEMPF 
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DPLUS 


EXIT 1 

KDMP 

RLN2 

E l l  

LN2X 

XW 14 

C$NST 

TEMEX 

TEMPF 

Dt(N)8 CQ)NST+1 .  0($14) 

Ddc(N), TEMPF 

C B t ,  $14, DPLUS 

Dt(N), CdNST($14) 

E-t-QN), TEMEX 

Bj 1.0($15)  %orma1 return 

COOll@U, 1), 10 .4y  128-11 "exponent sign 

LAW), $L "remove sign 

C l l l l ( l B U ,  1 )  $L, 127 "insert exponent flag 

B, 0,0($15) 

DD(N), 1024+c$N 

DDCN), 1/$N 

Db(N), $NX -.1 1 

xw,0, 1% $ 

DD(N), 1/ 13076743680000, 1/87  178291200 

DD("), 1/6227020600, 1/479001600, 1/39916800 

DDCN), 1/3628800, 1/362880, 1/40320,  1/5040, 1/720 

DD(N), 1/12@, 1 /24 ,  1 / 6 ,  1/2 ,  1 

DR(N)Y (1) 

DJMN, (11 
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Comments, 

a. There  are numerous ways to  improve the speed of the program. 

The multiplications by 1/ 2 and 1, for  instance, can be replaced by m o r e  

efficient devices. The creation of Fln2 a l so  would not be needed if (1112) k/k! 

a r e  used instead of l/k! as coefficients. 

b, The present  program is actually writ ten as a subroutine, 

assuming the convention of 1. 0($15) normal re turn  and 0. 0($15) error 
$SB 

return.  Aside from $L, $R, B,$14 and $15,none of the other intern-sl 
* 
IS 

reg is te rs  - al tered during exit. The memory  requirement is a l s o  modest. 

Fur ther  the program can be used again and again to evaluate the exponential 

of whatever floating-point number given in the accumulator. 

Problem 4. 12 	 Transcendental Function Evaluation 

Assurne the existence of the previous exp(x) program. Compute 

f(x)=2xe 1-e f o r  x = v  


and put the answer in the accumulator as a floating-point number. 


Method 1. 

-~ 

LN(N), EKS 


LVI, $15, $ t l . O ;  B, EXP 


B, ERR;NOP 


RTURN 	 ST(U),  TEMP 


LVI, $15, $4-1.0; B,  E X P  


B, E R R ; N O P  




*(N), EKS 

E+I(up, 1 

ST(U), TEMP+1 

LN(U), TEMP 

+(N), WON 

SRT" $L 

R/ (N) ,  TEMP+ 1 

B E W ,  $ "normal exit 

ERR B E W ,  $ r ror exit 

EKS DD(N), $PI 

TEMP DR" (2) 

WON DD(N), 1.0 

Comments 

a. The present  program is designed to  demonstrate the usefulness 

of subroutines for repeated usage, 

b. 	 The accepted way to enter the subroutine SR (say) is to wri te  

LVI, $15, $ + L O  (or LVI, $15, $t2) 

before branching into S a .  In STRAP I1 a pseudo instruction 

LINK (no address  needed) 

is available for this purpose. 

c .  It is obvious that the present  program can be r ecas t  into 

conventional subroutine form also,  i f  ever  needed. 

d. The present  program requi res  the E X P  subroutine, and therefore  

is usually assembled together with the la t te r ,  Fortunately there  is no multiply 
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defined symbol to produce difficulties and no conflict in the use of special 

reg is te rs  and $14, $15. A good subroutine should keep the number of 

$ea;%?
syrnbols small ,  and the "tailing" t e d m r q t r e  available in  STRAP can be 

used by the user  of the subrouthe  to avoid memory  conflict, 

Problem 4, 13. Nuner i ca l  Integration 

Provide a subroutine to handle the numerical  integration of 

any function over any finite interval. U s e  it to evaluate 

1 
I =  2 x  eemX 	 dx/ j=

0 


Analysis : 

a. F o r  standard intervals,  say+, q) ,  an n-point numerical  

integration quadrature formula i s  the approximation 

with prescr ibed 	 f Wi') and(zi1 . In the well-known Newton-Cotes 

quadratures the 	zitsa r e  evenly spaced over the interval, 

.Inthe case of the highly accurate  Gaussian quadratures the z i ' s  

are the zeros  of the nth degree orthogonal polynomial Pn(z) ,  where 

PI" w(z) Pn(z) P,(z) dz = 8 ,  n + m. 

The n-point Gaussian quadratut-e will yield an exact answer (barr ing round-off 

e r r o r )  i f  F ( z 1 is a polynomial of degree no higher than 2n-P, F o r  other 

W 	 integrands the approximation is, in general ,  quite excellent. The most 

commonly used Gaussian quadrature is the LegendrehCauss quadrature with 



. 


(p ,q)  = (4, t1) and w(.) = 1 .  

For even n the formula becomes 

- 1  i = 1  

For finite limits (a,b) other than (-1, tl), w e  have 

b 3-1 t1 
f ( x )  dx = s f ( s z t t )  dz = 8 { F(z)dz 

a - 1  - 1  

i = l  

where bt = (b-a) / (q-p) = (b - a)/2, t = a - sp = (b +- a) /2. 
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b. The integration suhroi.tt;ino has to be able to obtain f (szi  9 t) 

and f t - s z ,  3- t) for a number of z i ' s .  It is thus desirable to have available 
1 

an integrand evaluation subroutine, written in a standard format,  The 

integration subroutine does not need to know the intsgrand subroutine 

En detail, only i t s  address  and calling sequence. It is conceivable that 

the integrand subroutine also requires  other subroutines, but this would 

not be the direct  concern of the integration subroutine itself. 

c .  The following specifications for the 8-point Legendre -Gauss 

integration 'subroutine LEG Q8 a r e  therefore reasonable: 

1) The main program branchee to the integration Bubroutine 

by the standard LINK entry, in the following format: 

LVI, $15, $+l.O:B, LEGQ8 

2) The leading 19 bits of the ensuing full word mus t  contain 

the address of the subroutine for the, evaluation of the integrand. 
WOd 

3)  The next iullb(i. e .  I 1, 0($15)) mus t  contain the floating 

point lower limit A. 

4)The next full word (2.0($15)) must  contain the floating 

point upper l imit  B. 

5) If an e r r o r  occurs in the integration program, a re turn  

should be made to 3.0($15). 

6) If the evaluation. is successful, the approximate value of 

the integral mus t  be in the accumulator during the normal return.  The 

normal re turn address  i s  4. 0($15). 



- 39aa -

?) All internal reg is te rs  except $L$ $R, $SB, $ E T ,  $TR, 

$LZC, $AQC, $14 and $15 a r e  to be restored during exit, as is desirable 

for all subroutines. Fur ther ,  LEG08 mus t  allow for the fact that the 

integrand evaluation aubroutine will use $L, $R, $SB, $FT,$LZ@, $AD@, 

and $14 without restoring. 

da The arrangement  of the symbolic prcgram is something like 

the following. 

111 Identification for assembly program and ''SLC". 

2) A main program which makes use of LEGQ8, 

3)  LEGQ8, which makes use of:a subroutine, slay SUBR. 

4) SUBR, which happens to require the subroutine EXPa 

5) E X P ,  which is self-sufficient. 

6) Indication to end assembly ami indication of the first 

instruction to be executed. 
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A l l  pieces should be made available and assembled together by the STmP 
a s scrribler. 
M c t h o c u  

‘I Main program for intcrJration. Answer should be in ANS. 
MAIN 	 LVI, $15, $+I. O;B, LEGQ8 


SIC, SUBR; NOP 

DD(I’J), d.0 “lower l i m i t  

DD(N), a. o “upper l i m i t  
BEW, $;rJoP “tip vor m e a s u r e  
ST(U),ANS;BLW, $ ‘‘normal end of program 

ANS DRZ(U), (1)
‘’ 8-point Legcndrc-Gauss inteqration subroutine 
II integrand evaluatim subroutim with 1. ($15) return m u s t  be provided by user, 

with offcctivr; (;ld&css at(.?,($Is)#lower l i m i t  must be at 1. ($15) and 
upper limit L J t  2. (SlS), both a s  floatbng point numbers, 

” the integration subroui.ine will return normally to 4. ($15). 
error return is 3.  ($Is),with answer in $Le 

EEGQ8 	 SX, $ 2  .,LEGQ02;SX, $15, LEGQ8F 

LVE, $2,0. ($15)

SVA,$2 ,  LEGQ8A 

SVA, $ 2 ,  LCGO8B 

DL(N), 1. ($15) 

D-(N), 2. ($15) 

E=-I(u),1 

SRD(N), LEGQ8P 

D-t-(H),2 .($15) 

SRD(TLT), LEGQ 8Q 

Lac, $2,LEGQ81;L(U), LEGQ8Z;i 

ST(U), LEGQ8S; ST (IT),LEGQ8T 


LEGQ8L 	 DL(TJ), LEGQ8Q 

LFT(U), LEGQ8P 

*N+(PJ), LEC;Q8X($2)

T,n,$15 # $ + L O  


LEGQ8A 	 B , $  %ranch address changeable 
B, LEGQ8E;NOP Hemor 
ST(N),LEGQ8R h o r m a 1  return from integrand subrautitne 
DL(U), LEGQ8Q 
LFT(U), LEGQ8P 
*+(N),LEGQ8X($2) 
LVI, $15, %+l.0 

LEGQ8B 	 B,$ 

B, LEGQ8E;NOP 

+(N),LEGQ8R 

D*(N), LEGQ8W($2) 

D+(N), LEGQ8T 

l3f-(N), LEGQ8S 

SY(N), LEGQ8S 

SLO(TT),EEGQ8T 

CB+ SZ,LEG 8L  
*N(?H ,LEG %P I )  normal return to main programLX, $k,LEG882 

V 
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Ex,$15, LEGQ8F 

B, 4.0($15) 


"W LEGQ8E: 	 LX,$Z,LEGQ82 
Ex,$15, LEGQ8F 
B,3.0($15) / 

LEGQ82 XVf,,'O / E changeable 
LEGQW XW,O //changeable 
LEGQ132 DD(N), 0.0 
LEGQ81 XW, 0,4,$ 
LEGQ8R DR(N), (3) 
L€C;rlF3:3 SYN(N), LEGQ8M. 0 
LEGQ8T SYN(N),ZEGQ8R+Z.O 
LEGQ8P DR(N), (1) 
LE:C,Q8(;2 mw),(Ufb
LEGQ8X DD(N), .@OZ8 98564 97536, .79666 64774 13627 

DD(IJ), ,52553 24099 16329* .I8313 46434 95650 
LEGQIIW +DD(N), . lo122 85362 90376, .22238 10344 53374 

DD(N), 31370 66458 	778117, a 36268 37833 78362 
'1 end of LEGQ8 subroutine. 


SUBR is a bona fide subroutine wtth 0($15) error exit and normal return 1,0($15). 

SUBR "t SX, $15, SAVE15 3 

ST(N), SAVEX 
LN (N) ,S A V m  
La,$15,$+l.O;B, EXP ' f lgo to EXP subroutine 
B, ERR;NOP 

RTURN 	 ST(U), TEMP 

LVI,$15,$+l.O;B, EXP # g 0  t o  ExP subroutine 

B,ERR; NQP 

*(N),SAVEX 

E+I(u),1 

ST(U),S A W  	 IJ2 q*e**kE;**-X 
LN(U), TEMP 
+(FI),WQM 
SRT(LT), $L " square fopt of 1-e* *-% 
R/( M) ,SAVEX 
IX, $15, SAVE15;B, 1.0($15) 'rlmormal return 

ERR LX,$15, SAVEl$;B, 0,0($15) berror return 

WON DD(N), 1. 0 

SAVE15 	 xw,9 
S A W  DRe V), (1) 

TEMP DR(1'0, (1)


91 subroutine 

(identical. with a previous program) 


(c1* The instructicm execution should begin with MAIN, which triggers 
all  other programs.

b, The seemingly elaborate way of doing the problem is actually 
very easy to use,  particularly if most of the subroutines are 
a ailabfC r  For mu tfple Integration the same integration subrWtine can  
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be assembled at different locations and one can be made subservient 

t o  the other. For example 

=$f(*)dx
A 

and one of the integration subroutines is used to provide f(x). 

d. 	 Barring sound-off errors, the 8-point Legendre-Gauss integration 

subrsutine will y h l d  exact resul ts  i f  f(x) is a polynomial in x of 15th 

degree or less. Otherwise the appoxfmation amounts t o  an exact 

integration of a finite expansion of f(x) in terms of the orthogonal 

Legendre polynomials Pk(X) up to and including k=7. 

e ,  	 A discussion of errors in numerical integration is outside the 

scope of th i s  work. It sufficbs to say that  in case of suspicion of 

inaccuracy, the domain can be subdivided, and the numerical quadrature, 

c a n  be used for each subinterval to improve accuracy. This necessi ta tes  

only a trivial change in the main program. 



82. Checklist for Proaram before Assemblv 

A2.1 	 General format. 

Check for presence of PRNID, PUNID, §E@, and END. Make sure 
that the address of SLC is a true bit address with a decimal point. 

8 2 . 2-.
 Symbol definition. 

Are there undefined symbols ? Circularly defined symbols ? 
Multiply defined symbols? 

A2,3 	 Instruction format. 

Every operation field should be separated from the address field by 

a comma. 


Look for missing right parentheses, 


Look for missing quotation mark at the beginning of comment field. 


A2.4  	 Nature of instructions. 

Check integers to make sure they a re  not bit addresses with missing 

decimal point. 


Half-word instructions cannot be addressed down to the bit level. 

Check particularly the address fields of V+ V+I, and floating point 

operations. 


Check VFL instructions for field length >64 o r  byte size >80 


Check TI, SWAPI, etc.,  for count exceeding 16. 


The address field of immediate index arithmetic instructions cannot 

be indexed; the address field of CB, Bind and BB can only be indexed 

by $1. V P L  immediate instructions cannot use progressive indexing. 


Make sure that J fields a r e  supplied in the following operations: CB, 
Vt, and V + L  
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A2.5 


Ai,. 6 

Q 


. 

Loops and paths. 


Visually trace through all the possible paths in the program, 


Trace the entry into, and exit from loops, 


If a Poop is closed by a CB, make sure the index register lT1
hae 
a valid (non-zero) count field at the beginning. 

Termination of a Poop by BAE o r  BZAE after a floating point eam-
para is a dangerous practice, because of unforeseen roundoffs. 

Proofreading, 

After the program has been keypunched, produce a 407 lirsting and 
check the overall alignment, particularly the location of the NAME 
fields. Proofread carefully, look for missing cardso mispunches, 
and off-puhche s, 

Character code for symbolic decks 

P i A J / 
2 2 B K S 

Also ; is defined to  be equivalent to  an (11,fl) double punch, On 
407 listings this double punch i s  usually considered to be 0. On 
assembly listings the semicolon is replaced by a skip of the 
printer to the next line. On the keypunched card it looks like the 
Greek letter 0. 



A5. Ma,chine Handling of Floating Point Exponent Flags in  the 7038 
__I-

-"A.5. 1 Exceptional floating point quantities. 

Exponent overflow and underflow occur only infrequently in most 
floating point computations, In machines ab ear l ie r  design, the 
''overflawed" and "underfl.owedf,' numbers have the appearance of 
normal quantities, and further operations tend to lead to  untrace-
able Contamination of the results. The conventional way of c i r -
cumventing this difficulty is to tes t  for the exceptional events from 
time to time. 

Some machines now have a "floating t r ap  mode" feature which auto.. 
matically interrupts the normal. instruction sequencing immediately 
after ad exceptional event, without the need for t es t  instructions. 
A wide choice of interrupt conditions ( X P F P ,  XPO, XPH, XPL,  
XPU)  is available on the 7030, enabling a firm control on the 
quantities used in floating point instructions. Interruption feature, 
however, tends to t rea t  exceptional events equally and is not capable 
of knowing the consequences of these events without elaborate pro-
gramming * 

On the other hand, if the D'overflowedfl o r  %nderflowed" quantities, 
which are responsible for the exceptional events, a r e  themselves 
clearly labelled, i f  the numbers contaminated by these labelled 
numbers are also labelled in a coTsistcnt manner, it would be pos-
sible to perform an entire Computation without any tes t  instruction 
nor interruption. In this scheme, drast ic  action would be not needed 
unless par t  of the results bear the "exceptional quantity'' label. 

In the 7030 the exceptional number is  labelled by a rrl"bit occupying' 
the leftmost (exponent flag) position of the exponent field. An ex-
ceptional number therefore appears to be a number with an extremely 
large exponent magnitude. The consistent rules governing the gene- 
ration, .-propagation and disappearance of the exponent flag a r e  re-
I*-

rninesccnt of algebraic operations involving infinite and infinitesimal 
quantities. 

In the following EF represents  the exponent flag, ES the exponent 
Yign. 

EF =: 1 signifies a very large floating paint exponent magnitude. If 
(EF= 1, ES 8 - - - - - -1 



If EF 2 1, ES x 0, the magnitude of the floating point number is 
extremely Parge (2 21023- and may be symbolized by (x9 

(XFPcase), 

If EF s B, ES I E ,  the magnitude of the floating point number % e  
extremely small, and m a y  be symbolized by 6 (XFN case). 

If EF = 0, the number is said to be normal, and will  be represented 
bythe symbol Ne 

The sign bit (bit 6 0 )  of the floating point number retaims its normal 
meaning in all cases. 

The following scheme i s  designed to  disaPlow the loss of EF bit due 
to irretrievable overflows. 

A5 2 Generation of exceptional quantities. -
In floating point operations involving normal numbers snPy, EF 
behaves like an extension of the regular 10-bit exponent magnitude 
field, and will  be turned on in the result i f  the expected answer 
has an exponent either greater than 1024 or  less  than -1024, An 
exponent overflow is said to have occurred in the former ease, 
rendering $XPO B e  In the latter case an exponent underflow i ef 

said to have occurred, and $XPU will be set to It. In D / ,  $RU 
may be set to 1, In either casep an expanent flag is said to be 
generated, 

Other operations will proceed normally for aPP generated EF cases 
except in the following situations which might otherwise generate 
exponent overflow beyond EF: 

Multiplications which Peadl to  generated G results prior to 
any msrmalization. The normalization and noisy modeI if 
stated, will be suppressed. E+, E+E instructions behave 
Pike multiplications 

Divisions where prenormalization of the two operands yields 
an N and a generated G .  The quotient fraction is developed 
normally, but the quotient exponent will be either that sf G 
(case of small dividend), or that of 1 /G (case of small 
divisor). 



The following table gives the conditione and the apparent range 
of normal as well as exceptional numbers, when EF i a  imagined 
to be an extension of the exponent magnitude field. 

Condition of 
F.P, Number Symbol EF-

Fractior 
Sign 

Apparent Range for 
Normalized Fraceion 

XFP, + +a3 1 8 3 21023 

Normal,+ + N  0 0 421023 ,  -1024*2  

XFN,t +E 1 0 doZ4, 
XFN, =-G B (10 

Normal, 9 -N 0 P 

XFP, - -00 1 PO235 -2 

AS, 3 Exceptional. number arithmetic, 

In floating point arithmetic involving numbers with EF t 1, the 
mathematical fawe concerning extremely large and extremely 
emall numbers apply where the results are unambiguous. If 
the outcome i s  indeterminate in a strict mathematical sense, the 
ambiguity is resolved in the machine by the choice of 00, producing 
the most alarming situation possible : 

The following are resolved ambiguous cases: 

For details, see A5.8. Note that normal answers are obtained 
only by special G + N  operations, and exponent overflows beyond 
the EF position which m a y  yield harmless-looking results are 
prevented from occurring. 



A5,4 	 Propagation of exponent flag. 

In operatione other than K, KMG, K.MGR, and KR, if both the result 
and at least one of the operand8 a r e  in  the 00 range,, an %xponent 
flag positive" condition is said to have been propagated, and $ X P F P  
is set to 1. The propagation of condition does not lead to special 
indicator settings . 

A5.5 	 Comparison involving exceptional quantities. 

All 00 a r e  treated as equal in magnitude in IC, KMG, and KR; all G 
a r e  likewise treated as equal in magnitude. 

A5.6 	 Approximation of the true floating point aero. 

The true floating point zero is approximated by an E. If a f-1Pbii.g
point zero is requested of STRAP,,what appears to be 0 * 2 
will  result from the compiling. 

A5,if 	 The Y3ero multiplvts indicator. 

$ZM cannot be turned on if the re~uf tof the multiplication is Gwith 
zero fraction. 

A5*8 	 Summary of floating point arithmetic with exceptional operands, 
(Only exponents a r e  shown in equation8 below. ) 

A5.80 1 	 Addition, subtraction, load, store, and SLO, (Result 
may be N) 



Fraction arithmetic : suppressed. Normalieation and 
noisy mode: allowed only if pre-normalized anawer d ~ 4  
normal. 

#Whichever has the higher exponent; or if the ex-
ponents are equal, whichever is from the ac-
cumulator e 

F+ behaves Pike NOP for accumulator being 00 or Gr 
since the memory fraction ba given the accumulator 
exponent, 

A5.8.2 Multiplication, E+ and E.B.1. I__- a0 or @. 1(Result always 

Fraction arithmetic: a11owed to proceed. Normalb 
zatisn and noisy mode: suppressed, 

#In $4-, where accumulator does not contain operandss 
whichever is from memory; otherwise whichever isr 
from the accumulator. 

A5,8.3 Division. (Result always m or Gel 

Fraction arithmetic: allowed to proceed. Normalb 
zahion and noisy mode: suppressed. Operations in-
volving (z or m will be treated as unnormalized, 
Remainder: Exponent same as that of dividend, no 
normalization allowed. 



- -- - 

t 


A5.8.4 Square root. (Resul t  always a3 o r  G o )  
--I_ 

001 z 001 

Fraction arithmetic: allowed to  proceed. Normali-
zation and noisy mode: suppressed. 

A5.8.5 Shift fraction. 

G and 00 behave normally,  since the exponent is un-
alte red. 



-- 

A& Noisy Mode in 7030 Programming 

A6, P Purpose of noisv mode. 

The purpose of the noisy mode i s  to allow the 7030 to perform i t a  
own e r ro r  analysis in the crucial a rea  of significance Pose in 
normalized floating point arithmetic, 

Essentially the same computing algorithm for the solution of a 
problem can be pursued twice on the machine, once in "normaltg 
mode and once in  noisy mode. During the computation the low 
order fraction bits a r e  affected differently in each case, the dif-
ference being particularly noticeable on normalizing left shifts. 
When the results a r e  contrasted with each other, i f  the relative 
discrepancy is 2'" then probably the "normal" result has a re-
l a t h e  e r r o r  of 2k-h, the odds being something like 2k to 1 in favor 
of this interpretation (and against fortuitous agreement). 

In the 7030 the noisy mode is activated only when the indicator bit 
$NM equals 1, and only for normalized floating point operations. 
When normalization is suppressed due to  exponent flag conditions 
(see A6.6) ,  noisy mode will  be inoperative. For convenience, we 
shall speak of the influence due to noisy mode a s  noise. 

A6.2 Firs t .  order noise. 

Am operand may be right-appended by 48 identical bits at the be-
ginning of an operation, to produce a double-length fraction. We 
may call these "d" bits. 

d 1 i f  and onlyjif 

a. normalized operation is specified (and not suppressed). 
b. $NM :1; 

c o  the operand is one of the following: 


I )  an operand in (single) LOAD type instruction: E, EWP,,LFT; 

2) an operand in ST instruction (NOT-SRD nor SLO); 

3) the divisor in /, R / ,  and D/; 

4) the dividend in 1 and It/; 

5)  the unshifted operand prior to arithmetic action in the fol-


lowing single operations: +, Mt -4 MGJ M+MG; K, KMG, 
KMGR, KR. 

d 8 0 otherwise. 



The unshifted operand in operations described in (5)i s  the operand 
with the higher exponent, o r  i f  the exponents are equal, the operand

-W 
from the accumulator 

The d bits, being second order quantities, may influence the first  
order part (first 48 bits) of the result fraction through post-normali- 
zation and/ or arithmetic ction. The minimum noticeable relative 
e r r o r  due to  d bits is 2-48; the maximum is just below 1 J Z m  

W e  shall speak of first order noise as one which can create a mini-
mum noticeable relative e r ro r  in the first order part (the first  48 
bits) of the result fraction, and define aecsnd order noise a s  one 
which creates a minimum noticeable relative e r r o r  in the second 
order part (the second 48 bits) of the (double-length) result-fraction, 
In the 7030 computer the (9 bits produce only first order noise, 

A6,3  Second order noise. 

When a double-length fraction undergoes left shift (in, for example, 
post-normalization), the positions left vacant a r e  filled in by another 
kind of identical bits, We shall call them 'td,'sbits,

L 


dZ 3 3L i f  and only if  

ill. normalized operation is specified (and not suppreseed): 
b. $ N M =  B m 


d2 :0 otherwise. 

In all operations save one, the d, bits produce only second order 
noise. In the cases where d and'dZ a re  both present, the result 
fraction i s  invariably truncated to 48 bits, revealing only the effect 
due to d bits. 

E t  must be noted that second order noise is not necessarily small. 
The largest possible relative error caused by it is the same as 
that for f irst  order noise, namely just below B/Z. This occurs 
when ;a 96-bit fraction before post-normalization has all bits equal 
to zero except the last bit. Ninety-five d2 bits will be shifted in. 

A6.4 Machine instruction and noisv mode. 

A6.7 shows the pertinent noisy mode features of floating point 
operations. 



- 

f t  is noteworthy that all  but one double operations posseam sadand 
order noiee, The exception i s  D/,  which has first order noiee 
through divisor preshifting. 0 n  the sther hand, the ' 'single1' 
operation * posses only second order noise. The operation *+  
has aecond order noiee if  the preceding LFT operation did not 
introduce f i r a t  order noise, 

SRD and SRT a re  noiseless operations, 

In SLO the low order  fraction is Peft-appended by 48 high order-
zero bits to produce a 96 bit fraction. This Batter is then shifted 
left at least 48 places, shifting in d2 bits. Second order noise on 
the second order fraction thus behaves like first order  noise on 
an ordinary (single) fraction. 

Noise in 1,.R/ and D/ i s  introduced in both the divisor (always by 
d bits) and the dividend (d bits f o r  /, R/;d2 bits for D / ) o  The 
quotient never needs further normalizing left shifts and the normali-
zation o f  the remainder is noiselese. F i r s t  order noise in E)/ iep 
desirable i f  the quotient is to be single precision (say after a round-
ing operation), but not if truly double precision quotient is required.

"w' 
It is  possible to produce noisy results without any normalizing left- 
sh i f ts  not only from divide-type operations, but in ADD-type opera- 
&ionsas well, The 48 d bits m a y  simply create a car ry  into bit 47 
of the fraction during the addition process, 

A6.5  Programming significance. 

All digital computers have a finite word-length. In normalized 
floating point operations the post-normalizing left shifts iiptroduce 
bits through the right-boundary of the fraction. With few exceptione 
(some to  be mentioned below), the programmer has no idea what 
these bits ought to be, and he is unwilling to or  has no way to find 
out. 
Shifting in all Pasas in noisy operations, very probably introduces 
e r rors .  It is almost equally probable that errors of a similar 
magnitude a re  introduced by the alternative strategy of shifting 
in zerofl. In either case bias is introduced. 

The purpose of'the noisy m o d e  is to biae the results in a manner 
as opposite to llnormall '  as possible for the digits known to have 
no numerical significance, yet without destroying the digite valid 
for the particular machine instruction. 



In computations involving integers and simple numbers, extremely 
frequently the result fraction is known to be exact, to  be followed 
byan infinite number of zero bits. It should be evident that such 
exact answers can be corrupted by noisy mode. $NM should be 
off, or unnormalized operations should be prescribed, 

In programmed double-and .rnultiple-precision arithmetic, the ad-
dressed operand may have one or  more well-defined lower order 
part. The use of noisy mode amounts to a redefinition of the lower 
order part, and extreme caution has to  be applied, except perhaps 
in dealing with the lowest-order fraction, 

In programmed double-precision arithmetic second order noise i e  
always permissible, but first order noise should affect only the less-
significant part of the fraction, The use of E F T ( N )  a s  a prelude to  *+, 
and D / ( N )  for unnormalized first order operands thus should be dis- 
couraged; it i s  much safer to employ the unnormalized counterparts 
t~ these operations. It is easy to introduce second order noise 
through other operations in the instruction sequence,, 

Under special circumstances, normal and noisy compare type opera- 
tions m a y  yield different indicator settings (sometimes even for the 
-same two numbers), The user of floating point compare operations 
shbuld know always that, except for the "exactIs operations he is com-
paring numbers a.ffccted by errors, and due allowance must be made 
for this, whether noisy mode is used or  mot. 

A6.6 Suppression of normalization. 
_L_ 

In the great majority of cases normalization, i f  specified in i f l ~in-
struction, will  proceed. The exceptions occur only because of the 
appearance of exponent f lag .  

Normalization (and therefore noisy mode) will be suppressed in the 
following cases : 

a. For instructions involving only one operand, i f  the operand prior 
to the normalizing shift is either an rn ( X F P  case) or  an G(XFN 
ease). 

b. For instruction with two operandso neither of them a r e  00 OF G :  

' 1) instructions of * type, i f  the produd before normalization 
i 8  an Ge 



2) 	 instructions of / type, if  the operands after prenormali-
eation contain one G and one N (i ,e ,  , no exponent flag). 
(This case does not influence noisy mode in any way. 1 

The suppression of normalization in this category i e  to prevent 
the Bosn of EF due to double underflow. 

C .  	 For instructions with two operands, at least one of which is 
either w or 6:: if the result is  not an N before the post-normali-
zation. The result is  an N only in the case of (z +N,and normali-
zation here, i f  specified, will proceed. 
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-A6.7 Summary of behavior of normalized floating point instructions fm noiey mode.-

Add Type Operatione 

E, LWF 
ST 
K,KMG,KMCR, KR 

LFT 
SRD 
SEO 

Multiply, Divide & Root 

* 
/, R/ 

SRT 


Double OPerations 

D + j  D+MG, F+ 
DL,DLWF 
D***+ 
D/ 


QtheFs 

Right -Appendage 
by 48 d Bite 
(prior to  any 1 

II 

yes on unahifted 
operand 

Yes 
Yes  
yes, on unshifted 

operand 
Yes 
no 

no 


no 
yes, both divisor 

and dividend 

no 

no 
no 

no 
yes on divisor 

pre shift 

Foet-Shifting 
into Bit 95 by 
dz Bite 

ycs(no effect] 

yes(ns effect) 
yes(no effect) 
(nopost- shifting) 

yesjylo effect) 
yes(no effect) 
yes, before any 


shifting 

Yes 
yes(no effect on 

operands. No 
post-left-shift 
for quotient. 

yes(no effect) 

Yes 
Ye* 
Yes 
yes on dividend 

preshift. No 
post-left- shift 
for quotient. 
Yes(no effect) 
on divisor pre-
shift. 

Order of Noise 
and Other 
CommentB 

P 


L H a s  bearing ~n *+. 
Noi aeles s 
1 

2 

P 


NoisePess 

2 
2 
2 
P.No additional 

noise introduced 
in remainder 
normalization. 

no Yes 2 
no no Noiseless 


